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Ås, 14th May, 2019

Tyrone Carlisle Nowell

i



ii



Abstract

Root and Butt-Rot (RBR) is having a significant economic impact on the forest
industry and is expected to increase with climate change. The current management
strategies are becoming less effective, and little data on RBR distribution is avail-
able to develop new ones. In Europe, approximately half of the timber production is
using Cut-To-Length timber harvesters which store a considerable amount of data
on each tree. Being able to supplement this data with the presence and quantity of
RBR in the tree would add significant value to both the forest industry and to the
scientific community in developing new strategies for RBR management.

This Master’s thesis explored the feasibility of embedding a computer vision sys-
tem on the harvester for autonomous rot detection and quantification using state
of the art Convolutional Neural Networks (CNNs). Among the potential applica-
tions of this system, this study assessed the possibilities to (1) provide real time
feedback of this information to the harvester operator for faster, more accurate cat-
egorisation of the timber quality and (2) enable the collection of big data on RBR
distribution for high spatial resolution mapping for the development of new man-
agement strategies.

The model developed to detect RBR achieved an F1 score of 97.1% accuracy (pre-
cision of 95.2% and recall of 99.0%) which is a significant improvement over previ-
ous techniques with an F1 score of 90.8% accuracy (precision of 90.8% and recall
of 90.8%). Prediction of the RBR quantity as a percentage of the surface area at-
tained an RMSE of 6.88%, and was reduced to 6.17% when aggregated with the
RBR detector.

Evaluating the misclassifications of the detection system indicated that the model
performance is at least on par with that of the author. These results indicate that
there is significant potential in developing this technology further for both eco-
nomic and environmental gains.
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Chapter 1

Introduction

1.1 Background

As of 2015, the world had 4 billion hectares of forest covering approximately 31%
of the global landmass of which 61% are classified as coniferous forests [1]. Conif-
erous trees, mostly evergreens with needle-shaped or scale-like leaves, are predom-
inant in the Boreal forest - the worlds largest land biome - and make up a significant
part of the temperate forests in North America, Europe and Asia.

Figure 1.1: Global percentage tree canopy cover [2]. The northern re-

gions of the world are dominated by coniferous forests.
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Due to their abundance, they make up a large part of the production forests man-
aged by the forestry industry. Approximately 400 million cubic meters of timber
are harvested annually for industrial wood supply in Europe [3]. More than half of
this is carried out in the Nordic / Baltic countries where Cut-to-length (CTL) har-
vesting systems are used. These are comprised of a timber harvester for felling and
processing the logs and a forwarder for extracting the logs to the roadside.

Wood processing industries (sawmills, pulp mills) have different requirements on
raw material quality which drives market demand. The CTL system uses real-time
market demand to determine the dimensions of the harvested logs on the site of
operation. The operator of the timber harvester has to recognise and assess defects,
then make decisions as to the allocation of products to markets on the fly. The log
is then classed as one of three general categories depending on the quality: sawlog,
pulpwood or biofuel. Harvesting operations in these forests collect a significant
amount of data, such as diameters, lengths and volumes of the whole tree and of
the sections into which it is cut. This data is stored on onboard computers in a
format described by the Standard for Forest machine Data and Communication
(StanForD), which has become the global de facto standard for data storage from
CTL harvesting operations [4].

Root and Butt-Rot (RBR) is considered a major defect in the production of sawlogs.
It is caused by fungi of the Heterobasidion genus and is considered one of the most
destructive diseases of conifers, particularly in Europe [5]. A comprehensive study
on the economic impact of this genus estimated an annual loss of C790 million in
Europe alone [6]. The distribution map shown in figure 1.2 highlights the global
nature of the problem.

Figure 1.2: Global distribution of Heterobasidion species [7]
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Harvesting operations are conducted all year round but above 5°C, stumps need
to be treated to stop the spread of RBR. This is not always effective and recent
mild winters have forced more harvesting operations to be carried out during the
unfrozen seasons [8]. Therefore, mitigation strategies currently employed for RBR
may become less effective as the sub zero period of the year shortens.

RBR is particularly problematic because infected trees show no outward symp-
toms. The only non-invasive methods available at present for detection in a living
tree use sensors distributed manually around the stem to measure the acoustic or
electrical conductivity. This can be used to generate a map of the internal wood
density or humidity [9], an indicator of the degradation of the wood. The process
is slow and expensive and does not scale commercially. Boring into the tree to
obtain samples for analysis is relatively cheap and effective but can render the tree
vulnerable to the very diseases being controlled for.

As the name suggests, RBR attacks the tree starting at the roots or through damaged
bark, and spreads up the stem in the heartwood, the non-living core of the tree. It
can infect healthy uninjured trees by growth through root contacts or grafts and
is one of the very few fungal pathogens that is able to infect conifer roots of all
ages [5]. It can survive and remain infectious in stumps for over 60 years after
felling [10, 11] and can therefore efficiently spread from one forest generation
to the next [5]. Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris)
are the most common conifers harvested in northern Europe. While an infection
in pine will be limited to a relatively small area due to more effective immune
response mechanisms, the decay column in Spruce can extend 10-12 meters up the
stem.

StumpLog butt

RBR

Figure 1.3: Terminology of a felled tree. Adapted from [12].

RBR has a significant economic impact due to its degradation of the quality of the
timber. Sawlogs are used for aesthetic or structural purposes and thus must be free
of RBR. Pulpwood can have RBR present at a maximum of 50% of the surface
area, while the rest is designated as biofuel.

Both the forest industry and the research community have been attempting to build
models to predict the quality of timber in a given area. These efforts have been
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met with limited success as the intrinsic properties of the trees are not feasible to
measure with current technology before felling, such as disease and insect damage,
making data collection expensive.

Subsequently, models predicting the quality of the timber - a large part of which is
determined by the presence of RBR - have high variance [13, 14] making it hard
to plan management and harvesting operations. The models for the prediction of
RBR distribution are made using environmental conditions, such as soil type and
hydrology, and the yields from similar sites, but the error is still significant. For
example, in Norway, 20% of Norway Spruce show signs of decay due to RBR [15]
and error in the site yield in quality timber is frequently above 10%.

Research indicates that the presence of RBR needs to be mapped at much higher
spatial resolution to improve the models for quality predictions. New research
exploring more accurate localisation of harvested trees has almost succeeded [16]
but digitisation of the presence and quantity of RBR on a sufficiently large scale is
not possible with current technology.

1.2 Problem Statement

Misclassifying a log can have severe financial repercussions since the value of the
categories differs substantially. Pulpwood is worth just 64% of an equal volume of
saw logs and biofuel is often left with the forest owner as firewood due to its low
market value. Subsequently, the operator is under a lot of pressure to make fast,
accurate decisions about the quality of the log and the length to which it should be
cut.

To make these decisions, the operator must observe the colour of the saw dust
ejected from the cut - an indicator of discolouration - and, if it’s dark, manipulate
the felled tree into visual range for a manual inspection. This process is time con-
suming and hard to master. Even a small amount of RBR, which is easy to miss
in the saw dust, will be cause for rejection of the log at the saw mill. Any RBR
missed is likely to be caught during the forwarding of the timber to the roadside.
However, the log is cut to length by the harvester operator which may be wrong for
its actual category, reducing the value of the timber.

The roles of pathogens as disturbance agents are expected to increase due to climate
change as their ability to adapt to new climatic conditions will be greater than that
of their long-lived hosts and the induced stress will make the hosts more vulnerable
[17]. The effects of climate change as measured by tree health and tree species
composition will be virtually imperceptible over the next few years [18] but models
and management strategies will need to adapt to mitigate the effects in the long
term.
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Forest machines are being fitted with ever more sophisticated sensors to supple-
ment the StanForD data collected [19]. Cameras have been mounted on harvester
heads to capture images of the butt end of the logs [20] but only to ascertain the
log dimensions for optimisation of the CTL process. This thesis proposes us-
ing an automated computer vision system, based on images captured in a similar
setup, for RBR detection and quantification using Convolutional Neural Networks
(CNNs).

The proposed solution would reduce the mental workload for the operator by pro-
viding accurate, real time information about the presence and quantity of RBR.
This would enable the operator to make more informed decision about the qual-
ity of the log. And, with the development of models of RBR growth through a
tree, the extent of the RBR could be predicted so that sawlog recovery could be
maximised.

The automated digitisation and integration of this information into the StanForD
file associated with the tree would then be added to a database. The RBR distri-
bution could then be used to more precisely model the distribution and modes of
infection of RBR to mitigate the economic and environmental impacts.

1.3 Structure of thesis

This thesis starts with the theory behind the machine learning process of CNNs
and current state of the art architectures in chapter 2. In chapter 3 the images are
explored, the dataset is prepared and chapter 4 describes the methodology applied.
Chapter 5 covers the results which are then be discussed in detail in chapter 6. The
results of this study are summarised in chapter 7.
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Chapter 2

Theory

Machine learning is a subset of artificial intelligence where an algorithm trains a
model to fit a system in order to emulate it. This process can be used to get a better
understanding of the system’s properties or behaviour, but is more commonly used
to make predictions about samples within the system. Machine learning consists
of three components: the model, optimiser, and the dataset.

Figure 2.1: Information flow in the machine learning process. Information

flows from the dataset to the optimiser only for learning techniques that

require feedback.

The model defines how data is input, a set of parameters which can be modified
to alter the model’s behaviour and a function used to generate the output. The op-
timiser is an algorithm which updates the model parameters throughout the learn-
ing process with the aim of improving target performance characteristics. The
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dataset defines the real world information in a representative form accepted by the
model.

The optimisation algorithm determines the type of learning: unsupervised, rein-
forcement, or supervised. Unsupervised learning techniques do not use feedback
of ground truth labels or values, and are used to explore the structure of the data to
extract meaningful information [21]. Reinforcement and supervised learning tech-
niques use feedback to guide the learning process and can both be used to build
predictive models. Reinforcement learning uses evaluative feedback from a re-
ward system [22], which explores all possible inputs, actions or outputs. This is a
relatively exhaustive process and convergence to a solution is generally very slow.
Supervised learning uses instructive feedback which exploits the ground truth la-
bels or values to converge on a solution much faster and will be the focus of this
study.

Deep learning is a form of machine learning that requires learning parameters of
more than one consecutive step. That is, the input signal is transformed through
two or more consecutive trainable models to generate an output. Deep learning was
integrated into the field of image analysis with the introduction of the convolutional
neural network, a two stage network, comprising many steps, that extracts features
and then finds the relationships between them.

This chapter will cover the theory pertaining to this study in the context of a con-
volutional neural network trained on an image dataset using supervised learning
techniques. Convolutional neural networks will be described in section 2.1 and the
optimisation process by supervised learning for these types of models will be de-
scribed in section 2.2. The structuring and processing of datasets will be covered
in section 2.3.
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2.1 Model

2.1.1 Artificial neurons

The study of artificial neural networks started in 1943 with the development of a
mathematical model of a biological neuron typically referred to as the McCulloch-
Pitts neuron [23]. This was the first model to make assumptions about the activity
of a neuron which made it possible to simplify and encode. These assumptions are
as follows:

1. It has a binary output.

2. The sum of the inputs must surpass a threshold to trigger the neuron.

3. There is no delay in the system.

4. No input, no output.

5. The structure of the net does not change over time.

This neuron model can be summarised as a logic gate with a binary output where
the input signals x are integrated and an output signal o is generated according to
whether a threshold θ is reached as illustrated in figure 2.2.

Figure 2.2: McCulloch-Pitts model

Perceptron

The Perceptron [24] model adopted and encoded the McCulloch-Pitts neuron into
what can be considered the elemental building block of a modern artificial neural
network. This model introduced the concept of applying weights to the input values
in order to scale them according to their importance to the model. The net input of
a function z is expressed as the linear combination of the input features x and the
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corresponding weights:

z = w1x1 + · · ·+ wmxm (2.1)

where:

w =

w1
...
wm

, x =

x1...
xm

 (2.2)

The Perceptron was developed in the context of a binary classification task where
the two classes are defined as 1 (positive) and -1 (negative). The activation func-
tion of a Perceptron model φ(z) takes z as input and if z is greater than a defined
threshold θ a class of 1 is predicted and -1 otherwise. This is implemented in the
Perceptron model using a variant of the unit step function:

φ(z) =

{
1 z ≥ θ
-1 otherwise

(2.3)

By adding a new constant termw0x0 to z, the definition can be simplified to:

z = w0x0 + w1x1 + · · ·+ wmxm = wT x (2.4)

Where w0 = −θ and x0 = 1 and therefore:

φ(z) =

{
1 z ≥ 0
-1 otherwise

(2.5)

w0 is normally referred to as the bias unit. A functional diagram of this model is
shown in figure 2.3 on the facing page.

Adaline

Linear activation functions were introduced with the conceptualisation of the Adap-
tive Linear Neuron (Adaline) model [25]. The Adaline model uses a linear activa-
tion function instead of the unit step function which is simply the identity function
of the net input, such that:

φ(wT x) = wT x (2.6)
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Figure 2.3: Perceptron model

In the Adaline model, φ(z) is used to update the weight vector, the advantages of
which will be discussed in section 2.2.1 on page 26, but the activated signal can
still be thresholded for binary classification.

Figure 2.4: Adaline model

More broadly, an artificial neuron can be represented by the general model illus-
trated in figure 2.5 on the following page for any activation function φ.

Non-linear activations

A model using a linear activation function will always output a linear combination
of the inputs and thus, will only be capable of modelling linearly separable data
in a classification task or linearly distributed data in a regression task. For more
complex data, the model must be able to compensate for non-linearities, which is
accomplished by using a non-linear activation function. Virtually any monotonic
function can be used as an activation function, however the properties required for
gradient descent optimisation, to be discussed further in section 2.2.1 on page 26,
and computational efficiency, are normally limiting factors.

One of the first non-linear activation functions was the Sigmoid function, equa-
tion 2.7 on the following page, a special case of a logistic function that takes a real
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Figure 2.5: Generalised neuron model

value as input and returns a value in the range (0, 1).

φ(z) =
1

1 + e−z
(2.7)

The Hyperbolic Tangent (tanh) function, equation 2.8, is a similar S-shaped func-
tion which returns a value in the range (−1, 1) giving a zero-centred output. Both
functions are illustrated in figure 2.6.

φ(z) =
ez − e−z

ez + e−z
(2.8)

1

0

1
Sigmoid Hyperbolic Tangent

Figure 2.6: Sigmoid and Hyperbolic Tangent activation functions

These activations are not commonly used in neural networks because of the compu-
tational load of solving these functions and the vanishing gradient problem, which
will be discussed further in section 2.2.3 on page 35. These issues lead to the in-
troduction and popularisation of rectified linear functions. In the context of neural
networks, rectified linear means that the positive part of the activation function is
linear. The most commonly used rectified linear functions are shown in figure 2.7
on the facing page.
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0

1

ReLU Leaky ReLU ELU

Figure 2.7: Rectified linear activation functions

Rectified Linear Unit (ReLU) [26] can be expressed as a piece-wise linear func-
tion simply as max(0, z). This simple function is very efficient to compute but
can also suffer from the vanishing gradient problem since it has a gradient of zero
when z < 0.

Leaky ReLU [27] is a variant of ReLU with a small slope below zero expressed as
max(az, z) for 0 < a < 1. This adjustment avoids the vanishing gradient problem
and is still relatively simple to compute but the discontinuity at zero means that
the gradient at this point cannot be derived and must be predefined (normally as
zero).

The Exponential Linear Unit (ELU) [28] is a rectified activation function that
smooths slowly below zero converging on a constant value −α. This is a smooth,
continuously differentiable function, but the extra complexity of the function adds
to the computational workload. The benefits of using these function on a larger
scale are discussed further in section 2.2.3 on page 36.

Regularisation

A common problem in machine learning with non-linear functions is overfitting the
training data. When a model overfits the training data it results in high variance in
predictions for similar samples and poor performance on previously unseen data.
One method to avoid overfitting a dataset is through regularisation of the model
parameters. Regularisation penalises large parameter values in a model by adding
a term to the cost function.

The most common form of regularisation in machine learning models is L2 regu-
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larisation, which can be summarised as follows:

λ||w||2 = λ

m∑
j=1

w2
j (2.9)

where λ is the regularisation parameter. By increase the cost of using large weights,
the weights shrink decreasing the complexity of the model. L1 regularisation
is more severe, as it tends to shrink the weights of less important features to
zero:

λ||w|| = λ

m∑
j=1

|wj | (2.10)

There are other methods to reduce overfitting that have the same effect but gener-
ally apply to a network of neurons, not to single neurons.

2.1.2 Artificial neural networks

In the context of an Artificial Neural Network (ANN), an individual neuron is
referred to as a unit and a single layer of a neural network can be regarded as a
group of parallel neurons that all receive the same input, but are differentiated by
their weight vectors. All the units in a layer use the same activation function. A
multilayer neural network structure is illustrated in figure 2.8.

[ ]y1 
yt 

⋮

Figure 2.8: Multilayer feedforward neural network. An input layer in, a

hidden layer h and an output layer out where m is the number of input

values and t is the number of classes in a multi-class classification task.

The vector [y1, . . . , yt] contains the predictions of the network ŷ.
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Hidden layers

A hidden layer is a layer in a multilayer neural network that is neither the first layer
of the network (the input layer) nor the last layer of the network (output layer).
A network that has more than one hidden layer is called a Deep Artificial Neural
Network (DNN). The number of layers in a network and the number of units in a
layer are referred to as its depth and width respectively.

A hidden layer is comprised of an arbitrary number of units and one bias unit. A
dense layer is one where every unit is connected to all units in the previous layer.
Defining a dense layer is normally limited to two parameters: the number of units
and the activation function used. The bias unit acts as the bias for the whole of the
next layer.

Input and output layers

The first and last layers define the format of the input and output signals. The input
layer has one unit for every value in the input signal and one bias unit.

The activation function of a machine learning model determines whether it per-
forms a classification or regression task and the same can be said for a neural
network. However, only the activation function of the last layer of an ANN defines
the format of the output and therefore the task the model is suited for.

The number of units in the last layer determines the number of outputs from the
network. In a classification task, the number of units is the number of classes
except for binary classification where the number of units is exactly one. Typi-
cally, a binary classification task will use a sigmoid activation function to output
class probabilities, while a multiclass task will use a softmax activation which nor-
malises the outputs of all units so that the sum of all outputs equals one. These
are the probability of the sample belonging to each class, the highest of which will
determine the models class prediction.

Regression tasks require one neuron per continuous variable and typically use lin-
ear activation functions.

Activation by forward propagation

Forward propagation is a series of tensor multiplications with activations in be-
tween. The inputs to each unit in a layer are multiplied by their respective weights
and summed together. The results are then activated and fed into the next layer
where the process is repeated.

15



Trainable parameters

The trainable parameters of a dense layer consist of the weights of each neuron.
The number of parameters can be expressed as:

np = (ni + 1)× ul (2.11)

where ni is the number of input values and ul is the number of units in the dense
layer in question.

Network Capacity

The capacity of a network is its ability to emulate complex models. The capac-
ity of a network to overfit a dataset increases with increasing number of trainable
parameters since they define the complexity of the model. A dataset rarely covers
the full distribution of all potential samples so an overfitted model could have un-
predictable results when applied to new unseen data. How to evaluate the network
capacity and whether it is overfitted will be discussed further in section 2.3.1 on
page 39.

2.1.3 Convolutional neural networks

Since their introduction in the 1990’s where they showed outstanding performance
in image classification tasks [29], Convolutional Neural Networks (CNNs) have
been a popular field of research, which has lead to substantial improvements in
machine learning and computer vision applications. Unlike traditional machine
learning models which require domain expertise or computational feature extrac-
tion techniques, CNNs are able to learn which features are salient and extract them
from raw data. Another advantage is that the extracted features are translationally
invariant. This means that the location of the feature in the image does not af-
fect the output, making the network more robust when dealing with unstructured
data.

Deep CNNs, with stacked convolutional layers, were first popularised by AlexNet
[30] before which convolutional layers had only been used as the input layer. They
have been found to emulate the primate visual system [31] with its sequence of
processing stages: edge detection, primitive shapes, gradually moving up to more
complex visual shapes [32]. Low-level features are extracted by the first convolu-
tional layer, after which, every subsequent convolutional layer combines them into
progressively higher-level features constructing a feature hierarchy.
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These features are represented in the feature maps of each layer where each ele-
ment in the map corresponds to a local patch of values from the original input, or
signal. The dimensions of the local patch are defined by the kernel, or filter. There-
fore, feature maps are essentially activation maps output from a convolution oper-
ation of a filter on an input signal. This concept is illustrated in figure 2.9.

Filter

Figure 2.9: Discrete convolutions of a 2D image. The filter is convolved

iteratively with each pixel patch in the input image.

Discrete Convolutions

The basis of a CNN is a discrete convolution. For one dimensional data, a discrete
convolution can be defined as follows:

y = x ∗ w (2.12)

Where x is the input, w is the filter and ∗ denotes the convolutional operation. For
every input unit i this can be simplified to:

y[i] =
k=m−1∑
k=0

xp[i+m− k]w[k] (2.13)

Where m is the filter length and p denotes the padding mode which is discussed
and defined below. The padded vector xp has size n + 2p when n is the number of
input elements. The operation can be simplified by flipping the filter to get a dot
product notation which can be repeated like a sliding window:

y[i] = x[i : i+m] · wr (2.14)
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where wr is the rotated filter. Equation 2.13 on the previous page can easily be
extrapolated to two dimensions, defined as:

Y[i, j] =

k1=m−1∑
k1=0

k2=m−1∑
k2=0

XP [i+m− k1, j +m− k2]W[k1, k2] (2.15)

which is essentially nesting equation 2.13 on the preceding page within itself to
increase the dimensionality.

Padding

Computing a discrete convolutions of an input of a fixed size results in uneven rep-
resentation of the input values. The outer most values will only be evaluated once,
while the inner most values will be evaluated m times where m is the dimension
of a 1D filter, or m × n times where m × n are the dimensions of a 2D filter. By
padding the borders of the input with zeros, the filter can be shifted further out,
increasing the number of convolutions of the original input values.

There are three modes of padding: full, same and valid shown in figure 2.10 on
the next page.

• For full padding p = m− 1. This means that convolutions will be evaluated
when any section of the filter overlaps with the image. Therefore, the output
feature map will be larger than the input image which means it is rarely used
in CNNs.

• Same padding results in a feature map the same size as the input image by
calculating p using the filter size, p = bm2 c.

• Valid padding is when p = 0 so the feature map is smaller that the input
image. For deep CNNs, valid padding is rarely used because the feature
space reduces too quickly limiting the information flow through the network,
which can have a negative impact on the network performance.

Full padding is the only mode that gives equal weight to all pixels in the input
image. Same and valid padding give less weight to the outer most pixels since they
are part of fewer pixel patches that are evaluated.

Note that the dimensions of the output are also largely affected by stride, which is
the number of pixels the filter is moved between each iteration. A stride of one is
most commonly used as larger strides can have the same impact on dimensions as
valid padding. The size of the feature map is the number of iterations of the filter
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Figure 2.10: Padding of a 2D image.

in a given dimension. The size o can be calculated as follows:

o =

⌊
n+ 2p−m

s

⌋
+ 1 (2.16)

Where n is the number of input elements, p denotes the padding mode, m is the
filter size and s is the stride length. This equation can be applied to each dimension
to get the feature map size.

Convolutional layer

A convolutional layer is generally defined by four properties: the number of filters,
the size of the filters, the padding mode and the stride length. A convolutional
layer does not activate the output and so is normally paired with an activation layer,
which is often defined as the fifth property of the layer. While a stride length of
one and same padding is standard for the previously mention reasons, the number
of filters and filter size should be tailored according to the number and size of
the features expected in the input signal. Optimising these layer parameters is
incredibly complex so an iterative trial and error approach is normally used.

A standard convolutional layer outputs one feature map per filter even if the input
signal has multiple channels, like an RGB image (3 channels) or the feature maps
from the previous convolutional layer. This is because each convolutional filter
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consists of one kernel per channel and the result of the individual convolutions are
summed together, collapsing the channels to one as shown in figure 2.11.

Input

Output
Spatial Channel

Figure 2.11: Standard convolution of a single filter of width 3 on an input

of width 5 with 3 channels and same padding.

The computational complexity of this filter operation can be expressed as:

Ofilter = wi × wf × ci (2.17)

Where wi is the input width, wf is the width of the filter and ci is the number of
input channels. This can be extrapolated to 2D images:

Ofilter = (wihi)× (wfhf )× ci (2.18)

Where hi is the input height and hf is the height of the filter. The complexity
of multilayer convolutional operations can increase drastically as shown in fig-
ure 2.12. In standard CNNs, the number of channels increases after the first layer

Input

Output

3×3×5
3×3×7

Figure 2.12: Complexity of multichannel multifilter convolutions. The first

layer consists of five 3 × 3 filters and the second consists of seven 3 × 3

filters.

since each channel represents a feature. An advantage of CNNs is the vast number
of salient features that can be extracted, however this can lead to an rapid increase
in the computational load since the complexity of each layer depends on the num-
ber of channel output by the previous one as shown in equation 2.19.

Olayer = Ofilter × nf = (wihi)× (wfhf )× cinf (2.19)

Where nf is the number of filters.
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Trainable parameters

Other than the ability to learn salient features from raw data, CNNs are also much
more computationally efficient due to the much smaller number of trainable param-
eters. A fully connected layer of nu units with an input of p pixels in nc channels
would have nu×p×nc + 1 weights to train. However, the number of trainable pa-
rameters np in a convolutional layer is determined by the filter size f , the number
of filters nf and the number of input channels nc as defined in equation 2.20.

np = nf (nc × f + 1) (2.20)

Hence, the number of trainable parameters in a convolutional layer is not related
to the number of pixels in the input signal, drastically reducing the number of
parameters. Both forward and backward propagation operations are computed on
a pixel level so the computational workload is not reduced as drastically as the
number of parameters.

Subsampling

Instead of increasing the filter size of each consecutive convolutional layer to con-
struct a feature hierarchy, most neural networks will use pooling operations to
subsample the feature maps and keep the filter size constant.

This operation is normally applied as either max-pooling or mean-pooling. These
operations use a sliding window to look at a pixel patch of size Pn1×n2 and return
either the max value or mean value respectively. The window is normally non-
overlapping so that every pixel is only evaluated once. Therefore, a window of size
2× 2 will reduce the input signal by half in both dimensions, i.e. a 2× 2 window
applied to an input of size 16× 16 will have an output of size 8× 8.

Max-pooling is often used in CNNs because it reduces the effect of small local
changes making the features more robust to noise. Pooling layers also decrease the
size of features increasing computational efficiency and since this type of layer has
no trainable parameters, it does not add to the computational workload.

Batch normalisation

To increase the stability of a neural network, a batch normalisation layer nor-
malises, scales and shifts the signal from the previous layer. The mechanism and
benefits of this are covered in section 2.2.1 on page 30. This is particularly use-
ful for very deep networks as it limits the signal variance throughout the network
making it more robust.
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Kernel stacking

Large filters are more expensive to compute, but are able to extract larger fea-
tures. Kernel stacking is a method of finding larger features using computationally
cheaper smaller filters. This is done by stacking two convolutional filters sequen-
tially. This can either be done using two smaller filters of the same shape or by
addressing one dimension at a time as shown in figure 2.13.

Figure 2.13: An example of different kernel stacking methods.

Kernel stacking yields the most accurate representation when a linear activation
function is used between the kernel, but achieves the best performance with ReLU.
The advantage of kernel stacking is that the number of parameters is reduced sig-
nificantly as expressed in equation 2.21.

5× 5
5×5−−→ 1× 1 np = 5× 5 = 25

5× 5
3×3−−→ 3× 3

3×3−−→ 1× 1 np = 3× 3 + 3× 3 = 18

5× 5
5×1−−→ 1× 5

1×5−−→ 1× 1 np = 5× 1 + 1× 5 = 10

(2.21)

where np is the number of trainable parameters for the given filter combination.

Depthwise separable convolution

A popular way to address this issue is by using depthwise separable convolutions.
This method convolves the channels separately followed by a pointwise convolu-
tion. This method is illustrated in figure 2.14 on the next page.

22



3×3×5

3×3×3DW
1×1×5

Standard convolution

Depthwise separable
convolution

Spatial Channel

Figure 2.14: Depthwise separable convolution. A 3 × 3 × 5 layer can be

replaced by a 3 × 3 × 3DW followed by a 1 × 1 × 5. The DW notation

means that the filter convolutions are not performed across channels.

Using equation 2.19 on page 20, this can be shown to be more computationally
efficient considering the depthwise separable convolution:

O3×3×5 = (5× 5)× (3× 3)× 3× 5 = 3375 computations

O3×3×3DW = (5× 5)× (3× 3)× 3× 1 = 675
O1×1×5 = (5× 5)× (1× 1)× 3× 5 = 375
ODS = O3×3×3DW +O1×1×5 = 1050 computations

Global pooling

The interface between the feature maps of the final convolutional layer and first
dense layer has a large effect on the total number of trainable parameters in a
model. Connected directly to the feature maps, a unit in the dense layer would
require one trainable weight per pixel in every feature map. A number of different
methods are used to mitigate this effect, the most popular of which is the global
pooling layer. Just like a regular pooling layer, a global pooling layer returns the
mean or max but of the whole feature map. This reduces every feature map to a
single value so that a unit in the dense layer will only have as many weights to train
as there are feature maps.

2.1.4 Non-sequential layers

With the development of applied CNNs, the focus has shifted from a sequential
topology to a more modular approached based on non-sequential network architec-
tures. These modules, or blocks, typically consist of convolutional layers, pooling
layers and batch normalisation layers. Most of these modules attempt to address
the issue of information loss in deep networks. Information is lost through each
convolutional layer as the signal that is not picked up by one of the filters is dis-
carded. Therefore, the objective of non-sequential blocks has been to maintain
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or enhance the complexity of the neural network while reducing the distance the
signal has to travel between the input and the output layers.

Inception block

Concatenate

Pool

1×1

1×1

1×1 1×1

3×3

3×3 3×3

Figure 2.15: An example of an Inception block.

Convolutional layers use linear transformations with non-linear activation func-
tions to achieve the flexibility required of feature extraction tasks. The Inception
[33] block was found to produce non-linear transformations by using parallel con-
volutional layers and concatenating the output. The newest versions of the mod-
ule incorporate pointwise convolutions for dimension reduction before computing
the more expensive 3 × 3 or 5 × 5 convolutions. An example is shown in fig-
ure 2.15.

Residual block

+

3×3

Figure 2.16: An example

of a Residual block.

A neural network is a universal function approximator
and, generally, adding layers increases the accuracy
of the approximation. However, this has diminishing
returns due to effects such as the vanishing gradient
problem and the curse of dimensionality. Information
is lost through each convolutional layer because only
that which is picked up by the filters is passed on. The
rest, the residual, is discarded. A Residual block is
a simple concept: sum the input with the output of a
layer so that the residuals are passed on to the next
layer as shown in figure 2.16.
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Residual inception block

The Residual Inception block is a combination of the two previous concepts. The
block uses parallel filters of different sizes to extract features of different sizes and
then sums the results with the input.

Concatenate +

1×1

1×1

1×1

3×3

3×3 3×3

Figure 2.17: An example of a Inception Residual block.

This retains more information in the signal while adding features of multiple scales.

Densely connected convolutions

To address the issue of information loss in deep CNNs, the Densely Connected
Convolutional block connects the input signal and the output of every convolu-
tional layer to the input of every successive convolutional layer. As opposed to
summing the signal like the residual blocks, the feature maps are concatenated,
which leads to less correlation in the features of subsequent layers. It also means
that the densely connected neural network has access to the entire feature hierarchy
instead of just the higher level features.

2.1.5 Modern architectures

Fine-tuning pretrained models has become common practice in applied computer
vision solutions using CNNs. A CNN can be considered as two separate sections:
the feature extractor and the densely connected neural network. The feature ex-
tractor is comprised of the convolutional layers, which convert an image into the
feature space. The densely connected neural network then uses the relationships
between the features to make a prediction.

A feature extractor fitted to a large enough dataset with varied enough feature re-
quirements will generally extract a large variety of features that can be used for
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3×3

3×3

3×3

Figure 2.18: An example of a densely connected convolutional block.

any task. To re-purpose these networks, a new densely connected neural network
can be connected to the existing feature extractor and tailored to the new task, a
process which will be discussed further in section 2.2.4 on page 37.

2.2 Optimiser

2.2.1 Gradient descent optimisation

The first learning rule defined for the application of machine learning was the Per-
ceptron learning rule. The learning process utilises the error to update the weight
vector w and can be defined by the following steps:

1. Initialise the weight vector w to zeros or small random numbers.

2. For a given training sample x(i):

(a) Compute the output ŷ.

(b) Update the weight vector w.

Where ŷ is the output of the unit step activation function defined in equation 2.5 on
page 10 and the simultaneous update of each weight wj in the weight vector w can
be expressed as:

wj := wj + ∆wj (2.22)
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∆wj is derived from the Perceptron learning rule:

∆wj = η
(
y(i) − ŷ(i)

)
x
(i)
j (2.23)

Where η is the learning rate, y(i) is the true class label, ŷ(i) is the predicted class
label and x(i)j is the input value for the corresponding weight wj . In the event of a
misclassification, the weights are pushed in the direction of the true class:

∆wj = η(1−−1)x
(i)
j = 2ηx

(i)
j

∆wj = η(−1− 1)x
(i)
j = −2ηx

(i)
j

The Adaline algorithm is of particular importance because it was the first to illus-
trate the key concepts of defining and minimising continuous cost functions. The
objective of the learning process must be formulated in order for the algorithm
to optimise its weight vector. This is referred to as the objective function, which
often takes the form of a cost (or loss) function to be minimised. In the case of
Adaline, the cost function J is defined as the Sum of Squared Error (SSE) between
the computed output ŷ and the true class label y:

J(w) =
1

2

∑
i

(
y(i) − φ

(
z(i)
))2

(2.24)

The constant term 1
2 is added for simplification of the derivative for the follow-

ing reasons. The key advantage of having a differentiable convex cost function is
that the gradient descent optimisation algorithm can be used to find the optimal
weights to minimise the cost function. The general principle behind gradient de-
scent, illustrated in figure 2.19 on the next page, is that for each learning iteration
a step is taken down the cost function slope proportional to the magnitude of the
slope in an attempt to find the cost minimum.

The weight vector is updated by taking a step in the opposite direction of the gradi-
ent∇J(w) of the cost function J(w) where the weight vector change ∆w is defined
as:

∆w = −η∇J(w) (2.25)

The gradient of the cost function is the partial derivative of the cost function with
respect to each weight wj . Therefore, the update applied to each weight wj can be
written as:

∆wj = η
∑
i

(
y(i) − φ

(
z(i)
))
x
(i)
j (2.26)
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J(𝑤)

𝑤

Initial weight

Global minimum

Figure 2.19: Gradient Descent optimisation. The step size is proportional

to the gradient of the cost function.

This weight vector update is calculated based on all samples in the batch being
used for training, as opposed to on a per sample basis (online learning), which
is referred to as batch gradient descent or full batch learning. Datasets that are
too large to fit in the computer memory can be processed using a technique called
mini-batch learning that iterates through smaller subsets, updating the weights at
each iteration.

However, equation 2.26 on the preceding page requires that y(i) be a continuous
value which would be the case in a regression model but not in a classification
model where the labels are binary values. For example, predicting if rot is present
or not can only have a binary output, true or false. For classification tasks the
error can be transformed to a continuous value using a binary cross-entropy func-
tion:

D
(
ŷ, y
)

= −
(
ylog

(
ŷ
)

+ (1− y)log(1− ŷ)
)

(2.27)

Or a categorical cross-entropy function for a multiclass problem:

D
(
ŷ, y
)

= −
k∑

i=1

y(i)log
(
ŷ(i)
)
, (2.28)

where k is the number of classes.

While regression models output a continuous variable which can be used directly
as the loss, using a more sophisticated function can lead to faster convergence. The
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most commonly used loss functions are mean squared error (MSE) and mean
absolute error (MAE).

MSE =
1

n

n∑
i=0

(
y(i) − ŷ(i)

)2 (2.29)

MAE =
1

n

n∑
i=0

|y(i) − ŷ(i)| (2.30)

where n is the number of samples. For regression models, these function can also
be used to evaluate the performance characteristics which will be discussed further
in section 2.2.5 on page 37.

Learning rate

The learning rate η determines the size of the weight updates in each training cycle.
In gradient descent optimisation the learning rate is multiplied by the gradient of
the cost function as shown in equation 2.25 on page 27.

One of the key challenges of gradient descent learning is finding the correct learn-
ing rate. As depicted in figure 2.20, the learning rate will determine the time for
the model to converge and whether it will ever find the global minimum.

J(w)

w

Optimal learning rate

High learning rate

Low learning rate

Figure 2.20: Effect of learning rate on gradient-based learning
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Feature scaling

Since weights are initialised at or very close to zero, a cost function with a global
minimum far from zero will take a long time to converge to. Increasing the learn-
ing rate would mean faster convergence but it would be at the expense of finer
tuning. One method to mitigate this effect is feature scaling. The most common
method of feature scaling is standardisation which shifts the mean of a feature
to zero and scales the feature to get a standard deviation of one as shown in equa-
tion 2.31.

x
(i)
std =

x(i) − µx
σx

(2.31)

Where x(i) is a particular sample, µx is the mean and σx is the standard deviation
of the feature. The effect of standardisation is depicted in figure 2.21.

J(𝑤)

𝑤

Range of initialised weight

Scaled feature

Original feature

Figure 2.21: Effect of feature scaling on gradient-based learning.

This can also increase the rate of convergence since the gradient is more likely to
be in the direction of the global minimum as illustrated in figure 2.22 on the facing
page.

Activation functions that are not zero centred have a negative effect on multilayer
neural networks [34] which is one reason why sigmoid functions are not used.
This is partially due to the fact that during the training process the output of a
layer will change and thus the input to the next layer. This causes a shift in the
signal distribution that will then have to be learned by the successive layer. This
stochasticity in the input signal makes it difficult for the layer to converge to good
weights. This problem is known as internal covariate shift.

A batch normalisation layer mitigates this problem through a form of learned
feature scaling, or signal normalisation. This is done by calculating the batch mean
and variance:
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Figure 2.22: Effect of feature scaling on gradient direction. w1 and w2

are two weights of the neuron.

µB =
1

m

m∑
i=1

xi

σ2B =
1

m

m∑
i=1

(xi − µB)2

where µB is the batch mean and σ2B is the batch variance. The input is then nor-
malised using the calculated batch mean and variance:

x̄i =
xi − µB√
σ2B + ε

where xi is the input signal, ε is a small float added to the variance to avoid dividing
by zero and x̄i is the normalised input. The learn parameters γ and β are then used
to scale and shift the signal:

yi = γx̄i + β

where yi is the output signal.

2.2.2 Back propagation of error

In 1960, the basics of a continuous back propagation model emerged from con-
trol theory [35] but only became the basis for modern neural networks in 1988
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Figure 2.23: ANN with one hidden layer.

[36]. To explain back propagation, an ANN with a single hidden layer as shown in
figure 2.23 will be used as an example.

The error is computed using the derivative of the cost function as discussed in
section 2.2.1 on page 26 and can be expressed as:

δ(out) = A(out) − y (2.32)

where A(out) is the activated signal of the output layer, or ŷ. Working backwards
through the network, the activations of each layer can be calculated using the fol-
lowing relationships:

A(out) = φ
(
Z(out)

)
Activation of the output layer

Z(out) = A(h)W(out) Net input of the output layer
A(h) = φ

(
Z(h)

)
Activation of the hidden layer

Z(h) = A(in)W(out) Net input of the hidden layer

These relationships repeat all the way back to the input layer so that the whole
network can be expressed as a series of nested functions. The chain rule is used
to facilitate the back propagation of error through a network by collapsing the
complexity of the required computations. The main building block of the chain
rule is the derivative of a nested function:

d

dx
[f(g(x))] =

df

dg
· dg
dx

The error vector, δ(out) of the output layer is used to calculate the error of the
hidden layers, δ(h), by propagation, transforming the errors backwards through the
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network:

δ(h) = δ(out)
(

W(out)
)T
� ∂φ(z(h))

∂z(h)
(2.33)

After obtaining the error terms, δ, for every layer, the derivative of the cost function
can be calculated:

∂

∂w
(out)
i,j

J(W) = a
(h)
j δ

(out)
i

∂

∂w
(h)
i,j

J(W) = a
(in)
j δ

(h)
i

The partial derivatives are then accumulated for every node in each layer and the
regularisation term is added:

∆(out) =
(

A(h)
)T
δ(out) + λ(out)

∆(h) =
(

A(in)
)T
δ(h) + λ(h)

The weights can then be updated using the computed gradients:

W(l) := W(l) − µ∆(l) (2.34)

for every layer l.

2.2.3 Convergence

Dropout

Dropout [37] layers were developed to address the challenging task of optimis-
ing a network’s capacity. If a network has too little capacity it cannot emulate a
complex system and with too much capacity it may overfit the data impacting its
performance on unseen data.

Dropout layers build redundancy in a network by randomly dropping the hidden
units of a higher level and scaling the remaining activations to compensate. This
forces the network to learn a redundant representation of the data making it more
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robust. The dropout layer is only active during training so that all redundant neural
pathways are used when processing new data.

Dropout layers are commonly employed in large networks that have too much ca-
pacity. By optimising the dropout rate, the extra capacity of the network can be
used for redundant pathways instead of overfitting.

Decay

Higher learning rates allow a model to bypass local minima and converge faster on
the global minimum but is unlikely to get close due to the larger weight updates.
When close to the global minimum, a smaller learning rates lead to better fine
tuning. This concept is illustrated in figure 2.25 on page 27.

Decay decreases the learning rate gradually during training to converge faster on
the global minimum and then facilitate fine tuning once its there. This is normally
done by reducing the learning rate by a fixed proportion after every training itera-
tion or it can be done by reducing it in response to the training metrics. However,
the decay rate needs to be selected carefully; too large and the weight updates will
reduce too quickly effectively terminating the learning process prematurely, too
small and the model will converge on the global minimum quickly but will take a
long time to finish fine tuning.

Momentum

Classical momentum (Polyak, 1964) is a technique to accumulate a velocity vector
in the directions of consistent reduction in the objective across training iterations.
This accelerates gradient descent by boosting weight updates using the velocity
vector, reducing the risk of converging to a local minima.

The drawback of momentum based techniques is that this ability to avoid local
minima will also effect its convergence on the target minimum. Nesterov momen-
tum adds a partial update of the gradient before adding momentum to the weight
update. This limits the effect of momentum by using the previous gradient to an-
ticipate the next update, allowing for smoother convergence.

Optimisers

DNNs are generally much harder to train than shallow learning algorithms due to
the much larger number of parameters that need to be optimised. The cost function
can be rough and the optimiser can get trapped in a local minimum. Subsequently,
the gradient descent optimisation algorithm described previously can converge very
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slowly, if at all. While the general principle has remained the same, new techniques
have been developed to address this issue.

Stochastic Gradient Descent (SGD) [38] optimisation uses approximations of
the cost from single training samples (online learning) or small subsets of samples
(mini-batch learning). Updating more frequently can lead to faster convergence
and the stochasticity introduced by the cost estimations is beneficial to the training
process as it can help escape local minima.

Adaptive Gradient (Adagrad) [39] optimisation tracks the frequency at which in-
dividual weights are updated and modifies the learning rate accordingly. A weight
which is updated frequently will have its learning rate reduced and one which is
rarely updated will have a large learning rate. Adadelta is based on the same con-
cept but the update frequency is only tracked through a moving window, limiting
the extent of the optimisers memory.

The central idea of Root Mean Square Propagation (RMSProp) is to keep a
moving average of the gradients squared for each individual weight. For each
update, the gradient is divided by the square root of this average so that all weight
updates are scaled according their respective average gradients. This means the
resultant gradient magnitude will be relative to the local area so that the size of
the weight updates, irrespective of the actual gradient magnitude, will always be
relatively similar.

Adaptive Moment Estimation (Adam) tracks the rate of change of the gradi-
ent (second moment) over a fixed time period in the form of a velocity vector.
The Adam optimiser was the first to integrate classical momentum to accelerate
gradient descent. Nesterov Adaptive Moment Estimation (Nadam) [40] uses
Nesterov moment instead.

The redundancy of the dataset and the complexity of the system the model is learn-
ing to emulate will determine which of the optimisers performs best. Due to the
size and complexity of most datasets used in machine learning, choosing an opti-
miser is best accomplished through trial and error rather than by inference.

DNNs are general highly over parameterised which means that there are many
minima in the cost function. While there is only one global minimum, many others
may yield a low enough cost to satisfy the model requirements. Therefore, the
model does not need to find the global minimum, only a minimum that meets the
performance requirements.

Vanishing gradient problem

Activation functions which converge on a constant value, like the sigmoid and
the tanh functions, suffer from the vanishing gradient problem. With gradient-
based learning methods, the weights are updated by a factor proportional to the
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gradient. These functions have gradients approaching zero for large positive or
negative values of z. This slows down and may even stop the learning process.
The vanishing gradient problem makes training a model based on these functions
more difficult as extra caution must be taken when initialising weights and learning
rate or the learning process might effectively terminate prematurely.

For this reason sigmoid activation functions are not used in neural networks. How-
ever, while tanh activation functions suffer from the same drawbacks, it is still
used in recurrent neural networks (RNN) due to other properties of the network
that compensates for the vanishing gradient problem. RNNs are outside of the
scope of this thesis and the reasons behind why tanh works will not be discussed
here.

One solution to this problem which has been widely adopted are rectified linear
activation functions. It has been shown that using a rectifying non-linearity is the
single most important factor in improving the performance of a recognition system
[41]. The rectifier activation function also allows a network to easily obtain sparse
representations which leads to mathematical advantages [42]:

• Information disentanglement - a dense representation is highly entangled
because almost any change in the input modifies most of the entries in the
representation vector. Instead, through sparse representation the set of non-
zero features is almost always preserved during small changes in input.

• Linear separability - sparse representations are more likely to be linearly
separable, or more easily separable, simply because the information is rep-
resented in a higher-dimensional space.

• Distributed but sparse - while dense distributed representations are the
richest representations, sparse representations’ efficiency is still exponen-
tially greater, where the power of the exponent is the number of non-zero
features.

Despite the hard threshold at 0, networks trained with the rectifier activation func-
tion can find local-minima of greater or equal quality than those obtained with
smooth activation functions, and computations are generally cheaper as there is no
need to compute an exponential function [42].

Hyperparameters

An ANN is limited in its capacity to learn by its architecture. While the learning
process can optimise the trainable parameters to fit a task, the architecture itself
does not change. Hyperparameters are properties of the model or optimiser that
must be selected by the user. For a model, these include: number of units in a dense
layer, filter sizes, padding, etc. And for the optimiser this includes: optimisation
algorithm, decay, training time, etc.
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2.2.4 Fine tuning pretrained networks

The feature extractor of a pretrained network is finely tuned to find salient features
in the original dataset. If the dataset is large and diverse enough, this feature set
can be applied to a wide range of new image analysis tasks. As discussed in section
2.1, the feature extractor converts the image into a feature space and the densely
connected neural network finds the relationships between these features and the
ground truth of the samples. For a new task, the neural network must be retrained
to find new relationships that means it need to be retrained from scratch.

During the early stages of the training process the error rates will be large be-
cause, even if the feature extractor is finding salient features, the neural network is
still learning the relationships. If all parameters in the network are trainable, the
large error rates due to the neural network will cause weight updates in the feature
extractor that are detrimental to the system in the long term. Therefore, the param-
eters of the feature extractor are frozen during training of the neural network. Once
the neural network has been sufficiently optimised, the parameters of the feature
extractor could be unfrozen and the whole network could be fine tuned. However,
this can have unpredictable results as the response of neural network to a change
in the feature space is unknown.

The feature extractor is optimised on a different dataset than that which may be
used for the new task. Therefore, the signal distribution will be different. To
compensate for this, the parameters of the batch normalisation layers in the feature
extract are often unfrozen during the learning process so that the feature space
adapts to the new dataset.

2.2.5 Metrics

Metrics, unlike loss, are used purely for model interpretation and evaluation. Met-
rics are normally used to derive a form of error that is more easily interpretable to
a human being. The type of metric used is determined by the format of the model
output and the domain in which it’s being used.

Classification

A confusion matrix is a table that is used to describe the performance character-
istics of a classification model. The table is a comparison of the of the predicted
classes and the actual classes. It consists of four values: true positives TP, true
negative TN, false positives FP, and false negatives FN. The true values indicate
the number of samples that were classified correctly, while the false values are
those that weren’t. The positive or negative notations reflect the actual class of
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the sample. The most common metrics of a classification model can be calculated
using these values.

Predicted True Predicted False

Actual True True Positive (TP) False Negative (FN)

Actual False False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix.

Accuracy of a classification model is measured as the percentage of correctly pre-
dicted samples. For a binary classification task, binary accuracy is simply the
number of true positives and true negatives over the total number samples:

Accuracybinary =
TP + TN

total
(2.35)

where the total number of samples is TP + FP + TN + FN . For k-classes clas-
sification, categorical accuracy is the sum of the true positives of all the classes
over the total number of samples:

Accuracycategorical =

∑k
i=1 TPi

total
(2.36)

However, accuracy metrics assume that a misclassifications are equally important
in all cases. In cases where a false negative is acceptable but a false positive is not,
or vice versa, accuracy provides little information. To differentiate in these cases,
recall and precision are used.

Precision =
TP

TP + FP
(2.37)

Recall =
TP

TP + FN
(2.38)

Precision is the percentage of the positive predictions that were correct while recall
is the percentage of the positive class that were correctly predicted. For example,
if there are 20 samples and 10 are of a positive class, a model that predicts only 5
samples are positive but they are all correct would have a precision of 100% but a
recall of 50%. On the other hand, if the model predicted all samples are positive it
would have a precision of 50% but a recall of 100%. These metrics are commonly
used when a classification task places different levels of importance on different
mistakes. These metrics are consolidated in the F1 metric.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(2.39)
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Yielding a single value, the F1 metric is much easier to use to compare models un-
less model precision or recall are the only characteristic being optimised. Custom
metrics are also commonly uses, generally as different combinations of TP, FP, FN
and TN for more domain specific applications. For example, if a value can be as-
signed to each classification results, the metric could be uses to design the model
to maximise value.

Regression

Since the output of a regression model is a continuous value, the loss functions can
be interpreted directly as a metric. However, other than minimising this value it has
no meaning in the real world and can be hard to interpret. Both MSE and MAE,
discussed in section 2.2.1 on page 28, are common metrics used to evaluate regres-
sion model performance characteristics. MSE is most commonly used because it
penalises outliers more severely, which tends to lead to better model generalisabil-
ity, a concept that will be discussed in the next section. While MAE is easier to
interpret since the units are the same as the value predicted, it does not emphasize
the error due to outliers. Root Mean Square Error (RMSE) is the square root of
the MSE but the units are the same as those of the predicted value making it more
easily interpretable while retaining the benefits of MSE.

2.3 Dataset

The quality of a dataset is determined by how closely the distribution of data
matches that which the system could be exposed to. As per standard practice in
data driven modelling, a dataset should be split into two sets. A training dataset
and a test dataset. The reason behind this and the uses of these sets will be dis-
cussed in this section.

2.3.1 Test dataset

The creation of a test dataset not used in the training process is an essential check
for an overfitted model. Consistent performance of a model when exposed to new
data - its generalisability - is one of the key performance indicators used to evalu-
ate a model.

The size of the test dataset, as a percentage of the total dataset, depends on the total
number of samples and how evenly they are distributed. As long as the training
dataset is a representative set of real world data, the test dataset can be arbitrarily
large. Therefore, the larger the dataset the more data can be set aside for testing
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TestTraining

Original Dataset

Figure 2.24: Creating a test dataset.

assuming constant distribution. In normal scenarios, where data is limited, the size
of the test dataset must be tailored to the task.

Evaluating a model’s generalisability requires the test dataset to be sequestrated
for the duration of the training process and used only in the final step. The model
should be evaluated on test dataset as sparingly as possible since each evaluation
yields information about the test dataset which may be used, even inadvertently, in
any further design iterations. The model will then know something about the test
dataset which voids the assumption that the evaluation on this dataset represents
the models generalisability.

2.3.2 Cross-validation

To avoid overusing the test dataset, a validation set is made as a subset of the
training set. This is called holdout cross-validation and is used to evaluate the
model during the training process thus limiting the information leakage from the
test set. While the evaluation on the test dataset defines a models generalisability,
iterative testing on the validation set throughout the training process offers key
insights into when a model starts to overfit the data.

Test

Original Dataset

Training Validation

Figure 2.25: Holdout cross-validation.

Using the same validation dataset throughout the training process can lead to more
rapid overfitting of the training dataset due to its reduced size and is sensitive to the
partitioning of the dataset. K-fold cross-validation avoids this problem by using
a different validation dataset for every iteration. The training dataset is split into
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k equal sets where one set is used for performance evaluation and k − 1 are used
for model training. The process iterates through using each fold as the validation
set.

Training Set

Validation FoldValidation FoldValidation Fold

⋮

1st Iteration

3rd Iteration

kth Iteration

2nd Iteration

Figure 2.26: K-fold cross-validation.

2.3.3 Data preparation

Image preparation

Before applying machine learning to an image dataset, it is common practice to
enhance the images. These processes tend to adjust image intensities to enhance
contrast in the hope of making features more defined and, therefore, easier to find.
Histogram equalisation is a common technique to increase the global contrast of
an image. The adjustment aims to equalise the pixel intensities using the image
histogram and is particularly effective on images which have either too high or
too low exposure. It does so by defining each channels cumulative distribution
function which can be used to transform the image into a new image with a flat
histogram.

Image augmentation

Image augmentation is a process of generating synthetic samples to be used in
the training process. Images from the original dataset are modified to create new
images which are treated as separate samples. These augmentations include trans-
forming the image by: zooming, shearing, rotating, and scaling the original im-
age.

The new image will have similar feature to those found in the original image but
not identical. This procedure expands the distribution of features to which the
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model is exposed to in the training process improving its generalisability. How-
ever, radical image augmentation could result in impossible features which could
have unpredictable results on the model performance. Therefore, image augmen-
tation can be used to boost an existing dataset but care must be taken in defining
the augmentation parameters to that the new images still fit within the real world
distribution.

2.3.4 Class imbalance

If samples from one or more classes are over-represented in a dataset - the num-
ber of samples per class differ substantially - it is considered imbalanced. RBR
in Norway has been observed in approximately 20% of Norway Spruce. With-
out accounting for class imbalance, predicting that every tree is rot free would
achieve 80% accuracy which may be the solution the machine learning process
finds. Therefore, a class imbalance can affect the learning process creating a bias
towards the majority class or classes but there are methods to mitigate these effects
by class weighting, upsampling the minority class or downsampling the majority
class, or by generation of synthetic training samples to balance the classes.
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Chapter 3

Materials

The scope of this thesis was to evaluate the potential of RBR identification through
image analysis from a harvester head mounted camera. Due to the technical com-
plexity, time and rough conditions, mounting a camera on an operational harvester
head was deemed to be too risky without preliminary results to validate the in-
vestment. Subsequently, images which emulate the perspective of a camera in
this position were produced by cropping the images already acquired for the crane
mounted camera perspective.

Images of stumps of recently harvested trees were collected as described in sec-
tion 3.2 on the next page, for the original purpose of stump detection as part of the
project described in section 3.1. Masks were created according to criteria outlined
in section 3.3 on the next page for pixel-wise labelling of the stump and, if present,
RBR. The dataset was then modified to simulate the perspective investigated in this
study as described in section 3.4 on page 45.

3.1 PRECISION Project

Access to this dataset was granted by NIBIO as coordinator of the PRECISION
project - Precision forestry for improved resource utilization and reduced wood
decay in Norwegian Forests (project number NFR281140) - which is studying all
aspects of RBR in the Norwegian forest industry and investigating potential solu-
tions through methodology and technology. One work package within the project
has been investigating the potential of a crane mounted camera for identifying and
classifying stumps with the aim of mapping the presence and location of RBR.
The dataset acquired from this work package was made available for this thesis
study.
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Study area

The study was carried out in Ås municipality in Norway (59°39’N 10°47’E, 0-
220m above sea level). The forest in this area is boreal and dominated by Norway
Spruce (Picea abies (L.) H. Karst), with Scots Pine (Pinus sylvestris L.) and Birch
(Betula pubescens Ehrh.) as the other primary species.

3.2 Data collection

Several sites were used for data collection within the Ås municipality. All images
were collected from these sites within a few days of harvesting to ensure that the
stump surface had not yet been altered by environmental conditions. The images
were taken at differing distances, angles, times of day and with varying degrees of
occlusion to simulate a crane mounted camera, as shown in figure 3.1.

Harvester head camera

Boom crane camera

Figure 3.1: Crane and harvester head cameras. Figure adapted from [43].

These images were collected using a Canon EOS 100D, an Apple iPad Air and a
Huawei Mate 10 Lite mobile phone. All three devices had different resolutions,
capabilities in low light conditions and image processing techniques that resulted
in images with a wide range of exposures, levels of contrast and focus.

3.3 Mask creation

The masks for this image set were created using GIMP raster graphics editor
whereby pixels belonging to the stump, any wood discolouration, and the back-
ground were labelled separately. Any discolouration present on the stump was
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No RBR RBR

Figure 3.2: Original image examples

presumed to be due to RBR, however, obvious contamination was excluded, e.g oil
marks from the chain saw, tracks from tire chains. Scots Pine has naturally darker
colouration in the heartwood, which can be misinterpreted as RBR. To minimise
label mistakes, a domain expert was consulted to outline the physiological indica-
tors of RBR and all masks were cross checked. An example of an image with the
label mask is shown in figure 3.3 on the following page.

3.4 Data preparation

A camera mounted in the harvester head would be very close to the butt of the log
giving it an unobstructed view. By carefully selecting the field of view of the lens,
an image could be acquired covering the full extent of, but limited to, the butt of
the log.

The images acquired for the PRECISION project are much more varied in perspec-
tive than those of a harvester head mounted camera. And, they are images of the
stump, not the butt of the log, but the saw only removes a few centimetres of wood
during felling so the stump and butt of the log are identical for all practical pur-
poses. By using the mask created to delineate the stump, the image can be cropped
to reduce the field of view to that which can be expected from the harvester head.
This procedure is covered in section 4.2.1 on page 48
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Image Mask

Mask overlaid on image

Figure 3.3: Image/mask pair

The resulting dataset is comprised of 1010 RGB images of which 507 have areas
considered RBR.
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Chapter 4

Methods

The methodology used in this study is made up of four phases: preprocessing, data
selection, data handling, and model selection and evaluation. The preprocessing
of the data covers the generation of the cropped images from the original dataset
and image enhancement in section 4.2. Data selection will cover the creation of
a test set and the creation of folds for cross-validation in section 4.3 on page 50.
Data handling will be discussed with the implementation of mini-batch learning
and data augmentation in section 4.4 on page 51. The training process involving
model comparison, selection and optimisation is covered in section 4.5 on page 52.
The code used for this study can be found on GitHub at https://github.
com/tynowell/rotdetection-CNN.git.

4.1 Software

This study used Python version 3.6.4 on an Anaconda platform with Numpy ver-
sion 1.15.4. Scikit-learn [44] version 0.20.2 and Keras [45] version 2.2.4 - with
Tensorflow [46] version 1.12 as the backend - were used for data handling and
machine learning tasks. This process used GPU acceleration with CUDA 9.0 and
cuDNN 7.4.2.

4.2 Data preprocessing

The dataset was relatively well prepared as it had already been used for a ma-
chine learning application [47]. All data had been consolidated into two folders

47

https://github.com/tynowell/rotdetection-CNN.git
https://github.com/tynowell/rotdetection-CNN.git


for images and masks and the masks had been given the same file name as the
originals.

4.2.1 Image cropping

The masks created for each of the original images were used to define a bounding
box limited to the extent of the cross-section of the stump. This area was then
cropped to create a new image and a new mask as shown in figure 4.1.

Bounding box

The masks were stored as JPEG images where background, stump and RBR were
labelled black, white and red respectively. To obtain a bounding box, the image
was binarised to consolidate the area designated as the stump including any RBR.
The image was read into a Numpy array and all non-zero (non-black) pixels were
identified. The row and column minimums and maximums were then used to define
the extent of the bounding box.

Cropping

The bounding box was then used to crop both the image and the mask, which were
saved to separate folders. The files were also named using a zero padded four digit
numerical sequence so that order could be checked more easily.

Cropped image

Cropped mask

Figure 4.1: Cropping the images and masks

48



4.2.2 Target extraction

The cropped mask was then used to extract label data for the images: a Boolean
value indicating the presence of RBR and the percentage of RBR by surface area.

Antialiasing mask

The masks were stored as JPEG files and the compression process caused aliasing
along the borders of the designations. When analysing masks for the presence of
RBR, it was found that the aliasing noise was at times closer to red than white or
black. This meant red pixels were detected in masks with no RBR labelled. To fix
the problem, the masks were thresholded to eliminate the noise and separate the
labels using OpenCV’s binary threshold function, threshold.

Extracting targets

Once the mask labels had been separated, the presence of RBR and the percent-
age of RBR were extracted. The percentage of RBR was calculated using equa-
tion 4.1.

RBR% =
prot

prot + pclear
(4.1)

Where prot is the number of red pixels and pclear is the number of white pixels.
The presence of RBR was determined simply as a Boolean value from the percent-
age RBR. This data and the image names were aggregated in a Pandas dataframe,
which was used later for dataset selection as described in section 4.3.1 on the fol-
lowing page.

4.2.3 Image enhancement

Due to the variation between cameras used to collect the images, a new dataset
was generated with normalised images. Histogram equalisation was applied to
the entire dataset of cropped images in an attempt to limit the range of exposures
and levels of contrast. This was applied to the cropped images using OpenCV’s
histogram equalisation function, equalizeHist. However, since the pretrained net-
works are trained on the ImageNet dataset without image enhancement, both the
original and enhanced dataset were kept to be compared.
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4.3 Data selection and cross-validation

As discussed in section 2.3 on the topic of datasets, creating training, validation and
test sets are essential for evaluating a model and ensuring generalisability.

4.3.1 Set selection

The datasets used in this study were chosen using Scikit-learn’s train test split
function. This function splits a dataframe into two, which contain the training and
test sets. This function was also set to stratify the datasets, that is, it ensures that
both sets have the same proportion of a given feature, which is the Boolean value
for the presence of RBR in this case. A test set of 200 images was deemed suitable
for evaluating generalisation without compromising the distribution of the training
dataset. Once the test set had been chosen, the dataframes were used to split the
images into a train folder and a test folder.

4.3.2 K-Fold cross-validation

Cross-validation should be nested within the training process such that the valida-
tion set changes for every training epoch. However, this functionality has not been
integrated into the training tools provided by Keras. Subsequently, the folds were
treated as independent evaluations of the model architecture rather than as a means
to improve the generalisation of a single model.

To ensure statistically robust results for comparison, 10-fold cross-validation is
used wherever possible. Ten dataframes were created using train test split with
stratification on the training set to create new training and validation sets. These
were then concatenated back into a single dataframe. As will be discussed in
section 4.4.1 on the next page, the mini-batch learning function used accepts a
dataframe and uses a given proportion as the validation set. The validation set is
always selected from the end of the dataframe so by passing it a dataframe with the
desired validation set concatenated to the end, the correct selection is always used.
A validation set size of 160 images was chosen (19.8%) as around 20% is a com-
mon size in machine learning work flows, leaving 650 images for training.
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4.4 Data handling

4.4.1 Mini-batch learning

This study aimed to test a wide range of architectures which required a large
number of training cycles. The computation time involved in this process would
have been impractical on a standard CPU. Therefore, GPU accelerated compu-
tations were enabled using Tensorflow’s GPU package. While this had a large
impact on computation time, the memory space was restricted to that of the GPU
RAM (8 GB). The models and the dataset were too large to load into this mem-
ory space so mini-batch learning was used. This was implemented using the
flow from dataframe function in the Keras package, one of the flow functions that
use mini-batch learning. Larger batch sizes normally lead to better generalisabil-
ity of the model. However, the batch must fit into the GPU memory along with
the model and optimisation parameters. Due to constraints in GPU memory, the
batch size had to be limited. Along with the chosen image resolution of 128×128,
maximising the memory usage allowed for a batch size of 10.

This function uses a Pandas dataframe containing the file name and target value for
each sample. By defining the file names in the dataframe, the training images do
not need to be copied into separate folders with different splits for 10-fold cross-
validation unlike the flow from directory function.

4.4.2 Data generation

The flow from dataframe function accepts an ImageDataGenerator to do mini-
batch learning. The generator converts the images into batches of tensor image
data and a set of augmentations to be applied for each training iteration. The aug-
mentations are applied at random within the defined constraints for each batch. The
values chosen from test runs and by visual inspection are shown in table 4.1.

Augmentation Value

Rotation range 90

Shear range 0.3

Zoom range 0.3

Horizontal flip True

Vertical flip True

Rescale 1/255

Table 4.1: Augmentation parameters for the data generator
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The rescale value is constant across training iterations. It is a scaling factor ap-
plied to all pixels to reduce the range of values from 8 bit (0 to 255) to values
between 0 and 1. In defining the ImageDataGenerator, the validation split is also
required. This was set to 0.198, the same used before when defining the validation
folds for cross validation. A separate ImageDataGenerator can be defined with no
augmentations, only rescaling, for the test dataset.

4.4.3 File structure

The images were split into two folders for the originals and for those enhanced
with histogram equalisation. The enhanced images were given the same name as
the original so that only the file path needed to be changed in the dataframe fed to
the flow from dataframe function.

4.5 Deep learning

CNNs capable of learning subtle textural or structural differences in images are
generally very deep. Designing a network with so many layers can be very time
consuming due to the complexity and iterative nature of the process. Therefore,
this study started with preexisting architectures, which have proven successful at
similar tasks, to identify the best core architecture.

The full process will be described in the rest of this section but the following is a
short summary of the model selection and training methodology:

1. Acquire pretrained networks to test.

2. Modify the top layers for the new task.

3. Compare performance of all architectures on limited training.

4. Compare performance of the best architectures.

5. Optimise the best architecture.

6. Retrain with optimal parameters on the full training set.

4.5.1 Architectures

ImageNet

ImageNet [48, 49] is an open source image database containing 14,197,122 la-
belled images in 21,841 synsets at the time of writing. It has been used extensively
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for training CNNs both due to the availability and scope of the dataset and because
of the ImageNet Large Scale Visual Recognition Competition (ILSVRC), which
has been a proving ground for all state of the art architectures.

Keras Applications

Keras Applications are deep learning models that are made available along with
weights of a model trained on the ImageNet dataset. For the purpose of compar-
ison, these models are evaluated using the Top-1 and Top-5 metrics. The output
of a multiclass classifier is a vector of the probabilities that the sample belong to
each class. The Top-1 metric can be regarded as a standard accuracy metric - its
the accuracy that it makes the correct class prediction. Top-5 is the accuracy of
the model where a prediction is considered correct if the true class is one of the 5
with the highest probability in the output vector. However, assuming these metrics
are directly applicable to any image analysis task would be a mistake. The feature
space required for a particular task, like RBR detection, could be very different to
that which would result from training on the ImageNet dataset. Subsequently, all
models must be evaluated on the new task independent of their stated performance.
Table 4.2 on the next page shows the details of the models used in this study.

The VGG [50] neural network designed by the Visual Geometry Group was the
first runner up in the 2014 ILSVRC classification task, but still a significant im-
provement over the 2013 winner. The VGG network was the first to use stacked
kernels with ReLU activation functions separated by pooling layers to reduce the
number of parameters in the convolutional layers. The VGG-16 is 23 layers deep,
19 of which are the feature extractor making it one of the deepest networks at the
time. The VGG-19 network is deeper but did not perform as well, which was the
first indication to the community that increased depth does not always correlate
with increased performance.

GoogLeNet [51], aka InceptionV1, was the winner of the 2014 ILSVRC and was
improved in the following year to become InceptionV3 that came second in the
ILSVRC by a very small margin. GoogLeNet saw the introduction of inception
blocks of parallel convolutions, the intermediate step of the InceptionV2 network
introduced batch normalisation layers and InceptionV3 saw the reduction in the
number of parameters by stacking kernels to reduce filter sizes.

Microsoft’s ResNet [52] network was the 2015 ILSVRC winner having seemingly
solved the problem of limited network depth by using residual blocks. Subsequent
improvements have seen the introduction of the bottleneck design which uses a
pointwise convolutions before and after the normal convolutional layers to reduce
the dimensionality of the operation to decrease the computational complexity. In-
ceptionResNetV2 is based on an architecture introduced in 2016 [53], which was
the first to incorporate the inception and residual blocks.
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Model Size Top-1 Top-5 Parameters Depth

VGG16 528 MB 0.713 0.901 138,357,544 23

VGG19 549 MB 0.713 0.900 143,667,240 26

InceptionV3 92 MB 0.779 0.937 23,851,784 65

ResNet50 98 MB 0.749 0.921 25,636,712 50

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572

MobileNet 16 MB 0.704 0.895 4,253,864 88

MobileNetV2 14 MB 0.713 0.901 3,538,984 88

NASNetMobile 23 MB 0.744 0.919 5,326,716 -

NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Xception 88 MB 0.790 0.945 22,910,480 126

DenseNet121 33 MB 0.750 0.923 8,062,504 121

DenseNet169 57 MB 0.762 0.932 14,307,880 169

DenseNet201 80 MB 0.773 0.936 20,242,984 201

Table 4.2: Keras Application models. The depth refers to the topological

depth of the network which includes activation layers, batch normalisation

layers, etc. Due to the complexity of the learned architecture of NASNet,

the depth is hard to define.

MobileNet [54] was design specifically for mobile and embedded vision appli-
cations. Its a relatively small model with reduced complexity primarily due to
extensive use of depthwise separable convolutions. MobileNet (V1) generally
outperforms GoogLeNet with fewer parameters and a third of the computations
while achieving similar accuracy to VGG-16 with almost 27 times less computa-
tions.

The Extreme version of Inception, or Xception [55], is based on the InceptionV3
network, but uses modified depthwise separable convolutions. The original depth-
wise separable convolution used a depthwise convolution followed by a pointwise
convolutions with a non-linear activation in between. The Xception network uses
them in the reverse order, but without the non-linear activation. The model ob-
tains similar results to the InceptionV3 model, but the reduction in the number of
non-linear activation functions makes it more efficient.

Google Brain released a new concept called Neural Architecture Search (NAS)
which uses a recurrent neural network to learning its own architecture using re-
inforcement learning thereby optimising the architecture. As a result, the NAS-
Net [56] model was developed, but this methodology could not use the ImageNet
dataset because it is too large. Instead, the CIFAR-10 dataset [57] was used.
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DenseNet [58] models, based on densely connected convolutional blocks, have
achieved state of the art performance on the CIFAR-10 dataset.

Top layers

The architecture of the top layers adopted the standard used for CNNs as shown in
table 4.3.

Layer Parameters

Global Average Pooling -

Dense 256 units

Activation ReLU
Dropout 0.5
Output Task specific

Table 4.3: Top layer architecture for model comparison. The parameters

to optimised in the final model are in bold.

The parameters to optimise to the task are the number of units in the dense layer,
the type of activation function and the proportion of dropout. The initial values
were chosen for the model selection process with the aim of giving the top layers
enough capacity to not be the limiting factor on the performance, while keeping
the number of parameters down to decrease training time. The values chosen were
256 units in the dense layer, ReLU activation and 0.5 dropout.

Both the classifiers and regressors have a single unit in the output layer, but the
classifier uses a sigmoid activation function to generate the output while the re-
gressor uses a linear activation function.

4.5.2 Optimisation

To ensure a level playing field for model comparison the same optimiser was used
in all cases. To decrease the chance of stochastic behaviour, whether it be ad-
vantageous or disadvantageous to the process, a momentum based optimiser was
deemed more stable and the Nadam optimisation algorithm was chosen. This opti-
miser was chosen for the comparative phases of this process but others were tested
for the final model optimisation.
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4.5.3 Metrics

Classification

The metrics used during training of the classifier models were part of the
keras metrics package. These were the precision and recall functions. To simplify
the comparison process, a single metric, F1 score, would be more convenient, but
since the precision and recall of the models are useful for a more detailed com-
parison and the F1 score could be calculated post-training. Therefore, only the the
precision and recall were computed during training. Models were evaluated using
the highest F1 score attained throughout the training process.

A custom metric, referred to as the Value metric, was also created for evaluation
that would be more interpretable to those who may end up using the model. A mis-
classification of RBR would results in the miscategorisation of the log. A sawlog
categorised as pulpwood will fetch 64% of the market value and the reverse will
be rejected at the mill with very little, if any, compensation. The value retained is
shown in table 4.4.

Predicted true Predicted false

Actual true 1.00 0.00

Actual false 0.64 1.00

Table 4.4: Custom value metric.

This metric can be defined as:

valueretained =
TP + TN + (FP × 0.64)

TP + TN + FP + FN
(4.2)

Regression

MSE is the most commonly used metric for regression models, but it is not easily
interpretable because the units are the square of the predicted value. RMSE, a
standard metric in forestry research, contains the same information but the units
are the same as the target value. Since there is no reason to compute both MSE
and RMSE, a custom Keras metric was created to compute RMSE to be used for
model evaluation. The lowest RMSE attained by the model was used in the model
comparison process.
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4.5.4 Model selection

All training progress was logged using TensorBoard from which the data was ex-
tracted and analysed.

General comparison

For a general comparison of the model architectures, a model was trained on each
of the folds for 100 epochs for a total of 10 models trained for each of the 13
architectures tested. The validation results were then used to create a subset of the
most promising models.

Selection comparison

The same process was repeated with the subset of models until a maximum of
300 epochs. This process also included a learning rate plateau and an early stop
callback.

The learning rate plateau callback uses a sliding window to monitor a given met-
ric. When the metric does not meet a defined criterion, the callback reduces the
learning rate by a given factor. This is a form of adaptive decay. For the selec-
tion comparison, this callback was set to monitor the validation loss of the last 25
epochs, decreasing the learning rate by a factor of 0.5 if the validation loss over
this time period had not decreased.

Early stop does just that. It also monitors a metric over a given period but it ter-
minates the learning process if the criteria is not met. In this case, it was also set
to monitor validation loss, but over a 50 epoch span. This means that at least one
decrease in the learning rate due to the learning rate plateau callback would have
to have no effect before the criteria of the early stopping callback is void and the
process terminates.

The final architecture chosen to optimise is based on the validation results of this
comparison.

4.5.5 Model optimisation

Hyperparameter tuning

Once the final architecture was selected the top layers of the network were opti-
mised. The three hyperparameters to optimise were: number of dense units, the ac-
tivation function and the dropout proportion as shown in table 4.3 on page 55.
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The optimisation process used a grid search approach to tune the hyperparameters.
This entails trying all possible combinations of the hyperparameters. Instead of
including the dropout proportion in a grid search, it is added after the fact. Dropout
improves the generalisation of the model through using excess capacity to build
redundant pathways. By taking this into consideration, the optimal number of
dense units is found first without dropout and then increased with the addition of
dropout. This decreases the number of iterations required in the grid search by a
substantial factor.

Preliminary tests were conducted to ascertain the range of the grid search. This
involved training models on three randomly selected folds over a wide range of
parameters. Once the range had been reduced significantly, a standard grid search
was performed.

While there are only two hyperparameters to tune, an exhaustive grid search was
deemed too time consuming with 10-fold cross-validation. Therefore, this process
was limited to 4 folds, which may not be as robust a representation of the mod-
els generalised performance, but is still useful for comparison. Since the models
will be relatively similar, the loss curves are expected to have similar responses.
Because of this, the performance difference should be clear after relatively few
epochs. Preliminary tests found that by 100 epochs the models had diverged suf-
ficiently to evaluate their relative performance characteristics. Thus, these models
were limited to 120 epochs of training.

Final training

Once these parameters were tuned, a model was trained on each of the 10 cross-
validation folds to establish the optimal training time. The final model was then
trained on the full training set for the designated time and evaluated on the test
set.

4.6 Combined model

The combined model was set up as a pipeline where the classifier and regressor
evaluated the same test dataset outputting one prediction vector each. These vectors
are then multiplied element-wise to obtain a prediction vector where the percentage
of any sample classified as clear of RBR is set to zero.
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Chapter 5

Results

This chapter will review the results but a more detailed analysis will be covered
in chapter 6. The results of the data preparation process and a description of the
chosen datasets will be shown in section 5.1. The results of the image enhancement
will be covered in section 5.2 on page 61. The results of the classification task will
be shown in section 5.3 on page 62, and of the regression task in section 5.4 on
page 64. The combine model will be covered in section 5.5 on page 67.

5.1 Data preparation

5.1.1 Dataset distribution

The RBR is reasonably well distributed throughout the dataset as shown in fig-
ure 5.1. The mean percentage of RBR present in all the images, including those
without RBR, was 19.43%.
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Figure 5.1: Target distribution.
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Doing a split without randomisation of this dataset could have yielded sets with
similar distributions, however random selection with stratification was used to en-
sure it.

5.1.2 Test dataset

The split with stratification, used to create the test dataset, yielded the distribution
shown in figure 5.2.
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Figure 5.2: Training and test set distribution.

The training and test datasets have similar distributions as shown in table 5.1.

Training Test

Total number of images 810 200

Number of RBR images 407 100

Proportion of RBR images 0.5025 0.5000

%RBR mean 0.1916 0.2051

%RBR variance 0.0647 0.0717

Table 5.1: Distribution of RBR presence in Train/Test split.

The variation between the sets was deemed to be negligible.

5.1.3 Cross-validation folds

The cross validation folds were also created using stratification to ensure similar
distributions. A statistical description of the folds is show in table 5.2 on the next
page.
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RBR images %RBR mean %RBR variance

Fold 1 81 0.1968 0.0640

Fold 2 81 0.1906 0.0665

Fold 3 81 0.1819 0.0603

Fold 4 81 0.1896 0.0648

Fold 5 81 0.1764 0.0589

Fold 6 81 0.1920 0.0683

Fold 7 81 0.2033 0.0686

Fold 8 81 0.1979 0.0699

Fold 9 81 0.2132 0.0695

Fold 10 81 0.1782 0.0630

Table 5.2: Distribution of RBR in the validation folds. The total number

of images in the validation folds and the proportion of RBR images were

constant at 160 and 50.62%, respectively.

5.2 Image enhancement

The effect of the histogram equalisation function on the images can be seen in the
example in figure 5.3.

Original Image Histogram Equalised

Figure 5.3: Histogram equalised image.

Preliminary results shown in figure 5.4 on the next page indicated that enhancing
the images had a negative effect on the performance of the pretrained networks.
Some architectures had a high tendency to diverge rapidly when training on en-
hanced images. These outliers were excluded from the figure since the large loss
values made it difficult to compare with that of the original images. Therefore, the
rest of the study was conducted on the original images.
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Figure 5.4: Classifier performance on equalised images.

5.3 Classifier

5.3.1 Pretrained models

Of the thirteen tested architectures, five were selected for further study. These
results are shown in figure 5.5.
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Figure 5.5: Comparison of all classification models.

The top five architectures were DenseNet121, DenseNet169, DenseNet201, Mo-
bileNet and VGG16.
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5.3.2 Selected models

The selected architectures were then trained on all 10 folds for a maximum of 300
epochs. The results are shown in figure 5.6 where DenseNet201 had the highest
mean F1 score.
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Figure 5.6: Comparison of selected classification models. DenseNet201

had the highest mean F1 score.

5.3.3 Best model

Preliminary tests found that the range of 32 to 128 dense units yielded the best
results, so a grid search within this range paired with different activation function
was conducted. As shown in figure 5.7, a 32 unit dense layer with ELU activation
achieved the highest mean F1 score and was selected as the configuration for the
final model architecture.
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Figure 5.7: Parameter selection for classification model.

This architecture was then trained on all 10 folds for 200 epochs to determine
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the optimal amount of training required. As shown in the validation loss curve in
figure 5.8, the optimal training time was 100 epochs.
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Figure 5.8: Validation loss of chosen classifier.

The final model was then trained on the full training dataset for the allotted time
with a dropout of 0.4. The results of the evaluation of the model on the test dataset
are shown in table 5.3.

Metric Train Test

Precision 0.9669 0.9519

Recall 0.9429 0.9900

F1 0.9547 0.9706

Table 5.3: Results of the classification model.

Using the custom metric describe in equation 4.2 on page 56, the value retained by
this model was 98.6%.

5.4 Regressor

5.4.1 Pretrained models

InceptionResNetV2 was excluded due to poor performance. The six best models
were chosen for further investigation: DenseNet121, DenseNet169, DenseNet201,
MobileNet, ResNet50 and Xception.
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Figure 5.9: Comparison of all regression models. The model selection

was limited to the top six.

5.4.2 Selected models

Of the selected models, DenseNet201 had the lowest RMSE score and was selected
for the final model architecture.
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Figure 5.10: Comparison of selected regression models. DenseNet201

had the lowest mean RMSE.

5.4.3 Best model

Preliminary tests found that the optimal number of dense units fell in the range of
32 to 128. All three models based on ReLU performed better that those with ELU,

65



with the 64 unit dense layer performing the best. Therefore, a 64 unit dense layer
with ELU activation was chosen for the final model architecture.
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Figure 5.11: Parameter selection for regression model. The 64 unit dense

layer with ReLU activation had the best performance characteristics.

This architecture was then trained on all 10 folds for 200 epochs to determine
the optimal amount of training required. As shown in the validation loss curve in
figure 5.12, the optimal training time was 190 epochs.
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Figure 5.12: Validation RMSE of chosen regressor.

It was found that adding any dropout to the network had a detrimental effect of the
model performance so it was excluded from the final model. It was then trained
on the full training dataset and evaluated on the test dataset. The model attained a
RMSE of 0.0688.
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Figure 5.13: Regression model error. The dashed lines delineate the val-

ues that fall within the RMSE.

Figure 5.13 shows the regression prediction plotted against its true value.

5.5 Combined model

The element-wise multiplication of the prediction vectors is illustrated in table 5.4.

Sample Regressor Classifier Combined True value

0 0.001429 0 0.000000 0.0000

1 0.571155 1 0.571155 0.5349

2 0.007030 0 0.000000 0.0000

3 0.533893 1 0.533893 0.4360

4 0.025214 1 0.025214 0.0000

5 0.120256 0 0.000000 0.0000
...

...
...

...
...

Table 5.4: Combined model sample predictions. This depicts the element-

wise multiplication process to obtain a combined model prediction.

Combining the models reduced the RMSE from 0.0688 to 0.0617.

67



0.0 0.2 0.4 0.6 0.8 1.0
Predicted value

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
va

lu
e

Zero Error
RMSE

Figure 5.14: Combined model regression error. The dashed lines delineate

the values that fall within the RMSE.
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Chapter 6

Discussion

6.1 Dataset

6.1.1 Images

The original images were collected using a hand held camera in an attempt to
simulate the perspective of a crane mounted camera. The surface of the stump
and that of the log butt are very similar but the environments in which they are
located are not. Therefore, the assumption that an image cropped from the original
is a reasonable representation of this view may impact the generalisability of the
model.

The criteria used for the collection of the original image dataset required that noise
be added to the images. This included variable lighting conditions, saw dust and
wood chips, branches and oblique angles. While a harvester head mounted camera
would not have constant conditions, it would not be subject to the same extremes.
An example of one of many challenging images can be seen in figure 6.1 on the
next page.

The variation in distance from the stump in particular may have had a large effect
on the results of this study. The relative size of the stump in the cropped image is
consistent throughout the dataset since the bounding box was limited to its extent,
but the cropped images themselves have a wide range of different resolutions as
shown in figure 6.2 on the following page.

When the image generator resizes the images to fit the network, the resulting im-
ages can have very different features. In particular, textural features could be lost
or modified in the process, introducing noise or losing information the model could
otherwise use.
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Figure 6.1: Hard image example

Figure 6.2: Cropped image resolutions

6.1.2 Masks

The label masks were produced according to a criterion stipulated by a domain
expert but some discoloration not due to RBR may have been mislabelled. In some
instances it is very hard, even for an expert, to classify it without more invasive
tests especially when there is occlusion due to saw dust, leaves or shadows. For
example, occlusion due to saw dust or wood chips can make it very hard to see
discolouration of the stump or even to tell whether the discolouration is due to
RBR as illustrated by figure 6.1.

The aliasing caused by the file compression for conversion to JPEG may have
introduced errors in the RBR percentage value assigned to the images. Masks
that returned very small value were double checked and none were found to give
a false positive of RBR. However, the effect this may have had on the percentage
assigned to those that do have RBR is unknown and may be significant.
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6.1.3 Set selection

Using SciKit-learn’s train test split function with stratification only ensures that
the proportion of samples with the stratified feature are the same in both sets. In
this case, that means that the proportion of images classed as RBR is the same
in all sets, not that the percentage rot or any other characteristics of the images
are equally balanced. Combined with the noise already present in the dataset, this
caused significant variation in the cross-validation folds. In particular, the results
of the first fold show significant variation to the rest. This can be seen clearly in
figure 6.3.
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Figure 6.3: Variation in cross-validation folds.

6.2 Enhanced images

The enhanced images saw little to no difference in performance for the regression
models and had a negative impact on the classification models. A negative impact
is perhaps not that surprising since the weights for the pretrained networks used in
this study were learning through training on the ImageNet dataset. The images in
that set are not enhanced through histogram equalisation or by any globally applied
enhancement. Perhaps the feature extractor could be retrained on enhanced images
and get better results, but using the original weights seemed to render it unstable
on enhanced images.
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6.3 Model selection and optimisation

Using a small batch size of ten, due to memory limitations, the learning rate was
relatively high since it is related to the frequency of weight updates which would
be higher with more batches to process. This also introduced noise as the smaller
batch sizes are less likely to be of similar distribution to the dataset as a whole.
This means that the graphs of the loss and metrics of the learning process were
very noisy and hard to interpret, even when averaged over all the folds, as shown
in figure 6.4.
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Figure 6.4: Noise in training metrics.

The comparison between the DenseNet models implies that an increase in depth
is directly correlated with an increase in performance. Initially, this study aimed
to determine the ideal architectures for these tasks with the intent of designing a
network with a feature extractor tailored to the task using the defining features as a
foundation. However, the findings indicated that the complexity of the task could
not be limited in feature space and the original feature extractor was kept.

6.3.1 Classifier

The results of the classifier are very promising. However, a closer look at the
misclassified images shows that closing the gap to 100% accuracy may be a lot
more complicated. Six of the two hundred test images were misclassified. One of
which, shown in figure 6.5 on the facing page, was a false positive that seems to
have been misclassified due to occlusion. This was the only occluded image to be
misclassified. Occluded images may not account for a significant portion of the
error but it is still worth considering that occlusions such as this are unlikely to
occur for a harvester head mounted camera.
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Figure 6.5: Potential misclassification due to occlusion.

The rest of the false positives, shown in figure 6.6 and in appendix A, have some
degree of discolouration on the surface of the stump which can easily be interpreted
as RBR by the untrained eye. Whether these images were mislabelled, or if the
discolouration is not due to RBR, is unknown to the author.

Figure 6.6: Potential misclassification due to discolouration.

One image was misclassified as a false negative. Shown in figure 6.7 on the follow-
ing page, it appears that RBR on the stump may have been misclassified due to the
uneven distribution. This error is concerning because uneven distribution of RBR
is not uncommon. There are several other images that have similar patterns but
were correctly classified. However, a false negative classification would have more
severe financial consequences as it would be categorised as a sawlog but rejected
at the sawmill with no financial compensation.

The 98.6% value score of the final classification model does not account for class
imbalance. The dataset used is relatively balanced but the proportion of RBR im-

73



Figure 6.7: Potential misclassification due to distribution.

ages in the real world is not. In Norway, the proportion of trees with RBR is
approximately 20%. The classifier metrics indicate that 99% of these trees and
95% of the healthy trees would be correctly classified as shown in table 6.1.

Predicted True Predicted False Total

Actual True 99 1 100

Actual False 5 95 100

Table 6.1: Classifier confusion matrix.

This yields a retained value of 98.6%. However, this can be scaled to reflect ex-
pected proportions as shown in table 6.2.

Predicted True Predicted False Total

Actual True 19.8 0.02 20

Actual False 4 76 80

Table 6.2: Class balanced confusion matrix.

The value retained then decreases to 98.36% since the error in the actual false
samples has more weight. However, the difference is very small and the value
retention rate is still very good.

6.3.2 Regressor

The selection of a subset of architectures for the regression task was somewhat
challenging. InceptionResNetV2 performed poorly, diverged significantly on sev-
eral of the folds and was excluded from the plots due to scaling issues. The VGG
networks also had the tendency to diverge, however it appeared to be an issue with
stable initialisation. In some cases, several attempts had to be made before they
converged on any given fold.
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The DenseNet architectures were clearly the best, but it was decided to include
other types of architectures for the sake of comparison. Xception was included as
it significantly outperformed the rest and MobileNet was included as a model op-
timised for low computational and memory requirements. NASNetMobile and Mo-
bileNet are both optimised for mobile platforms, and NASNetMobile and ResNet50
had similar score. Therefore, of the three, MobileNet and ResNet50 were selected
for further optimisation since NASNetMobile has less interesting insight to of-
fer.

The performance of the different configurations of the top layer architecture yielded
similar results with the ReLU activation function. The variation within the results
increased with the number of units implying some degree of overfitting. The 64
unit configuration was chosen since it had the lowest mean RMSE and because it
was thought that adding dropout would limit any overfitting. However, dropout
was then found to have a detrimental effect on the model and was not included.
This could mean that the capacity of the top layer architecture could not incor-
porate any redundant pathways. Increasing the capacity by adding more dense
units or decreasing the proportion of dropout used may have led to a more robust
model.

When determining the ideal training time, a learning rate plateau callback was
used. This decreased the learning rate periodically throughout the training process,
an effect which can be seen in figure 5.12 on page 66. The drops in learning rate
were consistently timed across all tested folds. Only after collecting this data, it
was realised that this callback cannot be used during training without validation
as was done to train the final model. This is because the callback monitors the
validation metrics of which there are none. To compensate for this oversight, the
model was trained in intervals between which the learning rate was decreased.
This allowed for a replication of the same training conditions for the final model
which appears to have been successful since the results coincide with those attained
through validation.

The RMSE of the final model was affected, in part, by the prediction of small
values of RBR in the images with no RBR. The errors were small, normally <5%,
but there were as many as there were images with no RBR. The accumulated effect
caused a small but significant error, the effect of which is investigated in the next
section.

6.4 Combined model

Using both models resulted in a decrease in the RMSE of percentage RBR pre-
dicted as show in figure 6.8 on the following page. This was expected, as some of
the error was due to small values predicted for images with no RBR present.
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Figure 6.8: Combined model regression comparison. By removing sam-

ples with a true value of zero, those on the x axis, the RMSE decreases.

The DenseNet201 architecture was selected for both the classifier and the regres-
sor. This would indicate that the features used for both tasks are very similar, which
is not surprising since they are both looking for features common to RBR. This im-
plies that a combining the model architectures is feasible. With two output layers,
with linear and sigmoid activation functions, the model could be trained to classify
and quantify RBR in an image. While this may halve the computational load of
sample analysis, it may make optimisation of the model difficult since the required
feature space may not be identical.

6.5 Implications for forest operations

The value of this system is two fold: giving real time feedback to the harvester
operator and establishing a tree-level database for RBR distribution.

6.5.1 Real time feedback

The immediate value would be evident to the operator of the harvester by providing
real time feedback. Harvesters are complex machines to operate, requiring many
years of experience to reach a high level of competency and intense concentration
for many hours at a time. The operator is expected to detect RBR in the log with
a high degree of accuracy. An image of the log butt may suffice for the operator
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to make their decision but evaluating it would still require time and effort. An
accurate, automated system could be used to inform the operators decisions for
increased gains, both economic and ergonomic.

6.5.2 RBR database

Attempts have already been made to detect RBR with machine learning with the
aim of building a database. Most recently, in the PRECISION project, using UAV
based imaging [59] and a crane mounted camera [47]. For detection of RBR in a
segmented image of the stump, these studies achieved F1 scores of 0.7926 (0.7665
precision and 0.8205 recall) and 0.9082 (0.9082 precision and 0.9082 recall), re-
spectively. However, both of these studies included the challenging task of identi-
fying the stump before RBR detection, reducing their overall accuracy, a source of
error which is not relevant to the system proposed by this study. Linking the classi-
fication of the stump with the associated StanForD file with a reasonable degree of
certainty also proved difficult due to the low accuracy GPS information in the file.
Again, not an issue that would need to be addressed by the proposed system.

6.6 Further work

The largest source of uncertainty in the finding of this study was assumption that
the image dataset used was an accurate representation of the perspective from a
harvester head mounted camera. A continuation of this work would need to val-
idate the model on images acquired from the correct perspective of log butt clear
of occlusions that would be unlikely to happen in the real system. Additionally,
integration of a model predicting the vertical RBR propagation from the quantity
and distribution detected would have the most immediate benefits to those who are
likely to adopt a system like this. There are also many other properties of the log
which may have value to integrate into this system.

The methodology could also be improve with the development and implementation
of an image data generator with integrated cross-validation. This would reduce the
computational workload of the model selection process significantly. The scope
of the proposed solution could also be expanded through development of a mobile
application for data collection. The MobileNet architecture had promising results
in the selection process and may be possible to optimise to a reasonable degree of
accuracy.
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Chapter 7

Conclusions

Overall, this study showed that a computer vision system using a CNN-based
model may provide accurate information on the presence and quantity of RBR
in real time to the harvester operator, and to inform the decisions of the forest in-
dustry and research community. By exploiting the availability of pretrained CNNs,
the methodology employed in this study resulted in a highly accurate model with
relatively little fine tuning required. The uncertainty in the labelling of the mis-
classified samples appears to indicate that the model is at least on par with the av-
erage human at classifying RBR. Therefore, it is the conclusion of this study that
this system has shown sufficient potential for further development, the next step
of which would be validation on a image dataset from a harvester head mounted
camera.
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Appendix

Appendix A: Classifier Errors

Figure 7.1: False positive classifications. All the images have areas of

discolouration that could be RBR.
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