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Abstract

Extremely high frequency oscillations are present in dynamics of different simulated
neuronal networks, but are not yet observed in experimental recordings. This raises
the question about the origin of these high frequency oscillations. Focusing on the mi-
crocircuit model of an area in the visual cortex, it is shown that the oscillations, visible
as vertical stripes in raster plots from population activities, are related to peaks in the
power spectra of the population-averaged firing activities. It is shown that the oscilla-
tions are not caused by the time discretization of the spike detection in the simulation
of the network or the use of discretized delay values.

Given the difference in the number of neurons between experimental recordings
and the populations in the network model, a subsampling of neurons from the network
model with different sample sizes was performed to analyse the oscillations for sub-
samples of neurons with similar sizes as the experimental recordings. The results show
that peaks in the power spectra can be observed for subsamples of few hundred neu-
rons from a population, given that the whole population shows sufficient oscillatory
activity.

Analytical results for the power spectra of the microcircuit model described by Bos
et al. [2016] show that the choice of delay distribution for the inhibitory connections in
the model has a large effect on the peaks. This network model originally uses a trun-
cated Gaussian distribution for the synaptic delays. The use of an exponential delay
distribution shows a spectrum with no peaks for frequencies above 100 Hz for any of
the populations. Analytical power spectra from models using uniform and lognormal
distribution for the delays have peaks in the power spectra around 80 Hz and 300 Hz,
similar to the spectra from the model using a truncated Gaussian distribution. The am-
plitudes of the peaks are not the same for the models with different delay distributions.
This is explained by the different contributions of each eigenmode obtained from the
connectivity matrix of the network. It is also shown that varying the parameters of
the delay distribution greatly shifts or scales both the low and high frequency peaks,
making it possible to tune the parameters to manipulate the oscillations of the network
dynamics.

The dynamics of area V1 from the multi-area model are analyzed for oscillations.
The results show that the oscillatory dynamics are almost completely gone.
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Sammendrag

Ekstremt høyfrekvente oscilleringer er tilstedeværende i dynamikken til ulike simulerte
nevronale nettverk, men har enda ikke blitt observert i eksperimentelle målinger. Dette
fører til spørsmålet om opphavet til disse høyfrekvente oscilleringene. Ved å fokusere
på ”microcircuit”-modellen for et område i synssenteret i hjernen vises det at oscil-
leringene, synlig som vertikale striper i raster plott fra populasjonsaktiviteten, kan
kobles til topper i ”power”-spekteret til den populasjons-gjennomsnittlige fyringsak-
tiviteten. Det vises at oscilleringene ikke oppstår på grunn av diskrete tidssteg i simu-
leringen av nettverket eller å bruke diskrete ”delay”-verdier.

På grunn av forskjellen mellom antall nevroner i eksperimentelle målinger og størrelsen
på populasjonene i nettverksmodellen, en ”subsampling” av nevroner med ulike utval-
gsstørrelser ble gjennomført for å analysere oscilleringene for utvalg med et antall
nevroner i samme størrelsesorden som i de eksperimentelle målingene. Resultatene
viser at toppene i ”power”-spekteret kan bli observert for så lite som noen få hundre
nevroner, gitt at populasjonen viser tilstrekkelig oscillatorisk aktivitet.

Analytiske resultater av ”power”-spektrene til ”microcircuit”-modellen, som fork-
lart av Bos et al. [2016], viser at valget av ”delay”-fordelingen til de inhibitoriske
koblingene i modellen har en stor effekt på toppene. Denne nettverksmodellen bruker
opprinnelig en trunkert Gaussfordeling for de synaptiske ”delayene”. Ved å bruke
en eksponentiell fordeling til ”delayene” observeres det ingen topp i de analytiske
”power”-spektrene for frekvenser over 100 Hz. De analytiske ”power”-spektrene for
modeller med uniform- og lognormalfordelinger til ”delayene” viser topper både for
rundt 80 Hz og 300 Hz, tilsvarende resultatene fra å bruke modellen med den originale
trunkerte Gaussfordelingen. Amplituden til på toppene i spektrene er forskjellig for
modellene med de ulike ”delay”-fordelingene som kan forklares ved de ulike bidra-
gene til spektrene fra de ulike eigenmodene tilhørende koblingsmatrisen til nettverket.
Det er også vist at variasjon i parametrene til delayfordelingene har en stor påvirkning
på både posisjonen og amplituden til toppene i ”power”-spektrene. Dette gjør det
mulig å tune parameterne for å manipulere den oscillatoriske dynamikken i nettverket.

Dynamikken til området V1 av synssenteret i hjernen fra ”multi-area”-modellen er
analysert for oscilleringer. Resultatene viser at den oscillerende dynamikken er kraftig
dempet.
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Chapter 1

Introduction

Raster plots are a common way to visualize the dynamics of neuronal network mod-
els. Models such as the balanced random network [Brunel, 2000] and the microcircuit
model by Potjans and Diesmann [2014] show regular periods with more synchronous
firing activity of the neurons than others. These periods are visible as vertical stripes
in the raster plots. The width of the stripes can be different for each model. In the
microcircuit model used by Bos et al. [2016], stripes with a width of around 8 ms
and stripes with a width of around 2 ms are observed (see Fig.1 in [Bos et al., 2016]).
The stripes indicate oscillatory activity in the network dynamics. The stripes with a
longer time width occur less frequently than the ones with smaller width. Therefore,
the oscillations will be referred to as the low frequency and high frequency oscillations
respectively.

The fast oscillations have not been observed in recored experimental data and raise
the question whether theses oscillations occur due to some artifacts in the network
models or if they are a property of network in the brain not yet observed. Analysis
of oscillations in network models have been studied previously by Brunel and Hakim
[1999], Bos et al. [2016], Brunel [2000], Buzsáki and Wang [2012] among others.
Their results identifies connections that are responsible for the observed oscillations,
and include suggestions for how these oscillations can be reduced by altering certain
parameters like the strength of the connection between neurons and the delay of the
signal between them.

Taking the microcircuit model [Potjans and Diesmann, 2014, Bos et al., 2016] as
a basis, simulations from these network models with modified neuron models are an-
alyzed to see if simplifications of the computations during the simulations causes the
high frequency oscillations to appear.
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2 Introduction

In experimentally recorded data, there is a limit in the current technology of how
many individual neurons it is possible to simultaneously record. Brochier et al. [2018]
recorded around 150 single neurons simultaneously from a monkey trained to perform
a well defined task. The stripes are not visible in the raster plot from this data, but the
number of neurons is considerably lower than the number of neurons in the microcir-
cuit model. Therefore, a subsampling of different sample sizes was performed on the
simulated data to see how the detectability of the stripes changes with the sample size.

Analytical results of the network dynamics in the microcircuit model are presented
in Bos et al. [2016]. Here, I use the same approach and analyses the analytical results
using different distributions for the delays of the signals between neurons. The goal is
to understand more of how the oscillations depends on the delays. It has been shown
previously that the choice of the delays affects the oscillations in a simulated neuronal
network [Brunel and Hakim, 1999]. They used a single layer network in their analysis,
but the microcircuit model is multilayered. The goal here is to get a better understand-
ing of how the analytical results of the oscillations change with alterations of the delay
distribution of this network.

Finally, data from a more complex model, the multi-area model [Schmidt et al.,
2018b] composed of several microcircuit models corresponding to different areas of
the brain, is analyzed to see whether the oscillating dynamics are observed in this
model.
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Chapter 2

Theory

2.1 Brain basics

Neurons are the cells that make up the brain. They are responsible for the transmission
of signals from the brain to other parts of the body [Thompson, 2000, ch. 2, p. 29–51].
A common estimate of the number of neurons in a human brain is 100 billion, but
this number is debated [Lent et al., 2012]. Azevedo et al. [2009] shows that a human
adult male brain consists of roughly 86 billion neurons. The neurons are connected in
complex networks, each of which controls different parts of the body. The following
description of the neuron and how it can be modeled is based on [Sterratt et al., 2011,
ch. 2, p. 13–46].

A neuron is composed of a soma or cell body, dendrites and an axon. Neurons
sends signals along its axon and receives signals from other neurons at the dendrites.
A cell membrane separates the extracellular and intracellular space of the neuron and is
impermeable to ions except at different ion channels. The potential difference between
the extracellular and the intracellular areas are called the membrane potential and is
typically around -65 mV in its resting state.

A neuron receives signals from other neurons at the dendrites via synapses. These
synaptic inputs activates the ion channels, letting ions flow in or out of the extracel-
lular space which affects the membrane potential. The increase and decrease of the
membrane potential is called depolarization and polarization respectively. Neurons
is often divided into two groups, excitatory and inhibitory neurons. Signals from ex-
citatory neurons result in depolarization while signals from inhibitory neurons result
in polarization. Given enough excitatory signals, the membrane potential of a neuron
will cross a certain threshold value. When this happens, a feedback effect causes the

3



4 Theory

membrane potential to increase rapidly before it decays back to its resting membrane
potential again. This signal is called an action potential and is important for the trans-
mission of information between the neurons. The action potential travels down the
axon of the sending neuron and transfers the signal to other neurons at the synapses.

This current of ions through the cell membrane is dependent on the membrane
potential. The current can be approximated as the current driven through a resistor by
an electromotive force described the equation

Ii =
1

Rm
(V −Em), (2.1)

where Ii, is the ion current, Rm is the membrane resistance, V is the membrane potential
and Em is the electromotive force driving the current.

The impermeability of the cell membrane to ions causes a build-up of charge on
either side of the membrane. Therefore, the membrane can be considered a capacitor.
The capacitive current is defined by

Ic =Cm
dV
dt

, (2.2)

where Ic is the capacitive current, V is the membrane potential and Cm is the membrane
capacitance.

By describing the cell membrane by these equivalent electrical components, the
dynamics of the membrane potential in response to an input current Ie can be modeled
as an RC-circuit. Given a section of a cell membrane with surface area a, the dynamics
of the membrane potential are described by the following differential equation.

Cm
dV
dt

=
Em−V

Rm
+

Ie

a
, (2.3)

The constants Cm, Em and Rm are determined experimentally.

2.2 Neuron models

Models of neurons are used to increase the understanding of how neurons work. Re-
sults from a model can be compared to experimental data and in that way be used to test
different hypotheses. A wide range of different neuron models exists, some of which
are more detailed than others. More detailed models takes different ion channels, spa-
tial distribution of dendrites and axons, and intracellular mechanics among other things
into account. The choice of neuron model in a study depends on the goal. A classical
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2.2 Neuron models 5

neuron model is the Hodgkin-Huxley model (HH model) which was the first model
to accurately describe the action potential [Sterratt et al., 2011, ch. 3, p. 47–71]. In
this model, the ion channels are described by more detailed equations. They included
two different ion channels in their model, one for sodium and one for potassium ions.
Based on experimental data obtained from a giant squid axon, they modeled the ion
channels as gates controlled by gating variables whose dynamics were described by
differential equations.

When studying the dynamics of networks of neurons, it is advantageous to use a
simpler neuron model in order to make the simulation computationally feasible, and to
be able to include enough neurons so that the modeled network behaves realistically
compared to biological neuronal networks.

2.2.1 Leaky integrate-and-fire neuron (LIF)

The network analyzed in this thesis is composed of leaky integrate-and-fire (LIF) neu-
rons. The description of this neuron model is based on the description by [Sterratt
et al., 2011, ch. 8, p. 196–225].

The Leaky integrate-and-fire neuron model is a simplified neuron model where
only the subthreshold dynamics of the membrane potential is modeled and not the
action potential itself. The subthreshold dynamics obeys the following differential
equation

dV
dt

=− V
τm

+
I(t)
Cm

, (2.4)

where V is the membrane potential, τm is the membrane time constant, Cm is the mem-
brane capacitance and I is the input current. The membrane time constant τm is defined
as τm = RmCm, where Rm is the membrane resistance.

To describe the input currents to a LIF neuron, two common models are used.
conduction-based and current-based synaptic currents. The difference between the
two types of synaptic currents is that for conduction-based synaptic currents, the time
course of the conductance is described rather than the current itself. The conduction-
based synapse is described by

I(t) = gsyn(t)(V (t)−Esyn), (2.5)

where gsyn is the conductance and Esyn is the reversal potential defined as the potential
for when the current changes direction. The reversal potential is a parameter of the
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6 Theory

synapse that is modeled. A simple description of the time course of the conductance is
that of a falling exponential

gsyn(t) =

ḡsyne−
t−ts
τsyn for t ≥ ts

0 for t < ts
. (2.6)

where ḡsyn is the maximum conductance of the synapse and τsyn again is the synaptic
time constant.

A simple but often used model for the current-based synaptic input is a decaying
exponential current

I(t) =

we−
t−ts
τsyn for t ≥ ts

0 for t < ts
(2.7)

where w is the synaptic weight describing the strength of the synaptic connection and
τsyn is the synaptic time constant which determines how fast the current decays. The
time ts is the time when the signal arrives at the neuron. For t < ts, the input current is
zero and at ts the current is at its maximum before it decays towards zero.

Synaptic currents cause the membrane potential of the neuron to change. When
the membrane potential reaches a defined threshold value θ , the potential is reset to a
resting value called Vreset for a time equal to the absolute refractory period τref.

2.3 Microcircuit model

The microcircuit model is a neuronal network model of LIF neurons and was first pro-
posed by Potjans and Diesmann [2014]. The model represents a network of neurons
from four cortical layers named L2/3, L4, L5 and L6. Each of theses layers is popu-
lated by two types of model neurons, excitatory neurons and inhibitory neurons. Each
population contains a different number of neurons and has a different number of con-
nections to the other populations. Both the number of neurons in each population and
the number of connections are determined from different experimental results. The
experimental results come from both anatomically and electrophysiological studies.
Details of how these results were combined for the microcircuit model are described
by Potjans and Diesmann [2014] and will not be discussed in detail here.

Both neuron types in this model are LIF neurons with detailed parameters listed in
Table 5 by Potjans and Diesmann [2014]. The number of neurons in each population
are listed in Table 2.1. The two populations in each layer, the excitatory and inhibitory

6



2.3 Microcircuit model 7

neurons, will be referred to as LXE and LXI, where X is replaced by the layer number,
i.e. L4E is used for the excitatory neurons from layer L4.

Table 2.1: Number of neurons in each population in the microcircuit model. The data is extracted from
Table 5 in Potjans and Diesmann [2014].

Population L2/3E L2/3I L4E L4I L5E L5I L6E L6I Total
Number
of neurons

20,683 5,834 21,915 5,479 4,850 1,065 14,395 2,948 77,169

Figure 2.1: Representation of the microcircuit model. Each of the four layer consists of two populations
illustrated by the triangles and circles. The network size represents that of a cortical network under a
patch with surface area 1 mm2. The figure is reprinted from Potjans and Diesmann [2014] under the
Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/).

The size of the microcircuit model is chosen so that it represents a region of a cor-
tical network under a patch with surface area 1 mm2 as visualized in Fig 2.1. Neurons
in the different populations are connected by synaptic connections both inside each
layers and across the different layers. This results in a total of 64 possible projections.
In this context projection is used to describe the connection from a source population
to a target population.

From the experimental results Potjans and Diesmann [2014] defines an 8× 8 ma-
trix M called the connectivity map given in Table 2.2. The entries Mi, j describes the

7
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8 Theory

Table 2.2: Connection probabilities between the different populations in the microcircuit model. Data
extracted from Table 5 in Potjans and Diesmann [2014].

To
From

L2/3E L2/3I L4E L4I L5E L5I L6E L6I

L2/3E 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0
L2/3I 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0
L4E 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0
L4I 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0
L5E 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0
L5I 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0
L6E 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225
L6I 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144

probability that a specific neuron from population j is connected to a specific neuron in
population i. The actual neurons that are connected are randomly drawn based on this
connectivity map. In addition, the strengths of the synaptic connections are randomly
drawn from a truncated Gaussian distribution with mean and standard deviation listed
in Table 2.3. The parameter g is the factor used to increase the inhibitory synaptic
strength and is larger than the excitatory synaptic weight to achieve a balanced random
network, meaning that the total strength of the excitatory and inhibitory synapses to a
neuron are equal even though the number of each type of connection is different. The
inhibitory synaptic weight is negative since it polarizes the membrane potential.

Table 2.3: Parameters for the synaptic connections in the PD model. The data is extracted from Table 5
in Potjans and Diesmann [2014].

Name Symbol Value
Excitatory synaptic strength w±δw 87.8±8.8 pA
Inhibitory synaptic strength gw±δw −4×87.8±8.8 pA

Excitatory delays de±δde 1.5±0.75 ms
Inhibitory delays di±δdi 0.8±0.4 ms

In the microcircuit model, Potjans and Diesmann [2014] introduce heterogeneity in
the network by assigning delays to the synaptic connections drawn from a probability
distribution. The delays are drawn from a truncated Gaussian distribution with mean
and standard deviation specified in Table 2.3. The delay values need to be positive to

8



2.4 Network models 9

make sense, negative delay values are therefore redrawn from the same distribution.
Note that the delay parameters for the delay distribution are different for the inhibitory
and the excitatory connections.

2.4 Network models

The analysis in this thesis is done using two versions of the microcircuit model. The
first one is the microcircuit model with its original parameters as described in in Pot-
jans and Diesmann [2014], and will be referred to as the PD model. This network
is implemented in NEST and is included as an example script bundled with the soft-
ware. The second one is almost identical except for some slight modifications that was
introduced by Bos et al. [2016]. This model will be referred to as the BDH model.

Networks can operate in different states as described in Brunel [2000]. The two
main states of interest in this thesis is the synchronous irregular (SI) state and the
asynchronous irregular (AI) state. A network in the SI state shows oscillatory syn-
chronous activity when looking at the activity of the whole network, but the activity of
individual neurons are irregular. A network in the AI state on the other hand, shows
a stable global activity and with irregular activity from individual neurons. It can be
shown that the dynamics of the microcircuit model described by Potjans and Diesmann
[2014] are close to that of an SI state. Because of this, Bos et al. [2016] stabilized the
network by reducing the number of synaptic connections from L4I to L4E by 15 %,
and increased the standard deviation of the delay distribution of all synaptic connec-
tions. In order to keep the firing rate the same, the external input to L4E was reduced
to counteract the reduction of inhibitory connections to L4E. The differences between
the BDH model and PD model are listed in Table 2.4.

Table 2.4: Parameter differences between the PD model and BDH model. The parameter K4I,4E is
the number of connections from L4I to L4E determined by the number of neurons and the connection
probability from Table 2.1 and Table 2.2.

Connections L4I→L4E δde δdi External input
PD model K4I,4E 0.75 ms 0.4 ms 2100

BDH model 0.85K4I,4E 1.5 ms 0.8 ms 1780

9



10 Theory

2.5 Statistical analysis

The action potentials are often referred to as spikes. In simulations of neuronal net-
works, the time each neuron fires a spike is recorded. The sequence of spike times
for a neuron is called a spike train. This section briefly presents some of the standard
statistical methods used to analyse spike trains.

2.5.1 Time histograms

Given a simulation of N number of neurons simulated for a time T . The time histogram
is calculated by first dividing the total simulation time into time bins with equal bin size
∆ and then count the number of spikes across all the neurons at each time bin. From
this, one can get an estimate of the population averaged firing rate at each time bin
with the following equation

ri =
ni

N ∆
, (2.8)

where ri is the firing rate and ni is the spike count at time bin i.

2.5.2 Auto-correlation and Cross-correlation

A spike train Si can be defined by

Si(t) =
K

∑
k

δ (t− tk), (2.9)

where K is the total number of spikes of Si and δ (·) is the Dirac delta function. The
auto-correlation Cii for the spike train is defined by

Cii(τ) = 〈Si(t)Si(t + τ)〉t , (2.10)

where 〈〉t denotes the time average [Gerstner and Kistler, 2002]. The autocorrelation
is a function of the time lag τ which describes how the spike times of the neuron
correlates with the spike times the time τ later.

The cross-correlation on the other hand describes how well the spike times of one
neuron correlate with the spike times of another neuron. Given two spike trains Si and
S j, the cross-correlation is defined by

Ci j(τ) = 〈Si(t)S j(t + τ)〉t . (2.11)

10



2.6 Spectral analysis 11

2.6 Spectral analysis

The study of frequency components of signals is called spectral analysis, where Fourier
transformations are an important tool. Fourier transforms are widely used in signal
processing such as spectrum analysis and audio compression [Smith, 2008]. The pur-
pose of Fourier transformations is to represent periodic signals as a sum of different
frequency components. Oscillations observed in neuronal network activities can be
analyzed with the use of power spectrua by looking at the power spectrum of the pop-
ulation averaged firing activity in the network. The frequencies of the oscillations will
be visible as peaks in the power spectrum. Before describing how the power spectrum
is obtained for a population averaged firing activity, the discrete Fourier transformation
procedure will be presented.

2.6.1 Discrete Fourier Transformation

This section presents the method of the discrete Fourier transformation as described by
Kreyszig [2011]. The discrete Fourier transform procedure is part of Fourier analysis
that is applied to discrete functions. Similar to the standard Fourier transformation of
continuous functions, the transformed signal data represents the frequency spectra of
the original signal. The discrete Fourier transform is applied to sampled data points
with equal spacing. For a signal f sampled by N equally spaced data points, the dis-
crete Fourier transform is defined as

f̂n =
N−1

∑
k=0

fke−ik2πn/N for n = 0, . . . ,N−1, (2.12)

where fk is the kth data point and f̂n is the nth transformed data point. The transfor-
mation can be written in vector notation as follows

f̂ = FNf, (2.13)

where f is the vector of the sampled data, f̂ is the vector of transformed data and the
element in row n and column k of FN is e−ik2πn/N . The matrix FN is called the Fourier
matrix.

The discrete Fourier transform of a signal can in principle be calculated by using
equation 2.13, but for signals with many data points this procedure is very slow due
to the large number of entries in the Fourier matrix which leads to a large number
of calculations. An alternative implementation of the discrete Fourier transform is

11
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therefore often used to overcome this challenge. The method is called the fast Fourier
transform (FFT) and divides a problem of size N recursively into two smaller problems
with size N/2 each until each problem is of size 2. The Fourier components are then
found for each of the subproblems. The results of using the fast Fourier transform is
exactly the same as using Eq. 2.13 and will therefore be used throughout this project.
Algorithms for the fast Fourier transform are implemented in several Python libraries
such as NumPy [Oliphant, 2006–].

2.6.2 Estimation of the power spectral density

Given a signal f sampled with N points and its FFT transformed signal f̂. The vector f
belongs to the time domain and f̂ belongs to the frequency domain.

The vector of absolute values of the sampled data points squared is an estimate of
the power spectral density, historically called periodogram [Press et al., 2007, ch.13.4,
p. 652–667]. Another word for the power spectral density is power spectrum. Each
of the transformed points corresponds to a frequency and the power spectral density
is a value telling how present each frequency is in the signal. Larger values in the
power spectra means higher presence of the the corresponding frequency in the signal.
Distinct frequencies in the signal will be visible as peaks in the power spectrum.

The resolution of the frequencies is determined by the sampling frequency fsamp

and the number of sampled points N and is defined as fsamp
N . The sampled frequencies

will be integer-multiplies of the resolution. To sample periodic signals, at least two
points needs to be sampled for each cycle for a given frequency. Given a sampling
frequency fsamp, the maximum frequency that can be sampled will be half of that since
at least two points must be sampled. The critical frequency fsamp

2 is called the Nyquist
frequency [Press et al., 2007, ch. 12.1–12.2, p. 605–617]. The consequence of this
is that a signal sampled every one ms has a sampling frequency of 1000 Hz, but the
maximum frequency obtainable in the power spectrum is 500 Hz.

2.6.3 Averaging over time windows

The estimated power spectrum from a signal will usually contain some noise, meaning
that the estimated spectrum is less smooth. One possibility to reduce the noise is to
divide the duration of the total sampling time into time windows of shorter length,
calculate the power spectrum for each window and average the spectra over them.

12



Chapter 3

Methods

3.1 NEST simulator

The studied network models are simulated using the NEST 2.14.0 software [Peyser
et al., 2017]. The simulations are run with Python using the PyNEST interface. NEST
is a neuronal network simulator for spiking networks with over 50 neuron models and
10 synapse models [NEST]. The simulator does not try to model the exact morphology
of neurons, but rather focuses on network structure and dynamics.

There are traditionally two schemes used to update the network state in a net-
work simulation, the event-driven and time-driven scheme. The differences in the two
schemes are described by Morrison et al. [2007], Krishnan et al. [2017]. In an event-
driven scheme, a central queue of events is used to determine when a neuron will fire
a spike. When a neuron receives a spike, its state is updated and a prediction of when
it will fire a spike is added to the central queue as an event.

The NEST simulator uses a time-driven scheme to update the neurons. In this
scheme the state of the neurons are updated on a time grid. The resolution of the time
grid is a simulation parameter and determines the spacing between the grid points, and
thus how often the network is updated. Finer resolution results in a more accurate
network simulation but at a higher computational cost. At each grid point, the neurons
are checked for a threshold crossing of the membrane potential. Since the network is
only updated at the grid points, the spike times are restricted to these grid points. This
can cause an artificial synchrony in the network. To overcome this problem, a scheme
that handles spikes in continuous time has been proposed by Morrison et al. [2007]
and Hanuschkin et al. [2010]. This scheme is implemented for some model neurons in
NEST and for the LIF neuron with current based synapses with exponential time cause,

13
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the model is called iaf psc exp ps. In the microcircuit model, external input is given
by a Poisson spike train generator. A Poisson spike train is a spike train were each spike
time is independent of the previous spikes. A version of the Poisson generator that
enables spikes in continuous times also exists and is called poisson generator ps.
The model neuron that handles spike times in continuous time will be referred to as
the precise-spike-times neuron.

In the network model neurons are connected with modeled synapses. When one
of the neurons in a pair of connected neurons fires a spike, the signal is received by
the other neuron after a specified delay value. Each connection has its own delay
parameter. Most synapse models in NEST require the delay values of the synaptic
connections to be integermultiples of the time resolution. This reduces the total number
of possible delay values if they are drawn from a delay distribution. This restriction
limits the heterogeneity of the neurons in the network. Also implemented in NEST
are synapses which can handle continuous delay values to avoid this limitation. The
synapse model is called cont delay synapse and will be referred to as the continuous
delay synapse.

3.2 Analysis methods

This section describes different methods used to analyse the power spectra from the
simulations. To study the observed oscillating network dynamics, the power spectrum
of the population averaged firing activity was used.

To obtain an estimate of the power spectrum, the time histogram for a population
was obtained by using the time histogram function from Elephant.statistics. The
bin size used is 1 ms and the spike counts were averaged by the population sizes.
The averaged spike counts were then transformed by the fast Fourier transformation
method numpy.fft.fft, and the power spectrum was obtained by taking the absolute
value squared of the transformed data. Finally, the power spectrum was divided by the
number of sampled points to make it independent off the duration of the simulation.

3.2.1 PSD for subsamples of the populations

The firing activity of a neuron i at time t is defined by

si(t) = lim
∆t→0

1
∆t

n∆t
i (t) (3.1)

14
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where si(t) is the firing activity of neuron i and n∆t
i (t) is the spike count of the neuron

in the time interval [t, t +∆t]. The population averaged firing activity s(t) at time t
is the sum of the activity for each neuron divided by the number of neurons in the
population, formally written

s(t) =
1
N

N

∑
i=1

si(t) (3.2)

where N is the population size.
The power spectrum of the population averaged firing activity is equal to the Fourier

transform of its auto-correlation and consists of two parts, the sum of the Fourier trans-
formed auto-correlation of individual neurons and the sum of the Fourier transformed
cross-correlations between all pairs of neurons [Tetzlaff et al., 2012]. The power spec-
trum of the population averaged firing activity is given by

CSS(ω) = |S(ω)|2, (3.3)

where S(ω) is the Fourier transformation of s(t). The bold capital letters denotes
functions in the frequency (Fourier) domain. The power spectrum can be rewritten as

CSS(ω) =
1

N2

[
N

∑
i=1

Ai(ω)+
N

∑
i=1, j 6=i

Ci j(ω)

]
, (3.4)

where Ai(ω) = |Si(ω)|2 is the power spectrum of spike train i which is the same as the
transformed auto-correlation of si(t), and Ci j(ω) = Si(ω)S j(ω)∗ is the cross-spectrum
of spike train i and j, equal the the transformed cross-correlation of si(t) and s j(t).

In my analysis, the number of spike trains used to calculate the power spectra is
varied to see how the sample size effects the power spectra. Eq. 3.4 suggests that cor-
relations between neurons in a populations contributes more to the compound power
spectrum when the number of neurons N increases. Since the peak in the power spec-
trum is caused by correlations between neurons, it is expected that the peaks will be
more prominent for larger subsamples, but it is unclear how many neurons is needed
to be able to discern the peaks.

Data from an extended simulation time is used to increase the number of data points
used in the Fourier transformation, and in that way increase the frequency resolution
of the power spectra. In addition, the use of a kernel convolution on the spike counts
is performed in order to get a higher time resolution of the signal before the transfor-
mation to the frequency domain.

15
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3.2.2 Subsampling

The microcircuit model contains around 80,000 neurons, while the number of recorded
neurons from experiments are only around 150 Brochier et al. [2018]. In the power
spectrum of each population in the microcircuit model, both a peak at around 80 Hz and
around 300 Hz are present, but the question is, how many neurons need to be recorded
in order to detect the 300 Hz peak in the power spectra? To shed light on this topic,
power spectra were calculated from subsets of different sizes from the microcircuit
model. The spike trains used are drawn from the BDH model. All the populations in
the network model were considered separately in the subsampling since the amplitude
of the peaks in the power spectrum for each populations and the number of neurons is
different.

The number of neurons in each population are listed in table 2.1 and ranges from
21,915 in L4E to 1,065 in L5I. In order to be able to compare the results with experi-
mental data, subsets of not too large sizes were chosen. The subsampling was done on
the populations separately, using the four different sample sizes: [50, 100, 250, 500].

The subsamples were drawn randomly from each population and with a varying
number of trials. The number of trials tested was 1, 10, and 100. For each trial,
the sampled spike trains were drawn randomly without replacement and the power
spectrum was calculated from the time histogram of these spike trains with a bin size
of 1 ms. The spike counts used to calculate the power spectra were averaged over the
sample sizes to estimate the average firing activity of the subsample populations. For
the subsampling with more than one trial, the resulting power spectra were averaged
over all the trials.

In contrast to the power spectra calculated from the whole populations, the power
spectra for the subsamples were multiplied with the subsample sizes. The reason this
is done is to more naturally be able to compare the spectra from the different sample
sizes. Jarvis and Mitra [2001], showed that the power spectrum for a single spike
train following a homogeneous Poisson process is constant and equal to its firing rate
λ . Tetzlaff et al. [2012] showed that the compound power spectrum of a population
of neurons consists of the two parts, shown by Eq. (3.4). The contribution to the
compound spectra from the auto-correlations of individual neurons is a sum of N terms
while the contribution from the cross-correlation between pair of neurons is a sum of
terms in order N2, where N is the population size. Both of these sums are divided by
the population size squared due to the averaging of the population activity. The result
is that the sum of the auto-correlations of individual spike trains will contribute less to
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3.2 Analysis methods 17

the compound spectrum for large N compared to the sum of the cross-correlations.

Given that individual neurons in a network is well approximated by a Poisson pro-
cess, then, according to Jarvis and Mitra [2001], the autocorrelation will be equal the
the firing rate λ . The compound spectrum for the network will then be

CSS(ω) =
1

N2

[
N

∑
i=1

λ +
N

∑
i=1, j 6=i

Ci j(ω)

]
(3.5)

=
1

N2

N

∑
i=1

λ +
1

N2

N

∑
i=1, j 6=i

Ci j(ω). (3.6)

When the neurons are uncorrelated, the cross-correlation will be zero and the latter
term will vanish, giving the following equation for the power spectrum

CSS(ω) =
1

N2

N

∑
i=1

λ =
λ

N
. (3.7)

For frequencies where the neurons are uncorrelated and individual neurons fires irreg-
ularly, the power spectrum is approximated by the above equation. The division of
N means that the power spectrum for uncorrelated frequencies will be lower when N
increases. The power spectra for the subsampling is multiplied by N in order to avoid
these vertical shifts.

For frequencies where the neurons are correlated, the power spectrum will get a
contribution from the som of the cross-correlations between neurons, resulting in in-
creased power. This corresponds to the observed peaks.

3.2.3 Extended simulation time

Individual neurons in the BDH model has an average firing rate of a few Hz, depending
on the population (see Fig. 1D from Bos et al. [2016]). The reduced number of neurons
means that more bins in the time histogram will contain zero count compared to the full
network. All the simulations used up to this point have been run for 10 seconds, and
the power spectra have been calculated from the last 9 seconds of those. To see whether
the duration of the simulation has an effect on the detectability of the observed peaks
in the power spectra of the subsamples, the spectra was calculated from the simulation
time between 1s–100s with the same BDH model using a time histogram width a bin
size of 1 ms.
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3.2.4 PSD from higher resolution firing activity

As an alternative to using the time histogram directly to calculate the power spectrum,
a kernel convolution can be performed on the spike counts. A kernel convolution of
the spike counts is another way to get the firing activity in a network, but the method
avoids the effects of binning.

Mathematically a convolution h(x) of two functions f (x) and g(x) is defined as
[Kreyszig, 2011]:

h(x) = ( f ∗g)(x) =
∫

∞

−∞

f (t)g(x− t)dt (3.8)

Here, two types of kernels are presented, a rectangular kernel and a Gaussian ker-
nel. Both of these kernels have a parameter σ determining the bandwidth of the kernel
Elephant Kernels. The size of the rectangular kernel is defined as

K(t) =

 1
2τ

, |t|< τ

0 , |t| ≥ τ,
(3.9)

where τ =
√

3σ and the Gaussian kernel is defined as

K(t) =
1

σ
√

2π
e−

t2

2σ2 (3.10)

Both of these kernels are defined such that the variance of the kernel function is
σ2. In other words, it satisfies: ∫

∞

−∞

t2K(t)dt = σ
2 (3.11)

The kernels used was a rectangular kernel with σ = 0.2 and a Gaussian kernel with
σ = 0.2. Both kernels were loaded from the Elephant.kernels module. The kernel
convolution was done by first getting the spike counts from a time histogram with bin
size of 0.1 ms. The number was chosen equal to the time resolution of the simulation.
Then the convolutions were performed with the fftconvolve function from scipy.signal.

The output after the kernel convolution is an estimate of the firing activity, but
obtained with a finer binning yielding a higher sampling frequency compared to the
coarser binning. The convoluted activity is transformed with the FFT algorithm and
the psd is calculated the same way.
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3.3 Analytical power spectra

The following section presents the theory used by Bos et al. [2016] to estimate the
analytical power spectra for the population averaged firing rate. The method relies
on the fact that the dynamics of a network of LIF neurons, such as those used in the
microcircuit model, is well approximated by a linear rate model [Grytskyy et al., 2013].
The observed firing activity of the rate model is described by a fluctuating with output
noise.

yi(t) = ri(t)+ xi(t) (3.12)

where for population i yi is the observed rate, ri is the fluctuating rate and xi is the noise
modeled as Gaussian white noise.

To describe the fluctuating firing activity r(t) the stationary state of the populations
is first estimated using mean field theory. The stationary state is characterized by the
mean firing rate of the populations. In the next step, linear response theory is applied
to model the response of incoming spikes and used to describe fluctuation around the
stationary state. From the correlation of the observed population activity, the power
spectra is calculated.

It is important to note that the analytical results are only applicable for networks
in the AI regime and not SI regime. The theory behind the analytical results is based
on the fact that the total input to a cell can be approximated as Gaussian white noise,
given sufficiently asynchronous activity [Grytskyy et al., 2013].

To get the stationary state of the network, the mean firing rates of the populations
are estimated by solving the Fokker-Planck equation for the probability distribution for
the membrane potentials. This formalism comes from Fourcaud and Brunel [2002].
The equation of the firing rate for population i consisting of LIF neurons with expo-
nentially decaying current is taken from Eq. (6.42) by Schmidt [2016] and is given
by

1
r̄i
= τr + τm

√
π

∫ θ−µi
σi

+γ

√
τs
τm

Vr−µi
σi

+γ

√
τs
τm

[1+ erf(x)]ex2
dx, (3.13)

where r̄i is the mean firing rate, τr is the refractory period, τm is the membrane time
constant, Vr is the resting membrane potential, θ is the threshold value of the potential
and erf(x) is the error function [DLMF, Eq. 7.2.1]. µi and σ2

i are defined as
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µi = τmw

(
∑
j∈E

Ki j r̄ j−g ∑
j∈I

Ki j r̄ j +Kext,irext

)
(3.14)

σ
2
i = τmw2

(
∑
j∈E

Ki j r̄ j−g2
∑
j∈I

Ki j r̄ j +Kext,i rext

)
. (3.15)

where w is the synaptic weight, Ki j is the number of connections from population j to
population i and Kext,i and rext is the number of external connections and the firing rate
of the external signal respectively. Note that the synaptic delays are not included in the
equation and thus do not effect the stationary state of the network.

The formula describing the fluctuating activity is given by Eq. (11) in Bos et al.
[2016] and reads.

ri(t) =
∫ t

−∞

N

∑
j=1

MA
i j Hi j(t− s)

(
r j(s−di j)+ x j(s−di j)

)
ds, (3.16)

where Hi j(t) is the impulse response of a neuron receiving a spike at time t and di j is the
delay of a signal from population j to population i. MA

i j is an entry of the connectivity
matrix MA and describes the strength of the connection from population j to population
i. N is here the number of populations. The matrix is defined as is the element-
wise product of the number of connections and synaptic weights from the anatomical
connectivity map of the microcircuit model. Applying a Fourier transformation on the
equation replaces the convolution by a multiplication and makes it easier to solve. By
doing the substitution of the variable s→ s+di j in Eq. (3.16) the equation becomes

ri(t) =
∫ t

−∞

N

∑
j=1

MA
i j Hi j(t− s−d)

(
r j(s)+ x j(s)

)
ds. (3.17)

The firing activity r j and the noise x j are independent of the delays. One can now
define a new matrix called the effective connectivity matrix which is the element-wise
product of MA and H(t− s−d). This matrix is denoted Md(t− s−d). The subscript d
is to emphasize the dependency of the delays.

The observed rate fluctuation can be found by transforming Eq. (3.17) in the Fourier
space and yields

R(ω) = Md(ω)(R(ω)+X(ω)) (3.18)

(3.19)
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Here, the bold letters denotes the variables in Fourier space. The firing activity is a
function of ω , which is related to the frequency by ω = 2π f .

Given the definition of the rate model in Eq. (3.12), the fluctuating activity of the
network is given by

Y(ω) = R(ω)+X(ω) (3.20)

The power spectrum for one population is defined as the auto-correlation of the net-
work activity for that population. Therefore, the power spectra for all the populations
can be read in the diagonal of the correlation matrix of Y defined as

C(ω) =
〈
Y(ω)YT (−ω)

〉
. (3.21)

3.3.1 Description of the transfer function

The impulse response Hi j is also called the transfer function and describes how the
firing activity of one population reacts to am input signal. The derivation of the transfer
function of a LIF neuron driven by colored noise is given by [Schuecker et al., 2015,
Eq. 30]. The parabolic cylinder functions is part of the equation where the solutions
can be found in several standard libraries such as scipy [Jones et al., 2001–]. In the
supplementary material to Bos et al. [2016], a Fortran implementation of the parabolic
cylinder functions was used. However, all the necessary files to get it to work were
not included in the material. Therefore, the scripts found at https://github.com/
INM-6/neural_network_meanfield was used instead. The solution of the parabolic
sylinder functions comes from the mpmath package in Python Johansson et al. [2013],
which is slower than the Fortran implementation but sufficed for the purpose in this
thesis. The transfer function returns an 8×8 matrix for each ω and the stack of each
matrix corresponding to frequencies from 0 Hz to 500 Hz was calculated once and
then saved. The relationship between ω and frequency f is ω = 2π f , meaning that
the spacing between the frequencies is 1

2π
. The theoretical mean firing rates were also

calculated once and saved. The results didn’t need to be recomputed for each change
in the model since the transfer function does not depend on the delays which was the
only parameter that was changed.
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3.3.2 Contribution of synaptic delays

In the equation for the observed rate fluctuations 3.18, the delays enter the model only
through the effective connectivity matrix Md , and in Fourier space it is possible to
separate this the delay term from the other terms as

Md,i j(ω) = Mi j(ω)e−iωdi j , (3.22)

where the delay term e−iωdi j is the average over all possible values for the delay di j.
This averaging is done by an integration over all the the possible values weighted by the
probability density function (pdf) of the delay distribution, mathematically described
by

e−iωdi j =
∫

∞

−∞

e−iωy p(y) dy, (3.23)

where p(y) is the probability density function for the delays. The effective connectivity
matrix can in this way be defined for different probability distributions for the delays
as shown in the next section.

3.4 Delay distributions

In the microcircuit model, the delays are drawn randomly from a truncated Gaussian
distribution with parameters specified in Table 2.3, and with the delay standard devi-
ation doubled for the BDH model. This delay distribution of the original microcircuit
model is truncated at 0 because the delays need to be positive. To determine the con-
tribution of the delay distribution to the effective connectivity matrix for the different
delay distributions, the averaging defined above needs to be performed for the pdf of
the distribution. Bos et al. [2016] show the result for the original truncated Gaussian
distribution. In this thesis, power spectra obtained for three more delay distributions;
the exponential, lognormal and uniform distributions. After calculating the contribu-
tion for the effective connectivity matrix for these distributions the analytical spectra
can be calculated with the same procedure as Bos et al. [2016].

3.4.1 Truncated Gaussian

The effective connectivity matrix with the truncated Gaussian distribution is given in
Bos et al. [2016] and shown here for completeness. The pdf is defined as:
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p(x ; µ,σ) =
1

√
2πσ

(
1−Φ

(
−µ

σ

)) ∫ ∞

0
e−

(x−µ)2

2σ2 dx, (3.24)

where Φ(x) is

Φ(x) =
1
2

[
1+ erf

(
x√
2

)]
, (3.25)

and erf(x) the error function DLMF defined as

erf(x) =
2√
π

∫ x

0
e−t2

dt (3.26)

The effective connectivity matrix for this distribution after the averaging is given
as

Md,i j(ω) = Mi j(ω)

1−Φ

(
−µi j+iωσ2

i j
σi j

)
1−Φ

(
−µi j
σi j

) e−iωµi je−
σ2

i jω
2

2 (3.27)

3.4.2 Exponential distribution

The pdf for the exponential distribution is given by

p(x ; λ ) = λe−λx (3.28)

The averaging over all possible delay values yields

∫
∞

0
e−iωx

λe−λxdx = λ

∫
∞

0
e−(iω+λ )xdx (3.29)

=−λ
1

iω +λ

[
e−(iω+λ )x

]x=∞

x=0
(3.30)

=
λ

iω +λ
if ω,λ ≥ 0 (3.31)

which yields the expression for element in the effective connectivity matrix

Md,i j(ω) = Mi j(ω)
λ

iω +λ
. (3.32)
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3.4.3 Lognormal distribution

The pdf for the lognormal distribution is

p(x|µσ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 dx (3.33)

The averaging over all possible delay values is

Md,i j(ω) =
∫

∞

0
e−iωx Mi j

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 dx (3.34)

There is no obvious way to get a nice expression for the averaging over all delay
values for this distribution. The averaging was therefore done by numerical integration
of Eq. (3.34). Note that the only part of the equation that is complex is the e−iωx

term. By using Euler’s identity e−iωx = cosωx− isinωx one can separate the real and
complex part of the equation into two terms and integrate each of them separately. The
numerical integration was done using the function simps from scipy.integrate on on
the time segment from 0.1 to 100 ms with a step size of 0.0001 ms. The cumulative
probability of the distribution from 0 to 100 ms was found to be sufficiently close
to one, so this step size and duration ensured that the numerical error was small. The
integration from 0.1 ms was chosen because all delay values in a simulation with NEST
cannot be smaller than the time resolution which was set to 0.1 ms in the simulations
performed. To be exact, the log-normal distribution should be renormalized to account
for the truncation at 0.1 ms, but the probability that a delay value lies in the interval [0,
0.1] was found to be around 0.01. Because of this low probability, the renormalization
was ignored to simplify the expression. To save some computational time, the step size
and duration could be chosen more optimally, but the numerical calculations was only
computed once and therefore this optimization was not prioritized.

3.4.4 Uniform distribution

The pdf for the uniform distribution is defined by

p(x ; a,b) =
1

b−a
, (3.35)

where a and b is start and end time of the uniform distribution.

The averaging over all possible delay values is
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∫ b

a
e−iωx 1

b−a
dx =− 1

(b−a)iω

[
e−iωx]x=b

x=a (3.36)

=
1

(b−a)iω

(
e−iωa− e−iωb

)
(3.37)

An element of the effective connectivity matrix is then

Md,i j =
Mi j

(b−a)iω

(
e−iωa− e−iωb

)
(3.38)

3.4.5 Using the different delay distributions

It was been shown by Bos et al. [2016] that the connections between the four inhibitory
populations to themselves are most sensitive to changes in the effective connectivity
matrix. Therefore, the delay distributions are only changed for these four connections,
leaving all the other connections unchanged. The four connections can be found in the
connectivity matrix as the entries M22, M44, M66 and M88. When referring to the model
with exponential delay distributions for instance, it is implied that only these four
inhibitory connections use the exponential distribution for the delays. The analytical
spectra are calculated for all populations for each delay distribution.

3.5 Trajectory of eigenvalues

To better understand the analytical spectra, the trajectory of the eight eigenvalues from
the effective connectivity matrix were plotted in the complex plane parameterized by
the frequency. These eigenvalues determines different modes of the network and the
observed power spectra is a combination of these eigenmodes. By the use of eigenvalue
decomposition of the effective connectivity matrix, it can be shown that the analytical
power spectra can be described as a sum of terms containing by |1/(1−λi(ω))|, where
λi is the ith eigenvalue. When the ith eigenvalue approaches the point 1 that eigenmode
starts to dominate the spectra and results in large power. The contributions of the
eigenmodes when the eigenvalues approaches 1 results in the observed peaks in the
power spectra.
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3.6 Parameter sweep

This section presents the method used to study the effects on the peaks in the analytical
power spectra of using different combinations of the mean and the standard deviation
of the truncated Gaussian distribution. This was done in order to understand more of
how the oscillating dynamics in the network depend on the delays. The change of the
delay parameters was done on all the inhibitory connections. The reason why all the
inhibitory connections was changed and not only the four inhibitory connections used
in section 3.4.5 was to limit the model to only use two different delay distributions for
all the neurons. One for the excitatory and one for the inhibitory neurons.

3.6.1 High frequency peak

Bos et al. [2016] found that a loop in the connections from the four inhibitory popula-
tions to themselves generates the high frequency peaks. It was found that the frequency
of the observed high frequency peak in the power spectra was close to the frequency
where the entries M22, M44, M66 and M88 in the effective connectivity matrix Md was
closest to the point 1.

The first step was to locate this frequency as a starting point. Finding the point in
Md closest to 1 for all the four connections mentioned above resulted in roughly the
frequency. Only one of them was therefore needed. The second step was to calculate
the spectrum for one of the eight populations, start at the estimated frequency and move
in the direction of increasing power until a local maximum was found, or the frequency
was either 0 HZ or 500 Hz (the boundary points).

This procedure was done for all combinations of the means in the range (0.2–4.0)
ms and standard deviation in the range (0.2–3.0) ms with step size of 0.1 ms. For each
combination the mean and standard deviation, the amplitude and the frequency of the
peak were calculated and stored in two 29×39 matrices. The entry i, j in the matrices
corresponding to the results using standard deviation number i and mean number j.

This method aims at locating the high frequency peaks and will therefore be re-
ferred to as the high-frequency method in this context.

3.6.2 Low frequency peak

The frequency of the low frequency peak is easier to find. It was observed that the
peak always was located at frequencies above 30 Hz for the parameters of mentioned
above. Therefore, starting at 30 Hz the frequency was increased until a local maxima
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was found in the power spectrum. The frequency and the amplitude of the peak were
stored in data matrices as for the high frequency peak. This method finds the peak in
the power spectrum with the lowest frequency and will therefore be referred to as the
the low-frequency method.

3.7 Multi-area model

The following section briefly describe the multi-area model [Schmidt et al., 2018a,b,
Schuecker et al., 2017].

The multi-area model is a neuronal network model that combines several micro-
circuit models, all representing different areas in the brain. In addition to the con-
nections between the populations, there are additional connections across the different
areas as well. The inclusion of more microcircuit models and connections results in
a much larger network. The network model was run on the Piz Daint computer in
Switzerland https://www.cscs.ch/computers/piz-daint/. The model was sim-
ulated using 16 nodes each handling 36 virtual processes. The model can be found
on https://github.com/INM-6/multi-area-model, where the parameters used in
the model can be found in the default params.py file. In contrast to the microcircuit
model, two new parameters χ and χI were included to scale the weight of the synaptic
connections across different areas. Synaptic connections from other areas onto excita-
tory neurons are scaled by the factor χ and the synaptic connections from other areas
onto inhibitory neurons are scaled by χχI. For simulations used in my analysis, the pa-
rameter χ and χI determining the strength of the connections across different layers to
the excitatory and inhibitory populations were altered. The first simulation used χ = 1
and χI = 1 and the second simulation used χ = 1.9 and χI = 2.0. The reason why two
different models were run was to see if the stripes occur in the network for any of the
strengt values. The power spectrum from population L4E of the V1 area in the multi-
area models was computed and compared with the spectra for L4E from the original
BDH model and the BDH model with exponential delays for the four connections from
the inhibitory connections to themselves.

3.8 Description of the simulations

The microcircuit model were simulated using the NEST simulator 2.14. [Peyser et al.,
2017] software. All the models were run for a duration of 10 seconds with time res-
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olution 0.1 ms, except for one model that was run for 100 seconds. The script for
the network model of Potjans-Diesmann was modified to incorporate the changes ex-
plained in Bos et al. [2016] and to include precise spike times neurons, continuously
delays, and other delay distributions described in section 3.1. The script was modified
to be able to accept a parameter file with specifications of the wanted modifications.
This allowed the simulations to be run in parallell on the Stallo computer cluster with-
out making more than one modified microcircuit model. Stallo is a computer cluster
own by UiT The Arctic University of Norway. The computer cluster runs scripts with
the requested number of CPU’s and CPU cores. All the microcircuit simulations were
separated over 4 CPU cores except the 100 seconds long simulation which was sepa-
rated over 8 CPU cores.

In all the calculations of the power spectra, the first second was skipped to avoid ef-
fects of the initialization of the simulations. Unless otherwise stated, the power spectra
was calculated from a time histogram using a bin width of 1 ms.

3.9 Python libraies

An overview of all the module versions is listed in Table 3.1.

3.9.1 Tools for handling neurophysiological data

Neo is a tool that handles different electrophysiological data i Python Garcia et al.
[2014]. This tool provides an easy way to load the data and extract the spike trains
from the simulation results. The library elephant (Electrophysiology Analysis Toolkit)
is a tool for analyzing electrophysiological data [Elephant]. Together with Neo, these
two packages made the data management convenient.

Table 3.1: Python packages used in this thesis

Name Version
Python 3.6.8
NumPy 1.15.4
Elephant 0.6.0

Neo 0.7.1

Name Version
Matplotlib 2.2.3
quantities 0.12.2

pandas 0.23.4
seaborn 0.9.0

Name Version
SciPy 1.1.0
NEST 2.14.0

mpmath 1.0.0
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Chapter 4

Results

This chapter presents the results from the analysis of the vertical stripes. The first part
shows the relation between the peaks in the power spectrum and the vertical stripes in
the raster plot, and that the power spectra obtained by time binning of 1 ms and kernel
convolution yields similar results.

The next part compares the PD model and BDH model and shows how the different
neuron and synapse models affects the dynamics of the network. Power spectra and
raster plots will be used for visualization. The part after that presents the result of the
subsampling and how detectable the peaks in the power spectra are. Then, inspired
by Bos et al. [2016] analytical results of the power spectra were analyzed to see the
effect of using different delay distributions and delay parameters. The final part shows
results from simulations of the multi-area model in comparison with other microcircuit
models.

4.1 Verifying the analysis methods

This section connects the observed vertical stripes with the peaks in the power spectra
and compares the results from the two power spectrum calculation methods.

From a raster plot one gets an idea about the dynamics of the network, and can
see whether there are possible correlations in the spiking activity or not. The vertical
stripes analyzed in this thesis are one such sign of correlated activity. The analysis
done in Bos et al. [2016] suggests that the observed vertical stripes are visible in the
power spectrum of the population averaged firing activity. To test this claim, a small
jittering of each spike time, with values drawn from a Gaussian distribution with mean
0 and standard deviation 1 ms, was performed to smooth the stripes of the fast os-
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Figure 4.1: Comparison of jittered spike times (green) and non-jittered (purple) spike times for layer
L4E from the BDH model. The raster plots on the left shows 100 ms of simulation time and the power
spectra are calculated from the last 9 s of the total simulation time and averaged over time windows with
size 500 ms. Each individual spike time is shifted by an amount drawn from a Gaussian distribution
with mean 0 ms and standard deviation 1 ms.

cillations. Then the power spectrum was calculated to and compared with the power
spectrum for the non-jittered spike times. This method was applied to the population
L4E only since the peak in the power spectrum for this population is the most promi-
nent. Fig. 4.1 shows the comparison of jittered vs non-jittered spike times. As can be
seen in the figure, both the thin vertical stripes and the high frequency peak are almost
gone after the jittering, which suggests that the two aspects are related. Note that the
low frequency peak in the power spectrum is not affected by the small jittering. This
peak most likely represents the wider stripes still visible in the raster plots.

Since there is reason to believe that the peaks in the power spectra and the vertical
stripes are related, changes in the stripes will be studied by looking at the population
averaged power spectra. The frequency of the peaks corresponds to the frequency of
the oscillation in the raster plot, while the amplitude of the peak says something about
how prominent the stripes are.

The population averaged power spectra for each population in the microcircuit
model can be calculated by two methods as explained in section 3.2 and section 3.2.4.
The power spectra from the kernel convolution was calculated for population L4E of
the BDH model to compare the spectra obtained from the two methods. The results are
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Figure 4.2: Power spectra from population L4E from the BDH-model calculated using time histogram
and a kernel convolution with a rectangular and a Gaussian kernel. Purple: power spectrum using a time
histogram with bin size 1 ms and averaged over 500 ms windows. Green: power spectrum calculate
from the kernel convolution with rectangular kernel. Red: power spectra calculated from the kernel
convolution with a Gaussian kernel. Both kernels use parameter σ = 0.2.

shown in Fig. 4.2. Both the use of a rectangular and a Gaussian kernel yielded almost
the exact same power spectra. The only difference is a slight difference in amplitude,
but the shape is the same. For higher frequencies the amplitude of the power decreases
for the kernel convolution. That is an effect of the kernel size used. Larger band-width
of the kernel tends to smooth out the spike counts for shorter lengths and makes higher
frequencies invisible in the power spectra. As seen in the figure, the effect is not visible
for frequencies under 400 Hz and therefore does not affects the peaks.

The use of kernel convolution yielded similar results as the time binning, and ver-
ifies that the use of time binning as an estimate of the power spectra is sufficient.
Therefore, the time binning with a bin size of 1 ms will be used to calculate the power
spectra for the rest of the analysis.

4.2 Different neuron and synapse models

This section first shows a comparison of the dynamics of the PD and BDH models.
Then, the dynamics of the microcircuit models with different neuron and synapse mod-
els are compared to see the effects on the oscillatory activity.
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Figure 4.3: Comparison of the PD model (purple) and BDH model (green). The raster plots shows all
the eight populations were the dark color represents the inhibitory populations and the light color the
excitatory populations.
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4.2.1 Comparison of the microcircuit models

Two version of the microcircuit model have been presented up to this point, the original
PD model and the BDH model. The power spectra and raster plot for the two models
are shown in Fig. 4.3. For the BDH model, both the peaks are shifted to the right, while
the high frequency peaks are shifted the most. There are also some differences in the
amplitude. The vertical stripes are still present for both models in the raster plots.

The us of different neuron and synapse models was tested for both the PD model
and the BDH model. Since the effect of changing the neuron and synapse models on
the dynamics was the same for both network models, only the result from the BDH
model is shown here. The BDH model was chosen since it was showed to be in a state
farter from the SI regime [Bos et al., 2016].
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Figure 4.4: Power spectra from the BDH model. (A–D): Raster plot from 50 ms of the simulation. The
dark colors shows the inhibitory and the light colors the excitatory populations. A: Original model, B:
model with precise-spike-time neurons, C: model with both precise-spike-time neurons and continuous
delays and D continuous delays but normal normal spike times. E: Power spectra for the 8 different
populations. The top row shows the spectra of the excitatory populations. The bottom row shows the
spectra from the inhibitory populations. The colors of the spectrum lines matche the colors of the models
in A–D. The power spectra are calculated using a time histogram with 1 ms bin width and is averaged
over time windows of 500 ms.
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4.2.2 Using different neuron and synapse models

The first part of the analysis is to see how the use of precise spike time neurons and
continuous delay synapses affects the observed stripes. Four different network models
were simulated. One with the original neuron and synapse models, one with precise-
spike-times neurons, one with continuous delays synapses and one with both precise-
spike-times neurons and continuous delays.

Fig. 4.4 shows the results. As can be seen in the figure, both the vertical stripes and
the peaks in the power spectra are still present. The use of precise-spike-times neurons
shifts the power spectra a tiny amount to the right, but the stripes are still visible in the
raster plots. The use of precise-spike-times neurons and precise-spike-times neurons
with continuous delays shown in green and red yields almost identical power spectra.
The yellow line, representing the model with continuous delays without precise-spike-
times neurons, is shifted slightly to the right compared to the original BDH model.

For the low frequency peak, there seems to be almost no difference between the
models. Fig. 4.5 shows the low frequency peak for population L4E for all the models
and the vertical stripes are still visible in the raster plots.
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Figure 4.5: Inset of the low frequency peak for population L4E from the simulations of the BDH model
with different neuron and synapse models. Purple: Original BDH model. Green: Precise-spike-times
neurons. Red: precise-spike-times neurons and continuous delays. Yellow: Continuous delays. The
power sepctra are calculated as in Fig. 4.4.
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4.3 Subsampling

With few spike trains included, the total number of spikes at each time bin in a time
histogram will be considerably lower, as illustrated in Fig. 4.6. The figure shows the
time histograms and raster plots for population L4E for subsamples with 50, 100, 250
and 500 number of neurons and the whole population. The time histograms have a bin
size of 1 ms and the raster plots shows 200 ms of the simulation time. For a sample size
of only 50 spike trains, the spike counts in the time histogram are mostly 0’s and 1’s.
The variety in the spike counts increases as the number of neurons in the subsample
gets larger. The fewer neurons in the raster plots makes it harder to determine whether
the vertical stripes are present or not.

The power spectra from the subsampling are shown in Fig. 4.7. The spectra are
calculated for all 8 populations each with sample sizes of 50, 100 250 and 500 number
of neurons. The subsampling was done for different number of trials, each shown by
different colors and separate subplots. Each of the power spectra was multiplied by its
sample size in order to get the spectra on the same scale as explained in section 3.2.2.

First, we see that the peaks in the power spectra are clearly visible even though the
vertical stripes in the raster plot in Fig. 4.6 are harder to make out. Both the low and
the high frequency peak becomes more visible in the power spectra for larger sample
sizes. The average of an increased number of trials reduces noise in the power spectra
and thus makes the peak easier to discern for smaller sample sizes. The increase in the
number of trials does not result in higher peaks in the spectra.

In the original power spectra for each population shown in Fig. 4.4, the peak at
around 300 Hz is more visible for some populations than other, and most prominent
in population L4I. The difference in the amplitude is somewhat reflected in the sub-
sampling as well. For population L4I, the peak is slightly visible from a subsampling
of only 50 neurons after averaging over 10 or 100 trials. For population L23E on the
other hand, the spectrum is flat at 300 Hz with the same sample size.
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Figure 4.6: Time histograms and raster plots from subsampling of population L4E of the BDH-model.
The purple plots show from top to bottom the results for sample sizes 50, 100, 250, 500. The green plots
at the bottom show the results for the whole population. Note that the y-axis in the time histogram for
the full model size is different than that for the subsamples in order to show the full height of the bars.
The bin width of the time histograms is 1 ms.
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Figure 4.7: Subsampling of the spike trains from each of the populations in the BDH model. Spectra
calculated from the final 9 seconds of the simulation. The spectra for the different sample sizes are
multiplied with its sample size to plot each spectra on the same scale. Red color shows the spectra
from 1 trial, green shows average spectra of 10 trials and purple shows average spectra from 100 trials.
The brightness of the colors indicated the four different sample sizes, from light to dark colors the
sample sizes are 50, 100, 250 and 500 number of neurons. The power spectra are calculated from a time
histogram with bin size 1 ms and the spike count is averaged over the number of neurons. The spectra
are calculated without averaging window, but are smoothed by a Gaussian kernel with σ = 3
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Figure 4.8: Power spectra from subsamples of the spike trains from population L4E of the BDH model.
A: Power spectrum from 9 seconds simulation time. B: Power spectrum from 99 seconds simulation
time. Both spectra are calculated without averaging windows and smoothed by a Gaussian kernel with
σ = 3ms.

4.3.1 Subsampling from longer simulation time

In the subsampling from a simulation run for 100 seconds, the same bin size, number
of trials and sample sizes were used as in the section above. Only the comparison
between the short and long simulation time for population L4E and for 100 trials is
shown here, since the differences between the populations and number of trials were
similar for the two simulations time. Fig. 4.8 shows the results.

The first thing to note is that the spectrum for the longer simulation time contains
a little more noise as seen by the slightly thicker lines. The amplitude of the 300 Hz
peak seems slightly larger for the longer simulation as well. Interestingly, the peak at
around 80 Hz looks more similar to each other than the 300 Hz peak.
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Figure 4.9: Probability density functions for the delay distributions with the parameters in Table 4.1.
Red: Truncated gaussian, blue: exponential, green: uniform, orange: lognormal

4.4 Effects of the delay distributions

This section first shows the analytical power spectra for each population in the BDH
model for the delay distribution truncated Gaussian, exponential, uniform and lognor-
mal. The parameters for the lognormal distributions were chosen to match the mean
and standard deviation of the truncated Gaussian distribution, and the parameters for
the exponential and uniform distributions were chosen to match the mean of the trun-
cated Gaussian distribution. The derivations of these parameters are shown in the
Appendix and the parameters are listed in Table 4.1. Fig. 4.9 shows the probability
density functions for each distribution with these parameters.

Table 4.1: Parameters for the delay distributions of the connections for the inhibitory connections to
themselves. The values are chosen to match the mean and or the standard deviation of the truncated
Gaussian distribution (see the Appendix)

.
Truncated Gaussian Exponential Uniform Lognormal

Parameters µ = 0.75 ms λ = 1.0356 a = 0.0 ms µ =−0.1959 ms
σ = 0.75 ms b = 1.9314 ms σ = 0.5673 ms

With the delay distributions described above, the trajectories of the complex eigen-
values are shown together with the spectra for the dominant term of each eigenmode.
Finally, the analytical power spectra were computed for a large number of different
mean and standard deviation values for the truncated Gaussian distribution for the de-
lays of the inhibitory connections.
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4.4.1 Analytical spectra

Fig. 4.10 shows the analytical power spectra for the eight populations of the BDH
model. The red line shows the analytical spectrum using the truncated Gaussian distri-
bution as in the original BDH model. These spectra are in agreement with the spectra
shown by Bos et al. [2016].

The high frequency peak is visible in the power spectra for the models using all
the other delay distributions except the exponential distribution. This is in agreement
with Brunel and Hakim [1999] who states that by using a exponential distribution for
the delays, one can get a network dynamic that is always in stable state. An unstable
network dynamic would show oscillatory activity. The model with the exponential
delay distribution shows a larger amplitude for the 80 Hz peak than the models using
the other distributions.

The high frequency peaks for the models using uniform and lognormal distributions
are close to the same frequency as for the truncated Gaussian distribution, but the
amplitude for the models with lognormal distribution is much larger.

With the parameter used here, the spectra for the model using the uniform distribu-
tion are most similar the the ones obtained from the model with the original truncated
Gaussian distribution.
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Figure 4.10: Analytical power spectra from all the populations of the BDH model using different delay
distributions. Only the delay distributions of the four connections from one inhibitory population to
itself are changed, the other delay distributions uses the truncated Gaussian distribution with parameters
as in the original model. Red: truncated Gaussian distribution. Blue: exponential distribution. Green:
uniform distribution. Orange: lognormal distribution. The parameters are listed in Table 4.1.
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4.4.2 Eigenmodes and trajectories of the eigenvalues

The trajectory plots of the 8 eigenvalues in the complex plane for the four models with
different delay distributions are shown in Fig. 4.11. The trajectories show the real and
imaginary part of the complex eigenvalues of the effective connectivity matrix. Each
trajectory is parameterized by ω which is related to the frequency by ω = 2π f . The
trajectories are plotted for frequencies from 0 Hz shown with black color and and up
to 500 Hz shown by lighter colors. Each eigenvalue follows an arc going clockwise
and converges towards 0 for high frequencies. The insets show the trajectories near the
critical point 1 marked by the blue star.

Fig. 4.12 shows the dominant term |1/(1−λi(ω)| for each eigenvalue λi as a func-
tion of frequency. The figure shows the contribution from each eigenmode to the com-
pound power spectrum.

The dominant term of the eigenmodes |1/(1− λi(ω)| is plotted against the fre-
quency and shown in Fig. 4.12. This plots gives the same information as the trajectory
plots but it is easier to se how much each eigenmode contribute to the compound spec-
trum. The analytical power spectra are a combination of the contributions of each of
the eigenmodes shown in the figure. Note that the colors of the eigenmodes in Fig. 4.12
corresponds to each of the eight eigenvalues. For each value of omega, the eigenvalues
were calculated with the functionnumpy.linalg.eigvals. The output from this function
did not necessarily return the eigenvalues in the same order. This is the reason why the
color of the eigenmodes sometimes is changed, most notably on the 80 Hz peak from
the model using the exponential delay distribution. The colors were kept as they are
since it makes it easier distinguish the different eigenmodes and the color changing is
minimal.
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Figure 4.11: Trajectory of the complex eigenvalues of the effective connectivity matrix for the four
models with different delay distribution. The real and imaginary values are plotted as a parameterization
of the frequency. The colors from dark red towards yellow indicated the frequency of the eigenvalue
from 0 Hz to 500 Hz. The blue star is the point 1 in the complex plane.
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Figure 4.12: The term |1/(1− λi(ω)| plotted against frequency for each of the eigenvalues λi of the
effective connectivity matrix. The parameters of the distributions are listed in Table 4.1.

As seen in Fig. 4.12, the low frequency peak is mostly dominated by only one of
the eigenmodes for all the delay distributions, while the the peak at around 300 Hz is
a combination of four different eigenmodes. The eigenmode responsible for the 80 Hz
peak has a larger amplitude for the model using the exponential delay distribution than
the others. This is also seen in the trajectory plots in Fig. 4.11. One of the trajectories
for the model using the exponential delay distribution passes very close to the point
at around 80 Hz, explaining the higher amplitude for the 80 Hz peak in the power
spectrum.

Similarly, one eigenmode passes very close to the critical point for the model us-
ing the lognormal distribution, but at a higher frequency. This eigenmode is easily
spotted in the Fig. 4.12 as well. Comparing these results with the compound spectra in
Fig. 4.10, we see that the increased amplitude for the high frequency peak for the model
using the lognormal distribution is largely explained by only one of the eigenmodes.

Looking at the inset of the trajectories in Fig. 4.11, we see that the trajectories
for the models using the uniform and lognormal distribution looks most similar. The
trajectory for the model using the exponential distribution is most unique since only
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one trajectory passes close to the critical point.

4.4.3 Parameter sweep

This section presents the results from the parameter using different mean µ and stan-
dard deviation σ of the truncated Gaussian distribution for all the inhibitory connec-
tions. The two methods used to find the peaks in the power spectrum are described
in section 3.6. Since the goal is to see the effect on the dynamics of different delay
parameters, the results of only one population is shown. Population L4I was chosen
due to the prominent peak in the power spectrum for this population.

Fig. 4.13 A shows the analytical power spectra for five parameter combinations,
chosen as a mix of high and low mean and standard deviation values. This subfigure
shows that the combination of µ = 3.9 ms and σ = 2.5 ms results in a spectrum with
only one peak at around 80 Hz, located by both methods. The use of µ = 3.9 ms and
σ = 1.5 ms is similar but shows a slight peak around 290 Hz in addition which is found
by the high-frequency method. The spectrum from using µ = 3.9 ms and σ = 0.2 ms
still shows the low frequency peak at 80 Hz but a high frequency peak at 310 Hz is now
present. When the mean and standard deviation both have small values such as µ = 0.5
ms and σ = 0.2 ms, the low frequency peak is located closer to 60 Hz and the high
frequency has larger amplitude and has a frequency over 400 Hz. The final parameter
combination showed in the figure is the spectrum obtained from using µ = 0.5 ms and
σ = 3.0. In this spectrum, two peaks are observed at lower frequency. One at around
80 Hz and one at around 120 Hz, where the 120 Hz peak has greater amplitude.

Fig. 4.13 B shows the amplitudes of the peaks in the spectra found using the high
frequency method. The patterns of light colors corresponds to peaks with large am-
plitudes, suggesting that certain combinations of the mean and standard deviations
produces large peaks. Fig. 4.13 D shows the amplitude of the peak found with the low
frequency method. The same kind of pattern is observed in this plot, suggesting that
some combinations of the mean and standard deviations also produces large peaks at
lower frequencies. It looks like some parts of the lighter areas are the same in the two
heat maps for values of the mean around 2.6 ms and standard deviation 2.2–3.0 ms,
suggesting a possible overlap of the detected peaks for these values.

Fig. 4.13 C shows that the peak found by the high frequency method is found for
a wide range of frequencies. Certain combinations of µ and σ results in peaks with
large frequencies as shown by the whiter areas. The same area is visible in Fig. 4.13 B
as a black region, indicating a low amplitude of the peaks. The frequency for the low
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Figure 4.13: Results of the parameter sweep for different mean µ and standard deviation σ parameters
for the truncated Gaussian distribution for the delays. The parameters for all the inhibitory connections
has been altered (32 in total). Only population L4I is shown. A: power spectra for five of the parameter
combinations. B–C: amplitude (left) and frequency (right) of the high-frequency peak. D–E: amplitude
(left) and frequency (right) of the low frequency peak.
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frequency peak is also changed for some parameter combinations as can be seen in
Fig. 4.13 E.

4.5 Multi-area model

In this section the results from the multi-are model are presented. The model is com-
pared with the original BDH model and the BDH model using exponential distribution
for the delays for the four connections from the inhibitory populations to themselves.

The power spectra for the eight populations of the V1 area of the multi-area model
using χ = 1 and χI = 1 are shown in Fig. 4.14. None of the power spectra show any
clear peaks, suggesting that the oscillatory dynamics are not present.

Fig. 4.15 shows the comparison of the models. Since the multi-area model contains
more neurons than the microcircuit model, 21,915 neurons were randomly drawn from
the population for all network models and shown in raster plots for comparison. The
power spectra from the BDH models are calculated from 9 seconds of simulation time
while the multi-area models are calculated from 19 seconds of simulation time. The
green line in the power spectrum plots for the BDH model is the analytical power
spectra.

The figure shows that both the thin stripes in the raster plot and the high frequency
peak in the power spectrum are gone from the BDH model when the exponential dis-
tribution is included in the four inhibitory connections. Interestingly, the amplitude of
the 80 Hz peak in in the model with exponential delays is lower than the analytical
results.

The spectra for the multi-area models shows only a slight bump at around 320 Hz.
There is a small peak at around 100 Hz, but the stripes in the raster plots are harder to
discern. The peaks in the power spectrum for the multi-area model with χ = 1.9 and
χI = 2.0 is a little bit more pronounced than the model with χ = χI = 1.
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Figure 4.14: Power spectra for the 8 populations from the V1 area in the multi-area model with χ =

χI = 1. The spectra are calculated using a time histogram with bin size 1 ms and averaged over time
windows of 1000 ms.
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Figure 4.15: Raster plot and power spectra from different models. A: population L4E from the original
BDH model. B: population L4E from the BDH model with exponential delay distribution for the four
connections from the inhibitory populations to themselves. C: population L4E from the V1 of the multi-
area model with χ = χI = 1. D: population L4E from the V1 area of the multi-area model with χ = 1.9
and χI = 2.0. In the raster-plots, 21,915 neurons have been randomly drawn for each model. The power
spectrum is calculated using all the neurons from the population for duration 1–10 seconds for the BDH
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Chapter 5

Discussion

In my thesis I have looked at modified versions of the microcircuit model and used
different methods to detect the oscillatory activity in order to find out more about the
origins the high frequency oscillations observed in spiking network models.

5.1 Different neuron and synapse models

In my analysis, it was showed that the oscillations in the network dynamics are not
caused by artifacts in the models due to the simplifications of using discretized time
steps or discretized delay values. The time discretization can cause an artificial syn-
chrony in the network dynamics, but it is not the cause of the high frequency oscil-
lations. The use of precise-spike-times neurons and continuous delay synapses does
change the dynamics of the network slightly, as seen by the small shift to the right of
the high frequency peak in the power spectra in Fig. 4.4. The shift however, is too
small to explain the origin of the high frequency oscillations, and the vertical stripes
are still visible in the raster plots for all the models.

The use of only continuous delays without precise-spike-times neurons also causes
a small shift of the high frequency peak in the power spectra, but the shift is to the left.
This effect can be explained by how the NEST simulator handles the rounding of delay
values in the synapses. When using the standard synapse model, if the delay values
assigned to the synapse falls outside the simulation time grid, they will be rounded to
the nearest grid point since the synapse model only accept integer multiples of the time
resolution as delay values. Assigning the same values to the continuous-delay synapse
will result in no rounding since it handels continuous values. However, when using
continuous-synapses together with a neuron model that doesn’t handle spikes in con-

51



52 Discussion

tinuous time, and the delay values are not integer-multiples of the time resolution, the
fraction is ignored, resulting in a rounding down of the delay values. When the delays
are always rounded down, the result is a distribution with slightly smaller delay values
on average. The correct way to use the continuous delay synapses is in combination of
the precise-spike-times neurons to avoid this erroneous rounding.

The raster plot for the model using precise-spike-times (green) looks more even
than the others. That is most likely due to the small time window of 50 ms plotted and
not the effect of the neuron model. A raster plot over longer duration or from other
time segments would most likely look more similar to the raster plots from the other
models.

5.2 Subsampling

The results from the subsampling of the spike trains show that the peaks in the power
spectra can be observed for subsamples of few spike trains. For population L4I the 300
Hz peak becomes visible for as few as 50 neurons when the spectrum is averaged over
10 or 100 trials.

The observation that the peaks become more visible for larger subsamples is in
agreement to the arguments about the contributions from the auto-correlations of indi-
vidual neurons and the cross-correlations between all pair of neurons as explained in
section 3.2.2.

One should be a bit careful with the conclusions about how many neurons that
needs to be sampled in order to observe the peaks in the power spectra. The peaks are
easiest to discern in population L4E, L4I, L5E, L5I and L6I. However the maximum
number of neurons in the subsampling was 500, which is about half of the total number
of neurons in population L5I. It makes sense to believe that the peak should be visible
when as much as 50 % of the population is included in the sample. The largest popu-
lation is L4E with over 20,000 neurons, but we can still se the peak for a subsample of
500 neurons, which suggests that peaks can be seen for smaller subsamples of larger
populations as well, given that the population show large enough oscillatory activity.

Another observation from the subsampling is that the visibility of the peaks matches
that of the spectra for the full populations. Peaks with low amplitude like the low fre-
quency peak of populations L6E and L6I is smaller also for the subsamples. This
proportionality is not surprising, but it means that peaks that might be found in the
power spectra for experimental data needs to be sufficiently large in order to detect
them from fewer recorded neurons.
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The subsampling from the simulation of 100 seconds yields similar results as the
shorter simulations as showed in Fig. 4.8. The high frequency peak for the longer
simulation time seems to have slightly larger amplitude than the shorter simulation,
but the low frequency peak have the same amplitude. Given that the network dynamics
is the same regardless of the duration of the simulation, one would expect that the
estimated power spectrum of the population average firing activity would not change
by increasing the sampling time. The differences in the height of the high frequency
peak is not very large, and is most likely caused by the fact that some neurons are more
correlated than others. In the subsampling from over 20,000, there are a lot of possible
combinations of 500 neurons. In a subsample with more correlated neurons, the peaks
in the power spectrum would be larger. It is interesting to note that the high frequency
peak seems to be more sensitive to the selection of neurons than the low frequency
peak, but this claim needs to be tested more before any conclusions can be made.

The spectrum for the longer simulation time is also a little broader, meaning that
it contains more noise. This could be due to the fact that for the the longer simulation
time, the frequencies are sampled at a finer resolution in the power spectrum. For the
short simulation, only 9 seconds was used to calculate the power spectrum. Given
that the sampling frequency is 1,000 Hz (since the bin size of the time histogram is
1 ms), the totalt number of points in the power spectrum is 9,000. The maximum
frequency possible to sample for this sampling frequency is 500 Hz due to the Nyquist
frequency (see section 2.6.2). The total number of points in the power spectrum for the
frequencies up to 500 Hz in Fig. 4.8 A is therefore 4500. For the long simulation, 99
seconds of simulation time are used to calculated the power spectrum. The sampling
frequency is the same, yielding a total of 99,000 points of the power spectra. The
number of points for frequencies up to 500 Hz is half of that, equal to 49,500. The
more points means that the power spectrum will be more smooth, but it is possible
that it also shows some noise that would not be detected with a more coarse frequency
resolution.

The end conclusion for the longer simulation time is that the detectability of the
peaks in the power spectrum is not increased by sampling spike counts for longer
periods.

5.3 Analytical results

The use of different distributions for the synaptic delays has an effect on the analytical
power spectra. Most notably the disappearance of the high frequency peak when using
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an exponential distribution and the large peak when using a lognormal distribution as
seen in Fig. 4.10. The probability density functions for each of the distributions are
shown in Fig. 4.9. The exponential distribution has a lot of short delays values com-
pared to the other distributions. The parameters for the distributions were chosen to
match the mean and/or the standard deviation of the truncated Gaussian distribution.
The mean of the truncated Gaussian distribution is close to 1 ms and the standard de-
viation around 0.63 ms. For the exponential distribution, both the mean and standard
deviation is 1

λ
, which is close to 1 to when the mean is matched with the truncated

Gaussian distribution. This means that the standard deviation is for the exponential
distribution is larger than the standard deviation for the truncated Gaussian distribu-
tion, which could also play a part in the difference of the high frequency peak.

The standard deviation of the uniform distribution is also not possible to match
to the truncated Gaussian distribution at the same time as the mean. In this case, the
standard deviation of the uniform distribution with a = 0 and b ≈ 2 is about 0.58 ms,
which is close to that of the truncated Gaussian distribution. The difference between
the models using the truncated Gaussian distribution and the uniform distribution is
also not large.

The model using the lognormal distribution shows a large peak in the power spec-
trum for the high frequency. This is explained by the contribution of one of the eigen-
modes due to the fact that one of the eigenvalues is very close to the critical value 1.
With a small tuning of the parameters, it might be possible to avoid this singularity
of the eigenmode. Since four eigenmodes contribute to the high frequency peak, it is
likely that the high frequency peak would still be present even after a small tuning of
the parameters.

The method used for these analytical result was presented by Bos et al. [2016].
Here it is showed that the low frequency peak in the power spectra is accurately pre-
dicted. However, the high frequency peak is not predicted as accurately. This effect
is also seen in Fig. 4.15 for the BDH models. The high frequency peaks for both the
standard BDH model and the model with exponential delays has a higher amplitude in
the analytical spectra than in the spectra obtained from simulations. The reason given
by Bos et al. [2016] is that on the time scale of the lower frequencies, it can be shown
that the network behaves like that of an AI state, while on the time scale of the higher
frequency, it approaches the SI state. In linear response theory, the network state is
assumed to be asynchronous Grytskyy et al. [2013]. For higher frequencies, the dy-
namics is too synchronous for the theory to be accurate. However, the prediction can
still be used to get an estimate of the power spectra for higher frequencies.
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The conclusion from this part of the analysis is that only the model with exponential
distribution for the delays shows no high frequency peak when the parameters chosen
are matched to the ones from the truncated Gaussian distribution. This however, does
not mean that it is impossible to suppress the high frequency peak by using other the
other distributions with other parameters.

In addition to using different delay distribution, one can change the parameters
for the truncated Gaussian distribution to change the analytical power spectrum. The
results obtained from a parameter scan of different mean and standard deviations re-
veals that the dynamics are sensitive to changes to the delay distribution. This is in
agreement with what was observed in Bos et al. [2016]. By looking at the heat maps
for the high frequency method (Fig. 4.13 B–C), the black area in the amplitude plot
suggest peaks with low amplitude for these parameters. The border where the black
area changes to brighter colors corresponds to the area where the white area changes
to the green in the frequency plot. The parameters for the dark areas results in peaks
at high frequencies around 450 Hz, while the lighter areas results in peaks for low fre-
quencies around 100 Hz. This change in the frequency position at these parameter is
an interesting topic for further study.

An interesting result which is worth looking more into is the bright curves shown
in the heat maps for the amplitudes. This suggest that for certain parameters the ampli-
tude gets much larger for both the high and low frequency peaks. The reason is most
likely that at least one of the eigenvalues of the effective connectivity map for these
parameters is close to the critical point. The question is how the parameters relates to
the trajectory of the eigenvalues.

The method of showing the results from the analysis from the parameter sweep has
its downsides. The high-frequency method is based on a observation without theoreti-
cal support. The way it is implemented will always either find a peak or the boundary
points at 0 Hz or 500 Hz, but it does not say anything about whether more peaks are
observed in the spectrum or not. There is some parameter combinations that results
in the two methods finding the same peak, but that does not necessarily mean that no
other peaks are present in the spectrum. From the plots shown in Fig. 4.13 it is not
possible to tell.

While the analysis showed here doesn’t explain the origin of the observed high
frequency oscillations, it shows that the oscillatory activity can be avoided by care-
fully selecting the delay distributions or delay parameters. The synaptic strengths have
also been shown to affect the oscillations in the network as well. Hagen et al. [2016]
used a lognormal distribution for the synaptic weights which they found to reduce the
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oscillations.

5.4 Multi-area-model

The multi-area model with χ and χI equal to 1 contains no high frequency peaks except
a small bump in population L4E as seen in Fig. 4.15. The amplitude of the peak at
around 80 Hz is somewhat present, but one order of magnitude smaller than the same
peak in the power spectrum from the BDH models. Both the BDH models and the area
of the multi-area model showed here represent a patch of the visual cortex area V1 so
the results can be compared.

The multi-area model with χ = 1.9 and χI = 2.0 shows similar power spectrum as
the model with χ = χI = 1, but with the peaks slightly more prominent. The change
in the χ parameters do affect the high frequency oscillatory activity a little bit, but it
seems like it is not very sensitive to changes in these parameters.

The absent of the high frequency peak in the multi-area models suggests that the
inclusion of connections between areas reduces the high frequency oscillations. One
possible reason why this happens is that the network becomes more heterogeneous and
therefor not containing the synchronous activity that generates the oscillations.
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Appendix

Fitting delay distribution parameters

The truncation of the Gaussian distribution makes the mean and standard deviation not
equal to the parameters used. The result of the truncation is a shift of the mean and
standard deviation values. The formulas are described by Burkardt [2014].

For a Gaussian distribution with mean µG and standard deviation σG truncated at
points a and b where a < b, the following variables are defined

α =
a−µG

σG
(5.1)

β =
b−µG

σG
(5.2)

The mean for the truncated Gaussian distribution µt is then defined by

µt = µG−σG ·
φ(β )−φ(α)

Φ(β )−Φ(α)
, (5.3)

where

φ(x) =
1√
2π

e−
x2
2 (5.4)

and Φ(x) is defined by Eq. (3.25). The variation of the truncated Gaussian distribution
σ2

t is given by

σ
2
t = σ

2
G ·

[
1− βφ(β )−αφ(α)

Φ(β )−Φ(α)
−
(

φ(β )−φ(α)

Φ(β )−Φ(α)

)2
]
. (5.5)

For the parameters µG = 0.75 ms and σG = 0.75 ms used for the truncated Gaussian
distribution for the inhibitory delays, the mean and standard deviation becomes µt ≈
1.0300 ms and σt ≈ 0.6348 ms.
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Exponential distrubution

The mean and standard deviation of the exponential distribution are both defined as

1
λ

(5.6)

(see Robert V. Hogg [2014]). It is not possible to fit both the mean and standard
deviation for this distribution to the truncated Gaussian distribution, therefore only the
mean is fitted. For the mean of the truncated Gaussian distribution µt and the mean of
the exponential distribution µe to be equal, lambda is simply

µe =
1
λ
= µt (5.7)

⇒ λ =
1
µt

(5.8)

Uniform distribution

The mean of the uniform distribution from points a to b is defined by

µu =
a+b

2
, (5.9)

while the standard deviation is defined by

σu =
b−a√

12
. (5.10)

The formulas are taken from Robert V. Hogg [2014]. It is not possible to fit both
the means and standard deviation to the truncated Gaussian distribution, so only the
mean is fitted. The derivation is as follows

µu =
a+b

2
= µt⇒ a+b = 2µt. (5.11)

The lower limit a for the distribution is chosen to be 0 to allow as small values of the
delays as the truncated Gaussian distribution. That leaves the parameter b for the high
limit to be determined as b = 2µt.

Lognormal distribution

The mean of the lognormal distribution is defined by
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µ̃log = eµlog+
σ2

log
2 , (5.12)

where µlog and σlog are the parameters µ and σ for the lognormal distribution and µ̃log

is the mean value [Press et al., 2007, ch. 6.14 p.320–339].
The standard deviation is defined by

σ̃
2
log =

(
eσ2

log−1
)

e2µlog+σ2
log , (5.13)

where σ̃log is the standard deviation and µlog and σlog again is the parameters for the
lognormal distribution.

The two parameters can be fitted so that the mean and standard deviation of the log-
normal distribution is equal to that for the truncated Gaussian distribution by solving
the two equations with respect to µlog and σ2

log

eµlog+
σ2

log
2 = µt (5.14)

(
eσ2

log−1
)

e2µlog+σ2
log = σt. (5.15)

Eq. (5.14) can be written as

σ
2
log = 2(ln µt−µlog). (5.16)

Inserting this for σ2
log in Eq. (5.15) yields

µlog = 2ln µt−
ln(σ2

t + e2ln µt)

2
(5.17)

This equation can in turn be inserted into Eq. (5.16) to get an expression for σ2
log

σ
2
log = ln(σ2

t + e2ln µt)−2ln µt (5.18)
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