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Abstract 

Background:  In pigs, crossbreeding aims at exploiting heterosis, but heterosis is difficult to quantify. Heterozygosity 
at genetic markers is easier to measure and could potentially be used as an indicator of heterosis. The objective of this 
study was to investigate the effect of heterozygosity on various maternal and production traits in purebred and cross‑
bred pigs. The proportion of heterozygosity at genetic markers across the genome for each individual was included in 
the prediction model as a fixed regression across or within breeds.

Results:  Estimates of regression coefficients of heterozygosity showed large effects for some traits. For maternal 
traits, regression coefficient estimates were always in a favourable direction, while for production, meat and slaughter 
quality traits, they were both favourable and unfavourable. Traits with the largest estimated effects of heterozygo‑
sity were total number born, litter weight at 3 weeks, weight at 150 days, and age at 40 kg. Estimates of regression 
coefficients on heterozygosity differed between breeds. Traits with the largest effect of heterozygosity also showed a 
significant (P < 0.05) increase in prediction accuracy when heterozygosity was included in the model compared to the 
model without heterozygosity.

Conclusions:  For traits with the largest estimates of regression coefficients on heterozygosity, the inclusion of 
heterozygosity in the model improved prediction accuracy. Using models that include heterozygosity would result in 
selecting different animals for breeding, which has the potential to improve genetic gain for these traits. This is most 
beneficial when crossbreds or several breeds are included in the estimation of breeding values and is relevant to all 
species, not only pigs. Thus, our results show that including heterozygosity in the model is beneficial for some traits, 
likely due to dominant gene action.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
One of the main reasons for producing crossbreds (CB) 
in animal breeding programs is to take advantage of het-
erosis (“the difference between crossbred and inbred 
means” [1]), but heterosis can be difficult to estimate. 
However, heterozygosity at genetic markers is much 
easier to measure (in genotyped individuals). Although 
heterozygosity is not the same as heterosis, heterozygo-
sity may be a useful indicator when predicting the ability 
of purebreds (PB) to produce good CB offspring. Zhang 
et al. [2] found a significant correlation between hetero-
sis and individual heterozygosity for birth weight in an 

F1 cross of pigs, but not for average daily gain and feed 
conversion ratio in the same population. In addition, 
when dominant gene action, which results in differences 
between the genotypic value and the breeding value at 
a single locus [1], is present, including heterozygosity in 
the model as an alternative to fitting a dominance model 
[3] would be interesting because it is less computation-
ally demanding. An alternative approach is to include 
inbreeding in the model, since it has the opposite effect 
of heterozygosity on phenotype(s) (e.g. if increased het-
erozygosity increases the phenotype, inbreeding would 
decrease it), and Xiang et  al. [4] found that the predic-
tive ability for total number born was improved when 
including (genomic) inbreeding in the model. The level 
of heterozygosity of an individual is very easy to obtain 
from genotypes and requires no knowledge of ancestry, 
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in contrast to pedigree inbreeding. In general, the level 
of heterozygosity is expected to be higher in CB than 
in PB animals and individuals with higher heterozygo-
sity are expected to have better fitness. An individual’s 
average heterozygosity across markers can be used as a 
measure of heterozygosity. An alternative would be to 
use standardized heterozygosity, for which a common 
divisor is used for each defined group of individuals [5]. 
In this case, animals from  different breeds or that were 
genotyped on different single nucleotide polymorphism 
(SNP) chips could be compared by standardizing the het-
erozygosity, i.e. dividing the heterozygosity by the mean 
within the group. Against this background, the objective 
of our study was to investigate the effect of heterozygo-
sity on various traits in PB and CB animals and deter-
mine whether inclusion of heterozygosity in models for 
the estimation of breeding values can increase prediction 
accuracy, both in CB and their PB parents.

Methods
Animals and data
Three sets of data were available for this study (Table 1): 
two were provided by Norsvin SA (Hamar, Norway, data-
sets 1 and 3) and one by Topigs Norsvin (Beuningen, the 
Netherlands, dataset 2). Dataset 1 included data from 
Norwegian Landrace, dataset 2 from Dutch Landrace 
(breed A), Dutch Large White (breed B), and their F1 
cross (breed X), and dataset 3 from a synthetic sire line 
that was composed of two synthetic sire lines (Lines 1 
and 2) that have different genetic origins and have been 
under selection independently from each other. Data-
set 3 contains animals of the two original lines, their F1 
cross, and a backcross (Line 1 × F1). Datasets 1 and 2 
comprised maternal traits and dataset 3 comprised pro-
duction, meat quality, and slaughter quality traits (and 
one maternal trait) (Table 1). Not all animals had obser-
vations on all traits and only females had observations on 
maternal traits.

Genotypes for the breeds were obtained from differ-
ent SNP chips. Genotyping was performed at CIGENE 
(University of Life Sciences, Ås, Norway) or at GeneSeek 
(Lincoln, NE, USA), using either the Illumina GeneSeek 
custom 80 K SNP chip (Lincoln, NE, USA), the Illumina 
Porcine SNP60 Beadchip (Illumina Inc., San Diego, CA, 
USA), an Illumina GeneSeek custom 50 K SNP chip (Lin-
coln, NE, USA), an Illumina GeneSeek custom 10 K SNP 
chip (Lincoln, NE, USA), or the Illumina Porcine SNP9 
Beadchip (Illumina Inc., San Diego, CA, USA). Genome 
positions of the SNPs were based on the Sscrofa10.2 
assembly of the reference genome [6].

Genotyping of Norwegian Landrace animals (dataset 1) 
was performed on the 80 K (N = 11,239), 60 K (N = 8188), 
50  K (N = 2130), and 9  K (N = 1043) SNP chips (as 

defined above). Before imputation, the SNPs were filtered 
within chip by excluding SNPs with a call rate lower than 
0.85, a minor allele frequency (MAF) lower than 0.001, 
and strong deviations from Hardy–Weinberg equilib-
rium (P < 1 × 10−7). The low MAF threshold of 0.001 
was used to allow for investigation of SNPs with a low 
MAF, but a MAF threshold of 0.01 was used to build the 
genomic relationship matrix. Genotypes of animals that 
had missing genotypes for more than 30% of SNPs were 
excluded and, to avoid outliers due to admixing of bio-
logical samples, genotypes of animals with a heterozy-
gosity that deviated more than 3 times the interquartile 
distance from the mean heterozygosity of the breed were 
also excluded. Only SNPs located on the 18 autosomal 
chromosomes and that were present on the Illumina Por-
cine SNP50 Beadchip were included in the imputation. 
Imputation was performed using AlphaImpute [7], which 
combines a heuristic approach and a hidden Markov 
model [8] and which imputes all missing genotypes. After 
imputation, genotypes on 37,206 SNPs were available.

For the Dutch Landrace, Dutch Large White animals 
and their F1 cross (dataset 2), both male and female PB 
were genotyped, but in the F1 population, only females 
were genotyped (same procedure as in [9]). All these ani-
mals were genotyped using the 60 K SNP chip (as defined 
above). Quality control was done separately for each 
breed and consisted of excluding SNPs with a GenCall 
lower than 0.15, a call rate lower than 0.95, a MAF lower 
than 0.01, and strong deviations from Hardy–Weinberg 
equilibrium (P < 1 × 10−12). SNPs located on sex chro-
mosomes and unmapped SNPs were also excluded. All 
genotyped animals had a frequency of missing genotypes 
lower than 0.05 and were therefore kept for further anal-
yses. After quality control, the remaining missing geno-
types were imputed using Fimpute V2.2 [10] and SNPs 
that did not segregate in all breeds for dataset 2 were 
excluded, leaving 36,778 SNPs that were common to all 
breeds for further analysis.

For the synthetic sire line (dataset 3), genotyping was 
performed using the 80  K (N = 8134), 60  K (N = 6360), 
50 K (N = 3245) or 10 K (N = 1738) SNP chip (as defined 
above). Quality control consisted of excluding SNPs with 
a GenCall lower than 0.15 (Illumina Inc., 2005), a call rate 
lower than 0.95, a MAF lower than 0.02, strong devia-
tions from Hardy–Weinberg equilibrium (P < 1 × 10−12), 
SNPs located on sex chromosomes, and unmapped SNPs. 
All genotyped animals had a frequency of missing geno-
types lower than 0.05 and were therefore kept for further 
analyses. After quality control, the remaining missing 
genotypes of the animals genotyped with the 80 K SNP 
chip were imputed using Fimpute V2.2 [10] and animals 
genotyped with the 60 K, 50 K and 10 K SNP chips had 
their genotypes imputed to the 80 K SNP chip. The final 
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dataset consisted of genotypes on 41,208 SNPs from the 
80 K SNP chip.

The reason for using different parameters, SNP densi-
ties, and imputation software was due to practical and 
historical reasons. The SNP data were taken directly 
from routine genomic evaluations for different breeds 
in Topigs Norsvin, and different quality checks and 

imputation pipelines were developed before the merge 
of Topigs and Norsvin International in 2014. Since the 
SNP data was part of industrial routine genomic evalu-
ations and different research projects, parameters were 
well tuned and optimized within each breed to maximize 
genetic gain. We are confident that the different SNP den-
sities and the use of two different software (Alphaimpute 

Table 1  Description of traits and numbers of observations for the three datasets

a  F1 cross of Dutch Landrace and Large White
b  Number of animals included in the genomic relationship matrix
c  The synthetic line is a sire line made of two lines of the same breed (Line 1 and 2) that have been under selection independently from each other. The dataset 
contains both animals of the two original lines, their F1 and a backcross (Line 1 × F1)
d  Maternal traits have repeated observations for most animals

Dataset Breed Animals with genotypesb Animals 
with both genotypes 
and phenotypes

1 Norwegian Landrace 22,558 13,283

2 Dutch Landrace (A) 3238 2377

2 Dutch Large White (B) 3735 2859

2 F1-crossa (X) 1377 1312

3 Synthetic sire linec 19,477 19,135

Dataset 1—Norwegian Landrace

Trait Trait description Observationsd Animals

 TNB Total number born 28,790 13,279

 SB Number of stillborn piglets 28,790 13,279

 D3 Number of dead piglets at 3 weeks 15,573 9476

 LW3 Litter weight at 3 weeks in kg 16,301 9734

 VAR3W Variance in weight within litter at 3 weeks 16,138 9619

 SL Shoulder lesions of sow at weaning 23,466 12,521

 BCS Body condition score of sow at weaning 23,463 12,521

Dataset 2—Dutch Landrace, Large White, and F1

Trait Trait description Observationsd Animals

 TNB Total number born 35,852 6507

 LB Piglets born alive 35,812 6507

 GL Gestation length in days 30,559 5844

Dataset 3—Synthetic sire line

Trait Trait description Observations Animals

 W21 21-day weight in kg 11,994 11,994

 W150 150-day weight in kg 11,029 11,029

 BF100 Backfat at 100 kg measured on live animals in mm 14,407 14,407

 LD100 Loin depth at 100 kg measured on live animals in mm 13,844 13,844

 A40 Age at 40 kg in days 16,480 16,480

 DTP Days test period at boar station (days from 40-120 kg) 16,314 16,314

 TFI Total feed intake from 40-120 kg in kg (i.e. feed intake per 80 kg live weight gain) 11,947 11,947

 LMP Lean meat percentage 7476 7476

 DP Dressing percentage (slaughter weight/live weight) 7475 7475

 IMF Intramuscular fat percentage measured in the laboratory (g/100 g) 3379 3379

 PHL pH of loin 3640 3640

 DRIP Drip loss is the percentage loss of water from a piece of loin muscle between 
96 h post mortem to 120 h post mortem

3615 3615

 LB1 Live born first parity 4921 4921
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and Fimpute) for imputation did not compromise our 
results because it has been shown that a small number 
of SNPs (N = 2000) can reproduce results obtained from 
higher SNP densities (60 K) [11] in a GBLUP context and 
that both software result in similar imputation accuracies 
[12].

Statistical analysis
Heterozygosity was measured as the proportion of het-
erozygous marker genotypes for each individual. Thus, 
only genotyped individuals had a heterozygosity obser-
vation. Heterozygosity was also modelled within breed, 
when appropriate. Expected heterosis was used for the 
synthetic sire line and was calculated from the avail-
able pedigree. PB animals (Lines 1 and 2) were given an 
expected heterosis of 0%, F1 animals have an expected 
heterosis of 100%, and backcrosses have an expected het-
erosis of 50%, etc.

Four models were compared across datasets. Model 1 
(base model) was the model used in routine evaluations 
in Norsvin and Topigs Norsvin for each trait (see Addi-
tional file 1: Tables S1, S2, and S3). The models used in 
routine evaluations do not consider heterosis or inbreed-
ing, and are breed-specific, but for dataset 3 considers 
line composition. For Models 2, 3 and 4, heterozygosity, 
heterozygosity within breed, or expected heterosis was 
added as a fixed regression in addition to the original 
base model (Table 2). Table 2 gives an overview of which 
models were used for each dataset. Fixed regressions 
cannot have missing values, so only genotyped animals 
were included, and consequently the models were used 
with GBLUP in the MiXBLUP software [13].

Regression coefficients on heterozygosity (and other 
heterozygosity factors) were extracted from the Solreg 
and Solfix files from MiXBLUP using all data within each 
dataset for each model. Standard errors for regression 
coefficients are not available from MiXBLUP. Therefore, 
models were re-run in DMU4 [14]. Due to limited capac-
ity in DMU, dataset 1 was analysed only with single-trait 
models and dataset 3 was analysed only with pedigree, 
with five, four and four traits included in multiple trait 
models (grouped in the same order as in Table 1). Thus, 
the standard errors obtained are not exact for the regres-
sion coefficients from MiXBLUP and results should be 
interpreted with caution. For dataset 2, it was still pos-
sible to run a multiple trait model with genomic infor-
mation in DMU. To estimate the effect of heterozygosity 
on each trait in comparison to other traits, the regres-
sion coefficients for heterozygosity were divided by the 
phenotypic standard deviation for the traits. Models 
were also compared based on rank correlations of ani-
mals according to their estimated breeding value (EBV) 
for each model. To determine whether different animals 
were selected with different models, the correlation 
between the rank of the top 100 (validation) animals for 
one model with the rank of the same 100 animals for a 
second model were estimated in pairwise comparisons 
between models, i.e. the top 100 animals from Model 1 
are not necessarily the same as the top 100 animals from 
Model 3. Thus, the correlation was estimated twice for 
each pairwise model comparison.

Comparisons of models were performed with 
correlations between yield deviations (YD) 
and EBV. Predictive ability was calculated as: 
cor

[(

YD + hetReg
)

,
(

GEBV + hetReg
)]

 , where YD is 
the (mean) yield deviation of the animal as estimated by 
MiXBLUP [13] by each model, hetReg is the heterozygo-
sity factor multiplied by its estimated regression coeffi-
cient, and GEBV is the genomic EBV. The hetReg part of 
the equation was included to make models comparable to 
the base model because, for Models 2, 3 and 4 (Table 2), it 
is removed from both YD and EBV, i.e. fixed, non-genetic 
random, and regression effects (including heterozygosity 
effects) are subtracted from the phenotype to estimate 
YD for these models, as shown in the following:

where y is the phenotype for an animal, Xb are fixed 
effects and covariates, hetReg is as defined above, Nn 
is the non-genetic random effect, GEBV is the genomic 
estimated breeding value, and e is the residual. The 

y = Xb+ hetReg +Nn +GEBV + e,

y − Xb− hetReg −Nn = GEBV + e,

YD = GEBV + e,

Table 2  Models used for each dataset

Dataset 1 included data from Norwegian Landrace, dataset 2 from Dutch 
Landrace (breed A), Dutch Large White (breed B), and their F1 cross (breed X), 
and dataset 3 from a synthetic sire line that was composed of two synthetic sire 
lines (Lines 1 and 2) that have different genetic origins and have been under 
selection independently from each other
a  ‘Base’ is the base model for each trait from routine evaluations, without any 
heterozygosity effects, and the remaining models have one heterozygosity 
effect as indicated
b  For the synthetic line, breed is proportion of Line 1 (one of the original lines 
for the synthetic line). This information was available from the pedigree
c  Purebred animals have an expected heterosis of 0%, F1 have an expected 
heterosis of 100%, backcrosses (Line 1 x F1) have an expected heterosis of 50%, 
etc. Values were based on existing pedigree data for the synthetic sire line

Modela Dataset 1 Dataset 2 Dataset 3

1 Base model X X X

2 Base model + heterozygosity X X X

3 Base 
model + heterozygosity(breed)b

X X

4 Base model + expected heterosisc X
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hetReg part of the equation was not included in the base 
model because it did not include heterozygosity effects.

The 5000 youngest animals with both genotypes and 
phenotypes were used for validation for datasets 1 and 
3. Because dataset 2 was too small, instead, two valida-
tion sets were created for each of the PB, and one for the 
CB, with 1000 animals each. For the first validation set, 
the 1000 youngest animals were removed from the train-
ing set. For the second validation set, these were added 
back to the training set, and the next 1000 animals were 
removed. This was done separately for each breed (the 
other breeds were still in the dataset). For the crossbreds, 
only one validation set was used (1000 youngest animals) 
due to the limited number of available animals.

To test whether the models differed significantly in 
predictive ability, we used a bootstrap procedure [15] for 
the correlation between YD (+ hetReg ) and GEBV (+ 
hetReg ) for each model. A pairwise comparison of GEBV 
from two models at a time was performed to determine 
which of the two models predicted its YD best by ran-
domly sampling data point quadruplets with replace-
ment: the YD and their predictions ( GEBV ) using two 
models. A total of 10,000 bootstrap samples were con-
structed for each pairwise comparison. The size of the 
input data for the bootstrap procedure was the same as 
for the validation sets. For each bootstrap sample, we 
determined for which model the GEBV yielded a greater 
correlation with the YD of that model. By counting the 
number of times one model had a higher correlation than 
the other, the two models were considered as significantly 
different if one of the models had a higher correlation in 
at least 97.5% of the bootstrap samples (tests at a P value 
of 5% due to the two-sided nature of the test). This is sim-
ilar to bootstrapping methods used by others [16, 17].

Results
Please note that part of the results from this study 
were presented at the 2018 World Congress of Genet-
ics Applied to Livestock Production in Auckland, New 
Zealand [18]. These were the estimated regression coef-
ficients for datasets 1 and 2 and prediction accuracies 
without indications on significant differences. There was, 
however, an error in prediction accuracies, which has 
been corrected in this paper.

Descriptive statistics for the traits for the three datasets 
are in Table  3. Separate means per breed/line for data-
sets 2 and 3 are in Tables S4 and S5 (see Additional file 2: 
Tables S4 and S5).

As expected, CB animals had a greater mean het-
erozygosity than the PB animals (Table  4), but there 
were also differences between PB populations, with the 
Norwegian Landrace having the lowest heterozygo-
sity. This was also expected since this population has 

been closed for a longer time than the other breeds. 
In addition, ascertainment biases when choosing the 
SNP assays for the variety of SNP chips used may have 
affected the observed heterozygosity for some of the 
breeds. However, variation in heterozygosity within 
populations was small, and similar between breeds. 
Across all breeds, heterozygosity at an individual level 
ranged from 0.18 to 0.46.

Regression coefficients on heterozygosity
For Norwegian Landrace, estimates of the regression 
coefficient on heterozygosity were in a favourable direc-
tion for all traits (i.e. the direction that the traits are 
selected for in the breeding program, Table  5), i.e. an 
increase in heterozygosity is expected to change each 
trait in a favourable direction relative to the breeding 
goal and production economy. Some regression coeffi-
cient estimates were also substantial. For example, a 2.5% 
increase in heterozygosity was estimated to result in 0.4 
more piglets born and a 1.07 kg heavier litter at 3 weeks. 
When dividing the regression coefficient estimates by 
the phenotypic standard deviation for the trait, it is pos-
sible to get an indication of the importance of heterozy-
gosity across traits. For Norwegian Landrace (Table  5), 
this indicated that heterozygosity had the largest effect 
for total number born, litter weight at 3 weeks, and body 
condition score of the sow at weaning. However, regres-
sion coefficient estimates were significantly different 
from 0 (P < 0.05) only for total number born and litter 
weight at 3 weeks.

For total number born, estimates of regression coeffi-
cients (Table 6) on heterozygosity were smaller for Dutch 
Landrace, Large White, and their F1 cross (dataset 2) 
than for Norwegian Landrace but they were always in a 
favourable direction. Estimates of regression coefficients 
on heterozygosity within breed (Hetbreed) differed a lot 
between breeds, and the estimates for crossbreds were 
closer to those for breed B than breed A for total number 
born and live born, but closer to those for breed A than 
breed B for gestation length. When comparing estimates 
of regression coefficients divided by phenotypic stand-
ard deviations for dataset 2, the effect of heterozygosity 
was largest for number of live born and gestation length 
(Table 6) but the trait with the largest estimated effect of 
heterozygosity differed between breeds. For both breed 
B and the CB, the effect of heterozygosity was largest for 
live born, but for breed A the largest effect was for gesta-
tion length. All regression coefficient estimates were sig-
nificantly different from zero (P < 0.05) for Model 2, but 
for Model 3, only the estimate for gestation length was 
significant for breed A and only the estimates for total 
number of born and live born were significant for breed 
B. None of the regression coefficient estimates for the F1 
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were significantly different from zero. The across-breed 
regression coefficient estimates from Model 2 varied 
more than the within-breed coefficient estimates from 

Model 3, which probably resulted in greater power to 
find statistically significant results for Model 2.

For the synthetic sire line (Table 7), estimates of regres-
sion coefficients on heterozygosity were not in a favour-
able direction (relative to the breeding goal) for all traits. 

Table 3  Descriptive statistics for the three datasets

a  Dataset 1 is Norwegian Landrace, dataset 2 is Dutch Landrace, Dutch Large White and their F1 cross, dataset 3 is the synthetic line
b  TNB = total number born, SB = stillborn, D3 = number of dead piglets at 3 weeks, LW3 = litter weight at 3 weeks, VAR3W = variance in weight within the litter at 
3 weeks, SL = shoulder lesions of sow at weaning, BCS = body condition score of sow at weaning, LB = live born, GL = gestation length, W21 = 21 days weight in kg, 
W150 = 150 days weight in kg, BF100 = backfat at 100 kg measured on live animals in mm, LD100 = loin depth at 100 kg measured on live animals in mm, A40 = age 
at 40 kg in days, DTP = days from 40 to 120 kg, TFI = total feed intake from 40 to 120 kg in kg (i.e. feed intake per 80 kg live weight gain), LMP = lean meat percentage, 
DP = dressing percentage (slaughter weight/live weight), IMF = intramuscular fat percentage measured in the laboratory, PHL = pH of loin, DRIP = drip loss is the 
percentage loss of water from a piece of loin muscle between 96 h post mortem to 120 h post mortem, LB1 = live born first parity

Dataseta Traitb Mean SD Minimum Maximum h2

1 TNB 14.00 3.42 1.00 26.00 0.08

1 SB 1.22 1.54 0.00 18.00 0.07

1 D3 1.68 1.78 0.00 20.00 0.06

1 LW3, kg 76.78 18.74 2.50 152.40 0.13

1 VAR3W 1.10 0.39 0.07 3.77 0.06

1 SL 0.41 0.82 0.00 4.00 0.13

1 BCS 4.15 0.94 1.00 9.00 0.13

2 TNB 15.34 3.46 1.00 32.00 0.10

2 LB 14.02 3.23 1.00 28.00 0.07

2 GL, d 115.48 1.65 105.00 124.00 0.34

3 W21, kg 6.92 1.43 2.26 12.59 0.06

3 W150, kg 108.98 11.70 52.16 148.74 0.36

3 BF100, mm 7.09 2.19 2.80 16.00 0.43

3 LD100, mm 51.11 9.46 28.30 77.25 0.37

3 A40, d 86.76 7.10 60.01 121.44 0.41

3 DTP, d 77.40 9.69 44.55 136.52 0.42

3 TFI, kg 173.00 16.25 89.60 261.10 0.38

3 LMP, % 61.41 3.46 46.50 74.20 0.59

3 DP, % 71.23 2.57 62.53 81.64 0.27

3 IMF, g/100 g 1.78 0.41 0.00 4.20 0.68

3 PHL 561.60 13.62 513.00 631.00 0.37

3 DRIP, % 3.81 1.79 0.03 11.40 0.32

3 LB1 8.33 2.86 0.00 18.00 0.11

Table 4  Mean and  standard deviation (SD) 
of heterozygosity for each population

a  Mean of the proportion of heterozygous markers (per individual) in the 
population
b  F1 cross of Dutch Landrace and Dutch Large White
c  The synthetic line is a sire line made of two synthetic sire lines of different 
genetic origins that have been under selection independently from each other. 
The dataset contains both animals of the two original lines, their F1 and a 
backcross (Line 1 × F1)

Dataset Population Meana SD

1 Norwegian Landrace 0.322 0.016

2 Dutch Landrace 0.358 0.024

2 Dutch Large White 0.362 0.017

2 F1-crossb 0.426 0.011

3 Synthetic breedc 0.355 0.024

Table 5  Estimates of  regression coefficients 
on heterozygosity for Norwegian Landrace for Model 2

* Regression coefficient significantly different from zero at P < 0.05
a  Regression coefficient divided by phenotypic standard deviation

Trait Estimate (SE) Estimate/σp
a

Total number born 16.05 (1.60)* 4.69

Stillborn − 1.73 (0.76) − 1.12

Dead piglets at 3 weeks − 0.83 (1.13) − 0.46

Litter weight at 3 weeks, kg 43.44 (6.10)* 2.32

Litter variance at 3 weeks − 0.16 (0.24) − 0.41

Shoulder lesions of sow at weaning − 0.51 (0.37) − 0.62

Body condition score of sow at weaning 1.43 (0.44) 1.52
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For example, on the one hand, LD100, DP, IMF, PHL, 
and DRIP (see legend of Table  7 for abbreviations) had 
regression coefficient estimates that were in the opposite 
direction to what would be desired for the trait. However, 
only the estimate for PHL was significantly different from 
zero. On the other hand, 8 out of 13 traits had regression 
coefficient estimates that were in a favourable direction. 
Regression coefficient estimates differed between lines 
(Model 3), especially for traits with few observations, but 
were generally in the same direction for both pure lines. 

Regression coefficient estimates on expected heterosis 
(Model 4) were small.

Few of the regression coefficients were significantly 
different from zero (P < 0.05). These were: W21, W150, 
A40, DTP, TFI, PHL, and LB1 for Model 2; W150, A40, 
DTP, TFI, and LB1 for Model 3 for Line 1; W21, W150, 
A40, DTP, and TFI for Model 3 for Line 2; and only W21 
for Model 3 for the F1. For the backcross (Model 3) and 
for Model 4, none of the regression coefficient estimates 
were significantly different from zero.

Table 6  Estimates of regression coefficients (SE) on heterozygosity for dataset 2 for Models 2 and 3

* Regression coefficient significantly different from zero at P < 0.05
a  Breeds: A = Dutch Landrace, B = Dutch Large White, X = F1 cross of A and B
b  Hetbreed is the model with heterozygosity within breed
c  Standardised regression coefficients are regression coefficients divided by phenotypic standard deviation

Trait Heterozygosity Hetbreedb (A)a Hetbreed (B) Hetbreed (X)

Regression coefficients

Total number born 4.22 (1.44)* 1.76 (2.00) 7.14 (2.24)* 6.04 (5.05)

Live born 4.27 (1.34)* 1.89 (1.87) 7.06 (2.09)* 6.16 (4.70)

Gestation length − 2.07 (0.70)* − 2.82 (0.97)* − 1.18 (1.05) − 2.26 (3.28)

Standardised regression coefficientsc

Total number born 1.18 0.52 1.97 1.68

Live born 1.28 0.58 2.11 1.79

Gestation length − 1.25 − 1.74 − 0.75 − 1.45

Table 7  Estimates of regression coefficients (SE) on heterozygosity and expected heterosis for dataset 3 for Models 2, 3, 
and 4

* Regression coefficient significantly different from zero at P < 0.05
a  W21 = 21 days weight in kg, W150 = 150 days weight in kg, BF100 = backfat at 100 kg measured on live animals in mm, LD100 = loin depth at 100 kg measured 
on live animals in mm, A40 = age at 40 kg, DTP = days from 40 to 120 kg, TFI = total feed intake from 40 to 120 kg in kg (i.e. feed intake per 80 kg live weight gain), 
LMP = lean meat percentage, DP = dressing percentage (slaughter weight/live weight), IMF = intramuscular fat percentage measured in the laboratory, PHL = pH of 
loin, DRIP = drip loss is the percentage loss of water from a piece of loin muscle between 96 h post mortem to 120 h post mortem, LB1 = live born first parity
b  Hetbreed is the model with heterozygosity within breed
c  Always less than 300 animals with observations for the trait in F1
d  The backcross is (Line 1 × F1 only). Less than 30 animals with observations for the trait in backcross

Traita Heterozygosity Hetbreedb Line 1 Hetbreed F1c Hetbreed backcrossd Hetbreed Line 2 Expected heterosis

W21, kg 2.80* (0.75) 2.21 (1.63) − 23.08* (9.13) − 3.38 (18.20) 2.54* (0.89) 0.01 (0.00)

W150, kg 82.93* (6.02) 82.76* (7.11) 145.03 (88.57) NA 76.06* (12.82) 0.19 (0.03)

BF100, mm − 0.86 (0.72) − 1.73 (0.94) − 4.59 (9.12) − 3.61 (50.69) 0.56 (1.21) 0.01 (0.00)

LD100, mm − 2.43 (1.61) − 3.47 (2.14) 11.42 (18.43) 147.33 (107.35) − 0.98 (2.50) 0.05 (0.01)

A40, d − 41.67* (3.41) − 49.12* (4.30) 9.28 (39.27) − 27.99 (85.58) − 32.14* (4.59) 0.08 (0.01)

DTP, d − 45.50* (3.41) − 51.86* (4.62) − 65.89 (43.97) 78.26 (101.68) − 36.28* (5.25) 0.05 (0.09)

TFI, kg − 52.98* (6.38) − 70.14* (10.10) − 79.70 (80.17) − 44.19 (169.92) − 35.06* (8.85) 0.16 (0.16)

LMP, % 1.62 (1.87) NA − 0.42 (23.24) 29.03 (45.47) 1.82 (2.14) 0.24 (0.06)

DP, % − 0.90 (1.50) NA − 8.83 (18.30) − 36.62 (35.96) − 0.76 (1.54) 0.07 (0.09)

IMF, g/100 g − 0.36 (0.42) NA − 0.55 (7.43) NA − 0.34 (0.53) − 0.01 (0.01)

PHL − 21.50* (11.37) − 40.60 (35.60) − 147.60 (166.38) NA − 19.47 (12.12) 0.79 (0.15)

DRIP, % 1.95 (1.79) 6.80 (5.69) − 16.56 (26.66) NA 1.48 (1.95) 0.01 (0.02)

LB1 6.78* (3.27) 9.82* (4.34) − 198.96 (241.38) NA 2.68 (5.07) 0.01 (0.01)
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For the synthetic line, the traits that had the largest 
effect of heterozygosity (based on standardised regres-
sion coefficients) were W150, A40, and DTP (see Addi-
tional file  3: Table  S6). The same traits had the largest 
effect of heterozygosity for Line 1 and Line 2 (Model 3), 
although the size of the effect was not equal for these two 
lines. For the F1 and the backcross (Line 1 × F1), there 
were too few animals to draw conclusions.

Prediction accuracy
For Norwegian Landrace, predictive ability increased sig-
nificantly (P < 0.05) from the Base model when including 
heterozygosity for total number born and litter weight at 
3  weeks, but there was little change for the other traits 
(Table 8).

For Dutch Landrace, Large White, and their F1 cross, 
the model that yielded the highest predictive ability 
varied between traits and breeds (Table  9). Crossbreds 

benefitted little from including heterozygosity in the 
model and there were no significant differences (in pre-
diction accuracy) between models. For Dutch Landrace, 
gestation length benefitted from including heterozygo-
sity, both for Models 2 and 3. For Large White, all three 
traits had significantly better predictive ability when 
including heterozygosity compared to the Base model. 
Predictive ability from including Hetbreed (Model 3) did 
not differ much from the model with heterozygosity fit-
ted across breeds (Model 2), although significant differ-
ences between Models 2 and 3 were found for gestation 
length in Dutch Landrace. The Hetbreed model had a sig-
nificantly lower predictive ability than the Base model for 
total number of born in Dutch Landrace.

For the synthetic line (dataset 3), the predictive abil-
ity significantly (P < 0.05) increased for six out of 13 
traits when heterozygosity was in the model (Model 2) 
compared to the Base model (Table  10), although the 
estimate of the regression coefficient on heterozygosity 
did not significantly differ from zero for one of these 
traits, DP. For two traits, TFI and LB1, the model with 
heterozygosity had significantly lower predictive ability 
than the Base model. Predictive abilities for Models 3 
and 4 were heavily confounded with line origin and are, 
therefore, presented separately for each line combina-
tion (Line 1, Line 2 and F1) (Table 10). The results for 
the backcross are not presented, since there were too 
few animals for reliable predictions. For Line 1, Model 
3 had a significantly lower predictive ability than the 
Base model for W150 and A40, while for Line 2, Model 
3 had greater predictive ability than the Base model for 
DTP, TFI, LMP, DP, PHL, and DRIP, but this was signif-
icant only for TFI. Compared to the Base model, Model 
4 (Line 1) had a significantly higher predictive ability 
for BF100 but was significantly worse for W150 and 
TFI. Compared to Model 2, Model 4 had significantly 
lower predictive ability for W150 and A40 in Line 1, 
but was not significantly different for any trait for Line 
2. However, Model 4 had significantly lower predictive 
ability than the Base model for W21 and W150 in Line 
2. In the F1 cross, Model 4 was not significantly better 
than the Base model for any trait but had significantly 
lower predictive ability for LD100, A40, and TFI.

Rank correlations between EBV
Rank correlations differed between models and traits. For 
Norwegian Landrace, rank correlations of the top 100 
selection candidates ranged from 0.79 to 0.83 when com-
paring Models 1 and 2 (results not shown). The greatest 
re-ranking was for total number born, litter weight at 
3  weeks, and body condition score of the sow at wean-
ing. For Dutch Landrace, Dutch Large White, and their 
F1 cross (dataset 2), rank correlations between Models 

Table 8  Predictive ability (SE) for  Norwegian Landrace 
with and without heterozygosity in the model

a,b  Different superscript letters within a row indicate significant differences at 
P < 0.05

Trait Base model Model 
with heterozygosity

Total number born 0.227 (0.014)a 0.244 (0.014)b

Stillborn 0.161 (0.014)a 0.160 (0.014)a

Dead at 3 weeks 0.168 (0.014)a 0.168 (0.014)a

Litter weight 3 weeks, kg 0.342 (0.013)a 0.350 (0.013)b

Litter variance at 3 weeks 0.143 (0.014)a 0.142 (0.014)a

Shoulder lesions of sow at wean‑
ing

0.273 (0.014)a 0.273 (0.014)a

Body condition score of sow at 
weaning

0.243 (0.014)a 0.244 (0.014)a

Table 9  Predictive ability (SE) for  Dutch Landrace, 
Large White, and  their F1 cross  for  the Base model 
and when including heterozygosity or Hetbreed

a  TNB = total number born, LB = live born, GL = gestation length
b  Hetbreed is the model with heterozygosity within breed
c,d,e  Different superscript letters within row indicates significant differences at 
P < 0.05

Breed Traita Base Heterozygosity Hetbreedb

Dutch Landrace TNB 0.323 (0.021)c 0.319 (0.021)c,d 0.318 (0.021)d

LB 0.245 (0.022)c 0.247 (0.022)c 0.245 (0.022)c

GL 0.499 (0.019)c 0.510 (0.019)d 0.514 (0.019)e

Large White TNB 0.282 (0.021)c 0.293 (0.021)d 0.295 (0.021)d

LB 0.254 (0.022)c 0.267 (0.022)d 0.269 (0.022)d

GL 0.574 (0.018)c 0.576 (0.018)d 0.575 (0.018)d

F1 cross TNB 0.361 (0.034)c 0.360 (0.034)c 0.361 (0.034)c

LB 0.282 (0.035)c 0.283 (0.035)c 0.283 (0.035)c

GL 0.595 (0.029)c 0.597 (0.029)c 0.598 (0.029)c
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1 and 2 ranged from 0.96 to 0.98, with gestation length 
having the least re-ranking. Between the Base model and 
Hetbreed, rank correlations ranged from 0.93 to 0.97, 
and between Models 2 and 3, rank correlations were 
0.98 for all traits. For the synthetic line (dataset 3), there 
was no re-ranking between the Base model and Model 4 
(expected heterosis). Between the Base model and Model 
2, rank correlations ranged from 0.72 to 1.00, with TFI 
and DTP having the lowest rank correlation, and no 
re-ranking for DP. Between Models 2 and 3, rank cor-
relations ranged from 0.83 to 1.00, with TFI having the 
lowest rank correlation.

Discussion
This study investigated the effect of heterozygosity on 
traits in purebreds, crossbreds, and a synthetic breed. 
Results show that regression coefficients were large for 
some traits and for these traits, including heterozygo-
sity in the model led to an increase in the accuracy of 
genomic prediction of genetic values.

Regression coefficients on heterozygosity
Estimates of regression coefficients on heterozygosity 
were large for some traits, such as total number born, lit-
ter weight at 3  weeks, weight at 150  days, age at 40  kg, 
days from 40 to 120 kg, and total feed intake (per 80 kg 

live weight gain). Theory suggests that heterozygosity has 
a large effect if the genes show directional dominance (or 
inbreeding) effects [1]. However, all traits under selection 
in livestock species can be affected by inbreeding depres-
sion [19]. For the traits with a favourable direction of the 
regression coefficient, heterosis and/or dominance effects 
are usually reported [2, 20, 21]. These traits are also 
expected to be negatively affected by inbreeding, since 
inbreeding increases homozygosity [22, 23]. However, 
one study found no correlation between heterozygosity 
and (pedigree) inbreeding coefficients [24], but this study 
used few markers to estimate heterozygosity and there 
was little variation in the pedigree-based inbreeding coef-
ficients that were used. In addition, genomic inbreeding 
coefficients would be more realistic to use, since they are 
based on actual genotypes and reflect the actual level of 
heterozygosity in the genome. For traits with unfavour-
able regression coefficient estimates (e.g. LD100, DP, 
IMF, PHL, and DRIP), the estimates were generally small 
relative to the phenotypic standard deviation of the trait 
[see Additional file  3: Table  S6] and of these, only PHL 
had an estimate that was significantly different from zero. 
We did not find any reported effects of dominance, het-
erosis, or inbreeding depression in the literature for the 
traits with unfavourable regression coefficient estimates 
on heterozygosity.

Table 10  Predictive ability for the synthetic line for Models 1, 2, 3 and 4

NS  Correlation not significantly different from zero

Model 1 = Base model, Model 2 = model with heterozygosity, Model 3 = model with heterozygosity within breed/line, Model 4 = model with expected heterosis level

The highest predictive ability within each line is marked as follows: † line 1, § line 2, # = F1. If no correlations are marked within line, all correlations were equal. 
Significant differences are not taken into account for these indications
a  W21 = 21 days weight in kg, W150 = 150 days weight in kg, BF100 = backfat at 100 kg measured on live animals in mm, LD100 = loin depth at 100 kg measured 
on live animals in mm, A40 = age at 40 kg, DTP = days from 40 to 120 kg, TFI = total feed intake from 40 to 120 kg in kg (i.e. feed intake per 80 kg live weight gain), 
LMP = lean meat percentage, DP = dressing percentage (slaughter weight/live weight), IMF = intramuscular fat percentage measured in the laboratory, PHL = pH of 
loin, DRIP = drip loss is the percentage loss of water from a piece of loin muscle between 96 h post mortem to 120 h post mortem, LB1 = live born first parity
b  Always less than 300 animals with observations for the trait in F1
c,d,e  Differences in superscript letters within row indicate significant differences at P < 0.05. Models 3 and 4 are only comparable to each other within line

Traita Model 1 Model 2 Model 3 line 1 Model 3 line 2 Model 3 F1b Model 4 line 1 Model 4 line 2 Model 4 F1b

W21, kg 0.140 (0.018)c 0.173 (0.018)d† 0.065 (0.045)NS 0.137 (0.021)c,e§ 0.070 (0.071)NS# 0.044 (0.045)NS 0.131 (0.021)d,e 0.038 (0.071)NS

W150, kg 0.397 (0.016)c 0.456 (0.015)d†§ 0.344 (0.019)d 0.336 (0.031)c,d§ 0.294 (0.079)c,d# 0.330 (0.019)e 0.330 (0.031)d 0.272 (0.080)c,d

BF100, mm 0.466 (0.013)c# 0.467 (0.013)c,d† 0.485 (0.018)c,d† 0.444 (0.020)c,d 0.422 (0.058)c,d 0.484 (0.018)d 0.444 (0.020)c,d 0.425 (0.058)c,d#

LD100, mm 0.611 (0.012)c 0.611 (0.012)c,d 0.550 (0.018)c,d 0.464 (0.019)c,d 0.484 (0.052)c,d# 0.551 (0.018)d† 0.464 (0.019)c,d 0.482 (0.052)d

A40, d 0.391 (0.014)c 0.445 (0.014)d§ 0.313 (0.020)e† 0.377 (0.025)c,d 0.232 (0.057)c,d# 0.300 (0.020)c 0.364 (0.025)c,d 0.228 (0.057)d

DTP, d 0.324 (0.015)c 0.341 (0.015)d†§ 0.313 (0.020)c,d† 0.423 (0.025)c,d§ 0.276 (0.057)d# 0.309 (0.020)c,d 0.418 (0.025)c,d 0.248 (0.058)c

TFI, kg 0.369 (0.017)c 0.356 (0.017)d,e§# 0.218 (0.026)c,d† 0.379 (0.026)d 0.253 (0.065)c,d# 0.210 (0.026)d 0.372 (0.026)c,e 0.242 (0.065)d

LMP, % 0.614 (0.021)c# 0.615 (0.021)d§ NA 0.620 (0.023)c§ 0.524 (0.074)c,d# NA 0.619 (0.023)c,d 0.524 (0.074)c,d#

DP, % 0.448 (0.024)c 0.452 (0.024)d§ NA 0.454 (0.026)c,d 0.305 (0.082)c,d# NA 0.453 (0.026)c,d 0.304 (0.083)c,d

IMF, g/100 g 0.595 (0.034)c 0.595 (0.034)c§# NA 0.582 (0.035)c§ 0.653 (0.114)c# NA 0.581 (0.035)c 0.652 (0.114)c

PHL 0.406 (0.035)c§ 0.405 (0.035)c 0.069 (0.097)NS† 0.474 (0.038)c 0.142 (0.149)NS# 0.059 (0.097)NS 0.477 (0.038)c§ 0.112 (0.150)NS

DRIP, % 0.444 (0.034)c§ 0.443 (0.034)c 0.277 (0.094)c† 0.473 (0.038)c 0.235 (0.146)NS# 0.234 (0.095)c 0.474 (0.038)c§ 0.203 (0.148)NS

LB1 0.121 (0.042)c§ 0.085 (0.042)d 0.066 (0.079)NS† 0.096 (0.049)c,d NA 0.032 (0.079)NS 0.103 (0.049)c,d§ NA
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Of the traits that were most affected by heterozygo-
sity in the current study, dominance or heterosis effects 
have been reported for average daily gain, weight at vari-
ous ages, gestation length, and litter weight [2, 3, 20, 21, 
25, 26]. Negative effects of inbreeding have also been 
reported for daily gain, weight at 90 d, and litter size 
(total number of born and live born) [22, 27, 28]. How-
ever, heterosis and dominance have also been reported 
for traits for which heterozygosity did not have a large 
effect in our study, such as backfat [3], although others 
did not identify heterosis for backfat [21]. This discrep-
ancy in results between studies could be due to an incon-
sistent sign of the dominance effects across genes, i.e. 
dominance effects not being directional across loci [1]. 
The sign of the regression coefficient estimates was gen-
erally in agreement with the effect of heterosis in other 
studies. For example, a positive effect of heterosis on lit-
ter weight at 14 days and at weaning [20], and individual 
weight at all ages [21] have been reported, which is in 
agreement with the sign of the regression coefficient esti-
mates for LW3, W21 and W150. In addition, positive het-
erosis effects have been reported for average daily gain 
from birth to weaning, for birth weight, and for 200-day 
weight in cattle, and for birth weight, weaning weight, 
and post-weaning ADG in pigs [26, 29], which agrees 
with the sign of the regression coefficient estimates for 
the weight traits and DTP in this study. High heterozygo-
sity reduced feed intake (TFI) in the current study, which 
is in agreement with some studies [30], although others 
[31] found no effect of heterosis on feed efficiency. Cas-
sady et al. [20] found that direct heterosis decreased ges-
tation length, which is in agreement with the estimate of 
the regression coefficient on heterozygosity for gestation 
length in the current study. However, older studies found 
no effect of heterosis on gestation length [26].

The trait that was most affected by heterozygosity dif-
fered between breeds (dataset 2); for Large White and 
the crossbreds, number of piglets born alive was most 
affected by heterozygosity, while for Dutch Landrace ges-
tation length had the largest effect of heterozygosity. For 
all traits, the estimate of the regression coefficient for CB 
was closer to the estimate for the parental breed with the 
largest regression coefficient for PB. This may be due to 
lack of segregation of the relevant allele(s) for the trait 
in one breed, such that the CB regression coefficients 
are closer to those of the breed in which the allele(s) is 
segregating. However, only the SNPs that segregated in 
all breeds were used in the analysis. In addition, if het-
erozygosity does not have the same effect for all breeds, 
it may not be reasonable to expect the regression coef-
ficients for CB to be the mean of the parental breeds. For 
the one trait that was the same between datasets 1 and 2, 

total number of born, estimates of within-breed regres-
sion coefficients differed between breeds (Norwegian 
Landrace, Dutch Landrace, Large White and crossbreds 
of the latter two). This indicates that heterozygosity does 
not have the same effect in all breeds, which is in agree-
ment with studies that have found breed differences in 
dominance [2, 3] and inbreeding effects [4]. This sug-
gests that Model 3 may be more appropriate than Model 
2 when analysing multiple breeds.

The above discussion, comparing the results of studies 
on heterosis [2, 20, 21, 25, 26] and heterozygosity (this 
study) implies that heterozygosity does not always lead 
to heterosis. This is logical, because an individual that is 
heterozygous at loci that do not show directional domi-
nance would not have any advantage over a homozygous 
individual. Directional dominance is necessary for both 
heterosis and for non-zero regression coefficients on het-
erozygosity. Thus, including heterozygosity in the model 
is expected to improve prediction only for traits for 
which directional dominance is present. However, there 
could be dominance effects for a trait without seeing an 
effect of heterozygosity, because genome-wide heterozy-
gosity may not be a good estimate of dominance effects 
for traits that are affected by few SNPs or when most ani-
mals are homozygous at the relevant loci for the trait.

Accuracy of genomic prediction
Across the datasets, including heterozygosity in the 
model generally increased predictive ability for traits 
that had large regression coefficient estimates, with some 
exceptions [TFI, LB1 (predictive ability decreased for 
both despite high regression coefficient), and DP in the 
synthetic line (predictive ability increased in spite of a 
small and non-significant regression coefficient)]. These 
exceptions may be an indication that including heterozy-
gosity in the model may cause noise that results in lower 
prediction accuracy, although this could also be a result 
of the complex structure of the datasets used in this 
study. For dataset 2, there was little difference in predic-
tive ability between the model with heterozygosity across 
breeds (Model 2) and the model with heterozygosity 
within breed (Model 3), although the regression coeffi-
cient estimates differed between these two models. This 
suggests that using within-breed instead of across-breed 
regression coefficients does not consistently improve pre-
diction accuracy. However, each breed had relatively few 
animals, which makes estimates of regression coefficients 
less accurate. Since the breeds had quite similar levels 
of heterozygosity, combining them into a single analysis 
(Model 2) may result in more accurate regression coef-
ficient estimates, and thus more accurate prediction than 
within-breed estimates (Model 3).
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For CB (dataset 2), including heterozygosity in the 
model did not significantly improve predictive ability, 
in contrast to previous studies that found that including 
inbreeding depression in the model increased predic-
tive ability for total number born in crossbreds [4]. The 
lack of change in predictive ability between models for 
CB in the current study may be due to the low variation 
in heterozygosity within CB animals, which has a direct 
effect on prediction accuracy. However, variances in het-
erozygosity  were also low in the other breeds analysed 
and they showed an effect on predictive ability of includ-
ing heterozygosity in the model. One potential problem 
with predicting the genetic value of CB, is that there were 
very few CB animals in the training population when CB 
animals were in the validation set and, thus, they were 
mainly predicted based on PB data. In addition, the PB 
parents of the CB were very homogeneous in heterozy-
gosity, which would make the CB homogeneous in het-
erozygosity as well, which limits increases in prediction 
accuracy from including heterozygosity in the model.

For the synthetic line (dataset 3), the interpretation of 
the comparison between models is a little complicated. 
For the Base model and for the heterozygosity model 
(columns 1 and 2 of Table  10), the predictive ability is 
based on all validation animals from all lines, while the 
remaining columns are based on animals that belong to 
each of the lines (or crosses). However, the pairwise com-
parisons of predictive ability (denoted with superscript 
letters in Table 10) are based on the subset of animals that 
belong to each line. This means that not all pairwise com-
parisons are logical based on the correlations presented. 
For example, for W150, the predictive ability was high-
est for Model 2, followed by Model 1 and Model 3 (Line 
1). However, in the pairwise comparisons, the predictive 
ability of Model 2 was not significantly different from 
that of Model 3 but the predictive ability of both Mod-
els 2 and 3 was significantly different from that of Model 
1. This can be explained by the fact that the correlations 
for Models 1 and 2 were based on the entire validation 
set (across lines), while the correlation for Model 3 (Line 
1) was based on validation animals from only one line. 
Focusing on the subset of Line 1 animals only, Models 2 
and 3 showed nearly identical predictive ability (results 
not shown), while Model 1 had a slightly lower predic-
tive ability. The same phenomenon as described above is 
observed also for the other pairwise comparisons within 
line in the table.

Rank correlations
A low rank correlation indicates more re-ranking of the 
top animals, which means that the choice of model affects 
which animals are selected, and indicates that there is an 

effect of heterozygosity for the trait. The traits with the 
most re-ranking between Models 1 and 2 across datasets 
were TNB, LW3, BCS, TFI, and DTP. These traits also 
had relatively high regression coefficients on heterozygo-
sity. However, prediction accuracy for TFI decreased sig-
nificantly when including heterozygosity, which suggests 
that the re-ranking is not necessarily a result of more 
accurate prediction. That is, re-ranking may occur also 
if the predictive ability of the “new” model that is being 
tested is significantly lower than the predictive ability of 
the existing model (e.g. Base model). For dataset 2, there 
was little re-ranking between Models 1 and 2. The rank 
correlations between Models 1 and 3 were somewhat 
lower than between Models 1 and 2, which indicates that 
Model 3 had a larger effect than Model 2 on the rank-
ing of the animals when compared to Model 1. Since the 
predictive ability for Models 2 and 3 were not that dif-
ferent, this may suggest a larger effect of heterozygosity 
on variation in EBV within breed than between breeds, 
which leads to re-ranking of animals. However, this was 
not reflected by significant differences in predictive abil-
ity between the models for most traits. In general, re-
ranking is only of interest if accuracy improves, as this 
can inform the decision on whether to implement a new 
model or not. A small increase in accuracy that does not 
result in selection of different animals (no re-ranking) 
may indicate that the gain from the new model is not 
large enough to justify implementation.

Potential use of heterozygosity
Implementing the use of heterozygosity in the model 
when all animals are genotyped should be straightfor-
ward with GBLUP, SNP-BLUP and Bayes-type methods 
[32]. However, most commercial pig breeding companies 
use single-step (ss-)GBLUP in their breeding programs 
because not all animals are genotyped. It is more difficult 
to include heterozygosity in ssGBLUP, because heterozy-
gosity is not available for ungenotyped animals and miss-
ing values are not permitted for fixed regressions. Thus, 
heterozygosity would need to be estimated for ungeno-
typed animals by segregation analysis [33]. Alternatively, 
inbreeding coefficients can be estimated from the diago-
nal of the H-matrix, i.e. the combined genomic and pedi-
gree relationship matrix [34]. Since genomic inbreeding 
is very closely related to heterozygosity, this would be an 
alternative measure to include in the model.

In addition to including heterozygosity in the model for 
the estimation of breeding values (as investigated in this 
study), heterozygosity also has the potential to be used in 
mate selection in order to maximize heterozygosity in the 
offspring [35]. This could be achieved by selecting parents 
that are opposite homozygotes for either as many loci as 
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possible or for the relevant alleles for the trait of interest. 
This could increase performance of offspring for traits 
that show a positive effect of heterozygosity, such as litter 
weight, total number born, weight at 150 days and age at 
40 kg. An alternative when producing crossbreds would be 
to select PB lines with different allele frequencies to maxi-
mize heterozygosity in the CB.

Generality of findings
Our findings should be applicable also to other species 
for traits that show dominance effects, since inbreeding 
depression is not specific to species, but rather to a popula-
tion or a breed [19]. However, it is unlikely that inclusion 
of heterozygosity is useful for traits that do not show any 
dominance effects. In livestock production sectors that 
use crossbreeding, such as for pigs, poultry, and beef cat-
tle, it is necessary to quantify the effect of heterozygosity 
in order to justify crossbreeding directed at increasing het-
erozygosity. Even without an effect of heterozygosity, breed 
complementarity is an important reason for crossbreed-
ing. In addition, it is useful to know whether the effects of 
heterozygosity are breed-specific in order to direct breed 
choice in crossbreeding systems. For production sectors 
that generally do not use crossbreeding, such as dairy cattle 
and aquaculture, it would be useful to quantify the effect 
of heterozygosity in order to evaluate how much is gained 
by setting-up a systematic crossbreeding-based production 
system.

Conclusions
Some traits showed large effects of heterozygosity on the 
phenotype, which is in agreement with other studies that 
have found heterosis and/or dominance effects for these 
traits. In addition, for maternal traits, the sign of the regres-
sion coefficients for heterozygosity indicated a favour-
able effect of heterozygosity for these traits, whereas for 
production, meat and slaughter quality traits, this pattern 
was less clear, possibly because of the complex data struc-
ture. Including heterozygosity in the model for genetic 
evaluation increased the prediction accuracy for traits 
that showed the largest effect of heterozygosity and, over-
all, maternal traits benefitted more than production, 
meat quality, and slaughter quality traits. Different ani-
mals would be selected if heterozygosity was included in 
the model for these traits. In conclusion, it is beneficial to 
include heterozygosity in the genomic prediction model for 
traits that show dominance. It is also possible to use hete-
rozygosity for mate planning in order to benefit from more 
heterozygous offspring.

Additional files

Additional file 1: Table S1. Base models for Norwegian Landrace. 
Table S2. Base models for Dutch Landrace, Large White, and F1 cross. 
Table S3. Base models for the synthetic line. Description: The base models 
for all traits and datasets in our study based on models from routine evalu‑
ations in Topigs Norsvin.

Additional file 2: Table S4 Descriptive statistics for dataset 2 separated 
by breed. Table S5. Descriptive statistics for dataset 3 separated by line.

Additional file 3: Table S6. Regression coefficients divided by 
phenotypic standard deviation for the synthetic line for Models 2 to 4. 
Description: Regression coefficient estimates for dataset 3 divided by the 
phenotypic standard deviation for the trait.

Authors’ contributions
MWI, ØN, TM, EGE and EG conceived and designed the study. MWI performed 
the data analysis. ØN and MSL performed the imputation of genotypes. TM 
wrote the Bootstrapping program. MWI wrote the paper, with input from ØN, 
TM, EGE, EG, and MSL. All authors read and approved the final manuscript.

Author details
1 Norsvin R&D, Storhamargata 44, 2317 Hamar, Norway. 2 Norwegian University 
of Life Sciences, Postboks 5003 NMBU, 1432 Ås, Norway. 3 GENO SA, Stor‑
hamargata 44, 2317 Hamar, Norway. 4 Topigs Norsvin Research Center, 6641 
SZ Beuningen, The Netherlands. 5 Topigs Norsvin, Curitiba 80420‑210, Brazil. 

Acknowledgements
Thanks to Norsvin SA and Topigs Norsvin (Beuningen, the Netherlands) for 
providing the data from the different breeds and the crossbreds. Thanks also 
to Hanne Hamland, Norsvin, for performing genotyping and sample logistics, 
and to Dan Olsen and Erling Sehested for useful discussions of early results. 
We would also like to thank the two reviewers for their useful comments and 
suggestions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data that support the findings of this study are available from Norsvin and 
Topigs Norsvin but restrictions apply to the availability of these data, which 
were used under license for the current study, and thus are not publicly avail‑
able. However, data are available from the authors upon reasonable request 
and with permission of Norsvin and Topigs Norsvin.

Consent for publication
Not applicable.

Ethics approval
Data recording and sample collection were conducted strictly in line with 
the laws given by Dutch and Norwegian animal research authorities on the 
protection of animals (“Gezondheids- en welzijnswet voor dieren” and “Lov om 
dyrevelferd”). The data was obtained as part of routine data recording in com‑
mercial breeding programs. Samples collected for DNA extraction were used 
only for the routine diagnostic purpose of the breeding program.

Funding
This study was financed partly by Norsvin SA and the Research Council of 
Norway through project no. 244434/I10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations’.

Received: 29 June 2018   Accepted: 19 February 2019

https://doi.org/10.1186/s12711-019-0450-1
https://doi.org/10.1186/s12711-019-0450-1
https://doi.org/10.1186/s12711-019-0450-1


Page 13 of 13Iversen et al. Genet Sel Evol            (2019) 51:8 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

References
	1.	 Falconer DS, Mackay T. Introduction to quantitative genetics. 4th ed. 

London: Longman Group Ltd; 1996.
	2.	 Zhang JH, Xiong YZ, Deng CY. Correlations of genic heterozygosity and 

variances with heterosis in a pig population revealed by microsatellite 
DNA marker. Asian Aust J Anim Sci. 2005;18:620–5.

	3.	 Lopes M, Bastiaansen JWM, Janss L, Bovenhuis H, Knol EF. Using SNP 
markers to estimate additive, dominance and imprinting genetic vari‑
ance. In: Proceedings of the 10th world congress on genetics applied to 
livestock production: 17–22 August 2014; Vancouver. 2014.

	4.	 Xiang T, Christensen OF, Vitezica ZG, Legarra A. Genomic evaluation by 
including dominance effects and inbreeding depression for purebred 
and crossbred performance with an application in pigs. Genet Sel Evol. 
2016;48:92.

	5.	 Coltman DW, Pilkington JG, Smith JA, Pemberton JM. Parasite-mediated 
selection against inbred soay sheep in a free-living island population. 
Evolution. 1999;53:1259–67.

	6.	 Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild 
MF, et al. Analyses of pig genomes provide insight into porcine demogra‑
phy and evolution. Nature. 2012;491:393–8.

	7.	 Hickey JM, Kinghorn BP, Tier B, van der Werf JH, Cleveland MA. A phasing 
and imputation method for pedigreed populations that results in a 
single-stage genomic evaluation. Genet Sel Evol. 2012;44:9.

	8.	 Antolín R, Nettelblad C, Gorjanc G, Money D, Hickey JM. A hybrid method 
for the imputation of genomic data in livestock populations. Genet Sel 
Evol. 2017;49:30.

	9.	 Iversen MW, Nordbø Ø, Gjerlaug-Enger E, Grindflek E, Lopes MS, Meu‑
wissen THE. Including crossbreds in the genomic relationship matrix 
through utilization of both linkage disequilibrium and linkage analysis. J 
Anim Sci. 2017;95:5197–207.

	10.	 Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient 
genotype imputation using information from relatives. BMC Genomics. 
2014;15:478.

	11.	 Lopes MS, Silva FF, Harlizius B, Duijvesteijn N, Lopes PS, Guimarães SE, 
et al. Improved estimation of inbreeding and kinship in pigs using opti‑
mized SNP panels. BMC Genet. 2013;14:92.

	12.	 Johnston J, Kistemaker G, Sullivan P. Comparison of different imputation 
methods. Interbull Bull. 2011;44:25–33.

	13.	 Mulder H, Lidauer M, Stranden I, Mantysaari E, Pool M, Veerkamp R. MiXB‑
LUP Manual. 2010. Lelystad: ABGC, Wageningen UR Livestock Research; 
2010.

	14.	 Madsen P, Jensen J. DMU: a user’s guide. A package for analysing multi‑
variate mixed models. Version 6, release 5.2. 2013.

	15.	 Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton: CRC 
Press LLC; 1994.

	16.	 Vazquez AI, Veturi Y, Behring M, Shrestha S, Kirst M, Resende MFR, et al. 
Increased proportion of variance explained and prediction accuracy of 
survival of breast cancer patients with use of whole-genome multiomic 
profiles. Genetics. 2016;203:1425–38.

	17.	 Mäntysaari EA, Koivula M. GEBV validation test revisited. Interbull Bull. 
2012;45:1–5.

	18.	 Iversen MW, Nordbø Ø, Gjerlaug-Enger E, Grindflek E, Meuwissen T. Utiliz‑
ing heterozygosity when predicting performance in various crosses of 
pigs. In: Proceedings of the 11th world congress on genetics applied to 
livestock production: 11–16 February 2018; Auckland; 2018. p. 490.

	19.	 Leroy G. Inbreeding depression in livestock species: review and meta-
analysis. Anim Genet. 2014;45:618–28.

	20.	 Cassady JP, Young LD, Leymaster KA. Heterosis and recombination effects 
on pig reproductive traits. J Anim Sci. 2002;80:2303–15.

	21.	 Cassady JP, Young LD, Leymaster KA. Heterosis and recombination effects 
on pig growth and carcass traits. J Anim Sci. 2002;80:2286–302.

	22.	 Silió L, Rodríguez M, Fernández A, Barragán C, Benítez R, Óvilo C, et al. 
Measuring inbreeding and inbreeding depression on pig growth from 
pedigree or SNP-derived metrics. J Anim Breed Genet. 2013;130:349–60.

	23.	 Hansson B, Westerberg L. On the correlation between heterozygosity and 
fitness in natural populations. Mol Ecol. 2002;11:2467–74.

	24.	 Balloux F, Amos W, Coulson T. Does heterozygosity estimate inbreeding in 
real populations? Mol Ecol. 2004;13:3021–31.

	25.	 Baas TJ, Christian LL, Rothschild MF. Heterosis and recombination 
effects in Hampshire and Landrace swine: I. Maternal traits. J Anim Sci. 
1992;70:89–98.

	26.	 Gregory KE, Cundiff LV, Koch RM. Breed effects and heterosis in advanced 
generations of composite populations for preweaning traits of beef cat‑
tle. J Anim Sci. 1991;69:947–60.

	27.	 Silió L, Barragán C, Fernández AI, García-Casco J, Rodríguez MC. Assessing 
effective population size, coancestry and inbreeding effects on litter size 
using the pedigree and SNP data in closed lines of the Iberian pig breed. 
J Anim Breed Genet. 2016;133:145–54.

	28.	 Saura M, Fernández A, Varona L, Fernández AI, De Cara MÁR, Barragán C, 
et al. Detecting inbreeding depression for reproductive traits in Iberian 
pigs using genome-wide data. Genet Sel Evol. 2015;47:1.

	29.	 Williams JL, Aguilar I, Rekaya R, Bertrand JK. Estimation of breed and 
heterosis effects for growth and carcass traits in cattle using published 
crossbreeding studies. J Anim Sci. 2010;88:460–6.

	30.	 Young LD, Johnson RK, Omtvedt IT, Walters LE. Postweaning performance 
and carcass merit of purebred and two-breed cross pigs 1. J Anim Sci. 
1976;42:1124–32.

	31.	 Baas TJ, Christian L, Rothschild MF. Heterosis and recombination effects in 
Hampshire and Landrace swine: II. Performance and carcass traits. J Anim 
Sci. 1992;70:99–105.

	32.	 Meuwissen THE, Hayes B, Goddard M. Accelerating improvement of 
livestock with genomic selection. Annu Rev Anim Biosci. 2013;1:221–37.

	33.	 Hickey JM, Kinghorn BP, Tier B, Wilson JF, Dunstan N, van der Werf JHJ. A 
combined long-range phasing and long haplotype imputation method 
to impute phase for SNP genotypes. Genet Sel Evol. 2011;43:1–13.

	34.	 Colleau JJ, Palhière I, Rodríguez-Ramilo ST, Legarra A. A fast indirect 
method to compute functions of genomic relationships concerning 
genotyped and ungenotyped individuals, for diversity management. 
Genet Sel Evol. 2017;49:87.

	35.	 de Cara MA, Fernández J, Toro MA, Villanueva B. Using genome-wide 
information to minimize the loss of diversity in conservation pro‑
grammes. J Anim Breed Genet. 2011;128:456–64.


	Effects of heterozygosity on performance of purebred and crossbred pigs
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Animals and data
	Statistical analysis

	Results
	Regression coefficients on heterozygosity
	Prediction accuracy
	Rank correlations between EBV

	Discussion
	Regression coefficients on heterozygosity
	Accuracy of genomic prediction
	Rank correlations
	Potential use of heterozygosity
	Generality of findings

	Conclusions
	Authors’ contributions
	References




