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Abstract 

This thesis compares the gene expression and protein abundance across a series spanning the 

wood forming developmental stages in Populus tremula (common aspen): phloem, cambium 

and xylem. The comparison was based on two data sets provided by Obudulu et al. (2016) 

and Sundell et al. (2017). 

Data treatments, such as moving average calculation, successfully elevated the subpar 

proteomics data set and improved its correlations with the transcriptomics data set.  

Correlation coefficients were calculated between the two full data sets (full correlation), by 

gene and corresponding protein (row correlation) and by sample number in the series 

(correlation by sample). The full correlation yielded correlation coefficients ranging from 

0.256 to 0.347 based on the extent of data treatments. The moving average treated summed 

isoform data correlated with the corresponding transcript yielded a correlation coefficient of 

0.395. The correlation by sample suggested that there were more post-transcriptional 

regulations in samples in the phloem and the late xylem than in the other samples. 

By comparing presence of molecules in the two data sets it was found that in 20% of the 

entries, both protein abundance and gene expression above 0 were found. In 3.3% of the 

entries, both protein abundance and gene expression were 0. In 76% of the entries, gene 

expression was above 0, while protein abundance was 0. In 0.18% of the entries, protein 

abundance was above 0, while the corresponding gene expression was 0. This indicated that 

protein abundance is strongly dependent on presence of gene expression.  It was also shown 

that the likelihood of protein abundance in an entry increased significantly with increased 

levels of gene expression. 

By superimposing the protein abundance series on the gene expression series for single 

genes, dynamics between the transcripts and the proteins were revealed. Most notably delays 

between transcription and translation between some proteins and genes and “translation on 

demand” relationship between some other proteins and genes. 

GO enrichment analysis of proteins, which protein abundance series correlated well with 

their corresponding gene expression, was performed. The enrichment indicated that that 

many GO terms may be related to proteins that are easier to study with certain protein 

profiling methods. 
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Sammendrag 

Denne masteroppgaven sammenligner genuttrykk og protein mengder i en serie som spenner 

over seksjoner i Populus tremula (osp) som danner ved: silvev, kambium og vedvev. 

Sammenligningen var basert på to artikler skrevet av Obudulu et al. (2016) og Sundell et al. 

(2017). 

Data behandlinger, som for eksempel «moving average» beregning, forbedret det mangelfulle 

proteomikk datasettet og forbedret settets korrelasjon med transkriptomikk datasettet. 

Korrelasjonskoeffisienter ble beregnet mellom de to hele datasettene («full correlation»), ut 

ifra gen og tilsvarende protein («row correlation») og ut ifra prøvenummer i tidsseriene 

(«correlation by sample»). Korrelasjonen mellom de hele datasettene ga 

korrelasjonskoeffisienter imellom 0,256 og 0,347 basert på omfanget av databehandlinger. 

Korrelasjonen mellom det «moving average» behandlede datasettet summert ut ifra isoformer 

og den tilsvarende transkriptomikk datasettet var 0,395. Korrelasjonen basert på 

prøvenummer indikerte at det var flere post-transkripsjonelle reguleringer i prøvene i silvev 

og sent i vedvev enn i de andre prøvene. 

Ved å sammenligne forekomst av molekyler i de to datasettene ble det funnet ut at i 20% av 

oppføringene ble det funnet både protein mengder og genekspresjon i verdier over 0. I 3,3% 

av oppføringene var både protein mengder og genuttrykk 0. I 76% av oppføringene var 

genuttrykk over 0 mens protein mengder var 0. I 0,18% av oppføringene var proteinmengden 

over 0 mens det tilsvarende gen ikke ble uttrykt. Dette indikerer at forekomst av 

proteinmengde er avhengig av forekomst av genuttrykk. Det ble også vist at sannsynligheten 

for forekomst av proteinmengder i en oppføring økte i betydelig grad med økt genuttrykk. 

Ved å sammenligne proteinmengdeseriene med genuttrykksseriene for spesifikke gener, ble 

spesielle dynamikker mellom transkripsjon og protein tydeliggjort. Spesielt forsinkelse 

mellom transkripsjon og translasjon mellom noen proteiner og gener, og "translation on 

demand"-forhold mellom noen andre proteiner og gener. 

“GO enrichment"-analyse av proteiner, som hadde proteinmengdeserie som korrelerte godt 

med deres tilsvarende genuttrykk, ble utført. Analysen indikerte at mange GO-termer kan 

være relatert til proteiner som er enklere å studere med proteinprofileringsmetoder brukt her. 
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1 Introduction 

To what extent are protein abundance levels dependent on gene expression levels in different 

developmental stages, such as xylem and phloem in aspen trees? Developments in Next-

generation sequencing and protein identification techniques have enabled high-quality 

analyses of the genome, transcriptome, and proteome of cells (Steen & Pandey, 2002).This 

has provided an opportunity for analyzing and comparing all these together to observe the 

relationship between them.  

This thesis will explore the relationship between mRNA and protein expression across 

different developmental stages in wood tissues of common aspen (Populus tremula in Latin). 

The basis for this thesis was two articles, the first providing expression profiles of proteins 

(Obudulu et al., 2016) and the second with gene expression profiles (Sundell et al., 2017) 

both from the same tissues in Populus tremula. Populus tremula is especially interesting 

because of the wood’s usefulness in renewable energy and the production of goods and 

because it is one of the most important carbon sinks in northern Europe and Asia. Aspen trees 

are becoming the model organism for woody plants due to characteristics that makes them 

suitable for research (Hertzberg et al., 2001) and because of the full genome sequencing of 

Populus trichocarpa (Jansson & Douglas, 2007). 

The matching data sets provide the opportunity to compare transcriptomics and proteomics in 

the same samples across a continuous spatial series with differential expression in the various 

developmental stages of the tree, enabling insight into post-transcriptional regulation and 

modification and strengths and weaknesses of both techniques. By comparing continuous 

patterns of gene expression and protein abundance phenomenon like “translation on demand” 

and the delay between transcription and translation may be uncovered (Liu et al., 2016). 

Since gene expression and protein abundance rarely correlate perfectly, proteomics is an 

increasingly useful field (Liu et al., 2016). The comparison between mRNA and protein in a 

single cell or a series may uncover details of their relationship. Translation is regulated by 

many factors and different proteins relate to mRNA in different ways. Furthermore, through 

closer inspection of the proteins that correlate well with their transcript, it is possible to 

identify characteristics of the proteins that are more detectable by proteomics methods. 

In this thesis the relationship between gene expression and protein abundance in a specific 

wood formation series in Populus tremula will be studied through several methods in the 
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coding language R. Previous studies have compared gene expression and protein abundance; 

however, the two overlapping data sets provides a unique opportunity to study the 

relationship between proteins and mRNA in different wood forming cells. This thesis has 

conducted and will discuss varied analyses, including correlations, clustering and Gene 

Ontology enrichment analysis. Since the proteomics data provided was limited compared to 

the transcriptomics data, data treatments such as moving average calculations and 

transformations were conducted to diminish the effects of uneven and lacking protein 

abundance. The effect of these were evaluated. 
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2 Theory 

2.1 The Aspen Tree 

Populus tremula (common aspen), is native to the colder regions of Europe. It is an 

angiosperm (flowering) tree. Aspen is widely distributed across Europe and Asian Russia 

(Figure 1) and trees represent one of the major CO2 sinks on earth (Sundell et al., 2017). Its 

wood is an important resource and can be used as lumber/renewable energy or in the 

production of paper, plywood and matchsticks. The usefulness of the Populus tremula as a 

carbon sink and wood producer could be increased by developing elite varieties (Sundell et 

al., 2017). 

 

 

Figure 1: The distribution of Populus tremula (Caudullo et al., 2017). 

While being a species that is geographically widespread and that provides a useful type of 

wood, Populus tremula also has aspects making it a good candidate for research. Aspen trees 

have a physically large meristem and the different developmental stages of the trees are easily 

distinguished (Hertzberg et al., 2001).  

2.2 Tissues in Trees 

Trees are usually defined as woody plants with secondary growth. Primary growth is growth 

at the meristem of the plant, which provides elongation in the branches and roots. Secondary 

growth is a lateral growth procured by cell division by the cambium. Through lateral growth, 

trees can produce wood that provides rigidity and support, enabling the trees to grow higher 

and sturdier than other plants (Thomas, 2003). 
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Wood is a rigid, porous, organic material used to maintain the structure of trees (Thomas, 

2003).  It is created by xylem cells depositing cellulose and lignin fibers into the secondary 

cell wall (Mellerowicz et al., 2001). Vascular cambium initiates wood development. The 

cambium is the cylindrical sheet of cells that divides, creating new partially undifferentiated 

cells for plant growth. Stem cells located here divide into more specialized cells in both 

directions. It forms parallel rows of cells, which result in secondary tissues, cork cambium 

and vascular cambium (Thomas, 2003). Outwards cells gradually differentiate into phloem 

cells and inward cells specialize into xylem cells (Figure 2), the two vascular tissues plant 

that are used to transport fluids and nutrients across the (Hertzberg et al., 2001). In trees like 

the Populus tremula the inward secondary tissues become woody and intermingled with 

cellulose fibers embedded in a lignin network. 

 

Figure 2: Illustration of the cross-section and location of xylem and phloem in trees (Hood, 2010). 

Xylem’s main task is to transport water and micronutrients from the roots and provide 

structural support (Thomas, 2003). They are water conducting cells that are elongated, thin 

and rigid. The xylem cells gradually become the long, dead tubes that transport water 

passively through capillary mechanisms, as shown in Figure 3 (Bollhoner et al., 2012). The 

differentiation stages of xylem cells are in general: cell division in the cambium, cell 

expansion, deposition of the secondary cell wall and cell death (Fukuda, 1996). In 

angiosperm trees, like Populus tremula, the xylem consists of both vessel elements and 

tracheid elements (Bollhoner et al., 2012). Vessel elements and tracheid elements are 

intermixed with fiber cells to increase rigidity and mechanical strength (Figure 4). Fiber cells 

do not transport water or nutrients but provide structural support long after their death. 
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Figure 3: Illustrations of the differentiation of xylem tracheary elements from an article on xylem cell death by 

Bollhoner et al. (2012). In the figure: n indicates nucleus, v indicates vacuole, o indicates organelles and w 

indicates cell wall. It shows from left to right differentiation, expansion, secondary cell wall formation, vacuole 

rupture, degradation of DNA, final enzymatic breakdown and partial breakdown of primary cell walls. 

 

Figure 4: Illustrations the differentiation of fiber cells from the article on xylem cell death by Bollhoner et al. 

(2012). Shows from left to right, cambium differentiation, cell expansion, secondary wall formation, loss of 

turgor in the vacuole, breakdown of organelles, breakdown of DNA and proteins, swelling of organelles, 

vacuole rupture and continued autolysis, cleared cell. 

Phloem transports photosynthates, which are the soluble products produced in the leaves 

during photosynthesis (usually sugars). The phloem tissue layer lies just under the bark, far 

from the center of the stem (Pate & Atkins, 1983). 
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2.3 The Flow of Genetic Information 

“The central dogma of molecular biology” is a framework for illustrating the flow of 

information in genetics, how different macromolecules may transfer information between 

each other. It states that the main flow of genetic information goes from DNA to RNA to 

protein and that there are other special transfers such as RNA to DNA (Crick, 1970). DNA 

also replicate itself to create new DNA in a process called replication.  

Regions in the DNA called genes, are transcribed into RNA by RNA polymerase with the aid 

of several other proteins which can enable or increase the transcription rate. In eukaryotes a 

wide array of transcription activators binds to enhancer sites in the DNA and together they 

determine the rate of RNA transcription. Through a mediator they assemble with the RNA 

polymerase at the promoter region of the gene. The raw mRNA needs to be processed before 

entering cytosol for translation. The raw mRNA is processed into mature mRNA through 

splicing. During splicing, introns are removed, and the remaining exons are pasted together. 

The exons could be pasted together in alternative ways, thus giving rise to different types of 

mRNA (splice variants) which in turn translate into different proteins (isoforms). The 

messenger RNA is transported out of the cell to be translated by ribosomes. The end products 

are proteins, which are macromolecules that provide the majority of functions for living 

organisms, including enzymatic catalysis and structural support and movement in the cells 

(Alberts, 2014). 

There are many factors that complicate this linear formula of how a DNA strand encodes an 

RNA strand, which in turn translates into a protein. Proteins, genes and mRNA are intricately 

interconnected and may affect each other in several ways, therefore there is almost never a 

one-to-one relationship between mRNA and its corresponding protein in a cell. Processing of 

the RNA may determine how many proteins will be translated before it is degraded. In many 

cases, the mRNA may degrade before it even translates a single protein (Alberts, 2014). 

Factors such as RNA interference may inhibit either transcription or translation. Proteins, like 

transcription factors, may affect transcription rates. Other proteins may change the structure 

and function of proteins. Prions may even misshape other protein in a way that can be 

replicated to other proteins.  

2.3.1 Post-Transcriptional Regulations 

Post-transcriptional regulations are all the regulatory mechanisms performed after the 

transcription of RNA and is a crucial part of gene regulation. It can infer the correct level of 
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translation or even abort it entirely. Post-transcriptional regulations are especially important 

for quick adaptation of cells in new environments or into new roles (Liu et al., 2016). In 

many cases, stopping and degrading all mRNA molecules would be a quite slow process and 

quick post-translational mechanisms enable a more dynamic control of protein expression.  

“Translation on demand” is a term describing situations where mRNA is transcribed regularly 

and protein is expressed only when needed (Liu et al., 2016). Transcript is always readily 

available in cytosol available for translation, and when the protein is needed, the necessary 

signal is sent initiating the translation of the protein in demand.  

Protein translation can be terminated, up-regulated or down-regulated at many stages between 

RNA transcription and protein synthesis. Splicing regulates which protein isoform will be 

expressed before it exits the nucleus. Control of the mRNA abundance in cytosol can be done 

by regulating degradation of mRNA. For instance, long polyadenylated tails often means long 

half-lives. Upstream Open Reading Frames provide translation control. They are open 

reading frames in the leader sequence, the untranslated region of the mRNA upstream of the 

initiation codon. mRNA may have a hairpin structure downstream of the uOPS that 

terminates translation when translation is initiated at the uOPS (Wethmar et al., 2010). 

Internal ribosome entry sites are located on the mRNA and recruits the ribosome to initiate 

translation. Furthermore, translation itself can be modulated. Proteins can bind to regulatory 

elements on the mRNA molecule inhibiting synthesis. In many cases protein synthesis can be 

suppressed while mRNA is being expressed, which can lead to detection mRNA, but not of 

proteins. 

2.3.2 Protein Isoforms 

Protein isoforms are proteins with the same genetic origin, either from the same gene or gene 

family (Stastna & Van Eyk, 2012). One single gene can produce proteins that are different in 

folded structure and composition of amino acids and domains. Different isoforms of a protein 

often arise from splicing, variable promoter usage or other post-transcriptional modifications. 

Splicing is the main post-transcriptional process that produces protein isoforms. In 

eukaryotes, differential splicing can result in different types of proteins by removing introns 

and assembling exons in different ways. The splicing process occurs during or after 

transcription in the nucleus and the mature mRNA exits to the nucleus. While the resulting 

isoform proteins are related and usually function similarly, isoform proteins may also have 

vastly different structures and functions. 
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In practice the process of distinguishing between different protein isoforms is difficult. 

Protein isoforms have similar sequence and may be difficult to tell apart when the protein is 

fragmented into peptides (Stastna & Van Eyk, 2012).  

2.3.3 Post-Translational Regulations 

Post- translational regulations of proteins are common in cells. To save resources, amino 

acids can be made available from proteins through protein hydrolysis. Which is a non-

reversible form of protein regulation. One method used for intracellular proteins is 

ubiquitination, where several ubiquitins are attached to a protein and the protein is 

subsequently degraded by a proteasome complex (Alberts, 2014). The ubiquitinated proteins 

and amino acids are released and can be reused (Glickman & Ciechanover, 2002). Reversible 

post-translational regulation is possible, and these are called post-translational regulation. 

Histone modifications where the histone tails are phosphorylation, methylation and 

acetylation to control the openness of the chromatin is an example of post-translational 

regulation. The openness of chromatin enables transcription of RNA, which is important 

transcriptional regulation. This makes histone modification both an example of post-

translational modification of proteins and a transcriptional regulation of genes. In the end, 

protein levels are not only dependent on gene expression levels, but also translation 

regulation and post-translational regulation (Steen & Pandey, 2002). 

2.4 RNA-Sequencing 

Through RNA-seq one may study the transcriptome of a cell or a sample at a given time. The 

transcriptome is defined as “the complete complement of mRNA molecules generated by a 

cell or population of cells” (McGettigan, 2013).  The typical RNA-seq process first isolates 

the RNA molecules from the cell and then selects a subset of the RNA, for example mRNAs. 

If long coding RNA is going to be sequenced, the molecules need to be fragmented by the 

shotgun method before it is reverse transcribed to cDNA (alternatively the whole RNA is 

reverse-transcribed into cDNA and then fragmented) (Hrdlickova et al., 2017). The cDNA is 

afterwards sequenced by a next-generation sequencer. It could be sequenced by a single end 

method or a pair end method. Pair end methods sequences the fragment from both ends, and 

this could be useful in detecting paralogs with similar sequences. The reads, the products of 

the sequencing, are digitally trimmed for areas of high error. After trimming, the RNA-Seq 

reads can be de novo assembled to a reference transcriptome or mapped to an existing 

transcriptome or annotated genome (Kukurba & Montgomery 2015). 
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RNA-Seq uses next-generation sequencing (NGS) to directly sequence RNA from cDNA, the 

technique has many benefits. RNA-seq does not rely on a corresponding genomic sequence. 

RNA-seq is especially attractive for organisms without a reference genome since it is 

possible to assemble the reads de novo (Wang et al., 2009). Either way, it is possible to find 

novel genes through RNA-seq. In the transcriptomics article by Sundell et al. (2017), 78 

novel genes were found. RNA-seq has less background noise as it maps RNA to its site 

unambiguously. Additionally, RNA-seq is the favored method of measuring expression levels 

and is highly reproducible (Wang et al., 2009). RNA-Seq can be applied to all RNA in the 

cell, not just protein-coding transcripts (Kukurba & Montgomery, 2015). 

RNA-Seq may be used to determine the structure and locations of splice sites and how exons 

are connected (Liu et al., 2016). Reads of can be mapped to a reference genome. This way the 

exons and introns in the genes can be identified, as intron areas will have less mapped reads 

than exon sites. It might also be possible to identify the exact splice sites as the introns are 

spliced at a specific base sequence: GU at the 5' splice site and AG at the 3' splice site. “Mate 

pair” is a method usually used to mitigate challenges due to long repeats when sequencing 

DNA. If uilized in RNA-Seq, the distance between the pair ends will be known and therefore 

the size of the gap can be determined. In RNA-seq pair end sequencing could be useful for de 

novo sequencing or to better understand the exon-intron structures of the RNA.  

RNA-seq may identify putative genes. Putative genes are predicted to be genes based on their 

open reading frame. While the putative genes have an open reading frame, they have no 

corresponding identified protein. For additional reliability, they are required to share 

sequence similarity with other identified genes. 

RNA sequencing has some challenges. Fragmentation of larger molecules is necessary for 

most sequencers as many of them have a maximum read length. The error rate usually 

increases towards the end of the reads (Del Fabbro et al., 2013). Longer sequences increase 

the risk of going “out of phase”, which is when a base pair is skipped, and this leads to 

incorrect sequenced bases in the rest of the read. The fragmentation method might be biased 

and may fragment the molecules in a non-random way. Polymerase chain reaction (PCR) 

artifacts could be another challenge where one RNA fragment has an unconventionally large 

number of duplicates (Acinas et al., 2005). The most relevant challenge is however that the 

relationship between mRNA and protein is not 1:1 and the actual relation between them is not 
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fully determined, RNA-seq cannot accurately predict the corresponding protein content in the 

cell. Therefore, protein profiling is necessary to obtain the full picture.  

RNA-seq can be used to investigate how cells of the same species express RNA in different 

situations. The purpose of RNA-seq in the transcriptomics article by Sundell et al. (2017) was 

to observe how the genes are differentially expressed in different developmental stages in 

Populus tremula, especially in wood formation areas of the tree. Since the genome is mostly 

identical for all cells in the same organism, DNA sequencing may not be used for elucidating 

differences between different cells from the same individual in the same way as RNA-Seq 

can. Whether an RNA molecule will be transcribed, and in what quantity, is reliant on genes, 

epigenetics (the heritable changes that does not involve alterations in DNA) (Dupont et al., 

2009) and on external stimulus. These provides cells in different developmental stages with 

different tasks and unique phenotypes (Kukurba & Montgomery, 2015). 

2.5 Proteomics 

Proteomics is the study of function and structure of proteins on a large scale (Chandramouli 

& Qian, 2009). The proteome is defined as the whole set of proteins found in a system or 

organism. As information on the function of a cell or an organism is difficult to elucidate 

only based on genes and mRNA, proteomics is a useful and increasingly necessary field of 

research. For each gene in the genome, there may be several distinct proteins and these 

proteins may have many different functions. Recently, many new techniques have been 

developed to enable detection, identification and quantification of proteins. 

Protein profiling is the identification and quantification of the total protein content in a tissue 

or cell at a specific time. Often the protein profile is assigned to a reference genome (Graves 

& Haystead, 2002). There are many methods available for conducting protein profiling. The 

basic common process includes preparation of the protein by splitting it into peptide 

fragments and quantifying them, and thereafter identifying these proteins based on the 

peptide sequences, the latter is usually done with the help of computer technology. Optionally 

the resulting identified proteins may be compared to a reference genome. 

Mass spectroscopy is often used to identify and quantify peptides and it is a key tool in 

proteomics. A mass spectrometer has three main components: the ion source, the mass 

analyzer and a detector that registers the number of ions per m/z level (Han et al., 2008). The 

ion source ionizes the sample by bombarding it with electrons to produce gas-phase ions. 

These ions are separated based on mass-to-charge (m/z) ratio, the ions are detected and 
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quantified based on this ratio. (Han et al., 2008). Mass spectroscopy supports both relative 

and absolute protein measurement on a large scale, without need of generating antibodies 

(Liu et al., 2016). Antibodies are used in immunoassays, where they bind to specific 

macromolecules and gives off a detectable signal (Wingren 2016) . 

Due to the many complicated steps, protein profiling is prone to errors and mass spectrometry 

techniques are usually the main bottleneck of the process (Chandramouli & Qian, 2009). 

2.6 Relationship Between Gene Expression and Protein 

Abundance 

Protein abundance in a cell is dependent on many factors and the existence of mRNA is likely 

the main one. According to the “the central dogma of molecular biology” proteins must be 

transcribed by RNA or be brought in from outside the cell. Calculating the variance explained 

in protein abundance by the variance in gene expression using Pearson’s correlation score 

squared is a common way to quantify associations between mRNA and protein (explained 

chapter 3.4.4). The calculated score is often very different depending on the way the data is 

obtained, matched and treated and depending on the organism providing the data. One study 

calculated the association between mRNA and protein expression in mouse dendritic cells 

(Jovanovic et al., 2015). The correlation showed that 27% of the variation in protein levels 

was explained by the raw mRNA data. Through different data analysis strategies that score 

increased to 52%. A study of mammalian cells indicated that the variance in protein 

abundance explained by gene expression was 40% (using Pearson’s correlation coefficient) 

(Schwanhausser et al., 2011) and a restudy using a different model concluded that the 

variance explained was between 56%–84% (Li et al., 2014). Another study analyzed gene 

expression and protein abundance in Saccharomyces cerevisiae, which showed that the 

variance in gene expression levels explained 80% of the variation in protein levels in yeast 

(Lee et al., 2011). 

Measurements are often divided into absolute and relative quantities. Absolute quantities, 

meaning the actual number of mRNA or protein in the cell in question (or a quantity that 

reflects this number). Relative quantities are dependent on other quantities for reference. For 

example, gene expression is calculated as the number of reads aligned to a gene divided by 

the total number of reads sequenced in the sample. The type of data used for correlation is 

important to consider when analyzing the relationship between mRNA levels and protein 
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levels as not all data types scale and since absolute quantities of protein and mRNA is not 

interchangeable with relative quantities. 

It is theorized that in a cell in steady-state, mRNA quantitates explain protein levels rather 

well (Liu et al., 2016) (Figure 5 A). In the study on mammalian cells by Schwanhausser et al. 

(2011), 40% of the variance in protein levels were due to variations in mRNA levels in 

steady-state cells. A cell in steady-state has a degradation rate that is approximately equal to 

the synthesis rate for proteins and mRNA. However, a cell is rarely in a perfect steady-state. 

Protein levels and gene expression levels in the cell are in constant fluctuation. The cell 

responds to stimuli such as nutrients, cell signals, chemicals etc. These stimuli may initiate 

transcription or translation to prepare the cell for new environments or a new role.  

Gene expression and protein abundance at one moment in a cell may not correlate well due to 

a delay between mRNA transcription and protein translation (Figure 5, B). Before mRNA 

may translate a protein, it undergoes maturation processes including splicing, 5′ capping, 3′ 

cleavage and polyadenylation. The synthesized protein may be transported to other locations 

than where the mRNA was sampled for example outside the cell. The translation process 

itself is in some cases very slow. Translation can be regulated by upstream open reading 

frames (Wethmar et al., 2010) and internal ribosome entry sites (Liu et al., 2016) altering the 

rate of translation.  

Protein abundance are dependent on many biological factors. Protein lifespan can be affected 

by post-translational regulation. Some protein is quickly degraded and therefore will be in 

lower numbers compared to proteins that are translated at the same rate but have longer 

lifespans. Proteins with signal delay between transcription and translation and “Translation 

on demand” proteins usually also correlate badly with gene expression as the mRNA will 

always be expressed and the protein only when necessary (Figure 5, B, C).  
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Figure 5: The relationship between mRNA and protein under different dynamics by Liu et al. (2016). Delayed 

synthesis between mRNA between steady states (A), mRNA is first produced in response to a signal (B), 

translation on demand where mRNA is stable and translation levels are increased due to a signal (C), 

housekeeping genes and difference due to cell cycle stages (D), energy levels and ribosome numbers affect the 

translation capabilities and priorities of the cell (E). 

Translation rates can vary and are dependent on many factors, but to synthesize proteins 

mRNA needs to be present. Cells that newly synthesized a protein should have the 

corresponding mRNA present. Therefore, instead of a strict numeric relation between protein 

and gene expression, one study has suggested that expression of mRNA could rather be 

treated as an on-off switch rather than numeric relation to each other (Vogel & Marcotte, 

2012). This study of yeast indicated that if mRNA expression is over a certain threshold is a 

much higher chance of the corresponding protein being present (Figure 6).  



14 

 

 

Figure 6: The relationship between mRNA abundance and the likelihood of observing protein abundance in 

yeast (Vogel & Marcotte, 2012). 

2.7 Proteins of Interest 

Presented here are some proteins of special interest in the context of wood development. 

Some of these proteins define the cell’s developmental stage. Sucrose synthase is especially 

important in phloem. Cellulose synthase is found in large relative quantities in developmental 

stages where the cell wall is deposited. Peptidases are important in programmed cell death, 

especially for the later xylem as xylem tissues undergo apoptosis during maturation. 

Sucrose synthases reversibly catalyze/cleaves sucrose from glucose and fructose (Zheng et 

al., 2011). The process is nearly energy neutral. Sucrose is highly mobile in plants and is the 

main soluble component of phloem sap in many trees. Since sucrose is non-reducing and not 

prone to metabolism compared to glucose and many other sugars, it is the selected 

carbohydrate for transportation around the tree (Lemoine, 2000). 

Cellulose synthases catalyze the reversible production of cellulose mainly from beta-1,4-

linked glucose residues. It is a large family of proteins and many different types with little 

genetic relation to each other seem to occur in any higher plant, indicating that they are 

conserved. In Arabidopsis thaliana ten different types of cellulose synthases are found 



15 

 

(Richmond, 2000). Cellulose is a polysaccharide consisting of glucose units bound together 

with a beta one to four position bond. The molecule may be up to several thousand units long. 

The secondary cell wall receives their structure through cellulose and bound together with 

lignin they are the main component of the wood tissues in trees. 

Programmed cell death is a process necessary in both maturation of fiber cells and maturation 

of xylem tissues. The components needed to facilitate cell death are often procured early in 

xylem differentiation. The components are prohibited from initiating cell death by inhibitors 

or they may be stored vacuoles until needed. The timing of programmed cell death is 

different for each cell in the xylem developmental stages based on what function the cell will 

fulfill in the mature xylem (Bollhoner et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

3 Material and Methods 

3.1 The Data 

In this thesis, data from two studies were used. The first data set was a transcriptomics data 

set consisting of identified gene transcript and their expression estimated using the VST 

(variance stabilized transformation) method across 106 samples from 4 different trees 

(Sundell et al., 2017). VST is used on data to either simplify presentation or some statistical 

procedures like regression or ANOVA. In some data sets, the statistics are determined mainly 

by the largest values. This can usually be solved by utilizing a log transformation, but the 

adverse effect of this is that the variance of lower values becomes disproportionately large. 

VST is a calculation that aims to normalize the variance of the lower values while scaling the 

higher values (Love et al., 2015). The other data set was a proteomics data set consisting of 

identified proteins and their expression profile for 111 samples across four trees (Obudulu et 

al., 2016). Both data sets were extracted from cryosections from the same four trees. All 

measures of gene expression in plots and tables are VST values. 

The trees were four mature, wild Populus tremula growing in an uncontrolled environment in 

Northern Sweden. Cross-sections were from each stem about 3 meters above the soil level. 

The samples encompass the phloem through the vascular cambium to the xylem within one 

growth ring (Obudulu et al., 2016). 

The samples in the data set can loosely be separated into four different developmental stages. 

The samples from the transcriptomic data were clustered into four developmental stages, 

roughly corresponding to those shown in Figure 7. The separations between these stages were 

characterized by three transcriptome reprogramming events according to the transcriptomics 

article by Sundell et al. (2017). These reprogramming events mark positions in the series 

where the cells are in the process of becoming distinctly differentiated. The first 

reprogramming event was in the middle of the specialization of cells into the phloem and 

xylem cells, i.e. The vascular cambium. Therefore, mainly phloem cells were in the first 

developmental stage and xylem cells in the second developmental stage. The second 

reprogramming event marked the end of stem cell expansion and where the cell begins 

depositing the secondary cell wall. The third and last reprogramming marks the end of 

secondary cell wall deposition and the start of apoptosis and transformation of cells into dead 

wood tissue (Sundell et al., 2017). The samples right of cambium mainly contains xylem 

tissues at different developmental stages. The proteomics article by Obudulu et al. (2016) 
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divided the samples into phloem, cambium, expansion and xylem. Xylem was further divided 

into four stages. An overview of the stages is given in Figure 8. In this thesis the separation of 

the samples in the series will mostly be based on how the transcriptomics article by Sundell et 

al. (2017) separated the samples. The developmental stages featured in this thesis are phloem 

(sample 1 to 5), expanding xylem (sample 6 to 12), secondary cell wall (SCW) forming 

xylem (sample 13 to 19) and late xylem (sample 20 to 25). 

 

Figure 7: Illustration of the different sections of the cryosection from the transcriptomics article by Sundell et 

al. (2017). The developmental stages were identified by microscope observation. 

 

Figure 8: “Schematic overview of transverse sections prepared from a specimen in tree 1”. From the proteomics 

article by Obudulu et al. (2016). The blue arrows indicate the direction of cell expansion and differentiation. 

The protein expression data set was from a proteomics article by Obudulu et al. (2016). 3,082 

proteins were identified in the study. Expression profiles of these proteins were given across 

111 samples from four trees. 27 samples from tree number one, 28 samples from tree number 

two, 28 samples from tree number three and 28 samples from tree number four. 

The transcriptomics data set Sundell et al. (2017) included expression profiles of 28,294 

genes measured across 106 samples from four trees (25 samples in tree number one, 26 in 
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tree number two, 28 in tree number three and 27 in tree number four). The whole genome of 

Populus tremula has not yet been sequenced, so instead Populus trichocarpa was used as the 

reference genome for both the transcriptomics study and proteomics study. As they were 

closely related one may assume that they have similar genetic qualities. In the NCBI database 

a recent full genome sequencing of Populus trichocarpa was made available with a total 

sequence length of 434,289,848 base pairs (bps), which is considered a modest genome size 

for a tree (Kainer et al., 2015). The full protein count for the tree was 51,717. The genome is 

organized in 19 chromosomes. Populus tricharpa was the first tree to be sequenced (Tuskan 

et al., 2006), making the genus Populus a model organism candidate for woody trees. 

 

Information on protein function and isoforms were obtained from the proteomics data set.  

3.2 Proteomics 

There were three main steps for obtaining the protein data. The digestion of proteins and 

extraction of peptides, analysis of peptide content and protein identification. Methods for 

extracting protein from the samples are described in the proteomics article by Masuda et al. 

(2008) in greater detail. The process utilized trypsin to cut the proteins into enzymes with the 

aid of phase-transfer surfactants in this case sodium deoxycholate (SDC). The resulting 

peptides were analyzed using reversed-phase liquid chromatography-electro spray ionization 

mass spectrometry (LC-ESI-MS). The resulting data from the (LC-ESI-MS) was processed 

with Protein Lynx Global Server v.3.0 and the resulting spectra were searched against 

Populus trichocarpa, together with sequences for human keratin and rabbit glycogen 

phosphorylase. The JGI Comparative Plant Genomics Portal database provided the reference. 

The process for the search and quantification was provided in the transcriptomics article 

(Obudulu et al., 2016). 

In this thesis, identification and quantification of the proteins in heterogeneous mixes of cells 

are the basis together with the transcriptomics data. While absolute quantification through 

mass spectroscopy is possible, MS techniques usually do not provide the full quantitative 

protein levels in a cell. Instead, the techniques approximate the abundance of the protein in a 

cell instead (Steen & Pandey, 2002). The quantity of the protein will be referred to as protein 

abundance throughout this thesis and which is a relative measurement. 
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3.3 Transcriptomics 

RNA-seq (described in chapter 2.4) was employed to identify protein-encoding RNA 

transcript and their expression profile (Sundell et al., 2017). The gene expression levels are 

the fraction of reads mapped to the reference genome and therefore they are relative 

measurements. The RNA quantification will be referred to as gene expression throughout the 

thesis. 

3.4 The R-Coding Processes 

The main workload of the thesis was preparing and analyzing the data in R. An overview of 

the R scripts used in the thesis is provided in Appendix A. 

3.4.1 Standardize the Data Set 

The data sets were quite different in format. The transcriptomics data covered 28,294 genes, 

while the proteomics data covered merely 3,082 proteins. The number of samples in the 

series also differed in the two data sets. The goal was to coerce the data sets into having the 

same dimensions. To achieve this, some genes from both data sets had to be removed so that 

only proteins with a corresponding gene expression and vice versa remained. Additionally, 

the number of samples varied amongst the trees and therefore some samples were cut out of 

the data set. The gene expression data was in log2 scale due to the VST method used. 

Therefore, the proteomics expression values were log2-transformed. This was achieved using 

the R function log2(). Before the transformation the protein entries were given +1 in value, so 

that zero entries would not become negative infinity entries, but instead remain zeros. The 

non-zero entries for the protein values were between 505.4 and 1,280,000.0. Therefore, an 

addition of 1 is insignificant. A single proteomic entry containing the value 1 was edited to be 

0 instead, since it likely were an error.  

Indexing and the match() function in R was used to find which genes the two data sets had in 

common. Duplicates were made for each isomorph protein, so that each protein had its own 

corresponding gene expression series. The transcript data frame and the protein data frame, 

then had the same number of rows.  All protein abundance rows which sums were zero and 

their corresponding rows in the transcription data frame were removed. After those 

procedures, 2,029 expression series remained in each data set. 

The four trees from the transcriptomics data matched the four trees from the proteomics data, 

but the number of samples differed in each study and by each tree. Specifics are shown in 
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Table 1 and Table 2. For simplicity, both data sets were cut so that contained exactly 100 

samples each. 25 samples from each tree. The subsets containing 25 samples from each tree 

were selected by a simple maximizing correlation method: all combinations of 25 continuous 

samples of the transcriptomics data and the proteomics data were correlated. The continuous 

series that yielded the highest correlation was saved. The scheme for cutting is given in Table 

1 for protein samples and Table 2 for transcript samples. After the removal of some samples, 

both data sets contained the same number of rows and the same number of columns. 

 

Table 1: Scheme for selecting the subset of the proteomics data. 

Tree number Number of samples Samples included in the data 

1 27 1 to 25 

2 28 29 to 53 

3 28 56 to 80 

4 28 86 to 110 

Total 111 100 

 

 

Table 2: Scheme for selecting the subset of the transcriptomics data. 

Tree number Number of samples Samples included in the data 

1 25 1 to 25 

2 26 26 to 51 

3 28 53 to 77 

4 27 81 to 105 

Total 106 100 

 

The plots and correlations may have been affected by the vague boundaries between the 

different developmental stages, differences between the four trees and the removal of some 

samples. 
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3.4.2 Moving Average Calculations 

A moving average calculation can be used to smooth time series with high fluctuations/noise. 

Using a moving average calculation on a time series will shift the focus from local 

fluctuations to more long-term trends. 

The moving average series for the protein data was calculated to provide a better correlation 

fit with the transcriptomics data. Each expression value in a series was summed with its two 

adjacent samples (only one if on either edge of the series) and divided by three (or two at the 

edges). This calculation smoothed out the expression series. The moving average data set was 

used alongside the normal protein data set for many correlations and plotting purposes. The 

moving average treatment was not necessary for the transcriptomics data since these 

expression series were in most cases smooth and the moving average treated transcriptomics 

data did not yield sufficiently different correlation results when correlating them with the 

proteomics data.  

3.4.3 The “Best Method” 

The protein data was in some cases heavily incomplete. To remedy this a method was 

developed where samples from each tree were in turn correlated with the average of the 

transcriptomics data. The tree which correlated the highest with the average of the gene 

expression series was saved. In this way the tree offering the “best” data could be used so that 

the correlations were not burdened by trees with incomplete or missing data.  

3.4.4 Correlations 

Correlation in statistics is a measure of the relationships between two variables. Calculated 

correlation coefficients extend from -1 to +1. Values of either +1 or -1 indicates a perfect 

relationship between the two variables, while values close to 0 indicate no or little relation 

between the variables. Negative values indicate a negative relationship between the variables, 

increase in variable A leads to a decrease in variable B and vice versa. There are several ways 

of measuring correlation and three main ways are possible through the R function cor(). 

These are Pearson, Kendall rank and Spearman. In this thesis, Pearson’s correlation was used. 

To investigate the amount of variance in Y explained by X, the coefficient of determinants or 

R2 may be utilized. This can be calculated by squaring the correlation coefficient.  

Protein abundance values across individual series was summed, meaning the total abundance 

for one single protein was calculated. The same was done for the transcriptomics data. The 

correlation between them was dubbed “Gene correlation”. 
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Full correlation was calculated across both the whole data sets. The expression values for the 

protein expression and the gene expression levels were saved in two separate vectors. The 

correlation between them was calculated. Full correlations using the moving average 

calculated data and the best data were similarly calculated. The vectors for the untreated data 

set and the data set using the moving average calculated protein data were 202,900 entries 

long. The vectors for the “best method” treated data set and the combined “best method” and 

moving average treated data were 50,725 entries long, due to “best method” only utilizing the 

protein samples from one tree. The correlations were also calculated between the data sets 

with zero entries removed. 

Row correlation, meaning that the expression a single gene across the series was correlated 

with its corresponding protein across the same time series. The correlation was calculated for 

between each protein abundance series and gene expression series across the data sets. Since 

the samples were edited so that each tree for both the protein and the transcriptomics data had 

25 values, the whole series could be correlated together. 

The data was correlated by sample series to uncover areas of potentially high post-

transcriptional regulation. If there was a high correlation across protein and gene pairs for one 

sample, it would indicate less post-transcriptional regulation. The series used for these 

correlations consisted of expression values for all proteins or gene in each sample from one 

tree. The same method was used as in the row correlations, but only the moving average 

calculated proteomics data set was used. The correlation by sample was in addition done 

based on the “best method”.  

3.4.5 The On-Off Switch Method 

Since mRNA and protein abundance do not always correlate well, some studies have 

suggested that mRNA works more like an on-off switch (Vogel & Marcotte, 2012). To test 

this on the data set, all numeric entries in both data sets was set to 1 and all zero entries were 

kept as 0s. Then the data was compared to detect if genes were expressed when protein 

abundance was above zero and vice versa. This was done for the whole dataset, providing a 

matrix showing how often mRNA and protein were expressed or not and the relation between 

them. Additionally, the number of matches was counted for each transcript-protein pair and 

plotted. The moving average treated proteomics data was used. Lastly the likelihood of 

protein abundance above zero for different gene expression levels was calculated. All the 

samples above the given gene expression level was used to calculate the likelihood. 
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3.4.6 Protein Isoforms 

When the proteomics data set and the transcriptomics data sets were matched, copies of the 

transcriptomics series were made to accommodate the different isoforms in the proteomics 

data. I.e. If a protein had three isoforms there would be three equal gene expression series 

corresponding to that protein. The edited proteomics data set contained 296 proteins that had 

two or more isoforms. In total, there were 650 rows in the data set that represented the 

isoform of another protein (this means that there were 650-296=354 gene expression series in 

the transcriptomics data set that were copies). The expression series of the isomorph proteins 

were summed by base protein and correlated with the transcription expression series. 

Furthermore, some isomorph proteins were plotted together and with the corresponding gene 

expression to explore whether there was a delay between the isoforms or if one isomorph was 

expressed in developmental stages and other isomorphs in others. The moving average 

treated data set was used for this analysis 

 

3.4.7 Clustering and Heat Maps 

In addition to correlation, heat maps and dendrograms were produced from the data . The 

distance used for the dendrograms was calculated with the following equation: 1 subtracted 

by the correlation between the series. The dendrograms were built using the “ward.D” 

method, referring to Ward’s criterion. The heatmap.2() R function plotted the dendrogram 

together with a heat map of all the entries of the data sets. The data was scaled by row. 

Dendrograms and heat maps were produced from the raw transcriptomics data, the average of 

trees transcriptomics data, the moving average calculated proteomics data and the combined 

“best method” and moving average calculated proteomics data. 

The clusters in the average by trees transcriptomics data and the moving average calculated 

proteomics data were compared and a relation score was calculated. The relation score 

followed this equation: the number of intersecting proteins/genes divided by the total number 

of unique protein/genes. The combined clusters that had the highest correlation coefficients 

were reported.  

3.4.8 ANOVA 

ANOVA was utilized to test the difference in expression between the developmental stages. 

A linear model was created where developmental stage was the explanatory variables were 
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the correlations by sample values and the response values where the developmental stages: 

phloem, expanding xylem, SCW forming xylem and late xylem. The ANOVA table was 

calculated in R and a Tukey’s test was reported. 

3.5 GO Enrichment Analysis 

Gene Ontology (GO) enrichment analysis was utilized to detect GO terms that were 

overrepresented in gene products in which protein abundance series correlated highly with 

their corresponding gene expression. The Gene Ontology project aims to provide a controlled 

vocabulary describing gene products (Ashburner et al., 2000). GO terms are separated into 

three categories: biological process, molecular function and cellular component (Ashburner et 

al., 2000). Furthermore, each category has GO terms that can be broader (possessed by many 

gene products) or more specific and rarer. GO terms in the biological process category are 

defined by the known objectives a gene product has. Often these are chemical or physical 

transformations. Synthesis of a of sucrose would be a narrow biological process while 

“Signal transduction” would be an example of a broader GO term. Molecular function GO 

terms are related to biochemical activity i.e. “Enzyme”, “transporter”, “ligand” etc. Cellular 

component GO terms are related to the area of the cell where the gene product is active. 

A GO enrichment analysis was conducted of the proteins which abundance series correlated 

highly with their corresponding gene expression (correlation coefficient > 0.17, using moving 

average calculated and “best method” treated proteomics data), in total 1233 proteins. A 

Gene Ontology enrichment analysis can compare a subset of the proteome in an organism 

with its complete proteome and find GO terms that are overrepresented the subset. The 

enrichment tools and background genome (Populus tricharpa) was provided by popgenie.org 

(Sundell et al., 2015). The GO enrichment analysis reported the GO terms that were 

overrepresented, the False discovery rate adjusted P-value and the GO terms’ frequency rate 

in the subset and in the background genome. 
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4 Results 

4.1 Matching the Data 

The identified proteins which had a corresponding gene expression were found and matched 

in R. There were 3,082 identified proteins and 28,294 genes (567 of which were putative 

genes) were identified in the transcriptomics article by Sundell et al. (2017). 2,860 of the 

proteins had a match in the transcriptomics data. Furthermore, 920 of the proteins had zero 

expression across all the samples. There were 2,029 protein-gene pairs remaining in the data 

after removing protein series summing zero. No gene expression series summed to zero after 

removing samples. A Venn-diagram of the counts is provided in Figure 9. The total number 

of identified transcripts would likely be higher if splice variants were considered. The 

proteomics data considered isoforms. 

 

Figure 9: Venn-diagram showing the number of identified protein-coding transcript and expressed proteins, 

before zero-sum rows were removed. 

4.2 Cases 

This thesis has included some cases of correlations between gene expression and protein 

abundance. All the plots in this section correlated the standard transcript data with the 

moving average protein data unless stated otherwise. 

4.2.1 Marker Genes in the Transcriptomics Article by Sundell et al. (2017) 

In the transcriptomics article, five genes were used as markers for the different developmental 

stages: Potri.004G081300, Potri.016G142800, Potri.001G240900, Potri.004G059600, 

Potri.011G044500. Potri.004G081300, Potri.016G142800 and Potri.004G059600 were found 
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in the proteomics data as one or more protein isoforms. Potri.001G240900 and 

Potri.011G044500 were not found in the proteomics data.  

Potri.004G081300 was expressed as the proteins Potri.004G081300.1 and 

Potri.004G081300.2, which were both sucrose synthases. Potri.004G081300.1 was expressed 

in one sample in tree 1. Potri.004G081300.2 protein expression correlated highly with its 

gene expression with a correlation value of 0.745. It was expressed in the phloem 

developmental stage and similarly for all trees (Figure 10). 

 

Figure 10: Plot of expression of the gene encoding Potri.004G081300 a sucrose synthase, together with its 

corresponding protein abundance series (Potri.004G081300.1and Potri.004G081300.2). 

Potri.004G059600 encodes a cellulose synthase family protein (figure 11). The protein was 

expressed in the third developmental stage, where the secondary cell wall is deposited. The 

protein Potri.004G059600.1 was only expressed for tree number four in expanding xylem and 

SCW forming xylem and once for tree number two in SCW forming xylem. 
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Figure 11: Plot of expression of the gene encoding Potri.004G059600 a cellulose synthase family protein 

together with its corresponding protein abundance series (Potri.004G059600.1). 

Potri.016G142800, a cyclin-dependent kinase. The gene was expressed in the phloem and 

xylem with the peak in the first reprogramming event (in the middle of the cambium). Protein 

abundance was found in late xylem in tree number three and not near the gene expression 

peak (Figure 12). 

 

Figure 12: Plot of expression of the gene encoding Potri.016G142800 a cyclin-dependent kinase together with 

its corresponding protein abundance series (Potri.016G142800.1). 
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4.2.2 Sucrose Synthases 

Sucrose synthase family proteins have been classified as potential regulators of phloem 

functions and it seems that the protein expression was regulated both at transcription level 

and post-transcription level. The genes were often expressed in many samples in different 

developmental stages but were nearly always up-regulated in the phloem. The exception 

being the gene encoding sucrose synthase 3, Potri.002G202300.1 (Figure 13, A), which was 

expressed at approximately the same level in all samples. While sucrose synthases were 

transcribed across almost all developmental stages, it was mainly translated into proteins in 

the phloem (Figure 13).  

The sucrose synthases where amongst the proteins that had the highest correlation 

coefficients with their corresponding gene expression. The proteins Potri.004G081300.2 (C), 

Potri.012G037200.1 (D), Potri.015G029100.1 (F) and Potri.017G139100.3 (H) were 

expressed in a similar way following the fluctuation in gene expression levels: high 

expression in phloem samples and less or not at all in other samples. They were also the 

protein/gene pairs that had the highest correlation in the group. Exceptions from this were 

found in the protein abundance profile of Potri.012G037200.1 (D) where the protein 

abundance was found in other developmental stages than phloem in tree number three and 

tree number four. Potri.002G202300.1 (A) was only expressed in the phloem in tree number 

one and nowhere else. Potri.004G081300.1 (B) was expressed only in one sample in tree 

number three, but also in the phloem, and appears to be a translation on demand protein. 

Potri.012G037200.2 (E), an isoform of Potri.012G037200.1 (D), was expressed in the 

developmental stage number four in tree number three. Potri.017G139100.2 (G) was 

expressed in the phloem, but only in tree number one and tree number three. 
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Figure 13: Protein abundance series (marked as “Expression”) of various sucrose synthase identified in the 

proteomics article and corresponding gene expression from the transcriptomics article. Potri.002G202300.1 

(A), Potri.004G081300.1 (B), Potri.004G081300.2 (C), Potri.012G037200.1 (D), Potri.012G037200.2 (E), 

Potri.015G029100.1 (F), Potri.017G139100.2 (G), Potri.017G139100.3 (H). 
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4.2.3 Cellulose Synthases 

Cellulose synthase proteins are key in wood formation, as cellulose is deposited in the 

secondary cell wall. These proteins were expected to be expressed in phloem and SCW 

forming xylem. They were usually expressed in either of these developmental stages, but not 

for all trees (Figure 14). The proteins Potri.002G257900.1 (B), Potri.004G059600.1 (C), 

Potri.006G181900.2 (F) and Potri.011G069600.1 (I) had similar gene expression patterns 

with a large peak in SCW forming xylem and a smaller peak in phloem. Protein abundance 

appears in SCW forming xylem, but it was never reproduced across all trees. The protein 

Potri.002G066600.1 (A), Potri.006G052600.2 (E), Potri.006G251900.6 (G), 

Potri.007G076500.5 (H), Potri.007G076500.6 (J) and Potri.011G069600.1 (I) had more even 

gene expression patterns. Protein abundance above zero was found in SCW forming xylem 

but reproduced across the different trees. Potri.006G052600.1 (D) had an even gene 

expression pattern and was the only cellulose expressed in phloem, but only in tree number 

one. 
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Figure 14: Protein abundance series (marked as “Expression”) of cellulose synthase proteins identified in the 

proteomics article and corresponding gene expression from the transcriptomics article. Potri.002G066600.1 

(A), Potri.002G257900.1 (B), Potri.004G059600.1 (C), Potri.006G052600.1 (D), Potri.006G052600.2 (E), 

Potri.006G181900.2 (F), Potri.006G251900.6 (G), Potri.007G076500.5 (H), Potri.007G076500.6 (J), 

Potri.009G060800.4 (K), Potri.011G069600.1 (I). 
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4.2.4 Xylem Related Peptidases 

Xylem related peptidases are thought to be related to apoptosis in expanding xylem and 

lignified xylem. They were expected to be expressed in SCW forming xylem and perhaps 

further inwards the stem. The expression/abundance patterns of xylem related peptidases are 

found in Figure 15. Potri.002G005700.1 (A) and Potri.005G256000.2 (C) both were xylem 

cysteine peptidase 2 and they correlated well with the gene expression. The gene expression 

and the protein abundance of both proteins peaked in the SCW forming xylem developmental 

stage. The gene expression for Potri.002G005700.1 (A) was also quite high in the late xylem 

developmental stage compared to the gene expression of Potri.005G256000.2 (C) which 

sharply plummeted after reprogramming event number 3. Potri.002G005700.2 (B), a xylem 

cysteine peptidase 1 which is an isoform of Potri.002G005700.1 (A) was only expressed in 

SCW forming xylem in tree number three. Xylem serine peptidase 1 Potri.014G074500.2 (D) 

had a different gene expression pattern signifying that it had a larger importance in the late 

xylem developmental stage. The protein was only expressed in tree number two, with a peak 

in the late xylem developmental stage. 

 

Figure 15: Protein abundance series (marked as “Expression”) of various xylem related peptidases identified in 

the proteomics article and corresponding gene expression from the transcriptomics article. Potri.002G005700.1 

(xylem cysteine peptidase 2) (A), Potri.002G005700.2 (xylem cysteine peptidase 1) (B), Potri.005G256000.2 

(xylem cysteine peptidase 2) (C), Potri.014G074500.2 (xylem serine peptidase 1) (D). 
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4.3 Expression Distribution 

The distribution of gene expression and protein expression values were plotted in Figure 16. 

The proteomics data had mainly zero entries.  There was an island with values between 9 and 

20.3 that has a peak at 15. The transcriptomics data’s gene expressions were more evenly 

distributed and has a smaller peak at zero and a larger peak around expression value 11 

(Figure 16). See Table 3 for a summary of statistics on the expression levels. The moving 

average calculated data was not used here. 

 

 

Figure 16: Density plot of the protein abundances to the left and of the gene expression to the right. 

 

Table 3: The summary of the two data sets 

 Proteomics Transcriptomics 

Zero rate 0.87 0.035 

Mean 1.9 9.8 

Median 0 10.5 

Max 20.3 20.9 

 

The sum of the total gene expression in each sample series, and total protein abundance in 

each sample series was calculated. There was a lot of variance in protein abundance in the 
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samples and much less variation in the sum of gene expression in the different samples 

(Figure 17).  

 

Figure 17: Total gene expression/protein abundance in each sample. Protein abundances provided by "best 

method" and moving average calculated proteomics data. Gene expressions were provided by the average of the 

4 trees. 

 

4.4 Full Correlation 

Full correlation across the whole data set yielded a correlation coefficient of 0.256. Using the 

moving average calculated data, the correlation score was 0.295. Using the “best method”, 

the correlation score was 0.298. Using the “best method” together with the moving average 

calculation, gave a correlation score of 0.347. When all the samples were summed together 

by protein abundance and transcript the correlation was 0.321. All correlations were 

significant, according to the Pearson’s correlation test (Table 4). Table 5 shows the 

correlation score with zero values removed. The data with zero entries removed were plotted 

in Figure 18.  

Table 4: Overview of correlations across all samples using different methods. 

Correlation 

type 

Correlation 

scores 

R2 95 % 

Confidence 

interval 

P-value 

Raw data 0.256 0.066 0.252 - 0.260 < 2.2e-16 
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Moving average 0.295 0.087 0.291 - 0.299 < 2.2e-16 

“Best method” 0.298 0.089 0.290 - 0.306 < 2.2e-16 

Combined “Best 

method” and 

Moving average 

0.347 0.120 0.339 - 0.354 < 2.2e-16 

Gene correlation 0.321 0.103 0.281 - 0.359 < 2.2e-16 

 

Table 5: Overview of correlations across all samples using different methods with zero entries removed. 

Correlation 

type 

Correlation 

scores 

R2 95 % 

Confidence 

interval 

P-value 

Raw 0.340 0.116 0.329 - 0.350 < 2.2e-16 

Moving average 0.318 0.101 0.309 - 0.326 < 2.2e-16 

“Best method” 0.324 0.105 0.303 - 0.343 < 2.2e-16 

Combined “Best 

method” and 

Moving average 

0.325 0.106 0.309 - 0.341 < 2.2e-16 

 

 

Figure 18: Dot plots showing the relation between the protein abundance and the gene expression. Raw protein 

data (A), moving average (B) “best method” (C), combined “best method” and moving average (D). 
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Through the R2 values it is shown that between 6 and 12 percent of the variation in protein 

abundance was explained by the gene expression levels depending on the data treatments 

used. 

The correlation between the summed protein abundance series and the summed gene 

expression series was 0.32. A large portion of summed protein abundance series had a low 

total abundance regardless of the corresponding summed gene expression; however, a 

substantial portion of the summed protein abundances correlates quite well with summed 

gene expression (Figure 19). 

 

 

Figure 19: Dot plot of the summed RNA expression against the summed protein abundance. 

4.5 Row Correlation 

Density plots were made of the correlation coefficients using the different data treatments 

(Figure 20). The correlation by row (expression of a single gene across the gene expression 

series against corresponding protein abundance series) using the raw data yielded low 

correlations. Correlation using the raw proteomics data had a median value of 0.11 and the 

best-correlated gene had a score of 0.91. Using the moving average calculations to smooth 

protein expressions gave a median value of 0.17 and the best-correlated gene had a 

correlation score of 0.94. Using the “best method” virtually eliminated negative values since 

given a choice between a negative score with one tree and a neutral score, the algorithm 

would choose a neutral score. The median value was also improved to 0.27 and the best-

correlated gene had a correlation score of 0.96. Combining the moving average calculations 
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and the “best method”, the score was further improved, yielding a median score of 0.44 and 

the best-correlated gene had a correlation score of 0.98.  

 

Figure 20: The figure shows density plots of the correlation score between gene expression and protein 

expression series. Raw proteomics data (A),"best method" (B), moving average (C), "best method" and moving 

average calculations combined (D). The vertical dashes show zero (red) on the x-axis and the median and the 

max correlation. 

4.6 The Best-Correlated Genes 

The 13 highest correlating genes were inspected in more detail. Eight of these genes and 

corresponding proteins were mainly expressed in phloem (Figure 21: B, C, F, G, H, J, L, M). 

Potri.001G340300.1 (B), Potri.001G340500.1 (C), Potri.002G175400.1 (F), 

Potri.015G029100.1 (L), Potri.017G139100.3 (M) were all similarly expressed with both the 

gene expression peak and protein abundance peak in phloem. The proteins corresponding to 

these genes were almost exclusively expressed in the phloem. The corresponding gene 

expression of these proteins were occasionally observed in other developmental stages, but at 

a much lesser extent. The protein abundance and gene expression patterns for these four 

protein/gene pairs were similarly reproduced in all four trees. Potri.015G029100.1 (L) and 

Potri.017G139100.3 (M) were identified as sucrose synthases the other three proteins were of 

unknown function. Potri.004G044700.1 (G), a “Pollen Ole e 1 allergen and extensin family 

protein”, peaked in phloem in tree number one and tree number four, but in tree number one 

and tree number four protein abundance peaked closer to the cambium and was expressed in 

the expanding xylem and phloem developmental stages. Potri.002G175400.1 (H) a protein of 



40 

 

unknown function was only expressed only expression in tree number tree and tree number 

four. The protein abundance series had a high correlation with its gene expression series in 

tree number 3 and was probably selected due to the “best method”. Potri.012G095200.1 (J), a 

Zn-dependent exopeptidases superfamily protein, could be a translation on demand protein as 

its corresponding gene was evenly expressed throughout all developmental stages, but peaked 

slightly in phloem. Protein abundance was only found in phloem for Potri.012G095200.1.  

Potri.001G054400.1 (A), Potri.002G029100.1 (D), Potri.011G110700.4 (I), 

Potri.014G071700.2 (K) were all expressed around cambium in phloem and expanding 

xylem. The corresponding gene expressions of these four proteins were expressed in all 

developmental stages and peaks around cambium. The gene expressions encoding 

Potri.001G054400.1 (A), Potri.011G110700.4 (I) were especially even across the 

developmental stages, suggesting they might have been “translation on demand” proteins. 

Potri.001G054400.1 (A) was identified as heat shock protein 60, Potri.002G029100.1 (D) 

was identified as a Walls Are Thin 1 protein, Potri.011G110700.4 (I) was identified as 

phosphoenolpyruvate carboxylase 3 and Potri.014G071700.2 (K) was identified as 

FASCICLIN-like arabinogalactan-protein 10. 

Potri.002G099200.1 (E), a Class-II DAHP synthetase family protein, was expressed in later 

xylem stages. Its corresponding gene expression was expressed in all developmental stages, 

but peaks in later xylem along with Potri.002G099200.1. 
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Figure 21: Protein abundance pattern and gene expression patterns of the 13 highest correlating gene/protein 

pairs for the four trees (using proteomics data treated with “best method” and moving average calculations). 

Potri.001G054400.1 (A), Potri.001G340300.1 (B), Potri.001G340500.1 (C), Potri.002G029100.1 (D), 

Potri.002G099200.1 (E), Potri.002G175400.1 (F), Potri.004G044700.1 (G), Potri.006G171200.1 (H), 

Potri.011G110700.4 (I), Potri.012G095200.1 (J), Potri.014G071700.2 (K), Potri.015G029100.1 (L), 

Potri.017G139100.3 (M). 

4.7 Correlation by Sample 

To correlate by sample number, one series of protein abundances and one series for gene 

expressions was made of each sample. The resulting series were correlated (Figure 22). There 

was a distinct decrease in the correlations at the endpoints of the series. In developmental 

stage one (phloem) and developmental stage four (late xylem), the level of correlation was 

lower than in expanding xylem and SCW forming xylem. The difference in correlation 

coefficients was significant in an ANOVA test. A box plot comparing the values in the 

different developmental stages was provided in Figure 23 and the corresponding ANOVA 
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table provided in Table 6. According to the 95% Tukey test, there was a significant difference 

in correlation scores in the xylem cell death developmental stage and all other developmental 

stages (Figure 24). There was also a significant difference in the correlation scores in phloem 

and lignified xylem.  

 

Figure 22: Plot of the correlation by sample for each tree and the “best method”. 

 

Figure 23: Boxplot of the correlation by sample values by developmental stage. 
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Table 6: ANOVA table describing the variance between the four developmental stages. 

 Degrees of 

freedom 

Sum of 

squares 

Mean sum 

of squares 

F-value P-value 

Developmental 

stage 

3 0.125 0.042 20.4 2.62e-10 

Residuals 96 0.196 0.002   

 

 

Figure 24: Plot of Tukey test for the different developmental stages. Phloem (stage1), expanding xylem (stage 

2), SCW forming xylem (stage 3), late xylem (stage 4). 

4.8 Clustering and Heat Maps 

To see if the proteins abundance series and gene expressions series would be clustered 

similarly, a heat map and dendrogram were produced from the transcriptomics data and the 

proteomics data separately. For the protein data, the moving average calculated data set was 

used. The dendrograms and heat maps for the proteomics data and transcriptomics data are 

shown in Figure 25 and Figure 26 respectively. 

The dendrograms were cut into clusters and then matched by protein names in the clusters 

from the other data set. Matching these clusters showed that the dendrograms in the 

transcriptomic data and proteomics data did not cluster similarly (Table 7). 
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The heat maps accompanying the gene expression cluster showed how the genes neatly 

divided into different expression patterns and four clusters were distinct. Most of the gene 

expression series were similarly reproduced in all the four trees. The heat map produced from 

the proteomics data also showed clear clusters but in almost all cases the pattern was not 

reproduced for all the trees. The heat map of the proteomics data also shows the lack of 

detected protein abundance in many of the samples. 

 

 

Figure 25: Heat map and dendrogram of the proteomics data treated with moving average calculations. The y-

axis indicates the proteins and the x-axis indicates the sample series. In the heat map, red indicates up-

regulation, blue indicates down-regulation. The different development stages are indicated in the color bar on 

top of the heat map. Phloem (red), early xylem (blue), SCW forming xylem (green), late xylem (purple). 

 

Figure 26: Heat map and dendrogram of the transcriptomics data. The y-axis indicates the genes and the x-axis 

indicates the sample series. In the heat map, red indicates up-regulation, blue indicates down-regulation. The 
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different development stages are indicated in the color bar on top of the heat map. Phloem (red), early xylem 

(blue), SCW forming xylem (green), late xylem (purple). 

Table 7: Tables of the clusters and corresponding match score. Each protein cluster has been matched with the 

gene expression clusters and the intersection divided by the total number of unique genes in both clusters has 

been calculated and the protein was matched with the gene expression cluster with the highest score. This was 

done for the raw proteomics data set and the proteomics data set treated with moving average calculations. 

Raw data 
   

Using moving average 

treated proteomics data 

  

Proteomics 

cluster 

number 

Transcriptomics 

cluster number 

Intersect 

/ Total 

gene 

number 

 
Proteomics 

cluster 

number 

transcriptomics 

cluster number 

Intersect 

/ Total 

gene 

number 

 

1 4 0.125 
 

1 4 0.094 
 

2 7 0.124  
 

2 4 0.058 
 

3 8 0.195  
 

3 2 0.085 
 

4 4 0.072  
 

4 4 0.092 
 

5 7 0.078 
 

5 4 0.165 
 

6 4 0.050  
 

6 4 0.181 
 

7 4 0.189 
 

7 8 0.119 
 

8 2 0.134 
 

8 7 0.069 
 

9 4 0.025 
 

9 8 0.169 
 

10 7 0.052 
 

10 7 0.076 
 

 

The heat maps were also produced with average transcriptomics data set and the moving 

average and “best method” treated proteomics data. The purpose of this was to eliminate 

some of the incomplete data in the proteomics data set and better cluster the protein series. 

Here, the proteomics data were clustered into two distinct groups (Figure 27). One group with 

more expression in early developmental stages (phloem and cambium) and the other with 

more expression in later xylem developmental stages. The transcriptomics data (average of 

the four trees) were clustered into two similar main groups (Figure 28). The two dendrograms 

were cut into two clusters. The intersection between the clusters divided by the total number 
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of genes in each cluster was calculated to 0.63 and 0.61 for the clusters with the highest 

matches. 

 

 

Figure 27: Heat map and dendrogram of the “best method” proteomics data treated with moving average 

calculations. The y-axis indicates the proteins and the x-axis indicates the sample series. In the heat map, red 

indicates up-regulation, blue indicates down-regulation. The different development stages are indicated in the 

color bar on top of the heat map. Phloem (red), early xylem (blue), SCW forming xylem (green), late xylem 

(purple). 

 

Figure 28: Heat map and dendrogram of the “best method” proteomics data treated with moving average 

calculations. The y-axis indicates the proteins and the x-axis indicates the sample series. In the heat map, red 

indicates up-regulation, blue indicates down-regulation. The different development stages are indicated in the 

color bar on top of the heat map. Phloem (red), early xylem (blue), SCW forming xylem (green), late xylem 

(purple). 
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4.9 The On-Off Switch Method 

The numeric result of the on-off switch method was shown in Table 8. 202,900 entries were 

considered in this analysis. In 0.2 percent of entry pairs, or 41,161 entries, both gene 

expression and protein abundance were above 0. In 0.033 percent of entry pairs, or 6,665 

entries, neither gene expression nor protein abundance were above 0. In 0.0018 percent of 

entry pairs, or 365 entries, gene expression were 0 and protein abundance were above 0. In 

0.793 percent of entry pairs, or 161,374 entries, both gene expression were above 0 and 

protein abundance were 0. 

Table 8: Overview of the relation of protein and gene expression by existence of expression. 

Number of entries: Protein abundance > 

0 

Gene expression = 

0 

Total 

Gene expression > 0 41,161 154,709 195,870 

Protein abundance = 

0 

365 6,665 7,030 

Total 41,526 161,374 32,539 

(diagonal 

sum) 

 

Fractions: Protein abundance > 

0 

Gene expression = 

0 

Total 

Gene expression > 0 0.2 0.76 0.96 

Protein abundance = 

0 

0.0018 0.033 0.0348 

Total 0.2018 0.793 0.233 

(diagonal 

sum) 

 

Overall total number 

of entries: 

202,900 
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The number of matches (on and on or off and off) were counted for each protein/gene pair. 

I.e. the sum of matches for a gene expression/protein abundance series could be between 1 

and 100. A density plot (Figure 29) was made from the results. The number of matches 

sharply peaks at one and then rapidly decreases. 

 

Figure 29: Density of number of matches for protein- gene expression pairs. 

The number of matches by sample gives very different results for each tree, but for all trees 

the number of matches decreases at the edges of the series (Figure 30). There was also a peak 

in the match-numbers of all trees at cambium and a peak for tree 1, 2 and 3 in reprogramming 

event 3 between expanding xylem and lignified xylem.  
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Figure 30: Plot of the number of matches of protein abundance (on-off) and gene expression (on-off) across all genes by 

sample. 

The likelihood of finding any value of protein abundance above 0 was calculated for different 

levels of gene expression (Figure 31). Here a gene expression level considers all expressions 

values of the given level or higher. At the higher levels of gene expression there was a higher 

chance of finding protein abundance. There was a gentle slope of increased likelihood until 

approximately gene expression level 17 and above where the likelihood of finding protein 

abundance above zero was 68%. The likelihood dropped afterward and at expression level 

18.4 and above the chance of protein abundance above 0 was 54%. Afterwards the likelihood 

rapidly ascended towards 100%. As the gene level threshold rises fewer genes are considered 

when calculating likelihood of finding proteins. The results are therefore less reliable for 

higher gene levels. 
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Figure 31: Plot of the relationship of gene expression level (VST) (considering gene expressions  of the given level or 

higher) and the likelihood of finding protein abundance larger than 0 in these samples. 

 

4.10 Protein Isoforms 

Since 296 of the proteins had isoform variants, it was speculated that the sum of isoforms 

protein abundance correlated better with the transcriptomics data. Figure 32 shows a density 

plot of the correlations between the sum of the isoform protein abundance and the gene 

expression. The summed isoforms were saved into one single vector and correlated with the 

corresponding transcriptomics vector, yielding a correlation coefficient of 0.395. In 

comparison the full correlation between the transcriptomics data and the proteomics data was 

0.295.  
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Figure 32: Density plot of correlations between sums of isoform abundance and gene expression compared with the row 

correlations. Both utilized the moving average calculated proteomics data. 

4.10.1 Isoform Proteins with Sequential Expression 

Some protein isoforms were expressed in sequence, meaning the protein abundance of two 

isoforms was detected in different samples or varying amounts in the same samples (one 

being reduced while the other increases). The gene for Potri.016G014500 was expressed as 

Potri.016G014500.1 and Potri.016G014500.2, two UDP-glucosyl transferase proteins. 

Potri.016G014500.1 was expressed in phloem and in tree number three and tree number four, 

it was partially replaced by Potri.016G014500.2 (Figure 33). Another gene Potri.014G068200 

was the expression basis for the Eukaryotic aspartyl protease family proteins: 

Potri.014G068200.1 and Potri.014G068200.3. The gene expression peaked in the cambium 

and protein abundance was found in the phloem and expanding xylem (Figure 34). 



52 

 

 

Figure 33: Expression profile of the gene encoding Potri.016G014500 and corresponding UDP-glucosyl 

transferase proteins (Potri.016G014500.1 and Potri.016G014500.2). 

 

Figure 34: Expression profile of the gene encoding Potri.014G068200 and corresponding Eukaryotic aspartyl 

protease family proteins (Potri.014G068200.1 and Potri.014G068200.3). 

4.10.2 Isoform Proteins with Overlapping Expression 

Some proteins had isoforms that were expressed overlapping in the same samples. Sucrose 

synthase Potri.017G139100.2 and Potri.017G139100.3 overlap completely in tree 3 (Figure 

35). Several proteins were expressed similarly as the proteins encoded by Potri.018G145900 

(Figure 36) where the isoform proteins seem to overlap randomly and not in a clear sequence. 
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Figure 35: Expression profile of the gene encoding Potri.017G139100 and corresponding sucrose synthase 5 

proteins. 

 

 

Figure 36: Expression profile of the gene encoding Potri.018G145900 and corresponding N-terminal 

nucleophile aminohydrolases (Ntn hydrolases) superfamily proteins. 

4.11 GO Enrichment Analysis 

The GO enrichment analysis of the proteins which abundance series correlated highly with 

their corresponding gene expression identified 246 GO terms in the category biological 

processes, 126 in the category molecular function and 48 in the category cellular component.  
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Many of these with very low p-value. The ten GO terms with the lowest p-value in each 

category are reported in Table 9, Table 10 and Table 11. The full report is provided in 

Appendix B.  

Table 9: Top ten GO terms of the biological process category that are overrepresented in the highly correlating 

protein subset 

GO ID P-value (FDR) Statistics Description 
GO:0006195  4.825e-10  20/829 | 36/14903  purine nucleotide catabolic process 

GO:0009207  4.825e-10  20/829 | 36/14903  purine ribonucleoside triphosphate 

catabolic process 

GO:1901658  4.825e-10  20/829 | 36/14903  glycosyl compound catabolic process 

GO:0072523  4.825e-10  20/829 | 36/14903  purine-containing compound catabolic 

process 

GO:0009146  4.825e-10  20/829 | 36/14903  purine nucleoside triphosphate catabolic 

process 

GO:0046130  4.825e-10  20/829 | 36/14903  purine ribonucleoside catabolic process 

GO:0006152  4.825e-10  20/829 | 36/14903  purine nucleoside catabolic process 

GO:0042454  4.825e-10  20/829 | 36/14903  ribonucleoside catabolic process 

GO:0009143  4.825e-10  20/829 | 36/14903  nucleoside triphosphate catabolic 

process 

GO:0009154  4.825e-10  20/829 | 36/14903  purine ribonucleotide catabolic process 

 

Table 10: Top ten GO terms of the Molecular function category that are overrepresented in the highly 

correlating protein subset 

GO ID P-value (FDR) Statistics Description 
GO:0004455  2.663e-09  11/967 | 13/19622  ketol-acid reductoisomerase activity 

GO:0016614  3.341e-09  55/967 | 392/19622  oxidoreductase activity, acting on CH-

OH group of donors 

GO:0070003  3.361e-09  16/967 | 34/19622  threonine-type peptidase activity 

GO:0004298  3.361e-09  16/967 | 34/19622  threonine-type endopeptidase activity 

GO:0003735  3.541e-09  103/967 | 487/19622  structural constituent of ribosome 

GO:0005525  4.032e-09  72/967 | 321/19622  GTP binding 

GO:0032561  4.032e-09  72/967 | 321/19622  guanyl ribonucleotide binding 

GO:0005198  4.097e-09  117/967 | 548/19622  structural molecule activity 

GO:0003924  4.144e-09  56/967 | 185/19622  GTPase activity 

GO:0051082  4.340e-09  22/967 | 88/19622  unfolded protein binding 

 

Table 11: Top ten GO terms of the cellular component category that are overrepresented in the highly 

correlating protein subset 

GO ID P-value (FDR) Statistics Description 
GO:0005839  8.286e-10  16/360 | 34/6017  proteasome core complex 

GO:0005874  9.274e-10  18/360 | 33/6017  microtubule 

GO:0044464  1.620e-09  305/360 | 3667/6017  cell part 

GO:0043229  1.683e-09  149/360 | 1580/6017  intracellular organelle 

GO:0043226  1.683e-09  149/360 | 1580/6017  organelle 

GO:0044424  1.782e-09  262/360 | 2754/6017  intracellular part 

GO:0043234  1.819e-09  101/360 | 777/6017  protein complex 
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GO:0032991  1.852e-09  208/360 | 1363/6017  macromolecular complex 

GO:0044444  2.067e-09  155/360 | 1027/6017  cytoplasmic part 

GO:0005622  2.143e-09  134/360 | 1144/6017  intracellular 
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5 Discussion 

5.1 Data treatment Improved the Correlation Scores 

Two treatment methods were used to improve the relationship between the transcriptomics 

data and the proteomics data. These were moving average calculations which smoothed the 

protein abundance series and the “best method” which removed suboptimal trees from the 

proteomics data and only used the highest correlating tree series. Both these data treatments 

were used only on the proteomics data set. The transcriptomics data did not need those 

treatments, utilizing them did not improve the result significantly. The expression patterns of 

the transcriptomics data generally had smooth transitions and the patters were usually 

reproduced in all four trees.  

Best method improved the full correlation between gene expression and protein abundance 

from 0.256 to 0.298 (Table 4). In correlation by row (expression of a single gene across the 

series was correlated against the corresponding protein abundance series for every gene (row) 

in the data sets), the “best method” improved the median and the max correlation from 0.11 

to 0.17 and 0.91 to 0.93 respectively (Figure 20). The “best method” successfully eliminated 

the incomplete proteomics data provided by some trees and therefore improved the 

correlation score. According to Figure 20 it seems that a very large portion of the data set was 

improved slightly by the “best method”. 

Moving average mainly improved a large subset of the proteomics data, indicating that a 

group of proteins were more receptive to the data treatment. Moving average improved the 

full correlation between gene expression and protein abundance from 0.256 to 0.295. In 

correlation by row it improved the median and the max correlation from 0.11 to 0.27 and 

from 0.91 to 0.96 respectively (Figure 20). By smoothing the protein abundance series, 

moving average calculations improved the relationship between protein abundance and gene 

expression substantially for a subset of genes. However, another large subset seemed to be 

largely unaffected by the treatment. These two subsets were clearly visualized in a density 

distribution of the correlation scores of all the individual genes and their corresponding 

protein abundance (Figure 20). In the figure, it seemed that a section of the protein/gene pairs 

“left” the group distributed around zero and instead moved towards a distribution around 0.28 

correlation. In Figure 18 B (a dot plot of all the gene expression values against their 

corresponding moving average treated protein abundance values with zero entries removed) 

the protein abundance values were divided into three main groups with different protein 
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abundance values. This is different from the division shown in Figure 20 since Figure 20 is 

based on correlation coefficients between series and the Figure 18 dot plots are based on all 

the entries of the data by themselves. They are separated this way due to the method of the 

moving average calculations. Some proteomics abundance entries were divided by three, 

some were divided in half, while some remained around their original value splitting the 

proteomics entries in three groups. 

The two methods cumulated well without much diminishing returns when they were 

combined, hinting that they fixed two separate problems with the proteomics data set. 

Namely, high fluctuation/noise in general and incomplete data in some trees. They 

individually increased the full correlation score by approximately 5 percentage points (from 

0.256 to 0.295 and 0.298) and together by approximately 10 percentage points (from 0.256 to 

0.347). This proved their usefulness for improving the relationship between protein 

abundance and gene expression. 

When zero entries were removed, the treatments did not improve the full correlation (Table 

5). This means that the main contribution from the two data treatments were increasing the 

correlation coefficient by diminishing effect of proteomics zero entries. When the zero entries 

were already removed from the data sets, the data treatments instead diminished the 

correlation coefficient, both by themselves and combined. 

The correlations of this thesis, both before and after data treatments, were low compared to 

other studies. Results in this thesis showed a very low correlation between gene expression 

and protein abundance which might suggest that there was a high amount of post-

transcriptional regulations or inferior proteomics data, or a combination of both. Studies 

suggest that mRNA levels determine around 30-50% of the variation in protein levels (Csárdi 

et al., 2015; de Sousa Abreu et al., 2009). These studies are usually global correlations and 

not correlations across samples in a series. The Pearson’s correlation test suggested that 7% 

of the variance in protein levels was explained by mRNA levels in the raw data and 12% 

using the treated protein data. The gene correlation, where the molecule number across the 

series was summed before correlation, yielded similarly a 10% correlation coefficient. One 

thorough study suggests an even higher explanation of variance in protein based on 

expression levels in RNA. In (Csárdi et al., 2015) 24 studies of budding yeast were analyzed, 

and it seems to be that 85% of the variation in protein levels was explained by variations in 

mRNA levels.  
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5.2 Different Levels of Correlation in the Different Developmental 

Stages 

Correlation by sample yielded significantly different scores for samples in the different 

developmental stages (Figure 22). Correlation scores were in general higher in expanding 

xylem developmental stages and lower in late xylem stages and in phloem. The correlation 

scores plummet for all trees in samples near the two edges of the series. Using the best 

method protein data set, there was a sharp peak in cambium with a correlation coefficient 

close to 0.4. This could indicate different levels of post-transcriptional regulation in the 

different developmental stages. If the difference was due to post-transcriptional regulation, 

there was less post-transcriptional regulation in cambium and more at the edges of the sample 

series.  

These results should be observed in the context of total expression by sample (Figure 17). 

The gene expression levels by sample were very stable across all developmental stages while 

the pattern of protein expression was more variable, showing a similar pattern to that of the 

correlation by samples. The variations in correlation therefore seem to be mainly caused by 

variable protein abundances. See also the on-off switch results (Figure 30) which shows 

fewer matches at the samples on the edges of the series. 

5.3 The ON-OFF Switch Showed that Protein Abundance was 

Rarely Registered Without Gene Expression 

Transforming the data set to 1s and 0s enabled easier comparison of the two data sets by 

considering whether gene expression or protein abundance was present in a specific entry. 

Only in 0.18% of the comparisons were protein abundance found while no gene expression 

was found. In total, there were no gene expression in 3.48% of the entries, meaning 5.2% of 

the time gene expression was not present, the corresponding protein abundance was found. 

This shows that protein abundance in the proteomics data was largely dependent on gene 

expression.  

Additionally, it was shown that increased levels of gene expression increased the likelihood 

of protein abundance being present (Figure 31). It has been suggested in other studies that not 

only mRNA presence is important but also the concentration of a specific mRNA makes a 

difference in the likelihood of observing protein abundance for the corresponding protein 
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(Figure 6) (Vogel & Marcotte, 2012). In yeast, increased gene expression increased the 

likelihood of observing the corresponding protein. The relationship between those two were 

not linear. Instead, the likelihood of finding protein abundance was stably low for gene 

expression until about an mRNA abundance of 10, where it rapidly rose and plateaued at a 

90% chance of finding protein abundance which seemed to be the maximum chance. 

Similarly, with the Populus tremula data, increased gene expression increased the likelihood 

for protein abundance. The protein abundance series of the sucrose synthases, cellulose 

synthases and xylem related peptidases illustrate this trend well as protein abundance was 

mainly found near the gene expression peaks (Figure 15). 

 

5.4 Isoforms Correlate Better with the Gene Expression Patterns 

When Their Protein Abundances were Summed Together 

The proteomics data set contained 296 unique proteins that had one or more isoform variants. 

In total, these counted to 650 proteins. The correlation coefficient obtained when correlating 

the summed isoforms data against their corresponding gene expression was 0.395 (full 

correlation). This was a score substantially higher than the correlation score obtained when 

correlating the moving average proteomics data with the transcriptomics data (0.295) (full 

correlation) (Figure 32). The reason for this was likely that in many cases there were different 

isoforms expressed in different samples or in amounts summed together better compared to 

the gene expression (Figure 33 and Figure 34). The transcriptomics data did not distinguish 

between splice variants, and therefore summing the different isoforms provided a more 

accurate comparison. Still, the isoform data was only a small subset of the whole proteomics 

data and the increased correlation could also be due to fortuitous sampling.  

In practice, distinguishing protein isoforms is difficult. In the proteomics study by Obudulu et 

al. (2016) the proteins were fragmented by enzymatic digestion before further identification 

procedures. A study by Stastna and Van Eyk (2012) suggests that identification and 

quantification of isoforms is better done with intact proteins. There was a chance that many 

isoform protein variants were not identified in the proteomics data, as they were digested 

before MS analysis. The isoform data set was a small subset (contained information from 650 

abundance series) of the complete data set (contained information from 2029 abundance 

series). With more complete proteomics data, a better general analysis of isoforms in Populus 

tremula could have been conducted. 
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5.5 Clustering and Heat Maps 

The full proteomics heat map/dendrogram plot (Figure 25) was very uneven compared to the 

full transcriptomics heat map/dendrogram plot (Figure 26) and it seems that some groups of 

proteins were more easily profiled in trees number three and four. Two separate sections 

seem to have protein abundance patterns that were repeated for each tree. The first of these 

sections has protein expression upregulated mainly in phloem and the second section has 

protein up regulated in SCW forming xylem and late xylem. In the rest of the heat map, the 

protein abundance patterns were mostly not repeated for each tree. There seems to be more 

series with protein abundance in tree number three and tree number four. There was a large 

group of proteins that were upregulated in phloem for tree number three that was not 

reproduced in any other trees. In tree number four there was a lot of up-regulated protein 

around the cambium in one section and in another section, there were many proteins that 

were up-regulated in expanding xylem and SCW forming xylem. The up-regulations in those 

two sections were also not reproduced in the other trees.  

The reduced proteomics dendrogram and the reduced transcriptomics dendrogram both 

clustered into two main clusters. The reduced proteomics data dendrogram were split 

approximately in the middle of expanding xylem, while the reduced transcriptomics 

dendrogram were split in the second reprogramming event. The clusters in the proteomics 

dendrogram were paired up with their corresponding cluster in the transcriptomics 

dendrogram. Both pairs only had around 60% genes in common showing that the 

transcriptomics data and the proteomics data did not cluster similarly. The one cluster in the 

transcriptomics dendrogram that contained a subset of genes that were expressed both in 

phloem and in late xylem had no clear equivalent in the proteomics data. 

5.6 Data Quality 

To study the relationship between protein abundance and gene expression, data quality was 

imperative. Producing the data used for this thesis would not be possible if not for drastic, 

recent improvements in both RNA-seq and proteomics. Unfortunately, this proteomics data 

still had many limitations. 

Differences in rows (protein and genes) and columns (sample numbers) between the data sets 

caused information loss. The transcriptomics had 25,434 identified genes that had no 

corresponding protein in the proteomics data set, meaning that the proteomics methods in the 

study failed to identify around 90% of the proteome, assuming the transcriptomics study 
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managed to identify most of the genes in the genome. In a similar study of Drosophila brain 

tumor cells 6,200 tissue-specific proteins were identified. This corresponded to 

approximately 70% of all the protein-coding mRNA (Jüschke et al., 2013). Populus 

trichocarpa has a protein count of 51,717 according to the NCBI (Institute, 2006) and in this 

study of the proteome and transcriptome of Populus tremula, 28,294 protein-encoding genes 

and 3,083 proteins were identified. Six samples were removed from the transcriptomics data 

and eleven from the protein data. Choosing which to remove was based on an optimization 

considering only the untreated proteomics data and perhaps more sophisticated methods 

would align the data set more precisely regarding the different data treatments. After 

matching the two data sets by genes, the proteomics dataset still had 920 proteins with series 

in which all entries had zero protein abundance that needed to be removed.  

The proteomics data had mostly zero entries when considering the 2860x100 (proteins x 

samples) matrix (Table 3). It was expected that cells in many cases are conservative when it 

comes to the translation of proteins compared to transcription. However, with a zero rate of 

87% in protein abundance in the matched data with full zero series were removed seems 

excessive. 

Comparing the marker genes from the transcriptomics article by Sundell et al. (2017) with 

their corresponding protein abundance provided in the proteomics article by Obudulu et al. 

(2016) gives an impression of the proteomics data’s quality. In the transcriptomics article, the 

five marker genes were used to illustrate how differential expression occurred in the different 

developmental stages (Figure 37). The marker genes were expected to be expressed in certain 

patterns based on their corresponding proteins’ function and the actual gene expression 

patterns largely reflected those expectations (Figure 37). The sucrose synthase 

(Potri.004G081300) was expected in the phloem tissue to maintain the correct ratio of 

sucrose, glucose and fructose. Cyclin-dependent kinase (Potri.016G142800) and was thought 

to be involved in cell cycle stages. It should therefore be highly expressed in the cambium. 

Potri.001G240900, an expansin-encoding gene, was highly expressed in the xylem expansion 

zone. Potri.004G059600 encodes a cellulose synthase family protein. Cellulose is primarily 

needed for secondary cell wall formation and the cellulose synthase is expected to be highly 

expressed in expanding xylem. Potri.011G044500 encodes a protein similar to endonuclease 

(Sundell et al., 2015) and is expected to be found at elevated levels in xylem undergoing 

apoptosis. Only three of those five were found in the proteomics data: synthase, cellulose 
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synthase and Cyclin-dependent kinase. The sucrose synthase protein and the cellulose 

synthase was expressed in its expected pattern. 

 

Figure 37: Expression of marker genes from the transcriptomics article by Sundell et al. (2017). “Expression is 

shown with (A) the variance stabilized transformation (VST) and (B) scaled counts per million (CPM, 

calculated as 2VST, scaled: mean centered and normalized by the standard deviation of each gene).” Gene 

explanation: PtSUS6/Potri.004G081300: Sucrose Synthase (SUS), PtCDC2/Potri.016G142800: cyclin kinase, 

PtEXPA1/Potri.001G240900: expansin, PtCesA8-B/Potri.004G059600: cellulose synthase family protein, 

PtBFN1/Potri.011G044500: Xylem specific proteases and nucleases. 

While the gene expression patterns in most cases were reproduced in all trees, this was almost 

never the case for the proteomics data. The reproduction in the gene expression patterns 

strengthens the claim that the patterns were close to the true gene expression pattern in the 

series and the lack of this in the proteomics data made any claim of true protein abundance 

levels in these samples unreliable. This is especially apparent when comparing the full heat 

maps of the two data sets (Figure 25 and Figure 26). The heat map of the transcriptomics 

shows some color in almost every field and there were smooth transitions and the patterns 

were largely repeated four times for each tree. The patterns in the proteomics-based heat map 

were mostly not repeated for each tree. Furthermore, the protein abundance series in the cases 

section (chapter 4.2) gives examples of protein abundance series that are not reproduced. 

Especially the cellulose synthases (Figure 14) were lacking.  
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5.7 Protein Abundance and Gene Expression are Difficult to 

Compare due to the Macromolecules’ Biological Attributes 

It is far easier to obtain good data from transcriptomics methods than protein profiling 

methods. The hybridization capabilities of RNA and DNA simplifies the process drastically. 

Processing proteomics data is a highly difficult multi-step procedure. 

The method used to characterize the lipids of the proteins was the ultra-performance liquid 

chromatography/quadrupole time-of-flight mass spectrometry system.  Mass spectroscopy-

based proteomics have developed quickly in recent years. Unfortunately, eukaryotic plants 

are highly complex organisms with many protein variants, and they are still difficult to study. 

Plant cells are in addition resistant to degradation and require especially potent license to 

access all the proteins. This could cause issues for proteome analysis, since the required 

process may unintentionally harm the enzymatic process and halt the analysis (Abraham et 

al., 2013). Several approaches have been done to limit the adverse effects of strong detergent 

or mechanical lysis, but the optimum for plant cells may not have been found yet. The 

ionization process of mass spectroscopy is affected by many factors possibly complicating 

the protein profiling, such as chemical and physical qualities of the amino acids, the other 

components in the sample such as solvents present in the samples while they are being 

ionized.  

The cell is rarely in a steady state. This is especially true for cells undergoing continuous 

proliferation, which is a good description of the cells described in this thesis. Both RNA-seq 

and the proteomics techniques provided in the article by Obudulu et al. (2016) measures gene 

expression levels and protein levels at one specific moment for each sample in the series. 

This complicates the comparison since translational rates are often slow and degradation rates 

can be variable for both protein and gene, they may be difficult to compare as mRNA levels 

will rise much faster than protein levels.  

In some sample series, there were delays between increased gene expression and increased 

protein abundance. Examples of delay in translation may include two xylem related 

peptidases: Potri.002G005700.1 and Potri.005G256000.2 (Figure 15: A, C, D). Delay affects 

the correlation scores detrimentally. A method which considered delays in translation might 

better illustrate the relationship between gene expression and protein abundance. In the study 

by Jovanovic et al. (2015) on mouse dendritic cells, they found that after an LPS 

(Lipopolysaccharide) treatment meant to induce immune response the mRNA levels and 



65 

 

protein levels correlated best when they sampled the mRNA after 5 hours of the LPS 

treatment and the protein levels after 12 hours. 

“Translation on demand” proteins generally correlates badly with the gene expression, as 

they are only sporadically expressed while the gene was expressed at all times at regular rates 

(Beyer et al., 2004). Examples of possible translation on demand proteins may be found 

amongst the sucrose synthases (Figure 13 A), amongst the cellulose synthases (Figure 14: D, 

E, G, H, I, J) and probably among many other proteins in the data set. It can also be observed 

on the transcriptomics heat map that there are many gene expression that are translated in all 

samples and some are translated quite evenly across all samples. In the proteomics heat maps, 

small spikes are abundant.  

5.8 Concerning Wood Development 

Wood formation initiates in cambium and it is likely that proteins that are highly expressed in 

developing xylem are important for wood formation in trees (Vander Mijnsbrugge et al., 

2000). In the heat map (Figure 27) it is shown that most proteins were highly expressed in 

around cambium in expanding xylem or phloem. In the rest of xylem developmental stages, 

the different proteins do not seem to cluster, but rather “slide” across the different tissues 

(figure 27). 

Cellulose synthase and sucrose synthase are thought to be important in the secondary cell 

wall synthesis (Kalluri et al., 2009). Protein profiles of sucrose synthase documents that that 

the sucrose synthase proteins were mainly expressed in phloem and they correspond to their 

gene expression (Figure 13). They are not highly expressed in cells that directly contribute to 

the central wood. However, they facilitate transport and uptake of photosynthates needed for 

energy and secondary cell wall formation they are nonetheless vital in wood production. 

Cellulose is the main component of the cell wall which most cells has. The amount of 

cellulose in plant cells varies depending on the cell type (Zhong & Ye, 2007). Many of the 

genes encoding cellulose synthases were highly expressed across all developmental stages, 

while the protein abundance was more less consistent (Figure 14). The cellulose synthases 

were highly expressed in the SCW forming xylem and less expressed in expanding xylem and 

later xylem.  
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5.9 GO Enrichment Analysis 

GO enrichment analysis was performed on the group of protein abundance series that were 

more responsive to the moving average treatment. This was to see if there were GO terms 

that were associated with the gene product that were easier to analyze with the proteomics 

methods used to obtain the proteomics data used in this thesis. The row correlation 

coefficients calculated between average transcript series and protein abundance series treated 

with moving average calculation and the “best method” were split into two groups main 

groups. The proteins largely unresponsive to data treatment and the ones that responded well.  

The former group had a mean of approximately 0 correlation and the latter had a mean 

approximately 0.5 correlation (Figure 20 D). The boundary between them seems to be 

approximately at 0.17 and the 1,233 proteins above that threshold were selected. Many GO 

terms were found to be overrepresented (full lists in Appendix B), indicating that gene 

product with specific GO terms were more responsive to data treatment and/or the protein 

profiling method used. 

As the full proteomics data set described only specific developmental stages in the trees it is 

no wonder that GO terms related to wood production are overrepresented in the set analyzed. 

Examples of this is the “proteasome core complex” and “microtubule” GO term from the 

cellular component category. “Proteasome core complex” is likely overrepresented since 

protein degradation is vital in xylem maturation (Bollhoner et al., 2012). Previously in the 

thesis (chapter 4.2.4) xylem related peptides have been shown to correlate well with their 

gene expression series.  Microtubules are polymers of tubulin and organized in xylem they 

are an important component of wood (Oda et al., 2010).  

 

5.10 Future Work 

This thesis aimed at analyzing gene expression and protein abundance together through 

different methods to uncover the dynamics between gene expression and protein synthesis 

and content in cells. The contemporary digital toolbox offers near endless opportunities for 

comparing two data sets and only a select few were utilized for this thesis.  

Even though the data was separated into two sections, separating the data further into the 

alternative sections based on the correlation between the protein abundance series and        

the gene expression series, or by some other criteria, could yield additional information.  
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The proteins and their characteristics could be inspected more closely to see if they possibly 

had anything in common (as was done in the GO enrichment analysis). The proteins and 

expressed genes that correlated highly had more overrepresented GO terms which could be 

revisited more closely as they could provide some new insight in proteomics and valuable 

information on which type of proteins are more detectable. Additionally, GO enrichment 

could provide insight in protein attributes of the proteins that were less detectable and maybe 

how proteins with attributes more easily be quantified and profiled. 

Utilizing technology that differentiates the splice variants would enable more correct 

comparisons between transcriptomics data and proteomics data where isoforms are 

distinguished. When comparing gene expression levels and protein abundance, it is important 

to note that one mRNA molecule may encode several isoforms. In the transcriptomics data 

set, splice variants encoding different isoforms were not differentiated. This could have 

skewed the comparison, since in some cases only a fraction of the mRNA will ultimately 

encode a single isoform. In cases where the detected isoforms were not summed this may 

have caused issues for the comparisons. Utilizing technology that differentiates the splice 

variants based on which isoform it will translate into could improve correlations. 

Many proteins in the data set were of unknown function, identifying the function of the 

protein could lead to a greater understanding of the proteome of Populus tremula and its 

closely related species. Since species in the Populus genus is becoming the model organisms 

for woody plants more insight into its proteome will be valuable for future studies. 
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Appendix A: Details of the R-scripts 

0-load_info 

This script loaded the excel file “Protein_profilling_data.xlsx". The loaded data was adapted 

to a data frame with the following columns: “GO” showing the GO terms of each protein, 

“Function” where the basic function description was saved for each protein, “ID” where the 

whole POTRI code including isomorph suffix was saved. Another column was made, where 

the suffix of the POTRI code was excluded with substring. As follows: Potri.001G001600.1 

to Potri.001G001600. A mock entry called New_Var3083 was removed from the data frame. 

0-load_protein 

This script loaded the text file “Protein_profilling_data.txt” and sourced “0-load_info”. It 

scaled the data using a logarithmic transformation. The function log2() was used for this 

transformation on the data +1. The +1 made sure that zero entries stay zero instead of 

becoming negative infinity. The data frame from “0-load_info” and the data frame made from 

“Protein_profilling_data.txt” were pasted together. Lastly, an anomaly entry was coerced to a 

zero entry. The dimension of the resulting data frame was now 3082x115.  

0-load_transcript 

This script loaded the text file “TPC2017-LSB-00153R2_Supplemental_Data_Set_2.txt”. 

The dimensions of the data frame loaded was 28294x107. 

1-match_rows 

This script sourced “0-load_protein” and “0-load_transcript”. The purpose of this script was 

to find which genes in the transcriptomics data corresponded to the proteins in the proteomics 

data. Index based coding and the match() function was used to achieve this. Afterward, the 

transcript data frame and the protein data frame had the same number of rows.  Further, all 

rows with zero expression in the protein data were cut out and the corresponding rows in the 

transcription data frame were also cut out. Lastly the columns in the protein data frame 

containing GO terms, Function and full ID were removed from the frame and instead saved in 

a separate data frame to be used as an info resource. 

2-match_columns 
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This script sourced “1-match_rows”. The purpose of this script was to equalize the number of 

columns in both data sets and for all trees since the number of samples for the transcript data 

and the protein data differed. The protein data had 111 entries divided among four trees and 

the transcript data had 106 divided by four trees. The script removed sample entries so that 

the data frames had a uniform 25 entries per tree for a total of 100 samples for each data set. 

The samples included are described in the Table 1 and Table 2. After the removals the 

dimensions of both data sets were 2029 x 101. The first column indicated the protein names. 

Table 1: protein cutting scheme. 

Tree Number of 

samples in data 

Samples 

Included 

1 27 1 to 25 

2 28 29 to 53 

3 28 56 to 80 

4 28 86 to 110 

Total 111 100 

 

Table 2: transcript cutting scheme. 

Tree Number of 

samples in data 

Samples 

Included 

1 25 1 to 25 

2 26 26 to 51 

3 28 53 to 77 

4 27 81 to 105 

Total 106 100 

 

3-moving_average 

This script sourced “2-match_columns” and a function made for calculating the moving 

average. This script calculated the moving average for the proteomics data. The function 

takes in a vector and calculates the average of each entry with both adjacent entries (or one at 

the start and end of the vector). The protein data frame was split into the four trees before 

looping through the function and then pasted together as a separate “moving average” data 

frame.       
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4-best_method 

This script sourced “3-moving_average” and a function made for calculating the “best 

method”. This script calculated which of the protein series (from the four trees) correlated 

best with the average transcript. The “best method” took two data frames. Both were split 

into four sections by columns. The average of the four sections was calculated for the second 

data frame. The function looped through every row and calculated the correlation between the 

four sections of the first data frame with the average in the other in turn. The section that 

correlated the highest was saved in a different data frame which was returned. The function 

ran for both the raw proteomics data and for the moving average treated protein data. 

Additionally, the average transcript data frame was calculated. 

5-clustering 

This script sourced “4-best_method”. Three functions were built into this script that were 

used to cluster the two data sets and compare the content of the clusters in the proteomics 

data set and the transcriptomics data set. The first function clustered the data sets based on 

correlation distances using the “ward.d” method and saved the result as a data frame. Number 

of clusters could be specified. The second function took two series of protein names 

calculated the total number of entries in the two and divided them by the number of unique 

protein names in the two sets. The third function looped through all the clusters in one data 

frame and used the second function to calculate the scores for each possible cluster pair in the 

two data frames. These scores were calculated for the moving average calculated protein data 

set and the transcriptomics data set, and for the “best method” moving average calculated 

protein data and the average by trees transcriptomics data set. 

5-isoforms 

This script sourced “4-best_method”. The proteins with isoforms were found in the moving 

average calculated data frame and the different isoforms of a protein were summed together 

based on samples. These sums were saved in a data frame. 

5-on_off_switch 

This script sourced “3-moving_average”. This script creates new data frames for the 

proteomics data, moving average calculated proteomics data and the transcriptomics data 



76 

 

where the non-zero entries are saved as ones and zero entries remain zeros. The zeros and 

ones are compared between the resulting data sets. 

5-molecules_per_sample 

This script sourced “1-best_method”. The protein abundance was summed by sample for the 

proteomics data and the transcript was summed by sample for the transcriptomics data. The 

resulting data was saved in a data frame. Secondly the scores for the combined isoform 

proteins correlated with their corresponding transcript was calculated 

6-correlations 

This script sourced “5-isoforms”. The script was divided into four sections. The first section 

correlated the proteomics data sets with the transcriptomics data set by protein name (row 

correlation). This was done for the raw, the moving average calculated, the “best method“ 

and the combined proteomics data sets. Correlation by protein names was also calculated for 

the individual trees and the average of the trees. This was repeated using the moving average 

calculated series. A data frame containing the correlations was saved. Second, the combined 

isoform proteins were correlated with their corresponding transcript series. Third, the data 

sets were transposed, and correlations were calculated by sample, meaning the vector of all 

protein abundance entries for sample one was correlated with the corresponding transcript 

vector and so on. Lastly, full correlation was done, meaning the whole data sets were saved 

as single vectors and then correlated. 

7-results 

This script sourced “6-correlations”, 5-on_off_switch, 5-clustering, 5-cor_by_sample and the 

correlation function. This script produced the all plots (using mainly the ggplot() function), 

the statistical tests and related figures and the heat maps and dendrograms (using the 

heatmap.2() function). 
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Appendix B: Results from Gene Ontology Enrichment 

Analysis 

GO Terms of the Biological Process Category That are Overrepresented in 

the Highly Correlating Protein Subset 
 

GO ID P-value (FDR) Statistics Description 
GO:0006195  4.825e-10  20/829 | 36/14903  purine nucleotide catabolic process 

GO:0009207  4.825e-10  20/829 | 36/14903  purine ribonucleoside triphosphate catabolic 

process 

GO:1901658  4.825e-10  20/829 | 36/14903  glycosyl compound catabolic process 

GO:0072523  4.825e-10  20/829 | 36/14903  purine-containing compound catabolic process 

GO:0009146  4.825e-10  20/829 | 36/14903  purine nucleoside triphosphate catabolic process 

GO:0046130  4.825e-10  20/829 | 36/14903  purine ribonucleoside catabolic process 

GO:0006152  4.825e-10  20/829 | 36/14903  purine nucleoside catabolic process 

GO:0042454  4.825e-10  20/829 | 36/14903  ribonucleoside catabolic process 

GO:0009143  4.825e-10  20/829 | 36/14903  nucleoside triphosphate catabolic process 

GO:0009154  4.825e-10  20/829 | 36/14903  purine ribonucleotide catabolic process 

GO:0009164  4.825e-10  20/829 | 36/14903  nucleoside catabolic process 

GO:0009166  4.825e-10  20/829 | 36/14903  nucleotide catabolic process 

GO:0009203  4.825e-10  20/829 | 36/14903  ribonucleoside triphosphate catabolic process 

GO:1901292  4.825e-10  20/829 | 36/14903  nucleoside phosphate catabolic process 

GO:0009261  4.825e-10  20/829 | 36/14903  ribonucleotide catabolic process 

GO:0006006  5.480e-10  32/829 | 100/14903  glucose metabolic process 

GO:0046700  5.532e-10  20/829 | 53/14903  heterocycle catabolic process 

GO:0044724  5.532e-10  30/829 | 93/14903  single-organism carbohydrate catabolic process 

GO:0046434  5.952e-10  20/829 | 42/14903  organophosphate catabolic process 

GO:1901361  6.476e-10  20/829 | 54/14903  organic cyclic compound catabolic process 

GO:0051258  6.571e-10  19/829 | 37/14903  protein polymerization 

GO:0006461  6.624e-10  19/829 | 48/14903  protein complex assembly 

GO:1901565  6.671e-10  23/829 | 80/14903  organonitrogen compound catabolic process 

GO:1901605  7.483e-10  32/829 | 151/14903  alpha-amino acid metabolic process 

GO:0007264  7.925e-10  32/829 | 143/14903  small GTPase mediated signal transduction 

GO:0009144  8.071e-10  30/829 | 127/14903  purine nucleoside triphosphate metabolic process 

GO:0009199  8.071e-10  30/829 | 127/14903  ribonucleoside triphosphate metabolic process 

GO:0009205  8.071e-10  30/829 | 127/14903  purine ribonucleoside triphosphate metabolic 

process 

GO:0072521  8.297e-10  36/829 | 170/14903  purine-containing compound metabolic process 

GO:0005996  8.510e-10  34/829 | 144/14903  monosaccharide metabolic process 

GO:0009653  8.720e-10  16/829 | 25/14903  anatomical structure morphogenesis 

GO:0000902  8.720e-10  16/829 | 25/14903  cell morphogenesis 

GO:0032989  8.720e-10  16/829 | 25/14903  cellular component morphogenesis 

GO:0048869  8.720e-10  16/829 | 25/14903  cellular developmental process 

GO:1901657  8.950e-10  44/829 | 198/14903  glycosyl compound metabolic process 

GO:0009116  8.950e-10  44/829 | 198/14903  nucleoside metabolic process 

GO:0006096  9.115e-10  25/829 | 62/14903  glycolysis 

GO:0034655  9.154e-10  20/829 | 44/14903  nucleobase-containing compound catabolic 

process 

GO:0006007  9.477e-10  30/829 | 90/14903  glucose catabolic process 

GO:0019320  9.477e-10  30/829 | 90/14903  hexose catabolic process 

GO:0046365  9.477e-10  30/829 | 90/14903  monosaccharide catabolic process 

GO:0044723  1.003e-09  68/829 | 439/14903  single-organism carbohydrate metabolic process 
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GO:0043623  1.004e-09  19/829 | 45/14903  cellular protein complex assembly 

GO:0046128  1.017e-09  36/829 | 156/14903  purine ribonucleoside metabolic process 

GO:0042278  1.017e-09  36/829 | 156/14903  purine nucleoside metabolic process 

GO:0009056  1.021e-09  67/829 | 385/14903  catabolic process 

GO:0006184  1.022e-09  18/829 | 34/14903  GTP catabolic process 

GO:1901069  1.022e-09  18/829 | 34/14903  guanosine-containing compound catabolic process 

GO:0055086  1.027e-09  48/829 | 269/14903  nucleobase-containing small molecule metabolic 

process 

GO:1901136  1.034e-09  21/829 | 63/14903  carbohydrate derivative catabolic process 

GO:0008652  1.037e-09  40/829 | 164/14903  cellular amino acid biosynthetic process 

GO:0009119  1.037e-09  36/829 | 164/14903  ribonucleoside metabolic process 

GO:0044270  1.042e-09  20/829 | 51/14903  cellular nitrogen compound catabolic process 

GO:1901575  1.049e-09  65/829 | 351/14903  organic substance catabolic process 

GO:0019318  1.066e-09  33/829 | 131/14903  hexose metabolic process 

GO:0044767  1.070e-09  16/829 | 29/14903  single-organism developmental process 

GO:0016052  1.085e-09  30/829 | 107/14903  carbohydrate catabolic process 

GO:0006412  1.118e-09  112/829 | 567/14903  translation 

GO:0006520  1.163e-09  69/829 | 355/14903  cellular amino acid metabolic process 

GO:0046039  1.198e-09  21/829 | 40/14903  GTP metabolic process 

GO:0043436  1.209e-09  83/829 | 522/14903  oxoacid metabolic process 

GO:0019752  1.209e-09  83/829 | 522/14903  carboxylic acid metabolic process 

GO:0009141  1.213e-09  30/829 | 132/14903  nucleoside triphosphate metabolic process 

GO:0006082  1.254e-09  83/829 | 523/14903  organic acid metabolic process 

GO:0019439  1.283e-09  20/829 | 52/14903  aromatic compound catabolic process 

GO:1901068  1.325e-09  21/829 | 46/14903  guanosine-containing compound metabolic 

process 

GO:0034645  1.376e-09  152/829 | 948/14903  cellular macromolecule biosynthetic process 

GO:0044281  1.566e-09  134/829 | 886/14903  small molecule metabolic process 

GO:1901564  1.802e-09  115/829 | 771/14903  organonitrogen compound metabolic process 

GO:0009059  1.859e-09  153/829 | 1019/14903  macromolecule biosynthetic process 

GO:0044249  1.861e-09  205/829 | 1631/14903  cellular biosynthetic process 

GO:0005975  1.897e-09  105/829 | 998/14903  carbohydrate metabolic process 

GO:0009058  1.907e-09  234/829 | 1980/14903  biosynthetic process 

GO:1901576  1.911e-09  216/829 | 1757/14903  organic substance biosynthetic process 

GO:0044710  2.196e-09  272/829 | 3299/14903  single-organism metabolic process 

GO:0071704  2.243e-09  481/829 | 6836/14903  organic substance metabolic process 

GO:0071822  2.260e-09  19/829 | 61/14903  protein complex subunit organization 

GO:0008152  2.285e-09  659/829 | 9859/14903  metabolic process 

GO:0044237  2.316e-09  407/829 | 5635/14903  cellular metabolic process 

GO:0044238  2.861e-09  457/829 | 6540/14903  primary metabolic process 

GO:0016053  2.922e-09  43/829 | 273/14903  organic acid biosynthetic process 

GO:0046394  2.922e-09  43/829 | 273/14903  carboxylic acid biosynthetic process 

GO:0006886  2.978e-09  35/829 | 194/14903  intracellular protein transport 

GO:0035556  6.159e-09  32/829 | 171/14903  intracellular signal transduction 

GO:0009150  7.442e-09  30/829 | 154/14903  purine ribonucleotide metabolic process 

GO:0006163  1.018e-08  30/829 | 156/14903  purine nucleotide metabolic process 

GO:0019693  1.371e-08  30/829 | 158/14903  ribose phosphate metabolic process 

GO:0009259  1.371e-08  30/829 | 158/14903  ribonucleotide metabolic process 

GO:1901607  2.644e-08  23/829 | 101/14903  alpha-amino acid biosynthetic process 

GO:0032502  4.155e-08  16/829 | 51/14903  developmental process 

GO:0034622  4.894e-08  26/829 | 130/14903  cellular macromolecular complex assembly 

GO:1901566  4.924e-08  52/829 | 398/14903  organonitrogen compound biosynthetic process 

GO:0016043  6.124e-08  52/829 | 402/14903  cellular component organization 

GO:0065003  7.920e-08  26/829 | 133/14903  macromolecular complex assembly 

GO:0009117  9.287e-08  34/829 | 211/14903  nucleotide metabolic process 

GO:0046907  1.092e-07  36/829 | 233/14903  intracellular transport 
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GO:0006807  1.314e-07  139/829 | 1580/14903  nitrogen compound metabolic process 

GO:0006564  1.358e-07  6/829 | 6/14903  L-serine biosynthetic process 

GO:1901135  1.636e-07  45/829 | 334/14903  carbohydrate derivative metabolic process 

GO:0071840  1.738e-07  53/829 | 427/14903  cellular component organization or biogenesis 

GO:0044283  1.974e-07  43/829 | 310/14903  small molecule biosynthetic process 

GO:0044711  2.243e-07  43/829 | 313/14903  single-organism biosynthetic process 

GO:0006753  2.243e-07  34/829 | 219/14903  nucleoside phosphate metabolic process 

GO:0006555  2.332e-07  7/829 | 9/14903  methionine metabolic process 

GO:0044248  2.836e-07  37/829 | 253/14903  cellular catabolic process 

GO:0006414  2.852e-07  12/829 | 32/14903  translational elongation 

GO:0044262  3.485e-07  38/829 | 266/14903  cellular carbohydrate metabolic process 

GO:0006457  4.865e-07  30/829 | 185/14903  protein folding 

GO:0043933  5.023e-07  26/829 | 146/14903  macromolecular complex subunit organization 

GO:0051649  1.088e-06  37/829 | 267/14903  establishment of localization in cell 

GO:0022607  1.645e-06  26/829 | 155/14903  cellular component assembly 

GO:0006563  1.899e-06  9/829 | 20/14903  L-serine metabolic process 

GO:0051170  2.945e-06  6/829 | 8/14903  nuclear import 

GO:0006606  2.945e-06  6/829 | 8/14903  protein import into nucleus 

GO:0055114  3.234e-06  162/829 | 2019/14903  oxidation-reduction process 

GO:0006091  4.351e-06  25/829 | 153/14903  generation of precursor metabolites and energy 

GO:0033692  4.826e-06  25/829 | 154/14903  cellular polysaccharide biosynthetic process 

GO:0000271  4.826e-06  25/829 | 154/14903  polysaccharide biosynthetic process 

GO:0009084  4.876e-06  9/829 | 22/14903  glutamine family amino acid biosynthetic process 

GO:0009069  6.820e-06  11/829 | 35/14903  serine family amino acid metabolic process 

GO:0015988  7.038e-06  12/829 | 42/14903  energy coupled proton transmembrane transport, 

against electrochemical gradient 

GO:0015991  7.038e-06  12/829 | 42/14903  ATP hydrolysis coupled proton transport 

GO:0045184  7.116e-06  36/829 | 277/14903  establishment of protein localization 

GO:0015031  7.116e-06  36/829 | 277/14903  protein transport 

GO:0007017  1.626e-05  23/829 | 144/14903  microtubule-based process 

GO:0030243  2.648e-05  13/829 | 55/14903  cellulose metabolic process 

GO:0030244  2.648e-05  13/829 | 55/14903  cellulose biosynthetic process 

GO:0016192  2.829e-05  25/829 | 170/14903  vesicle-mediated transport 

GO:0009987  2.899e-05  519/829 | 8214/14903  cellular process 

GO:0015992  3.304e-05  17/829 | 91/14903  proton transport 

GO:0006818  3.304e-05  17/829 | 91/14903  hydrogen transport 

GO:0009073  3.311e-05  8/829 | 21/14903  aromatic amino acid family biosynthetic process 

GO:0044264  3.429e-05  27/829 | 194/14903  cellular polysaccharide metabolic process 

GO:0009086  3.491e-05  5/829 | 7/14903  methionine biosynthetic process 

GO:0051169  3.620e-05  6/829 | 11/14903  nuclear transport 

GO:0006913  3.620e-05  6/829 | 11/14903  nucleocytoplasmic transport 

GO:0000096  4.023e-05  7/829 | 16/14903  sulfur amino acid metabolic process 

GO:0051273  4.234e-05  14/829 | 66/14903  beta-glucan metabolic process 

GO:0051274  4.234e-05  14/829 | 66/14903  beta-glucan biosynthetic process 

GO:0045226  4.290e-05  11/829 | 42/14903  extracellular polysaccharide biosynthetic process 

GO:0046379  4.290e-05  11/829 | 42/14903  extracellular polysaccharide metabolic process 

GO:0007010  6.801e-05  8/829 | 23/14903  cytoskeleton organization 

GO:0043648  6.859e-05  11/829 | 44/14903  dicarboxylic acid metabolic process 

GO:0006542  8.324e-05  5/829 | 8/14903  glutamine biosynthetic process 

GO:0009250  8.345e-05  14/829 | 70/14903  glucan biosynthetic process 

GO:0034637  9.248e-05  25/829 | 183/14903  cellular carbohydrate biosynthetic process 

GO:0016051  9.945e-05  27/829 | 203/14903  carbohydrate biosynthetic process 

GO:0005976  1.319e-04  27/829 | 208/14903  polysaccharide metabolic process 

GO:0009064  1.952e-04  11/829 | 49/14903  glutamine family amino acid metabolic process 

GO:0009070  2.967e-04  6/829 | 15/14903  serine family amino acid biosynthetic process 

GO:0009066  2.969e-04  7/829 | 21/14903  aspartate family amino acid metabolic process 
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GO:0006099  4.073e-04  4/829 | 6/14903  tricarboxylic acid cycle 

GO:0009072  5.390e-04  8/829 | 30/14903  aromatic amino acid family metabolic process 

GO:0006418  6.091e-04  13/829 | 74/14903  tRNA aminoacylation for protein translation 

GO:1901360  6.103e-04  111/829 | 1421/14903  organic cyclic compound metabolic process 

GO:0043038  6.925e-04  13/829 | 75/14903  amino acid activation 

GO:0043039  6.925e-04  13/829 | 75/14903  tRNA aminoacylation 

GO:0046500  8.749e-04  4/829 | 7/14903  S-adenosylmethionine metabolic process 

GO:0006556  8.749e-04  4/829 | 7/14903  S-adenosylmethionine biosynthetic process 

GO:0000097  8.988e-04  5/829 | 12/14903  sulfur amino acid biosynthetic process 

GO:0006073  1.093e-03  16/829 | 110/14903  cellular glucan metabolic process 

GO:0044042  1.093e-03  16/829 | 110/14903  glucan metabolic process 

GO:0006694  1.102e-03  18/829 | 132/14903  steroid biosynthetic process 

GO:0019637  1.172e-03  35/829 | 337/14903  organophosphate metabolic process 

GO:0006790  1.199e-03  11/829 | 60/14903  sulfur compound metabolic process 

GO:0008202  1.293e-03  18/829 | 134/14903  steroid metabolic process 

GO:0018193  1.644e-03  6/829 | 20/14903  peptidyl-amino acid modification 

GO:0005985  1.966e-03  5/829 | 14/14903  sucrose metabolic process 

GO:0044272  2.371e-03  9/829 | 46/14903  sulfur compound biosynthetic process 

GO:0006108  2.834e-03  6/829 | 22/14903  malate metabolic process 

GO:0051603  3.270e-03  18/829 | 142/14903  proteolysis involved in cellular protein catabolic 

process 

GO:0017038  3.567e-03  6/829 | 23/14903  protein import 

GO:0018196  6.203e-03  4/829 | 11/14903  peptidyl-asparagine modification 

GO:0018279  6.203e-03  4/829 | 11/14903  protein N-linked glycosylation via asparagine 

GO:0009128  7.297e-03  2/829 | 2/14903  purine nucleoside monophosphate catabolic 

process 

GO:0033559  7.297e-03  2/829 | 2/14903  unsaturated fatty acid metabolic process 

GO:1901568  7.297e-03  2/829 | 2/14903  fatty acid derivative metabolic process 

GO:0043094  7.297e-03  2/829 | 2/14903  cellular metabolic compound salvage 

GO:0043101  7.297e-03  2/829 | 2/14903  purine-containing compound salvage 

GO:0043174  7.297e-03  2/829 | 2/14903  nucleoside salvage 

GO:0009158  7.297e-03  2/829 | 2/14903  ribonucleoside monophosphate catabolic process 

GO:0019370  7.297e-03  2/829 | 2/14903  leukotriene biosynthetic process 

GO:0006166  7.297e-03  2/829 | 2/14903  purine ribonucleoside salvage 

GO:0006200  7.297e-03  2/829 | 2/14903  ATP catabolic process 

GO:0006206  7.297e-03  2/829 | 2/14903  pyrimidine nucleobase metabolic process 

GO:0006207  7.297e-03  2/829 | 2/14903  'de novo' pyrimidine nucleobase biosynthetic 

process 

GO:0046456  7.297e-03  2/829 | 2/14903  icosanoid biosynthetic process 

GO:1901570  7.297e-03  2/829 | 2/14903  fatty acid derivative biosynthetic process 

GO:0019856  7.297e-03  2/829 | 2/14903  pyrimidine nucleobase biosynthetic process 

GO:0006636  7.297e-03  2/829 | 2/14903  unsaturated fatty acid biosynthetic process 

GO:0006690  7.297e-03  2/829 | 2/14903  icosanoid metabolic process 

GO:0006691  7.297e-03  2/829 | 2/14903  leukotriene metabolic process 

GO:0009125  7.297e-03  2/829 | 2/14903  nucleoside monophosphate catabolic process 

GO:0006730  7.297e-03  2/829 | 2/14903  one-carbon metabolic process 

GO:0009169  7.297e-03  2/829 | 2/14903  purine ribonucleoside monophosphate catabolic 

process 

GO:0009067  7.481e-03  5/829 | 19/14903  aspartate family amino acid biosynthetic process 

GO:0009148  7.815e-03  3/829 | 6/14903  pyrimidine nucleoside triphosphate biosynthetic 

process 

GO:0046036  7.815e-03  3/829 | 6/14903  CTP metabolic process 

GO:0046051  7.815e-03  3/829 | 6/14903  UTP metabolic process 

GO:0009208  7.815e-03  3/829 | 6/14903  pyrimidine ribonucleoside triphosphate metabolic 

process 

GO:0006165  7.815e-03  3/829 | 6/14903  nucleoside diphosphate phosphorylation 
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GO:0006183  7.815e-03  3/829 | 6/14903  GTP biosynthetic process 

GO:0006228  7.815e-03  3/829 | 6/14903  UTP biosynthetic process 

GO:0006241  7.815e-03  3/829 | 6/14903  CTP biosynthetic process 

GO:0046939  7.815e-03  3/829 | 6/14903  nucleotide phosphorylation 

GO:0009209  7.815e-03  3/829 | 6/14903  pyrimidine ribonucleoside triphosphate 

biosynthetic process 

GO:0006725  8.855e-03  94/829 | 1264/14903  cellular aromatic compound metabolic process 

GO:0006139  1.065e-02  85/829 | 1137/14903  nucleobase-containing compound metabolic 

process 

GO:0006102  1.158e-02  3/829 | 7/14903  isocitrate metabolic process 

GO:1901070  1.158e-02  3/829 | 7/14903  guanosine-containing compound biosynthetic 

process 

GO:0006544  1.422e-02  5/829 | 22/14903  glycine metabolic process 

GO:0006399  1.475e-02  17/829 | 153/14903  tRNA metabolic process 

GO:0046129  1.637e-02  13/829 | 103/14903  purine ribonucleoside biosynthetic process 

GO:0042451  1.637e-02  13/829 | 103/14903  purine nucleoside biosynthetic process 

GO:0009082  1.736e-02  3/829 | 8/14903  branched-chain amino acid biosynthetic process 

GO:0006536  1.761e-02  4/829 | 15/14903  glutamate metabolic process 

GO:0042398  1.977e-02  7/829 | 43/14903  cellular modified amino acid biosynthetic process 

GO:1901659  2.251e-02  13/829 | 111/14903  glycosyl compound biosynthetic process 

GO:0042455  2.251e-02  13/829 | 111/14903  ribonucleoside biosynthetic process 

GO:0009163  2.251e-02  13/829 | 111/14903  nucleoside biosynthetic process 

GO:0006541  2.395e-02  5/829 | 25/14903  glutamine metabolic process 

GO:0015977  2.736e-02  4/829 | 17/14903  carbon fixation 

GO:0006575  2.781e-02  7/829 | 46/14903  cellular modified amino acid metabolic process 

GO:0072522  2.899e-02  13/829 | 116/14903  purine-containing compound biosynthetic process 

GO:0071702  2.901e-02  36/829 | 429/14903  organic substance transport 

GO:0046131  3.195e-02  3/829 | 10/14903  pyrimidine ribonucleoside metabolic process 

GO:0046132  3.195e-02  3/829 | 10/14903  pyrimidine ribonucleoside biosynthetic process 

GO:0046134  3.195e-02  3/829 | 10/14903  pyrimidine nucleoside biosynthetic process 

GO:0006213  3.195e-02  3/829 | 10/14903  pyrimidine nucleoside metabolic process 

GO:0009218  3.195e-02  3/829 | 10/14903  pyrimidine ribonucleotide metabolic process 

GO:0009220  3.195e-02  3/829 | 10/14903  pyrimidine ribonucleotide biosynthetic process 

GO:0006487  3.231e-02  4/829 | 18/14903  protein N-linked glycosylation 

GO:0019725  3.465e-02  17/829 | 169/14903  cellular homeostasis 

GO:0051130  3.471e-02  2/829 | 4/14903  positive regulation of cellular component 

organization 

GO:0043243  3.471e-02  2/829 | 4/14903  positive regulation of protein complex 

disassembly 

GO:0043244  3.471e-02  2/829 | 4/14903  regulation of protein complex disassembly 

GO:0045901  3.471e-02  2/829 | 4/14903  positive regulation of translational elongation 

GO:0045905  3.471e-02  2/829 | 4/14903  positive regulation of translational termination 

GO:0006449  3.471e-02  2/829 | 4/14903  regulation of translational termination 

GO:0006452  3.471e-02  2/829 | 4/14903  translational frameshifting 

GO:0042592  3.480e-02  17/829 | 170/14903  homeostatic process 

GO:0016482  3.838e-02  8/829 | 61/14903  cytoplasmic transport 

GO:0009147  4.023e-02  3/829 | 11/14903  pyrimidine nucleoside triphosphate metabolic 

process 

GO:0009132  4.023e-02  3/829 | 11/14903  nucleoside diphosphate metabolic process 

GO:0015672  4.244e-02  18/829 | 184/14903  monovalent inorganic cation transport 

GO:0045454  4.961e-02  16/829 | 164/14903  cell redox homeostasis 
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GO Terms of the Molecular Function Category that are Overrepresented 

in the Highly Correlating Protein Subset 

 

GO ID P-value (FDR) Statistics Description 

GO:0004455  2.663e-09  11/967 | 13/19622  ketol-acid reductoisomerase activity 

GO:0016614  3.341e-09  55/967 | 392/19622  oxidoreductase activity, acting on CH-OH 

group of donors 

GO:0070003  3.361e-09  16/967 | 34/19622  threonine-type peptidase activity 

GO:0004298  3.361e-09  16/967 | 34/19622  threonine-type endopeptidase activity 

GO:0003735  3.541e-09  103/967 | 487/19622  structural constituent of ribosome 

GO:0005525  4.032e-09  72/967 | 321/19622  GTP binding 

GO:0032561  4.032e-09  72/967 | 321/19622  guanyl ribonucleotide binding 

GO:0005198  4.097e-09  117/967 | 548/19622  structural molecule activity 

GO:0003924  4.144e-09  56/967 | 185/19622  GTPase activity 

GO:0051082  4.340e-09  22/967 | 88/19622  unfolded protein binding 

GO:0016616  4.369e-09  55/967 | 372/19622  oxidoreductase activity, acting on the CH-

OH group of donors, NAD or NADP as 

acceptor 

GO:0017111  4.387e-09  103/967 | 902/19622  nucleoside-triphosphatase activity 

GO:0016818  4.575e-09  106/967 | 948/19622  hydrolase activity, acting on acid 

anhydrides, in phosphorus-containing 

anhydrides 

GO:0016817  4.618e-09  108/967 | 972/19622  hydrolase activity, acting on acid 

anhydrides 

GO:0016462  4.741e-09  106/967 | 923/19622  pyrophosphatase activity 

GO:0019001  4.880e-09  72/967 | 329/19622  guanyl nucleotide binding 

GO:0019904  5.345e-09  10/967 | 14/19622  protein domain specific binding 

GO:0016491  5.578e-09  181/967 | 2275/19622  oxidoreductase activity 

GO:0004617  1.927e-07  6/967 | 6/19622  phosphoglycerate dehydrogenase activity 

GO:0003872  1.984e-07  8/967 | 12/19622  6-phosphofructokinase activity 

GO:0005507  2.543e-07  29/967 | 181/19622  copper ion binding 

GO:0019200  9.345e-07  8/967 | 14/19622  carbohydrate kinase activity 

GO:0008443  9.345e-07  8/967 | 14/19622  phosphofructokinase activity 

GO:0046961  2.276e-06  11/967 | 32/19622  proton-transporting ATPase activity, 

rotational mechanism 

GO:0048037  2.455e-06  68/967 | 715/19622  cofactor binding 

GO:0042085  3.081e-06  5/967 | 5/19622  5-methyltetrahydropteroyltri-L-glutamate-

dependent methyltransferase activity 

GO:0003871  3.081e-06  5/967 | 5/19622  5-methyltetrahydropteroyltriglutamate-

homocysteine S-methyltransferase activity 

GO:0019829  7.512e-06  11/967 | 36/19622  cation-transporting ATPase activity 

GO:0044769  7.512e-06  11/967 | 36/19622  ATPase activity, coupled to 

transmembrane movement of ions, 

rotational mechanism 

GO:0008466  1.007e-05  6/967 | 9/19622  glycogenin glucosyltransferase activity 

GO:0004807  1.525e-05  5/967 | 6/19622  triose-phosphate isomerase activity 

GO:0016841  1.525e-05  5/967 | 6/19622  ammonia-lyase activity 

GO:0003746  2.255e-05  8/967 | 20/19622  translation elongation factor activity 

GO:0050662  3.127e-05  52/967 | 536/19622  coenzyme binding 

GO:0035251  3.179e-05  14/967 | 67/19622  UDP-glucosyltransferase activity 

GO:0046527  3.179e-05  14/967 | 67/19622  glucosyltransferase activity 

GO:0008831  3.329e-05  11/967 | 42/19622  dTDP-4-dehydrorhamnose reductase 

activity 

GO:0003779  5.029e-05  10/967 | 36/19622  actin binding 
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GO:0003824  5.146e-05  591/967 | 10616/19622  catalytic activity 

GO:0008092  1.322e-04  10/967 | 40/19622  cytoskeletal protein binding 

GO:0016787  1.795e-04  205/967 | 3172/19622  hydrolase activity 

GO:0016209  1.913e-04  24/967 | 192/19622  antioxidant activity 

GO:0008964  1.923e-04  4/967 | 5/19622  phosphoenolpyruvate carboxylase activity 

GO:0004618  1.923e-04  4/967 | 5/19622  phosphoglycerate kinase activity 

GO:0016774  1.923e-04  4/967 | 5/19622  phosphotransferase activity, carboxyl 

group as acceptor 

GO:0046933  2.917e-04  8/967 | 28/19622  proton-transporting ATP synthase activity, 

rotational mechanism 

GO:0004812  5.069e-04  13/967 | 76/19622  aminoacyl-tRNA ligase activity 

GO:0016875  5.645e-04  13/967 | 77/19622  ligase activity, forming carbon-oxygen 

bonds 

GO:0016876  5.645e-04  13/967 | 77/19622  ligase activity, forming aminoacyl-tRNA 

and related compounds 

GO:0016829  6.368e-04  29/967 | 274/19622  lyase activity 

GO:0003723  7.086e-04  42/967 | 461/19622  RNA binding 

GO:0051287  7.283e-04  11/967 | 59/19622  NAD binding 

GO:0003854  7.650e-04  17/967 | 125/19622  3-beta-hydroxy-delta5-steroid 

dehydrogenase activity 

GO:0033764  7.650e-04  17/967 | 125/19622  steroid dehydrogenase activity, acting on 

the CH-OH group of donors, NAD or 

NADP as acceptor 

GO:0016229  7.650e-04  17/967 | 125/19622  steroid dehydrogenase activity 

GO:0070011  8.152e-04  51/967 | 599/19622  peptidase activity, acting on L-amino acid 

peptides 

GO:0004743  8.181e-04  6/967 | 18/19622  pyruvate kinase activity 

GO:0031420  8.181e-04  6/967 | 18/19622  alkali metal ion binding 

GO:0030955  8.181e-04  6/967 | 18/19622  potassium ion binding 

GO:0016861  8.355e-04  7/967 | 25/19622  intramolecular oxidoreductase activity, 

interconverting aldoses and ketoses 

GO:0019205  8.457e-04  8/967 | 33/19622  nucleobase-containing compound kinase 

activity 

GO:0004478  9.124e-04  4/967 | 7/19622  methionine adenosyltransferase activity 

GO:0004611  9.124e-04  4/967 | 7/19622  phosphoenolpyruvate carboxykinase 

activity 

GO:0004175  1.003e-03  37/967 | 392/19622  endopeptidase activity 

GO:0016211  1.253e-03  5/967 | 13/19622  ammonia ligase activity 

GO:0016880  1.253e-03  5/967 | 13/19622  acid-ammonia (or amide) ligase activity 

GO:0004356  1.253e-03  5/967 | 13/19622  glutamate-ammonia ligase activity 

GO:0008135  1.685e-03  13/967 | 88/19622  translation factor activity, nucleic acid 

binding 

GO:0008172  1.826e-03  5/967 | 14/19622  S-methyltransferase activity 

GO:0008233  2.207e-03  51/967 | 632/19622  peptidase activity 

GO:0016860  2.208e-03  7/967 | 30/19622  intramolecular oxidoreductase activity 

GO:0016615  2.244e-03  6/967 | 22/19622  malate dehydrogenase activity 

GO:0009378  3.397e-03  10/967 | 62/19622  four-way junction helicase activity 

GO:0008134  3.877e-03  4/967 | 10/19622  transcription factor binding 

GO:0003849  4.341e-03  3/967 | 5/19622  3-deoxy-7-phosphoheptulonate synthase 

activity 

GO:0016776  5.628e-03  4/967 | 11/19622  phosphotransferase activity, phosphate 

group as acceptor 

GO:0008565  6.279e-03  11/967 | 79/19622  protein transporter activity 

GO:0030060  7.960e-03  4/967 | 12/19622  L-malate dehydrogenase activity 

GO:0004550  7.969e-03  3/967 | 6/19622  nucleoside diphosphate kinase activity 
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GO:0042625  8.135e-03  11/967 | 83/19622  ATPase activity, coupled to 

transmembrane movement of ions 

GO:0003678  8.135e-03  11/967 | 83/19622  DNA helicase activity 

GO:0016801  8.142e-03  2/967 | 2/19622  hydrolase activity, acting on ether bonds 

GO:0004489  8.142e-03  2/967 | 2/19622  methylenetetrahydrofolate reductase 

(NADPH) activity 

GO:0004001  8.142e-03  2/967 | 2/19622  adenosine kinase activity 

GO:0004013  8.142e-03  2/967 | 2/19622  adenosylhomocysteinase activity 

GO:0004590  8.142e-03  2/967 | 2/19622  orotidine-5'-phosphate decarboxylase 

activity 

GO:0004375  8.142e-03  2/967 | 2/19622  glycine dehydrogenase (decarboxylating) 

activity 

GO:0004107  8.142e-03  2/967 | 2/19622  chorismate synthase activity 

GO:0004148  8.142e-03  2/967 | 2/19622  dihydrolipoyl dehydrogenase activity 

GO:0016642  8.142e-03  2/967 | 2/19622  oxidoreductase activity, acting on the CH-

NH2 group of donors, disulfide as acceptor 

GO:0008553  8.142e-03  2/967 | 2/19622  hydrogen-exporting ATPase activity, 

phosphorylative mechanism 

GO:0016802  8.142e-03  2/967 | 2/19622  trialkylsulfonium hydrolase activity 

GO:0016830  9.437e-03  12/967 | 97/19622  carbon-carbon lyase activity 

GO:0016840  9.813e-03  5/967 | 21/19622  carbon-nitrogen lyase activity 

GO:0004448  1.149e-02  3/967 | 7/19622  isocitrate dehydrogenase activity 

GO:0004450  1.149e-02  3/967 | 7/19622  isocitrate dehydrogenase (NADP+) activity 

GO:0019843  1.346e-02  6/967 | 32/19622  rRNA binding 

GO:0016853  1.355e-02  18/967 | 178/19622  isomerase activity 

GO:0004579  1.575e-02  4/967 | 15/19622  dolichyl-diphosphooligosaccharide-protein 

glycotransferase activity 

GO:0016836  1.621e-02  7/967 | 44/19622  hydro-lyase activity 

GO:0005839  8.286e-10  16/360 | 34/6017  proteasome core complex 

GO:0005874  9.274e-10  18/360 | 33/6017  microtubule 

GO:0044464  1.620e-09  305/360 | 3667/6017  cell part 

GO:0043229  1.683e-09  149/360 | 1580/6017  intracellular organelle 

GO:0043226  1.683e-09  149/360 | 1580/6017  organelle 

GO:0044424  1.782e-09  262/360 | 2754/6017  intracellular part 

GO:0043234  1.819e-09  101/360 | 777/6017  protein complex 

GO:0032991  1.852e-09  208/360 | 1363/6017  macromolecular complex 

GO:0044444  2.067e-09  155/360 | 1027/6017  cytoplasmic part 

GO:0005622  2.143e-09  134/360 | 1144/6017  intracellular 

 

GO terms of the cellular component category that are overrepresented in 

the highly correlating protein subset 

 

GO ID P-value (FDR) Statistics Description 
GO:0005839  8.286e-10  16/360 | 34/6017  proteasome core complex 

GO:0005874  9.274e-10  18/360 | 33/6017  microtubule 

GO:0044464  1.620e-09  305/360 | 3667/6017  cell part 

GO:0043229  1.683e-09  149/360 | 1580/6017  intracellular organelle 

GO:0043226  1.683e-09  149/360 | 1580/6017  organelle 

GO:0044424  1.782e-09  262/360 | 2754/6017  intracellular part 

GO:0043234  1.819e-09  101/360 | 777/6017  protein complex 

GO:0032991  1.852e-09  208/360 | 1363/6017  macromolecular complex 

GO:0044444  2.067e-09  155/360 | 1027/6017  cytoplasmic part 
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GO:0005622  2.143e-09  134/360 | 1144/6017  intracellular 

GO:0043232  2.414e-09  104/360 | 529/6017  intracellular non-membrane-bounded 

organelle 

GO:0043228  2.414e-09  104/360 | 529/6017  non-membrane-bounded organelle 

GO:0030529  2.472e-09  103/360 | 521/6017  ribonucleoprotein complex 

GO:0030117  3.080e-09  18/360 | 48/6017  membrane coat 

GO:0005840  3.323e-09  101/360 | 469/6017  ribosome 

GO:0005737  1.808e-08  53/360 | 379/6017  cytoplasm 

GO:0030120  2.960e-07  12/360 | 30/6017  vesicle coat 

GO:0005945  3.020e-07  8/360 | 12/6017  6-phosphofructokinase complex 

GO:0019773  6.670e-07  9/360 | 17/6017  proteasome core complex, alpha-

subunit complex 

GO:0044430  9.442e-07  18/360 | 74/6017  cytoskeletal part 

GO:0033178  6.544e-06  12/360 | 39/6017  proton-transporting two-sector 

ATPase complex, catalytic domain 

GO:0044433  6.544e-06  12/360 | 39/6017  cytoplasmic vesicle part 

GO:0030054  1.269e-05  6/360 | 9/6017  cell junction 

GO:0044445  1.320e-05  11/360 | 35/6017  cytosolic part 

GO:0030130  2.700e-05  6/360 | 10/6017  clathrin coat of trans-Golgi network 

vesicle 

GO:0030125  2.700e-05  6/360 | 10/6017  clathrin vesicle coat 

GO:0044422  3.438e-05  60/360 | 571/6017  organelle part 

GO:0044446  3.438e-05  60/360 | 571/6017  intracellular organelle part 

GO:0016469  3.565e-05  7/360 | 15/6017  proton-transporting two-sector 

ATPase complex 

GO:0044431  6.776e-05  12/360 | 49/6017  Golgi apparatus part 

GO:0030132  8.880e-05  6/360 | 12/6017  clathrin coat of coated pit 

GO:0030118  8.880e-05  6/360 | 12/6017  clathrin coat 

GO:0015935  4.113e-04  5/360 | 10/6017  small ribosomal subunit 

GO:0030126  4.700e-04  4/360 | 6/6017  COPI vesicle coat 

GO:0016023  5.262e-04  3/360 | 3/6017  cytoplasmic membrane-bounded 

vesicle 

GO:0031982  5.262e-04  3/360 | 3/6017  vesicle 

GO:0031410  5.262e-04  3/360 | 3/6017  cytoplasmic vesicle 

GO:0031988  5.262e-04  3/360 | 3/6017  membrane-bounded vesicle 

GO:0005853  1.760e-03  4/360 | 8/6017  eukaryotic translation elongation 

factor 1 complex 

GO:0046930  1.881e-03  6/360 | 20/6017  pore complex 

GO:0005643  1.881e-03  6/360 | 20/6017  nuclear pore 

GO:0044391  1.926e-03  9/360 | 43/6017  ribosomal subunit 

GO:0044459  4.310e-03  7/360 | 31/6017  plasma membrane part 

GO:0005798  7.578e-03  2/360 | 2/6017  Golgi-associated vesicle 

GO:0008250  7.578e-03  2/360 | 2/6017  oligosaccharyltransferase complex 

GO:0030119  3.101e-02  4/360 | 17/6017  AP-type membrane coat adaptor 

complex 

GO:0030131  3.101e-02  4/360 | 17/6017  clathrin adaptor complex 

GO:0000275  3.736e-02  2/360 | 4/6017  mitochondrial proton-transporting 

ATP synthase complex, catalytic core 

F(1) 

 

 

 



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 



 

 

 


