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Sammendrag

Etterspørselen etter energi er i stadig økning. Verdenssamfunnet samarbeider om en fremtid
forsynt av ren energi fra fornybare energi kilder. Dette fører til nye krav for det eletriske
kraftsystemet. For å løse overgangen må digitale teknologier implemeteres i systemet
gjennom smartnett løsninger.

Denne masteroppgaven utforsket et sentralt punkt ved smartenett; nemlig predikering
av feilhendelser i strømnettet. Disse spørsmålene ble forsøkt besvart: Er det mulig å
predikere feilene før den oppstår? Hvor langt inn i fremtiden kan feilene bli predikert?
Hvilke fysiske parametre er mest egnet til bruk som features ved predikering? Hvilen
metode burde brukes til å predikere feil? Vil det være mulig å implementere dette i et
sanntidsmonitoreringssystem?

Kunnskap fra elkraftdomenet og datavitenskapdomenet ble kombinert for å oppnå en
kvalitativ evaluering av de utførte testene. Måledata av feiltypene avbrudd, spennings-
dipp, og jordfeil, samt data hentet fra nominell drift av strømnettet ble brukt i predik-
sjonene. Datapunktene ble hentet fra det norske strømnettet med driftspenninger fra 15
kV to 300 kV . Evelueringen ble delt inn i flere tester. Hovedformålet var å bygge og
sammenlikne resultater fra tre forskjellige tilbakekommende neurale nettverksaritekturer
(RNN) trent på tidsseriedata hentet fra spenningskvalitetsmålinger (PQ). En sekvens-til-
sekvens-Autoencoder ble foreslått for bruk ved signal-featureisolering. Forskjellige tester
fra utforsing av rådata, til analyse av output data fra modellen ble utført. Resultatene viser
at det er mulig å predikere feilene inntil sju minutter inn i fremtiden. Enda lengre pre-
disjonshorisonter ble foreslått. Videre undersøkelser av harmoniskekomponenter relatert
til signalanalyse og statistikk anbefales for bedre featureisolering. De mest lovende fea-
turene var de harmoniskeomponentene til spenning og strøm. De forskjellige feiltypene
kan ha en sammensettning av harmoniskekomponenter som gjør at hver feiltype har sin
unike signatur. Det er foreslått å videreutvikle modellen med fokus på avviksdeteksjon. I
kombinasjon med annet monitoreringsutstyr kan et feilhendelsesprediksjonssystem brukes
som et verktøy i beslutningstaking.

Som en del av et KPN prosjekt wil denne masteroppgaven bidra til å danne grunnlaget
for videre forskning på området som er beskrevet. For å plassere forskningen i et større per-
spektiv kan resultatene føre til økt forsyningssikkerhet, reduserte kostnader, og indirekte
redusere miljøpåvirkningene ved å tilrettelegge en sikkrere integrering av bærekraftige
energikilder.
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Summary

The demand for energy is steadily increasing. The global community is working towards a
society supplied by clean energy from renewable sources. This leads to new requirements
for the electrical power system. To solve the transition, digital technologies need to be
implemented in the system through smart grid solutions. This master’s thesis explored
one central aspect of smart grid; prediction of fault occurrences in the power grid. These
questions were attempted to be answered: Is it possible to predict the faults before they
happen? How long in advance can they be predicted, if the first question turns out positive?
What kind of physical parameters are most suitable to use as features for prediction? What
kind of method should be used to predict the faults? Will it be possible to implement this
in a real-time monitoring system?

Knowledge from the electrical power system domain and the data science domain were
combined to obtain a qualitative evaluation of the tests conducted. Measurement data of
the fault types interruption, voltage dip, and earth fault, as well as data gathered from
nominal operated power grid were be used in the predictions. The samples were collected
from Norwegian power grids operated at voltage levels ranging from 15 kV to 300 kV .
The assessment was be divided into multiple tests. The objective in focus was to build and
compare results from three different recurrent neural network (RNN) architectures trained
on time-series data acquired from power quality (PQ) measurements.

A sequence-to-sequence Autoencoder was proposed for use in signal feature extrac-
tion. Various tests were conducted from investigating the raw data, to analysing the output
of the model. Results have shown a prediction horizon up to seven minutes is possible.
It was proposed that even longer horizons may be plausible. Further investigation into
the harmonic components was proposed, related to signal analysis and statistics, for better
feature extraction. The most promising features were the harmonic components of volt-
age and current. The fault types may have various composition of harmonic components
giving the different fault types an unique signature. Improvements to the model have been
proposed, focusing on anomaly detection. In combination with other monitoring equip-
ment, a fault event prediction system can be used as a tool in decision making.

As part of a competence building research program this thesis contributes to the foun-
dation of further research on the area outlined. Placing the research in a broader view, the
results may lead to increased security of power supply, reduced operation and maintenance
(O & M) costs, and indirectly reducing the impact on the environment by enabling a safer
integration of sustainable energy sources.
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Chapter 1
Introduction

The modern society makes people dependent on energy. Energy consumption has in-
creased steadily trough time and exploded by the introduction of fossil energy carriers and
again by the introduction of the steam machine. This has led to tremendous prosperity and
increased standard of living. The flip side is now starting to emerge: Increased frequencies
of extreme weather in a global perspective, and pollution on a local level [1]. Therefore,
the global community is working together to reduce the climate change impact on the
globe [2, 3]. The way energy is generated and consumed needs to change. The demand
for energy does not seem to decrease in the future. It will rather increase. This increase
must be covered by renewable energy sources. Renewable energy sources do also have
to act as a replacement of fossil fuels, since these sources are being phased out [4]. The
energy carrier delivered by most renewable energy sources is electrons. By present time
only 20% of the global energy consumption is based on electricity. The remaining parts is
partitioned as fuel in transportation or heat in industry and households. However, by 2050,
this may increase to 45% due to electrification of the transportation sector and the industry
by phasing in electrical vehicles and electrical arc furnaces. In certain areas the electrical
proportion may be as high as 63% [5]. In general, by 2050, 80% of the energy produced is
expected to come from renewable sources [6]. Focusing on the electrification of the power
system, it is inevitable to not consider the state of the electrical power grid. It is an ageing
grid designed to deliver ’linear’ power and adapted to the development trends of the past
70-80 years [7, 8]. A high amount of adaptions and new solutions is necessary for the
electrical power system to handle the implementation of renewable energy generation [6].

Several areas need to be developed and combined, stressing the focus on innovation
[6, 9]. One such area is digitalisation. This area embraces wide and is essential regarding
electrification and the development of the new power system [5, 6, 9, 10, 11, 12]. Auto-
matic solutions could monitor the system and contribute in decision-making [13]. Several
European countries, including Norway, are highly involved in research on these so called
smart grids [7, 14]. Smart grid embraces areas such as cyber security, automatic load
scheduling, and load- and fault prediction. New challenges will be introduced as a result
of smart grids. Increased use of power electronics in the power grid will lead to degrada-
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Chapter 1. Introduction

tion of the power quality, and increase the occurrence of harmonic components, if counter
actions are not taken. Poor power quality may lead to wear and tear with destructive con-
sequences on electrical components.

As mentioned, one of the objectives of the smart grid is to prevent faults from oc-
curring in the power system. Preventing fault from happening in the power system in-
creases the reliability of power supply and reduces the economical expenses related to
damaged equipment and energy not supplied (ILE). This may be conducted by monitoring
the power supply in real-time using sensors placed around the power grid. The measure-
ments from the sensors may be fed into an algorithm trained on recognising patterns and
signatures related to various faults. This has been enabled through the development within
data processing- and communication technology. Some research have been conducted
classifying fault events related to power system using deep learning [15, 16, 17, 18, 19].
However, little has been done on predicting or forecasting the fault events [20, 21]. With
this in mind, some central questions. Is it possible to predict the faults before they happen?
How long in advance can they be predicted, if the first question turns out positive? What
kind of physical parameters are most suitable to use as features for prediction? What kind
of method should be used to predict the faults? Will it be possible to implement this in a
real-time monitoring system?

In this master’s thesis the questions coming up will be explored combining knowledge
from the electrical power system domain and the data science domain to obtain a qualita-
tive evaluation of the tests conducted. Measurement data of the fault types interruption,
voltage dip, and earth fault, as well as data gathered from nominal operated power grid
will be used in the predictions. The samples are collected from Norwegian power grids
operated at voltage levels ranging from 15 kV to 300 kV . The assessment will be divided
into multiple tests. The objective in focus is to build and compare results from three dif-
ferent recurrent neural network (RNN) architectures trained on time-series data acquired
from power quality (PQ) measurements.

Following chapters are divided into: background knowledge; outlining theory of which
this thesis is based on, and method; outlining what has been done and how. The results and
discussion present the test results and discuss their meaning, and proposing further work.
Finally, a conclusion is made and recommendations of further work will be given.
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Chapter 2
Background Knowledge

Various sources have been considered during this master’s thesis. The most central sources
are listed bellow, with some comments.
Research papers explored various deep learning architectures and were used as inspiration
for this master’s thesis:

• Deep power: Deep learning architectures for power quality disturbances classifica-
tion, by Mohan et al. [16]

• Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and
SVM, by Zhang et al. [19]

• Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks, by de-
Bruin et al. [22]

• Classification of Power Quality Disturbances via Deep Learning, by Ma et al. [18]

• Deep Learning Architecture for Voltage Stability Evaluation in Smart Grid based on
Variational Autoencoders, by Yang et al. [17]

The topics in the following papers were highly inspirational: The paper Reducing the
Dimensionality of Data with Neural Networks, by Hinton et al. introduces the concept
of Autoencoding [23] and the paper Visualizing Data using t-SNE, by van der Maaten et
al. introduces t-SNE [24]. The paper Unsupervised Learning of Invariances in Deep Net-
works, by Park et al. presents a composite sequence-to-sequence model [25].

The books covering machine learning and deep learning are written by some of the most
respected people in their field of research.

• The Deep Learning Book, by Goodfellow et al. [26]

• Deep Learning With Python, by Chollet [27]

• Python Machine Learning, by Raschka et al. [28]

3



Chapter 2. Background Knowledge

• Machine Learning Yearning: Technical Strategy for AI Engineers, In the Era of
Deep Learning, by Ng [29]

• An Introduction to Statistical Learning, by James et al. [30]

Books considered regarding the electrical power system:

• Power Electronics - Converters, Applications, and Design, by Mohan et al. [31]

• Electrical Machines Drive and Power Systems, by Wildi [32]

• Modern Power System Analysis, by Kothari et al. [33]

• Power System Analysis & Design, by Glover et al. [8]

• Electrical Power Systems, bym Wadhwa et al. [34]

Books considered regarding mainly power quality:

• Power quality, by Sanaran [35]

• Electric Power Quality, by Chattopadhyay et al. [36]

Following reports were considered regarding the future trends and development related to
the power sector. They were chosen based on their impact and high credibility coming
from respected sources.

• Annual Report 2018, by FME CINELDI [7]

• 1,5◦C Hvordan Norge kan gjøre sin del av jobben, by Energi Norge [11]

• Digitization & Energy, by IEA [12]

• National and Regional Smart Grids initiatives in Europe, by ETP [14]

• Electrification with Renewables - Driving the transformation of energy services, by
IRENA [5]

• Innovation landscape for a renewable-powered furure: Solutions to integrate vari-
able renewables, by IRENA [6]

• Where does change start if the future is already decided?, by EY [10]

• Strategi 2018, by Energi21 [9]

The following chapter contains the basic theory behind the main perspectives of the
master’s thesis. The first part will outline the concepts of the electrical power system
from a Norwegian point of view. It will contain a brief overview of how the system is
functioning today, before the system of tomorrow, such as smart grids, will be described.
On a more technical note, the concept of power quality will be defined, and in more detail,
some common fault events that may occur in the electrical power system. The second part
will outline the concepts of machine learning, and more specific Deep Learning.
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2.1 The Electrical Power System

2.1 The Electrical Power System
The electrical power system consists of the following main parts:

• Power plants generating and converting mechanical energy to electrical energy. The
main objective is to respond to the demand.

• Transformers, transforming the voltage level up or down depending on delivery or
consumption, respectively. They are often found in different sizes in substations.

• Power lines that connect the electrical grid.

• Consumers (households, commercial or industry) which make up the load, and rep-
resents the demand.

The Norwegian electrical power grid is shown in Fig. 2.1. Whats so unique about the
Norwegian power system is the excessive use of hydro-electric plants, that is contributing
to an energy mix containing 98% renewable energy [37].

Figure 2.1: General layout of the Norwegian electrical power system [38].
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2.1.1 The Power Grid
The Norwegian power grid can be divided into three main systems: Transmission system,
regional system and distribution system. The transmission systems main objectives are to
transmit electrical energy over long distances, such as between regions or nearby countries.
This is usually a robust system as there are few interconnections and relatively easy to
monitor. The voltage levels of the transmission system is somewhere between 132 kV
- 420 kV . It is owned and maintained by the Norwegian transmission system operator
(TSO), Statnett. The regional system is the next step after the transmission system. In
this system the electricity is either transferred within the region, or delivered to industry
or the distribution system. Before reaching the distribution system the voltage level is
transformed down in a substation from its usual voltage levels of 33 kV - 132 kV . The
distribution system consists of voltage levels between 230 V and 33kV , and is the system
most people interact with. Due to its complex structure and kilometres of cables and lines
it is more prone to failure. This is due to its complex structure and kilometres of cables
and lines. Both the regional system and the distribution system are owned and maintained
by local distribution system operators (DSO).

What differentiates the Norwegian power grid from the rest of Europe is the high usage
of IT low voltage grids. This type of grid configuration is insulated from earth, meaning
the neutral of the transformer is not grounded to earth. The most common type of circuit
in Europe is the TN network, which has the neutral of the transformer grounded to earth.
New low voltage projects in Norway will also use this form of grounding. That being said,
this thesis will only focus on the high voltage grid.

The power generation in the traditional power grid is centralised. Meaning the flow
of energy is unidirectional, going from the power plant through the transmission grid
and to the consumer. However, in the future more power production will be distributed
throughout the grid as a result of increased availability of energy production from renew-
able sources. This may lead to energy flow in the opposite of the originally intended and
additional stress on an ageing power grid.

2.1.2 Smart Grid
Smart grid is the designation of the electrical power system of the future, with the purpose
of delivering reliable energy and resiliency against disturbances [7]. There are several
definitions of a smart grid. Glover et al. [8] defines it as:

”... uses technology to improve reliability, security and efficiency (both eco-
nomic and energy) of the electric system from large generation, through the
delivery system to electricity consumers and a growing number of distributed
generation and storage resources.”.

This vision implies great changes to the current power system and huge investments into
new equipment [12].
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2.1.3 Digitalisation & Data

The IEA report on digitalisation and energy [12] describes digitalisation as:

”... the increasing application of digital technologies (i.e. ICT) across the
economy, including energy, to achieve desired outcomes such as improved
safety, efficiency and productivity. The trend toward greater digitalization
is enabled by advances in data, analytics and connectivity: increasing vol-
umes of data thanks to the declining costs of sensors and data storage, rapid
progress in advanced analytics and computing capabilities, and greater con-
nectivity with faster and cheaper data transmission.”

The new power system will rely on sensors and other components to gather and process
data for use in operations [7]. There is a large amount of opportunities when it comes to
digitalisation.

2.2 Fundamentals

2.2.1 Electric Power

The core basics of electronic transfer of energy is an electrical potential difference between
two points where electrons are free to move along a path. The path could be a circuit, and
the difference in potential could be due to a voltage drop introduced by a load connected
between the negative and positive poles of the applied voltage source. In direct current
(DC) circuits only active power is drawn. Introducing an inductor or a capacitor into the
circuit would either do nothing or cut the current flow if connected in series, respectively.
In alternating current (AC) circuits the characteristics of the inductive and capacitive com-
ponents, known as the reactive load, need to be taken into consideration. The resistive and
reactive loads compose the inductance of the system, which is a complex quantity. In a
circuit with purely resistive load, the voltage and current are in phase with each other, as
seen in Fig. 2.2a. An inductive load on the other hand will draw lagging current, so that in
a phasor diagram the current phasor would be 90◦ after the phasor of the voltage, as seen
in Fig. 2.2c. This phenomenon is due to Lenz’s law, which states that a current induced
in a conductor by a changing magnetic field will generate a magnetic field opposite to the
one creating it [39].
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Simple AC Circuits

VR

+

-

IR

ω
VRIR

R
V AC

(a) Simple resistive AC circuit with AC voltage source V AC, current IR, volt-
age VR, and resistance R. The phasor diagram to the right show the RMS current
being in phase with the RMS voltage.

VC

+

-

IC

ω
VC

IC

90◦C
V AC

(b) Simple capacitive AC circuit with AC voltage source V AC, current IC ,
voltage VC , and capacitance C. The phasor diagram to the right show the RMS
current leading the RMS voltage by 90◦.

VL

+

-

IL

ω
VL

IL

90◦
L

V AC

(c) Simple inductive AC circuit with AC voltage source V AC, current IL, volt-
age VL, and inductance L. The phasor diagram to the right show the RMS
current lagging the RMS voltage by 90◦.

Figure 2.2: Simple circuits and phasor diagrams related to pure resistance, capacitance, and induc-
tance, showing the relationship between voltage and current. ω indicates the direction of rotation.

The capacitive load will also react differently compared to a resistive load. In a AC
circuit it will draw leading current, and will in the same phasor diagram mentioned earlier,
lead the voltage by 90◦, as seen in Fig. 2.2b. This is due to the fact that the capacitor
is a charging component and the voltage across the capacitor is dependent on the charge
level of the component. It can be further visualised as follows; when the capacitor is fully
discharged, the electrons ”sees” the capacitor as a short circuit, and a full voltage drop
appear across the component. As electrons start to condense on one of the conductors
inside the capacitor, a potential starts to build until maximum possible voltage from the
voltage source is applied. At this point, the current flow will then be zero with no voltage
drop across the component.
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In the most basic forms, voltage and current can be expressed as sinusoidal functions
of time, t.

v(t) = V sin(ωt) (2.1)
i(t) = Isin(ωt± θ) (2.2)

where ω = 2 is the angular velocity of the periodic waveform, θ is the phase angle between
the voltage and the current, and V and I are amplitude of the voltage and the current,
respectively. See Fig. 2.5 reference of the sinusoidal shape. In a purely resistive circuit, the
product of the immediate voltage, v(t), and the immediate current, i(t) yield the immediate
power, p(t). The power transferred directly from a source is known as the apparent power,
S, and is a complex quantity. A DC circuit or an AC circuit with purely resistive loads
draws active power. Active power, P , is the real component of the apparent power that
performs useful work, as well as contributing to copper loss, or ohmic loss. Copper loss is
defined by I2R, where R is the resistance and I is the current through the resistance.

An imaginary component is introduced to the apparent power in AC circuits with re-
active loads, namely reactive power. The relationship is shown in Eq. (2.3) and visually
in Fig. 2.3. Reactive power, Q, is the portion of the apparent power interacting with the
inductive and capacitive units in, e.g. an electrical power system, where the positive or
negative sign of the quantity depends on if the unit delivers or draws reactive power from
the system, respectively. The inductive unit could be a transformer or an induction mo-
tor, where the reactive power is stored in the magnetic field. The capacitive unit might
be power cables or other appliances in the power system drawing leading currents, such
as capacitor banks. Especially capacitor banks are known to deliver reactive power to the
system.

S =
√
P 2 +Q2 (2.3)

Figure 2.3: Power triangle. The trigonometric relationship between Apparent (S), active (P ), and
reactive (Q) power represented by phasors.
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Reactive power is in most situation unwanted as it contributes to flow of unusable
current that may degrade the transmission line. The power factor is a useful metric to
examine the portion of the apparent power contributing to useful work. Its definition is
seen in Eq. (2.4).

cos θ =
P

S
(2.4)

where θ is the phase angle between the voltage and the current.

The electrical power system usually consists of three phases. There are several reasons
for this, firstly the root mean squared (RMS) value of active power transfer becomes con-
stant, meaning a three phase power supply may deliver continuous power [32]. Secondly,
the three phases contain information about rotation, which may be applied to an electric
motor. Thirdly, additional phases increases the capacity of transfer of power [32]. Fig. 2.4
illustrates the phase relationship between phase a, b, and c of a balanced system in a pha-
sor diagram. Note that the phasors are 120◦ relative to each other and that the components
are equal in magnitude.

Figure 2.4: Phasor diagram of a balanced three phase power system. Phases a, b, and c are shifted
120◦ relative to each other and their physical parameters are equal in magnitude.

2.2.2 Transformer
In the electrical power system transformers play an important part. The task is to either
reduce or increase the operation voltage, depending on the power delivered for consump-
tion or transmitted over large areas, respectively. The functionality of the transformer is
enabled by induction; two separate coils are wound around a ferromagnetic core. The ratio
of which the change in voltages is decided by the wound turns of the coils, and is given by
Eq. (2.5)
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U1

U2
=
N2

N1
(2.5)

U1 and U2 are the respective voltage on the primary and secondary side of the transformer.
N1 and N2 are the number of coil turns of the primary and secondary side. If the voltage
applied to the transformer reaches a certain amount past the nominal voltage, the core of
the transformer reaches saturation. This happens when the applied magnetic field is not
able to increase the magnetic flux density in the core any more, due to the property of the
core material.

2.2.3 Power Quality

Power Quality (PQ) is a term used to describe the condition of the energy transferred in
an electric power system. The objective is to maintain a near sinusoidal waveform, as
seen in Fig. 2.5, of the rated voltage and current [36]. As more delicate electrical devices
are manufactured, the delivery of power has become more strict since sudden variations
may destroy the equipment [36]. Fig. 2.6 displays an example of the development of an
interruption in a three phase power system.

Figure 2.5: Plot of the nominal three-phase voltage in a power system. Data points are gathered
from Elspec Investigator.
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(a)

(b)

Figure 2.6: Plot of the development of an interruption in a three-phase power system. Data points
are gathered from Elspec Investigator. a): First visual sign of fault. b): Voltage reduces to zero.
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Phasor Measurement Unit (PMU) is also a way to monitor the condition of the power
system, but will not be taken into consideration in this thesis because they only measures
every 20 milliseconds while power quality analysers (PQA) are able to measure at least
1024 samples per cycle [20]. Typical terms within PQ will be further outlined in this
section.

Power Quality Measurements

To get reliable measurements, it is important to choose an instrument that is suited for that
application, as stressed by Sanaran [35]. One leading company in this area is Elspec, who
provides PQ monitoring equipment for measurements and analysis [40].

Definition of disturbances and faults:

Interruption

In general an interruption is a reduction in power supply. It is defined by Norwegian
legislation that the supply voltage to the customer is under 0.05 per unit (pu), or phrased
differently as under 5% of the agreed supply voltage, where long term and short term
interruptions have duration over and under 3 minutes, respectively [41].Other definitions
of interruption is a reduction in power supply to less than 0.1 pu [36]. Causes may be faulty
equipment, protection gear activated, or operation gone wrong. Interruptions may lead to
ILE, which stands for ’not delivered energy’ and can result in large economic expenses.

Over voltages

Over voltages are by Norwegian legislation defined as rapid increase in RMS voltage to
over 1.1 pu, lasting from 10 milliseconds to 1 minute [41]. Causes may be due to faulty
isolation, ferro resonace, or induced voltages due to lightning [36]. This can lead to over-
load on the isolation, reduced voltage stability, and even demand for more reactive power
[36].

Under voltages

Under voltages are by Norwegian legislation defined as rapid reduction in RMS voltage to
under 0.9 pu but over 0.05 pu, lasting from 10 milliseconds to 1 minute [41]. Causes may
be incapability to deliver enough power to the loads, due to high demands or low delivery,
high demand for reactive effect, or other faults in the power system.

Voltage dip (Sag)

In literature voltage dip is defined as variation in RMS voltage between 0.1 and 0.9 pu,
with a duration between 10 milliseconds and 10 minutes [36]. Causes may be sudden
consumption of power, startup of a large induction motor, or a line-to-earth fault.
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Swell

Swell is by literature defined as variation in RMS voltage between 1.1 and 1.8 pu, with a
duration between 10 milliseconds and 1 minute [36]. Causes may be shutdown of large
loads, charging of capacitor banks, increased voltage in healthy phases during a line-to-
earth fault in an isolated grid.

2.2.4 Grounding
Grounding is defined as a conductive connection established between a body and earth or
a large conductive element functioning as earth [35]. In an electrical power system the
neutral of the transformers are usually grounded. This is conducted due to the fact that
the performance of the state of the neutral will have influence on the performance of the
power system under various conditions [34]. There are several advantages of grounding
the neutral, e.g. the phase voltages are constrained to the phase-earth voltage, and over
voltages due to lightening discharges to earth. There are different practices of ground-
ing an electrical system. The four typical grounding practices are isolated neutral, solid
grounding, resistance grounding and reactance grounding. Isolated and resistance earthed
grids operates at nominal voltages under 24 kV . Reactance grids operates between 20 -
150 kV . Solid grounded grids have a nominal operating voltage of over 100 kV [42].

Isolated neutral is where the neutral of the transformer in the power system is not
connected to earth. The advantages of this approach of grounding is the possibility to
maintain power delivery even with fault on one of the lines, and a reduction of interference
on communication lines due to lack of zero sequence currents. Solid grounding is the
most common grounding method. The neutral is connected directly to earth. Resistance
grounding is basically adding a resistance between the neutral and the ground. This is
done to reduce short circuit currents due to earth fault to ensure that the currents becomes
large enough such that the circuit breaker trips. Reactance grounding is used to counteract
the short circuit currents by adding a coil, known as a Peterson coil, between the neutral
of the transformer and the ground. Some parts of the old net are also upgraded and fitted
with solid grounding [43].

Short circuit fault

The conduction lines in the power system may be exposed to faults, such as short circuit
of lines in between or to ground. The typical faults are line-to-ground, line-to-line, double
line-to-ground, and three phase short circuit. The first three are unbalanced faults, which
introduces negative and zero sequence components [35].

2.2.5 Symmetrical components
When analysing a three phase power system, each phase (a, b and c) are often represented
by a phasor with magnitude and direction. These phase phasors will in a balanced system
be equal in magnitude, and be displaced by 120◦, as shown in Fig. 2.7a. It is called the
positive sequence. However, if the three phase system becomes unbalanced, additional
sequences may occur. These sequences are called negative and zero sequence.
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Fig. 2.7b and Fig. 2.7c illustrate the phasor diagram of the negative and the zero se-
quences, respectively. They will be the symmetrical components together with the positive
sequence constructing the original phase signal as seen in Eq. (2.6) and Eq. (2.7). The
same applies to phase a and b. Fig. 2.7d illustrates the relationship of the unbalanced
phases. The sequences do not interact directly with each other since they are uncoupled
[34]. During faults introducing zero sequence components, zero sequence currents tend to
add up in the neutral of the system.

a) b) c)

d)

Figure 2.7: Diagram showing the case in which there are three unbalanced phases, and the necessary
symmetrical components that will create the resulting three-phase system. Red is phase a, yellow is
phase b, and blue is phase c. Illustration by Kashyap.valiveti [44].

Ia = Ia0 + Ia1 + Ia2 (2.6)
Va = Va0 + Va1 + Va2 (2.7)

Positive sequence components will have rotation and sequence equal to the phase sig-
nal in balanced condition, following a counterclockwise direction. The negative sequence
components will have a counterclockwise rotation with a clockwise sequence. Whereas
the zero sequence components are equal in magnitude, with no phase displacement [36].
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2.2.6 Harmonics

For most power systems, the waveform of the voltage or the current is in some degree
distorted. The waveform does not appear purely sinusoidal. The true waveform is a com-
bination of multiple waveforms superimposed on each other. As the fundamental being
the rated frequency of the system, and the other being decomposed harmonic components
of the distorted waveform. These harmonics are in general unwanted, due to their inter-
ference with different applications in the power system. The harmonic power cannot be
utilised as work, only dissipated as heat in the AC circuit [32].

To visualise the distorting effect of a harmonic, as inspired by Wildi [32], consider
two pistons on top of each other going up and down in a smooth sinusoidal manner, one
double as fast as the other. Focusing on the end of the top piston as a function of time, its
motion will result in a flat topped wave, or distorted wave. Fig. 2.8 illustrates the effect
of harmonic components on a sinusoidal wave, by shows the first four partial sums of the
Fourier series for a square wave.

a)

b)

c)

d)

Figure 2.8: The first four partial sums of the Fourier series for a square wave. a) show the square
wave in blue and its fundamental in red. To create a square wave from periodic sinusoidal waves odd
harmonics of the fundamental need to be added together with the fundamental. b) shows the funda-
mental combined with its third harmonic. c) shows the fundamental in combination with both the
third and the fifth harmonic. d) shows a nice approximation of the square wave as a sum of the fun-
damental, third, fifth, and the seventh harmonics. In general, the presence of harmonic components
in a waveform is an indication of a distorted non sinusoidal waveform.

As mentioned, periodic non sinusoidal waveforms can be decomposed into a fun-
damental component and harmonic components. This can be achieved by utilising the
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Fourier transform [35], which yields

(2.8)v(t) = V0 + V1sin(ωt) + V2sin(2ωt) + V3sin(3ωt)

+ . . .+ Vnsin(nωt) + Vn+1sin((n+ 1)ωt) + . . .

As seen from Eq. (2.8) the Fourier expression is an infinite series, where V0 represents the
constant DC component of the waveform and V1, V2, V3, . . . corresponds to the harmonic
components representing the amplitude of the terms.

Analytically, a periodic waveform of fundamental frequency ω = 2πf can be ex-
pressed as [31]

f(t) = F0 +

∞∑
h=1

fh(t) =
1

2
a0 +

∞∑
h=1

{ahcos(hωt) + bhsin(hωt)}

where F0 = 1
2a0 is the average value.

ah =
1

π

∫ 2π

0

f(t)cos(hωt) d(ωt) h = 0, · · · ,∞

bh =
1

π

∫ 2π

0

f(t)sin(hωt) d(ωt) h = 0, · · · ,∞

F0 =
1

2
a0 =

1

2π

∫ 2π

0

f(t) d(ωt) =
1

T

∫ T

0

f(t) dt

ah is the harmonic component coefficient corresponding to even symmetric quantity of the
original signal. bh is the harmonics component coefficient corresponding to odd symmetric
quantity of the original signal.

The harmonic components can, as indicated, be classified as odd, even, inter, and sub
harmonics. Where odd and even harmonic frequencies are odd and even multiples of
the fundamental frequency, respectively. These are the main parts in combination with
the fundamental constructing the non sinusoidal waveform. The inter harmonics can also
be present in non sinusoidal waveforms. However, they consist of harmonic frequencies
higher than the fundamental and are not integer multiples. The sub harmonic on the other
hand are made up of harmonic frequencies below the fundamental frequency.

Considering a three phase system, each phase will have its harmonic components with
relationships similar to the fundamental voltage and current waveform phasors. This de-
notes that in a balanced system, the harmonic voltages of equal harmonic number would
be 120◦ apart with equal magnitude. Due to symmetry of the fundamental waveform, even
harmonics will in most cases be absent due to their asymmetrical shape. Harmonics with
multiples of three will triple due to constructive interference. The odd harmonics will not
be affected by the balanced three phase, because they will follow the symmetry of the fun-
damental. The angle between the fundamental voltage and the fundamental current would
be the displacement power factor angle. The fundamental and the harmonics are uncou-
pled. Reactive and apparent power are not defined for harmonic voltages and currents
[32].
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The concept of symmetrical components may be introduced to the analysis of har-
monics. In general harmonic components in a three phase system can be categorised as
either positive , negative , or zero sequence. Where the 1st, the fundamental, is positive
sequence, 2nd is negative sequence, 3rd is zero sequence, 4th is positive sequence, 5th is
negative sequence, 6th is zero sequence, and so on. Appendix C outlines the proof of cen-
tral harmonic sequences. Table 2.1 lists some harmonic numbers and their corresponding
sequence.

Table 2.1: Harmonic numbers and their corresponding sequence.

Sequence Harmonic number
Positive 1, 4, 7, 10, 13, 16, 19
Negative 2, 5, 8, 11, 14, 17, 20
Zero 3, 6, 9, 12, 15, 18, 21

It is observed that the triplen harmonics are zero sequence components, indicating that
the displacement angle between the phasors is zero. This may result in triplen harmonic
currents adding up in the neutral conductor in a transformer or a bus bar [35]. The pos-
itive sequence harmonics will follow the rotation of the fundamental and have the same
sequence as the fundamental currents and voltages. This will cause torque in the same di-
rection as the fundamental component on the rotor when applied on the stator of a rotating
machine, with a frequency corresponding to the harmonic frequency [36]. On the other
hand, the negative sequence harmonics will apply a torque in the opposite direction of the
shaft rotation, counter acting the fundamental magnetic field. In a balanced three phase
system, both the positive sequence currents and the negative sequence currents will cancel
in the neutral, while the zero sequence currents will add [32].

Calculating the individual harmonic distortion (IHD), and the total harmonic distortion
(THD) is a common approach to analysing the harmonic content of a waveform [31, 35].
IHD is the rate between the RMS value of individual harmonics and the RMS value of the
fundamental [41] as in Eq. (2.9), considering current. The same is applicable to harmonic
components of voltage. The fundamental is sometimes referred to as the first harmonic.

IHDIn = In/I1 (2.9)

where I1 is the fundamental component, and In is the nth harmonic component after the
fundamental.

THD is used to describe how much a non sinusoidal wave deviates from a perfect
sinusoidal wave [35]. It is the ratio between the RMS value of all the harmonics and the
RMS value of the fundamental [41], and is given by Eq. (2.10)

THDI% = (IH/I1)× 100% (2.10)

, where IH =
√
I22 + I23 + I24 + I25 + . . ..
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It is also possible to express the THD using the IHDs as in Eq. (2.11).

THD =
√
IHD2

2 + IHD2
3 + IHD2

4 + IHD2
5 + . . . (2.11)

As nicely stated by Snaran [35]:

”The individual harmonic distortion indicates the contribution of each har-
monic frequency to the distorted waveform, and the total harmonic distortion
describes the net deviation due to all the harmonics. The total harmonic dis-
tortion, while conveying no information on the harmonic makeup, is used to
describe the degree of pollution of the power system as far as harmonics are
concerned.”

There are several sources of harmonic distortion. Examples are nonlinear loads, mag-
netic saturation in the core of a transformer, or power electronics [32, 35]. The nonlinear
loads may absorb reactive power, where the majority produces odd harmonics [35]. If the
loads draw uneven current between the positive and negative halves of a cycle even har-
monics may occur. Nonlinear load could be adjustable speed drives (ASD) applying pulse
width modulation (PWM), fluorescent lights, rectifier banks, and arc furnaces. There are
several ways a transformer can produce harmonics. During excitation, the characteristics
of the magnetising material are nonlinear. This is the main source of zero sequence triple
harmonics [36]. Over excitation is another source of harmonic components. Voltage val-
ues exceeding the rated value are applied to the transformer, resulting in saturation of the
core, generating odd harmonics [36]. The main source of harmonic components in the
power system is semiconductor based devises, such as found in power electronics. This
source can generate all the different types of harmonics.

The presence of harmonic components can affect the power system in various ways. In
a transformer, harmonic voltages may cause additional losses due to hysteresis and eddy
current, as well as copper loss. Copper loss is given by I2R. This increases stress on the
insulation and excessive heating. The same applies to electrical AC motors. Capacitor
banks used for power factor correction may act as a sink for harmonic currents, and cause
overload and collapse of the bank. In severe cases resonance between the capacitor bank
and the rest of the power system may occur, leading to over voltages and high currents
resulting in increase loss and overheating of the capacitors [35, 36].

In transmission lines, harmonic currents will cause additional copper loss in the con-
ductor, reducing the capacity of transferring power [36]. Skin effect is a known phenomena
in AC systems, where concentration of current tend to be high near the surface of the con-
ductor. This, in addition to the proximity effect, create higher effective AC resistance,
since they depend on frequency. With the increase in frequency the possibility of audible
noise increases [33].
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2.3 Machine Learning
Machine learning is a field embracing several disciplines, such as informatics, data sci-
ence, mathematics, and statistics. Machine learning is used in classification problems and
regression. In machine learning, a model of algorithms are said to learn from data [26].
Mitchell [45] stated the definition of a learning algorithm to be

”A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”

It has in recent years exploded in popularity due to the increased amount of data gath-
ered from sensors and other sources, and the advancement in computer technology and
processing capability. The availability of open source machine learning frameworks, such
as TensorFlow, Keras, scikit-Learn, and Torch, to name a few, have brought machine learn-
ing to the layman.

Baseline

Developing machine learning algorithms tend to result in complex models. The perfor-
mance of the model is compared to a baseline, to evaluate the benefits of adding more
complexity to the model. Examples of baselines are a naive classifier, such as coin toss, a
very simple artificial neural network (ANN), or basic statistics.

State-of-the-art models

Two benchmark models have been established in machine learning; Support Vector Ma-
chines (SVM) and Random Forest (RF).

The SVM tries to separate data points by fitting a hyperplane with the help of support
vectors. These support vectors are used to maximise the margin, or distance between the
support vectors and the hyperplane. The popularity of the SVM may be due to its ap-
plicability of kernels. This kernel trick transforms the data points into higher dimensional
space, where a non-linear problem can become a linear problem. After separation, the data
points is then transformed back to the original dimension [26]. The most common used
kernel is the Radial Basis Function (RBF) kernel, also known as Gaussian kernel. It is not
by default included in the Keras API, however Darecophoenixx [46] have implemented a
python class compatible with the Keras API layers.

RF uses tree based decisions to navigate to the right class, and have a high performance
on complex problems. The high performance is mainly a result of its structure. The
structure is a variant of ensemble learning, where the prediction is made by a majority
vote among multiple decision trees. A decision tree chooses its path by answering a series
conditions until it reaches its final decision.

2.3.1 Pre processing
One of the simplest and most effective pre processing techniques for optimisation prob-
lems is to scale the data putting the features on the same scale [28]. This can be achieved
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by min-max normalisation or standardisation, and are represented by Eq. (2.12) and Eq.
(2.13), respectively.

x(i)norm =
x(i) −Xmin

Xmax −Xmin
(2.12)

x
(i)
std =

x(i) − µX
σX

(2.13)

x(i) is one sample, Xmin is the smallest sample, and Xmax is the largest sample, µX is
the mean of the sample to be standardised and σX is its standard deviation.

2.3.2 Classification

There are some challenges that may occur when dealing with samples containing more
than one class. For instance, having a data set of samples containing more samples from
one class results in an imbalanced data set. This is seen as problematic as the major-
ity class may dictate the decisions of the model, such as picking only the majority class
when classifying a problem. There are several strategies for keeping the model from only
choosing the majority class . One way is to under sample the majority class, such that the
number of samples of the majority class equals the number of minority classes, resulting
in a balanced distribution of all classes. Another technique is to over sample the minority
class, which results in duplicating existing samples to yield a balanced data set [28].

Binary

In general binary classification the classifier decides if a sample belongs to one given class
(positive) or not (negative).

Multiclass

It is a multiclass classification problem if data set contains multiple classes. A multiclass
classification problem is conducted by a One-vs-All approach where the problem is split
into multiple binary classification problems, seeing one class as the positive and the rest
as negative.

2.3.3 k-Fold Cross Validation

k-fold cross validation is a technique to get a robust measure on the performance of the
model. It splits the training set into k splits, and the model trains on k-1 splits and vali-
dates on the remaining. This will be performed k times and the average of the evaluation
measurements gives a more representative description of the performance of the model.
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2.4 Deep Learning

Deep learning is a branch within machine learning. It has increased in popularity rapidly
this decade mainly due to advancements in computer technology. Powerful graphical pro-
cessing units (GPU) have led to breakthroughs in image classification, here referring to
AlexNet’s classification accuracy on images from ImageNet, and further improvements in
speech recognition [26]. The main idea of deep learning is to train a network on a signif-
icant large amount of data, and let the hidden layers in the network extract and learn the
patterns and variations within the data. This is achieved by having a tuple of two elements;
input data going into the network, and the expected output of the network, known as the
target.

The following sections will outline the deep learning architectures that are intended to
be studied in this thesis.

2.4.1 Long Short-Term Memory (LSTM)

Regular ANNs are not able to handle the temporal dependencies in a time serie. The
reason for this is that they cannot operate sequences. In sequences the first element directly
influences the next and so on in one direction. This challenge has been partly solved in an
architecture referred to as recurrent neural networks (RNN). In these networks each time
step output a hidden state sent to the next time step combined with the input at that time
step.

However, the basic RNN model has a weakness when it comes to dependencies over
long sequences, due to vanishing gradients when backpropagating. The introduction of
the Long Short-Term Memory (LSTM) architecture eliminated the vanishing gradients
problem [47]. In the LSTM, the memory state is propagated through the cell without
activation, using a gated unit approach. This means that during differentiation the memory
state would not be affected. The output of the LSTM gates are given by Eqs. (2.14)-(2.18),
where it is the output of the input gate, ft is the output of the forget gate, ct is the cell state
of the current unit, ct−1 is the cell state of the previous unit, ot is the output of the output
unit, and ht is the hidden state, or activity output, which will be passed to the next unit
or layer. The LSTM has several possible configurations, where each cell in the sequence
could output directly or be shifted. The number of outputs could also be defined. See
Raschka and Mirjalili [28] for more details. Fig. 2.9 shows the structure and the active
paths of a LSTM unit.

it = σ(WxiXt +Whiht−1 +Wcict−1 + bi) (2.14)
ft = σ(WxfXt +Whfht−1 +Wcfct−1 + bf ) (2.15)
ct = ftct−1 + ittanh(WxcXt +Whcht−1 +Whcht−1 + bc) (2.16)
ot = σ(WxoXt +Whoht−1 +Wcoct + bo) (2.17)
ht = ottanh(ct) (2.18)
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2.4 Deep Learning

Figure 2.9: Figure of a LSTM unit, where Xt is the input vector, Ct−1 is the memory from previous
block, ht−1 is the output of the previous block, Ct is the memory from current block, ht is the
output from current block. Circles with S shape is denoted activation functions. Summation and
multiplication blocks are element-vice. Numbers are respective biases. The figure is based on [48].

Figure 2.10: Figure of a GRU unit, where Xt is the input vector, ht−1 is the hidden state output of
the previous block, ht is the hidden state output from current block. Circles with S shape is denoted
activation functions. Summation and multiplication blocks are element-vice. The figure are based
on [48].
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2.4.2 Gated Recurrent Unit (GRU)
The Gated Recurrent Unit (GRU) architecture is a RNN variation introduced by Cho et
al. [49] in 2014 and further explored by Chung et al. [50]. It is said to perform better
compared to the LSTM architecture on problems with relatively small data sets [27]. The
GRU is similar to the LSTM, but has half the amount of parameters. It uses the hidden
state rather than an isolated memory cell to transfer memory across units. This leaves the
GRU architecture to allocate less memory compared to the LSTM architecture. Fig. 2.10
shows the structure and the active paths of a GRU unit.

2.4.3 Autoencoder
The concept of the Autoencoder was first introduced by Hinton et al. [23]. The main idea
is to reduce the representation of a set of high dimensional data points into low dimen-
sional codes. The code can then be used to reconstruct the data points back to its original
state. The Autoencoder is an ANN, that can be thought of containing two parts; one en-
coder and one decoder. Fig. 2.11 illustrates the layers of an Autoencoder. The task of the
encoder is to compress the input data, such that the dimension of the input data is reduced
at the output. This output will be the representation of the input data in lower dimensions,
and is the previously mentioned code. The decoder on the other hand will use the code
to reconstruct the original input data. This will be achieved through training, where the
output of the decoder is compared to the actual input data. The whole network will be
updated through backpropagation in a process called self supervised training. After the
network has been trained, the encoder may be isolated and used as a data compressor or
feature extractor.

Code

Output

DecoderEncoder

Input

Figure 2.11: Illustration of an Autoencoder.

24



2.5 Algorithm Evaluation Methods

Sequence-to-Sequence Autoencoder

The sequence-to-sequence (s2s) Autoencoder builds on the same principles as the regular
Autoencoder [51]. The encoder and decoder parts will in this case be two RNN type
architectures. However, the representation will be the hidden states of the last sequence
of the encoder. These hidden states are used to initialise the hidden states of the decoder
RNN. Examples of use cases for the decoder are reconstruction of the input sequence of the
encoder, and language translation in sentiment analysis and natural language processing
(NLP) [49][52]. The decoder part does not need to be provided with any input data, only
the hidden states are necessary. The output is as mentioned before. When the model is
trained, the encoder may be isolated, and the hidden states representing the code of the
Autoencoder, can be used in analysis or as feature elements fed into a classifier model.

2.5 Algorithm Evaluation Methods

2.5.1 Metric

A metric is a way of measuring the performance of a model to evaluate the suitability of
the model for a specific task, being, regression, prediction or classification.

Confusion matrix

Both in binary and multiclass classifications confusion matrices serve as an appropriate
and easy tool to analyse the performance of the model. In binary classification, as men-
tioned in chapter 2.3.2, the outcome could either be true or false. This means that if a
classification of a sample, which in reality should be true is classified as false, it would
be recognised as a false negative (FN) classification. If it was the other way around, there
would be a false positive (FP) classification. Should the classifications of the samples be
correct for either true or false, the classifications of the samples would be recognised as
true positive (TP) or true negative (TN), respectively.

Given a data set of n samples with their true labels and their predicted labels, the
accumulation of the TP, FP, FN, and TN would be displayed in a 2x2 grid confusion matrix.
The columns of the matrix would represent the predicted labels and the rows represent the
true labels. Consider Table 2.2 for reference. The values in the confusion matrix may be
used to calculate other ways of measuring the performance of a model, such as the as the
receiver operating characteristics (ROC) and its area under the curve (AUC).

Table 2.2: Layout of a confusion matrix.

Predicted label
Positive Negative

True label Positive TP FP
Negative FN TN
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Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) is a clear way of visualising and analyse the
performance of the model. It plots the true positive rate (TPR) against the false positive
rate (FPR), and the characteristics of the lines are given by changing the threshold for
when to classify a sample as positive. For a threshold of 1 all the samples are classified
as negative and the TPR and FPR becomes zero, which are given by Eq. (2.19) and Eq.
(2.20), respectively.

TPR =
TP

TP + FN
(2.19)

FPR =
FP

FP + TN
(2.20)

Decreasing the threshold, more samples will be classified as positive and there will be an
increase in TPR and FPR. With a threshold of 0 all samples are classified as positive and
TPR and FPR will become 1. As seen in Fig. 2.12, the straight line indicates that the
model predicts random, meaning the model are not able to separate the different samples
from each other. A curved line is an indication that the model is able to distinguish the
positive samples from the negative samples. It is preferable to have a characteristic where
the curve has a steep increase from the beginning and then flattens out.

TP

FN TN

FP

TP
FP

TN

FN

0% 100%P(FP)

100%

P(TP)

Figure 2.12: Defining mechanisms of the ROC curve. Illustration by Sharpr [53]
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The area under the curve (AUC) is an extension to the ROC plot, giving a value be-
tween 0 and 1. Interpreting the value, an AUC of 1 means that the model is a perfect
classifier, classifying all the samples correctly, an AUC of 0.5 means that the model is just
as good as random guess, and an AUC under 0.5 is worse than random guess.

If the problem considered is a multiclass problem it is possible to average the scoring
metric via One-versus-All classification [28] either by macro or micro averaging, given
by Eq. (2.21) and Eq. (2.22), respectively. Micro averaging would weight each predic-
tions equally, while macro averaging would take the mean of all precisions weighting all
classes equal. The macro averaging approach would result in the most frequent class labels
dominating the evaluation of the performance.

PREmicro =
TP1 + · · ·+ TPk

TP1 + · · ·+ TPk + FP1 + · · ·+ FPk
(2.21)

PREmacro =
PRE1 + · · ·+ PREk

k
(2.22)

Matthew’s correlation coefficients

Another metric that uses the elements from the correlation matrix is Matthew’s correla-
tion coefficients (MCC). It can obtain any value from -1 to 1, where 1 indicates a model
predicting the expected label, -1 a model predicting the complete opposite than expected,
and 0 no better than random guess. Compared to the ROC, the MCC also include the true
negatives. This means that if more samples classified as negative are added, the MCC
would increase. The MCC can be calculated from equation Eq. (2.23).

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.23)

2.5.2 Loss function

The task of training a model is conducted by providing a feedback on the performance.
This feedback is used to update the model parameters. A set of functions are used to
measure the deviation between the output values and the target. This deviation is called
the loss, and the function is called a loss function. The main objective of the loss function
is to minimise the loss during training. A decrease in loss indicates that the model is
learning the variation within the data set used for training. Common loss functions are
outlined below.

27



Chapter 2. Background Knowledge

Mean Squared Error (MSE)

The mean squared error (MSE) is a basic loss function that works well on regression
problems [27]. It is defined as follows

J(θ) =
1

m

m∑
i=1

(f∗(x(i) − f(x(i); θ))2 (2.24)

where f∗(x) is the target function to be learned, and f(x; θ) is the function provided by the
model. The parameters θ will be adapted by the learning algorithm to make f as similar
as possible to f∗.

Softmax

A common last layer activation is the softmax function. It provides a probability of each
class instead of choosing one. The softmax is optimised by minimising the log-likelihood
function Eq. (2.25), also known from information theory as a variation of cross entropy.

Li = −log

(
eθ

T
j xi∑C

l=1 e
θTl xi

)
(2.25)

2.5.3 Optimiser
In deep learning the task of optimisation refers to the minimisation or maximisation of
the loss function mentioned in chapter 2.4.2 [26]. The optimisation is generally gradient
based, meaning the derivative of the loss function is used for minimisation to try to reach
the global minimum. The gradient to be computed is on the shape Eq. (2.26)

∇θJ(θ) =
1

m

m∑
i=1

∇θL(x(i), y(i), θ) (2.26)

where m is the number of samples, L is the per example loss, x(i) is the sample data, y(i)

is the true target of the sample, and θ is the optimisation variable. The most basic optimiser
algorithm is the stochastic gradient descent (SGD). It only uses some of the samples for
estimating the gradient RMSProp is the ”go-to optimisation method” in deep learning [26],
and is a variant of SGD. An optimiser with high reputation is the Adam optimiser. It is
similar to RMSProp but with momentum, and is empirically tested more effective than
other optimisation algorithms [54].
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2.5.4 t-SNE
t-distributed Stochastic Neighbour Embedding (t-SNE) is an effective technique to reduce
the dimensions of a data set with high dimensional data onto lower dimensions. The
closeness of two samples in the higher dimension will be kept through the transformation.
However, samples or points that are far away in lower dimensions is not an indication
of faraway relationship in higher dimensions. This technique minimises the Kullback-
Leibler divergence on the high dimensional point distribution and a proposed low dimen-
sional point distribution to find a suitable projection of the original points onto the lower
dimension.
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Chapter 3
Method

This thesis consists of analysis of results obtained from multiple tests related to sequential
deep learning architectures. Supplementary illustrations are found in appendix A. Source
code are placed in appendix B. The full process is outlined in Fig. 3.1, illustrating the
steps taken. The main points of the steps are described in more detail in the sections of
this chapter.

Figure 3.1: Outline of the test process. Boxes with text on the left hand side describe the colour
coding.
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3.1 Data Collection
The data used for training and testing is real, historical data obtained from the Norwegian
electrical power system. The fault events have been detected using the software ’Automa-
tisk Hendelsesanalyse’ (AHA) developed by SINTEF Energy Research [55]. The fault
event types include interruption, voltage dip, rapid voltage changes (RVC), and earth fault.
The distribution of faults have been explored using the Dynamic data set generator (DDG)
GUI, also developed by SINTEF Energy Research. This software has the enables the se-
lection of parameters to use, such as resolution, duration, voltage or current represented in
RMS or waveform, and phase or line quantities.

Table 3.1: Time parameters used to generate the initial data sets.

Resolution 500 milliseconds
Duration 10 minutes
Buffer 2 minutes
Transient 10 minutes

The time parameters used to generate the initial data sets are listed in Table 3.1. Du-
ration is the time period from the beginning of the fault event and back in time, buffer
includes more data points after the beginning of the fault event. Transient defines the time
after the fault where nominal operation has been reached after a fault clearance. Consider
Fig. 3.2 for illustration. The duration, buffer and resolution give the number of data points
per feature. Using Eq. (3.1) the number of data points and subsequently rows become
1440.

Duration Buffer

Fault Fault cleared

Transient

Figure 3.2: This figure illustrates the time parameters used to generate the initial data set from DDG.

number of data points =
duration in seconds+ buffer in seconds

resolution in milliseconds
× 1000 (3.1)
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The physical parameters used to generate the data sets were:

• cycle-by-cycle RMS line voltage

• cycle-by-cycle RMS phase voltage

• cycle-by-cycle RMS phase current

• cycle-by-cycle RMS IDH of line voltage

• cycle-by-cycle RMS IDH of phase voltage

• cycle-by-cycle RMS IDH of phase current

• cycle-by-cycle active power

• cycle-by-cycle reactive power

where the voltages and the currents represents all three phases, and harmonics up to the
19th are included. This yield a total of 189 raw data features. The structure of the data sets
were on the form presented in Table 3.2.

Table 3.2: Example of structure of individual sample data set used to generate the full data set.

fault detection True
fault type Avbrudd
fault time 2018-01-28 12:28:51
start time 2018-01-28 12:28:50
end time 2018-01-28 12:28:51
duration sec 1.0
duration days 1.157e-05
resolution ms 1
Time buffer sec 0
Time transien sec 0
N points 1000
node <system operator>

Time [s] rms V1 AVG rms V2 AVG rms V3 AVG
. . . .
. . . .
. . . .

The data samples in the data set were extracted and concatenated into a multidimen-
sional Numpy array on the form (sample, time step, feature) and stored locally in a hdf-file
for easy access.
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3.1.1 Analysis of raw data

An interactive visualising tool was developed using the plotly library [56] in python for
inspection of the data sets. The tool may be used to plot the harmonic components related
to an event in an EEG inspired plot for easy investigation of the individual components.
Fig. 5.4 in appendix A displays the interface. See functions on lines 56, 185 and 196 in
Code 5.2 in appendix B, and appendix A for visual examples.

The balanced data set contains 8414 samples from different system operators (SOs).
There was a relatively high variation among the distribution of the samples. This was
mostly due to the variation of accessible measuring nodes.

3.2 Pre-processing

Little pre-processing has been applied to the data set since the harmonic components are
already scaled to a value between zero and one, with regards to the fundamental of the
original signal. Standardising the active and reactive power as well as the currents and
voltages were performed so that only the variation was kept. Filtering for smoothing the
time series was also conducted.

3.3 Tests

Multiple exploratory tests were conducted, and results from these are listed in chapter 4
with supplementary results in appendix A. The tests conducted were:

• Pre-training versus no pre-training of the composite model

• Testing of physical parameter features

• Metric development regarding prediction horizon

• Comparison of model architectures (sequence-to-sequence composite, LSTM, and
GRU)

• Analysis of state outputs.

Metric used to evaluate the tests were accuracy and Matthews correlation coefficient
(MCC) for prediction, and mean square error loss (MSE) for the reconstruction. ROC-
plots with AUC were used extensively for further evaluation of the performance. They
can be interpreted as follows: When the curve starts ascend equally linear to the axes, the
probability distribution of positive samples and negative samples are blended, i.e. random
selection occur. As a result of this interpretation, a steep upward line is the ultimate result.
5-fold cross validation were performed during all tests, except the full test when the whole
training data set were used. The main tests of this thesis will be conducted using the
composite model architecture.
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3.3.1 Models

The machine learning models were developed using the Keras API [57] with TensorFlow
[58] as backend. Consider Code 5.4 and 5.5 for model code.

The generic LSTM model function is constructed in a such way that layers and cells
can easily be defined by the user, and number of input sequences and the length of the input
vector is defined by the sample. The output size is defined by the number of categories in
the training set.

As mentioned earlier, this thesis presents a new architecture for time series prediction;
the sequence-to-sequence (s2s) Autoencoder. It consists of an encoder part and a decoder
part. Firstly, the s2s Autoencoder is trained on encoding the input sequence and then
reconstructing it with the decoder, as seen in Fig. 3.3. The training set consists of both
faults and non-faults equally distributed. The data set is said to be balanced. The true
output data will be the reverse of the input data sequence, as proposed by Serivastava et
al. [51].

Figure 3.3: Sequence-to-sequence Autoencoder model. Inspired by Serivastava et al. [51].

Secondly, after training for several epochs the encoder is isolated and the output of the
encoder, the code, is fed into a classifier for prediction. The encoder layer is set to non-
trainable and the classifier is trained to predict faults. Thirdly, the encoder and classifier are
recombined with the decoder, so that the encoder output is fed to both the classifier and the
decoder. A sketch of the model setup is seen in Fig. 3.4. The loss functions of the classifier
and the decoder are combined, so that the reconstruction is preserved which might keep
the model from predicting only one of the possible class categories. The two loss functions
can be weighted differently depending on the importance of their loss contribution.

35



Chapter 3. Method

.

Figure 3.4: Composite sequence-to-sequence Autoencoder model with prediction branch. Inspired
by Serivastava et al. [51]

The initial idea was to use an SVM as a classifier. However, a comparison of the SVM
classifier and a generic softmax with cross entropy loss showed a slightly better result in
performance for the softmax classifier. As a result, the softmax was chosen as the last
layer activation function in the classifier part.

3.3.2 Input Data

The input data is selected to have 120 time steps (a total of 60 seconds), and the prediction
horizon is adjusted using a sliding window over the complete data set. The sliding window
technique used is seen in Code 5.3, line 51 in appendix B. The harmonic components up
to 15 were chosen because when inspecting several samples, the harmonic components
over 15 did not seem to pass the threshold of the Elspec measurement equipment. This is
due to a user selected threshold of for instance 0.1% is filtering out noise returning a value
of zero. This also reduces the amount of features that need to be processed, resulting in
lower memory- and time consumption. Fig. 3.5 illustrates how the input vector is fed into
the model. Lines 141-191 in Code 5.3 outline the process of generating the input data set.

36



3.3 Tests

Figure 3.5: The figure shows how the input vectors were constructed using each element in the time
series sample as the respective element in the vector.

3.3.3 Training, validation and testing

Train-test split is set to be 90/10 of the prepared data set. During training, validation is set
to be 10% of the input set. Fig. 3.6 and 3.7 show the strategies and steps taken for testing
the model.

Figure 3.6: General strategy for model testing.

Since various configurations of architectures have different characteristics [27], it is
important to tune the hyperparameters of the model so that the model performs at its best.
Possible tuneable hyperparameters is learning rate, number of units, and regularisation
parameter.

The tests were conducted using 5-fold cross validation, for checking the robustness of
the model. The results from these tests might be biased since the data set used for testing
were not fully isolated from the test data, meaning decisions made during training may
be based on data intended for testing. This is data which should have been completely
unseen, and may prevent the model to generalise well.
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Figure 3.7: Illustration of steps and testing strategy followed when conducting the testing of the
model.
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Chapter 4
Results and Discussion

In this chapter an analysis of the results will be presented, and further work and approaches
discussed. The chapter is divided into the respective tests. Tests were conducted on the
fault types interruptions, voltage dips, and earth faults. Only results from one fault type
are presented in the text, additional results are found in appendix A.

4.1 Raw data analysis

The first approach was to analyse the raw data. Samples containing fault events and nom-
inal operation data were randomly selected and visualised by plotting the time series. Ex-
amples of the tool used for visualisation are displayed in Fig. 4.1. Consider Fig. 5.1, 5.2
5.3 and 5.4 in the appendix A for more examples. These visualisations were performed
to form intuition about the conditions before and after a fault event. This information was
used to determine the quality of the data set and plausible candidates for features among
the physical parameters.

Some samples during the inspection were discovered to contain incorrect classifica-
tions. This applies to the fault type of interruptions, where the occurrence of the fault had
already taken place, leaving the non-nominal values before the fault. Another discovered
flaw in the data set was samples containing NaN values. The reason for this might be
due to no properly logging of data by the measurement unit. Despite this, none of theses
samples were removed from the data set.

There were some traits that repeated themselves. It was observed in some samples that
the active- and reactive power, and consequently the current, were reduced to zero minutes
before an interruption occurred. Possible explanations for this behaviour are activation
of protection equipment cutting the power delivery, or it could be a result of a scheduled
interruption.

Overall, the samples contained a significant amount of noise and fluctuations. As an
attempt to reduce the noise level, the Butterworth filtering technique was applied to each
feature, as exemplified in Fig. 4.2.
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Figure 4.1: Example from the visualisation tool. Main plot is the portion in focus. Subplot is
an overview of the whole sample. The plot shows a sample from one phase and one line voltage
development before an interruption.
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Figure 4.2: Comparison of raw signal and filtered signal where Butterworth filtering has been ap-
plied. The y-axis describes voltage and the x-axis denotes time in seconds.
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4.1 Raw data analysis

The data set used as input data was a generated sub-set of the initial data set. In
the generation process, the event types and features were selected. The little amount of
pre-processing, such as filtering and standardisation, were applied to each feature column
in the sub-data set after the generation. This was done due to the fact that adjusting the
prediction horizon or length of the time series, the distribution of values within each feature
will change, and would be more realistic when it comes to real world application. The
generation of the sub-set was determined by a sliding window approach. The size of the
window was set to cover 60 seconds. With a resolution of 500 milliseconds of the initial
data set the time series sequence in the sub-set contained 120 steps. The sliding window
approach was chosen as a measure to investigate the impact of the prediction horizon on the
performance of the model. The input samples were also inspected to compare the nominal
data to the fault event data, as seen in Fig. 4.3a and 4.3b. The sub-sets of the features
are plotted using three different prediction horizons. Horizon 3 include the fault event,
which can be spotted in Fig. 4.3b. Horizons 2 and 1 have prediction horizons 240 and 540
seconds, respectively. At a glance, there are no immediate difference between the fault
event and the nominal operation samples except at time of the fault event. Despite this,
the harmonic components of the current and voltage, as exemplified in Fig. 5.4 show an
increase in the RMS value several seconds before the fault. This behaviour, and the known
presence of harmonic components related to various conditions in the electrical power
system, makes the harmonic components a reasonable feature candidate. The results of
the feature test are presented further below.
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(a)

(b)

Figure 4.3: Illustration of the development of a non fault, a), and an interruption sample, b), in the
same spacing as some of the prediction horizons. The plot displays the voltage, current, active power
and reactive power of the same sample in descending order. There are three phases in each plot. The
x-axis states the time from the fault event in seconds. Horizon 3 include the fault event. Horizons 2
and 1 have prediction horizons 240 and 540 seconds, respectively.
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4.2 Model Architecture

The architecture of the model used to conduct the main tests are shown in Fig. 4.4. It is a
modification of the sequence-to-sequence natural language processing (NLP) architecture
in [59] combined with the idea in [51]. The idea is to send the output of the encoder part
to a prediction part and a reconstruction part making a composite model. The selection
of hidden layers were inspired by the approach in [22] since this was a study diagnosing
railway track circuit faults using RNNs. For reference, Fig. 5.10 and 5.9 in appendix A
show the isolated reconstruction and classifier parts of the model.

Composite

Figure 4.4: Structural architecture of the whole composite model, where both the reconstruction
part and the classifier part is connected.

The following step after constructing the model was to choose suitable hyperparame-
ters. In this case, the hyperparameters searched for were learning rate and hidden units,
also known as memory cells. In this step, a training epochs of 20 were used to narrow
down the alternative values before conducting a grid search using 100 epochs to find the
best combination. First the hyperparameters of the reconstruction part were found. The
tuning was conducted on 3773 samples of nominal operation samples containing 60 time
step points and three features of line voltage, and validated on 420 samples.

Inspecting Fig. 4.5, the number of units which yield the best loss over the training
and validation period is 256 units. The learning rate used for training is obtained from
considering Fig. 4.6. Learning rate of 0.001 seems to be converging while learning rate
0.01 still declines.
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(a)

(b)

Figure 4.5: The development curve of six hidden unit configurations over 20 epochs. 2048 units
curve is not included in the plot because it deviated a lot from the others, however, it tended to
converge to the same as 1024 units curve. a) Training loss. b) Validation loss
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Figure 4.6: The training and validation loss during grid search for the hyperparameters learning rate
and memory unit. Parameters tested for learning rate was 0.001 and 0.1, for memory units it was
32, 64, 256, 512. Of the two learning rate runs 256 and 512 memory units performed the best. In
the plot it is observable that the two curves with learning rate 0.01 starts to deviate. This is a sign of
overfitting. The curves with learning rate 0.001 appears to converge at the same rate. A learning rate
of 0.001 will be chosen for the LSTM part of the model.

When finding the optimal learning rate for the classifier, the s2s model was first trained
using the previous obtained best parameters. A balanced data set of 296 of none faults and
interruptions were used. The model was trained on 266 samples and validated on 30. After
a selection run of 20 epochs the interesting learning rates appeared to be 0.01 and 0.1. New
training run of 100 epochs was then conducted. The loss functions were equally weighted
in the contribution to the total loss used in the optimising process. Loss function used for
the classifier was cross entropy loss with adam optimiser and softmax at the end layer.
For reconstruction MSE was used as loss function and rmsprop for optimisation, with no
activation due to better reconstruction.

The model tended to overfit and converge to a training prediction accuracy of 96%
and a validation accuracy of 47% with a reconstruction loss of the training declining.
Validation reconstruction loss increased while converging at the same rate as the prediction
accuracy.The overfitting may be solved by adding regularisation of the weights in the
hidden layers, or force the outputs to be sparse by adding a penalty term on the activation
of the units in the network [26]. This was applied without any noticeable improvements
in performance. It was decided to reduce the number of epochs to be between 5 and 50
during the tests, to reduce overfitting, and due to time considerations.
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4.3 Pre-training Testing
Finding the best hyperparameters, the next step was to investigate the impact of pre-
training the different parts of the model. The results from this test show that there is
an improvement in performance when pre-training a model, as shown in Fig. 4.7. More
examples may be found in Fig. 5.5 and 5.6 in appendix A. Particularly voltage dip predic-
tion performance increased as seen in Table 4.1 where the standard deviation is reduced
by half. The parameter setup for this test is found in Table 4.2. Pre-training each part of
the model before fine tuning the full model are in general conducted as a form of initial-
ising the weights before training. Other research has shown good results from pre-trained
models as in a study by Qi et al. [60]. This is observed both in Fig. 4.7, 5.5, and 5.6,
where the AUC is consequently higher for pre-trained models.

No pre-train versus pre-train on interruption samples

(a) no pre-train (b) pre-train

Figure 4.7: a): Results from 5-fold cross validation and no pre-training. b): Results from 5-fold
cross validation. The model was trained on a balanced data set of nominal operation and interruption
samples. The opaque blue lines are the ROC curves for each class, the solid blue is the macro
average of all the curves, and the dashed line corresponds to random guess. The gray area represents
the standard deviation of the calculation of the average. The area under the curve (AUC) is also
computed and displayed in the plot.

Table 4.1: Results from cross validation test.

Interruption Voltage dip Earth fault

No pre-train Pre-train No pre-train Pre-train No pre-train Pre-train

Classification accuracy 57.38% +/- 6.79 62.13% +/- 5.6% 60.87% +/- 2.99 63.26% +/- 1.45% 64.41% +/- 2.13% 64.84% +/- 1.56%
Classification MCC 0.15 +/- 0.14 0.24 +/- 0.11 0.22 +/-0.06 0.27 +/-0.03 0.29 +/-0.04 0.30 +/- 0.03
Reconstruction loss 0.57 +/- 0.02 0.59 +/- 0.02 0.51 +/-0.03 0.53 +/- 0.01 0.57 +/- 0.1 0.55 +/- 0.01
Train/Test 236/36 236/36 3070/768 3070/768 2220/556 2220/556
Batch size 32 32 64 64 64 64
Epochs (10/10/30) 50 (10/10/10) 30 (10/10/10) 30
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Table 4.2: Parameter setup for cross validation test

Number of cross validations 5
Optimizer reconstruction rmsprop
Optimizer classificator adam
Optimizer composite adam
Activation classificator softmax
Loss classificator categorical cross entropy
Features harmonics V12 V23
Loss weights (1, 1)
Latent dimentions 256
Random seed 42
Preprosessering smoothing, standardising
Data set balanced
Prediction horizon 10 sec.
Length timeseries 60 sec.

4.4 Feature Testing

The features used in the previous tests were randomly chosen. However, different features
may not share the same characteristics or information. Therefore it was interesting to
test the various physical features and phases to see their influence on the performance
of the model, and to see if the features of the harmonic components were as good as
foreseen. From the result presented in Fig. 4.8 and Table 4.3, the harmonic components
of the current appear to contain information that enables the model to perform better in
predicting events. They are also relatively easy to reconstruct, as seen from the same
tables, which indicates a possible sparse data set. Other features that appear to contain
useful information is the harmonic line voltages. Training only on RMS voltages, currents
or power did not yield a particularly good performance. Due to the lack of sparsity of these
features, the reconstruction part of the model should be trained for several epochs prior to
full training to be able to learn some of the complex structures of the features. An identical
test was conducted on voltage dips and earth faults with similar results.
See Fig. 5.11, 5.12, 5.1, and 5.2 for reference. The features that were selected to
conduct the remaining tests were harmonic components of the three phase currents and the
harmonic components of the three line voltages.
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Feature Testing on Interruption Samples
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Figure 4.8: ROC-plots over the model trained on the corresponding feature a-n. The training set
contained non-faults and interruptions. See Table. 4.3 for metric results for each feature. TPR
and FPR denote true positive rate and false positive rate, respectively. HIn refers to the harmonic
components of phase current n. HVn refers to the harmonic components of phase voltage n. HVnm
refers to the harmonic components of the line voltages in a three-phase system.
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Table 4.3: Results from training on individual features classifying non-faults and Interruptions.
Each fold was trained for 10 epochs, no pre-training of the model, with batch size of 64 and train/test
samples of 236/36. The harmonic features contains six harmonic components; 2nd, 3rd, 5th, 7th,
9th, 11th and 13th, the rest consists of three columns, one for each phase. See Fig. 4.8 for ROC-
plots of each feature. HIn refers to the harmonic components of phase current n. HVn refers to
the harmonic components of phase voltage n. HVnm refers to the harmonic components of the line
voltages in a three-phase system.

Interruption
Features Classification Accuracy Classification MCC Reconstruction Loss
Active power 52.99% (+/- 6.87%) 0.06 (+/- 0.14) 0.93 (+/- 0.03)
Reactive power 49.37% (+/- 3.49%) -0.01 (+/- 0.07) 0.93 (+/- 0.02)
HI1 57.11% (+/- 3.90%) 0.14 (+/- 0.08) 0.22 (+/- 0.03)
HI2 48.33% (+/- 1.83%) -0.03 (+/- 0.04) 0.23 (+/- 0.04)
HI3 53.37% (+/- 2.81%) 0.07 (+/- 0.06) 0.24 (+/- 0.02)
HV1 53.71% (+/- 6.10%) 0.07 (+/- 0.12) 0.58 (+/- 0.03)
HV2 51.36% (+/- 1.66%) 0.03 (+/- 0.03) 0.54 (+/- 0.02)
HV3 50.64% (+/- 4.92%) 0.01 (+/- 0.10) 0.49 (+/- 0.02)
HV12 51.66% (+/- 4.23%) 0.03 (+/- 0.08) 0.59 (+/- 0.02)
HV23 60.41% (+/- 7.39%) 0.21 (+/- 0.15) 0.59 (+/- 0.02)
HV31 55.06% (+/- 6.33%) 0.10 (+/- 0.13) 0.60 (+/- 0.03)
Current 52.39% (+/- 3.83%) 0.05 (+/- 0.08) 0.91 (+/- 0.04)
Line voltage 49.33% (+/- 1.33%) -0.01 (+/- 0.03) 0.93 (+/- 0.02)
Phase voltage 49.66% (+/- 0.69%) -0.01 (+/- 0.01) 0.96 (+/- 0.05)

4.5 Model Evaluations

One important objective of this thesis was to investigate the prediction horizons impact
on the performance. The test was conducted on all fault types using the best features
previously found, obtaining individual metric values for each fault type. Each run were 5-
fold cross validated, and the metric result was the average of the five validations. This was
done to get a more robust result. Fig. 4.9 and 4.10 show the developments of the ROC-
curves of each fault event related to the various prediction horizons. The aim of most
predictive models is to beat the base line chosen for the specific problem. In this case,
by evaluating the results in Fig. 4.11, the model is outperforming the base line within a
prediction horizon close to 30 seconds for all fault types. The same figure also shows an
interesting development after 240 seconds, at 7 minutes. Here the metrics increase in the
positive direction. This may indicate some characteristics in the harmonic content which
appear four minutes before the fault event. Since this was discovered after the tests were
concluded, further investigation will be conducted in later research.
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Prediction Horizon development test

Interruption Earth Fault Voltage dip
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Figure 4.9: ROC-plot over model training on different fault event types and prediction horizons. The
columns represents the fault event types, and the rows represents the prediction horizons. Vertical
axis and horizontal axis represents the true positive rate (TPR) and the false positive rate (FPR),
respectively, with axis going ranging from 0 to 1.
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Figure 4.10: ROC-plot over model training on different fault event types and prediction horizons.
The columns represents the fault event types, and the rows represents the prediction horizons. Verti-
cal axis and horizontal axis represents the true positive rate (TPR) and the false positive rate (FPR),
respectively, with axis going ranging from 0 to 1.
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Metric development

Figure 4.11: Development of evaluation metrics with respect to prediction horizon in seconds from
fault event. The x-axis describes the horizon in seconds. Each fault event type were tested against
each horizon using 2,3,5,7,9,11,13 harmonic from phase current, phase voltage, and line voltage.
Pre-training was conduced with epochs 20,10,15. The metrics are the average from a 5-fold cross
validation and are plotted together with the standard deviation. The base line corresponds to the
naive classifier of just selecting one class and are related to the accuracy measure. Random guess
corresponds to the Matthew’s correlation coefficients implying a random classifier. Keep in mind
that the x-axis is not linear.
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Until this point, only the composite model has been tested. To understand its level
of performance, other machine learning algorithms known for preserving the temporal
dependencies were used for comparison. The results presented in Fig. 4.12, 4.13, and
4.14 show some differences in performance both when predicting two classes of fault non-
fault, and multiple classes. In the majority of the cases, both on validation and unseen
data, the GRU architecture performed better compared to the LSTM. This is in accordance
with the results from [50] where various RNNs were compared. It performed better both
in predicting the faults, and time consumption vice. The composite model did perform
slightly better on the more complex multiclass problem, tested on unseen data as shown in
Fig. 4.15 and 4.16.

Comparison of Model Performance on Predicting Voltage dips During
Cross-Validation

(a)

(b) (c)

Figure 4.12: a): Composite model performance. b): LSTM model performance. c): GRU model
performance.
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The main results from testing the various models are as follows. Firstly, the models
predict in most cases better than random. The models are able to confirm the existence of
differences between fault types. This may be explored in more detail in further research.
Secondly, tests have shown that the harmonic components of currents and voltages contain
enough information by itself to be used as features. Feature engineering on other entities
of physical parameters, such as voltage, may also increase the performance.

Comparison of Model Performance on Predicting Interruptions on Unseen Data

(a) Composite

(b) LSTM (c) GRU

Figure 4.13: For this experiment each model was trained on the full training set, no validation
performed under training, for 10 epochs and 50 units. They were then tested on a unseen test set.
The data sets used contained non-fault events and Interruptions. Results are shown in the figure.
ROC-plots displaying AUC for each class and the weighted ROC-AUC.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Predictions on unseen data of non-fault events and Interruptions. a) & b): Confusion
matrix and Normalised confusion matrix over predicted events by composite model. c) & d): Con-
fusion matrix and Normalised confusion matrix over predicted events by LSTM model. d) & e):
Confusion matrix and Normalised confusion matrix over predicted events by GRU model
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Comparison of Model Performance on Multiclass Prediction on unseen data

(a) Composite

(b) LSTM (c) GRU

Figure 4.15: For this experiment each model was trained on the full training set, no validation
performed under training, for 10 epochs and 50 units. They were then tested on a unseen test set.
The data sets used contained all available event types; non-fault, interruption, surge, and earth fault.
ROC-plots displaying AUC for each class and the weighted ROC-AUC.

56



4.5 Model Evaluations

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Predictions on unseen data containing all available event types; non-fault, interruption,
surge, and earth fault. Results are shown in the figure. a) & b): Confusion matrix and Normalised
confusion matrix over predicted events by composite model. c) & d): Confusion matrix and Nor-
malised confusion matrix over predicted events by LSTM model. d) & e): Confusion matrix and
Normalised confusion matrix over predicted events by GRU model.
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4.6 Output analysis
”What does the model learn?”, is a common question in machine learning, especially
regarding networks with hidden layers. Researches use several techniques to inspect the
models. Some approaches may be to visualise the weights and states in the network by
plotting their raw or processed values. In this study, the activity output state and memory
cell state of the last outputs were analysed by t-SNE dimension reduction [24] using the
Barnes-Hut-SNE method [61] implemented in the Scikit-learn library [62]. The results are
presented in Fig. 4.17, 4.18, and 4.19. Analysing the results in Fig. 4.17 and 4.18, it is
clear that the model is able to distinguish between the samples. This is an expected result.

t-SNE on Output States of Composite Model: Interruption

(a) (b)

(c) (d)

Figure 4.17: During this analysis the composite model was trained on non fault and interruption
events. ’Avbrudd’ and ’None’ refers to interruption and nominal operation samples, respectively.
’SO’ refers to system operator. a): t-SNE representation of the activity state of the last output
of the first layer. b): t-SNE representation of the memory cell state of the last output of the first
layer. c): t-SNE representation of the activity state of the last output of the second layer. d): t-SNE
representation of the memory cell state of the last output of the second layer.
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One curious notion is the clustering of the system operator marked by the plus sign in
the middle of the top plots. This indicates that the signature of the operational state of the
system operators is unique for their location or system, and must be taken into consider-
ation when using data from various sources. This is in accordance with how the power
system is designed. The power system is divided into sections, with different operating
voltages, grounding schemes, and composition of equipment affecting the characteristics
of the system.

t-SNE on Output States of Composite Model: Voltage dip

(a) (b)

(c) (d)

Figure 4.18: Non fault and voltage dip samples was used in this training of the composite model.
’Avbrudd’ and ’None’ refers to interruption and nominal operation samples, respectively. ’SO’ refers
to system operator. a): t-SNE representation of the activity state of the last output of the first layer.
b): t-SNE representation of the memory cell state of the last output of the first layer. c): t-SNE
representation of the activity state of the last output of the second layer. d): t-SNE representation
of the memory cell state of the last output of the second layer.It is clear that the composite model
has learned to separate the two event classes. However, there are still some mixing of samples,
meaning those samples are close in the original dimension. In the case of interruption this may be
an indication of a scheduled outage.
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Fig. 4.19 show the model states on seen and unseen data. These plots may be inter-
preted in the direction of what kind of event class the model are less and most likely to
learn. As seen in the bottom plots, most non-fault samples are clustered together, while
earth faults and interruptions seem to mix. When it comes to the unseen data, no valuable
information can be taken away from this analysis.

t-SNE on Output States of Composite model: Unseen and seen data, Multiclass

(a) (b)

(c) (d)

Figure 4.19: a) and b): Activity output and memory cell state of the second layer when evaluated on
unseen test data. c) and d): Activity output and memory cell state of the second layer when evaluated
on seen train data. ’Avbrudd’, ’Spenningsdipp’, ’Jordfeil’, and ’None’ refers to interruption, voltage
dip, earth fault, and nominal operation samples, respectively. ’SO’ refers to system operator. These
plots may be interpreted in the direction of which kind of event class the model are less and most
likely to learn. As seen in the bottom plots, most non fault samples are clustered together, while
earth faults and interruptions seems to mix. When it comes to the test data, no valuable information
is taken away from this analysis.
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4.7 General Discussion
As part of a competence building research program this thesis contributes to the foundation
of further research in the area outlined. Placing the research in a broader view, the results
may lead to increased security of power supply, reduced operation and maintenance (O &
M) costs. This will indirectly reduce the impact on the environment by enabling a safer
integration of sustainable energy sources.

Currently there are no systems in operation enabling to predict faults in the power grid.
Most of the research have been focusing on PMU data. Previous research conducted on PQ
data is merely of classifying faults that already have occurred, and is tested on synthetic
data [16, 17]. It is believed that PQ data contains more information about the different fault
types compared to PMU data. This is because faults in the power system, as investigated
in this thesis, contain an unique set of harmonic components, as may be used to distinguish
a fault from a nominal operating line. Results from testing the various features confirm the
uniqueness of the harmonic components. With certainty, they can be used to predict faults
in the power system. PMU may have its strength in monitoring overall system stability.
However, PMU was not in the scope of this thesis.

The main objective of predicting a fault in development is to support the system opera-
tion. The robustness of the model is crucial in the sense of predicting true positives. False
negative prediction might be preferable to false positive prediction, because a false pos-
itive can result in unnecessary shutdown of the system. However, a false negative might
give the impression of nominal operation, when in fact a fault is about to occur. In these
cases, combinations of monitoring systems would be preferable to deploy. If the majority
of the monitoring units report anomalies from nominal operation the system operator may
use this as a tool to perform corrective maintenance work before escalation of the fault.
These systems can be realised through work already being conducted on digitalisation in
the energy sector, and easily integrated in a secured network. The benefits of having a
system that is able to predict faults in the manner of minutes, or even hours in advance,
are many. This can enable more effective use of the power grid by increasing the capacity
of power supply due to better monitoring. It can reduce economical expenses by alerting
the operator of the power grid about possible faults. Actions can then be taken to isolate
the affected equipment, which then can be repaired instead of being replaced. That in turn
will reduce ILE expenses.

The supply of energy have to be transparent. In our society, electrical power is consid-
ered a matter of course. Too drastic changes may cause discontent among the consumers.
However, security of energy supply is also an important aspect that needs to be addressed
when developing the electrical power system of the future. By transparency means that the
consumer does not receive an extra responsibility in every day life when it comes to when
to or not to use electricity.

When talking about the development of the new power system, it is inevitable not to
talk about the socioeconomic aspect of it. Are the investments socioeconomically justi-
fiable? A self monitoring system will contribute to reduced operation and maintenance
(O&M) costs, and increase the overall health of the system. This will in turn reduce the
need for reinvestments and enable smart asset management.

On the other hand, the self monitoring system will guide the energy transfer from re-
newable energy sources, or any energy production sources in general, to be more efficient.
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This will lead to a reduced impact on the environment.
This thesis use techniques from the data sciences to analyse PQ data, and tries to break

new ground by applying unconventional methods to approach the problems in question.
Harmonic components of the physical parameters are investigated, sources of it are iden-
tified, and associated with specific fault types. Since all the harmonic components sums
to the original signal, the inclusion of the original signal is redundant if the model is more
sensitive to the relationship between the harmonic components. To give a conclusion about
this redundancy, tests targeted this problem need to be conducted.

No known research is addressing the composite model proposed in this master’s thesis.
The closest are RNN architectures trained on labelled targets in conjunction with an SVM,
or a regular Autoencoder, not considering the temporal dependency of the time series. As
mentioned, the model is inspired by structures form sequential problems, such as video
frame prediction and sentiment analysis, trying to extract the hidden pattern of the data
points, and represent the sequences of signal vectors into a compressed set variables. It
is believed that this approach is able to remove noise and capture the most important fea-
ture of the input sequences. To improve the performance of the reconstruction part, and
subsequently giving a better representation of the sequence, more thorough testing and
modifications of the model must be conducted. One specific improvement may be to use
the output of one sequence of the decoder as the input of the next sequence, helping with
the reconstruction. If this model seems to work well, it can be applied to any problem or
situation where time series data are obtainable, such as flow of fluids, weather, and elec-
trical signals in general. In these instances the model can be used for anomaly detection
or system state monitoring. An interesting extension of the model would be to add a one
dimensional convolutional neural network (CNN) before the input of the encoder or the
other architectures, as tested in [16], with good results. In that study, a hybrid architecture
was proposed to be applied on raw PQ signal. The architecture consisted of a multilevel
CNN for capturing low level spatial dependencies combined with a LSTM layer, captur-
ing the temporal dependencies and creating a more abstract feature map. The benefit of
adding this kind of layer is to extract the most important information from multiple time
steps, functioning as a feature extractor. This may help the LSTM layers to learn more
abstract patterns.

Testing the composite model, the states at the output sequence were analysed to see
what the model had learned. It was particularly interesting to see how well the model
performed on the multiclass problem. With this in mind, having a good reconstruction
model, it would be interesting to analyse the activity state vectors when the model has
only been trained for reconstruction. This to see if feeding various fault events into the
model will be well separated when doing dimension reduction such as t-SNA or principal
component analysis (PCA).

The voltage in the power system is considered to be fixed. However, the current varies
mainly with the loads in the system. This can affect the voltage level in the system if the
variation is too drastic. This is analogous to water pressure in a pipe decreasing when
opening a valve to an empty chamber. There are direct relationships between the physical
parameters. This needs to be explored in further detail.

In this thesis, 148 samples containing interruption, 1388 samples containing earth
fault, and 1919 samples containing voltage dip, were used. Of all the tests conducted,
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interruptions were the easiest to predict, with earth faults second and voltage dips third,
considering the ROC-plots in Fig. 4.9. This result concurs with the results from [21]. In
the referred study, the spectral information of cycle-by-cycle voltage measurements were
used with time series ranging from 40 to 1280 seconds testing prediction horizons from 0
to 40 seconds.

Pre processing the data is an effective way of getting the most information out of the
data in hand. In this thesis smoothing and standardising were performed. However, many
pre processing techniques in the form of feature extraction are available. Pre processing
should be applied to counteract the problem some models have not to generalise well due
to the size of the training data. This is a typical problem in deep learning. Usually data
sets containing several thousand samples are used to classify events [15, 19, 22].

As stated earlier, there are some samples in the data set which were not classified
correctly. This has only been confirmed related to the interruption samples. However, it
may apply to the other fault classes as well. The reason for this statement has to do with the
difficulty of predicting voltage dips. This class dominates the fault event statistics in form
of number of events. Regardless of this, it is the most difficult event to predict compared
to the other classes. Similarities between the signatures of the voltage dip and the nominal
operation could be an explanation of this difficulty, since a voltage dip can be caused by a
heavy load being connected to the grid with no pre warning. An earth fault could come in
various forms, it could be single phase to ground earth fault, double phase earth fault, or
triple phase earth fault, isolated or to ground. Each fault will act differently on the power
system, in form of short circuit currents and system impedance.

In general, there are different causes for a fault to occur, and some of these causes
do not have a development that can be detected by the PQ data measurements. Exam-
ples of this are weather conditions, environmental factors, such as animals and vegetation,
accidental power line ruptures by vehicle encounters or maintenance. The situations men-
tioned are also among the main causes of interruptions and disturbances in the Norwegian
power grid [63]. By combining data from these external factors, a more solid evaluation
may be given by the system. The factors not directly imposed on the power grid prior
to the fault event, can in this case be used in combination with internal measurements to
predict the state of the power system.

A possible approach related to data set preparation, is focusing on few measurement
nodes, such as only data from one specific system operator when training the model. The
theory of faults in electrical power systems states that some fault events have specific
signatures, such as harmonic components occurring prior or during a fault [35]. In this
study, only the combination of all harmonics were used as features. It could be interesting
to expand the study. Would the symmetrical component sequences of current and voltage
result in a more distinct separation between nominal operation and a given fault event?

One approach may be to train one single model for each fault class and combine the
probabilities of the predictions to determine the most likely class. This will minimise the
complexity the model has to deal with. Due to relatively small size of fault events, con-
ducting deep learning on these problems may be inferior compared to other approaches,
such as clustering and other state-of-the-art statistical methods. To address this problem,
the sequence-to-sequence Autoencoder may be trained solely on the infinite stream of
nominal data, as proposed earlier. When fed non nominal data, the output data and the

63



Chapter 4. Results and Discussion

states of the model may be analysed for anomalies and used to determine the state of the
system.

4.8 Further Work
In this section the central points from the discussion related to further work will be sum-
marised.

Improvements to the composite model is proposed, and its applicability in other ar-
eas is suggested. The sequence-to-sequence Autoencoder is highly suitable to be used in
problems where data for labelling is difficult to obtain or rarely occurs. This is because the
concept of the method is to use self-supervised learning, a version of unsupervised learn-
ing, not using labelled data. Fault event prediction may be viewed as an anomaly detection
problem, because a fault event deviates from the nominal operation.

A more focused analysis of what the models learn and how well they distinguish be-
tween classes, is recommended. This is best done by analysing the weight and state vectors
of the model. In this study, only the state vectors were analysed. However, the weights
could contain valuable information about the nature of the input data. Basal analysis, such
as inputting a simple signal to see if there is a clear pattern correlating the signal and
learned weights, is proposed.

An important part of this study has been to investigate suitable features among the
physical parameters. It is suggested to do more specific testing of the physical parameters.
Because the results from this study show an indication that different physical parameters
explains the signature of the fault type. An abstraction to this is to investigate which
harmonic component best explains a given fault type.

Further investigation on the prediction horizon is proposed. In this thesis the metrics
made an improvement in the positive direction at the seven minute mark. For this it is
recommended to use longer time series because it is believed that more information is
present in a longer development span.

In general, the data used for prediction has to be pre processed before fed to the model.
Various methods to extract statistical information from raw data or spectral representation
should be explored in more detail.

The long term goal is to provide a real time monitoring system for prediction of fault
events. To include a work in progress model into the system for testing would yield great
insight in how the model reacts on continuous data flow. It would also provide valuable
information on how the model functions in a practical point of view, and reveal any short-
comings the model might have.
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Chapter 5
Conclusion

In this master’s thesis, deep learning techniques originally from video and language (NLP)
research were tested on time series measurement data from the Norwegian electrical power
system to predict the occurrence of a fault event. A sequence-to-sequence Autoencoder
was proposed for use in signal feature extraction. Various tests were conducted from inves-
tigating the raw data, to analysing the output of the model. Results have shown a prediction
horizon up to seven minutes is possible. It was proposed that even longer horizons may
be plausible. Further investigation into the harmonic components was proposed, related to
signal analysis and statistics, for better feature extraction.

The most promising features were the harmonic components of voltage and current.
The fault types may have various composition of harmonic components giving the different
fault types an unique signature.

This thesis has been focusing on sequential recurrent neural networks, capturing the
temporal dependencies in the time series data. Improvements to the model have been
proposed, focusing on anomaly detection.

In combination with other monitoring equipment, a fault event prediction system can
be used as a tool in decision making.

As part of a competence building research program this thesis contributes to the foun-
dation of further research on the area outlined. Multiple research topics were proposed as
suitable extensions to the research conducted. Placing the research in a broader view, the
results may lead to increased security of power supply, reduced operation and maintenance
(O & M) costs, and indirectly reducing the impact on the environment by enabling a safer
integration of sustainable energy sources.
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Appendix A: Supplementary
Results

0 36 72 108
144

180
216

252
288

324
360

396
432

468
504

540
576

612
648

684

0

10

20

30

40
RMSI3AV G
RMSI2AV G
RMSI1AV G

Fault event annotation of fault Avbrudd from sample 3423

Vo
lta

ge

1200 0.00001200 0.00001200 0.0000

Time from beginning of timeseries in seconds

RMS I3 AVG

Figure 5.1: Sample from one phase phase current development before an interruption.
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Figure 5.2: Development of harmonic phase voltage before an interruption.
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No pre-train versus pre-train on surge samples

Figure 5.5: Left: ROC plot obtained by training the model with 5-fold cross validation and no pre-
training. Right: ROC plot from a pre-trained model with 5-fold cross validation. The model was
trained on . The opaque blue lines are the ROC curves for each class, the solid blue is the macro
average of all the curves, and the dashed line corresponds to random guess. The gray area represents
the standard deviation of the calculation of the average. The area under the curve (AUC) is also
computed and displayed in the plot. Trained on balanced classes of non-fault and voltage swell

No pre-train versus pre-train on earth fault samples

Figure 5.6: Left: ROC plot obtained by training the model with 5-fold cross validation and no pre-
training. Right: ROC plot from a pre-trained model with 5-fold cross validation. The model was
trained on . The opaque blue lines are the ROC curves for each class, the solid blue is the macro
average of all the curves, and the dashed line corresponds to random guess. The gray area represents
the standard deviation of the calculation of the average. The area under the curve (AUC) is also
computed and displayed in the plot. Trained on balanced classes of non-fault and earth fault
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Surge

Figure 5.7: Illustration of the development of a voltage dipp sample, in the same spacing as some
of the prediction horizons. The plot displays the voltage, current, active power and reactive power
of the same sample in descending order. The x-axis states the time from the fault event in seconds.
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Earth fault

Figure 5.8: Illustration of the development of a earth fault sample, in the same spacing as some of
the prediction horizons. The plot displays the voltage, current, active power and reactive power of
the same sample in descending order. The x-axis states the time from the fault event in seconds.
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Classifier

Figure 5.9: Structural architecture of the classifier part of the model.

Reconstruction

Figure 5.10: Structural architecture of the reconstruction part of the model. This is a variation
of a shifted many-to-many LSTM architecture. In the scope of this research the input layer of the
decoder functions as ghost layer to make the Keras API happy by feeding the input zero vectors with
the same shape as the input of the encoder layer.
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Feature Testing on Earth Fault samples
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Figure 5.11: ROC-plots over the model trained on the corresponding feature a-n. The training set
contained non-faults and earth fault. See Table. 5.1 for metric results for each feature.
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Table 5.1: Results from training on individual features classifying non-faults and earth fault. Each
fold was trained for 10 epochs, no pre-training of the model, with batch size of 128 and train/test
samples of 800/200. The harmonic features contains six harmonic components; 2nd, 3rd, 5th, 7th,
9th, 11th and 13th, the rest consists of three columns, one for each phase. See Fig. 5.12 for ROC-
plots of each feature.

Earth Fault
Features Classification Accuracy Classification MCC Reconstruction Loss
Active power 50.00% (+/- 0.00%) 0.00 (+/- 0.00) 0.93 (+/- 0.04)
Reactive power 50.00% (+/- 0.00%) 0.00 (+/- 0.00) 0.96 (+/- 0.01)
hi1 52.70% (+/- 3.46%) 0.05 (+/- 0.07) 0.23 (+/- 0.02)
hi2 51.10% (+/- 1.02%) 0.02 (+/- 0.02) 0.23 (+/- 0.02)
hi3 53.60% (+/- 4.41%) 0.07 (+/- 0.09) 0.23 (+/- 0.03)
hv1 51.50% (+/- 3.00%) 0.03 (+/- 0.06) 0.53 (+/- 0.02)
hv2 54.00% (+/- 3.33%) 0.08 (+/- 0.07) 0.52 (+/- 0.01)
hv3 53.10% (+/- 4.79%) 0.06 (+/- 0.10) 0.49 (+/- 0.02)
hv12 58.50% (+/- 5.31%) 0.17 (+/- 0.11) 0.58 (+/- 0.01)
hv23 54.40% (+/- 4.14%) 0.09 (+/- 0.08) 0.57 (+/- 0.01)
hv31 55.30% (+/- 4.95%) 0.11 (+/- 0.10) 0.58 (+/- 0.02)
Current 50.70% (+/- 1.40%) 0.01 (+/- 0.03) 0.87 (+/- 0.03)
Line voltage 50.60% (+/- 1.46%) 0.01 (+/- 0.03) 0.96 (+/- 0.02)
Phase voltage 50.30% (+/- 0.40%) 0.01 (+/- 0.01) 0.93 (+/- 0.02)
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Feature Testing on Voltage Dip Samples
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Figure 5.12: ROC-plots over the model trained on the corresponding feature a-n. The training set
contained non-faults and voltage dip. See Table. 5.2 for metric results for each feature.
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Table 5.2: Results form training on individual features classifying non-faults and voltage dips. Each
fold was trained for 10 epochs, no pre-training of the model, with batch size of 64 and train/test
samples of 800/200. The harmonic features contains six harmonic components; 2nd, 3rd, 5th, 7th,
9th, 11th and 13th, the rest consists of three columns, one for each phase. See Fig. 5.12 for ROC-
plots of each feature.

voltage dip
Features Classification accuracy Classification mcc Reconstruction loss
Active power 50.00% (+/- 0.00%) 0.00 (+/- 0.00) 0.92 (+/- 0.03)
Reactive power 50.10% (+/- 0.20%) 0.00 (+/- 0.00) 0.95 (+/- 0.01)
hi1 53.00% (+/- 3.70%) 0.06 (+/- 0.07) 0.28 (+/- 0.01)
hi2 55.50% (+/- 4.54%) 0.11 (+/- 0.09) 0.27 (+/- 0.02)
hi3 53.00% (+/- 4.09%) 0.06 (+/- 0.08) 0.30 (+/- 0.03)
hv1 51.80% (+/- 3.36%) 0.04 (+/- 0.07) 0.50 (+/- 0.01)
hv2 50.20% (+/- 0.40%) 0.00 (+/- 0.01) 0.50 (+/- 0.02)
hv3 53.80% (+/- 3.39%) 0.08 (+/- 0.07) 0.47 (+/- 0.01)
hv12 55.60% (+/- 5.01%) 0.11 (+/- 0.10) 0.55 (+/- 0.02)
hv23 53.40% (+/- 3.89%) 0.07 (+/- 0.08) 0.54 (+/- 0.01)
hv31 53.60% (+/- 5.77%) 0.07 (+/- 0.12) 0.55 (+/- 0.01)
Current 50.20% (+/- 0.40%) 0.00 (+/- 0.01) 0.87 (+/- 0.01)
Line voltage 50.00% (+/- 0.63%) 0.00 (+/- 0.01) 0.96 (+/- 0.02)
Phase voltage 50.00% (+/- 0.00%) 0.00 (+/- 0.00) 0.93 (+/- 0.03)

84



Appendix B: Code

1

2 ## V e r s i o n s used ##
3 # Python : 3 . 6 . 8
4 # Keras : 2 . 2 . 4
5 # TensorFlow : 1 . 1 3 . 1
6 # Numpy : 1 . 1 6 . 3
7 # Pandas : 0 . 2 3 . 4
8 # P l o t l y : 3 . 5 . 0
9 # S k l e a r n : 0 . 2 0 . 3

10 # ################
11

12 i m p o r t i t e r t o o l s
13 i m p o r t t a b l e s
14 i m p o r t os
15 i m p o r t t ime
16 i m p o r t p l o t l y
17 i m p o r t pandas as pd
18 i m p o r t numpy as np
19 i m p o r t t e n s o r f l o w as t f
20 i m p o r t s e a b o r n as s n s
21 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
22 i m p o r t k e r a s . backend as K
23 i m p o r t p l o t l y . p l o t l y as py
24 i m p o r t p l o t l y . g r a p h o b j s a s go
25

26 from k e r a s . models i m p o r t Model
27 from k e r a s . l a y e r s i m p o r t I n p u t , LSTM, Dense , A c t i v a t i o n
28 from k e r a s . u t i l s i m p o r t p l o t m o d e l
29 from k e r a s . r e g u l a r i z e r s i m p o r t l 2
30 from k e r a s . e n g i n e . t o p o l o g y i m p o r t Layer
31 from k e r a s i m p o r t i n i t i a l i z e r s , c o n s t r a i n t s
32 from k e r a s i m p o r t l o s s e s
33 from t e n s o r f l o w . py thon . k e r a s . c a l l b a c k s i m p o r t TensorBoard
34 from numpy . random i m p o r t s eed
35 from s k l e a r n . m a n i f o l d i m p o r t TSNE
36 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t S t r a t i f i e d K F o l d , t r a i n t e s t s p l i t
37 from s k l e a r n . m e t r i c s i m p o r t r o c c u r v e , auc , f 1 s c o r e , m a t t h e w s c o r r c o e f ,

c o n f u s i o n m a t r i x , a c c u r a c y s c o r e
38 from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
39 from s k l e a r n i m p o r t p r e p r o c e s s i n g
40 from s c i p y i m p o r t i n t e r p , s i g n a l
41 from d a t e t i m e i m p o r t d a t e t i m e
42 from m a t p l o t l i b . c o l o r s i m p o r t L i s t e d C o l o r m a p
43 from I P y t h o n . c o r e . i n t e r a c t i v e s h e l l i m p o r t I n t e r a c t i v e S h e l l
44 from p l o t l y . o f f l i n e i m p o r t i n i t n o t e b o o k m o d e , i p l o t
45

46 # For d i s p l a y i n g p l o t l y i n j u p y t e r no tebook
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47 I n t e r a c t i v e S h e l l . a s t n o d e i n t e r a c t i v i t y = ’ a l l ’
48 p l t . s t y l e . use ( ’bmh ’ )
49 i n i t n o t e b o o k m o d e ( c o n n e c t e d =True )

Code 5.1: Imports
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1 # # # P l o t l y f u n c t i o n s # # #
2 d e f random sample ( y , e v e n t t y p e = ’ Avbrudd ’ ) :
3 # random sample s e l e c t o r o f s p e c i f i c e v e n t t y p e
4 # J o r d f e i l , None , Spenn ingsd ipp , Avbrudd
5 sample = np . random . c h o i c e ( np . a rgwhere ( y== e v e n t t y p e ) . r e s h a p e ( 1 , ) , s i z e

=1) [ 0 ]
6 r e t u r n sample
7

8 d e f f i n d f a u l t e v e n t ( me tada ta , x ) :
9 r e s o l u t i o n = f l o a t ( m e t a d a t a [ ’ r e s o l u t i o n m s ’ ] )

10 i d x f a u l t e v e n t = i n t ( i n t ( m e t a d a t a [ ’ N p o i n t s ’ ] ) i n t ( m e t a d a t a [ ’
T i m e b u f f e r s e c ’ ] ) ∗1000/ r e s o l u t i o n )

11 r e s u l t = pd . c o n c a t ( [ pd . S e r i e s ( x . i l o c [ i d x f a u l t e v e n t ] ) , pd . S e r i e s (
i d x f a u l t e v e n t ) ] , a x i s = 1)

12 r e s u l t . columns = [ ’ v a l u e ’ , ’ t ime ’ ]
13 r e t u r n r e s u l t . s e t i n d e x ( ’ t ime ’ )
14

15 # B u i l d i n g t y h e a n n o t a i o n
16 d e f b u i l d a n n o t a t i o n s ( f a u l t ) :
17 a n n o t a t i o n = [ d i c t ( x = t ime , y = v a l u e [ 0 ] ,
18 x r e f = ’ x ’ , y r e f = ’ y ’ ,
19 f o n t = d i c t ( c o l o r = ’ b l u e ’ ) ,
20 t e x t = f ’{ t ime} <br> { v a l u e [ 0 ] : . 4 f } ’ )
21 f o r t ime , v a l u e i n z i p ( f a u l t . index , f a u l t . v a l u e s ) ]
22 r e t u r n a n n o t a t i o n [ 0 ]
23

24 d e f c r e a t e p l o t d a t a ( s e l e c t e d s a m p l e , me tada ta , f e a t u r e n a m e , f e a t u r e ,
a n n o t a t i o n s =True , c o l o r =None ) :

25 t r y :
26 p l o t s e r i e s = s e l e c t e d s a m p l e . i l o c [ : , f e a t u r e ]
27 names = f e a t u r e n a m e [ f e a t u r e ] . s p l i t ( ’ ’ )
28 e x c e p t :
29 p l o t s e r i e s = s e l e c t e d s a m p l e . l o c [ : , f e a t u r e ]
30 names = f e a t u r e n a m e [ f e a t u r e ] . s p l i t ( ’ ’ )
31

32 i f names [ 0 ] . l ower ( ) == ’ harmonic ’ :
33 y a x i s = ’ y2 ’
34 e l s e :
35 y a x i s = ’ y ’
36

37 p l o t d a t a = go . S c a t t e r (
38 x= p l o t s e r i e s . index ,
39 y= p l o t s e r i e s . v a l u e s . r e s h a p e ( 1 , ) ,
40 l i n e = d i c t ( c o l o r = c o l o r , w id th = 1 . 1 ) ,
41 o p a c i t y = 0 . 8 ,
42 name= f e a t u r e n a m e [ f e a t u r e ] ,
43 y a x i s = y a x i s ,
44 h o v e r i n f o = ’ t e x t +x ’ ,
45 t e x t = [ f ’{names [ 0 ]} {names [ 2 ]} {names [ 1 ] } : {x : . 4 f } ’ f o r x i n

p l o t s e r i e s . v a l u e s . r e s h a p e ( 1 , ) ]
46 )
47

48 i f a n n o t a t i o n s :
49 f a u l t e v e n t = f i n d f a u l t e v e n t ( me tada ta , p l o t s e r i e s )
50 f a u l t e v e n t a n n o t a t i o n = b u i l d a n n o t a t i o n s ( f a u l t e v e n t )
51 r e t u r n p l o t d a t a , f a u l t e v e n t a n n o t a t i o n
52
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53 r e t u r n p l o t d a t a
54

55

56 d e f p l o t s a m p l e d a t a ( s e l e c t e d s a m p l e , me tada ta , f e a t u r e n a m e , f e a t u r e ,
f a u l t t y p e , a n n o t a t i o n s f l a g =True , s ave = F a l s e ) :

57

58 names = [ y [ 0 ] + ’ ’+y [ 1 ] + ’ ’+y [ 2 ] f o r y i n [ [ x . s p l i t ( ’ ’ ) [ i ] i f l e n ( x .
s p l i t ( ’ ’ ) )>4 e l s e x . s p l i t ( ’ ’ ) [ j ] f o r j , i i n enumera t e ( [ 0 , 2 , 4 ] ) ] f o r
x i n f e a t u r e n a m e [ f e a t u r e ] ] ]

59

60 d a t a a n n o t a t i o n s = [ c r e a t e p l o t d a t a ( s e l e c t e d s a m p l e , me tada ta ,
f e a t u r e n a m e , f e a t u r e =x , a n n o t a t i o n s = a n n o t a t i o n s f l a g ) f o r x i n
f e a t u r e ]

61

62

63

64 i f a n n o t a t i o n s f l a g :
65 d a t a = [ x [ 0 ] f o r x i n d a t a a n n o t a t i o n s ]
66 a n n o t a t i o n s = [ x [ 1 ] f o r x i n d a t a a n n o t a t i o n s ]
67 e l s e :
68 d a t a = d a t a a n n o t a t i o n s
69 a n n o t a t i o n s = [ ]
70

71 n u m f e a t u r e s = l e n ( d a t a )
72

73 v i s i b l e = np . append ( l i s t ( np . d i a g ( np . ones ( n u m f e a t u r e s ) ) ==1) , l i s t ( np .
ones ( n u m f e a t u r e s ) ==1) ) . r e s h a p e ( n u m f e a t u r e s +1 , n u m f e a t u r e s )

74 v i s i b l e = [ l i s t ( i ) f o r i i n v i s i b l e ]
75

76 i f a n n o t a t i o n s f l a g :
77 b u t t o n l i s t = [ d i c t ( l a b e l =names [ i ] ,
78 method= ’ u p d a t e ’ ,
79 a r g s =[{ ’ v i s i b l e ’ : l i s t ( v i s i b l e [ i ] )
80 } ,{
81 ’ t i t l e ’ : f ’ F a u l t e v e n t a n n o t a t i o n o f

f a u l t { f a u l t t y p e } on {names [ i ]} from sample { sample +1} ’ ,
82 ’ a n n o t a t i o n s ’ : [ a n n o t a t i o n s [ i ] ]
83 }
84 ] ) f o r i i n r a n g e ( n u m f e a t u r e s ) ]
85

86 b u t t o n l i s t . append ( d i c t ( l a b e l = ’ A l l ’ , method= ’ u p d a t e ’ , a r g s =[{ ’
v i s i b l e ’ : l i s t ( v i s i b l e [ 1 ] )

87 } ,{
88 ’ t i t l e ’ : f ’

F a u l t e v e n t a n n o t a t i o n o f f a u l t { f a u l t t y p e } from sample { sample +1} ’ ,
89 ’ a n n o t a t i o n s ’ :

a n n o t a t i o n s }
90

91 ] ) )
92 e l s e :
93 b u t t o n l i s t = [ d i c t ( l a b e l =names [ i ] ,
94 method= ’ u p d a t e ’ ,
95 a r g s =[{ ’ v i s i b l e ’ : l i s t ( v i s i b l e [ i ] )
96 } ,{
97 ’ t i t l e ’ : f ’ F a u l t e v e n t o f f a u l t {

f a u l t t y p e } on {names [ i ]} from sample { sample +1} ’ ,
98 }
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99 ] ) f o r i i n r a n g e ( n u m f e a t u r e s ) ]
100

101 b u t t o n l i s t . append ( d i c t ( l a b e l = ’ A l l ’ , method= ’ u p d a t e ’ , a r g s =[{ ’
v i s i b l e ’ : l i s t ( v i s i b l e [ 1 ] )

102 } ,{
103 ’ t i t l e ’ : f ’

F a u l t e v e n t o f f a u l t { f a u l t t y p e } from sample { sample +1} ’
104 }
105 ] ) )
106

107

108 updatemenus = l i s t ( [
109 d i c t (
110 a c t i v e =0 ,
111 b u t t o n s = b u t t o n l i s t )
112 ] )
113

114 d e f zoom ( l a y o u t , x r a ng e ) :
115 i n v i e w = df . l o c [ f i g . l a y o u t . x a x i s . r a n g e [ 0 ] : f i g . l a y o u t . x a x i s . r a n g e

[ 1 ] ]
116 f i g . l a y o u t . y a x i s . r a n g e = [ i n v i e w . High . min ( ) 10 , i n v i e w . High .

max ( ) + 10]
117 p r i n t ( i n v i e w )
118

119 # d e c i d e c o r r e c t a x i s t o p l o t on
120 y a x i s = d i c t ( )
121 y a x i s 2 =None
122 f o r x i n d a t a :
123 i f n o t y a x i s and x . y a x i s == ’ y ’ :
124 y a x i s = d i c t ( t i t l e = ’ V o l t a g e ’ )
125 i f n o t y a x i s 2 and x . y a x i s == ’ y2 ’ :
126 y a x i s 2 = d i c t ( t i t l e = ’ Harmonic ’ , c o l o r = ’ b l u e ’ ,
127 o v e r l a y i n g = ’ y ’ ,
128 s i d e = ’ r i g h t ’ )
129 i f y a x i s and y a x i s 2 :
130 b r e a k
131 i f n o t y a x i s :
132 y a x i s 2 [ ’ s i d e ’ ]= ’ l e f t ’
133 f o r x i n d a t a :
134 x . y a x i s = ’ y ’
135 y a x i s [ ’ t i t l e ’ ]= ’ Harmonic ’
136 y a x i s 2 = d i c t ( )
137

138 # y a x i s 2 [ ’ o v e r l a y i n g ’ ]= None
139

140 r e s o l u t i o n p l o t t i c = 20
141

142 l a y o u t = go . Layout ( h e i g h t =800 , wid th =1000 ,
143 t i t l e = f ’ F a u l t e v e n t a n n o t a t i o n o f f a u l t { f a u l t t y p e }

from sample { sample +1} ’ ,
144 a n n o t a t i o n s = a n n o t a t i o n s ,
145 updatemenus =updatemenus ,
146 x a x i s = d i c t ( t i t l e = ’ Time from b e g i n n i n g o f t i m e s e r i e s

i n s e c o n d s ’ ,
147 # S l i d i n g f o r s e l e c t i n g t ime window
148 r a n g e s l i d e r = d i c t ( v i s i b l e =True ) ,
149 t i c k v a l s = l i s t ( np . a round ( np . a r a n g e (
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150 0 ,
151 i n t ( m e t a d a t a [ ’ N p o i n t s ’ ] ) +1 ,
152 i n t ( m e t a d a t a [ ’ N p o i n t s ’ ] ) /

r e s o l u t i o n p l o t t i c ) , d e c i m a l s =1) ) ,
153 t i c k t e x t = l i s t ( np . a round ( np . a r a n g e (
154 0 ,
155 i n t ( m e t a d a t a [ ’ t o t a l d u r a t i o n s e c ’ ] )

+1 ,
156 i n t ( m e t a d a t a [ ’ t o t a l d u r a t i o n s e c ’ ] ) /

r e s o l u t i o n p l o t t i c ) , d e c i m a l s =1) ) ,
157 t i c k a n g l e =45 ,
158 t i c k f o r m a t = ’ , d ’
159 # Type of x a x i s
160 # t y p e = ’ d a t e ’
161 ) ,
162 # y a x i s i s unchanged
163 y a x i s = y a x i s ,
164 y a x i s 2 = y a x i s 2
165 )
166

167

168 i f s ave :
169 img name = ’my p l o t ’
170 d l o a d = os . p a t h . e x p a n d u s e r ( ’ ˜ / mas t e roppgave / ’ )
171 s a v e d i r = ’ ˜ / f i g u r e r ’
172

173 i p l o t ( f i g )
174 p l o t l y . o f f l i n e . p l o t ( f i g , i m a g e f i l e n a m e =img name , image= ’ svg ’ )
175

176 ### might need t o w a i t f o r p l o t t o download b e f o r e copy ing
177 s l e e p ( 1 )
178

179 # c o p y f i l e ( ’{} /{} . svg ’ . f o r m a t ( d load , img name ) ,
180 # ’{} /{} . svg ’ . f o r m a t ( s a v e d i r , img name ) )
181 e l s e :
182 i p l o t ( f i g )
183

184

185 d e f p l o t t r a i n ( X t r a i n , y t r a i n , b a l a n c e d i n d e x , e v e n t t y p e = ’ Avbrudd ’ ,
sample =None ) :

186

187 i , j = np . where ( y t r a i n )
188 i f n o t sample :
189 sample = random sample ( pd . S e r i e s ( y t r a i n . columns [ j ] , i ) , e v e n t t y p e )
190 sample = y t r a i n . i n d e x . v a l u e s [ sample ]
191

192 s u b i n d e x = np . a rgwhere ( np . a r r a y ( b a l a n c e d i n d e x ) == sample ) [ 0 ] [ 0 ] #
g e t t h e r i g h t sample f o r i n f o r m a t i o n

193 pd . DataFrame ( X t r a i n [ s u b i n d e x , : : 1 , : ] ) . p l o t ( )
194 p r i n t ( pd . S e r i e s ( y t r a i n . columns [ j ] , i ) [ s u b i n d e x ] )
195

196 d e f p l o t t t ( s e l e c t e d s a m p l e , h a r m o n i c f e a t u r e , f a u l t t y p e , sample ,
f e a t u r e n a m e ) :

197 ’ ’ ’ P l o t s e l e c t e d harmonic f e a t u r e s on s e p a r a t e y a x i s wi th s h a r e d x
a x i s .

198 ’ ’ ’
199 h a r m o n i c s d f = s e l e c t e d s a m p l e . i l o c [ : , h a r m o n i c f e a t u r e ] . f i l l n a ( method
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= ’ b a c k f i l l ’ )
200 h names = np . a r r a y ( [ x . s p l i t ( ’NT ’ ) [ 1 ] f o r x i n f e a t u r e n a m e [

h a r m o n i c f e a t u r e ] ] ) # f e a t u r e n a m e [ : 3 1 ] ] )
201 n h a r m o n i c s = h a r m o n i c s d f . shape [ 1 ]
202 t i m e s = h a r m o n i c s d f . i n d e x . v a l u e s
203

204 s t e p = 1 . / n h a r m o n i c s
205 kwargs = d i c t ( domain =[1 s t e p , 1 ] , s h o w t i c k l a b e l s = F a l s e , z e r o l i n e =

F a l s e , showgr id = F a l s e )
206

207 # c r e a t e o b j e c t s f o r l a y o u t and t r a c e s
208 l a y o u t = go . Layout ( y a x i s =go . l a y o u t . YAxis ( kwargs ) ,
209 t i t l e = f ’ P l o t o f s e l e c t e d harmonic components o f

f a u l t t y p e { f a u l t t y p e } from sample { sample} ’ ,
210 showlegend = F a l s e ) ;
211 t r a c e s = [ go . S c a t t e r ( x= t imes ,
212 y= h a r m o n i c s d f . v a l u e s [ : , 0 ] ,
213 # h o v e r i n f o = ’ t e x t ’ ,
214 # t e x t =[ f ’{ names [ 0 ] [ 0 ] } {names [ 0 ] [ 2 ] } {names

[ 0 ] [ 1 ] } : { h a r m o n i c s d f . v a l u e s [ : , i i ] : . 4 f } ’ f o r x i n p l o t s e r i e s .
v a l u e s . r e s h a p e ( 1 , ) ]

215 ) ]
216

217 # loop ove r t h e c h a n n e l s
218 f o r i i i n r a n g e ( 1 , n h a r m o n i c s ) :
219 kwargs . u p d a t e ( domain =[1 ( i i + 1 ) ∗ s t e p , 1 i i ∗ s t e p ] ) ;
220 l a y o u t . u p d a t e ({ ’ y a x i s%d ’ % ( i i + 1 ) : go . l a y o u t . YAxis ( kwargs ) ,

’ showlegend ’ : F a l s e } ) ;
221 t r a c e s . append ( go . S c a t t e r ( x= t imes , y= h a r m o n i c s d f . v a l u e s [ : , i i

] ,
222 # h o v e r i n f o = ’ t e x t ’ ,
223 # t e x t =[ f ’{ names [ i i ] [ 0 ] } {names [ i i

] [ 2 ] } {names [ i i ] [ 1 ] } : { h a r m o n i c s d f . v a l u e s [ : , i i ] : . 4 f } ’ . r e s h a p e ( 1 , )
] ,

224 y a x i s = ’ y%d ’ % ( i i + 1 ) ) ) ;
225

226 # add c h a n n e l names u s i n g A n n o t a t i o n s
227 a n n o t a t i o n s = go . A n n o t a t i o n s ( [ go . l a y o u t . A n n o t a t i o n ( x = 0 . 1 , y =0 , x r e f = ’

p a p e r ’ , y r e f = ’ y%d ’ % ( i i + 1 ) ,
228 t e x t =h name , f o n t =go . l a y o u t .

a n n o t a t i o n . Font ( s i z e =8) , showarrow= F a l s e )
229 f o r i i , h name i n enumera t e ( h names ) ] )
230 l a y o u t . u p d a t e ( a n n o t a t i o n s = a n n o t a t i o n s ) ;
231

232 s i z e s c a l e = n h a r m o n i c s / 3 0
233 # s e t t h e s i z e o f t h e f i g u r e and p l o t i t
234 l a y o u t . u p d a t e ( a u t o s i z e =True , wid th =800 , h e i g h t = s i z e s c a l e ∗800) ;
235 f i g = go . F i g u r e ( d a t a =go . Data ( t r a c e s ) , l a y o u t = l a y o u t )
236 i p l o t ( f i g )
237

238 img name = ’ fancy p l o t ’
239 # t o save image , open t h e g e n e r a t e d ’ temp p l o t . h tml ’ . . . i t works . . ;\
240 p l o t ( f i g , i m a g e f i l e n a m e =img name , image= ’ svg ’ )
241

242 i f n a m e == ’ m a i n ’ :
243 ### example use ###
244

91



245 sample = 3422
246 # P l o t t r a i n i n g sample
247 p l o t t r a i n ( p r ep . X t r a i n , p r ep . y t r a i n , p r ep . b a l a n c e d i n d e x , sample =

sample )
248 # sample = random sample ( y , ’ None ’ )
249 f a u l t t y p e = prep . y [ sample ]
250 s e l e c t e d s a m p l e = pd . DataFrame ( p rep . X i n i t [ sample ] )
251

252 # p l o t f u l l sample
253 p l o t s a m p l e d a t a ( s e l e c t e d s a m p l e , p r ep . me tada ta , p r ep . f e a t u r e n a m e ,

p rep . f e a t u r e , f a u l t t y p e , a n n o t a t i o n s f l a g =True , s ave =True )

Code 5.2: Visualisation tools
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1 c l a s s P r e p D a t a s e t ( ) :
2 d e f i n i t ( s e l f ) :
3 s e l f . l i s t o f e v e n t = [ ’ None ’ , ’ Avbrudd ’ ]
4 s e l f . a l l f e a t u r e s ( )
5 s e l f . s k i p = 1 # r e d u c e t h e s i z e o f t h e d a t a s e t t i m e s e r i e s by h a l v e
6 s e l f . smooth = True
7 s e l f . s t d = True
8 s e l f . t e s t s e t = True
9 s e l f . t e s t s i z e =0 .33

10 s e l f . d a t a s e t s i z e = None # t o t a l s i z e o f d a t a s e t sampled from
b a l a n c e d s u b s a m p l e f u n c t i o n

11

12 # # P r e p a r a t i o n o f d a t a s e t # #
13 d e f b a l a n c e d s u b s a m p l e ( s e l f , y ) :
14 ’ ’ ’ R e t u r n s t h e i n d e x e s t o t h e sample m a t r i x t h a t g i v e s b a l a n c e d
15 d i s t r i b u t e d d a t a s e t o f t h e e v e n t s p r e s e n t i n t h e t a r g e t v e c t o r . ’ ’ ’
16

17 subsample = [ ]
18

19 i f s e l f . d a t a s e t s i z e i s None :
20 n smp = y . v a l u e c o u n t s ( ) . min ( )
21 e l s e :
22 n smp = i n t ( s e l f . d a t a s e t s i z e / l e n ( y . v a l u e c o u n t s ( ) . i n d e x ) )
23

24 f o r l a b e l i n y . v a l u e c o u n t s ( ) . i n d e x :
25 sample s = y [ y == l a b e l ] . i n d e x . v a l u e s
26 i n d e x r a n g e = r a n g e ( sample s . shape [ 0 ] )
27

28 i n d e x e s = np . random . c h o i c e ( i n d e x r a n g e ,
29 s i z e =n smp ,
30 r e p l a c e = F a l s e
31 )
32 subsample += samples [ i n d e x e s ] . t o l i s t ( )
33

34 r e t u r n subsample
35

36 d e f s t a n d a r d i s e d a t a s e t ( s e l f ,X) :
37 ’ ’ ’ S t a n d a r d i s e f e a t u r e columns i n t h e d a t a s e t u s i n g s i k i t l e a r n ’ s

s t a n d a r d
38 s c a l e r . ’ ’ ’
39

40 X std = np . a r r a y ( [ ] )
41 s c a l e r = S t a n d a r d S c a l e r ( )
42 num = X. shape [ 0 ]
43 p r i n t ( ’ S t a n d a r d i s i n g . . . ’ )
44 f o r i i n r a n g e ( num ) :
45 X std = np . append ( [ X s td ] , [ s c a l e r . f i t t r a n s f o r m (X[ i ] ) ] )
46 X std = X s td . r e s h a p e (X [ : num ] . shape )
47 p r i n t ( ’ F i n i s h e d s t a n d a r d i s i n g ’ )
48 r e t u r n X s td
49

50 ## S l i d i n g window i n d e x e r ##
51 d e f window indexe r ( s e l f , me tada ta , l e n t i m e s e r i e s =60 ,

p r e d i c t i o n h o r i z o n =60) :
52 ’ ’ ’
53 l e n t i m e s e r i e s s e c o n d s o f t ime s e r i e s
54 p r e d i c t i o n h o r i z o n s e c o n d s from end of t ime s e r i e s t o f a u l t
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e v e n t
55

56 R e t u r n s t h e numpy a r r a y i n d e x e s t h a t c o r r e s p o n d s t o t h e
i n i t i a l i z a t i o n .

57 ’ ’ ’
58 r e s o l u t i o n = f l o a t ( m e t a d a t a [ ’ r e s o l u t i o n m s ’ ] )
59 i d x f a u l t e v e n t = i n t ( i n t ( m e t a d a t a [ ’ N p o i n t s ’ ] ) i n t ( m e t a d a t a [ ’

T i m e b u f f e r s e c ’ ] ) ∗1000/ r e s o l u t i o n ) # 30
60

61 e n d i d x = i n t ( i d x f a u l t e v e n t p r e d i c t i o n h o r i z o n ∗1000/ r e s o l u t i o n
)

62 s t a r t i d x = i n t ( e n d i d x l e n t i m e s e r i e s ∗1000/ r e s o l u t i o n )
63 r e t u r n s t a r t i d x , e n d i d x
64

65 d e f f i l t e r e v e n t b y t y p e ( s e l f ) :
66 ’ ’ ’ R e t u r n s t h e i n d e x e s o f t h e numby a r r a y c o n t a i n i n g t h e e v e n t

t y p e s .
67 P o s s i b l e e v e n t t y p e s a r e None , Avbrudd , J o r d f e i l , and

S p e n n i n g s d i p p .
68 Need t h e t a r g e t a r r a y as i n p u t . ’ ’ ’
69

70 s e l f . s a m p l e i d x = np . a r r a y ( [ ] )
71 f o r e v e n t t y p e i n s e l f . l i s t o f e v e n t :
72 s e l f . s a m p l e i d x = np . append ( s e l f . s a m p l e i d x , np . a rgwhere ( s e l f .

y== e v e n t t y p e ) . r e s h a p e ( 1 , ) ) . a s t y p e ( np . i n t 6 4 )
73

74 d e f s m o o t h s e r i e s ( s e l f , X, Wn= 0 . 2 , N=3) :
75 ’ ’ ’ A p p l i e s b u t t e r f i l t e r i n g t o each column t o smooth t h e s e r i e s .
76 N: o r d e r o f t h e f i l t e r
77 Wh: c r t i c a l f r e q u e n c y . The p o i n t a t which t h e g a i n d r o p s t o 1 /

s q r t ( 2 ) t h a t o f t h e p a s s b a n d .
78 R e t u r n s t h e f i l t e r e d v e r s i o n o f t h e i n p u t . ’ ’ ’
79

80 n = X. shape [ 2 ]
81 sample s = X. shape [ 0 ]
82 p r i n t ( ’ Smoothing . . ’ )
83 f o r s i n r a n g e ( samples ) :
84 f o r f t r i n r a n g e ( n ) :
85 s i g = X[ s , : , f t r ]
86 b , a = s i g n a l . b u t t e r (N, Wn)
87 f i l t e r e d = s i g n a l . f i l t f i l t ( b , a , s i g )
88 X[ s , : , f t r ] = f i l t e r e d
89 p r i n t ( ’ F i n i s h e d smooth ing ’ )
90 r e t u r n X
91

92

93

94 d e f l o a d d a t a s e t ( s e l f , p a t h = ’ / d a t a / k r i s t i a n h / i n i t d a t a s e t 2 0 1 9 0 4 1 9 . h5 ’
) :

95 f = t a b l e s . o p e n f i l e ( pa th , ’ a ’ )
96 p r i n t ( f )
97 s e l f . X i n i t = f . g e t n o d e ( ’ / i n p u t d a t a ’ ) . r e a d ( )
98 t a r g e t = f . g e t n o d e ( ’ / t a r g e t ’ ) . r e a d ( ) . a s t y p e ( np . s t r )
99 s e l f . f e a t u r e n a m e = f . g e t n o d e ( ’ / f e a t u r e n a m e ’ ) . r e a d ( ) . a s t y p e ( np .

s t r )
100 s e l f . m e t a d a t a = f . g e t n o d e ( ’ / m e t a d a t a ’ ) . r e a d ( )
101 f . c l o s e ( )
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102

103 s e l f . t a r g e t = pd . S e r i e s ( t a r g e t )
104 s e l f . y = s e l f . t a r g e t
105 s e l f . s a m p l e i d = pd . S e r i e s ( r a n g e ( l e n ( t a r g e t ) ) )
106

107 d e f d e l e t e d a t a s e t ( s e l f ) :
108 d e l s e l f . X i n i t
109

110 d e f t i m e v a r ( s e l f , l e n t s r s =60 , p r d h r z =1) :
111 ’ ’ ’ l e n t s r s : l e n g t h t i m e s e r i e s i n s e c o n d s
112 p r d h r z : p r e d i c t i o n h o r i z o n i n s e c o n d s ’ ’ ’
113 s e l f . s t a r t i d x , s e l f . e n d i d x = s e l f . w indow indexe r ( s e l f . me tada ta ,
114 l e n t s r s ,
115 p r d h r z )
116

117 d e f s e l e c t e v e n t s ( s e l f , e v e n t t y p e =[ ’ None ’ , ’ Avbrudd ’ ] ) :
118 s e l f . l i s t o f e v e n t = e v e n t t y p e
119

120

121 d e f a l l f e a t u r e s ( s e l f ) :
122 ’ ’ ’ Index of t h e f e a t u r e s a s t h e y w i l l a p p e a r i n t h e d a t a s e t . ’ ’ ’
123 s e l f . ap = [ 0 , 1 , 2 ] # a c t i v e power
124 s e l f . rp = [ 1 8 3 , 1 8 4 , 1 8 5 ] # r e a c t i v e power
125 s e l f . h i 1 = [ 5 , 6 , 8 , 1 0 , 1 4 , 1 6 ] # c u r r e n t ha rmon ic s phase1
126 s e l f . h i 2 = [ 2 5 , 2 6 , 2 8 , 3 0 , 3 4 , 3 6 ] # c u r r e n t ha rmon ic s phase2
127 s e l f . h i 3 = [ 4 5 , 4 6 , 4 8 , 5 0 , 5 4 , 5 6 ] # c u r r e n t ha rmon ic s phase3
128 s e l f . hv1 = [ 6 5 , 6 6 , 6 8 , 7 0 , 7 4 , 7 6 ] # v o l t a g e ha rmon ic s phase1
129 s e l f . hv2 = [ 8 5 , 8 6 , 8 8 , 9 0 , 9 4 , 9 6 ] # v o l t a g e ha rmon ic s phase2
130 s e l f . hv3 = [ 1 0 5 , 1 0 6 , 1 0 8 , 1 1 0 , 1 1 4 , 1 1 6 ] # v o l t a g e ha rmon ic s phase3
131 s e l f . hv12 = [ 1 2 5 , 1 2 6 , 1 28 , 1 3 0 , 1 3 4 , 13 6 ] # v o l t a g e ha rmon ic s l i n e

phase1
132 s e l f . hv23 = [ 1 4 5 , 1 4 6 , 1 4 8 , 1 5 0 , 1 5 4 , 1 5 6 ] # v o l t a g e ha rmon ic s l i n e

phase2
133 s e l f . hv31 = [ 1 6 5 , 1 6 6 , 1 6 8 , 1 7 0 , 1 7 4 , 1 7 6 ] # v o l t a g e ha rmon ic s l i n e

phase3
134 s e l f . c u r = [ 7 , 8 , 9 ] # c u r r e n t
135 s e l f . v o l l i = [ 4 , 5 , 6 ] # phase v o l t a g e
136 s e l f . vo lph = [ 1 , 2 , 3 ] # l i n e v o l t a g e
137

138 d e f s e l e c t e d f e a t u r e s ( s e l f ) :
139 s e l f . f e a t u r e = s e l f . ap+ s e l f . r p + s e l f . h i 1 + s e l f . h i 2 + s e l f . h i 3 + s e l f . hv1

+ s e l f . hv2+ s e l f . hv3+ s e l f . hv12+ s e l f . hv23+ s e l f . hv31+ s e l f . c u r + s e l f . v o l l i +
s e l f . vo lph

140

141 d e f g e n e r a t e d a t a s e t ( s e l f ) :
142 y s e l = s e l f . y [ s e l f . s a m p l e i d x ]
143 # Get a b a l a n c e d d i s t r i b u t e d d a t a s e t
144 b a l a n c e d i n d e x = s e l f . b a l a n c e d s u b s a m p l e ( pd . S e r i e s ( y s e l ) )
145 y sub = pd . S e r i e s ( y s e l [ b a l a n c e d i n d e x ] )
146

147 X sub = np . nan to num ( s e l f . X i n i t [ b a l a n c e d i n d e x , s e l f . s t a r t i d x :
s e l f . end idx , : ] [ : , : , s e l f . f e a t u r e ] )

148

149 X sub = X sub [ : , : : s e l f . sk ip , : ] # r e d u c i n g t h e d a t a s e t by s k i p p i n g
e v e r y s k i p

150

151 # Get o ne ho t encoded m a t r i x o f t h e t a r g e t v e c t o r
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152 y sub dummy = pd . ge t dummies ( y sub )
153

154 s e l f . n b c l a s s e s = y sub dummy . shape [ 1 ]
155 t a r g e t n a m e s = y sub dummy . columns . v a l u e s
156 p r i n t ( f ’ T a r g e t has t h e shape {y sub dummy . shape } , and t h e

f o l l o w i n g c a t e g o r i e s : { t a r g e t n a m e s } . ’ )
157

158 i f s e l f . smooth :
159 X sub = s e l f . s m o o t h s e r i e s ( X sub ) # smooth ing f i r s t . . .
160

161 i f s e l f . s t d :
162 X sub = s e l f . s t a n d a r d i s e d a t a s e t ( X sub ) # . . . t h e n s t a n d a r d i s e
163

164 i f s e l f . t e s t s e t :
165 X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t ( X sub ,
166

y sub dummy ,
167 t e s t s i z e =

s e l f . t e s t s i z e ,
168

r a n d o m s t a t e = s e l f . seed ,
169 s t r a t i f y =

y sub dummy
170 )
171 p r i n t ( f ’ T r a i n i n g s e t has t h e shape {X t r a i n . shape }\n ’ )
172 p r i n t ( ’ T r a i n s e t ’ )
173 p r i n t ( y t r a i n . sum ( ) , ’\n ’ )
174 p r i n t ( ’ T e s t s e t ’ )
175 p r i n t ( y t e s t . sum ( ) )
176

177 d e l X sub # maybe t h i s does some th ing good . . .
178

179 r e t u r n X t r a i n , X t e s t , y t r a i n , y t e s t
180 e l s e :
181 X t r a i n = X sub
182 y t r a i n = y sub dummy
183 X t e s t = None
184 y t e s t = None
185 p r i n t ( f ’ T r a i n i n g s e t has t h e shape {X t r a i n . shape }\n ’ )
186 p r i n t ( ’ T r a i n s e t ’ )
187 p r i n t ( y t r a i n . sum ( ) , ’\n ’ )
188

189 d e l X sub # maybe t h i s does some th ing good . . .
190

191 r e t u r n X t r a i n , y t r a i n

Code 5.3: Data set preparation
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1 c l a s s S2S Autoencoder ( ) :
2 d e f i n i t ( s e l f ) :
3 s e l f . b a t c h s i z e = 64 # Batch s i z e f o r t r a i n i n g .
4 s e l f . epochs = 20 # Number o f epochs t o t r a i n f o r .
5 s e l f . l a t e n t d i m = 250 # L a t e n t d i m e n s i o n a l i t y o f t h e e n c o d i n g

s p a c e .
6 s e l f . num samples = 10000 # Number o f samples t o t r a i n on .
7 s e l f . v a l s p l i t =0 .1
8 s e l f . v e r b o s e =1
9

10 s e l f . C = 0 . 0 1
11 s e l f . l r c l a = 0 . 0 1
12 s e l f . l r r e c = 0 .001
13 # v a r i a b l e s f o r b u i l d i n g Seq2Seq
14 s e l f . l a t e n t d i m 1 = 250
15 s e l f . l a t e n t d i m 2 = 250
16

17 # i n i t i a l i z e l o s s f u n c t i o n s o p t i m i z e r s and m e t r i c s
18 s e l f . a c t i v a t i o n c l a = ’ t a n h ’ # so f tmax
19 # s e l f . a c t i v a t i o n r e c = ’ so f tmax ’ # none
20 s e l f . o p t i m i z e r c l a = ’ adam ’
21 s e l f . o p t i m i z e r r e c = ’ rmsprop ’
22 s e l f . l o s s c l a = ’ c a t e g o r i c a l h i n g e ’ # c a t e g o r i c a l c r o s s e n t r o p y
23 s e l f . l o s s r e c = ’ mse ’
24 s e l f . l o s s w e i g h t s = [ 0 . 8 , 1 . 0 ]
25 s e l f . m e t r i c s c l a =[ ’ a c c u r a c y ’ , s e l f . m a t t h e w s c o r r e l a t i o n ]
26 s e l f . m e t r i c s r e c =[ ’ mse ’ ]
27

28 d e f f i t a u t o e n c o d e r ( s e l f ) :
29 ’ ’ ’ T r a i n s t h e e n c o d e r and d e c o d e r l a y e r s o f t h e a u t o e n c o d e r model .
30 The r e c o n s t r u c t i o n s e q u e n c e i s t h e r e v e r s e o f t h e i n p u t s e q u e n c e .

’ ’ ’
31

32 p r i n t ( ’\ n T r a i n i n g a u t o e n c o d e r \n ’ )
33

34 s e l f . d e c o d e r i n p u t d a t a = np . z e r o s ( s e l f . X t r a i n . shape )
35 s e l f . d e c o d e r t a r g e t o u t p u t = np . f l i p ( s e l f . X t r a i n , 2 )
36 e n c o d e r i n p u t d a t a = s e l f . X t r a i n
37

38 s e l f . c o m p i l e a u t o e n c o d e r ( )
39

40 K. s e t v a l u e ( s e l f . s 2 s a e c . o p t i m i z e r . l r , s e l f . l r r e c ) # s p e c i f y
l e a r n i n g r a t e f o r model o p t i m i z e r

41

42 s e l f . h i s t o r y a e c = s e l f . s 2 s a e c . f i t ( [ e n c o d e r i n p u t d a t a , s e l f .
d e c o d e r i n p u t d a t a ] ,

43 s e l f . d e c o d e r t a r g e t d a t a ,
44 b a t c h s i z e = s e l f . b a t c h s i z e ,
45 epochs = s e l f . epochs ,
46 v a l i d a t i o n s p l i t = s e l f . v a l s p l i t

,
47 v e r b o s e = s e l f . ve rbose ,
48 c a l l b a c k s =[ s e l f . t e n s o r b o a r d ]
49 )
50

51 d e f c o m p i l e a u t o e n c o d e r ( s e l f ) :
52 s e l f . s 2 s a e c . compi l e ( o p t i m i z e r = s e l f . o p t i m i z e r r e c ,
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53 l o s s = s e l f . l o s s r e c ,
54 m e t r i c s = s e l f . m e t r i c s r e c )
55

56 d e f f i t c l a ( s e l f ) :
57 ’ ’ ’ P re t r e a i n s on ly t h e c l a s s i f i e r r e l a t e d l a y e r s . ’ ’ ’
58

59 p r i n t ( ’\ n T r a i n i n g c l a s s i f i e r \n ’ )
60 s e l f . s 2 s c l a m o d e l . l a y e r s [ 1 ] . t r a i n a b l e = F a l s e # s e t t h e l a y e r s

c o r r e s p o n d i n g t o t h e e n c o d e r t o non t r a i n a b l e
61 s e l f . s 2 s c l a m o d e l . l a y e r s [ 2 ] . t r a i n a b l e = F a l s e
62

63 s e l f . c o m p i l e c l a s s i f i e r ( )
64

65 K. s e t v a l u e ( s e l f . s 2 s c l a m o d e l . o p t i m i z e r . l r , s e l f . l r c l a ) #
s p e c i f y l e a r n i n g r a t e f o r model o p t i m i z e r

66

67 s e l f . h i s t o r y c l a = s e l f . s 2 s c l a m o d e l . f i t (
68 s e l f . X t r a i n ,
69 s e l f . y t r a i n ,
70 b a t c h s i z e = s e l f . b a t c h s i z e ,
71 v a l i d a t i o n s p l i t = s e l f . v a l s p l i t ,
72 epochs = s e l f . epochs ,
73 v e r b o s e = s e l f . ve rbose ,
74 c a l l b a c k s =[ s e l f . t e n s o r b o a r d ]
75 )
76

77 d e f c o m p i l e c l a s s i f i e r ( s e l f ) :
78 s e l f . s 2 s c l a m o d e l . compi l e ( o p t i m i z e r = s e l f . o p t i m i z e r c l a ,
79 l o s s = s e l f . l o s s c l a ,
80 m e t r i c s = s e l f . m e t r i c s c l a )
81

82 d e f f i t c o m p o s i t e ( s e l f ) :
83 ’ ’ ’ T r a i n s a l l l a y e r s o f t h e model , t a k n i n g i n t o a c c o u n t bo th t h e
84 r e c o n s t r u c t i o n l o s s and t h e p r e d i c t i o n l o s s . The r e c o n s t r u c t i o n
85 s e q u e n c e i s t h e r e v e r s e o f t h e i n p u t s e q u e n c e . ’ ’ ’
86

87 p r i n t ( ’\ n T r a i n i n g comps i t emode l\n ’ )
88 s e l f . s 2 s c o m p o s i t e m o d e l . l a y e r s [ 2 ] . t r a i n a b l e = True # s e t t h e

l a y e r s c o r r e s p o n d i n g t o t h e e n c o d e r t o t r a i n a b l e
89 s e l f . s 2 s c o m p o s i t e m o d e l . l a y e r s [ 4 ] . t r a i n a b l e = True
90

91 s e l f . c o m p i l e c o m p o s i t e ( )
92

93 K. s e t v a l u e ( s e l f . s 2 s c o m p o s i t e m o d e l . o p t i m i z e r . l r , s e l f . l r r e c ) #
s p e c i f y l e a r n i n g r a t e f o r model o p t i m i z e r

94

95 s e l f . h i s t o r y c o m p o s i t e = s e l f . s 2 s c o m p o s i t e m o d e l . f i t (
96 [ s e l f . X t r a i n , s e l f .

d e c o d e r i n p u t d a t a ] ,
97 { ’ r e c o n s t r u c t i o n ’ : s e l f .

d e c o d e r t a r g e t d a t a ,
98 ’ c l a s s i f i e r ’ : s e l f . y t r a i n } ,
99 v a l i d a t i o n s p l i t = s e l f . v a l s p l i t ,

100 epochs = s e l f . epochs ,
101 v e r b o s e = s e l f . ve rbose ,
102 c a l l b a c k s =[ s e l f . t e n s o r b o a r d ]
103
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104 )
105

106 d e f c o m p i l e c o m p o s i t e ( s e l f ) :
107 s e l f . s 2 s c o m p o s i t e m o d e l . compi l e (
108 o p t i m i z e r = s e l f . o p t i m i z e r c l a ,
109 l o s s = s e l f . l o s s e s ,
110 l o s s w e i g h t s = s e l f . l o s s W e i g h t s ,
111 m e t r i c s = s e l f . m e t r i c s
112 )
113

114 d e f e n c o d e i n p u t ( s e l f , X= [ ] ) :
115 ’ ’ ’ Encodes t h e i n p u t and c r e a t e s t h e r e p r e s e n t a t i o n i n t o a c t i v i t y
116 v e c t o r o f t h e o u t p u t u n i t ’ ’ ’
117 # Encode t h e i n p u t a s s t a t e v e c t o r s .
118 i f l e n (X) ==0:
119 X = s e l f . X t r a i n
120 h1 , c1 = s e l f . encode r mode l1 . p r e d i c t (X) # s t a t e v e c t o r s o f f i r s t

l a y e r
121 h2 , c2 = s e l f . encode r mode l2 . p r e d i c t (X) # s t a t e v e c t o r s o f second

l a y e r
122

123 s e l f . h = [ h1 , h2 ]
124 s e l f . c = [ c1 , c2 ]
125

126

127 d e f p r e d i c t ( s e l f , X) :
128 ’ ’ ’ P r e d i c t i n g t h e e v e n t o f t h e i n p u t d a t a and r e c o n s t r u c t i n g t h e

i n p u t s e q u e n c e e s . ’ ’ ’
129 s e l f .X = X
130

131 s e l f . r e c o n s t r u c t i o n , p r e d i c t e d e v e n t = s e l f . s 2 s c o m p o s i t e m o d e l .
p r e d i c t ( s e l f .X)

132 p r e d i c t e v e n t i n d e x = p r e d i c t e d e v e n t . argmax ( a x i s =1)
133 y p r e d = s e l f . y t r a i n . columns . v a l u e s [ p r e d i c t e v e n t i n d e x ]
134 r e t u r n y p r e d
135

136 d e f r e c o n s t r u c t ( s e l f ) :
137 ’ ’ ’ R e t u r n s t h e r e c o n s t r u c t i o n from t h e d e c o d e r t o f t h e i n p u t

s e q u e n c e . ’ ’ ’
138 r e t u r n s e l f . r e c o n s t r u c t i o n
139

140 d e f r e t u r n s t a t e ( s e l f , s e q u e n c e s ) :
141 ’ ’ ’ R e t u r n s t h e h i dde n s t a t e s o f t h e o u t p u t o f t h e l a s t l a y e r i n

t h e e n c o d e r . ’ ’ ’
142 # y h a t = s e l f . e n c o d e r ( s e l f .X)
143 r e t u r n s e l f . o u t p u t t o k e n s , s e l f . h
144

145 d e f save mode l ( s e l f , model , f i l e n a m e = ’ s 2 s . h5 ’ ) :
146 model . s ave ( f i l e n a m e )
147

148 d e f e n c o d e r d e c o d e r l a y e r s ( s e l f ) :
149 ’ ’ ’ D e f i n e s t h e base l a y e r s o f t h e e n c o d e r d e c o d e r which t h e model

i s
150 c o n s t r u c t e d upon . ’ ’ ’
151

152 # De f i ne an i n p u t s e q u e n c e and p r o c e s s i t .
153 s e l f . e n c o d e r i n p u t s = I n p u t ( shape =( s e l f . t i m e s t e p s , s e l f . i n p u t d i m )
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, name= ’ E n c o d e r i n p u t ’ )
154 e n c o d e r = LSTM( s e l f . l a t e n t d i m 1 ,
155 # a c t i v a t i o n = ’ r e l u ’ ,
156 r e t u r n s e q u e n c e s =True ,
157 r e t u r n s t a t e =True ,
158 # d r o p o u t = 0 . 1 ,
159 name= ’ E n c o d e r h i d d e n l a y e r 1 ’ )
160 s e l f . e n c o d e r o u t p u t s 1 , s t a t e h 1 , s t a t e c 1 = e n c o d e r ( s e l f .

e n c o d e r i n p u t s )
161 e n c o d e r 2 = LSTM( s e l f . l a t e n t d i m 2 ,
162 # a c t i v a t i o n = ’ r e l u ’ ,
163 r e t u r n s t a t e =True ,
164 # d r o p o u t = 0 . 1 ,
165 name= ’ E n c o d e r h i d d e n l a y e r 2 ’ )
166 s e l f . e n c o d e r o u t p u t s 2 , s t a t e h 2 , s t a t e c 2 = e n c o d e r 2 ( s e l f .

e n c o d e r o u t p u t s 1 )
167 # We d i s c a r d ‘ e n c o d e r o u t p u t s ‘ and on ly keep t h e s t a t e s .
168 s e l f . e n c o d e r s t a t e s 1 = [ s t a t e h 1 , s t a t e c 1 ]
169 s e l f . e n c o d e r s t a t e s 2 = [ s t a t e h 2 , s t a t e c 2 ]
170

171 # S e t up t h e decoder , u s i n g ‘ e n c o d e r s t a t e s ‘ a s i n i t i a l s t a t e .
172 s e l f . d e c o d e r i n p u t s = I n p u t ( shape =( None , s e l f . i n p u t d i m ) , name= ’

D e c o d e r g h o s t i n p u t ’ )
173 # We s e t up our d e c o d e r t o r e t u r n f u l l o u t p u t sequences ,
174 # and t o r e t u r n i n t e r n a l s t a t e s a s w e l l . We don ’ t use t h e
175 # r e t u r n s t a t e s i n t h e t r a i n i n g model .
176 d e c o d e r l s t m 1 = LSTM( s e l f . l a t e n t d i m 1 ,
177 # a c t i v a t i o n = ’ r e l u ’ ,
178 r e t u r n s e q u e n c e s =True , r e t u r n s t a t e =True ,
179 name= ’ D e c o d e r h i d d e n l a y e r 1 ’ )
180 d e c o d e r o u t p u t s 1 , , = d e c o d e r l s t m 1 ( s e l f . d e c o d e r i n p u t s ,
181 i n i t i a l s t a t e = s e l f .

e n c o d e r s t a t e s 1 )
182 d e c o d e r l s t m 2 = LSTM( s e l f . l a t e n t d i m 2 ,
183 # a c t i v a t i o n = ’ r e l u ’ ,
184 r e t u r n s e q u e n c e s =True , r e t u r n s t a t e =True ,
185 name= ’ D e c o d e r h i d d e n l a y e r 2 ’ )
186 s e l f . d e c o d e r o u t p u t s 2 , , = d e c o d e r l s t m 2 ( d e c o d e r o u t p u t s 1 ,
187 i n i t i a l s t a t e = s e l f .

e n c o d e r s t a t e s 2 )
188

189

190 d e c o d e r d e n s e = Dense ( s e l f . i n p u t d i m , a c t i v a t i o n = ’ l i n e a r ’ , name= ’
r e c o n s t r u c t i o n ’ )

191 s e l f . d e c o d e r o u t p u t s = d e c o d e r d e n s e ( s e l f . d e c o d e r o u t p u t s 2 )
192

193 d e f c l a s s i f i e r m o d e l ( s e l f ) :
194 # c l a s s i f i e r
195 # h id de n = Dense ( s e l f . i n p u t d i m , a c t i v a t i o n = ’ r e l u ’ ) ( s e l f .

e n c o d e r s t a t e s 2 [ 0 ] ) #RBFLayer ( 1 0 , 0 . 1 ) ( s e l f . e n c o d e r s t a t e s 2 [ 0 ] )
196 num landmark = 30
197 # i n p = I n p u t ( shape =( s e l f . l a t e n t d i m 2 , ) , name= ’ i n p ’ )
198 s e l f . o u t p u t = s e l f . e n c o d e r o u t p u t s 2
199 # s e l f . o u t p u t = Dense ( s e l f . l a t e n t d i m 2 , a c t i v a t i o n = ’ r e l u ’ ) ( s e l f .

o u t p u t )
200 s e l f . o u t p u t = G a u s s i a n K e r n e l 3 ( num landmark , s e l f . l a t e n t d i m 2 , name

= ’ g k e r n e l 1 ’ ) ( s e l f . o u t p u t )
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201 # s e l f . o u t p u t = s e l f . o u t p u t ( s e l f . e n c o d e r o u t p u t s 2 ) # s e l f .
e n c o d e r s t a t e s 2 [ 1 ] ) # )

202 s e l f . o u t p u t = Dense ( s e l f . n b c l a s s e s , a c t i v a t i o n = s e l f .
a c t i v a t i o n c l a , name= ’ c l a s s i f i e r ’ ) ( s e l f . o u t p u t )

203

204

205 # c l a
206 # h id de n = Dense ( s e l f . n b c l a s s e s , k e r n e l r e g u l a r i z e r = l 2 ( s e l f . C) ,

name= ’ c l a f c ’ )
207 # h id de n = h id de n ( s e l f . e n c o d e r s t a t e s 2 [ 0 ] ) # s e l f . e n c o d e r o u t p u t s 2 )
208 # s e l f . o u t p u t = A c t i v a t i o n ( s e l f . a c t i v a t i o n c l a , name= ’ c l a s s i f i e r ’ ) (

h i dd en )
209

210 # p r e d i c t model
211 s e l f . s 2 s c l a m o d e l = Model (
212 i n p u t s = s e l f . e n c o d e r i n p u t s ,
213 o u t p u t s = s e l f . o u t p u t ,
214 name= ’ s 2 s c l a ’
215 )
216

217 d e f r e c o n s t r u c t i o n m o d e l ( s e l f ) :
218 # r e c o n s t r u c t i o n model
219 s e l f . s 2 s a e c = Model ( [ s e l f . e n c o d e r i n p u t s , s e l f . d e c o d e r i n p u t s ] ,

s e l f . d e c o d e r o u t p u t s )
220

221 d e f c o m p o s i t e m o d e l ( s e l f ) :
222 # c o m p o s i t e model
223 s e l f . s 2 s c o m p o s i t e m o d e l = Model (
224 i n p u t s =[ s e l f . e n c o d e r i n p u t s , s e l f . d e c o d e r i n p u t s ] ,
225 o u t p u t s =[ s e l f . d e c o d e r o u t p u t s , s e l f . o u t p u t ] ,
226 name= ’ s 2 s c l a r e c ’
227 )
228

229 # d e f i n i g which l o s s f u n c t i o n each l a y e r o f t h e c o m p o s i t e model
s h o u l d have

230 s e l f . l o s s e s = {
231 ’ r e c o n s t r u c t i o n ’ : s e l f . l o s s r e c ,
232 ’ c l a s s i f i e r ’ : s e l f . l o s s c l a
233 }
234

235 # d e f i n i n g t h e w e i g h t s o f t h e l o s s f u n c t i o n s used
236 s e l f . l o s s W e i g h t s = { ’ r e c o n s t r u c t i o n ’ : s e l f . l o s s w e i g h t s [ 0 ] , ’

c l a s s i f i e r ’ : s e l f . l o s s w e i g h t s [ 1 ]}
237 s e l f . m e t r i c s ={ ’ r e c o n s t r u c t i o n ’ : s e l f . m e t r i c s r e c , ’ c l a s s i f i e r ’ :

s e l f . m e t r i c s c l a }
238 # s e l f . o p t i m i z e r s = { ’ r e c o n s t r u c t i o n ’ : s e l f . o p t i m i z e r r e c , ’

c l a s s i f i e r ’ : s e l f . o p t i m i z e r c l a }
239

240 d e f e n c o d e r m o d e l ( s e l f ) :
241 # i s o l a t i n g on ly t h e e n c o d e r p a r t
242 s e l f . encode r mode l1 = Model ( s e l f . e n c o d e r i n p u t s ,
243 s e l f . e n c o d e r s t a t e s 1
244 )
245

246 s e l f . encode r mode l2 = Model ( s e l f . e n c o d e r i n p u t s ,
247 s e l f . e n c o d e r s t a t e s 2
248 )
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249

250 d e f b u i l d m o d e l ( s e l f ,
251 X t r a i n ,
252 y t r a i n ,
253 summaries=True ,
254 ) :
255 ’ ’ ’ Th i s f u n c t i o n c r e a t e s a rnn model . Number o f l a y e r s and memory

u n i t s \
256 a r e d e f i n e d by t h e h i d d e n l a y e r a rgument where t h e number d e f i n e s

t h e \
257 u n i t s and t h e l e n g t h t h e number o f l a y e r s . y t r a i n i s a dummy

m a t r i x . ’ ’ ’
258

259 # c r e a t e t e n s o r b o a r d m o n i t o r i n g . Awesome i n J u p y t e r l a b !
260 t ime = d a t e t i m e . t o d a y ( ) . s t r f t i m e ( ’%d%m%y %H:%M:%S ’ )
261 s e l f . t e n s o r b o a r d = TensorBoard ( l o g d i r = f ” . / l o g /{ t ime}” )
262

263 s e l f . X t r a i n = X t r a i n
264 s e l f . y t r a i n = y t r a i n
265

266 s e l f . n b c l a s s e s = y t r a i n . shape [ 1 ]
267

268 s e l f . t i m e s t e p s = s e l f . X t r a i n . shape [ 1 ]
269 s e l f . i n p u t d i m = s e l f . X t r a i n . shape [ 2 ]
270

271 # d e f i n e t a r g e t and i n p u t d a t a
272 s e l f . e n c o d e r i n p u t d a t a = s e l f . X t r a i n
273 s e l f . d e c o d e r i n p u t d a t a = np . z e r o s ( s e l f . X t r a i n . shape )
274 s e l f . d e c o d e r t a r g e t d a t a = np . f l i p ( s e l f . X t r a i n , 2 )
275 # t i m e s t e p s = s e l f . X t r a i n . shape [ 1 ] ; i n p u t d i m = s e l f . X t r a i n . shape

[ 2 ]
276

277 # C r e a t e t h e d i f e r e n t p a r t s o f t h e model
278 s e l f . e n c o d e r d e c o d e r l a y e r s ( )
279 s e l f . r e c o n s t r u c t i o n m o d e l ( )
280 s e l f . c l a s s i f i e r m o d e l ( )
281 s e l f . c o m p o s i t e m o d e l ( )
282 s e l f . e n c o d e r m o d e l ( )
283

284 i f summaries :
285 p r i n t ( ’ Summary of t h e a u t o e n c o d e r ’ )
286 p r i n t ( s e l f . s 2 s a e c . summary ( ) )
287

288 p r i n t ( ’ Summary of t h e c l a s s i f i e r model ’ )
289 p r i n t ( s e l f . s 2 s c l a m o d e l . summary ( ) )
290

291 p r i n t ( ’ Summary of t h e c o m p os i t model ’ )
292 p r i n t ( s e l f . s 2 s c o m p o s i t e m o d e l . summary ( ) )
293

294 p r i n t ( ’ Summary of t h e e n c o d e r p a r t o f t h e model ’ )
295 p r i n t ( s e l f . e n c o d e r m o d e l . summary ( ) )
296

297 d e f m a t t h e w s c o r r e l a t i o n ( s e l f , y t r u e , y p r e d ) :
298 ’ ’ ’ C a l c u l a t e s t h e Matthews c o r r e l a t i o n c o e f f i c i e n t measure f o r

q u a l i t y
299 of b i n a r y c l a s s i f i c a t i o n prob lems .
300 ’ ’ ’
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301 y p r e d p o s = K. round (K. c l i p ( y pred , 0 , 1 ) )
302 y p r e d n e g = 1 y p r e d p o s
303

304 y pos = K. round (K. c l i p ( y t r u e , 0 , 1 ) )
305 y neg = 1 y pos
306

307 t p = K. sum ( y pos ∗ y p r e d p o s )
308 t n = K. sum ( y neg ∗ y p r e d n e g )
309

310 fp = K. sum ( y neg ∗ y p r e d p o s )
311 fn = K. sum ( y pos ∗ y p r e d n e g )
312

313 n u m e r a t o r = ( t p ∗ t n fp ∗ fn )
314 d e n o m i n a t o r = K. s q r t ( ( t p + fp ) ∗ ( t p + fn ) ∗ ( t n + fp ) ∗ ( t n + fn )

)
315

316 r e t u r n n u m e r a t o r / ( d e n o m i n a t o r + K. e p s i l o n ( ) )
317

318 # t h e s e p l o t f u n c t i o n s c r e a t e s d iagram images o f each p a r t o f t h e
model

319 d e f p l o t a e c ( s e l f , f i l e n a m e = ’ f i g / s 2 s a u t o e n c o d e r . svg ’ ) :
320 p l o t m o d e l ( s e l f . s a e c , show shapes =True ,
321 s h o w l a y e r n a m e s =True ,
322 t o f i l e = f i l e n a m e
323 )
324

325 d e f p l o t c l a ( s e l f ) :
326 p l o t m o d e l ( s e l f . s 2 s c l a m o d e l ,
327 show shapes =True ,
328 s h o w l a y e r n a m e s =True ,
329 t o f i l e = ’ f i g / s 2 s a u t o e n c o d e r c l a . svg ’
330 )
331

332 d e f p l o t c o m p o s i t ( s e l f ) :
333 p l o t m o d e l ( s e l f . s 2 s c o m p o s i t e m o d e l ,
334 show shapes =True ,
335 s h o w l a y e r n a m e s =True ,
336 t o f i l e = ’ f i g / s 2 s a u t o e n c o d e r c o m p o s i t e . svg ’
337 )

Code 5.4: Sequence-to-sequence autoencoder class
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1 d e f b u i l d r n n m o d e l ( X t r a i n ,
2 t a r g e t ,
3 r n n t y p e = ’ l s t m ’ ,
4 h i d d e n l a y e r = [ 2 5 0 ] ,
5 o p t i m i z e r = ’ adam ’ ,
6 l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
7 a c t i v a t i o n = ’ so f tmax ’ ,
8 m e t r i c s =[ ’ a c c u r a c y ’ ]
9 ) :

10 ’ ’ ’ Th i s f u n c t i o n c r e a t e s a rnn model . Number o f l a y e r s and memory
u n i t s \

11 a r e d e f i n e d by t h e h i d d e n l a y e r a rgument where t h e number d e f i n e s t h e
\

12 u n i t s and t h e l e n g t h t h e number o f l a y e r s . ’ ’ ’
13

14 n b c l a s s e s = t a r g e t . shape [ 1 ]
15

16 i f r n n t y p e == ’ l s t m ’ :
17 l a y e r = LSTM
18 e l i f r n n t y p e == ’ gru ’ :
19 l a y e r = GRU
20

21 v i s i b l e = I n p u t ( shape =( X t r a i n . shape [ 1 ] , X t r a i n . shape [ 2 ] ) ) # v i s i b l e
22

23 i f l e n ( h i d d e n l a y e r ) == 1 :
24 m o d e l l a y e r = l a y e r ( h i d d e n l a y e r [ 0 ] , k e r n e l r e g u l a r i z e r =

r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) ) ( v i s i b l e )
25 e l s e :
26 m o d e l l a y e r = l a y e r ( h i d d e n l a y e r [ 0 ] , k e r n e l r e g u l a r i z e r =

r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) , r e t u r n s e q u e n c e s =True ) ( v i s i b l e )
27

28 f o r u n i t s i n h i d d e n l a y e r [ 1 : 2 ] :
29 m o d e l l a y e r = l a y e r ( u n i t s , k e r n e l r e g u l a r i z e r = r e g u l a r i z e r s . l 2

( 0 . 0 1 ) , r e t u r n s e q u e n c e s =True ) ( m o d e l l a y e r )
30 m o d e l l a y e r = l a y e r ( h i d d e n l a y e r [ 1 ] , ) ( m o d e l l a y e r )
31

32 m o d e l l a y e r = G a u s s i a n K e r n e l 3 ( 3 0 , h i d d e n l a y e r [ 1 ] , name= ’ g k e r n e l 1 ’ ) (
m o d e l l a y e r )

33 o u t p u t = Dense ( n b c l a s s e s , k e r n e l r e g u l a r i z e r = r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) ,
a c t i v a t i o n = a c t i v a t i o n ) ( m o d e l l a y e r )

34

35 model = Model ( i n p u t s = v i s i b l e , o u t p u t s = o u t p u t )
36

37 # model . l a y e r s [ 2 ] . r e t u r n s e q u e n c e s = F a l s e # s e t t h e l a s t r e c u r r e n t
l a y e r t o n o t r e t u r n s e q u e n c e s

38

39 model . compi l e ( o p t i m i z e r = o p t i m i z e r ,
40 l o s s = l o s s ,
41 m e t r i c s = m e t r i c s )
42 model . summary ( )
43 r e t u r n model

Code 5.5: LSTM/GRU build function
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1 c l a s s Tsne ( ) :
2 d e f i n i t ( s e l f ) :
3 s e l f .X = pd . DataFrame ( [ ] )
4

5 d e f f i t t r a n s f o r m ( s e l f , X, n component s =2 , v e r b o s e =1 , p e r p l e x i t y =40 ,
n i t e r =300) :

6 s e l f .X = X
7 t i m e s t a r t = t ime . t ime ( )
8 t s n e = TSNE( n componen t s = n components , v e r b o s e = ve rbose , p e r p l e x i t y

= p e r p l e x i t y , n i t e r = n i t e r )
9 s e l f . t s n e r e s u l t s = t s n e . f i t t r a n s f o r m ( s e l f .X . v a l u e s [ : , : 2 ] )

10

11 p r i n t ( ’ t SNE done ! Time e l a p s e d : {} s e c o n d s ’ . f o r m a t ( t ime . t ime ( )
t i m e s t a r t ) )

12

13 d e f p l o t ( s e l f ,
14 x=None ,
15 y=None ,
16 n s n e = 1 ,
17 hue= ’ l a b e l ’ ,
18 l e g e n d = ’ f u l l ’ ,
19 p a l e t t e =None ,
20 a l p h a = 0 . 1 ,
21 s =70 ,
22 s t y l e =None ,
23 f i l e n a m e = ’ t sne p l o t ’ ,
24 t i t l e = ’ t SNE d i m e n s i o n s c o l o r e d by d i g i t ’
25 ) :
26

27 d f t s n e = s e l f .X. copy ( )
28 d f t s n e [ ’x t s n e ’ ] = s e l f . t s n e r e s u l t s [ : , 0 ]
29 d f t s n e [ ’y t s n e ’ ] = s e l f . t s n e r e s u l t s [ : , 1 ]
30

31 i f p a l e t t e :
32 n u m l a b e l s = l e n ( d f t s n e [ hue ] . un i qu e ( ) )
33 p a l e t t e = s n s . c o l o r p a l e t t e ( ” b r i g h t ” , n u m l a b e l s )
34

35 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 1 0 , 7 ) )
36 ax . s e t t i t l e ( t i t l e )
37 s n s . s c a t t e r p l o t ( d a t a = d f t s n e , x= d f t s n e . columns [ 2 ] ,
38 y= d f t s n e . columns [ 1 ] ,
39 hue=hue ,
40 l e g e n d = legend ,
41 p a l e t t e = p a l e t t e ,
42 a l p h a = a lpha ,
43 s=s ,
44 s t y l e = s t y l e
45 )
46 p l t . s a v e f i g ( f i l e n a m e )
47 p l t . show ( )
48

49 d e f t s n e r e s u l t s ( s e l f ) :
50 r e t u r n s e l f . t s n e r e s u l t s
51

52 d e f X( s e l f ) :
53 r e t u r n s e l f .X

Code 5.6: t-SNE
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1 c l a s s G a u s s i a n K e r n e l 3 ( Layer ) :
2

3 d e f i n i t ( s e l f , num landmark , n u m f e a t u r e ,
4 k e r n e l i n i t i a l i z e r = ’ g l o r o t u n i f o r m ’ ,
5 ∗∗kwargs ) :
6 ’ ’ ’
7 num landmark :
8 number o f landmark
9 t h a t was number o f o u t p u t f e a t u r e s

10 n u m f e a t u r e :
11 d e p t h o f landmark
12 e q u a l t o i n p u t s . shape [ 1 ]
13 ’ ’ ’
14 s u p e r ( Gaus s i anKerne l3 , s e l f ) . i n i t (∗∗ kwargs )
15

16 s e l f . o u t p u t d i m = num landmark
17 s e l f . n u m f e a t u r e = n u m f e a t u r e
18 s e l f . k e r n e l i n i t i a l i z e r = i n i t i a l i z e r s . g e t ( k e r n e l i n i t i a l i z e r )
19

20 # f o r loop
21 s e l f . i ndx = K. a r a n g e ( s e l f . o u t p u t d i m )
22

23 d e f c o m p u t e o u t p u t s h a p e ( s e l f , i n p u t s h a p e ) :
24 r e t u r n ( i n p u t s h a p e [ 0 ] , s e l f . o u t p u t d i m )
25

26 d e f b u i l d ( s e l f , i n p u t s h a p e ) :
27 a s s e r t l e n ( i n p u t s h a p e ) == 2
28 i n p u t d i m = i n p u t s h a p e [ 1 ]
29

30 s e l f . k e r n e l = s e l f . a d d w e i g h t ( name= ’ k e r n e l ’ ,
31 shape =( s e l f . o u t p u t d i m , s e l f .

n u m f e a t u r e ) ,
32 i n i t i a l i z e r = s e l f . k e r n e l i n i t i a l i z e r )
33 s e l f . gamma elm = s e l f . a d d w e i g h t ( name= ’ gamma elm ’ ,
34 shape = (1 , ) ,
35 i n i t i a l i z e r = i n i t i a l i z e r s .

r andom uni fo rm ( 2 , 1 ) )
36 s u p e r ( Gaus s i anKerne l3 , s e l f ) . b u i l d ( i n p u t s h a p e ) # Be s u r e t o c a l l

t h i s somewhere !
37

38 d e f c a l l ( s e l f , x , t r a i n i n g =None ) :
39 r e t u r n s e l f . g a u s s ( x , s e l f . k e r n e l , K. exp ( s e l f . gamma elm ) )
40

41 d e f g a u s s ( s e l f , x , l andmarks , gamma ) :
42 d e f fn ( i i ) :
43 lm = K. g a t h e r ( landmarks , i i )
44 r e t u r n K. sum (K. s q u a r e ( x lm ) , a x i s =1)
45 d2 = K. map fn ( fn , s e l f . indx , d t y p e = ’ f l o a t 3 2 ’ )
46 d2 = K. t r a n s p o s e ( d2 )
47

48 r e t u r n K. exp ( gamma ∗ d2 )
49

50

51 # # # E v a l u a t i o n f u n c t i o n s # # #
52

53 d e f p r e d i c t ( model , X t e s t ) :
54 r e t u r n model . p r e d i c t ( X t e s t )
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55

56 d e f w r o n g l y p r e d i c t e d ( y t r u e , y p r e d ) :
57 ’ ’ ’ R e t u r n s t h e numpy a r r a y i n d i c e s o f t h e wrongly p r e d i c t e d samples .

’ ’ ’
58 i n d i c e s = [ i f o r i , v i n enumera t e ( y p r e d ) i f np . argmax ( y p r e d [ i ] ) != np .

argmax ( y t r u e [ i ] ) ]
59 r e t u r n i n d i c e s
60

61 d e f s u b s e t o f w r o n g l y p r e d i c t e d ( X t e s t , i n d i c e s = [ ] ) :
62 ’ ’ ’ R e t u r n s a s u b s e t o f t h e wrongly p r e d i c t e d samples ’ ’ ’
63 s u b s e t o f w r o n g l y p r e d i c t e d = [ X t e s t [ i ] f o r i i n i n d i c e s ]
64 r e t u r n s u b s e t o f w r o n g l y p r e d i c t e d
65

66 # Confuns ion m a t r i x
67 d e f c o n f m a t r i x ( y t r u e , y p r e d ) :
68 ’ ’ ’ R e t u r n s t h e c o n f u s i o n m a t r i x o f t h e t r u e c a t e g o r i e s and t h e

p r e d i c t e d . ’ ’ ’
69 m a t r i x = c o n f u s i o n m a t r i x ( y t r u e . v a l u e s . argmax ( a x i s =1) ,
70 y p r e d . argmax ( a x i s =1) )
71 c o n f m a t r i x = pd . DataFrame ( ma t r i x , i n d e x = y t r u e . columns . v a l u e s ,
72 columns= y t r u e . columns . v a l u e s )
73 r e t u r n c o n f m a t r i x
74

75 ## P l o t f u n c t i o n s
76

77 d e f p l o t t r a i n i n g v a l i d a t i o n c u r v e ( h i s t o r y ) :
78 # P l o t t r a i n i n g & v a l i d a t i o n a c c u r a c y v a l u e s
79 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ c l a a c c ’ ] )
80 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l c l a a c c ’ ] )
81 p l t . t i t l e ( ’ Model a c c u r a c y ’ )
82 p l t . y l a b e l ( ’ Accuracy ’ )
83 p l t . x l a b e l ( ’ Epoch ’ )
84 p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ uppe r l e f t ’ )
85 p l t . show ( )
86

87 # P l o t t r a i n i n g & v a l i d a t i o n l o s s v a l u e s
88 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )
89 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] )
90 p l t . t i t l e ( ’ Model l o s s ’ )
91 p l t . y l a b e l ( ’ Loss ’ )
92 p l t . x l a b e l ( ’ Epoch ’ )
93 p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ uppe r l e f t ’ )
94 p l t . show ( )
95

96 d e f p l o t c o n f u s i o n m a t r i x ( cm , c l a s s e s , f i l e n a m e =None ,
97 n o r m a l i z e = F a l s e ,
98 t i t l e = ’ Confus ion m a t r i x ’ ,
99 cmap= p l t . cm . Blues ) :

100 ”””
101 Thi s f u n c t i o n p r i n t s and p l o t s t h e c o n f u s i o n m a t r i x .
102 N o r m a l i z a t i o n can be a p p l i e d by s e t t i n g ‘ n o r m a l i z e =True ‘ .
103 ”””
104 i f n o r m a l i z e :
105 cm = cm . a s t y p e ( ’ f l o a t ’ ) / cm . sum ( a x i s =1) [ : , np . newaxis ]
106 p r i n t ( ” Normal ized c o n f u s i o n m a t r i x ” )
107 e l s e :
108 p r i n t ( ’ Confus ion ma t r i x , w i t h o u t n o r m a l i z a t i o n ’ )
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109

110 p r i n t ( cm )
111

112 p l t . imshow ( cm , i n t e r p o l a t i o n = ’ n e a r e s t ’ , cmap=cmap )
113 p l t . t i t l e ( t i t l e )
114 p l t . c o l o r b a r ( )
115 t i c k m a r k s = np . a r a n g e ( l e n ( c l a s s e s ) )
116 p l t . x t i c k s ( t i c k m a r k s , c l a s s e s , r o t a t i o n =45)
117 p l t . y t i c k s ( t i c k m a r k s , c l a s s e s )
118

119 fmt = ’ . 2 f ’ i f n o r m a l i z e e l s e ’ d ’
120 t h r e s h = cm . max ( ) / 2 .
121 f o r i , j i n i t e r t o o l s . p r o d u c t ( r a n g e ( cm . shape [ 0 ] ) , r a n g e ( cm . shape [ 1 ] ) ) :
122 p l t . t e x t ( j , i , f o r m a t ( cm [ i , j ] , fmt ) ,
123 h o r i z o n t a l a l i g n m e n t =” c e n t e r ” ,
124 c o l o r =” w h i t e ” i f cm [ i , j ] > t h r e s h e l s e ” b l a c k ” )
125

126 p l t . y l a b e l ( ’ True l a b e l ’ )
127 p l t . x l a b e l ( ’ P r e d i c t e d l a b e l ’ )
128 p l t . t i g h t l a y o u t ( )
129 i f f i l e n a m e :
130 p l t . s a v e f i g ( f i l e n a m e )
131 p l t . show ( )
132

133 d e f mult iclass ROC AUC ( y t e s t , y s c o r e , f i l e n a m e ) :
134 ’ ’ ’ Computes t h e ROC f o r a l l c l a s s e s and p l o t a l l c u r v e s i n t h e same

f i g u r e ’ ’ ’
135

136 n c l a s s e s = y t e s t . shape [ 1 ]
137 c l a s s n a m e s = l i s t ( y t e s t . columns )
138

139 # Compute ROC c u r v e and ROC a r e a f o r each c l a s s
140 f p r = d i c t ( )
141 t p r = d i c t ( )
142 r o c a u c = d i c t ( )
143 f o r i i n r a n g e ( n c l a s s e s ) :
144 f p r [ i ] , t p r [ i ] , = r o c c u r v e ( y t e s t . v a l u e s [ : , i ] , y s c o r e [ : , i ] )
145 r o c a u c [ i ] = auc ( f p r [ i ] , t p r [ i ] )
146

147 # Compute micro a v e r a g e ROC c u r v e and ROC a r e a
148 f p r [ ” micro ” ] , t p r [ ” micro ” ] , = r o c c u r v e ( y t e s t . v a l u e s . r a v e l ( ) ,

y s c o r e . r a v e l ( ) )
149 r o c a u c [ ” micro ” ] = auc ( f p r [ ” micro ” ] , t p r [ ” micro ” ] )
150

151

152 # Compute macro a v e r a g e ROC c u r v e and ROC a r e a
153

154 # F i r s t a g g r e g a t e a l l f a l s e p o s i t i v e r a t e s
155 a l l f p r = np . u n i que ( np . c o n c a t e n a t e ( [ f p r [ i ] f o r i i n r a n g e ( n c l a s s e s ) ] )

)
156

157 # Then i n t e r p o l a t e a l l ROC c u r v e s a t t h i s p o i n t s
158 m e a n t p r = np . z e r o s l i k e ( a l l f p r )
159 f o r i i n r a n g e ( n c l a s s e s ) :
160 m e a n t p r += i n t e r p ( a l l f p r , f p r [ i ] , t p r [ i ] )
161

162 # F i n a l l y a v e r a g e i t and compute AUC
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163 m e a n t p r /= n c l a s s e s
164

165 f p r [ ” macro ” ] = a l l f p r
166 t p r [ ” macro ” ] = m e a n t p r
167 r o c a u c [ ” macro ” ] = auc ( f p r [ ” macro ” ] , t p r [ ” macro ” ] )
168

169 # P l o t a l l ROC c u r v e s
170 p l t . f i g u r e ( f i g s i z e = ( 8 , 8 ) )
171 lw = 2
172 p l t . p l o t ( f p r [ ” micro ” ] , t p r [ ” micro ” ] ,
173 l a b e l = ’ micro a v e r a g e ROC c u r v e ( a r e a = {0 : 0 . 2 f } ) ’
174 ’ ’ . f o r m a t ( r o c a u c [ ” micro ” ] ) ,
175 c o l o r = ’ d e e p p i n k ’ , l i n e s t y l e = ’ : ’ , l i n e w i d t h =4)
176

177 p l t . p l o t ( f p r [ ” macro ” ] , t p r [ ” macro ” ] ,
178 l a b e l = ’ macro a v e r a g e ROC c u r v e ( a r e a = {0 : 0 . 2 f } ) ’
179 ’ ’ . f o r m a t ( r o c a u c [ ” macro ” ] ) ,
180 c o l o r = ’ navy ’ , l i n e s t y l e = ’ : ’ , l i n e w i d t h =4)
181

182 c o l o r s = i t e r t o o l s . c y c l e ( [ ’ aqua ’ , ’ d a r k o r a n g e ’ , ’ c o r n f l o w e r b l u e ’ , ’
l ime ’ ] )

183 f o r i , c o l o r i n z i p ( r a n g e ( n c l a s s e s ) , c o l o r s ) :
184 p l t . p l o t ( f p r [ i ] , t p r [ i ] , c o l o r = c o l o r , lw=lw ,
185 l a b e l = ’ROC c u r v e o f c l a s s {0} ( a r e a = {1 : 0 . 2 f } ) ’
186 ’ ’ . f o r m a t ( c l a s s n a m e s [ i ] , r o c a u c [ i ] ) )
187

188 p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ’k ’ , lw=lw )
189 p l t . x l im ( [ 0 . 0 , 1 . 0 ] )
190 p l t . y l im ( [ 0 . 0 , 1 . 0 5 ] )
191 p l t . x l a b e l ( ’ F a l s e P o s i t i v e Rate ’ )
192 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
193 p l t . t i t l e ( ’Some e x t e n s i o n of R e c e i v e r o p e r a t i n g c h a r a c t e r i s t i c t o

m u l t i c l a s s ’ )
194 p l t . l e g e n d ( l o c =” lower r i g h t ” )
195 p l t . s a v e f i g ( f i l e n a m e )
196 p l t . show ( )
197

198 d e f p r e d i c t i o n o v e r v i e w ( y t r a i n , y t e s t , i n d i c e s ) :
199 p r i n t ( ’ E ve n t s t r a i n e d on ’ )
200 p r i n t ( y t r a i n . sum ( ) , ’\n ’ )
201

202 p r i n t ( ’ T o t a l e v e n t s t o be p r e d i c t e d ’ )
203 p r i n t ( y t e s t . sum ( ) , ’\n ’ )
204

205 p r i n t ( ’ Samples wrongly c l a s s i f i e d ’ )
206 p r i n t ( y t e s t . i l o c [ i n d i c e s ] . sum ( ) )
207

208 d e f m e t r i c e v a l u a t i o n ( y t e s t , y p r e d ) :
209 mcc = m a t t h e w s c o r r c o e f ( y t e s t . v a l u e s . argmax ( a x i s =1) , y p r e d . argmax (

a x i s =1) )
210 f1 = f 1 s c o r e ( y t e s t . v a l u e s . argmax ( a x i s =1) , y p r e d . argmax ( a x i s =1) ,

a v e r a g e = ’ w e i g h t e d ’ )
211 p r i n t ( f ’ Matthesw c o r r e l a t i o n c o e f f i c i e n t : {mcc} ’ )
212 p r i n t ( f ’ F1 measure : { f1} ’ )
213 r e t u r n mcc , f1
214

215 d e f g e t s m a r t ( y ) :
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216 ’ ’ ’ Reverse dummy a dummy m a t r i x ’ ’ ’
217 i , j = np . where ( y )
218 r e t u r n pd . S e r i e s ( y . columns [ j ] , i )

Code 5.7: Miscellaneous functions
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Appendix C: Proof of harmonic
component sequences

Proof of the sequence configuration of some central harmonic components in the electrical
power system.

Fundamental - Positive sequence
ia1 = Ia1sinωt
ib1 = Ib1sin(ωt− 120◦)
ic1 = Ic1sin(ωt− 240◦)

Second harmonic - Negative sequence
ia2 = Ia2sin(2ωt)
ib2 = Ib2sin(2(ωt− 120◦)) = Ib2sin((2ωt− 240◦))
ic2 = Ic2sin(2(ωt− 240◦)) = Ic2sin((2ωt− 480◦)) = Ic2sin(2ωt− 120◦)

Third harmonic - Zero sequence
ia3 = Ia3sin(3ωt)
ib3 = Ib3sin(3(ωt− 120◦)) = Ib2sin((3ωt− 360◦)) = Ib2sin(3ωt)
ic2 = Ic2sin(3(ωt− 240◦)) = Ic2sin((3ωt− 720◦)) = Ic2sin(3ωt)

Fifth harmonic - Negative sequence
ia5 = Ia5sin(5ωt)
ib5 = Ib5sin(5(ωt− 120◦)) = Ib5sin((5ωt− 600◦)) = Ib5sin(5ωt− 240◦)
ic5 = Ic5sin(5(ωt− 240◦)) = Ic5sin((5ωt− 1200◦)) = Ic5sin(5ωt− 120◦)

Seventh harmonic - Positive sequence
ia7 = Ia7sin(7ωt)
ib7 = Ib7sin(7(ωt− 120◦)) = Ib7sin((7ωt− 840◦)) = Ib7sin(7ωt− 120◦)
ic7 = Ic7sin(7(ωt− 240◦)) = Ic7sin((7ωt− 1680◦)) = Ic7sin(7ωt− 240◦)
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