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Abstract

Purpose
Precise delineation of tumors is considered the weakest link and the
largest source of uncertainty in radiotherapy planning. The purpose of
this thesis is to explore some of the possibilities for automatic delineation
of cancerous tumors in medical image data of anal cancer provided
by Oslo University Hospital. The use of an autodelineation computer
program could potentially save time, provide consistency and give the
physicians the possibility to focus more on other challenges.

Method
The dataset consisted of MRI, PET and CT images from 85 patients with
anal cancer, who were scheduled for radiotherapy or chemo-radiotherapy
in the period 2013 to 2016. Three experienced radiation oncologists
provided the dataset with target volume delineations of the primary
tumor, which was considered the ground truth delineations. The dataset
was split into a training, a validation and a test set, stratified based on the
volume of the ground truth delineations.

The autodelineation of the primary tumors in the medical images
was performed using a deep learning approach by sentiment image
segmentation, with a U-Net architecture. Ten experiments based on
different imaging modalities, and combinations of them, were conducted.
To increase the training data, image augmentation was used when
preprocessing the data. Furthermore, data cleaning was performed
in order to exclude image slices with defects. Finally, the Dice
performance of the experiments using different imaging modalities as
input was compared and the effects of regularization and data cleaning
were explored. The implemented framework along with the codes
used for the preprocessing are available at: https://github.com/
christinekaush/ANCARAD_autodel.
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Results
Using PET and CT images together as input to the deep learning
segmentation program seems the most promising for the purpose of
autodelineation of cancerous tumors of anal cancer patients, with a Dice
performance of 0.885 on the validation set. Furthermore, data cleaning
and the removal of image slices with no delineation provided by an
oncologist seemed to have the largest impact on the Dice performance of
the model. In addition, the experiments using CT and T2W individually
as input to the deep learning model also showed promising results with
Dice coefficients of 0.877 and 0.861 respectively.

When inspecting the autodelineations on the validation and test set, the
delineations made by the deep learning model matched the provided
target volume well, resulting in high Dice performances per patient (>
0.85). The model does not seemed to recognize image slices that did not
contain any tumor tissue delineation made by an oncologist.

Conclusions
Deep learning autodelineation of primary tumor in medical images of
anal cancer patient shows excellent potential, providing comparable
performance to the overlap expected between oncologists. The tumors
in this dataset are located in more or less the same region, which makes
it easier for the model to learn how to find tissue that potentially are
cancerous for anal cancer patients. Further exploration of autodelineation
including more image slices representing regions without anal cancer
tumors should be conducted.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Anal Cancer

Anal cancer is the development of cancerous tumors in the anus or in
the rectal canal within 4-5 cm from the anal opening [1], [2]. This type
of cancer is rare in Norway with about 40 to 50 incidents annually per
2008 [2]. In 2018 the occurrence increased to about 75 patients annually
[1].Certain types of Human papilloma viruses (HPV) have been detected
in the majority of the patients [1], [2].

Patients with anal cancer receive either radiotherapy, chemotherapy, both
or surgery [1]–[3], but a combination of chemo- and radiotherapy has
been shown to give the best tumor control [2]. Patients diagnosed with
anal cancer have a high chance of survival. In 2008 the five-year survival
was estimated to be between 80 and 95 % for two-thirds of the patients
with tumors under 5 cm [1], [2]. However, many patients are left with
discomfort post cancer treatment [1].

1.1.2 Some challenges with cancer treatment

A common challenge dealing with cancer treatment is the waiting time
between the diagnosis and treatment. A trained radiologist can spend
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16 CHAPTER 1. INTRODUCTION

more than 4 hours to evaluate and delineate a single case [4]. Although
Loureiro et al. [5] concluded that the waiting time to radiotherapy shows
no significant prognostic impact, the time spent could be costly for the
hospitals and intolerable for the patients. In addition, resources are
known to be scarce in the healthcare sector [6] and any time saved for
the physicians is valuable.

Another challenge is the accuracy of the delineations of tumor volumes
by the radiologists [7], [8]. Due to interobserver variability, the radii of
the tumor delineations from radiologists might deviate with 0.3 cm [7]
and there are often inconsistencies even if guidelines are provided. In
the study conducted by Weiss and Hess [7], they could report that the
uncertainties from organ motion and patient positioning was smaller than
the uncertainties from tumor delineations. This was also demonstrated
by Rusten et al. [9], who explored tumor delineations based on PET and
MRI made by three experienced radio oncologists. Precise delineation of
target volumes is considered the weakest link and the largest source of
uncertainty in radiotherapy planning [8], [10]. This will, certainly, depend
on the region in which the tumor delineation is performed. Nonetheless,
in most cases, the precision of the delineated area is important for the
further cancer treatment and might be a crucial factor for both the outcome
of the treatment, as well as for recurrence and life quality of the patient
post cancer treatment. An inaccurate delineation could lead to irradiation,
and thereby damage, of healthy tissue which may cause discomfort for the
patient.

1.1.3 Artificial intelligence in the healthcare

The interest in artificial intelligence (AI) has been growing during the last
few years, especially with the increased availability of both computational
power and data [11]. Today, companies such as Google, Apple and
Huawei use AI for semantic image segmentation in computer vision tasks
to, for instance, extract the foreground in images [12], [13]. The use of AI
for the purpose of segmenting biomedical images has been a popular and
interesting approach for the healthcare industry [6], [11], [14]–[16].

However, there is also skepticism regarding the use of AI in healthcare.
Physicians, such as radiologists and pathologist, might be worried about
losing their job [6]. Other concerns regarding the use of AI are whether it
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can provide trustworthy and accurate medical information, and, certainly,
the question of privacy and security of medical data [6].

Nonetheless, using machine learning to automate some of the routine
tasks of a physician or providing a radiologist with suggestions for
delineations could reduce some of the workload in healthcare [6]. This
could save time for the physicians, decrease the chance of burnout and
give them more time for other challenges that require their attention. The
blend of AI and human experience is believed to be a natural settling
point which may improve the delivery of care [6]. In addition, the
’Ethics guidelines for trustworthy AI” [17], requires that proper oversight
is ensured while developing an AI system, by for instance, utilizing a
’human-in-command’ approach.

1.2 Aim of this Master’s thesis

This project is part of the observational study Anal Cancer Radiotherapy
(ANCARAD, NCT01937780) [3], led by Marianne G. Guren, MD, PhD
from Oslo University Hospital (OUH). All patients in this study were
scheduled for chemo-radiotherapy in the period 2013 to 2016. This is a
prospective study of treatment outcome, where the effect of the treatment,
in terms of survival, recurrence and life quality, are followed up for 5
years. The delineations of the tumor tissue volume often carry a high
degree of uncertainty [9], [10]. As a sub-study, the project explores
potential aids for identifying and delineating tumor tissue. The author
of this thesis has worked with autodelineation of medical images for anal
cancer patients provided by Oslo University Hospital.

The aim of this thesis is to increase the knowledge about automatic tumor
delineation for patients included in the ANCARAD study, but also for
automatic delineation of cancerous tumors in general. The results of this
project could give indications of how the overall research for using AI,
and especially convolutional neural networks (CNN), for the purpose
of semantic segmentation of medical images may be conducted. Such
a tool could potentially save time for the radiologists and increase their
efficiency and performance in their work. The CNN architecture used in
this thesis are based on the framework provided by Yngve Mardal Moe in
his MSc for the Norwegian Univeristy of Life Sciences, February 2019 [18].
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Moe’s MSc thesis [18] inspects semantic image segmentation using a CNN
on PET and CT images from 197 patients with head and neck cancer,
also in cooperation with OUH. The dataset for head and neck cancer
consisted of PET and CT images, however, the ANCARAD dataset also
contains images from MRI scans. This thesis will therefore compare
the Dice performances of tumor autodelineations for images of the anal
cancer patients based on PET, CT and MRI, and propose which of the
imaging modalities, or a combination of the imaging modalities, seem
most promising for the purpose of autodelineation. Furthermore, this
thesis will explore the effect of some additional techniques added to the
proposed framework of Moe [18] to increase the model performance of
the delineations.

1.3 Organization

This thesis will in chapter 2 and 3 give an introduction to the theory behind
the methods used in this project, in chapter 2 and 3. Basic knowledge and
concepts of the imaging modalities provided in the ANCARAD dataset
will be presented. Chapter 3, covers principles of artificial intelligence
and the basic theory behind the code used for the tumor autodelineation
in medical images. The next chapter presents the dataset and actions taken
for data quality assurance. In chapter 5 assumptions, preprocessing of
the dataset and the experiments conducted are described. The results
from these experiments are presented in chapter 6. Evaluation of the
choices made for the experiments and the results, along with possible
improvements of the methods used are discussed in chapter 7. Finally,
chapter 8 provides conclusions of the results and the experiments.



Chapter 2

Medical imaging

2.1 Principles of medical imaging

Medical imaging gives the opportunity for physicians to examine and
make a clinical assessment of the interior of the human body without
performing an invasive surgical procedure on the patient. Imaging is
an extremely useful tool in diagnostic medicine [19]. Today, different
medical imaging techniques are crucial for clinical diagnosis, treatments
and monitoring of medical conditions. There are different imaging
modalities that can be utilized depending on the type and site of the lesion.
Some of these are Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), Positron Emission Tomography (PET) and ultrasound
[19]. Effective, safe and high quality imaging is pivotal for the outcome
of these medical examinations.

2.1.1 Resolution

The resolution of the image provides a measure of the imaging quality.
If, for instance, lesions or other medical conditions are not apparent in
the medical image, they might not be detected and the diagnosis of the
examiner could be incomplete. The resolution of medical images depends
on the imaging modality and the corresponding physical limitations, such
as, the imaging machine, imaging environments and noise or blur [20].

19
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There are mainly three different categories for describing the resolution
of medical images: spatial resolution, temporal resolution and contrast
resolution. The number of elements, or pixels, that an image consists
of gives its spatial resolution. An increased number of elements
corresponding to an image can potentially capture more details in
the imaged object, but might also be more prone to noise. Temporal
resolution is the precision of a measurement from an imaging modality,
based on the time the scanner takes for each measurement [20]. The
temporal resolution is of little importance if the imaged objects have
no or minimal motion [20]. Contrast resolution is how well the image
can distinguish between intensities. Figure 2.1 provides an overview of
common resolution values of cardiac imaging:

Table 2.1: Spatial, contrast and temporal resolution presented in [20] of cardiac
imaging methods. Spatial and temporal resolutions for PET may vary depending
on the trade-off between resolution and noise when reconstructing the images.

Spatial resolution Contrast
resolution

Temporal
resolution

CT 0.5-0.625 mm Low to moderate 83-135 ms

MRI 1-2 mm High 20-50 ms

PET 4-10 mm Very high∗ 5 s to 5 min
* May vary depending on the radio tracer

2.2 Computed Tomography

Computerized tomography (CT) can visualize soft tissues, blood vessels
and bone structures quite well and is especially known for its excellent
spatial resolution (see section 2.1.1) compared to other modalities in
radiology [21], [22]. CT images typically have spatial resolution between
0.5 and 0.625 mm [20]. This modality utilizes several X-ray scans to
generate two-dimensional, cross sectional images in very fine slices [19].
The CT scanner consists of a ring of several hundred detectors and an
X-ray source rotating along the same ring (see Figure 2.1) [23]. The patient
is placed on a bed that can slide in and out of the center of this ring [21],
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[22], generating several slice-images, resulting in a CT image sequence of
the region of interest.

X-ray source

Detectors

Figure 2.1: Illustration of the mechanics of a CT scanner. With permission from
Kari Kvandal [24].

Principles of CT
The X-ray source circles the patient and X-rays are beamed many times
along the ring. As the X-ray beam passes the tissue one can calculate
the attenuation coefficient in the volume of the imaged object [22]. The
reconstruction of the density of the traversed tissue, can be explained by
the simplest form of Beer’s law:

I = I0e
−µ∆x (2.1)

where I0 is the initial intensity from the X-ray source, µ is the effective
linear attenuation coefficient of the tissue and ∆x is the length of the
X-ray path [19]. I is then the intensity of unscattered rays that reaches the
receiver/detector [19]. Eventually, all the calculated intensities collected
by the detector can form a two-dimensional matrix representing the
densities of the tissues in the imaged body.

Since each matrix element in the reconstructed image represents a volume
of the tissue of the patient, a voxel, the resulting attenuation coefficient,
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for that particular element, is the sum of the attenuation coefficients
through the volume [22]. Moreover, each voxel has a degrading contrast,
resulting in blurred boundaries for the objects in the image. A filtered
back projection algorithm is used when reconstructing the image to avoid
the blurriness [22]. The filtered back projection works like a filter and
leaves the resulting image object with sharper edges [22].

Figure 2.2: CT image of the anorectal region in an AC patient (’M033’, slice
27). The white pixels represent bones, the gray areas are soft tissue (including
muscles) while fat is shown in dark gray. In about the center of the image, right
above the intergluteal cleft, one might dicern an oval object, which is a cancerous
tumor.

Voxel values
A CT number that determines the voxel value can be detected from the
reconstructed image. CT numbers are generically the gray-level data
values in CT images, but the values may vary between the different
scanner vendors and even between each scan [22]. The values are
expressed in Hounsfield units (HU), where air has a value of -1000 HU,
fat typically varies between -60 and -120 HU, water is 0 HU and compact
bone has a CT number higher than 1000 HU [22]. The CT number can be
calculated by:

CTnumber = 1000
µtissue − µwater

µwater
(2.2)

where µtissue and µwater are the linear attenuation coefficients of the tissue
and water, respectively [25]. The beam attenuates differently according
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to the tissue type and the corresponding density, and tissues with similar
densities will have similar gray levels in the image. In Figure 2.2 the
soft tissues have a dark gray nuances while bone structures are bright.
Muscles and air have low attenuation coefficients, resulting in very dark
voxels in the two dimensional image.

The human eye can in the most optimal conditions differentiate between
about 720 different shades of gray. A CT image can, however, potentially
contain more than 65 000 shades of gray [26]. In addition, the attenuation
coefficient of a voxel of about 1 cm in diameter, must differ from its
surroundings by at least 10 % in order to be distinguished from the
surroundings [23]. As a result, examining areas where the tissues have
similar densities can be challenging.

CT Windowing
Radiologists use CT windowing to adjust the interval of gray levels by
manipulating the CT numbers [27]. The main purpose of CT windowing
is to better differentiate the organs and tissues in the region of interest,
or to highlight structures. The brightness of the image is adjusted by
the window level (L), while the contrast can be adjusted by the window
width (W) [27]. Typical window values for soft tissue in the abdomen are,
for instance, W = 400 HU and L = 50 HU , but may vary depending on
the vendor and institution [27].

Contrast medium
Each CT scan is customized specifically according to the body, the region
and the condition that is to be examined [21]. In most cases, the patient
will be given a contrast medium injection to show, for instance, blood
vessels more clearly when reconstructing the medical images [21], [22].
Contrast medium might also make cancerous tissue more apparent as
opposed to surrounding healthy tissue. The contrast medium has a higher
attenuation coefficient than, for instance, blood. CT images of blood
vessels injected with contrast medium will therefore obtain a higher CT
number in the reconstructed image.
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2.3 Positron Emission Tomography

In Positron Emission Tomography (PET) the patient is injected with a
positron-emitting radioactive tracer [23]. When the positron comes to rest
it annihilates with an electron resulting in two 511-keV γ photons [19],
[23], [28]. The two photons leave the annihilation with 180◦ relative to
each other as the energy and momentum are conserved [28] (as shown in
Figure 2.3).

Figure 2.3: Illustration of annihilation of a positron e+, with an electron e−. Two
γ photons with 511 keV energy are emitted. Presented with permission from Kari
Kvandal [24]

P

B

A

D1

D2

Figure 2.4: A positron annihilation from point P emits γ rays hitting detector
D1 and D2, which will record coincident γ photons distributed along the line
segment AB. The oval object in the center represents a patient. Illustration
inspired by an illustration of a PET detector in Nuclear Physics: Principles and
Applications by John Lilley (2001) [23].
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The patient is placed in the center of a ring of detectors (shown in Figure
2.4). If two γ photons are detected in coincidence by detectors D1 and D2,
they must have been emitted from the same point, P (see Figure 2.4) [23].

Eventually, the information gathered from all the detector pairs in the
ring generates a PET image slice [23] of the scanned region, in vivo. The
generated image does not capture all of the photon pairs emitted from the
scanned region. Far more photon pairs will leave the body undetected
because they are not in the plane of the detector ring [28]. However, the
distribution of the count rate detected in one direction, will be a projection
of the real distribution of radioactivity [28].

Possible false detection
It is assumed that the two detectors have zero lag and that the γ photons
hit the detectors within some small interval of time (typically 2 to 5
nanoseconds) [28]. In reality, there are several γ photons from different
positrons in the imaged object that reach the detector simultaneously. As a
consequence, the two observations that appear to be detected at the same
time are paired up. Lag in detector response could result in false γ pairs
being selected by the detectors. Such random coincidences can cause false
signals in the PET image [28]. In addition, positron emission also occurs
due to scattering or absorption of one or both of the annihilation photons
[19]. During the reconstruction of the PET data, an attenuation correction
process is applied to restore the quantitative accuracy and qualitative
integrity of PET [28].

FDG
The most widely used radionuclide for tracer in PET is Fluorine-18, 18F,
which decays 97% by positron emission and has a nearly 2-hour half-life
[28]. The radionuclide is often combined with glucose to highlight
areas of increased metabolic activity [23]. Consequently 18F becomes the
radioactive tracer 18F-FDG. Due to the high metabolism in tumors relative
to healthy tissue, the absorption of 18F-FDG is high and tumors light up in
PET images [29]. For untreated tumors, the FDG uptake in a wide range
of tumor types has often shown to be well and positively correlated with
the cell number in that tumor [28].
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SUV
The uptake of the radioactive tracer may vary between each PET scan.
The two most significant sources of variation are the patient size and the
concentration of radioactive tracers injected [30]. Therefore, the relative
tissue uptake of the radioactive tracer is often used [30]. As a standardized
measurement of the uptake, the standardized uptake value (SUV) is used
[28], [30]. SUV is the ratio between the image derived radioactive tracer
concentration Cr and the concentration of radioactivity in the whole body
Cb, which can be calculated by the injected dose d and the body mass m:

SUV =
Cr
Cb

=
Cr
d

m

=
Crm

d
(2.3)

False positives
High SUV should result in higher coincidence count rate and thus brighter
voxels in the reconstructed image [29]. However, tumors are not the only
tissue that absorb the radioactive tracers. Lymph nodes and tissues with
lesions such as inflammation, auto immune processes or infection also
have high metabolism, resulting in high uptake of, for instance, FDG [29].
Moreover, variable gas in the bowel can lead to false areas of increased
uptake. The presence of 18F in urine, when dealing with 18F-FDG as tracer
[29], will result in a bladder that lights up in the generated PET image.

Figure 2.5: PET image of the anorectal region in an AC patient (’M033’, slice
27). Tissues with uptake of the 18F-FDG tracer light up. The large, bright area
represents the bladder, while the smaller, bright area is a cancerous tumor.

This carries the risk of false positives and misdiagnosis of the patient’s
condition. The surgeon and oncologist must therefore not base their
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diagnosis of the lesion solely on the PET image [29]. In Figure 2.5 there
are two areas that are especially bright. The upper, larger area represents
the bladder while the lower, smaller area is tissue of a cancerous tumor.
The bladder is neither cancerous nor a lesion, but will light up in the same
manner as the tumor.

PET/CT scanners
The PET image is dependent on the tracer uptake. However, localization
of the tracer activity is difficult or sometimes even impossible [31] since
the generated images provide relatively little anatomic information.
In addition, images generated from PET scans have spatial resolution
typically between 4 and 10 mm [20], [28] which is poor compared to CT
or MRI.

Image fusion is a technique used to form an ”anatometabolic” image of
PET and either MRI or CT [28]. At first, this was just a software approach,
where the images from the different modalities were fused subsequently
[28]. The combination of both anatomic and metabolic data makes it much
easier to localize the tracer activity [31]. Today, a PET/CT scanner can
take both images during a single examination. By doing so, the anatomic
structures in the images are more likely to match, and localization of the
PET signals are more likely to be correct. In addition, the CT images
can be used for more precise attenuation correction of the PET data [31].
Figure 2.6 is an example of PET and CT images acquired from a single
examination can be fused.

Figure 2.6: An example of how a CT image (left) and PET image (middle) of the
anorectal region of an AC patient (’M033’, slice 27) can be fused (right).
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2.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is known for its high contrast
resolution, providing detailed images [32]. As a result, it is very good at
differentiating between soft tissues of different densities. MRI, as opposed
to PET or CT, uses properties of stable atomic nuclei to obtain images
of the interior of the imaged object [23]. As a result, the patient is not
exposed to any risk of ionizing radiation.

Principles of MRI

Figure 2.7: Simplified illustration of the steps in MRI. Starting off with a)
randomly oriented nuclei, followed by b) aligned nuclei with an static, external
magnetic field with ~B, then c) a radio frequency pulse ~RF is added, tipping the
nuclei spins and after a while d) the nuclei flip back in alignment emitting radio
frequency energy ∆E.

In MR imaging one utilizes the abundance of hydrogen nucleus in water
and fat. The hydrogen nuclei in the human body is normally randomly
oriented with an angular momentum (spin) as in Figure 2.7 a). The patient
is exposed to a powerful, static magnetic field that aligns the orientation of
the nuclei either in parallel or anti-parallel to the magnetic field [19], [32],
as shown in Figure 2.7 b). The nuclei are disrupted by an external radio
frequency (RF) energy pulse, causing the protons to flip to a higher energy
state [19], [32]. The spins of the protons are now tipped away from the
direction of the static magnetic field as illustrated in two-dimensions by
Figure 2.7 c). A certain period after the initial radio frequency, the excited
nuclei spontaneously return to their lower energy (relaxing) state, emitting
RF photons in the process [19]. In MRI the emitted RF energy, ∆E, is a
measure given by:

∆E = 2µpB = hγ (2.4)
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This energy is dependent on the magnetic moment of the proton, µp,
and the magnetic field B, but can also be described in terms of Planck’s
constant h and a frequency γ (see Equation 2.4). It is important that the RF
pulse matches the frequency γ (which is also called the Larmor frequency)
in order to excite the protons [23].

Images acquired from MRI
There are many methods by which MR images can be acquired and
reconstructed [19]. One can, for instance, vary the sequence of RF pulses
applied and collected [32]. The time between each successive pulse
sequence is called the repetition time (TR) and the time between the
applied pulse and the collection of the emitted, echo signal is called the
time of echo (TE) [32].

Figure 2.8: T2-weighted image of the anorectal region of an AC patient (’M033’,
slice 27). Here, fat appears in a white or light gray tone and muscles become
dark gray and almost black. The areas with gray levels in between these, are soft
tissue. In about the center of the image, right above the intergluteal cleft, an oval
object, which is a cancerous tumor can be seen.

T1-weighted images are a result of using short TR and TE. This causes
soft tissues and fat to appear in lighter shades of gray while tumors,
inflammation or cysts become darker gray. By increasing the TR and TE
one can generate a T2-weighted (T2W) image, which is more commonly
used. In a T2W image, the soft tissues are darker in comparison with
the T1-weighted images, while tumors, inflammation and cysts appear in
a lighter shade of gray. Figure 2.8 shows an example of a T2-weighted
image.
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Another method of collecting the data in MRI is by generating diffusion
weighted images (DWIs). DWIs exploits the random motion of water
nuclei [33] and is especially sensitive for detecting restricted water
movements, such as the flow in blood vessels. Detected diffusion will
light up in the reconstructed images [32]. DWI is also widely used to
assess stroke, which is often visible by DWI before any T1-weighted or
T2-weighted image [34].

By adjusting the timing and strengths of the gradients for constructing a
DWI, one determines the degree of diffusion weighting and can capture
different diffusion processes in the imaged object [34]. The degree of
diffusion weighting is also referred to as the ’diffusion sensitivity’,
’b-factor’ or ’b-value’ [34], [35], and has unit s/mm2. Higher b-values
capture slow moving water nuclei, while lower b-values capture the more
fast moving water nuclei [35]. In Figure 2.9 one can observe that the water
nuclei in the bladder are slow moving, since the signal from the bladder
is much higher for lower b-values.

(a) b = 0 s/mm2 (b) b = 800 s/mm2 (c) b = 1500 s/mm2

Figure 2.9: DWIs of the anorectal region for three different b-values in an AC
patient (’M033’, slice 27). The brightest area in (a) is the bladder and slightly
above is a cancerous tumor. Note that the water nuclei flow, in this case, seem to
surround the tumor but is not present in the center of the tumor, located about in
the center of the images.

By combining two or more DWIs, of different b-values, one can generate
an Apparent Diffusion Coefficient (ADC) map [33]. The aim of ADC maps
is to obtain a less noisy image containing more information than just one
single DWI. The gray levels in an ADC map reflect the degree of diffusion
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of water molecules through different tissues [33]. For instance, blood
vessels can more easily be differentiated from muscles due to the stream of
water molecules. Regions with no or very few water molecules in motion,
such as air or bones, will appear much darker in the ADC map.

Figure 2.10: ADC of the anorectal region, created from MRI of an AC patient
(’M033’, slice 27). This ADC map is made based on the b-values 0 s/mm2, 10
s/mm2 and 20 s/mm2.

2.5 Volume delineation

As of today there is a high degree of uncertainty associated with the
target volume [10], that is the volume of a lesion which is of interest.
Errors in the target volume might be caused by motion of the target,
errors in the positioning of the patient or the delineation of the target
volume. Radiologists are encouraged to use international guidelines
for the definition of target volume, such as those provided by the
International Commission on Radiation Units and Measurements (ICRU)
[36]. However, this does not ensure that the inter and intrapractitioner
variability of the delineations is sufficiently small [7], [37]. A study of
interobserver variability [7] found that the ratio of the contoured volume
for tumors in the prostate ranged between 1 and 1.6 [7]. Another study
conducted by Guda et al. [8] on data of head and neck cancer patients,
found that the overlap of GTV delineation, made by three radiation
oncologists with 10 years of individual experience, was moderate to good
(Dice similarity coefficient of 0.57 without PET and 0.69 with the use of
information from PET).
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Different delineations are used to describe the target volume. The
guidelines [36] describe, among others, the following volumes:

• Gross Tumor Volume (GTV)

• Clinical Target Volume (CTV)

• Planning Target volume (PTV)

GTV is defined as the most probable position and extent of the tumor,
which is visible [10]. The GTV may include the primary tumor, metastatic
regional nodes (such as lymph nodes) or distant metastasis (spread of
cancer) [36]. A complete and accurate description and report of the GTV
is required for staging of the cancer, dose planning and evaluation of the
CTV and the PTV [36]. Moreover, this report should preferably specify
the diagnostic modality used since this can vary, as may the methods used
to delineate the GTV [36]. By combining clinical examinations and the
use of various imaging modalities, the radiologist has more information
about the extent of the target volume. Several methods may have been
used when evaluating the generated image and determining the size of the
GTV. Therefore, the radiologist should specify on what basis the decisions
for the delineation have been made [36]. The GTV may also be used for
non-malignant lesions that are to be treated with radiation [36].

The GTV is often surrounded by tissue that is subclinical. This tissue
might contain cancerous tumor cells which cannot be detected through
clinical examination. The CTV includes the GTV in addition to the
assumed subclinical microscopic tumor spread [10] (see Figure 2.11). The
subclinical patterns might often be hidden because of the resolution limits
in imaging techniques [10]. Based on clinical experience, this is accounted
for by adding a margin of, for instance, 2 cm around the GTV to generate
the corresponding CTV [10]. A CTV of a benign tumor (a non-cancerous
tumor) may not be generated since there is no risk of microscopic tumor
infiltration [36]. The CTV will in this case coincide with the GTV.
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Figure 2.11: The delineation of GTV (in green) and CTV (in pink) for an AC
patient (’M007’, slice 21), on a CT image of the anorectal region.

The PTV was introduced for treatment planning and evaluation [36]. It is
mainly used to ensure that the treatment dose will be delivered to the CTV
with an acceptable probability [36].

2.5.1 Approaches for tumor delineation/diagnosis

If the tumor is accessible, a physician starts by performing a physical
examination of the patient and looks for circular lumps in the affected
area [1]. Furthermore, a radiologist may take one or more scans of the
patient, depending on the region affected, the condition of the patient and
the assumed stage. At last the clinical data from blood tests, the physical
examination and imaging of the interior of the patient, is used to finally
make a delineation of the target volume on one of the imaging modalities
[8].

The process of delineating may be based on a combination of factors
and needs to be carefully evaluated [36]. As a result, this can be a very
time consuming process, taking between 18 minutes and 2.7 hours on
an average [4]. For anal cancer, the oncologist would start by localizing
the primary tumor using PET images. Next, he/she would consider an
extension of the delineation depending on how the surrounding tissue
seems in the MRI or CT image used [9].

In recent years, the exploration of artificial intelligence for the purpose of
segmenting biomedical images has become popular [11], [14]–[16]. This
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is mainly due to the increased availability of computational power and
the increased available medical image data [11]. Automatic delineation
of medical images, using artificial intelligence, to detect and segment
tumors could potentially save time and resources for the hospitals, but
in addition potentially uncover new information about the properties of
medical lesions.



Chapter 3

Artificial intelligence

3.1 Basic principles of artificial intelligence

The main idea behind artificial intelligence (AI) is to give computers the
ability to learn, and potentially improve, the performance of their tasks.
As a subfield of AI, machine learning focuses on self-learning algorithms
that extract knowledge from a given dataset to make predictions in
classification or regression problems from new data [38]. The learning
algorithms for computers is inspired by how a biological neuron transmit
signals in the brain [38].

Figure 3.1: Illustration of how the composition of a Neural Network can be. The
circles represent activation units. The number of activation units in the first layer
depends on the number of variables in the input data. The final layer is the output
signal from the network. In between are the hidden layers, where the information
is processed. The blue lines represent connections, each with their own weight.

35
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Artificial neural networks can consist of nmerous layers of neurons, that
each evaluate its input signals and supply a processed signal to the next
layer [38], as shown in Figure 3.1. Each connection is weighted, describing
how important the connection is relative to the rest. Prior to training, it is
common to either set all weights to zero or small random numbers [38].
When all neurons in a layer are fully connected with all of the neurons in
another layer, the layer is called a Fully Connected Layer [38], [39]. Figure
3.1 is an example of a network consisting of Fully Connected Layers.

3.1.1 Neural Network architecture

Neural networks can have a architectures similar to the one presented
in Figure 3.2. The input samples and the corresponding weights are
processed through a net input function, an activation function and the
weights are updated.

Σ Output

Activation
function

Net input
function

Weights update 
w0

w1

...

wn

x0

x1

...

xn

Figure 3.2: Illustration of how the architecture of a Neural Network can be. The
two boxes to the left represents the input samples vector x and the weights vector
w, respectively. The circles represent functions the input samples are processed
through before the model obtains an output.

Activation
Based on the information from the network, the activation function is used
to compute a prediction for a given sample. Each neuron can have, for
instance, a linear activation function φ given by

φ(z) = wTx = a (3.1)

where z is the net input (Σ in Figure 3.2) computed with the weights
vector wT (transposed) and the input samples vector x. The scalar a is the
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resulting activation which will be forward propagated to the next layer
[38]. For a binary classification task, a threshold for z is used in the last
layer to decide which of the two classes the sample may belong to. When
working with a regression task, an activation function that provides a
more continuous range of outputs would be favoured. In this way, the
choice of the activation function depends on the desired outputs.

All neuron in each layer of a neural network must be activated by a
particular activation function, in order to provide an input value a for
the next layer [38]. Another example of an activation function is Rectified
Linear Unit (ReLU), defined as:

φ(z) = max(0, z) (3.2)

ReLU will only send an activation signal to the next neuron layer if the
input value is above zero (see Figure 3.3). The advantage of ReLU is
that it introduces non-linearity for the activation, as apposed to the linear
activation function 3.1. One disadvantage with ReLU is in the case where
the input values z are consistently negative, inhibiting that particular
neuron to activate. This is referred to as the ”Dying ReLU” problem.

Figure 3.3: ReLu activation function where the x-axis represents the net input
values z and the y-axis represent output of the activation function φ.

Deep learning is a machine learning technique developed to train such
artificial neural networks [38], often used for classification tasks. When
training a deep learning network, one iterate through the network several
times and the weights of the connections are updated (as showvn in Figure
3.2).
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3.1.2 Model optimization

Machine learning is essentially an optimization problem. By iterating
the signals through the network the goal is to optimize the weights, and
thereby improve the performance of the model. One can compare the
connections between the neurons and the weights in a neural network
to human brain connections: connections that are often used and are
considered important are strengthened while connections that are not
used will eventually become very weak.

Loss function
The update of the weights are made in order to the minimize the outcome
of a loss function [38]. It is also sometimes referred to as the error function
[39] or a cost function. A loss function J can be any wanted metric, defined
as a function of the weights, w. One example is the Sum of Squared Errors
(SSE):

J(w) =
1

2

∑
i

(y(i) − a(i))2 (3.3)

where i represents the current sample, y(i) is the true class label and a(i) is
the predicted class label, for sample i, from an activation function [38].

Gradient descent for cost minimization
The optimizers task is to update the weights in a way that will lead to a
lower loss [38], [39]. For each sample, the weights are updated according
to the output of the loss function and the optimization function, as given
in Equation 3.4. Here the new weights wi+1 are the sum of the weights in
the current layer, w(i), and an update for the weights, ∆w(i).

w(i+1) = w(i) + ∆w(i) (3.4)

The simplest approach for updating the weights is using the gradient of
the loss function [39]:

∆w(i) = −η∇J(w(i)) (3.5)

where η is the learning rate and∇J(w(i)) is the gradient of the loss function
[38], [39]. The update of the weight will be in the opposite direction
of ∇J(w(i)), which should be where the loss function has the greatest
decrease. This approach is known as the gradient decent [38]–[40].
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Perhaps the more commonly go-to optimizer in deep learning today
is the one called ’Adam’. Adaptive moment estimation was proposed
by Kingma and Ba [40] for efficient stochastic optimization. Such an
optimizer, is computationally less expensive relative to simply using
the gradient descent as presented above. Adam uses less iterations
through the network before the loss value converges, and is known for its
robustness and that it is suited for a wide range of optimization problems
[40]. The algorithm behind Adam uses the estimated mean of the gradient
for the next layer m̂(i+1), the uncentered variance of the gradient v̂(i+1) and
an error or noise parameter ε, in addition to the learning rate η [40]:

∆w(i) = −η m̂(i+1)

√
v̂(i+1) + ε

(3.6)

The gradient of the loss function is used to update the estimated mean and
uncentered variance of the next gradient.

3.1.3 Training, validation and test set

The process of optimizing a neural net is called training [38]. It is here
the model learns relevant patterns of the input samples. How much a
network can learn depends on the number of weights or parameters, and
are often referred to as the capacity of the network [38]. The samples
used for optimizing are called the training set or the training samples. In
addition to a training set, it is also necessary to have a validation and a test
set.

The purpose of a validation set is to validate the proposed weights after
the training, and observe how the model performs on new, unseen data
[38]. Depending on how poor or well the performance is on the validation
set, one can then go back to training the network. The test set is used as a
final evaluation of the network, and contains unseen samples.

Splitting the data into training, validation and test set should be as
stratified as possible. Consequently, each sub-dataset should be as
representative of the true diversity in the data as possible. In addition,
a well-represented training, validation and test split should reduce the
chance for getting a biased autodelineation and thereby decrease the
chance of overfitting [38].
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3.1.4 Overfitting and Regularization

If the models provide excellent results during the training, but perform
much worse on new, unseen data, the model is overfitted. An overfitted
model has managed to capture pattern in the training data well, but
performs poorly on unseen data [38]. Neural networks are prone to
overfitting the data, and the main reason for this is the lack of invariance
in the training set [38], [39].

To limit the chance of overfitting one can increase the invariance in the
data. In data augmentation new variations of the existing data, or a subset
of the existing data, are created by transforming the data. If the augmented
data changes the expected target, the target should also be transformed in
the same manner. Another approach for regularizing the network is to
add penalization on the weights when training the network [38], [39].

Batch size
The weights are updated after each sample or each batch of samples [38].
The number of updates may therefore be dependent on the batch size.
The batch size is how many samples the network should use for each
weight update, and the bigger the batch size, the more generalized and
less overfitted will each weight update, and eventually the model, become.
But, by decreasing the batch size, one may capture structures of noise in
the data, which may not be relevant for the prediction.

Dropout
When using a Dropout-activation, a chosen fraction of neurons in the

layer are randomly dropped for each iteration [41]. This is often referred
to as the keep probability. Dropout can be viewed as the averaging of an
ensemble of models [38]. Srivastava et al. [41] explain that Dropout can
prevent overfitting as well as ”approximately combining exponentially
many different neural network architectures efficiently”. By not activating
a random set of neurons in a layer, the network is forced to learn a robust
and redundant representation of the data. Dropout is often applied to one
of the higher layers [38], [41].
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3.2 Performance of a classification model

How the performance of a model should be defined depends on the
requirements of the specific problem. There are numerous ways to
quantify the performance of a model and measure a model’s relevance.
Perhaps the most commonly used performance metric is the classification
accuracy, which is defined as:

accuracy =
Successfully classified samples

Total number of samples
(3.7)

This is generally a useful metric [38] but does not cover any information
about the degree of error for each classification instance. For example,
in the presence of a major imbalance between two classes, a model could
gain a high accuracy score by simply assigning all instances to the class
with highest frequency.

3.2.1 Confusion matrix

Table 3.1: The typical setup for a confusion matrix, where the x-axis represents
the predicted class and the y-axis are the actual class. The values within each box
is typically presented as a frequency.

Predicted class

P N

Actual class

P

True
positive

(TP)

False
negative

(FN)

N

False
positive

(FP)

True
negative

(TN)

Several performance metrics are based on the confusion matrix. A
confusion matrix reports the occurrences of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN) predictions
of a binary classification model [38], as displayed in Table 3.1. For a binary
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classification problem with classes ’positive class’ and ’negative class’,
True Positives is the count of instances that were correctly classified as
’positive class’. False Positives are the instances that were classified as
’positive class’ but in reality belong to ’negative class’. Furthermore, True
Negatives are the instances that were correctly classified as ’negative class’
whereas False Negatives are instances misclassified as ’negative class’.

3.2.2 Overlap based metrics

Overlap based metrics are performance metrics that focuses on the overlap
of the predicted classification and the true classification. Two of these
are Specificity and Recall. Specificity is essentially the true negative rate
(TNR), while Recall is the true positive rate (TPR) [38], [42]:

Specificity = TNR =
TN

TN + FP
(3.8)

Recall = TPR =
TP

TP + FN
(3.9)

Specificity is the fraction of instances correctly classified as negative (the
true negatives) compared to the total number of instances that should
be negative [42]. Recall, on the other hand, is the fraction of instances
correctly classified as positive, given the total number of instances that
really are positive. These measures are much more sensitive for small
segmentations compared to bigger segmentations, and are therefore not
common to use as evaluation of medical image segmentations [42].
Precision, on the other hand, is commonly used for validating medical
images [42]. This metric measures the rate of true positives based on
the total number of instances that were classified as positive. Precision
is therefore also called the positive predictive value (PPV) [42] and is
mathematically defined as:

Precision = PPV =
TP

TP + FP
(3.10)

A combination of PPV and TPR provides the F-score, also named ’the Dice
coefficient’ or ’the overlap index’:

Dice = F1 = 2
PPV ∗ TPR
PPV + TPR

=
2 ∗ TP

2 ∗ TP + FP + FN
(3.11)
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The Dice coefficient is the most used metric for medical volume
segmentations [38], [42]. Figure 3.4 shows the inpact of Precision and
Recall on Dice.

0.50

0.10

0.90

0.70

0.30

Figure 3.4: Illustration of the Dice coefficient as a function of Precision and Recall
(Eq. 3.11). Precision is represented by the x-axis and the y-axis represents the
Recall. The values within the square box shows the contouring for how the Dice
coefficient changes.

By weighting the PPV and TPR differently, this metric can put more
emphasis on one or the other, depending on what is important for the
particular case. A more general definition of the F-score is therefore:

Fβ =
1 + β2

β2

TPR
+

1

PPV

=
(1 + β2)PPV ∗ TPR
β2PPV + TPR

(3.12)

where β is the weighting of the Precision. Figure 3.4 illustrates how the
Dice coefficient evolves as the relationship between Precision and Recall
changes. To obtain a Dice coefficient above 0.50, both the Precision and the
Recall must be at least 0.50. If either one of them are under 0.50, the Dice
coefficient cannot exceed 0.50.

Apart from the group of overlap based metrics there are also spatial
distance based metrics, probabilistic metrics and pair-counting based
metrics, among others [42]. A guideline for selecting evaluation metrics
is described in [42] where several different performance metrics are
compared for the purpose of segmenting medical images.
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3.3 Image classification

Convolutional Neural Networks (CNN) can be described as ’models
that were inspired by how the visual cortex of human brains works
when recognizing objects’ [38], [39]. There are mainly three different
types of layers that make up CNN architectures: Fully Connected layers,
Convolutional layers and Pooling layers [38].

3.3.1 Convolutions

Convolutional layers can be compared to applying filters to images. Each
convolutional layer may extract or attenuate properties in the input image.
By creating a feature map based on small patches, or subregions, of
the input image [38], [39], the convolutional layer can exploit the fact
that nearby pixels are more strongly correlated than distant pixels [39].
Another advantage is that the network can find patterns within each patch
which can be a useful tool for image recognition. Furthermore, padding is
often used on the input image.

Padding

Figure 3.5: Illustration of same padding. The smaller square in blue represents the
padding kernel, while the bigger green square is the input image. As the kernel
moves through the input image, the output image (in seagreen) is generated.

Padding is adding pixels to a two-dimensional image in order to influence
output dimension as well as how the convolution is applied to the input
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image [38]. The choice of padding also affects the importance of the
edge pixels in the input image [38]. ’Full padding’ increases the size of
the output image, ’same padding’ maintains the input dimensions while
’valid padding’ decreases the dimension of the image. Figure 3.5 is an
illustration of same padding.

3.3.2 Pooling

Pooling layers (also called subsampling layers) are used to decrease the
capacity of the network by reducing the amount of features, or pixels,
in an image [38]. There are two common types of pooling: max pooling
and mean pooling. For a given dimension of a patch of the input image,
max pooling reduces each patch to the maximum value present. In the
same manner, mean (or average) pooling extracts the mean value for each
patch. The size of the patch is specified. Figure 3.6 is an example of max
pooling with a patch size of 2 x 2 pixels. The resolution of the output image
is considerably reduced. Larger patch size, results in more reduction in
resolution and vise versa.

Figure 3.6: Illustration of max pooling with kernel size 2 x 2 pixels. Each shade of
green and blue in the small box is the maximum value among the pixels with the
corresponding color in the larger box. Note that padding is temporarily added to
the input image, if needed to fulfill the kernel operations.

Including pooling layers to a network will result in a higher computational
efficiency and reduces the chance of overfitting the network to the data.
While pooling layers create more robust features, one also disregards the
‘where’ information of the sub-samples [16], [38] and loose resolution.
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3.3.3 Upsampling

The closest to the opposite of pooling layers may be upsampling layers.
Upsamling layers aims to reconstruct a dense map of the input data
[43]. There are two types of upsampling: non-guided depth upsampling
and guided upsampling. Non-guided upsampling methods often use
techniques such as interpolation [43]. Guided upsampling methods
upsample using guidance from a high resolution image. A third option
for upsampling sparse data is to predict the depth value, such as Ma and
Karaman explored in [44].

3.3.4 Image augmentation

As mentioned in Section 3.1.4, by augmenting the image data, one can
present different versions of the same images, such as deformations,
translations, rotations, croppings, flippings or shadings [45], among
others. Consequently, one can increase the invariance in the dataset [39]. If
the training data is adequate, it may already contain sufficiently different
variations of the images, and a neural network can learn the invariance.
However, when there is lack of training data, the network may not be
presented with all the options during the training, and may perform
poorly in the validation set. Consequently, image augmentation can be
utilized as a technique to handle lack of data [39], [45] by increasing the
training dataset.

Elastic deformation
Elastic deformation is changing the length, volume or shape of the image.
Simard et al. [46] proposed an elastic deformation algorithm, which
performed well on the MNIST dataset in 2003. Parameters for this
algorithm are σ, α and α affine.

σ is explained as the Gaussian standard deviation of the voxels allowed
for the deformation of the image. The larger the chosen σ, the more
deformed the generated image will become. Furthermore, α is a scaling
parameter that controls the intensity of the deformation [46]. At last,
affine transformation is a transformation that preserves points, straight
lines and planes in an image, although the angle between lines might not
be preserved. A simple example is the transformation from y = ax to
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y = ax + b. The properties of the straight line is the same, but the line is
now moved parallel to the original line, in the same plane.

(a) Original image (b) Elastic deformated image

Figure 3.7: Example of elastic deformation, α = 90, σ = 15 and α affine= 25
applied to a image of the anorectal region of an AC patient (’M007’, slice 25) from
the ANCARAD study.

Flipping
When the object that one aims to detect through an image classification
task is independent of symmetry and the positioning in the image either
horizontally, vertically or both, one can increase invariance by flipping
the image [45]. An example is when classifying pedestrians in a dataset
containing images of road junctions. Whether the pedestrians is located
on the left or the right side of the image is of no importance, but flipping
the image vertically would create an image that does not correspond to
the other images in the dataset.

(a) Original image (b) Flipped image

Figure 3.8: Example of horizontal flip applied to a image of the anorectal region
of an AC patient (’M007’, slice 25) from the ANCARAD study.
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3.4 Sentiment image segmentation

Sentiment image segmentation is the process of asssigning each pixel
in an image to an object class [47]. Each object class needs to be
delineated by boundaries [47], resulting in a partition of non-overlapping
regions. Sentiment image segmentation may be applied in areas such as
autonomous driving where the algorithm needs to differentiate between
the road and a cyclist or a pedestrian [12]. For medical image analysis,
sentiment image segmentation can be used to label organs, lesions or other
regions of interest in a medical image.

Semantic image segmentation has proven to work well with convolutional
neural networks [48]. Long et al. [48] showed recent results for
semantic image segmentation using Fully Convolutional Networks (FCN),
by achiveing a 20 % relative improvement (to 62.2 %) compared to
contemporary classification networks of 2014.

A challenge by using convolutional networks for the purpose of semantic
image segmentation are pooling layers [16]. Generic FCN models can only
generate coarse global saliency maps, loosing detailed object structures
[14]. Localization is crucial for medical images in order to give a
diagnosis, thus making pooling a problem for the purpose of semantic
segmentation. Qinghua Ren and Renjie Hu observed [14], that the most
intrinsic challenges in deep learning methods today are to predict a
saliency map with the same resolution as the input image, and increase
the robustness and accuracy of the deep network.

3.4.1 Encoder-decoder architectures

An encoder-decoder architecture was introduced to maintain the
resolution of the input image for a saliency map. In addition, these
architectures capture context and enables precise localization [16]. This
architecture class has shown to be a superior in performance in many
computer vision tasks [14], [49], [50]. The root of a FCN with pooling
layers is used to aggregate the features and consequently decrease the
spatial resolution of the images [14], [16]. This encoding is often referred
to as the contracting path. Next, the features are decoded in the expansion
path with upsampling layers. While upsampling, the object details and
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spatial resolution are gradually recovered using skip connections [14],
[16].

Skip connections
The spatial information is recovered by merging the features skipped from
various layers in the contracting path to layers in the expansion path [15],
as shown in Figure 3.9. Hence, one re-uses the switch variables from
the pooling layers in the contracting path, and can thereby reconstruct
the detailed object structure more effectively [14]. These connections are
called skip connections [15], [39]. Drozdal et al showed [15] that the choice
of the combination of these skip connections can be of great importance
when regarding the network performance for FCNs [15].

U-Net architecture
A popular architecture from this class is U-net, where the contraction and
expansive paths are applied gradually. The illustration of this architecture
often results in a ’U’-shape with a minima halfway. Figure 3.9 is an
illustration of the U-net architecture created by Ronneberger et al. [16].

The need of a larger training dataset is often a challenge regarding
biomedical tasks. The encoder-decoder architecture utilizes the available
annotated samples available more efficiently, thus reducing the need of a
larger training dataset [16].
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Input image Output 
segmenta�on map

Figure 3.9: Illustration of U-net arcitechture, with permission from Olaf
Ronneberger [16]. Each box represents a feature map, with the corresponding
number of channels above. The resolution of the example image is denoted
vertically at the bottom left corner of the boxes. The blue arrows are convolutional
layers with a 3x3 pixels kernel. The gray arrows are skip connections, and the
white boxes are the copied feature maps from previous layers. Furthermore, red
arrows represent max pooling layers, while the green arrows are upsampling
layers both with kernel sizes of 2x2 pixels. Finally, the seablue arrow is a 1x1
convolutional layer, creating the output segmentation map.



Chapter 4

Experimental setup

4.1 The data

4.1.1 Background

In order to use patient data for the purpose of research in Norway, it is a
prerequisite that projects are pre-approved by the Regional Committees
for Medical and Health Research Ethics (REC) [51]. One must also
apply for data from the Norwegian Patient Registry to the Norwegian
Directorate of Health [52]. Furthermore, each patient has to give consent,
that their medical records for treatment and follow up can be used for this
specific study. All patients in this study gave written informed consent.
This process is time consuming, and it may take years before the dataset is
large enough to be used for research purposes. When working with Deep
Learning and image analysis, a substantial sample size is often crucial [38]
but mostly beneficial [53]. The more data the algorithm can train on, the
bigger are the chances for the algorithm to become robust and produce
accurate results.

From 2013 to 2016, the Department of Oncology, OUH, collected
data from 93 anal cancer (AC) patients treated with radiotherapy or
chemo-radiotherapy [3]. All 93 patients were above the age of 18 years
old. Even though both sexes were represented, the majority of the patients
were female. The dataset consists of both clinical factors, such as age,
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sex and mass, but also data from medical scans generated throughout
the course of treatment of anal cancer. These medical scans include a
Dose Planning Computed Tomography (DPCT) and possibly several PET,
CT and MRI sequences. The patients were injected with CT contrast
for the DPCT scan while the PET/CT scans were performed without CT
contrast but with 18F-FDG tracers for the PET scan. The MR sequences
were generated without any contrast medium. The images provided
by the hospital come in a format called DICOM (‘Digital Imaging and
Communications in Medicine’).

The DICOM-image sequence of DPCT also contained a number of
structures provided by three different, experienced radiation oncologists
[9], including a GTV of the primary tumor which is considered the ground
truth delineation. Since the target GTV was based on the DPCT, only
the image sequences generated close to the time of the DPCT were of
interest for this Master’s thesis. These image sequences are referred
to as baseline image sequences. However, if available, medical image
sequences generated about two weeks after the DPCT were also provided
as part of the dataset. Furthermore, the clinical factors were not used in
this master thesis, and have therefore not been processed, evaluated or
included to the dataset.

4.1.2 Processing and quality assurance

Of the 93 AC patients, 7 AC patients were not included since they
did not have images from all modalities or did not pass the quality
assurance for this study. During the autumn 2018, the author worked with
co-registration of the patient data at the Norwegian Radium Hospital,
along with her colleague Maria Cabrol. This resulted in co-registered
image data from 36 AC patients. The co-registering and processing of
the 86 AC patients were performed in MICE software [54], which is
specifically developed for analysis of medical images. The process of
image registration consisted of cropping the images according to chosen
cropping values, co-registering the different modalities, interpolating the
resolutions and finally saving the matrices as MATLAB-data. This is
described in greater detail in a term paper, written autumn 2018 [55].

The resulting images have voxel size of 1 x 1 x 3 mm3, and the
generated image sequences from all the modalities are co-registered.
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Co-registering the image sequences involves transforming the data of a
moving image sequence and maximizing the image overlap [56] according
to a reference image sequence. The DPCT was used as the reference for
all the other image sequences. Moreover, the image sequences from each
patient were carefully examined and evaluated prior to the conversion
to MATLAB-data. If the co-registration was not successful, the chosen
cropping values were reevaluated in order to perhaps get a more accurate
overlap. This resulted in a final dataset of 85 AC patients, as one of the
patients had an incomplete DPCT image sequence. All of the remaining
patients had DPCT, baseline PET and CT scans, but only 36 AC patients
had baseline MRI scans available (see Table 5.6).

Table 4.1: Overview of the resulting dataset. The PET, CT and MRI images
(columns three and four) refer to baseline images. Note that only 49.4 % of the
slices in the dataset without MRI scans and 46.2 % of the dataset with MRI scans
had target volumes (TV).

Total PET and CT MR Complete ADC maps

Patients 85 85 36 18

Slices 3492 3492 1501 764

Slices with TV 1726 1726 694 -

4.1.3 Content of the dataset

For the 36 AC patients that had MRI image sequences, two different
ADC maps were created: ’ADC.mat’ based on the three early b-values,
b0, b10 and b20, and ’Perf.mat’ based on b200, b400, b800 and b1000 (as
described in section 2.4). In addition, the MICE software also creates its
own ADC map, named ’ADCsig.mat’. The latter was not used due to lack
of information about how this ADC map was created. It was decided to
be consistent when choosing b-values for making the ADC maps and not
to customize this for each patient, which also was an option. This was
to make the study and the results of this master thesis as reproducible as
possible. The consequence of this is, of course, that the ADC maps might
not always be as optimal as they might have been if one tailormade the
ADC maps to each patient. In addition to the ADC maps, the DWIs for
b0, b10, b20, b40, b80, b160, b200, b400, b800, b1000, b1200 and b1500 were
included in the dataset.
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Among the 36 AC patients with MRI image sequences yielding ADC
maps, 14 patients had an incomplete ADC image sequence compared to
the GTV image sequence. This means that the ADC image sequences
lack image slices or that the generated image was not complete (see
Figure 4.1). This occured either at the end or the beginning of the image
sequence, where GTV delineations were present. This can be caused by
how the DWIs were generated, the angle of the imaging (as a result of the
positioning of the patient in the scanner) or a flaw in the co-registering
[55].

(a) ’ADC.mat’ slice number
48

(b) ’Perf.mat’ slice number 20

Figure 4.1: Examples of discontinuities in the ADC maps of patient M007 where
the GTV is present. The GTV is marked in green.

Included structures
The delineations of the affected lymph nodes and the Gross Tumor
Volume (GTV) for the primary tumor, were included for all 85 AC
patients. In most cases, these GTVs were distinct but for some patients the
GTV of the primary tumor could include lymph nodes. In such cases, the
masks of the lymph nodes were carefully evaluated and the delineations
that were characterized as lymph nodes were either removed or saved as
separate lymph node GTVs.

The reason for including the delineations of the lymph nodes was to
possibly use these to reduce false positives. Lymph nodes share similar
characteristics with malignant tumors, such as the metabolic activity and
their spherical shape [29]. In a PET image sequence the lymph nodes will
light up in the same manner as the primary tumor, and might mislead the
algorithm into thinking that these are malignant tumors [29].



4.2. FINALIZED DATASET 55

In addition, the Clinical Target Volume (CTV) for the primary tumor
was included, as this could be useful for evaluating the accuracy of the
autodelineation.

4.1.4 Sample size and class balance

The resulting dataset for this study consisted of 85 AC patients. Moreover,
the number of voxels included in a delineation, representing the cancerous
tissue was considerably smaller than the number of voxels representing
healthy tissue in the image. The skewed label distribution is a typical
challenge for real-world applications and is often referred to as a class
imbalance [38]. Except for cropping of each image sequence for the
purpose of co-registering, no actions were taken to reduces the class
imbalance.

4.2 Finalized dataset

The finalized dataset is represented in 85 folders, one for each patient.
Medical data contain sensitive, personal information about patients and
it is therefore important to anonymize the data. The initials and
corresponding date of birth have been replaced by a patient identification
’M***’ in the folder names. Within a patient folder the image sequences
in MATLAB-data formats are distributed among (i) a ‘Base’ folder,
containing the baseline image sequences, (ii) a ‘Mid’ folder, containing
the image sequences generated about two weeks post DPCT, and (iii) a
‘ROI’ folder containing the selected GTV and CTV structures. The specific
MICE-code that was used to generate the MATLAB-data sequences for
each patient is also available in the associated patient folder. In addition, a
.txt file containing the chosen cropping regions from the original DICOM
images (as explained in the term paper [55]) is also included.

4.2.1 Setup for the dataset

Hierarchical Data Format version 5 (HDF5) is a mechanism for storing
and organizing large and complex amounts of data [57]. Some advantages
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of this data format is that it can scale up to exabytes, and has sub-setting
capabilities that consequently makes it very fast [57]. The HDF5-file is also
more portable compared to storing data in a directory on the hardware.
HDF5-files can consist of datasets, groups and/or attributes [57]. The
dataset for this thesis was saved as a HDF5-file, where the first hierarchical
level consists of a training group, a validation group and a testing group.
Each group consists of a dataset (named ’dat’), information about patient
ids and the corresponding target volume sequences (named ’mask’), as
presented in Figure 4.2.

ʹdata.h5ʹ validation

train

test

dat

mask

dat

mask

dat

mask

Figure 4.2: Illustration of the structure of the HDF5 file used in this thesis. The
box with blue outline (far left) is the HDF5 file. Boxes with orange outline are
groups, while boxes with green outline are datasets.

In order to collect all the patient image sequences in a HDF5-file, the
patient image sequences must have the same resolution and number of
channels. The resolutions in x- and y-direction across the patient image
sequences were not the same, and neither was the number of channels.
Therefore, padding (see section 3.3.1) was added to all images that had
smaller resolutions than the largest resolution observed in the dataset.
This resulted in resolution of 236 x 236 voxels for all images in the dataset.

Each slice in the image sequence can potentially consist of five channels,
representing the corresponding slice from each modality, as shown in
Figure 4.3. Furthermore, two HDF5 files were created: one for the 85
patients with DPCT, PET and CT, and another for the 36 patients whom
in addition had the two ADC maps and T2W images. Table 4.2 provides
explanations of the different channels.
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Figure 4.3: Illustration of the channels available in each image slice, according to
the order in the finalized HDF5-file. Explanations of the channels are provided in
Table 4.2. The images representing the different modalities are only for illustrative
purpose. Note that 36 out of 85 patients did not have ADC, Perf or T2W channels.

Table 4.2: Explanation of the channels used for the experiments in this project.

Channel Explanation

DPCT CT image sequence generated for the purpose of dose planning

PET PET image sequence generated by PET/CT examination

CT CT image sequence generated by PET/CT examination

ADC ADC map based on b-values: b0, b10 and b20

Perf ADC map based on b-values: b200, b400, b800 and b1000

T2W T2-weighted image sequence



58 CHAPTER 4. EXPERIMENTAL SETUP

4.3 Software and computer

For co-registering the images, the software MICE Toolkit 1.0.7 [54] was
mainly used, in addition to MATLAB (version R2014b, The Mathworks
Inc., Natick, MA) which was used for some of the code in the
co-registering pipeline. Furthermore, the environment Spyder [58] version
3.3.2 under the terms of the MIT License was used for making the HDF5
files, preprocessing and inspecting the data. Python 3.6.4 (64-bit for
Windows 10) was used for running the autodelineation program in this
thesis. Moreover, TensorFlow r1.12 with GPU support was used for the
neural network architecture. The computer used for the majority of the
project had one GPU available, NVIDIA GeForce GTX 1080 Ti, which was
used for running the experiments.



Chapter 5

Preparations and Experiments

5.1 Preprocessing

Before running any machine learning algorithm, it is crucial to preprocess
the data in order to quality assure the model inputs. In most deep
learning applications, preprocessing of the images is not necessary, as
processing of the data usually is a part of the network pipeline. However,
inspecting and evaluating the data thoroughly might be crucial to get a
better understanding of the results of the CNN model. Moreover, medical
data is highly inconsistent. Processing the data in order to increase the
consistency and decrease unwanted noise, can aid the CNN model into
learning the relevant information in the data.

5.1.1 Correction of T2W images

When inspecting the T2W image sequences of the AC patients it became
apparent that some of the images were not in the same voxel value range
as the others. Some of the T2W images appeared substantially darker than
others. Furthermore, a shift in the voxel value ranges was discovered and
the patients were divided into two groups: group A with the first seven
patients in the dataset, and group B with the remaining 29 patients. The
observed shift could be due to a change of MRI scanner or change in the
routines of the oncologists. The voxel value ranges, in addition to the
observed shift, are presented in Figure 5.1.

59
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Figure 5.1: Maximum, minimum and mean voxel values for the T2W image
sequences illustrated in blue, green and pink, respectively. The x-axis represents
the AC patients, while the y-axis represents the voxel values. A conversion from
patient number to the patient IDs is provided in Appendix A. Moreover, the pink
lines are the mean of the voxel values within each of the two patient groups, A
and B. Group A consists of the first seven patients, while group B is the remaining
29 patients.

The voxel value shift observed in Figure 5.1 was corrected for in order to
obtain a more consistent dataset and the following equation was used:

Xnew = X
µB
µA

(5.1)

where Xnew is the new, corrected image, X is the original image, µB is the
mean of group B and µA is the mean of group A. As a result, the mean
voxel value of group A will be equal to the mean of the voxel values in
group B, as shown in Figure 5.2:
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Figure 5.2: Corrected maximum, minimum and mean values for the T2W image
sequences illustrated in blue, green and pink, respectively. The x-axis represents
the AC patients, while the y-axis represents the voxel values. A conversion from
patient number to the patient IDs is provided in Appendix A. Moreover, the pink
line is the mean of all the voxel values
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When displaying the images, one can also observe that the brightness of
the corrected images from group A was more similar to the brightness of
the T2W images from group B. An example of this is presented in Figure
5.3, where the uncorrected T2W image of AC patient ’M003’ in group A
was much brighter than the image of AC patient ’M110’ in group B.

, original , original 

Figure 5.3: Correction of voxel value range in the T2W images of the anorectal
region in two different AC patients (’M003’ and ’M110’, slice 21). The color bar
provided to the right apply to all three images.

5.2 Data cleaning

The removal of data points which are considered outliers may be one of
the most important process to clean the data for a machine learning task
[38]. Such data points could have a negative impact on a classification task
by misguiding the network model. Consequently, numerous image slices
in this dataset were removed.

5.2.1 Discontinuities in MRI slices

As explained in section 4.1.3 in chapter 4, some of the T2W and ADC
images were left with a diagonal discontinuity after co-registration in
MICE. Table 5.1 provides an overview of the number of image slices which
contained discontinuities, as shown in Figure 4.1, and image slices that
were completely black (containing only zeroes).
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Table 5.1: Number of image slices that were all-zeroes (first column), all-zeroes
in the delineated region (second column), image slices evaluated with substantial
discontinuity but not all-zeroes (third column) and the number of image slices
with discontinuity in the target volume (TV) (last column). ’Dis.’ stands for
discontinuity.

All-zeroes All-zeroes in TV Dis. in image Dis. in TV

T2W 81 3 71 3

ADC 450 52 164 14

The evaluation of whether an image is substantially discontinued or not
was made by looking for a patch of 70 x 70 voxels that only contains zeros.
All image slices where the target volume only contained zeroes, either in
the ADC map, the T2W image or both, were removed (second column in
Table 5.1). In addition, all T2W image slices containing a patch of 70 x 70
voxels or bigger with only zeroes were removed. This includes slices in
both the first and the third column of Table 5.1, for T2W.

Consequently, the MRI dataset was reduced by 204 slices or about 13.6 %
of the total number of slices. Note that the sum of removed slices does not
directly match the numbers provided in the columns in Table 5.1, since
some of the slices can be represented in more than one column. An image
slice could, for instance, both have only zero voxel values in the GTV area,
while also having a discontinuity in the T2W image.
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5.2.2 Slices without delineation

Originally, 49 % of the slices in the PET/CT dataset of 85 patients and 46
% of the slices in the MRI dataset of 35 patients did not contain any target
volume delineations provided by the oncologists. The Pareto Principle
[59] gives that, in general, 20 % of something always are responsible for
80 % of the results, and vise versa. In order to decrease the computational
cost of the network and make each experiment less time consuming, it was
decided to remove 80 % of the image slices not containing an oncologist’s
target volume delineation.

The 80 % removed should have been the upper 80 % of the image slices
without target delineation which had the least effect on the model [59].
This would require a more complicated exploration and, consequently, the
80 % were chosen randomly, where each slice had a probability of 80 % of
being removed. Thus, 645 image slices were removed, or about 43 % of
the dataset.

5.3 Image augmentation

Ronneberger et al. [16] used shift, rotation and gray value variation of
images for data augmentation to boost the network performance, during
training [16]. Random, excessive elastic deformations were found to work
well [16].

In this thesis, the elastic deformation used is based on the one presented by
Simrad et al. [46]. By visual inspection of the outcome for some randomly
chosen patient image sequences, the following parameters were chosen
for elastic image augmentation:

Table 5.2: Parameter values chosen for elastic deformation of images. The first
column is alpha, the second column is sigma and the last column is the alpha
affine, as described in section 3.3.4, chapter 3.

α σ α affine

80 25 15
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Figure 5.4: Performed elastic deformations on medical images from an AC patient
(’M027’, slice 27) with alpha = 80, sigma = 25 and alpha affine = 15. These
parameters control the intensity of the deformation, as described in Section 3.3.4,
Chapter 3. The medical images presented are, from the left: CT, PET, ADC, T2W
and the provided target volume mask. The upper row gives the original images,
whereas the second row show the augmented images.

When choosing the parameter values in Table 5.2, the aim was to generate
augmented images resembling the existing images in the dataset, with
only minor deformations. By doing so, the new, augmented images
ought to represent fictional, new patient data, with the main purpose of
increasing the training data for the network.

For each patient, about 35 % of the slices were randomly chosen for
deformation. In addition, horizontal flip was applied on another subset
of about 35 % of the slices for each patient. This subset was chosen
independently of the slices chosen for elastic deformation. Both subsets
were randomly chosen without replacement. Figure 5.4 shows the effect
of applying elastic deformation to a given image slice.

Finally, the augmented data was only added to the training set, almost
doubling the number of image slices. In order to retain information about
which patient the slice stemmed from and to indicate that the image
was a product of an augmentation process, these slices got a patient ID
’M*** aug’. The image augmentation was applied after both padding and
removing of slices.
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5.4 Train, validation and test split

Before running any experiments, the data was split into training,
validation and test sets. The split was stratified, according to the tumor
volume. The total target volume for each patient was determined based
on the number of voxels included in the delineation provided. First, the
total target volume for each patient was sorted in a list. Second, the
patients were divided into two groups: those with the largest number
of target volume voxels and another with the smallest number of target
volume voxels. Thereafter, 70 % of each group were randomly placed in
the training subset, 50 % of the remaining patients from each group were
placed in the validation subset and the last patients from both groups were
placed in the test subset. The 70-15-15 split of the dataset was evaluated
based on the size of the dataset. To the author’s knowledge, there are
no other recommended guidelines for choosing the split as long as each
subset of the total dataset are as representative as possible [38].

The motivation behind this strategy was to get a stratified split, based
on the delineated volumes, while retaining some control of how the split
was made. The subset should then contain both patients with large target
volumes and small target volumes. Table 5.3 shows the resulting dataset
after image augmentation.

Table 5.3: Number of patients and image slices in the datasets after image
augmentation, data cleaning in the training, validation and test set. ’Patients’
is the number of unique patient IDs, ’org’ is the number of original instances and
’aug’ is the additional instances as a result of the image augmentation. Note that
all patients in the datasets are represented in the augmented images.

PET/CT dataset MRI dataset

Patients Image slices Patients Image slices

org aug org aug org aug org aug

Train 59 85 1434 1354 27 36 459 410

Validation 12 - 279 - 4 - 69 -

Test 14 - 316 - 5 - 99 -

Total 170 3383 72 1037
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5.5 Windowing

Based on the results of Moe [18], windowing of CT images was considered
important for the performance of the delineation experiments. Therefore,
an inspection of the most optimal windowing values was performed.
Table 5.4 provides the maximum, minimum, mean, median and mode
for the Hounsfield values of the voxels representing the delineated areas.
DPCT and CT were inspected separately to detect any inter-channel
variations. The metrics are based on all delineated voxels in the DPCT
and CT image sequences for all 85 patients. The mode is the most common
value represented in the set. If there by chance was more than one value
with equal, highest frequency, the smallest HU value was chosen.

Table 5.4: Statistics of Hounsfield values in the delineated areas for DPCT and
CT images in the dataset. STD stands for standard deviation.

Channel Min Max STD Mean Median Mode

DPCT -993.0 3009 143.9 29.40 57.73 70.00

PETCT -1034 834.7 108.8 0.2380 25.46 32.00

Figure 5.5: Boxplot illustrating the Hounsfield values for the delineated regions
in the DPCT and CT images. The boxes in blue and green represent the area in
which 50 % of the data, for the respective channel, is present. The whiskers show
the highest and the lowest Hounsfield values, while the diamonds outside of the
whiskers represent automatically detected outliers.

In Table 5.4 one can observe that since the minima and maxima are far
away from the mean, median and mode, extreme values are present, most
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probably due to artifacts in the images. This can also be observed in
the boxplot in Figure 5.5. The center values for the windowing of each
of the channels, was therefore chosen to be the mode values presented
in Table 5.4. Furthermore, the widths were determined based on the
double of the standard deviations, rounded up in order to include some
extra Hounsfield values. This led to narrow windowing widths, which is
recommended for areas of soft tissue [27].

Consequently, the windowing options provided in Table 5.5 were used.
Typical windowing options for soft tissue in the abdomen is a center of
50 HU and a width of 400 HU [27], but should ideally be evaluated for
each CT scan.

Table 5.5: The resulting windowing options chosen for the experiments, given in
Hounsfield units (HU).

Channel Center Width

DPCT 70 300

PETCT 32 220

5.6 Baseline performance

It is possible to calculate the mean Dice performance expected if the deep
learning model had simply used an average target volume mask based
on all the 85 patients as the predicted tumour. This performance is the
minimum Dice performance, the baseline performance, one should expect
from the network in order for it to perform better than simply random
guessing the mask.

Moreover, there are two options for generating an average target volume
mask: one based on all image slices available, and another where the
image slices without target volume delineations are excluded. These
options where inspected separately and are presented in Figure 5.6.
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Figure 5.6: Resulting probability map for the average GTV mask based on all
image slices (left) and only image slices with an oncologist’ GTV (right). The
color bar provided to the right apply to both images. Note that none of the pixel
values in the left probability map are equal to or larger than 0.5.

The values in the probability map generated based on all image slices (to
the left in Figure 5.6) did not exceed 0.5, and choosing a threshold value
for creating an average GTV mask was not intuitive. Nonetheless, the
probability map generated based on only the slices with an oncologist’
GTV (to the right in Figure 5.6) had several voxel values equal to or larger
than 0.5. This can be interpreted as if there is at least a 50 % chance for the
voxel to be a part of the delineation.

Thus, an average GTV mask was generated by creating a binary image
with a threshold value of 0.5, based on the probability map for image slices
excluding slices without GTV delineations. This resulted in the average
GTV mask shown in Figure 5.7.

Figure 5.7: Average GTV mask based only on the slices containing GTV from all
85 patients, with a threshold value of 0.5.

This baseline GTV mask was used to evaluate the baseline performance
by calculating the Dice coefficient between the average GTV mask and the
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actual GTV for each image slice. This was calculated for both the PET/CT
dataset and the MRI dataset (presented in Table 5.3). The calculated
baseline Dice performances are provided in Table 5.6.

Table 5.6: Baseline performances using an average GTV mask for all slices.

Dataset All slices Only slices with GTV

PET/CT 0.347 0.701

MRI 0.324 0.701

5.7 The Code

The code used in this thesis is based on the code written by Yngve
Mardal Moe for his MSc Deep learning for the automatic delineation of
tumours from PET/CT images. (2019) [18]. Modifications have been made
to fit the model according to the dataset and the experiments examined
in this thesis. These modifications include new windowing options,
a dropout activation, image augmentation and data cleaning outside
of the pipeline proposed by Moe [18]. Note that, preprocessing was
conducted prior to making the HDF5 file, used as input to the pipeline
for autodelineation. Windowing, however, was performed as a part of
the pipeline for autodelineation. For reproducibility, the programs used
in this project are available on the Github repository: https://github.
com/christinekaush/ANCARAD_autodel.

5.7.1 Network architecture

The model architecture used in this thesis is a basic U-Net architecture,
shown in Table 5.7, with a total of 27 layers (disregarding the input
image layer). As input, the model receives the medical images that we
want to analyze, along with the target binary segmentation mask (the
ground truth). The number of channels per input varied depending on
the number of modalities used for each experiment. Each layer uses ReLU
as activation function, except for the convolutional layer 8 where Dropout
is used for activation to the next layer with a keep probability of 50 %. This
is a modification relative to the original framework by Moe [18].

https://github.com/christinekaush/ANCARAD_autodel
https://github.com/christinekaush/ANCARAD_autodel
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Table 5.7: The U-Net architecture used for the experiments in this project. All
layers use the ReLU activation function except for Conv 8, which has a Dropout
activation.

Layer Type Input No. output channels

Conv 1 Convolutional Input image 64

Conv 2 Convolutional Conv 1 64

MaxPool 1 Max Pooling Conv 2 64

Conv 3 Convolutional MaxPool 1 128

Conv 4 Convolutional Conv 2 128

MaxPool 2 Max Pooling Conv 4 128

Conv 5 Convolutional MaxPool 2 256

Conv 6 Convolutional Conv 5 256

MaxPool 3 Max Pooling Conv 6 256

Conv 7 Convolutional MaxPool 3 512

Conv 8* Convolutional Conv 7 512

MaxPool 4 Max Pooling Conv 8 512

Conv 9 Convolutional MaxPool 4 1024

Conv 10 Convolutional Conv 9 1024

UpConv 1 Upconvolutional Conv 10 512

Conv 11 Convolutional UpConv 1 512

Conv 12 Convolutional Conv 11 512

UpConv 2 Upconvolutional Conv 12 256

Conv 13 Convolutional UpConv 2 256

Conv 14 Convolutional Conv 13 256

UpConv 3 Upconvolutional Conv 14 128

Conv 15 Convolutional UpConv 3 128

Conv 16 Convolutional Conv 15 128

UpConv 4 Upconvolutional Conv 16 64

Conv 17 Convolutional UpConv 4 64

Conv 18 Convolutional Conv 17 64

Conv 19 Convolutional Conv 18 1
* Dropout as activation function
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5.8 Assumptions

For these experiments it is assumed that a physician has already
performed a physical examination of the patient, and has a solid intuition
of the region in which the cancerous tumor is located. Therefore, most of
the image slices not containing delineations were removed.

The delineations provided by the oncologist are assumed to be correct,
and are therefore used as a ground truth. Furthermore, it is assumed that
the scans of the different imaging modalities has been conducted in more
or less the same time period. Ergo, the cancerous tumor has not changed
significantly in-between the scans and is located in more or less the same
area. The co-registering of the imaging modalities is also assumed to be as
optimal as possible.

It is assumed that the most optimal choices for the network parameters
are independent of the imaging modalities used for the purpose of
autodelineation. In the attempt to conduct a consistent and systematic
investigation, all experiments comparing the modalities were run on the
MRI dataset (see Table 5.3), since not all of the patient in the PET/CT
dataset had image sequences from MR scans.

5.9 Experiments

To find the imaging modality, or the combination of imaging modalities,
which is best suited for the purpose of sentiment image segmentation,
experiments with the following sets given in Table 5.8 of imaging
modalities were conducted.
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Table 5.8: List of imaging modalities used for each experiment conducted in this
project. Explanation of the different channels is provided in Table 4.2.

Channel(s)

1. PET
2. DPCT
3. CT
4. ADC
5. T2W
6. Perf
7. PET,CT
8. PET,DPCT
9. T2W,ADC

10. T2W,ADC,Perf

5.9.1 Effect of regularization and data cleaning

In addition, the effects of image augmentation, Dropout activation and the
removal of image slices were evaluated. This was conducted by running
the highest performing experiment four times, removing each of the steps
one at a time in addition to one experiment excluding all of the steps, as
presented in Table 5.9. Consequently, the direct effects of the steps can be
removed, and how much they impact the resulting Dice performance can
be evaluated.

Table 5.9: List of additional experiments for inspecting the effect of regularization
and data cleaning.

Additional experiments

11. Excluding image augmentation
12. Excluding Dropout activation
13. Excluding data cleaning
14. Excluding all regularization and Dropout
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5.10 Set-up

The data was prepared as described in Section 5.1. All experiments
mentioned in Tables 5.8 and 5.9 were run with the setup provided in Table
5.10.

Table 5.10: Common setup for the experiments for evaluation of imaging
modality for the purpose of autodelineation. The optimizer is presented along
with the chosen learning rate and batch sizes are for the training, validation and
test set respectively.

Optimizer Adam, 0.0001

Loss F1

Batch size [16, 16, 16]

Iterations 5000

Dataset MRI dataset
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Chapter 6

Results

6.1 Model performance

The effects of the imaging modalities on the autodelineation are described
in this chapter. In total, 14 experiments described in Tables 5.8 and 5.9)
were run. All results provided are based on the validation set and all
experiments were run exclusively on the MRI dataset and with the setup
provided in Table 5.10.

6.2 Effect of input channels

The Dice performances and the standard deviations for each experiment
in Table 6.1 is the mean over all image slices in the validation set. These
mean Dice performances range from good (0.6-0.8) to excellent (> 0.8) as
defined by Gudi et al. [8]. All except the poorest performing experiment,
performed better than the calculated baseline performance, of 0.701 (Table
5.6), for this dataset (considering that about 80 % of the slices without
target volume was excluded).

The combination of modalities giving the poorest performing model was
the ’Perf’ ADC map with a Dice performance of 0.676 (Table 6.1), which
is lower than the baseline Dice performance. Second to that is the ’ADC’
ADC map with a Dice performance of 0.748.

75
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Table 6.1: Mean Dice performances with corresponding standard deviation for
experiments run on the validation set, with the setup provided in Table 5.10.
Explanation of the different channels is provided in Table 4.2.

Channel(s) Windowing Dice

PET - 0.867 ± 0.166

DPCT c70 w300 0.795 ± 0.186

CT c32 w220 0.877 ± 0.168

ADC - 0.748 ± 0.207

T2W - 0.861 ± 0.177

Perf - 0.676 ± 0.244

PET,CT c32 w220 0.885 ± 0.164

PET,DPCT c70 w300 0.885 ± 0.176

T2W,ADC - 0.842 ± 0.195

T2W,ADC,Perf - 0.780 ± 0.192

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
pe

rf
or

m
an

ce

PET/CT experiment

train
validation

Figure 6.1: Training and validation curves for the PET/CT experiment for 5000
iterations. The blue line is the training curve, while the green, dashed line is the
validation curve. The x-axis represents the iterations and the y-axis represents
the Dice performance.

The experiment using PET and DPCT as imaging modalities performed
equally well as the experiment with PET and CT when comparing the Dice
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performances and considering three significant figures. Nevertheless, the
standard deviation was somewhat lower when using PET and CT. The
imaging modality combination which gave the best performance for the
purpose of autodelineation was therefore concluded to be PET and CT
(see Table 6.1). The training and validation curves for the PET and CT
experiment is presented in Figure 6.1. Moreover, it should be noted that
the experiments using the modalities PET, CT and T2W individually, also
generated excellent performances (> 0.85 in Dice).

6.2.1 Effect of regularization and data cleaning

The proposed model network and the procedures included were
investigated further. Four additional experiments were conducted
to evaluate the effect of the regularization and data cleaning on
the experiments: one excluding image augmentation, one excluding
Dropout activation, another only excluding data cleaning and lastly,
one experiment excluding all regularization or data cleaning. These
experiments were based on the setup of the PET/CT experiment
(experiment seven in Table 5.8), with modifications as explained in Section
5.9.1.

Table 6.2: Mean Dice performances and corresponding standard deviations per
slice of experiments inspecting the effect of regularization and data cleaning. The
change in percentage is the change in Dice performance relative to the original
PET/CT experiment (first row). When removing the Dropout activation, a ReLU
activation was used as a replacement.

Dice Percentage change

Original PET/CT experiment 0.885 ± 0.164 -

Excluding augmentation 0.747 ± 0.160 - 15.6 %

Excluding Dropout activation 0.874 ± 0.170 - 1.24 %

Excluding data cleaning 0.495 ± 0.440 - 50.3 %

Excluding all regularization and
data cleaning

0.185 ± 0.328 - 79.1 %
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Data cleaning refers to the removal of 80 % of the image slices without
a oncologist’ delineation, as described in section 5.2.2. The mean Dice
performances per slice, with the corresponding standard deviations for
these experiments are presented in Table 6.2. In addition, the change
in Dice coefficient, relative to the original PET/CT experiment is also
presented.

Table 6.2 shows that excluding data cleaning had the largest impact,
causing a decrease in Dice performance of 50.3 %. Yet, the achieved
Dice performance was above the baseline performance, of 0.324, for this
dataset. Furthermore, excluding the Dropout activation decreased the
Dice performance the least, by only a percentage change of 1.24 %.

Training and validation curves
By inspecting the training and validation curves in Figure 6.2, one can
observe that the distance between the training and validation curves
increased when the data augmentation was excluded. Hence, data
augmentation decreased overfitting for this network.

However, the last experiment in Table 6.2, excluding data cleaning and
any of the proposed regularization techniques, gave the largest decrease
(79.1 %) in Dice performance. The Dice performance for this experiment
is 0.139 below the baseline Dice performance of 0.324, for the MRI dataset
with all slices included. The standard deviation of the experiment was
larger than the Dice performance, which might indicate that the model is
not learning any patterns sufficiently.

In addition, the training and validation curves for the experiment
excluding all regularization and data cleaning in Figure 6.2, shows that
the model performed poorly on the validation set and was more overfitted
compared to the experiment where only data cleaning was excluded.

The training and validation curves for the experiment excluding data
cleaning (bottom left in Figure 6.2) revealed that the model network
appears to have difficulty in identifying relevant patterns in the images.
Also here, the standard deviation for the experiment was large relative to
the corresponding Dice performance.
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train validation

Figure 6.2: Training and validation curves for experiments excluding image
augmentation, Dropout activation, data cleaning and all regularization and data
cleaning, on the PET/CT runs (experiment seven in Table 5.8). The blue lines are
the training curves, while the green, dashed lines are the validation curves. The
x-axis represents the iterations and the y-axis represents the Dice performance.

6.2.2 Effect of an increased dataset

The PET/CT experiment (experiment seven in Table 5.8) could also be
conducted with the PET/CT dataset (presented in Table 5.3). This opened
up the possibility of inspecting the effect of an increased dataset as well.
Table 6.3 provides the Dice performances for two versions of the PET/CT
experiment: the original PET/CT experiment on the MRI dataset and the
PET/CT experiment on the PET/CT dataset.
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Table 6.3: Mean Dice performances and corresponding standard deviations per
slice of experiments to examine the effect of an increased dataset. The change
in percentage is the change in Dice performance relative to the original PET/CT
experiment run on the MRI dataset (first row). The second row is the PET/CT
experiment conducted on the dataset run on the PET/CT dataset. The datasets
are presented in Table 5.3.

Dataset Dice Percentage change

MRI 0.885 ± 0.164 -

PET/CT 0.854 ± 0.169 - 3.50 %

In addition, the PET/CT experiment without any regularization or
data cleaning was conducted on the PET/CT dataset. This resulted
in a Dice performance of 0.664, which was 72.1 % larger than the
corresponding model performance obtained using the MRI dataset
without any regularization or data cleaning as presented in Table 6.4.

Table 6.4: Mean Dice performances and corresponding standard deviations per
slice of experiments to examine the effect of an increased dataset. The change in
percentage is the change in Dice performance relative to the PET/CT experiment
excluding all regularization and data cleaning (run on the MRI dataset). The
second row is the PET/CT experiment excluding all regularization and data
cleaning on the dataset run on the PET/CT dataset. The datasets are presented in
Table 5.3.

Dataset Dice Percentage change

MRI 0.185 ± 0.328 -

PET/CT 0.664 ± 0.378 + 72.1 %

6.3 Inspection of the predicted delineations

The Dice performances provided in Table 6.1 were based on the mean Dice
performance per slice across the validation set. It is, however, useful to
inspect how the model performs on each image slice in order to obtain a
better understanding of how the model delineates the tumor relative to the
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oncologist’ target volume. The following section will therefore present the
resulting output images obtained using the PET/CT model (experiment
seven in Table 5.8) on the validation and test set.

6.3.1 The validation set

Figure 6.3 present in sum 12 image slices from three different patients.
The image slices presented are chosen from a set of 69 image slices, and
are aimed to be as representative of the total validation set as possible.
The base images are fused PET and CT images, where the PET signal is
presented using colormap ’hot’, ranging from black (no radiotracer signal)
to yellow (maximum radiotracer signal). The target volume delineations
provided by the oncologists are presented in green and the predicted
delineations are marked in blue.

In most cases, the predicted delineation seem to match the provided target
volume, resulting in a high Dice performance. Some examples are (’M007’,
slice 21) and (’M098’, slice 27). However, the model fails on the image
slice from patient ’M007’, slice 3 (upper left in Figure 6.3), which has
no oncologist’ target volume delineation. Note that the model did not
delineate the lymph node lightning up at the top in (’M007’, slice 31).

It should be noted that all of the automatic delineations proposed for the
validation set always include the region of the anal canal, and are more
or less in the center of the image. However, the delineations do not
resemble the baseline GTV, but rather seem to be customized according
to the patient.

Table 6.5: Mean Dice performances and corresponding standard deviations per
patient of the PET/CT experiment (run on the MRI dataset, Table 5.3) in the
validation set.

Patients Dice

’M007’ 0.922 ± 0.236

’M064’ 0.862 ± 0.111

’M066’ 0.916 ± 0.044

’M098’ 0.933 ± 0.065
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Figure 6.3: 12 fused PET/CT image slices as a result of the PET/CT experiment
(run on the MRI dataset) on the validation set. The PET signal is presented
using colormap ’hot’, ranging from black (no radiotracer signal) to yellow
(maximum radiotracer signal). The images are grouped based on the patient
ID. The slice number is provided in the lower left corner of each image and the
Dice performance is shown in the lower right corner. The blue lines represent
the predicted autodelineations, while the green lines are the oncologists target
volume delineations.
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6.3.2 The test set

How the model performs on the validation set can be a good indicator of
how well the model is trained. However, a more realistic evaluation of the
model is the performance on an unseen, test set.

When running the PET/CT experiment on the test set, the Dice
performance was 0.863 ± 0.133, which is slightly lower than the
performance obtained on the validation set (presented in Table 6.1).

Figure 6.4 provide 12 image slices from three different patients. The image
slices presented are chosen from a set of 99 image slices, and are aimed to
be as representative of the total test set as possible. The base images are
fused PET and CT images, where the target volume delineations provided
by the oncologists are presented in green and the predicted delineations
are marked in blue.

Also here, the predicted delineation seem to match the provided target
volume in most cases, resulting in high Dice performances. However,
the model fails on slice 37 for patient ’M055’ (bottom right in Figure 6.4)
which has no oncologist’ target volume delineation, in similarity to image
slice 3 from patient ’M007’ (in Figure 6.3). Slice 14, for patient ’M026’ is
also an example where the model delineated a smaller area without any
significant PET signal, or any sign of tumor tissue from the CT image (see
in the upper, middle image of Figure 6.4).

Moreover, observing the autodelineations in Figure 6.4 (see ’M026’, slice
29, ’M055’, slice 28, 34, 37 and ’M068’, slice 24,28, 30), it is apparent that
the network model did not get confused by the strong PET signal from the
bladder.

Table 6.6: Mean Dice performances and corresponding standard deviations per
patient of the PET/CT experiment (run on the MRI dataset, Table 5.3) in the test
set.

Patients Dice

’M026’ 0.832 ± 0.125

’M045’ 0.896 ± 0.049

’M055’ 0.887 ± 0.176

’M064’ 0.856 ± 0.128

’M068’ 0.886 ± 0.127
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Figure 6.4: 12 fused PET/CT image slices as a result of the PET/CT experiment
on the test set. The PET signal is presented using colormap ’hot’, ranging from
black (no radiotracer signal) to yellow (maximum radiotracer signal). The images
are grouped based on the patient ID. The slice number is provided in the lower
left corner of each image and the Dice performance is shown in the lower right
corner. The blue lines represent the predicted autodelineations, while the green
lines are the oncologists target volume delineations.



Chapter 7

Discussion

7.1 The aim of this Master’s thesis

The MSc of Moe [18] explored the U-Net architecture for tumor
segmentation and performed a vast parameter sweep of the proposed
architecture on PET/CT images of head and neck cancers. Moe also used
his framework to explore the benefit of combining PET and CT images for
the purpose of autodelineation of tumors [18].

This thesis is a part of the ANCARAD study with a dataset consisting of
PET, CT and MRI images of 85 AC patients. The aim of this thesis was
to compare the Dice performance for sentiment image segmentation of
PET, CT and MRI images. Furthermore, an inspection of which imaging
modalities, or combination of imaging modalities, may be best suited
for autodelineation of tumors in image sequences from AC patients was
conducted. To evaluate the autodelineation performances, the overlap
based metric Dice was used. The U-Net architecture proposed by Moe
[18] was used with modifications and additional techniques, such as image
augmentation and data cleaning, to increase the Dice performance of the
network. Moreover, the effects of some of the additional techniques on the
model performance was investigated.

7.2 Baseline performances

The baseline Dice performance for autodelineation of the ANCARAD
dataset, excluding image slices without an oncologist’ target volume

85
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delineation, was 70.1 %. Hence, if one were to disregard the deep learning
architecture provided in this thesis and only rely on the mean target
volume mask based on the delineations made by the oncologists, one
should expect a Dice performance of 70.1%. This is a high benchmark to
beat, but indicates that the tumor tissues in this dataset are located in more
or less the same region in the images, as can be seen in Figure 5.7. It is most
likely that this is an effect of the co-registering of the image sequences.

7.3 Model predicted delineations

The Dice performances in Table 6.1 show excellent performances for
most of the imaging modalities, but using PET and CT images as model
input showed the highest Dice performance with the least standard
deviation. However, all of the experiments run for comparing the imaging
modalities showed good results. Thus, while concluding that the PET/CT
experiment achieved the highest performance, further investigations
should be conducted for the comparison of the imaging modalities.

Moreover, the resulting Dice coefficients are initial results based on only
one run for each modality or a combination of imaging modalities. Ideally,
each experiment should be run several times in order to get a better
estimation of the expected Dice performance. This is especially made
apparent by the equal Dice performances of PET/CT and PET/DPCT
experiments. One might have expected the PET/DPCT to perform better
than the PET/CT since the oncologist’ delineation was made based on the
DPCT. Nonetheless, the PET/CT are expected to be better aligned since
these image sequences were generated during a single examination (see
Section 2.3).

Validation and test performances
The Dice coefficient of the test set was slightly lower than the performance
on the validation test. When the network is trained on a validation set,
the model is not expected to perform better on a new, unseen dataset. As
observed in Figure 6.2, the distance between the training an validation
curves are relatively small which implies that the model is not overfitted
either.

Tables 6.5 and 6.6 suggest that the model network performed better
per patient on the validation set than on the test set. Using the
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Dice performance per patient would give more importance to the total
delineation per patient rather than the smaller tumor regions missed
by the network per slice. This approach for evaluating the Dice
performance of the model is similar to what is used in most medical
studies exploring the interobserver variability [8], [9]. It is therefore
recommended that any further research of the Dice performance of the
network for the ANCARAD project should also inspect the experiment’s
Dice performance per patient.

Related work
In the study of Guda et al. [8], the Dice performance between the
delineations of head and neck made by three different radio oncologists
with 10 years of experience was 0.69. To localize cancerous tumors in the
head and neck region is, to the author’s knowledge, more challenging for
the CNN model compared to AC tumors, since there are several options
to where the tumor can be located [60]. Therefore, it would not be fair to
compare the Dice performance between the radio oncologists in the study
of Guda et al. [8] nor the Dice performances achieved by Moe in his MSc
[18] to the performances obtained in this thesis.

However, Rusten et al. [9] conducted a study on the ANCARAD dataset,
evaluating the interobserver variability of the delineations between three
different oncologists, on PET and MRI. The obtained Dice coefficients of
0.80 and 0.74 for PET and MRI, respectively, showed a high degree of
overlap between the observers [9]. Furthermore, the choice of modality
seemed to have the largest variability.

The oncologists Dice performance of 0.80 for PET is comparable to the
0.867± 0.166 in Table 6.1 for autodelineation based on PET only. Moreover,
the model surpassed the overlap coefficient when regarding MRI, where
the model Dice coefficient for T2W was 0.861 ± 0.177 for T2W only as
input, and 0.780 ± 0.192 (as shown in Table 6.1) when using T2W and the
ADC maps ’ADC’ and ’Perf’ as input.

This demonstrates that the proposed model agreed well with the
oncologists providing the target volume delineations. Thus, the
autodelineations of the proposed model for AC patients, could be
comparable to delineations provided by a radio oncologist. Nonetheless,
it should be noted that the high Dice coefficient was obtained after
excluding 80 % of the slices without anal cancer tissue. The PET/CT
experiment on the PET/CT dataset without data cleaning gave a Dice
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coefficient of 0.664 ± 0.378, which is inferior to the overlap between the
radio oncologists in [9].

Image slices without an oncologist’ target volume
There are at least two possibilities for correcting the error of making
autodelineations on image slices without an oncologist’ target volume:
to penalize such mistakes during the training phase and increasing the
number of image slices without an oncologist’ target volume.

By increasing the weighting of the Precision for the F-score (as explained
in Section 3.2.2), the rate of true positives to the total number of positives
gains a higher importance. Using this as loss function rather than the Dice
might make the model less prone to false positive mistakes, and thereby
penalize the false autodelineations more.

In addition, the model needs to see a sufficiently amount of image slices
without an oncologist’ target volume in order to learn and recognize the
patterns in the dataset. A substantially larger dataset would therefore
be of great aid for avoiding false delineations on image slices without an
oncologist’ target volume.

7.3.1 Autodelineations

A pitfall in making an autodelineation program based on deep learning
for this dataset is that it might learn the most ”reasonable” location of the
cancerous tumors for patients with AC. Inspecting the best performing
model further yields an indication that the model has learned the location
of the anal canal in addition to recogning cancerous tumor tissue to some
extent. However, the model network fails at image slices without any
oncologist’ target volume, where it delineates a area not specified as
cancerous.

Nevertheless, locating the anal canal might not be a poor assumption
in this case. AC is cancerous tumors located within 4-5 cm from the
anal opening [1]. Assuming that the physician has already conducted a
physical examination of the patient, and is certain that the patient has anal
cancer, the medical imaging can be utilized to localize the tumor for the
radio and/or chemotherapy. In that case, localizing the anal canal itself
and further adjusting the delineation for irregularities could be sufficient.
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If, however, it is of interest to evaluate whether or not the patient has
anal cancer, the proposed autodelineation program might not be optimal.
Given the provided dataset, the network is not trained to distinguish
between a healthy anal canal and an anal canal with cancerous tumor.
In order to make sure that the network is not just learning the exact
location of the anal canal, future research regarding autodelineation of AC
tumors should include image data of the anorectal region from subjects
without AC. In this way, one can be more certain that the network is
learning to differentiate between a healthy anal canal and an anal canal
with cancerous tumor. In that case, there should ideally be an equal
amount of AC patients and patients without AC included in the dataset.

7.4 Effect of regularization and cleaning data

In order to regularize the model and increase the invariance in the
dataset some procedures were added to the proposed model architecture
provided by Moe [18]. These included data cleaning, a Dropout activation
and image augmentation.

7.4.1 Cleaning data

The results show that removal of image slices not containing any GTV
delineations had the biggest impact on the resulting Dice performance.
Data cleaning was also demonstrated to be of importance in a study by
Sun et al. [53] on the effectiveness of data in Deep learning.

In the training curves for the experiment excluding data cleaning in Figure
6.2, there was no increasing tendency in the Dice performance. Yet, the
validation curve had a slightly increasing tendency. This may indicate that
the network would need more than 5000 iterations to be able to recognize
image slices that do not have any oncologist’ delineation. This should be
inspected further by running the experiment excluding data cleaning for
an increased number of interations.
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7.4.2 Dropout activation

Adding a Dropout activation in the eighth convolutional layer had the
least impact of the added procedures, with only 1.24 % change relative
to the original PET/CT model experiment (as shown in Table 6.2).
Dropout is first and foremost a regularization technique [38]. Moreover,
when inspecting the performance of the training and validation set, for
experiments with and without Dropout (Figures 6.1 and 6.2), one may
observe that there is no significant change in the performance curves.
Consequently, one may state that Dropout activation is redundant for this
network. However, a further inspection of the effect of Dropout should be
conducted by tuning the keep probability (as explained in Section 3.1.4),
using Dropout in additional layers or by relocating the Dropout activation
to other layers towards the end of the contraction path in the U-Net as
recommended by Ronneberger et al. [16].

7.4.3 Image augmentation

Image augmentation (see Section 3.3.4) was added in order to increase the
amount of training data by including new variants of the already-existing
data. Medical image data is known to already have large variation,
since all patients are unique and consequently no two medical images
of patients are alike. However, adding additional variants may increase
the probability for the network to be familiar with new, unseen
samples. Therefore, two different image augmentation techniques were
implemented: elastic deformation and horizontal flip.

The elastic deformation applied in these experiments was not excessive, as
proposed by Ronneberger et al. [16]. The deformed images only became
slightly different versions of the original images. Yet, the effect of image
augmentation on the Dice performance was 15.6 %. The reason for the
very mild elastic deformation was to maintain the circular characteristics
of the oncologist’ tumor delineation. In addition, the images were
aimed to look more or less like real patient data. For further research
on autodelineation of the ANCARAD dataset, a more excessive elastic
deformation should be conducted.

The oncologist’ target volumes were often located in the center of the
image. Therefore, flipping the images horizontally did not provide
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the model with sufficient variations of the delineated area (as may be
indicated by observing Figure 3.8). The effect of flipping the images
alone was not inspected, and this should be explored further in any future
experiment including flipping as an image augmentation technique.
Neural augmentation
The augmented images were used to double the training set, as proposed
by Wang and Perez [45] and Simard et al. [46]. Wang and Perez [45]
also used a different set-up for the augmentation, by including the image
augmentation within the loop of the neural net, opening the opportunity
for the network to learn the augmentations which best decrease the
classification loss [45]. This technique, named ’neural augmentation’,
should be explored further to boost the model performance, and utilize
the image augmentations even further.

7.4.4 Effect of an increased dataset

Sun et al. [53] demonstrated that the performance of their Deep Learning
model grew logarithmically as training data increased. The PET/CT
dataset increased the Dice performance for the PET/CT experiment
excluding all regularization and data cleaning substantially, as shown in
Table 6.4. However, inspecting the results in Table 6.3 yields that the
PET/CT experiment using the PET/CT dataset, performed inferior to the
PET/CT experiment using the MRI dataset even though the MRI dataset
had fewer image slices and patients as shown in Table 5.3. Consequently,
this might indicate that the autodelineations had reached a peak mean
Dice performance per slice relative to the oncologists target volumes for
this dataset.

7.5 Experiments

For inspecting the best combination of imaging modalities for the
purpose of automatic delineation 63 different experiments could be
conducted based on the possible different combinations of the modalities.
The experiments chosen for this thesis took in to consideration that
not all patients had MRI scans. It is common practice to limit the
number of examinations of the patient only to what is considered
necessary. Combining a T2W image and a PET image could give a
better autodelineation, but would require that both a MRI and a PET
examination is performed on the patient.
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7.6 Deep Learning in Radiology

Time consumption
Running Convolutional Neural Networks for the purpose of classifying
images are tasks that require a large amount of processing power. Each
image slice in the dataset contains 55 696 (236 x 236) voxels, or 55 696
variables, which need to be analyzed and evaluated. The sentiment
image segmentation is therefore a time consuming task, depending on
the available processing power and is probably the main limitation of the
proposed model.

The time consumed in this project ranged between two to four hours per
experiment (including model training and prediction), depending on the
experiment set-up and the dataset used. For the PET/CT experiment with
36 patient, the time consumed for running the pretrained model on a
single, arbitrary patient from the validation set, was approximately one
minute. In comparison, Rusten et al. [9] reported that the oncologists
completed the delineation of the tumors in 20 minutes on average per
patient. Ergo, the autodelineation could potentially save at least 15
minutes of work per patient for the oncologists, assuming that the
oncologists would still use 5 minutes per patient to re-evaluate the
proposed autodelineations.

Time consumption in co-registering
However, the time consumed for co-registering the imaging modalities
should also be taken into consideration. The time consumed while
co-registering was not measured, and one can therefore not make any
accurate assumptions on how much time the co-registering would be per
patient.

Nonetheless, the PET/CT experiment used the PET and CT images as
input, and the co-registering of these modalities may be redundant since
they are generated during a single examination. Table 6.1 presented that
the experiments using the PET, CT and T2W individually, also generated
excellent Dice performances (> 0.85). Using a single modality as input
to the model could decrease the practicality of the co-registering, and
may be redundant in such cases as well. Yet, experiments without, or
with minimal, co-registering should be considered explored for any future
research regarding the proposed autodelineation model. Additionally,
measurement of the time consumed for the co-registering per patient
would be useful.
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Challenges regarding the use of AI
Another common challenge regarding deep learning algorithms is
overfitting. Generally, the neural networks are prone to overfit the training
data and perform poorly on unseen data [38]. However, by inspecting
Figure 6.1, the model network proposed in this thesis did not seem to
overfit significantly.

Other issues one should take into consideration is the credibility of
the proposed autodelineations. In most cases, it is difficult to explain
the basis of the delineations provided. Moreover, legal aspects of
using medical data and deciding who has the responsibility of the
proposed autodelineations should be discussed. The ’Ethics guidelines for
trustworthy AI” [17], requires that proper oversight needs to be ensured
while developing an AI system by, for instance, a human-in-command
approach. For autodelineation of tumors, such an approach could
mean that a radio oncologist uses the autodelineation as a guideline for
delineations, and is responsible for the final delineation made.

Lastly, there is the question of privacy and security of medical data.
Using AI on sensitive, personal data could be risky as it may violate the
health data law [61]. However, using the medical data for the purpose
of research, as in the ANCARAD study, the medical data can be utilized
to generate a network model. Once the model is saved, the data used
to generate the network model is redundant for any future use of the
model. As a result, the model can be utilized to run predictions on new,
unseen patients independent of sensitive medical data. Yet, database
reconstruction attacks (DRAs), as explained in [62] should be explored.

7.7 Limitations of the dataset

7.7.1 The dataset

Size of the dataset
The provided data for the ANCARAD study of 85 patients with PET
and CT scans and 36 patients with MRI scans could potentially limit the
performance of the proposed autodelineation program. Insufficient data is
a common challenge in the medical industry due to privacy concerns [45].
The main problem is often that the model does not generalize well after
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training, and therefore might perform poorly on new, unseen data [45]. An
attempt to avoid biased results was conducted by doubling the training
data with augmented data. This increased the Dice performance. Yet, how
well the augmented data can represent realistic subjects and increase the
generalization of the model is not definite.

A larger dataset can potentially provide results that are more realistic. This
will, however, demand more computational power (hardware) and the
computation time will increase depending on the size of the data and the
available processing power. There is no definite answer to what amount
of data is significant, but generally one can state that more data, or a
larger dataset, will result in a more robust and less biased performance
for a deep learning algorithm [38]. As demonstrated by Sun et al. [53],
the performance of the model could increase logarithmically with an
increased pre-training dataset.

When inspecting the effect of an increased dataset, by running the original
PET/CT experiment on the PET/CT dataset as opposed to the MRI
dataset, the Dice performance did not increase considerably. This indicates
that the model may have reached a limit for how well the autodelineations
can be made compared to the oncologists target volume delineation.

7.7.2 The target delineation volumes

The autodelineation can only be as good as the target volumes provided by
the oncologist. When evaluating the performance of the proposed model,
it was assumed that the oncologist’ delineations provided the ground
truth. However, there are examples where the target volume excludes
tissue which appears to be cancerous tissue.

Figure 7.1 is an example of a delineation that may confuse the algorithm,
as the delineated area does not entirely match the PET signal (Figure
7.1 b)). In addition, it may be challenging to distinguish the tissue
surrounding the target volume from the tissue withing the target volume
in the CT image (Figure 7.1 a)).
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a) b) c)

Figure 7.1: Illustration of an oncologist’ target volume that may confuse the
autodelineation model. The target volume is presented in a) CT, b) PET and c)
fused PET/CT image, of patient ’M124’, slice 18.

The reasoning behind the target volume delineations is not always
apparent for the model, since the oncologist might have additional
information about the patient, such as information from physical
examinations. Oncologists have access to clinical information, including
findings from previous examinations [8]. These parameters are not
available for the network, which limits its predicting potential and may
confuse the network during the training phase.

It was assumed that the cancerous tumor did not change significantly
in-between the scans and was located in more or less the same area.
However, the anorectal region consists of soft tissues and despite the
co-registering there will be motion artifacts in between the imaging
modalities since the medical scans are never generated at the exact same
time. Consequently, even the delineations made by the oncologists, which
are assumed to be the ground truth, will not match the voxel tissues
sufficiently for all the imaging modalities.

Precise delineation of target volumes are considered the weakest link
and the largest source of uncertainty in radiotherapy planning [8],
[10]. Additionally, as presented in Section 2.5, inter- and intra-observer
variability of the delineations are likely to be present [7].

Still, the variability might make the algorithm more robust as a result
of increased diversity in the dataset [38] and the algorithm can learn
more of the different possibilities for making delineations. However, this
requires a substantially increased dataset in order to give the network an
opportunity to learn the numerous deviations of the delineations.
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Multiple ground truths
Another approach is to provide multiple ground truth delineations to
the model, thereby increasing the variability of each contouring. Javaid
et al. [63] explored this by having additional, augmented ground
truth delineations during the training phase, and thereby increased the
robustness of their dilated U-Net model for automatic delineation of
multi-organ segmentation in CT images. This approach could be explored
further on the ANCARAD dataset to see if the network performance could
be be increased further.

7.7.3 Artifacts

Co-registering is mainly based on the bone structures available in the
image, which in this case is the hip bones [55]. This is, to the author’s
knowledge, our best estimate.

Nonetheless, shape and location of the soft tissues can vary substantially
since the patient cannot lie in the exact same manner from one
examination to another. This effect is reduced through the co-registering
[55], but is challenging, if not impossible, to eliminate completely.
Consequently, a high intervariability is more likely to be present between
image sequences generated by two different imaging modalities, as
demonstrated by Rusten et al. [9].

Moreover, the GTV is often not properly aligned for all modalities, which
makes it difficult for the model to learn the characteristics of tumour
tissue. This might also be the case in Figure 7.1.

ADC maps
Two ADC maps, named ’ADC’ and ’Perf’, were created in order to capture
both slow moving and fast moving water nuclei present in the tumor
tissue of interest (see Section 2.4). The images generated as ’Perf’ ADC
maps, were often unclear and hard to interpret. This may explain the
lower Dice performance of ’Perf’ in Table 6.1 compared to the other
experiments.

Ideally, the ADC maps should be customized for each MRI scan.
But, aiming for a more consistent co-registration with as little manual
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modifications as possible [55], it was decided to base the ADC maps of all
the patients on the same b-values. If the ADC maps had been customized,
the images generated might have contained other or more information,
and thus the network could potentially have performed better for this
particular imaging modality.

7.8 Suggestion for future improvements

7.8.1 Tuning hyperparameters

First of all, the hyperparameters used in this project were mainly based
on the conclusions reached in Moe’s MSc thesis [18]. However, the
windowing did not match precisely, and the remaining hyperparameters
should also be examined further to see if the Dice performance of
the model can be improved. Conceivably, each experiment has its
own uniquely combination of hyperparameters which optimizes the
performance for that particular modality or combination of modalities.

Therefore, any further research on autodelineation of the ANCARAD
dataset should work with tuning hyperparameters. The choice of loss
function, activation function and batch sizes according to each experiment
should be reconsidered for a more fair and adequate comparison of the
experiments.

SGDR+momentum
Moe recommended in his MSc thesis [18], that future tumor delineation
experiments should use the SGDR+momentum as optimizer for the
autodelineation model. This optimizer was, however, not used in
the experiments conducted for this thesis. Based on the findings of
Moe [18], the author would recommend using a SGDR+momentum
optimizer for any future automatic tumor delineation experiments, since
the SGDR+momentum theoretical advantages over Adam [64].

7.8.2 Lymph nodes

The lymph node structures were included in the dataset during the
co-registering to open up for the opportunity of reducing the occurrence
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of false positives as they light up in the PET image sequences. Yet, the
structures were not used since the autodelineation model did not get
confused by the high PET signals, as observed for patient ’M007’, slice
31 in Figure 6.3.

7.8.3 Two-phase classification

As presented in Section 4.1.2, only about 50 % of the slices had an
oncologist’ target volume. In addition to the reported effect of the data
cleaning in Section 6.2, the high performances are likely due to the
exclusion of image slices without an oncologist’ target volume delineation.
However, in a real life scenario one might not be certain whether the slice
actually contains cancerous tumors or not, and it is likely that most of the
slices presented to the network do not contain cancerous tumors.

As a suggestion for further improvements, one could introduce a
two-phase learning network, where the model first can state whether or
not the image slice contains an area where anal cancer could potentially
be present and in a second phase make delineations on the image slices
labelled as high probability of containing cancerous tumors. This would
mean that a medical image of the stomach or the thighs would be opted
out before the second phase, where the tumor autodelineation would take
place.

For this approach, one would need significantly more patient data,
including patients without anal cancer. This would also increase the
computation time, since the network might have to process each image
twice. Another shortcoming is if the performance of the first phase is poor.
This would result in many false negatives, since the model network could
end up autodelineating image slices without an oncologist’ target volume
delineation.

A similar approach was explored by Kim et al. [65], where they
used two-phase learning to boost the performance of their semantic
segmentation model. This resulted in an effective enhancement of object
localization on a challenging dataset.
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Conclusion

The U-Net autodelineation architecture proposed in the MSc thesis by
Yngve Mardal Moe [18] has been explored and a modified version
was used to delineate cancerous tumors of patients with anal cancer
included in the ANCARAD dataset. In this thesis, the autodelineation
was conducted on images generated from the medical imaging modalities
PET, CT and MRI. Furthermore, the autodelineation of the images from
these modalities, and combinations of some of the modalities, were
compared, to evaluate which imaging modality provided the highest
Dice performance relative to the corresponding target volume delineations
provided by the radio oncologists. Moreover, the effects of regularization,
such as image augmentation and Dropout activation, and data cleaning
on the Dice performance of the model were explored.

The experiments showed an overall good potential for autodelineating
medical images of the anorectal region of AC patients. The Dice
performance for the experiments exploring the different modalities, all
exceeded the calculated baseline Dice performance for the ANCARAD
dataset, which was 0.701. In addition, the experiments’ Dice performance
were comparable to the inter observer Dice coefficients obtained in
the study of Rusten et al. [9]. The experiment using PET and CT
was concluded to show the highest performance for the purpose of
autodelineation, with a Dice coefficient of 0.885 ± 0.164. However, the
model did not seem to be able to evaluate image slices where there was
no oncologist target volume. In this case, the performance decreased by
50.3 %. All of the autodelineations generated by the model were located
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in the region of the anal canal and did not seem to get distracted by the
high PET signals from the bladder and lymph nodes.

In conclusion, autodelineating cancerous tumors of AC patients using a
deep learning approach shows excellent results and should be explored
further. For future development and research the dataset should include
more image data of the anorectal region of patients that are AC free, to
train the model to distinguishing between a healthy anal canal tissue from
cancerous tumor tissue.
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Appendix A

Patient numbers

Table A.1: Conversion from patient number to the patient ID.

-

Patient number Patient ID
1 ’M003’
2 ’M007’
3 ’M009’
4 ’M012’
5 ’M015’
6 ’M018’
7 ’M020’
8 ’M023’
9 ’M026’

10 ’M027’
11 ’M030’
12 ’M031’
13 ’M033’
14 ’M038’
15 ’M044’
16 ’M045’
17 ’M047’
18 ’M049’
19 ’M052’
20 ’M053’
21 ’M055’
22 ’M061’
23 ’M064’
24 ’M066’
25 ’M067’
26 ’M068’
27 ’M070’
28 ’M074’

Patient number Patient ID
29 ’M087’
30 ’M089’
31 ’M096’
32 ’M098’
33 ’M100’
34 ’M101’
35 ’M105’
36 ’M110’
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