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Abstract

Biological processes, such as the electrical activity in neurons, are often modelled using

complex, non-linear and high dimensional differential systems. Such models are usually

associated with a high computational cost. Statistical tools are often needed in order to

get a comprehensive overview of the behaviour of such systems. Using statistical emu-

lators (metamodels) have been shown useful for providing insight into model behaviour,

as well as reducing the computational demand. In this thesis, the two metamodelling

techniques, Hierarchical Cluster-based Partial Least Squares Regression (HCPLSR) and

deep learning were explored and compared. This was done by metamodelling the simpler

Hodgkin-Huxley model and the more complex Pinsky-Rinzel model. The input parame-

ters were varied in an Latin Hypercube Sampling (LHS) design, and the somatic mem-

brane potentials were generated using the single neuron activity models. Further, the

metamodelling techniques were used to find input-output and output-input relationships

in the two models. The results indicate that deep learning metamodelling is a more ef-

ficient emulator of complex non-linear models, while the HCPLSR metamodelling allows

for a more detailed interpretation of the model behaviour. These findings emphasize the

need for using subspace analysis in order to accurately describe complex models with a

wide range of behaviours, suggesting that subspace analysis in combination with deep

learning emulation can further improve the understanding of model behaviour.
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Sammendrag

Biologiske prosesser, som for eksempel den elektriske aktiviteten i nevroner, blir ofte mod-

ellert ved bruk av komplekse, ulineære og høydimensjonale differensialligninger. Slike

modeller er ofte forbundet med et høyt krav til beregningskraft. For å f̊a oversikt over

oppførselen til modeller med høy kompleksitet er det derfor ofte nødvendig å bruke statis-

tiske verktøy. Statistiske emulatorer (metamodeller) har vist seg å kunne redusere kravet

til beregningskraft, samt å gi innblikk i adferden til uoversiktlige, adrubt ulineære mod-

eller. I denne oppgaven er to metamodelleringsteknikker utforsket og sammenlignet:

Hierarchical Cluster-based Partial Least Squares Regression (HCPLSR) og dyp læring.

Dette er gjort ved å metamodellere den mindre komplekse Hodgkin-Huxley-modellen og

den mer komplekse Pinsky-Rinzel-modellen. Inngangsvariablene er variert gjennom LHS-

variabeldesign og somatiske spenninger er simulert ved bruk av de to nevnte nevronmod-

ellene. Videre er metamodelleringsteknikkene brukt for å finne sammenhenger mellom

inngang- og utgangsvariablene. Resultatene indikerer at dyp læring er en effektiv em-

ulator for komplekse ikke-lineære modeller, men HCPLSR-metamodelleringen tilbyr en

mer detaljert tolkning av modellenes oppførsel. Funnene i denne oppgaven understreker

behovet for å analysere individuelle underrom i parameterrommet for å nøyaktig kunne

tolke oppførselen til komplekse modeller med varierende, ulineær adferd. Funnene tyder

p̊a at en kombinasjon av dyp læring og underromsanalyse vil kunne forbedre v̊ar forst̊aelse

av komplekse modellers oppførsel ytterligere.
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1. INTRODUCTION

1 Introduction

Mathematicians and physicists have for a long time tried to explain biological behaviour

using mathematical models. In order to model biological processes, one usually has to use

complex, non-linear and high dimensional differential equation systems. This is especially

true in the field of computational neuroscience. The human brain is composed of roughly

100 billion neurons with 100 trillion axonal connections between them (Squire, 2008).

The electrical activity of each neuron is determined by a wide range of different ion

concentrations, ion gates, and neuronal morphology, among other factors. This leads to

a large number of parameters needed to model these behaviours (Sterratt et al., 2011).

The large complexity of these models leads to a high computational cost (Tøndel et al.,

2014), especially when short time steps are needed in order to get accurate predictions.

It is also very challenging to obtain a comprehensive overview of the behaviour of such a

model across the high-dimensional input parameter space (Tøndel et al., 2012).

Most of the existing techniques for sensitivity analysis and parameter estimation are

only suitable for relatively low dimensional outputs and typically focus on one output

variable at the time (Saltelli et al., 2008). Statistical methods have gained acceptance

as a method for analysis of complex models. Statistical emulations of dynamic models

(metamodels), have shown the ability to reduce the computational cost and may serve as

a basis for sensitivity analysis. (Tøndel et al., 2012).

The Partial Least Squares Regression (PLSR) extension Hierarchical Cluster-based

Partial Least Squares Regression (HCPLSR) (Tøndel et al., 2013) has been shown to be

an especially useful tool for multivariate metamodelling of dynamic models, which often

generate spatiotemporal data. It can also be used to improve the analytical insight into

the model behaviour by identification of subsets of the data with different behaviours

(Tøndel et al., 2013). Metamodelling with neural networks has also been shown to be

a robust emulator with high accuracy and a significant computational speedup (Fonseca

1



1. INTRODUCTION

et al., 2003), but one of the challenges with neural networks is getting insight into how the

neural network predicts in order to interpret the model. The latter is due to that neural

networks are built up of a large number of nonlinear functions connected by weights that

are adjusted to fit the data at hand, but the combination of functions does not necessarily

reveal the underlying patterns behind the input-output relationships that they predict.

In this project, we apply HCPLSR and deep learning in metamodelling of membrane

potentials generated by two single neuron models; the Hodgkin-Huxley model(Hodgkin

and Huxley, 1952), and the more complex Pinsky-Rinzel model(Pinsky and Rinzel, 2001).

The goal is to investigate how accurately these metamodelling methods can emulate the

models, and what insight the methods can give into their behaviour.

2



2. THEORY

2 Theory

2.1 Metamodelling

A metamodel (also referred to as a surrogate model or an emulation model) is a model of a

model. The metamodel substitutes a more complex mathematical model, where the latter

is often characterized by a high computational cost and high complexity. The metamodel

is calibrated from input-output data from simulations with the original model. The

simulations are designed by varying the input parameters of the model in an experimental

design or a sampling. The goal of metamodelling is to create a replacement model that

is as accurate as possible. They are often used for visualization, sensitivity analysis and

exploring the parameter space and output space (Gorissen et al., 2009). It also has

the potential to discover ”hidden” patterns of co-variation in the model (Martens et al.,

2013). Metamodelling has been used in a wide variety of fields, including biology and

physiology (Tøndel et al., 2012), finance(Yu et al., 2009) and risk assessment (Lai et al.,

2006). Metamodelling can be divided into multiple subcategories. In this paper, we will

explore two types of metamodelling; classical metamodelling and inverse metamodelling.

In classical metamodelling, the outputs of the mathematical model are predicted from the

input parameters. (outputs = f(inputs)). In inverse metamodelling, the input parameters

of the mathematical model are predicted from the model outputs (inputs = f(outputs)).

The difference between classical and inverse metamodelling is illustrated in Figure 2.1.

The different methods can be used alone or in combination in order to describe the

behaviour of the original model (Martens et al., 2013) A wide range of different methods

supervised and unsupervised learning has been applied for metamodelling. These include

various versions of Partial Least Squares Regression (PLSR)(Martens et al., 2013)(Tøndel

et al., 2013),neural networks(Yu et al., 2009)(Kilmer et al., 1997), and other machine

learning techniques such as Support Vector Machine (SVM)(Lai et al., 2006). In this

3



2. THEORY

Figure 2.1: Illustration of classical and inverse metamodelling.

thesis we will explore the use of the PLSR extension Hierarchical Cluster-based Partial

Least Squares Regression (HCPLSR) and deep learning.

2.2 PLSR

PLSR is a statistical approach for modelling complex multivariate relationships based

on decomposing both the input matrix and the output matrix into independent features

of covariance (Tøndel et al., 2014). PLSR was pioneered by H. Wold and H. Martens

in the late seventies (Wold et al., 1983). It has gained huge importance in the field

of chemometrics (Geladi and Kowalski, 1986) and a wide range of other data-driven

modelling fields (Haenlein and Kaplan, 2004). The goal of PLSR is to regress the input

matrix X onto the output matrix Y .

The matrices X and Y are decomposed into scores and loadings as follows:

X = TP> + E =
∑

thp
>
h + E (1)

Y = UQ> + F =
∑

uhq
>
h + F (2)

Where T and U are the scores matrices and P ,Q are the loadings matrices of X and

Y , respectively. E and F represent the unmodelled residuals (considered as noise) of

X and Y , respectively. th, ph, uh and qh represent column vector h of matrices T , P ,

U and Q. An inner relationship uh = bhth and a mixed relationship Y = TBQ> + F

4



2. THEORY

allows for the regression of Y given X. By using an iterative algorithm (e.g. NIPALS or

SIMPLS) the inner relation is strengthened, and F is minimized (Haenlein and Kaplan,

2004). The resulting score and loading matrices consist of orthogonal columns, referred

to as Principal component (PC)s. The PCs of the output matrix are sorted such that the

first PC describes the largest part of the variation in the output matrix.

2.3 HCPLSR

HCPLSR is an extension of the PLSR-method and was proposed by Tøndel et.al (Tøndel

et al., 2013). The HCPLSR pipeline splits the parameter space into multiple subspaces

and trains a separate PLSR model for each sub-space. This allows for detecting different

behaviours of the model for individual subspaces. HCPLSR has been shown able to

improve prediction accuracy and provide insight into the relationships between inputs

and outputs of a model. The method has been found especially useful for metamodelling

of complex non-linear models. It has e.g. been used for revealing input-output patterns of

biological models such as a dynamic model of a mouse heart (Tøndel et al., 2013), and for

exploration of a dynamic model of the mammalian circadian clock (Tøndel et al., 2012).

2.4 Artificial neural networks

Artificial neural networks, mostly referred to as neural networks, computes the outputs

by propagating the input data through layers of functions with trainable weights to the

output layer neuron(s). They were first proposed and developed in the fifties and six-

ties soon after the invention of computers. Neural networks were designed to simulate

the human nervous system, by connecting computational units (neurons) to one another

through weights, inspired by how synapses connect the human neurons. In theory, the

neural networks are capable of emulating any mathematical function, if not limited by

computational cost or training data. The primary strength of neural networks, as for all

machine learning methods, is to generalize from seen training data to unseen examples.

5



2. THEORY

The following subsections are based on Neural Networks and Deep Learning by Charu

C. Aggarwal (2018) if no other sources are directly referred to. For more detailed infor-

mation regarding neural networks, it is recommended to consult this book.

2.4.1 Feed Forward Networks

Feed Forward Network (FFN) models are models in which artificial neurons are stacked

into hierarchical layers, the first layer being the input vector x and the last layer being

the output vector y. The intermediate layers are by convention referred to as ”hidden

layers”. The depth of a network refers to the number of hidden layers in the network

architecture. The number of nodes in a layer is commonly referred to as the width of the

layer.

The input layer x = [x1 . . . xd] contains d neurons which are the raw input data. The

d inputs are passed to neuron j in the next layer. As the d inputs are passed they are

multiplied with weight w = [w1 . . . wd], and a bias is added. The receiving neuron, j,

receives the linear function z = w · x+ b, and applies an activation function σ: a = σ(z),

which then is passed to the next layer. The process is repeated until the values arrive at

the output layer ŷ = [ŷ1 . . . ŷm] containing m predictions. It is common, in FFN models,

that all neurons in one layer are connected to all neurons in the following layer. Such a

layer is often referred to as a fully connected, or dense layer. Different activation functions

can be used in the neurons, and the most common ones are:

sigmoid : σ(z) =
1

1 + exp(−z)
(3)

tanh : σ(z) =
exp(2z)− 1

exp(2z) + 1
(4)

ReLU : σ(z) = max(0, z) (5)

Linear : σz = z (6)

6



2. THEORY

The activation functions have different attributes that can contribute to the learning

of the network. A key role of the activation functions is to allow for nonlinear learning. If

all activation functions used in the network were linear, the network would only be able to

learn linear dependencies. The sigmoid, tanh, and ReLU activation functions all allows

for nonlinear learning but differs in the range of their activation. The tanh activation

function allows for an activation in the range between -1 and 1, while the sigmoid and

ReLU functions limit the activation to positive values. The sigmoid and ReLU activation

functions differ in the sense that the ReLU is a piecewise linear function, with no upper

limit and all negative values set to zero, while the sigmoid function fits arbitrary values

into the [0, 1] interval. The sigmoid and tanh activation functions have traditionally been

the most popular choices in the hidden layers, but ReLU activation has been increasingly

popular in later years due to advances when it comes to avoiding issues known as vanishing

and exploding gradient problems. In short, both these problems leads to non-optimal

updates of the weights in the network. In the vanishing gradient problem, the partial

derivative of the activation function is neglectable, and in the exploding gradient problem,

the partial derivative is to high. The choice of activation function used in the output layer

depends on the problem at hand. In a regression problem, it is common to use a linear

activation function, which has an unlimited range.

The weights and biases in the network are usually updated through an iterative pro-

cedure called gradient descend. The error of the network is evaluated using an objective

function commonly referred to as the loss function J . A example of such a function is

the mean squared difference between the true output value(s) y and the predicted output

value(s) ŷ; J(θ) = 1
N

∑N
n=0(y−ŷn)2, where n is iterated from the first sample (0) to sample

N . The gradient descend algorithm updates the weights and biases through an algorithm

in which the partial derivatives of the loss function are computed with respect to the

parameters in the network. The weights and biases are updated with small ”nudges” in

the opposite direction of the gradient. Ideally, the gradient descend would update the
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parameters based on the cost function evaluated for all samples. However, doing so is

often computationally expensive. Instead what is usually done is to evaluate the cost

function for a subset of the samples at a time, and these subsets are also called batches.

The gradient descend method, is not always sufficient in order to get to the optimal

weights, as it can get stuck in saddle points as the gradient get smaller. Optimizers have

been developed as improvements of the gradient descend, an example of such an optimizer

is adam (Kingma and Ba, 2014). By keeping track of the earlier partial derivatives and

adding a momentum, increasing the ”nudges” if successive gradients points in the same

direction, the adam allows for a faster training time, and the possibility to overcome

saddle points.

Fitting a model to a particular training data set does not guarantee a good prediction

performance for unseen test data. The lack of generalization ability of a model is referred

to as overfitting and is a well known issue within machine learning. Overfitting can be

avoided by reducing the number of parameters in the model, or by using regularization

techniques such as dropout(Srivastava et al., 2014) layers. Dropout is a regularization

technique where a predetermined number of nodes in a layer is randomly dropped, leading

all incoming and outgoing connections from that node to be dropped as well. When

implementing a dropout layer, it is common to exclude the nodes with a probability

between 20 − 50%. Dropout effectively incorporates noise into both the input data and

the hidden representations and forces a certain level of redundancy between the features

learned at different hidden units. Such a redundancy leads to increased robustness.

2.4.2 CNN

An issue with fully connected layers is the huge number of parameters, causing long

training time, and a danger of overfitting. Another type of neural networks, Convolutional

Neural Network (CNN)s, have the potential to reduce the number of parameters. CNNs

are designed to work with input data having strong spatial dependencies in local regions.
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An obvious example is grid-structured 2D image data, but time series data is another type

of data known to have various types of relationships between adjacent time points. The

CNN and FFN function similar in many ways, except that the operations in the layers

found in the CNN are spatially organized with sparse connections between the layers.

There are three types of layers commonly present in a CNN: Convolutions, pooling and

ReLU (equation 5), extracting spatial features from the data. In addition, a final set of

dense layers, often fully connected, is used to map the spatial features onto a set of output

nodes.

In 1D convolution layers, filters are slid across the input. The scalar product is calcu-

lated for each step at each filter. The filters are vectors of trainable parameters which are

adjusted through gradient descend. The width of each filter, as well as the strides (i.e.

step length for each slide), is predetermined. An additional trainable bias is added for

each filter. The dimensions of the output data from a convolution layer is controlled by

two factors: strides, and padding. In 1D convolution layers, padding consists of adding

an appropriate number of columns to the beginning and the end of the input data. The

padding makes it possible to center the convolution filters at every data point. There

are two common types of padding configurations: same and valid padding. The same

padding, pads in such a way that the output data have the same dimension as the input

data. The valid padding, which means no padding, leads to a reduced output dimension

compared to the input dimension. The outputs of a convolution layer are by convention

referred to as a feature map. Each filter produces its own feature map, the filter width

determines the range of spacial dependencies extracted and the number of spatial features

extracted from the data is determined by the number of features. Multiple convolution

layers can be stacked on top of each other, generating higher level spatial features.

The most common pooling layers encountered in the CNN are max pooling and average

pooling. In max pooling, a window is slid over the feature maps and the algorithm outputs

the maximum value within the window in each step, resulting in a reduced number of
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features. The width and strides of the windows are predetermined. The average pooling

is similar, but instead of outputting the maximum value, it calculates and outputs the

average of all values within each window. The activation function works in the same

manner as for the FFN model. The most commonly activation function used in the

convolution layers are the ReLU activation function (equation 5).

It should be noted that the CNN could also be considered as a feed-forward network,

as the input parameters are propagated forward through the layers. To keep the two types

of networks used in this thesis separated, only feed forward networks without convolutions

layers will be referred to as FFN models.

2.5 Electrical activity in the neuron

Figure 2.2: Illustration of a neuron.

Neuron cells are the fundamental building blocks of the nervous systems. The neuron

cells can vary in shape and sizes, but the majority has three distinct parts: the soma,

the dendrites and the axon. The cell body (soma) , which contains the nucleus and the

majority of cytoplasmic organelles acts as the ”heart” of the neuron, generating electrical

impulses that are transmitted through the axons. The dendrites extend from the soma,
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providing a large area for receiving synaptic input from other neurons. Most neurons have

one axon, which in most cases extends much farther from the soma than the dendrites,

and contacts other neurons (Squire, 2008). An illustration of the neuron can be seen in

Figure 2.2.

The neuron, like most cells, is surrounded by a lipid bilayer, approximately 5 nm

thick. The lipid bilayer has a hydrophobic part pointing both inwards to the intracellular

space (i.e. the inside of the neuron), and the extracellular space (i.e. outside of the

neuron), making the cell impermeable for the most water-solvable molecules (Galizia and

Lledo, 2013). The separation of ions creates membrane potential, which allows for the

electrical properties of the neuron. Some of the key ions playing a role for the membrane

potential are positively charged cations such as sodium (Na+), potassium (K+), calcium

(Ca2+), magnesium (Mg2+) and the negatively charged anion chloride (Cl−) (Sterratt

et al., 2011).

Ion pumps and ion channels are embedded in the lipid bilayer and allow for the trans-

portation of ions through the membrane. Most ion channels and pumps are ion-specific,

only allowing for certain ions to flow through the membrane. There are many types of

ion channels, each of which has a particular permeability for each ion, that may change

depending on different factors. The ion channels can be categorized into four types,

depending on their behaviour: voltage gated ion channels, ligand gated ion channels,

voltage- and ligand-gated ion channels and passive ion channels. The voltage gated ion

channels mainly depend on the membrane potential. The flow of ions through a voltage

gated ion channels activates gating currents, which changes the property of the ion chan-

nel, activating or inactivating a gate which controls the flow through the channel. The

ligand gated ion channels can be activated by the binding of intracellular ligands, such

as calcium and cyclic AMP (cAMP), and is mainly dependent upon the concentration of

intracellular ligands. The voltage- and ligand gated ion channels can be activated by both

the membrane potential and by binding of intracellular ligands. The passive ion channels
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permeability is constant (Galizia and Lledo, 2013).

As first described by A.L Hodgkin and A.F.Huxley, the activation of ion channels

can lead to an Action Potential (AP). The flow of cations out of the neuron leads to

increased polarization, meaning that the intracellular potential becomes more negative

compared to the extracellular potential. The flow of cations into the cell leads to a

depolarization (an increase of the membrane potential). The AP is characterized by a

rapid depolarization followed by a less sharp repolarization period. Following the AP is an

absolute refraction period and a relative refraction period. During the absolute refraction

period, it is impossible to generate new APs. During the following relative refraction

period, it is harder to generate new APs and APs generated in this period tends to have

a lower peak voltage (i.e. amplitude) than the initial AP (Sterratt et al., 2011).

2.6 The Hodgkin-Huxley model

Alan Lloyd Hodgkin and Andrew Fielding Huxley began at the beginning of the 1950s to

model the mechanics of a giant squid axon (Hodgkin and Huxley, 1952). They measured

the membrane potential while controlling the flows of ions through the ion channels.

By making some simplifications and representing the model as a one compartment RC-

circuit (i.e. an electronic circuit composed of resistances and capacitors), they were able

to describe how the membrane voltage would behave under different conditions. They

arrived at a set of equations that collectively are called the Hodgkin-Huxley model. As

a result of their work, they achieved a Nobel Prize in 1963. Even if more complex and

precise models for describing the AP have been developed, the Hodgkin-Huxley model is

still widely used in the field of computational neuroscience because of its low complexity

and fast computation time (Sterratt et al., 2011).
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2.6.1 The Model

Cm
∂V

∂t
= −ḡL(V − EL)− ḡNam

3h(V − ENa)− ḡKn4(V − EK) + I

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn

αm = 0.1
V − 40

1− e−
(V +30

10

βh =
1

e−
V +35

10 + 1

αn = 0.01
V + 55

1− e−V +55
10

βn = 0.125e−
V +65

80

Vt=0 = Vrest

The Hodgkin-Huxley model tries to capture how the membrane potential is affected

by the flow of ions through the cell membrane with a membrane capacitance of Cm. The

key ions included are the sodium ion Na+ and potassium K+. Other ions are categorized

as leak ions, which mostly consist of chloride ions Cl−. The ions pass the membrane

through ion specific ion channels creating ion currents that are expressed with the quasi-

ohmic expression Ix = ḡx ·(V −Ex) with a conductance of ḡx and a reversal potential of Ex,

x representing the ion. The probability of the gates being open is controlled by the gating

variables m and h for the sodium and n for the potassium ion channel. The sodium and

potassium ion channels are voltage gated, and the gating parameters are controlled by an

activation rate (increased probability of being open), and an inactivation rate (decreased

probability of being open), denoted as αy and βy for gating particle y. I represents the

applied current.(Sterratt et al., 2011).

Analyses done with the resting reversal potential of sodium and potassium held con-

stant have shown that the rapid rise leading to the AP is almost entirely due to the sodium

conductance. After the AP peak, the potassium conductance takes a progressively more

significant share of the importance, and the sodium conductance declines (Hodgkin and

Huxley, 1952). through the quasi-ohmic expression Ix = ḡx · (V −Ex), it can be seen that
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varying the reversal potential will affect the flow of ions as well. Hence it is expected that

the change of the sodium reversal potential will affect the sodium ion flow leading to the

polarization of the membrane potential. Similarly, the reversal potential of potassium is

likely to affect the depolarization following the AP.

2.7 The Pinsky-Rinzel model

The Pinsky-Rinzel model is a two-compartment model representing the soma and a den-

drite and was developed by Paul F. Pinsky and J. Rinzel in 1994 (Pinsky and Rinzel,

2001). Despite the small number of compartments, the model can reproduce a variety

of realistic activity patterns in response to somatic current injection or dendritic synap-

tic input. The model is a reduction from a 19-compartment model developed by Traub

et al. (1991), but manage to mirror its behaviour. The reduction in size leads to a reduced

computational cost, which is especially important when carrying out network simulations.

2.7.1 The Model

Cm
dVs
dt

=− ḡL(Vs − EL)− gNa(Vs − ENa)− gDR(Vs − EK) +
gc
p

(Vd − Vs) +
Is
p

Cm
dVd
dt

=− ḡL(Vd − EL)− gCa(Vd − ECa)− gAHP (Vd − EK)− gC(Vd − EK) +
gc
p

(Vs − Vd)

gc
1− p

(Vs − Vd).
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gNa = ḡNam
2
∞h αm = − 0.32V1

exp{−V1/4} − 1
βm =

0.28V2
exp{V2/5} − 1

αh = 0.128 exp

{
−43− V

18

}
βm =

4

1 + exp{−V5/5}

gDr = ḡDrn αn = − 0.016V3
exp{−V3/5} − 1

βm = 0.25 exp

{
−V4
40

}
gCa = ḡCas

2 αs =
1.6

1 + exp{−0.072(V − 5}
βm =

0.02V6
exp{V6/5} − 1

gC = ḡCcχ([Ca2+]) αC = 0.0527(exp

{
V8
11
− exp

{
V7
27

}}
) for V ≤ −10

αC = 2 exp{−V7/27} for V > −10

βC = 2 exp{−V7/27} − αC for V ≤ −10

βC = 0 for V > −10

χ([Ca2+]) = min([Ca2+]/250, 1)

gAHP = ḡAHP q q = min(0.0000[Ca2+], 0.01 βq = 0.001

d[Ca2+

dt
] = −0.13ICa − 0.075[Ca2+]

V 1 = V + 46.9, V 2 = V + 19.9, V 3 = V + 24.9, V 4 = V + 40,

V 5 = V + 20, V 6 = V + 8.9, V 7 = V + 53.5, V 8 = V + 50

The Pinsky-Rinzel model tries to describe how the membrane potentials of a connected

soma and a dendrite are affected by the flow of ions through their cell membranes, which

both have a membrane capacitance of Cm. The percentage of the total area taken up by

the soma is denoted by the parameter p. The connection between the soma and dendrite

allows for an inter-compartment current also described as coupling current flowing between

the soma and the dendrite. The coupling current is stated as the quasi-ohmic relationship

gc(Vs − Vd), where the gc represents the coupling conductance, and Vs and Vd represents

the membrane potential of the soma and the dendrite, respectively. The soma is built

up of the same elements as in the Hodgkin-Huxley model, with two voltage gated ion

channels for transportation of sodium gNa and potassium gDR and a passive ion channel
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ḡL for transportation other ions referred to as leak ions. The ions affecting the dendritic

membrane potential are potassium and calcium Ca2+, in addition to leak ions.

Embedded in the dendritic membrane is a ligand gated ion channel allowing the flow of

potassium gAHP and a voltage gated ion channel allowing the flow of calcium gCa. There

is also a voltage- and ligand gated potassium ion channel gC , that is activated depending

on the intracellular calcium concentration and the dendritic membrane potential. All of

the ion channels have gating variables representing the probability of them being open.

m,h represents the gating variables affecting the somatic sodium ion channel, and n,s,c

and q represent the gating variables of the somatic voltage gated potassium ion channel,

the dendritic voltage gated calcium ion channel, the dendritic voltage- and ligand gated

potassium ion channel and dendritic ligand gated sodium ion channels, respectively. All

gating parameters of voltage gated ion channels are controlled by an activation rate and

an inactivation rate denoted as αy and βy for gating particle y. Is represents the induced

current in the soma. (Sterratt et al., 2011).

The initial burst sequence (sequence of APs) is initiated by a somatic sodium spike.

The depolarization of the soma creates a potential difference between the two compart-

ments, creating a coupling current depolarizing the dendritic membrane. During the

repolarization phase of the soma (caused by the potassium current), the coupling current

is shifted, which might initiate a second spike in the soma. A second spike may allow

the dendrite to depolarize enough to initiate a calcium current, which further activates

the ligand gated potassium channels leading to a rapid hyperpolarization of dendritic

membrane. Which through the coupling current can lead to further depolarization of the

soma (Pinsky and Rinzel, 2001).

2.8 Feature Importance

Feature importance measurement, also known as feature ranking, is a method used for

feature selection in the data science community. It is closely linked to sensitivity analysis,
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that is the study of how uncertainty in the output of a model can be apportioned to

different sources of uncertainty in the model input. One goal of sensitivity analysis is

to find the relationship between input factors and output. Sensitivity techniques can be

used for ranking the importance of various input parameters in terms of their influence

on the variation of Y (Saltelli et al., 2008).

The PLSR regression coefficients are measures of the model sensitivity to the different

input parameters, by providing direct measures of the influence of the input parameters

on the output variables, and has been shown to be a robust feature importance measure.

(Palermo, 2009)

Drop out feature importance is a technique commonly used in statistics and machine

learning for ranking of feature importance. It is the ranking system that commonly drives

the backwards/forward feature selection. The drop out feature scheme is illustrated in

Figure 2.3. First, the model is trained with all available features, and the baseline error eb

is evaluated on the test set. The first feature is dropped from the feature set, a new model

is trained, and a new error e1 is evaluated on the test set. The first feature is then put back

into the feature space, and the second feature is dropped, the model is retrained and the

new error e2 reevaluated. This iterative process continues until all features f1 . . . fn have

been dropped once and the errors e1 . . . en have been calculated. The feature importance

is calculated as the error’s subtracted from the baseline error FIi = eb− ei. The problem

with this technique is that it is computationally expensive. The time needed to calculate

the drop out feature importance grows fast with the number of features since the model

has to be retrained and optimized each time.

The permuted importance technique does not suffer from this problem. The technique

was first proposed by Breiman in 2001 as an improvement of the random forest feature

importance (Breiman, 2001). Based on this idea, Fisher, Rudin, and Dominic created a

model-agnostic version of the feature importance (Fisher et al., 2018). Model-agnostic

meaning it can be used with any machine learning model. It is important to keep in mind
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Figure 2.3: Illustration of the drop out feature importance algorithm

that the permuted importance technique suffers from a bias towards input parameters with

high correlation between them. Two input parameters explaining the same behaviour runs

the risk of one of them having reduced feature importance.

The permuted importance technique scheme is illustrated in Figure 2.4. The model

is first trained and optimized with the training set, using the entire feature space. A

baseline eb error is then calculated on the test set. Then, instead of dropping the first

feature as in the drop out technique, the feature column of the test set is permuted and the

prediction error e1 is calculated using the same model. The first feature is then reordered

and the second permuted. The process continues until the prediction errors e1 . . . en have

been calculated. The feature importance is calculated as the error’s subtracted from the

baseline error FIi = eb − ei. The permuted importance technique does not suffer from
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the need to train multiple models, i.e. it has a less computational cost than the drop out

model.

Figure 2.4: Illustration of the Permuted Feature Importance algorithm
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3 Methods

The code created in this thesis is available at github:

https://github.com/odegaardmaster/Masterthesis

3.1 Data generation

The two sets of membrane potentials analyzed in this paper were simulated with the

Hodgkin-Huxley model and the Pinsky-Rinzel model. The Hodgkin-Huxley model was

implemented in python using the odeint module from the scypy package. The Pinsky-

Rinzel model (Pinsky and Rinzel, 2001) used in this study was obtained from ModelDB

(http://modeldb.yale.edu accession number 35358) and implemented and carried out

using python and the neuron package with time adaptive time-steps. Interpolation was

used to find the missing time steps. In addition to the simulated time series, statistics such

as time to first AP, the aggregated phenotypes AP width and amplitude was calculated.

The threshold defining an AP was chosen to −20mV . The width of the AP was calculated

as half of the APs prominence height. An example of the calculations is shown in Figure

3.1.

3.1.1 The Hodgkin-Huxley model

In the simulations of the Hodgkin-Huxley model, the Resting potential Vrest, was held con-

stant, while 7 variables were varied using Latin Hypercube Sampling (LHS). The LHS is

a semi-random sampling procedure that is especially suitable for use on high-dimensional

data, since it separates the data into several hypercubes and samples randomly within

each hypercube. More details of LHS can be found in the original paper by Mckay et al.

(2000). The range within which the parameters were varied was chosen to be ±20% of

the default values shown in Table 1. The range of each input variable was stratified into

three intervals with equal probability, and one observation was drawn from each interval,
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Figure 3.1: Calculation of aggregated phenotypes. The AP threshold is set to −20mV , the width

(green line) is calculated at 50% prominence height. Time to peak and amplitude is calculated at the

time of the AP peak.

resulting in 2187 parameter combinations. The model was exposed to a continuous exter-

nal stimulus of 140 µA/cm2 starting at t = 0. The membrane potentials were simulated

for 30ms with a resolution of 0.025 ms, resulting in 1201 time points. As of the param-

eter combinations resulted generated at least one AP during the 30ms, the aggregated

phenotypes were extracted from the first AP, in all 2817 samples.
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Table 1: Default values for simulations with the Hodgkin Huxley model

Parameter Value Description

Vrest −65 mV Resting Potential (not varied)

Cm 1 µFcm−2 Membrane capacitance

gNa 120 mScm−2 Sodium conductance

gK 36 mScm−2 Potassium conductance

gL 0.3 mScm−2 Leak ions conductance

ENa 50 mV Sodium reversal potential

EK −77 mV Potassium reversal potential

EL −54.4 mV Leak ions reversal potential

3.1.2 The Pinsky-Rinzel model

In the Pinsky-Rinzel model, 13 parameters were varied using LHS. The range within

which the parameters were varied was as for the Hodgkin-Huxley model chosen to be

±20% of the default values shown in Table 2. The range of each input variable was

stratified into three intervals with equal probability, and one observation was drawn from

each interval, resulting in 1594323 parameter combinations. The simulations were run

over a time span from 0 to 30 ms with a resolution of 0.025 ms. The soma membrane

potential was recorded during the simulation, resulting in 1201 time steps per somatic

membrane potential. The large number of samples resulted in a huge training time for the

metamodels especially the clustering method used in the HCPLSR model. The number

of samples was therefore reduced by randomly sampling of 100000 samples, resulting in

an input matrix of dimension 100000 X 13, and an output matrix of dimension 100000

X 1201. Not all parameter combinations resulted in APs during the first 30 ms. The

aggregated phenotypes of the first occurring AP were calculated for the 81250 parameter

combinations which achieved an AP within the first 30 ms.
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Table 2: Default values for simulation of Pinsky Rinzel model

Parameter Default Value Description

Cm 3.0 µFcm−2 Membrane capacitance

gL 0.1 mScm−2 Leak ion conductance

gNa 30 mScm−2 Somatic sodium ion conductance

EL −60 mV Leak ion reversal potential

ENa 50 mV Sodium reversal potential

EK −75 mV Potassium reversal potential

gc 2.1 mScm−2 Coupling conductance

gkdr 1.0 mScm−2 Dendritic potassium conductance (kdr)

gAHP 0.8 mScm−2 Dendritic potassium conductance (AHP)

gC 15 mScm−2 Dendritic potassium conductance (C)

gCa 10 mScm−2 Dendritic calcium conductance

ECa 80 mV Calcium reversal potential

p 0.5 Proportion of the area taken up by the soma

3.2 Metamodelling using HCPLSR

The implementation of HCPLSR used in this thesis was based on the original paper by

Tøndel et al. (2013). The entire data set was split into a test set (30%) and a train-

ing set (70%). The training data, both the input matrix X and output matrix Y , was

standardized by subtracting the mean, and dividing by the standard deviation for each

column Xi = Xi−µi
σi

. A PLSR model, referred to as the global PLSR model, was cal-

ibrated using the training samples. The global PLSR model was made using 10-fold

cross-validation (i.e using the mean of ten cross-validations). The optimal number of

global PLSR PCs was chosen with the requirement that each global PLSR PC should

account for at least 1% of the total cross-validated Y -variance, leaving the rest of the
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components as noise. The global PLSR model was used as a basis for the clustering op-

eration. Fuzzy C-means (FCM)(Bezdek et al., 1984) clustering based on either the X- or

Y - scores were used to separate the data into a preset number of subsets (clusters). The

fuzziness parameter m of the FCM was chosen to 2. The subsets were then re-standardized

by calculating a separate mean and standard deviation for each subset in order to gain an

increased interpretation ability. For each subset, a new PLSR model, referred to as local

PLSR models, was computed, using the same techniques and requirements as in the global

model. The test set was standardized using the mean and standard deviations calculated

for the training set. The input matrix of the test data Xtest was then projected into the

global PLSR model, resulting in the decomposed X- or Y -scores. Based on the score

matrices, each test set sample was then classified into the most probable cluster using

FCM. A final prediction of the output Ŷtest was predicted using the local PLSR model

trained on the most probable cluster. An exception was that if the euclidean distance

from an observation to the most probable cluster was more than 1.5 times the maximum

distance observed in the test set. Then the global PLSR model was used to create the

prediction.

3.2.1 Metamodelling of the Hodgkin-Huxley model and the Pinsky-Rinzel

model

Multiple HCPLSR metamodels with different setups were trained for the classical meta-

modelling of the Hodgkin-Huxley model. Both the global X and Y -scores were tested as

clustering basis for the FCM clustering. The input data was varied between using only the

main effects of the input parameters, including cross- and interaction terms of the main

effects, including sinus and cosinus terms, and including the combination of both cross-

and interaction terms and the sinus and cosinus terms. The purpose of adding cross- and

interaction terms serves to identify interactions between the main effects while using sinus

and cosinus terms might improve the metamodelling of abrupt non-linearities in the data.
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For each combination of clustering basis and input data, the number of clusters used in

the FCM clustering method was varied from two to ten clusters. Resulting in a total of

72 HCPLSR metamodels trained for the classical metamodelling of the Hodgkin-Huxley

model. The first time point (0ms) was taken out of the output matrix, as the PLSR

model does not function when there is no variation in the data. The same metamodelling

setups were used for the classical metamodelling of the Pinsky-Rinzel model, with the

exception of using the combination of both cross- and interaction terms and sinus and

cosinus terms. Resulting in a total of 54 HCPLSR metamodels trained.

The different setups of the HCPLSR metamodels used for the inverse metamodelling

were varied between using the global X and Y -scores as clustering basis and for each

clustering basis, the number of clusters was varied from two to ten. This resulted in 20

metamodels trained for the inverse metamodelling of both the Hodgkin-Huxley model and

the Pinsky-Rinzel model.

The classical metamodelling of the aggregated phenotypes was conducted using the

same HCPLSR setups as for the classical metamodelling of the Pinsky-Rinzel model, This

resulted in a total of 54 HCPLSR metamodels trained for each model.

3.3 Metamodelling using deep learning

The classical metamodelling of the time series data and the aggregated phenotypes was

conducted using FFN models, and the inverse metamodelling was conducted using CNN

models. A wide range of different topologies (i.e the way the network is connected) and

activation functions was explored before landing on a final architecture. The entire data

set was randomly test set (30%) and a training data (70%). Further, the training data was

divided into a training set (80% of training data) and a validation set (20% of the training

data) when exploring for the best suitable topology, an optimal number of epochs, and

the batch size used in training the models. By using a validation set, instead of the test

set, when exploring the optimal setups, the test set is kept unseen for the model, avoiding

25



3. METHODS

information leaks (Aggarwal, 2018).

The deep learning metamodelling was done with Keras on Google Colaboratory (Pes-

soa et al., 2018).

3.3.1 Metamodelling of the Hodgkin-Huxley model and the Pinsky-Rinzel

model

The architectures of the FFN and CNN models used for metamodelling of the two single

neuron activity models are described in Appendix A. The ReLU function (equation 5) was

used as an activation function in all hidden layers in the FFN models, and in all convo-

lutions layers in the CNN models. In the fully-connected layers following the convolution

layers in the CNN models, tanh (equation 4) was used. All metamodels were treated as

regression problems, therefore a linear activation function (equation 6) was used in the

output layer. Adam was used as the optimizer in all deep learning models used in this

thesis.

The FFN model used in the classical metamodelling of the Hodgkin-Huxley model (ar-

chitecture shown in Figure A.1) was a simple one, consisting of two hidden fully connected

layers, both with a width of 28 neurons. In classical metamodelling of the Pinsky-Rinzel

model an FFN model with four hidden layers, all fully connected was used. The architec-

ture is shown in Figure A.4).

The architecture of the CNN model used for inverse metamodelling of the Hodgkin-

Huxley model is shown in Figure A.2. Four convolution layers, a max pooling layer

and a global average pooling are used in this model. The convolution layers are same

padded(leading to no reduction of data size). The same padding was used since much of

the information is expected to be in the first couple of ms, which could be lost if other

padding methods were used. To connect the feature map with the output layer a fully

connected layer with seven neurons is used. A similar architecture is used in the inverse

metamodelling of the Pinsky-Rinzel model (figure A.5). However, the filters used in the
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first two convolution layers are wider, allowing for wider spatial dependencies. Moreover,

valid padding is used in the convolution layers. In order to connect the feature map to

the output, three fully connected layers were used.

The metamodelling of the aggregated features extracted from the Hodgkin-Huxley

model (shown in figure A.3) consists of one fully connected layer with nine neurons. The

model stated for the metamodelling of the aggregated features extracted from the Pinsky-

Rinzel model had two fully connected layers, both with a width of 20 neurons.

3.4 Permuted Feature Importance

The permuted feature importance was calculated with multiple permutations each time

in order to adjust for the random effects, and the mean and standard deviation were

calculated for each permuted feature importance.

In an effort to describe the behaviour surrounding the first occurring AP, a permuted

feature importance pipeline using aligned APs was developed. Parameter combinations

which generated its first AP in the time span between 5ms and 25ms were selected from

the samples. The predicted membrane potential from the unpermuted data and the true

membrane potential were aligned such that the AP peak occurred at t = 0 (illustrated in

Figure 3.2. The baseline error calculated for the unpermuted data was reduced to a 10 ms

window, with the time of the predicted AP peak centralized at 0 ms, the centralization

is illustrated in Figure 3.2. For each permutation, the predicted APs was also centralized

at 0 ms, as illustrated in Figure 3.3, and the feature importances were calculated for a

time window of 10 ms.
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Figure 3.2: Centering of predicted membrane potentials.
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Figure 3.3: Centering of predicted membrane potentials after permuting of input column.
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4 Results

4.1 Metamodelling of the Hodgkin-Huxley model

4.1.1 Data Generation

The 2817 membrane potentials that were obtained from simulations with the Hodgkin-

Huxley model, are shown in Figure 4.1 A. For a better overview of the differences in

behaviour, the mean of the 2187 simulations together with the standard deviation is shown

in Figure 4.1 B. All parameter combinations triggered the first AP in roughly the same

time (0.0625ms). Not all parameter combinations triggered multiple APs. Therefore most

of the variance between the simulations occurs after the first AP. The input parameters

used in the simulations had no significant correlation between them. The correlation

matrix for the input parameters is shown in Appendix C Figure C.1.

Figure 4.1: Plot of membrane potentials generated with the Hodgkin-Huxley model. A) The

2817 simulated membrane potentials with the Hodgkin-Huxley model. B) Mean and standard deviation

of the 2817 membrane potentials simulated with the Hodgkin-Huxley model. red: mean, blue: Standard

deviation.

30



4. RESULTS

4.1.2 Classical metamodelling of the Hodgkin-Huxley model

A classical metamodelling with HCPLSR and FFN was carried out in order to analyze

the complex input-output relationship of the Hodgkin-Huxley model. Multiple HCPLSR

models were trained, using both Y - and X-scores matrices as clustering basis in the FCM

clustering. The number of clusters used in the FCM clustering was varied from two

to ten. Additional sinus and cosinus terms and/or interaction and second-order terms

were added to the parameters to capture possible interactions and abrupt non-linearities.

Using the global X-scores matrix as the clustering basis with added second-order and

interaction terms was found optimal for prediction of the membrane potentials. The

prediction accuracy did not increase significantly when using more than four clusters in

the metamodelling. Therefore four clusters were chosen for further exploration of the

Hodgkin-Huxley model. The test set prediction accuracies achieved are plotted in Figure

4.2.

The variance of the output matrix explained by each PC is declining. Therefore the

first few components are expected to be of most relevance. The first three PCs in the

global PLSR model explained 84.5% of the total cross-validated variance present in the

output matrix. The fourth PC did not increase the explained variance of the first three

PCs with more than one per cent, hence three PC was chosen as the optimal model rank,

used as a clustering basis. The X-scores for the first three PCs of the global PLSR model

are plotted in Figure 4.3 A, and the four clusters later used for calibrating the local PLSR

models are colourized. The percentage of the cross-validated variance explained by each

PC is indicated. The mean and standard deviation for the membrane potentials picked

out of cluster 1− 4 are plotted in Figure 4.3 B-E, respectively. The main effect regression

coefficients for the global PLSR and the four local PLSR models are plotted in Figure

4.4A and 4.4B-E, respectively. The 15 most significant cross- and second order terms

regression coefficients for the global PLSR and the four local PLSR models are plotted in

Figure 4.4A and 4.4B-E, respectively.
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Figure 4.2: Optimizing the number of clusters and cluster matrix using HCPLSR in classical

metamodelling of the Hodgkin-Huxley model. The average prediction accuracy (R2) of the test

data, given the number of clusters, clustering matrix and added terms. The average prediction accuracy

achieved by the global PLSR model is noted as one cluster. Blue: Only input parameters. Orange: Input

parameters with additional sinus and cosinus terms. Green: Input parameters with interaction- and

second-order terms. Red: Input parameters with interaction- and second-order terms, with additional

sinus and cosinus terms. The dashed line and the solid line represents Y - and X-scores, respectively, used

as cluster matrix in the FCM clustering.
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Figure 4.3: Clustering results from HCPLSR metamodelling of the Hodgkin-Huxley model

using four clusters. A) Scatter plot of the X-scores from the global metamodel The samples are

coloured according to cluster membership. Cluster1=blue, cluster2=orange,cluster3=green, cluster4=red.

B-E) Mean (red) and standard deviation (blue) of the simulated membrane potentials for cluster 1-4,

respectively.
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Figure 4.4: Global and local regression coefficients for the input parameters of the Hodgkin-

Huxley model. The regression coefficients show the sensitivity of the input parameters over time. A)

shows the global regression coefficients. B-E) shows the local regression coefficients for cluster 1-4,

respectively. The standard deviation of the membrane potentials belonging to each individual clusters is

plotted off scale in the background for comparison.
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Figure 4.5: Global and local regression coefficients for the cross- and second order terms

of the input parameters of the Hodgkin-Huxley model. The regression coefficients shows the

sensitivity of the 15 most significant cross- and second order terms parameter over time. A) show the

global regression coefficients. B-E) shows the local regression coefficients for cluster 1-4, respectively.

The standard deviation of the membrane potentials belonging to each individual cluster is plotted off

scale in the background for comparison.
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The training plots used for hyperparameter tuning of the FFN model stated for the

classical metamodelling are plotted in Appendix B Figure B.3. The final FFN model was

trained for 1500 epochs and achieved a test set prediction of 0.993.

The feature importance ranking of the input variables of the Hodgkin-Huxley model

was calculated with five permutations for each variable, using the permuted feature im-

portance procedure (described in Section 2.8). This is illustrated in Figure 4.6. For an

exploration of the importance of the parameters regarding the first occurring AP, the

feature importance ranking for the first 5 ms is plotted in Figure 4.7.

Figure 4.6: Feature importance for the input parameters of the Hodgkin-Huxley model. The

feature importance is calculated with five permutations of each input variable. The solid line represents

the mean with the standard deviation are plotted as a transparent extension. The standard deviation of

the membrane potentials simulated is plotted off scale in the background for comparison.
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Figure 4.7: Feature importance for the input parameters of the Hodgkin-Huxley model

for the first 5 ms. The time range of Figure 4.6 is narrowed down to 5 ms in order to increase the

exploratory ability of the behaviour surrounding the first AP. The first AP occurs at roughly 0.625 ms.

The standard deviation of the membrane potentials simulated is plotted off scale in the background for

comparison.
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4.1.3 Inverse metamodelling of the Hodgkin-Huxley model

The inverse metamodelling of the Hodgkin-Huxley model was carried out with HCPLSR

and CNN models, in order to predict the output-input relationships of the model.

As in the classical metamodelling, both the Y scores matrix and the X scores matrix

were explored as clustering basis for the HCPLSR model. Figure 4.8 shows the test set

prediction accuracies of the input parameters of the Hodgkin-Huxley model, for number

of clusters varied from two to ten. The best average prediction accuracy was achieved

using five clusters and is listed in Table 3.

The training plots used for hyperparameter tuning of the CNN model stated for inverse

metamodelling of the Hodgkin-Huxley model can be seen in Figure B.2. The final CNN

model was trained for 1250 epochs, and the prediction accuracies of the test data are

listed in Table 3.

Table 3: Prediction accuracies (R2) for inverse metamodelling of Hodgkin-Huxley model using CNN

and HCPLSR.

CNN HCPLSR

gNa 0.8834 0.8497

gL 0.8199 0.0045

EL 0.0432 0.006

Cm 0.9152 0.4025

gK 0.8752 0.7256

ENa 0.9103 0.9307

EK 0.9146 0.9689
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Figure 4.8: Optimizing the number of clusters and cluster matrix using HCPLSR in in-

verse metamodelling of the Hodgkin-Huxley model. The prediction accuracy (R2) of the input

parameters in the test data, given the number of clusters and clustering matrix. The prediction accuracy

achieved by the global PLSR model is noted as one cluster. The dashed line and the solid line represent

Y - and X-scores, respectively, used as cluster matrix in the FCM clustering.
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4.1.4 Classical metamodelling of the aggregated phenotypes

The classical metamodelling of aggregated phenotypes extracted from the Hodgkin-Huxley

model was carried out using FFN and HCPLSR. The aggregated phenotypes extracted

from the Hodgkin-Huxley model cover ”time to peak”, ”width of first AP” and ”amplitude

of first AP”. As all simulations generated at least one AP, all samples were used in the

metamodelling.

Both Y - and X-scores were explored as clustering basis in the FCM clustering. The

number of clusters used in the FCM clustering was varied from two to ten clusters. The

test set prediction accuracies achieved using the HCPLSR metamodelling are plotted

in Figure 4.9. The best average prediction accuracy was achieved using X-scores as

clustering basis with six clusters and additional cross-terms and second-order terms. The

individual prediction accuracy for each of the aggregated phenotypes when using these

clusters are listed in Table 4. The main effect regression coefficients for the six local

PLSR models are plotted in Figure 4.10, and the regression coefficients for the 15 most

significant interaction- and second order terms are shown in Figure 4.11.

The training plot used for hyperparameter tuning of the FFN model stated for the

classical metamodelling of the aggregated phenotypes is plotted in Appendix B Figure

B.3. The final FFN model was trained for 1500 epochs, and the prediction accuracies of

the test data are listed in Table 4.

The feature importance of the input variables was calculated as the mean of five

permutations for each variable using the permuted feature importance procedure and is

plotted in Figure 4.12.
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Figure 4.9: Optimizing the number of clusters and cluster matrix using HCPLSR in meta-

modelling of the aggregated phenotypes of the Hodgkin-Huxley model. The prediction accu-

racy (R2) of the aggregated phenotypes in the test set, given the number of clusters and clustering matrix.

The prediction accuracy achieved by the global PLSR model is noted as one cluster. The dashed line and

the solid line represents Y - and X-scores, respectively, used as cluster matrix in the FCM clustering.

Table 4: Prediction accuracies (R2) for metamodelling of aggregated phenotypes extracted from the

Hodgkin-Huxley model.

FNN HCPLSR

time to peak 0.9765 0.9858

width of first AP 0.9996 0.9980

amplitude of first AP 0.9975 0.9826
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Figure 4.12: Feature importance for the input parameters of the aggregated phenotypes

extracted from the first AP in the Hodgkin-Huxley model. The feature importance is calculated

as the mean of five permutations for each input variable.
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4.2 Metamodelling of the Pinsky-Rinzel model

4.2.1 Data Generation

159434 simulations were carried out with the Pinsky-Rinzel model. The membrane poten-

tials of the 100000 randomly sampled simulations used in classical and inverse metamod-

elling of the Pinsky-Rinzel model are plotted in Figure 4.13A. The mean and standard

deviation of the 100000 randomly sampled simulations are shown in Figure 4.13B. The

parameter combinations sampled created a wide range of differently behaving membrane

potentials, with the majority of the variation starting after 5ms of simulation.

Figure 4.13: Plot of membrane potentials generated with the Pinsky-Rinzel model. A) Plots

the 100 000 sampled membrane potentials simulated with the Pinsky-Rinzel model. B) shows the mean

and standard deviation of the 2817 membrane potentials simulated by the Pinsky-Rinzel model. red:

Mean, blue: Standard deviation.

4.2.2 Classical metamodelling of the Pinsky-Rinzel model

Classical metamodelling with HCPLSR and FFN was carried out in order to analyze the

complex input-output relationships of the Pinsky-Rinzel model. The optimizing search of

cluster basis, number of clusters and additional terms were done in the same manner as

the classical metamodelling of the Hodgkin-Huxley model. Also here using the X-scores
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as the clustering basis for the FCM clustering with additional second-order terms and

interactions achieved the best results. The test set prediction accuracy converges after

more than three clusters are used in the FCM. Therefore three clusters were chosen

for further exploration of the Pinsky-Rinzel model. The test set prediction accuracies

achieved are plotted in Figure 4.14.

Figure 4.14: Optimizing the number of clusters and cluster matrix using HCPLSR in clas-

sical metamodelling of the Pinsky-Rinzel model. The average prediction accuracy (R2) of the test

data, given the number of clusters, clustering matrix and added terms. The average prediction accuracy

achieved by the global PLSR model is noted as one cluster. Blue: Only input parameters. Orange:

Input parameters with additional sinus and cosinus terms. Green: Input parameters with interaction-

and second-order terms. Red: Input parameters with interaction- and second-order terms, and additional

sinus and cosinus terms. The dashed line and the solid line represent Y - and X-scores, respectively, used

as cluster matrix in the FCM clustering.
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The first three PCs in the global PLSR model explained 0.601% of the total cross-

validated variance present in the output matrix and were used as a clustering basis.

The X-scores for the three PCs are plotted in Figure 4.15A. The mean and standard

deviations of the membrane potentials belonging to cluster 1-3 are plotted in Figure

4.15B-D, respectively. The main effect regression coefficients for the global PLSR and the

three local PLSR models are plotted in Figure 4.16. The 15 most significant interaction-

and second order term regression coefficients for the global PLSR and the three local

PLSR models are plotted in Figure 4.17.

The training plots used for hyperparameter tuning of the stated FFN model used in the

classical metamodelling of the Pinsky-Rinzel model are given in Appendix B figureB.4.

The final FFN model was trained for 2000 epochs, and test set prediction accuracy of

0.961.

The feature importance ranking of the input variables of the Pinsky-Rinzel model was

calculated using the permuted feature importance procedure and is plotted in Figure 4.18.

For an exploration of the importances of the input parameters surrounding the first occur-

ring AP in each membrane potential, feature importances using a centralized permuted

feature importance procedure (Described in section 3.4) were also calculated, where the

time of the first occurring AP for each sample is aligned. These feature importances are

plotted in Figure 4.19.f
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Figure 4.15: Clustering results from HCPLSR metamodelling of the Pinsky-Rinzel model

using three clusters. A) Scatter plot of the X-scores from the global metamodel. The samples are

coloured according to cluster membership. Cluster1=blue, cluster2=orange, cluster3=green. B-D) Mean

(red) and standard deviation (blue) of the simulated membrane potentials for cluster 1-3, respectively.
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Figure 4.16: Global and local regression coefficients for the input parameters of the Pinsky-

Rinzel model. The regression coefficients show the sensitivity of the input parameter over time. A)

the global regression coefficients. B-D) show the local regression coefficients for cluster 1-3, respectively.

The standard deviation of the membrane potentials belonging to each cluster is plotted off scale in the

background for comparison.
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Figure 4.17: Global and local regression coefficients for the cross- and second order terms of

the input parameters of the Pinsky-Rinzel model. The regression coefficients show the sensitivity

of the 15 most significant cross- and second order terms parameter over time. A) the global regression

coefficients. B-D) show the local regression coefficients for cluster 1-3, respectively. The standard

deviation of the membrane potentials belonging to each cluster is plotted off scale in the background for

comparison.
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Figure 4.18: Feature importance for the input parameters of the Pinsky-Rinzel model. The

feature importance is calculated with four permutations of each input variable. The histograms in the

background show the distribution for the time of the first, second and third AP for each AP.
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Figure 4.19: Feature importance for the input parameters of the Pinsky-Rinzel model

centred around the first AP. The feature importances are calculated using centred feature importance

and are calculated using four permutations of each input variable. The APs are centred at 0 ms. The

x-axis represents the time relative to the AP peak.
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4.2.3 Inverse metamodelling of the Pinsky-Rinzel model

The inverse metamodelling of the Pinsky-Rinzel model was carried out with HCPLSR

and CNN, in order to predict the output-input relationships of the model. The test

set prediction results used X-scores and Y -scores, respectively, as clustering basis can

be found in Figure 4.20. The FCM clustering algorithm did not converge in less than

1000 iterations when the global Y -scores were used as a clustering basis, so the results

are therefore not represented in the figure. The best average prediction accuracy was

achieved using X-scores as a clustering basis for the FCM clustering with ten clusters.

These are listed in Table 5.

The training plots used for hyperparameter tuning of the CNN model stated for inverse

metamodelling of the Pinsky-Rinzel model are shown in Appendix B Figure B.6. The final

CNN model was trained for 1750 epochs. Table 5 shows the prediction accuracies of the

test set data.

4.2.4 Classical metamodelling of the aggregated phenotypes

The classical metamodelling of aggregated phenotypes extracted from the Pinsky-Rinzel

model was carried out using FFN and HCPLSR. 81250 of the parameter combinations

from the data set generated at least one AP and were included in the metamodelling.

Both Y - and X-scores were explored as clustering matrices for the HCPLSR model,

and adding additional cross-and second order terms was tested in order to find the optimal

model. The number of clusters used in the FCM clustering was varied from two to ten

clusters. The test set prediction accuracies achieved using the HCPLSR metamodelling are

plotted in Figure 4.21. The best performing HCPLSR metamodel was achieved using X-

scores as a clustering basis for the FCM clustering with ten clusters, and additional cross-

and second order terms added to the main effects of the input parameters. However, the

local modelling did not manage to outperform the global PLSR model with the same added

terms. This indicates that the nonlinearities present in the input-output relationships are
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Figure 4.20: Optimizing the number of clusters in the inverse metamodelling of the Pinsky-

Rinzel model using HCPLSR. The test set prediction accuracy (R2) of the input parameters given

the number of clusters. The prediction accuracy achieved by the global PLSR model is noted as one

cluster. The colour represents the parameter estimated. The dotted line represents the prediction result

achieved using the global Y -scores as clustering matrix. For the global X-scores as clustering basis, a

solid line is used.
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Table 5: Prediction accuracies (R2) for inverse metamodelling of the Pinsky-Rinzel model using HCPLSR

and CNN.

Parameter CNN HCPLSR

Cm 0.9130 0.3257

gL 0.6357 0.0768

gNa 0.7907 0.3617

EL 0.9183 0.9679

ENa 0.7410 0.0964

EK 0.8464 0.6026

gc 0.4730 0.0681

gkdr 0.7331 0.1084

gAHP -0.0018 0.0001

gC 0.5107 0.1896

gCa 0.6426 0.1251

ECa 0.5146 0.0824

p 0.4760 0.0702

mainly non-abrupt, and hence a simple linear combination with cross- and second order

terms is sufficient in this case. The individual prediction accuracies for the aggregated

phenotypes achieved by the HCPLSR and global PLSR model are listed in Table 6. The

global PLSR model is used for further exploration of the parameter importances. The

main effect regression coefficients for the global PLSR model are plotted in Figure 4.22.

The most significant cross- and second order effects are plotted in Figure 4.23.

The training plots used for hyperparameter tuning of the FFN model stated for the

classical metamodelling of the aggregated phenotypes are plotted in Appendix B Figure

B.5. The final model was trained for 600 epochs. Table 6 shows the prediction accuracies
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4. RESULTS

Figure 4.21: Optimizing the number of clusters and cluster matrix in metamodelling of the

aggregated phenotypes of the Pinsky-Rinzel model using HCPLSR. The prediction accuracy

(R2) of the aggregated phenotypes in the test set, given the number of clusters and clustering matrix.

The prediction accuracy achieved by the global PLSR model is noted as one cluster. The dashed line

and the solid line represent Y - and X-scores, respectively, used as cluster matrix in the FCM clustering.
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4. RESULTS

of the test set data, achieved when the stated FFN model was trained on the full train

set.

The feature importance of the input variables was calculated as the mean of five

permutations for each variable using the permuted feature importance procedure and is

plotted in Figure 4.24.

Table 6: Prediction results (R2) for metamodelling of the aggregated phenotypes extracted from the

Pinsky-Rinzel model using FFN, HCPLSR and PLSR.

FFN HCPLSR Global PLSR

time to peak 0.9981 0.9927 0.9622

width of first AP 0.9982 0.8952 0.9919

amplitude of first AP 0.9251 0.6010 0.6571
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4. RESULTS

Figure 4.24: Feature importance for the input parameters of the aggregated phenotypes

extracted from the first AP in the Pinsky-Rinzel model. The feature importance is calculated

as the mean of five permutations for each input variable.
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5 Discussion

5.1 Hodgkin-Huxley model

5.1.1 Classical metamodelling

The high prediction accuracy achieved with the global PLSR model indicates that the

Hodgkin-Huxley model mainly shows soft nonlinear behaviour. However, the increased

prediction ability achieved by using multiple clusters in the HCPLSR indicates that there

are some more abrupt nonlinearities to consider, in order to better emulate the model

outputs. While the HCPLSR model with added cross- and second order terms using ten

clusters was able to achieve an average prediction score of 0.944, the simple FFN model

consisting of two hidden layers was able to achieve a higher average prediction score of

0.993. This indicates that the FFN is more efficient at emulating the Hodgkin-Huxley

model.

The global regression coefficients (Figure 4.4A), the local regression coefficients (Figure

4.4B-D) and the permuted feature importance (Figure 4.6) somewhat support what is

already known about the model mechanisms. They all highlight the importance of the

potassium reversal potential in the repolarization period following the AP. By comparing

the local regression coefficients with the global regression coefficients, it is clear that the

local regression coefficients are better at illustrating the decline in the importance of

potassium in the period in between the APs. The sodium reversal potential is known

to be important in the building of the first AP, a behaviour the global and two of the

local PLSR models fail to show. This is, however, highlighted by the permuted feature

importance. The low regression coefficients of the sodium reversal potential might be due

to low variation in the membrane potential during the first 0.05 ms. This might also

explain why the membrane capacitance is estimated to have greater importance by the

permuted feature importance than by the local regression coefficients.
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Even though adding cross- and second order terms increased the prediction accuracy,

the regression coefficients (Figure 4.5B-D) show that none of these terms have a substan-

tial individual contribution to the membrane potential. It might be that the combination

of many small cross- and second order terms adds an explanation to the behaviour sur-

rounding the AP. Another possibility is that the added terms lead to a better clustering,

as some of the global cross- and second order term regression coefficients (Figure 4.5A)

seem to be important.

5.1.2 Inverse metamodelling

The inverse metamodelling using HCPLSR had difficulties predicting the conductance

and reversal potential of the leak ions. When examining the regression coefficients for

the classical metamodelling (Figure 4.4), the results indicate that none of these two in-

put parameters had a large influence on the membrane potential, something that may

explain the low prediction ability. The stated CNN model manages to achieve a greater

prediction accuracy for the conductance of the leak ions, indicating that there are spa-

tial dependencies in the data lost to the HCPLSR model. A more surprising result is

reduced prediction ability of the membrane capacitance achieved when using local meta-

models within clusters, compared to the global metamodel (Figure 4.8). The most likely

explanation is that it has something to do with the PLSR decomposition. The PLSR

decomposition, is maximizing the covariance between the input matrix and the output

matrix. It might be that the X-score matrix, which was used as a clustering basis, was

not clustered in a way that favored the variance in the membrane capacitance.

The prediction accuracies of the reversal potentials of the sodium and potassium

achieved by using the CNN model were worse than the one achieved using HCPLSR

(Table 3), although it is likely possible to further optimize the CNN model, increasing its

prediction ability.
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5.1.3 Classical metamodelling of the aggregated phenotypes

The metamodelling of the aggregated phenotypes using HCPLSR achieved a greater pre-

diction accuracy for the aggregated phenotype Time to peak than the FFN model, al-

though both models achieved a relatively high prediction accuracy for all phenotypes

(Table 4).

When looking at the feature importance for amplitude, both the permuted feature

importance (Figure 4.12) and the local regression coefficients (Figure 4.10) estimated the

membrane capacitance to be the most important variable for Time to peak. The reversal

potential of sodium is estimated as the most important predictor for the amplitude of

the first AP, which makes sense given that the importance for the reversal potential of

sodium also kicks in at the same time points as the AP. The width of the AP seems to

be driven by multiple parameters; the reversal potential and conductance of both sodium

and potassium. As seen in the classical metamodelling, the parameters concerning the

potassium start influencing at the repolarization stage of the AP.

5.2 Pinsky-Rinzel model

5.2.1 Classical metamodelling

The test set accuracy score obtained with the global PLSR indicates that the Pinsky-

Rinzel model show more complex nonlinear behaviour than the Hodgkin-Huxley model.

This is an expected result as the Pinsky-Rinzel model describes a two-compartment model,

with membrane potential changes in both compartments. Moreover, only the somatic

membrane potential is measured. Also here the best HCPLSR model, achieving an average

test set prediction accuracy of 0.72, was outperformed by the FFN achieving an average

test set prediction accuracy of 0.96.

By using FCM clustering, the HCPLSR was able to differentiate between different

behaviours of the Pinsky-Rinzel model. Figure 4.15B-D shows how the clustering have
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separated the parameter space into subspaces that causes earlier (D), mid-range (C) and

late (B) APs. This allows for an increased ability to connect the importance of the input

parameters to the different behaviours of the model.

It is known that the initial AP is caused by a somatic sodium current, followed by a

potassium current repolarizing the somatic membrane. These mechanics are confirmed by

the local regression coefficients of the input parameters in Figure 4.16C-D. These indicate

that the influence of the somatic sodium current, controlled by the reversal potential ENa

and the somatic sodium conductance gNa, are increasing with the membrane potential.

The influence of sodium is followed by a rise of importance for the somatic potassium

current which is controlled by the reversal potential EK and the somatic potassium con-

ductance gkdr. In the case were no early APs are generated (Figure 4.16B), the influence

of the somatic sodium current is absent. Following the initial somatic AP, it can be seen

that the influence of the coupling current (p and gc) is increasing as the somatic membrane

potential declines. The calcium current (ECa and gCa) is needed to explain the behaviour

of the somatic membrane potential during the final stages. It is known that a difference in

the potential between the soma membrane and the dendritic potential generates a coupling

current flowing from the soma into the dendrite, that causes a repolarization of the soma

and an increased membrane potential in the dendrite. The depolarization of the dendrite

can in some cases activate a calcium current, generating a dendritic spike, which redirects

the coupling current, allowing for new APs to be generated in the soma. The leak ion

reversal potential has a greater influence on the membrane potential in the Pinsky-Rinzel

model than the Hodgkin-Huxley model. It turns out that the leak ion reversal potential

is the most important input variable needed in order to explain the time taken until the

first AP(Figure 4.24). The influence of the membrane capacitance kicks in right before

the majority of the APs in cluster three and four, but it is more or less absent in cluster

two, where the majority do not generate APs. The membrane capacitance is expected to

affect the speed of the potential change, something that might explain this result. The
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coupling conductance between the soma and dendrite seems to influence whether multiple

APs is achieved, something that is more represented in cluster 4 than in cluster 3. When

inspecting the regression coefficients of the cross- and second order terms (Figure 4.17), it

is obvious that multiple interactions are important in order to explain the full behaviour

of the model. The feature importances calculated with the permuted feature importance

(Figure 4.18) are not able to give a detailed overview of the model behaviours, as it is

based on the entire data set. The more generalized overview achieved by the permuted

feature importances is similar to the global regression coefficients (Figure 4.17). It can

be interpreted from the feature importances that the reversal potential for the leak ions

is the most important parameter explaining the behaviour leading up to the initial AP.

These results also indicate that the sodium current and membrane capacitance are the

main parameters influencing the generation of the initial AP, followed by an increased

importance of the potassium current.

The centralized permuted feature importance (Figure 4.19) is developed to get a more

in-depth insight into the parameter importances surrounding the first action potential.

It shows as the HCPLSR model suggested, that the reversal potential of the leak ions

and the membrane capacitance are the most important parameters leading up to the first

generated AP, followed by the reversal potential and conductance of potassium as the

leading causes for the behaviour following the first AP. It also shows how the coupling

current and calcium current are activated after the initial AP.

5.2.2 Inverse metamodelling

Neither the HCPLSR model or the CNN model used in inverse metamodelling of the

Pinsky-Rinzel model managed to predict the dendritic ligand-gated potassium ion channel

gAHP successfully. Inspection of the regression coefficients (Figure 4.16) and the permuted

feature importances (4.18) shows that the gAHP , which is calcium dependent, was not

found important for explaining the somatic membrane potential during the first 30ms.
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This indicates that there is not enough information in the data to predict this parameter.

The fact that this parameter is calcium dependent means that it needs a sufficient calcium

concentration inside the dendrite to activate the potassium current. As the calcium

current is activated soon after the initial AP, there might not be sufficient time to build

up the calcium concentration enough to activate the ligand gated potassium current. The

stated CNN model achieved a greater prediction accuracy than the HCPLSR model, with

the exception of the reversal potential for the leak ions. This indicates that there are

spatial dependencies and/or abrupt non-linear output-input relationships. Figure 4.20

shows that the global PLSR model did, for some of the input parameters, achieve a

higher prediction accuracy than the HCPLSR model. Most noticeable is the somatic

potassium conductance gkdr, whose prediction ability is nearly halved when using the

HCPLSR metamodel with seven clusters compared to the global PLSR model. It should

also be noted that this type of dynamic models generally show a large degree of sloppiness,

meaning that a large number of different parameter value combinations can generate vary

similar outputs. This makes inverse metamodelling more challenging than the classical

metamodelling.

5.2.3 Classical metamodelling of the aggregated phenotypes

Although the global PLSR model achieved a higher average prediction accuracy than the

best HCPLSR model for the aggregated phenotypes extracted from the Pinsky-Rinzel

model, the HCPLSR model had a higher success in prediction of the time to peak -

phenotype (Table 6). However, none of the PLSR-based models were able to achieve

a good prediction accuracy for the amplitude of the first occurring AP. The global re-

gression coefficients (Figure 4.22 and 4.23) and the permuted feature importances (Fig-

ure 4.24) show that the phenotypes are dependent upon a more complex system than

the phenotypes extracted from the Hodgkin-Huxley model. This is expected, since the

Pinsky-Rinzel model is a much more complex model, containing two compartments. Both
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the permuted feature importances and the global regression coefficients recognize the leak

ion reversal potential as the most important parameter for predicting the time until the

first AP, followed by the membrane capacitance, the reversal potential of potassium and

the somatic conductance of sodium. The two feature importance measurements differ in

the importance of the coupling conductance, as the global regression coefficients show a

significant importance of the second order term gCgC . This results is not surprising, given

that a coupling current would flow from the soma into the dendrite when the soma mem-

brane potential exceeds the dendritic membrane potential. The amplitude of the initial

AP is, as expected, mainly explained by the sodium current and the membrane capaci-

tance. The width of the initial AP is affected by multiple parameters, the most important

being the reversal potential of the leak ions. As seen in the classical metamodelling of the

Pinsky-Rinzel model, the calcium current and coupling current, which are initiated after

the first AP, contribute to the shape of the width of the first AP.

5.3 Comparing HCPLSR and Deep learning

When comparing the two metamodelling methods, it is obvious that the emulation ca-

pacities of using deep learning (both FFN and CNN) far exceed the HCPLSR. Especially

when emulating more complex models such as the Pinsky-Rinzel model, or when spatial

relationships are needed in inverse metamodelling. It might, of course, be possible to

increase the number of clusters in the HCPLSR model, in order to obtain a greater pre-

diction ability. However, an increased number of clusters leads to a longer computational

time for the FCM clustering algorithm, which is already severe when a large number of

samples is being clustered. Also, the number of samples needed in order to fully explain

the behaviour of the models grows exponentially with the number of input parameters

of the mathematical model. Another consequence of increasing the number of clusters is

an reduced ability to interpret the model behaviours. It should be noted that the deep

learning models used in this thesis could be further optimized. Exploration of different
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architectures, activation functions, optimizers and batch-sizes could further enhance the

prediction ability and the computational cost associated with training of the network.

The strength of HCPLSR metamodelling lies in its ability to improve the analytic

insight into the model being emulated, without any need for prior knowledge of the

model behaviour. As has been shown by metamodelling of the Pinsky-Rinzel model,

the HCPLSR model was able to differentiate different behaviours of the somatic mem-

brane potential, and allows for interpretation that is not possible for a model generalizing

the entire data set. In order to achieve similar insight into the behaviour surrounding

the initial AP, using a FFN model trained on the entire parameter space, we had to

take special measures that required prior knowledge of what we wanted to explain. An

inconvenience of using the HCPLSR metamodelling is that the PLSR model needs vari-

ance in the output data in order to train. As seen in the classical metamodelling of the

Hodgkin-Huxley model, the regression coefficients indicated a low contribution of most of

the parameters leading up to the first AP, most significant was the lack of contribution

from the membrane capacitance, when compared with the feature importances calculated

with the FFN model. When comparing the time consumption needed for the analysis,

the HCPLSR has an advantage. The calculation of the feature importances using the

permuted feature importance algorithm, requires the permutation and analysis of one pa-

rameter at a time. This leads to an increasingly computationally demanding operation, as

the number of input parameters being analyzed increased, where the PLSR is predicting

the importance of all input parameters simultaneously.

The insight into the behaviour gained by using HCPLSR metamodelling might be

restricted by its ability to emulate. If the HCPLSR models emulating capabilities are

weakened due to increased complexity of the mathematical model being emulated, it raises

the question about what amount of information is explained by the HCPLSR model. Or

rather, what information is not explained.
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5.4 The coefficient of determination: R2

The coefficient of determination (R2), which is used as a measure of prediction accuracy

in this thesis, can be calculated in multiple ways.

One way of calculating the coefficient of determination is by squaring the correlation

(r) between the predicted output (ŷ) and the true output (y):

R2 = r2ŷ,y (7)

It follows from this equation that theR2 is always in the interval [0,1], as the correlation

is always in the interval [-1,1]. This definition of the coefficient of determination is used

for calculating prediction accuracy of the HCPLSR metamodelling in this thesis.

For the deep learning metamodelling, the coefficient of determination is calculated

using the more general term:

R2 = 1− SSE/SST = 1− Σ(y − ŷ)2

Σ(y − ȳ)2
(8)

Where ŷ and y are the predicted and true output value, respectively. ȳ is the mean of the

true output value. This calculation of the prediction accuracy allows the R2 value to be

negative (Can be seen Table 5).

The different implementations for calculating the prediction accuracy raises the ques-

tion whether the prediction accuracies calculated with the two metamodelling techniques

can be compared. The prediction results achieved using deep learning in inverse meta-

modelling of the Hodgkin Huxley model are calculated with both equation 7 and 8, and

is listed in Table 7. In this case, the correlation based calculation of the coefficient of

determination (equation 7) gives a higher score for the prediction accuracy than the more

general term (equation 8). If this is the case for all prediction accuracies that have been

calculated, then the prediction abilities of the deep learning metamodelling might have

been underestimated.
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Table 7: Comparison of two methods for calculating the coefficients of determination(R2). Both R2-

values is calculated for the inverse metamodelling of the Hodgkin-Huxley model using deep learning.

Equation 7: Correlation based, used in the HCPLSR implementation in this thesis. 8: General term,

used in the deep learning implementation in this thesis.

Equation 7 Equation 8

gbar Na 0.9073 0.8828

gbar L 0.8452 0.7838

E L 0.0259 0.0120

Cm 0.9499 0.9163

gbar K 0.8951 0.8758

E Na 0.9415 0.9083

E K 0.9530 0.9151
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6 Conclusion

The first aim of this project has been to investigate how accurately HCPLSR and deep

learning can emulate the simple Hodgkin-Huxley model and the more complex Pinsky-

Rinzel model. The results in this thesis indicate that the use of deep learning metamodels

is more effective than the HCPLSR metamodel at emulating non-linear mathematical

models, especially for non-linear models with a high level of complexity.

The second aim has been to investigate what insight these two metamodelling tech-

niques can give into the behaviour of the two single neuron activity models. The findings

in this work show that the HCPLSR model is an efficient tool for analysis of non-linear

mathematical models. By dividing the parameter space into subspaces, the HCPLSR al-

lows for the investigation of the input parameters influences on the model outputs without

requiring prior knowledge of the model outputs. In order to gain similar insight using per-

muted feature importances from a FFN model, generalizing the entire parameter space,

the APs had to be aligned which require prior knowledge of the model output.

6.1 Further works

As the FCM clustering method used in this implementation of the HCPLSR model is com-

putationally demanding for a large number of samples, exploration of an alternative, less

demanding clustering method might make it feasible to increase the number of clusters.

Thus, allowing for metamodelling of more complex models.

The insights possible to achieve using deep learning is limited by it generalizing the

entire parameter space. This could thus be prevented by using clustering methods in com-

bination with deep learning, for an increased interpretation ability of the model behaviour.

Deep embedding (Xie et al., 2016) might be tested for subspace analysis purposes.
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A. ARCHITECTURES

A Architectures

Figure A.1: Architecture of the FFN model used in classical metamodelling of the Hodgkin-

Huxley model. Left box: Type of layer. middle: shape of input/output data. Right: Number of

neurons in each layer.
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A. ARCHITECTURES

Figure A.2: Architecture of the CNN model used in inverse metamodelling of the Hodgkin-

Huxley model. Left box: Type of layer. middle: shape of input/output data. Right: For dense

layers the size represent the number of neurons in the dense layer. For convolution layers it represents

width / stride / number of filters. For max pooling layers it represents width / stride. All convolution

layers uses same padding.

Figure A.3: Architecture of the FFN model used in classical metamodelling of aggregated

phenotypes extracted from the Hodgkin-Huxley model. Left box: Type of layer. middle:

shape of input/output data. Right: Number of neurons in each layer.
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A. ARCHITECTURES

Figure A.4: Architecture of the FFN network used in classical metamodelling of the Pinsky-

Rinzel model. Left box: Type of layer. middle: shape of input/output data. Right: Number of

neurons in each layer.
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A. ARCHITECTURES

Figure A.5: Architecture of the CNN model used in inverse metamodelling of the Pinksy-

Rinzel model Left box: Type of layer. middle: shape of input/output data. Right: For dense layers

the size represent the number of neurons in the dense layer. For convolution layers it represents width /

stride / number of filters. For max pooling layers it represents width / stride All convolution layers uses

valid padding.
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A. ARCHITECTURES

Figure A.6: Architecture of the FFN model used in classical metamodelling of aggregated

phenotypes extracted from the Pinsky-Rinzel model. Left box: Type of layer. middle: shape

of input/output data. Right: Number of neurons in each layer.

80



B. TRAINING PLOTS

B Training Plots

Figure B.1: Training plots from the training of the FFN used in the classical metamodelling

of the Hodgkin-Huxley model.
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B. TRAINING PLOTS

Figure B.2: Training plots from the training of the CNN used in the inverse metamodelling

the Hodgkin-Huxley model.

Figure B.3: Training plots from the training of the FFN used in the classical metamodelling

of aggregated phenotypes extracted from the Hodgkin-Huxley model.
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B. TRAINING PLOTS

Figure B.4: Training plots from the training of the FFN used in the classical metamodelling

of the Pinsky-Rinzel model.

Figure B.5: Training plots from the training of the FFN used in the classical metamodelling

of the Pinsky-Rinzel model.
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B. TRAINING PLOTS

Figure B.6: Training plots from the training of the CNN used in the inverse metamodelling

the Pinsky-Rinzel model.
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C. CORRELATIONS

C Correlations

Figure C.1: Correlation matrix for input parameters used in the classical metamodelling of

the Hodgkin-Huxley model.
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C. CORRELATIONS

Figure C.2: Correlation matrix for input parameters used in the classical metamodelling of

the Pinsky-Rinzel model.
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C. CORRELATIONS

Figure C.3: Correlation matrix for input parameters used in classical metamodelling of

aggregated phenotypes extracted from the Pinsky-Rinzel model.
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