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Environmental Regulations and Allocative Efficiency: An Application 
to Coal-to-Gas Substitution in the U.S. Electricity Sector 

 

   

Abstract: The environmental economics literature has for a long time been occupied with 

the relationships between environmental regulations, technical efficiency, and productivity 

growth. This paper extends this discussion by taking up environmental regulations’ 

implications for allocative efficiency. It establishes a model framework that allows 

disentangling managerial and regulatory induced allocative efficiencies, and utilizes Data 

Envelopment Analysis to a sample of 67 coal-to-gas substituting power plants observed 

from 2002 to 2008 to calculate Nerlovian profit efficiencies and their technical and 

allocative efficiency components. The empirical results illustrate that failing to control for 

environmental regulations leads to overestimation of managerial allocative efficiencies by 

ignoring compliance costs. Marginal abatement cost estimates that are in line with 

allowance prices for NOx and SO2 are further obtained.  
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1. INTRODUCTION 

The environmental economics literature has for a long time been occupied with the 

relationships between environmental regulations, technical efficiency, and productivity 

growth; see e.g. Porter and van der Linde (1995) and Palmer et al. (1995) for a discussion. 

Several recent papers, e.g. Chung et al. (1997), Färe et al. (2001, 2007), and Ball et al. (2005), 

reconsider the implications of pollution reduction for technical efficiency and technical 

change, commenting on earlier papers on the relationship between environmental 

regulations and traditional measures of productivity (see Jaffe et al. (1995) for an overview). 

A key finding is that the earlier studies consider inputs applied for pollution control 

purposes unproductive because the corresponding emission reductions are ignored.  Chung 

et al., Färe et al., and Ball et al. attempt to address this measurement problem by including 

pollutants, thus reflecting pollution control efforts, in the production model.   

Rødseth (2014) acknowledges that regulatory induced measurement biases for technical 

efficiencies are encountered when pollutants are reduced by pollution control, but points 

out that it is only one of many options which producers have for complying with 

environmental regulations. Whenever other compliance strategies are preferred to 

pollution control, the above-proposed corrections of measurement biases for technical 

efficiency and productivity growth provide limited insights about the economic implications 

of environmental regulations. In fact, in their study on U.S. power plants, Färe et al. (2007) 

were unable to identify significant performance measurement biases related to the plants’ 

emission reductions.  

 While the emphasis has been on environmental regulations’ implications for technical 

efficiency and productivity growth, a few recent papers (in particular Førsund (2009), 
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Rødseth (2013), and Rødseth and Romstad (2014)) suggest that environmental regulations 

may also play an important role for allocative efficiency. More specifically, they argue that 

environmental regulations increase the costs of pollution-generating inputs (e.g., fossil 

fuels), and that producers who are subject to environmental regulation maximize their 

profits subject to shadow prices for pollution-generating inputs that differ from the inputs’ 

observed market prices. Profit efficiency comparisons that overlook this aspect ignore the 

producers’ compliance costs and thereby fail to rank them according to their true economic 

efficiency. The main purpose of this paper is to treat this measurement bias. First, the paper 

establishes an analytical framework for modeling regulatory induced allocative 

inefficiencies. Second, the paper evaluates the magnitude of the measurement bias by an 

empirical application on the U.S. power sector, applying Data Envelopment Analysis (DEA) to 

a sample comprising 67 coal-to-gas substituting electricity plants. Third, marginal abatement 

cost estimates that are in line with the allowance prices for sulfur dioxide (SO2) and nitrogen 

oxides (NOx) are obtained based on regulatory pollution constraints. 

This paper is comparable to previous papers that have used production analysis to 

analyze how environmental regulations influence economic efficiency. Brännlund et al. 

(1995) evaluate how pulp-and-paper plants’ profits are affected by existing individual 

emission quotas, while Brännlund et al. (1998) evaluate potential economic gains from 

replacing individual quotas by an emissions trading scheme. Transferable quotas have 

received much interest in environmental production economics, and have recently been 

treated by Oude Lansink and van der Vlist (2008) and Färe et al. (2013b; 2014) among 

others. Hampf and Rødseth (2015b) provide a production analysis framework for analyzing 

the impact of performance standards and emission intensity averaging on profitability. 
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Moreover, a recent paper by Granderson and Prior (2013) evaluates the impact of 

environmental and rate-of-return regulations on U.S. power plants’ total factor productivity 

growth. They utilize a Malmquist cost productivity index that allows identifying the impact 

of allocative efficiency on productivity growth, and find that electric utilities subject to 

environmental regulation operate less allocative efficient than their non-regulated peers.  

An important difference between this study and the reviewed studies (with the exception 

of Hampf and Rødseth’s paper) is that they are based on Färe et al.’s (1989; 2005) model 

framework, which is a well-known work horse in environmental production analysis. As the 

axiom of free disposability of inputs is one of its building blocks, Färe et al.’s model assumes 

that the consumption of inputs can be extended (infinitely) for given good and bad outputs. 

This paper uses the materials balance principle to show that environmental restrictions 

impose upper bounds on the use of polluting-generating (i.e., material) inputs, thereby 

inducing allocative inefficiency from the producer’s point of view. Foregone profits because 

of regulatory-induced (implicit) input restrictions is clearly a relevant measure of compliance 

costs.    

 

2. THEORY 

 

2.1. ON POLLUTION GENERATION  

Ayres and Kneese (1969) demonstrated the fundamental importance of the materials 

balance condition for the joint production of desirable and undesirable outputs in many 

conventional production processes. Recently several authors, including Krysiak and Krysiak 

(2003), Pethig (2003, 2006), Ebert and Welsch (2007), Coelli et al. (2007), Lauwers (2009), 
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Førsund (2009), Rødseth (2013, 2015), Rødseth and Romstad (2014), and Hampf (2014), 

have considered different ways in which the neoclassical production model can be 

accommodated to comply with the materials balance condition. The current paper can be 

considered a contribution to this literature.  

The materials balance condition postulates that materials can neither be created nor 

destroyed, but may change their form. The weight of production inputs, including non-

economic inputs such as oxygen, must thereby amount to the weight of the outputs. 

Material inflows to the production process which are not recuperated in desirable outputs 

remain as (undesirable) byproducts from the production process.  

The materials balance condition can be represented by emission factors rather than 

material flow coefficients. This is particularly suitable for air pollution emissions, because 

the oxygen inflow then does not need to be explicitly modeled. The factors provide 

estimates of the amount of undesirable byproducts released per unit of conventional inputs 

(e.g., fossil fuels) used, as well as the amount recuperated per unit of desirable outputs 

produced. Let Nx   denote a vector of inputs, My   denote a vector of desirable 

outputs, and Kb   denote a vector of undesirable byproducts. Let N be a K N  matrix of 

non-negative input emission factors1 and M be a K M  matrix of non-negative output 

                                                           
1 The emission factors are allowed to vary across producers, dependent on the quality of 

their inputs. For example, there exist various qualities of coal which differ in terms of their 

sulfur content. Taking into account that inputs are not perfect homogeneous introduces 

flexibility for the producers, allowing undesirable outputs to be reduced by changing the 

quality of their inputs.      
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recuperation factors. The latter refers to the quantities of materials embodied in each unit 

of the good outputs. The materials balance conditions for the K undesirable byproducts are 

then defined by: 

 

ucb Nx My   (1) 

 

Equation 1 reports uncontrolled byproducts.  

Producers frequently engage in pollution control activities to “clean up” emissions 

instead of preventing them from occurring. Pollution control efforts can thus be 

represented by subtracting Ka   from equation 12. Note that pollution control 

transforms the undesirable byproducts into other byproducts rather than making them 

“dematerialize” or vanish. However, since this paper is concerned with regulatory restricted 

byproducts, pollution control is viewed as reducing the undesirable byproducts. Emissions 

remaining after pollution control, bc, are called controlled byproducts:  

 

cb Nx My a    (2) 

 

The subsequent analysis uses equation 2 as point of departure. For notational convenience, 

the superscript c is omitted in the following.  

                                                           
2 See Førsund, F.R., 2009. Good modelling of bad outputs: pollution and multiple-output 

production. Int Rev Environ Resour Econ 3, 1-38. for a more detailed discussion on pollution 

control.  
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2.2. A POLLUTING TECHNOLOGY 

The theory presented in this section builds on Rødseth (2013) and Rødseth and Romstad 

(2014). These studies were in turn influenced by Krysiak and Krysiak (2003), Førsund (2009), 

and Murty et al. (2012), who propose production models that are composed of multiple sets 

or production relations. The purpose is to limit the degree of substitutability among 

desirable and undesirable outputs, and thereby to obtain a production model that is in line 

with physical constraints on the conversion of inputs into outputs that were explained in 

section 2.1; see Førsund (2009) and Rødseth and Romstad (2014) for more details. The use 

of multiple production relations to limit the substitutability among outputs is due to Frisch 

(1965). 

Consider the polluting technology as the intersection of the neo-classical technology, 

T1, and the materials balance conditions, T2. The latter are defined by equation 2 (i.e., 

controlled emissions), which is embodying K “production functions” for the pollutants. In 

this paper, the main objective is to evaluate how environmental regulations restrict 

production possibilities and thereby influence profits. Unlike the approaches of Førsund 

(2009) and Murty et al. (2012), the residual-generating technology T2 is therefore defined 

by emission constraints (i.e., as inequalities) – reflecting that environmental regulations cap 

emissions – rather than the production functions (i.e., as equalities) for the undesirable 

outputs. Thus, the emission constrained technology is in (x,y)-space defined by equation 33. 
                                                           
3 The technology set T(b+a) depends on both the emission factors, N and M, and 

uncontrolled emissions, b+a. This implies that correct notation for the technology set is 

T(N,M,b+a). N and M are omitted to allow for a simpler notation. This is especially 

convenient for the profit function in equation 4.   
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 (3) 

 

T1 is assumed to be a nonempty, closed, and convex set. No fixed costs, no free lunch, 

and free disposability of inputs and desirable outputs are assumed to prevail. See Chambers 

(1988) for a discussion of these properties.  

Recently, Färe et al. (2013a) and Hampf (2014) modeled polluting technologies for 

energy generation that consist of production (i.e., the joint production of electricity and 

uncontrolled air pollution) and pollution control (i.e., controlled emissions and emission 

reductions due to end-of-pipe abatement) stages. The model in equation 3 can also be 

interpreted as a network-type (i.e., multi-stage) model, where the emphasis is on the 

production stage while the pollution control stage is not modeled in detail. This is achieved 

by following Førsund (2009), assuming that pollution control is a separate production 

process and moreover that “pollution control inputs” are not used at the expense of 

“production inputs”. This hypothesis is supported by the empirical analysis of Shadbegian 

and Gray (2005), who find that “pollution control inputs” contribute little or nothing to 

intended production. Note that the pollution control technology is not explicitly modeled to 

avoid problems related to poor accessibility and reliability of data on these activities; cf. the 

very small samples used by Färe et al. (2013a) and Hampf (2014). Instead, pollution control 

is treated as a service or an input that producers can purchase to reduce their generation of 
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the K undesirable byproducts. Hence, the producers face exogenous prices for abatement 

services4.  

This paper considers compliance costs to arise in the production stage because 

environmental regulations constraint the consumption of production inputs. While pollution 

control is viewed as a compliance strategy that possibly lowers these regulatory-induced 

allocative inefficiency costs, it is only an option, not a necessity, for regulatory compliance. 

The model in equation 3 is flexible enough to weight the costs of different compliance 

strategies, and thereby to identify the least costly compliance strategy. Førsund and Strøm 

(1988) consider input substitution, output reductions, technical change, waste recycling, 

and end-of-pipe abatement activities as potential compliance strategies. Technical change 

refers to intertemporal changes to the technology set T1, while input substitution and 

output reductions refer to reallocation of (production) inputs and outputs within T1. In 

particular, input substitution refers to the possibility to substitute inputs with high emission 

factors (e.g., coal) with inputs with lower emission factors (e.g., natural gas). The two latter 

compliance strategies (i.e., waste treatment and end-of-pipe abatement) can be labeled 

pollution control strategies, and thus relate to the pollution control efforts a in T2.  

T2(b+a) is the set of inputs and desirable outputs that are consistent with uncontrolled 

emissions smaller or equal to b+a. This set is particularly relevant for modeling how 

environmental regulations that cap controlled emissions, b, influence the producers’ input 

consumption and the intended outputs of the production stage. Clearly, the materials 
                                                           
4 In terms of structural consequences, it implies that the K abatement outputs are assumed 

non-joint in inputs and that each of the K abatement production functions are linear 

homogenous. 
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balance principle implies that bounds on emissions must similarly imply bounds on the 

producers’ possible input use and desirable production; c.f. equations 1-2. Thus, for a fixed 

level of pollution control, a, there exists a restricted set of inputs and desirable outputs that 

are consistent with the regulatory constraints. The access to employing technology T1 is 

thus limited by regulatory constraints on emissions, in the sense that    1T b a T  5. 

Recall from equation 2 that pollution control is modeled by subtracting a  from the 

uncontrolled emissions. This means that any increase in pollution control efforts (for a given 

cap on controlled emissions, b) expands the set of feasible inputs and desirable outputs in 

the production stage, hence generating a trade-off for the producers: Involvement in 

pollution control may allow them to reach more profitable input-output allocations in T1 

(i.e., in the production stage). For example, by cleaning up more of their air pollution, 

electric utilities may consume larger amounts of high-polluting (and cheap) fossil fuels while 

complying with existing emission quotas.  However, pollution control is costly. 

Cap and trade regulations offer additional possibilities to change the emission restricted 

set T2. Rather than changing the pollution control output, a, they change the level of 

maximal allowable emissions, b. That is, the set T2 can be expanded by purchasing 

emissions allowances, while it is reduced when selling allowances. Pollution control efforts 

                                                           
5 T2(b+a) can be interpreted as violating free disposability of inputs. Note that my modeling 

approach thereby resembles the approach of Färe, R., Grosskopf, S., Lovell, C.A.K., Pasurka, 

C.A., 1989. Multilateral productivity comparisons when some outputs are undesirable: a 

nonparametric approach. Rev Econ Stat 71, 90-98., who evaluate the costs of environmental 

regulations by comparing two technologies in which pollutants are freely and not freely 

disposable, respectively.   
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and allowance purchases can be seen as perfect substitutes for the purpose of changing T2. 

In the following, I emphasize the economics of pollution control, but the economics of 

emissions trading can be laid out accordingly. 

The theory of producers with restricted access to the production technology, usually 

due to cost or revenue constraints, is called indirect production theory (Shephard, 1974). 

This theory was extended by Lee and Chambers (1986) and Färe et al. (1990) to consider 

profit maximization when producers face expenditure constraints. Limits to credit may force 

producers to operate suboptimal, making them appear allocative inefficient when credit 

constraints are not accounted for. This paper builds on these ideas.  

Consider short run profit maximization, where the input vector is partitioned into V 

variable inputs and F (quasi)fixed inputs, i.e. x=(xv,xf).  Let Vw  , Mr  , and Kp   be 

vectors of prices for variable inputs, desirable outputs, and pollution control, respectively. 

Define the short run profit maximization problem for a producer that complies with 

environmental regulations as: 
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 (4) 

 

C  represents the emission constrained short run profit function. It defines maximal 

obtainable profits to prices r and w, under the exogenous emission constraints b+a. The 

emission constrained short run profit function is non-decreasing and concave in a due to 
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technology T1’s properties of free disposability and convexity, which thereby allows a 

solution to the profit maximization problem from equation 4. This solution is characterized 

by the level of pollution control that maximizes the difference between the restricted profits 

and the abatement costs. At this level of pollution control the producer’s marginal economic 

benefits from expanding his/her access to technology T1 (i.e., to increase economic gains in 

the production stage) equal the marginal abatement costs as illustrated by figure 1.   

 

 

Figure 1: Emission restricted profit maximization 

 

In figure 1, the solution to the emission restricted profit problem leads to forgone profits 

relative to the maximal obtainable profits. The latter is formally defined by the conventional 

short run profit function: 
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and is represented by the maximum of C  in figure 1. Define the inequality: 
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   , , , , ,C
f fr w x r w x b a    (6) 

 

Following the argument by Färe and Logan (1983), the unrestricted profit function can be 

retrieved from the restricted profit function by applying the inequality in equation 6: 

 

    ,, , sup , ,C
f f

a

r w x r w x b a    (7) 

 

When increasing pollution control, a, the set of feasible combinations of inputs and 

desirable outputs is expanded. By sufficiently expanding the set, the unconstrained profit 

maximum can be achieved since   1T b a T  .  

Assume that the abatement costs in equation 4 are zero. The profit maximization 

problem for the emission restricted producer is then reduced to:  
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C
f f

a

f
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 (8) 

 

where the last equality follows from equation 7. Equation 8 shows that the constrained and 

the unconstrained profit problem coincide when the abatement costs are zero. In this case, 

the producer employs polluting inputs without facing costs related to their cleanup.  

The main insight of the previous discussion is that environmental regulations impose 

implicit costs on the use of polluting inputs in the production stage, thereby leading to profit 
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losses relative to the conventional profit maximum. A measure of overall efficiency that 

does not take this into account will consider regulated producers as inefficient, even if they 

are optimally allocated under their regulatory constraints. The empirical analysis in sections 

3 and 4 therefore evaluates the economic impact of regulatory constraints by comparing 

maximal profits under exogenous emission constraints, C , to maximal profits without 

emission constraints,  . The difference between the two maxima is a measure of 

abatement costs, and hence a measure of allocative inefficiency attributed to 

environmental restrictions. The emission restricted profit function,  C , is estimated under 

the assumption that the realized level of emissions – and hence pollution control efforts and 

allowance purchases – solve the maximization problem in equation 4.  

 

2.3. NERLOVIAN PROFIT EFFICIENCY AND THE DIRECTIONAL DISTANCE FUNCTION 

The directional distance function and its duality to the profit function from equation 5 were 

introduced by Chambers et al. (1998). It encompasses all known distance functions as 

special cases. This is due to the flexibility of selecting the direction in which inputs and 

outputs are projected to the technology frontier by the choice of the direction vector 

g=(gx,gy) in N M
   . Here, the direction vector is set equal to gf=0 for the (quasi)fixed 

inputs. The directional distance function is then defined as: 

 

      

  

, ; ,0, sup : , ,
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where the last equality follows from   1T b a T   and that the materials balance 

constraints in  2T b a  do not prevent contraction of inputs and expansion of desirable 

outputs. The directional distance function inherits the properties of the parent technology. 

It satisfies the translation property and is homogeneous of degree minus one in g, 

nondecreasing in xv, nonincreasing in y, and concave in (xv,y). Under free disposability the 

directional distance function provides a complete characterization of the underlying 

technology in the sense that:  

 

   , ; ,0, 0 if and only if , 1v yD x y g g x y T    (10) 

 

i.e., it takes the value 0 if the producer is technical efficient, and a value greater than 0 if 

not. The short-run unrestricted profit function from equation 5 may thus be defined in 

terms of the directional distance function: 

 

    
,

, , sup : , ; ,0, 0
v

f v v y
x y

r w x ry wx D x y g g      (11) 

 

Chambers et al. (1998) showed that the optimization problem in equation 11 can be written 

as an unconstrained problem: 

 

     , , , ; ,0,f v y v v yr w x ry wx rg wg D x y g g       (12) 
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Rewriting expression 12 and adding allocative inefficiency (AE) to secure equality, the 

Nerlovian profit efficiency and its decomposition into technical and allocative inefficiency is 

defined: 

 

   

 
 

, ,
, ; ,0,f v

v y

y v

r w x ry wx
D x y g g AE

rg wg

  
  


 (13) 

 

which takes the value 0 if the producer is profit efficient, and a value greater than 0 if not. 

The Nerlovian profit efficiency measure is invariant to proportional price changes due to the 

normalization (rgy+wgv). The normalization allows maximum profits to be zero or negative, 

which gives the measure an advantage over profit efficiency measures that use maximum 

profits as normalization. Furthermore, it allows identifying allocative profit inefficiency. This 

corresponds to the paper’s objective; to identify the effect of environmental regulations on 

allocative efficiency. 

Exploiting equation 9, i.e., that the directional distance function defined on T(b+a) is 

equivalent to the directional distance function defined on T1, equation 11 can be restated 

for the emission restricted profit function. Applying equation 12, the Nerlovian profit 

efficiency for the emission restricted technology is consequently: 
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 ( 14 ) 

By earlier results,    , , , , ,C
f fr w x r w x b a    and the directional distance functions in 

equations 13 and 14 are equivalent. This means that any difference between the 
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unrestricted and the emission restricted Nerlovian profit efficiencies (AE - AEC) is solely due 

to induced allocative inefficiency, arising because environmental regulations prevent 

producers from maximizing profits to the prevailing market prices for inputs and outputs.   

 

3. EMPIRICAL IMPLEMENTATION 

 

3.1. DATA ENVELOPMENT ANALYSIS 

Linear programming techniques are used to compute Nerlovian efficiencies for a sample of 

U.S. power plants that comply with legal restrictions on air pollution. Assume there are 

l=(1,..,L) power plants in the dataset. Each plant uses inputs  1,..,
l l l N

Nx x x    to 

produce desirable outputs  1,..,
l l l M

My y y   . The inputs are partitioned into V variable 

inputs and F quasifixed inputs, i.e.  ,l l l
v fx x x . Let λl, l=(1,..,L), be the intensity variables. 

The emission constrained DEA profit problem that maximizes profits under the exogenous 

emission constraints b+a is then defined for plant l’ as:  
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Note that both the emission constraints, l l
k kb a
 
 , and the emission factors,  ,l l

kn knn m
  , are 

plant specific. This reflects differences in fuel qualities across plants, which is relevant 

because fuel types and qualities are among the power plants’ key choice variables for 

complying with air pollution regulations. 

Since some of the plants in the sample are observed having negative short-run profits 

the intensity variables sum to one to allow for positive, negative, or zero maximal profits. 

This summing up condition can be altered to estimate the technology under non-increasing 

or constant returns to scale, something that is further discussed in the result section.  

To identify compliance costs, the DEA model in equation 15 must be computed twice for 

each plant. In the first computation, the materials balance constraints from equation 3 are 

included in the model. Equation 15 then determines the maximal short run profits for the 

emission restricted technology. In the second computation the materials balance 

constraints are omitted, and the optimization problem defines the traditional (unrestricted) 

profit maxima. A similar approach is proposed by Färe et al. (2004), who assess the effect of 
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risk-based capital requirements in banking on Nerlovian profit scores. Consider also 

calculating “hybrid models”, where a subset of the overall emissions constraints is applied in 

the estimations. These programs allow determining the relative importance of the different 

emission constraints with respect to regulatory compliance costs.  

The directional distance function is also calculated for each plant. For plant l’, it is 

defined as: 
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Applying the observed levels of variable inputs and desirable outputs as the direction 

vector, the profit differences in equations 13 and 14 are normalized by the sum of observed 

revenue and variable costs. It may be considered a proxy for the size of the plant (Färe et al., 

2004).  

 

3.2. DATASET - U.S. ELECTRICITY GENERATION 

The Acid Rain Program was introduced in 1995 to reduce American power plants’ emissions 

of NOX and SO2. Additional programs, including the federal NOX Budget Trading Program and 

the Clean Air Interstate Rule, were added later. Annual aggregate SO2 emissions declined 

from 13,000 to 4,000 thousand metric tons, and annual NOX emissions declined from 6,000 
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to 2,000 thousand metric tons in the period from 1995 to 2012. Recent declines in emissions 

may be influenced by the financial crises of 2007-2008 and not only by environmental 

legislation. 

Fuel substitution has been an important measure for compliance with the Acid Rain 

regulations. This includes switching between different types of coal, or substituting coal 

with other fossil fuels. The latter includes switching to natural gas that emits substantially 

less NOX and SO2 per unit of fuel than coal. Recent years have seen great changes in the 

prices for fossil fuels, and over time natural gas has become a more economically viable 

alternative to coal. The average price for coal rose steadily from 120 cents/mmBTU in the 

year 2000 to 243 cents/mmBTU in 2012. The average price for natural gas, on the other 

hand, was highly fluctuating in the same period. It rose from 430 cents/mmBTU in the year 

2000 to 830 cents/mmBTU in 2005, causing a major shift in the relative price between coal 

and gas in this period. The gas price remained high and volatile until it fell to 550 

cents/mmBTU in 2009. It has been steadily declining since, largely as a result of the 

maturing of alternative technologies for natural gas extraction. In 2012, the average gas 

price was 370 cents/mmBTU, only 127 cents higher than the average coal price.  

Coal-to-gas substitution is an interesting case study for empirical examination of 

regulatory induced allocative efficiencies because increasing (decreasing) gas prices are 

likely to raise (lower) the costs of regulatory compliance. When coal-to-gas switching 

becomes expensive, the designated producers are likely to choose other tools for 

compliance, e.g. pollution controls or purchases of emission allowances. If these options are 

unavailable or too costly the result may be an induced slowdown in the generation of 

electricity.  
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The model framework outlined in section 2 is applied to regulated American power 

plants with coal-to-gas substitution capacities. Following Welch and Barnum (2009), only 

plants that obtain at least one percent of their energy input from both coal and gas in year 

2002 are included in the sample to model a homogeneous production technology. The 

average price for gas was low in 2002, implying that plants with coal-to-gas substitution 

capacities are likely to have exploited this opportunity that year. Plants that satisfy the 

selection criterion in 2002 and use both coal and gas as energy inputs in the following years 

are kept in the sample. Producers that convert to single fuel production after 2002 are 

excluded to avoid corner solutions. These selection criteria result in a sample of 67 power 

plants in operation from 2002 to 2008.   

The DEA technology defined by equations 15 and 16 is assumed to consist of one 

desirable output, electricity, and two variable inputs, coal and gas. Coal and gas capacities 

are treated as quasifixed inputs and SO2 and NOx as bad outputs. The capacities 

approximate the capital inputs of the production stage. While previous studies (e.g., Hampf 

and Rødseth (2015a)) focus on aggregate capacity, I distinguish between coal and gas 

capacities as the plants’ abilities to substitute among coal and gas clearly depend on their 

shares.  

While similar studies on electricity generation (e.g. Färe et al. (2005; 2007)) frequently 

account for labor, some recent studies (e.g., Hampf and Rødseth (2015a) and 

Mekaroonreung and Johnson (2012)) advocate omitting labor because the limited 

availability of data contributes to a significant reduction in the (potential) sample size (see 

Hampf (2014) for an example). Labor is also considered a less important input when 

evaluating the environmental efficiencies of power plants; see Welch and Barnum (2009) for 
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details. Moreover, labor is a non-polluting input. This means that its emission factor is zero, 

and that the consumption of labor is not restricted by environmental regulations. This paper 

emphasizes inputs whose consumption is indirectly constrained by environmental 

regulation.    

The form EIA-906/920 provides monthly information on the plants’ fuel consumption 

and net generation. This information is aggregated up to annual levels. Prices and sulfur 

contents of the fuels are obtained from EIA-423/923, while the overall generating capacities 

are obtained from EIA’s statistics on capacity. They are further divided into coal capacities 

and gas capacities by applying information on each boiler’s primary and secondary fuels. 

The sales prices for electricity are calculated from the power plants’ retail and resale 

revenues, collected from EIA-861. Following Färe et al. (2005), the sales prices are taken to 

be the average of the retail and resale prices.  

Emission factors are required to imbed the materials balance conditions in the model. 

For the case of air pollution from electricity generation, only the fossil fuels are considered 

pollution-generating inputs and the recuperation factors for the intended output are zero 

(i.e., there is no sulfur or nitrogen embodied in the electricity output). Appendix A of EIA’s 

Electric Power Annual provides an overview of emission factors for various sub-groups of 

coal and gas that vary across different types of boilers. As our analysis is at the plant level, 

not at the boiler level, we construct plant-specific emission factors by applying fuel-specific 

emission factors given by the average of their boiler-specific counterparts6. When 

                                                           
6 Boiler-specific emission factors were derived in Rødseth, K.L., Romstad, E., 2014. Environmental regulations, 
producer responses, and secondary benefits: carbon dioxide reductions under the Acid Rain Program Environ 
Resour Econ 59, 111-135., but only for some of the years under consideration in this paper. Comparing the 
Nerlovian efficiency scores for 2005 with the corresponding results using Rødseth and Romstad’s data based 
on a set of non-parametric tests, I find that the simplifying assumption of an average-boiler emission factor has 
negligible impacts on the efficiency scores.  
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calculating SO2-emissions, the emission factors are adjusted with the plant-specific average 

sulfur contents of the fuels as specified by EIA. Moreover, they are converted into tons of 

emissions per unit of weight of fuels. Uncontrolled emissions of NOx and SO2 are obtained by 

multiplying the derived emission factors with the plants’ fuel inputs.  

Aggregate variables for coal and gas rather than the fuels’ subgroups are used as inputs. 

The purpose is to avoid missing observations for the disaggregated inputs and to emphasize 

coal-to-gas substitution rather than intrafuel-substitution. Aggregate emission factors for 

coal and gas are defined by the weighted sum of the emission factors for the fuels’ sub-

groups, using the share of fuels purchased from the various subgroups as weights to capture 

that different subgroups generate different amounts of air pollution. Summary statistics for 

the variables in the dataset are provided by table 3 in appendix A.          

Figure 2 plots the ratio of average coal-to-gas quantities and corresponding relative 

prices, to highlight the sample’s capacity to substitute between coal and gas. In 2002, the 

amount of gas used for electricity production is the highest observed due to its low price. In 

the following years, the sample’s consumption of gas declines as the gas price doubles from 

2002 to 2005, making coal-to-gas switching a less attractive instrument for regulatory 

compliance. Increasing prices for coal in the period following 2004 distort the price ratio and 

again provide the plants with incentives to increase their relative gas consumption. 
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Figure 2: Ratio of coal to gas quantities and prices for the plants in the sample 

 

4. RESULTS 

The linear programming problems for maximal profits and the directional distance function 

are estimated for each plant in each year between 2002 and 2008. The emission restricted 

profit maximum is estimated three times to account for compliance costs related specifically 

to SO2 or NOx emissions; first with both the SO2 and NOx constraints included in the DEA 

model, second with the SO2 constraint separately, and third with the NOx constraint 

separately. In total, four programming problems for maximal profits – three emissions 

restricted and one unrestricted – are estimated for each plant in each year. All linear 

programming problems are solved under the assumption that the sum of the intensity 

variables, λ, is equal to one. This condition results in the inner approximation to the true 

technology, allowing for variable returns to scale (VRS). Alternatively, the DEA models can 

be estimated under non-increasing returns to scale (NIRS) or constant returns to scale (CRS). 
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A battery of nonparametric tests7 - the Kolomogorov-Smirnov, ANOVA, Wilcoxon, and 

Median tests - reveal no differences (α=0.05) between the NIRS and VRS specifications in 

terms of Nerlovian, technical, and allocative efficiencies8. The ANOVA and Wilcoxon tests 

suggest that the “emission restricted” Nerlovian efficiency scores differ for the CRS and VRS 

specifications in four of the eight years considered due to differences in the estimates of 

technical efficiency. Since the allocative efficiency scores, not the technical efficiency scores, 

receive attention in this paper, the emphasis is solely on the VRS scores in the following. 

Table 1 provides an overview of mean Nerlovian efficiencies (NE), allocative efficiencies 

(AE), and technical efficiencies (TE). Standard deviations for the estimates are reported in 

brackets.  

 

 

 

 

 

 

 

 

 

                                                           
7 The printout from these tests is not reported due to space. The printouts are available 

from the author upon request.  

8 The only exception is the ANOVA test which suggests differences in technical efficiency 
scores for the years 2003, 2004, and 2007. 
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Table 1: Mean Nerlovian (NE), allocative (AE), and technical (TE) efficiencies (St.dev) 
 

YEAR 2002 2003 2004 2005 2006 2007 2008 

 

Both emission constraints 

NE  0.190 

(0.196) 

0.234 

(0.224) 

0.212 

(0.215) 

0.238 

(0.223) 

0.240 

(0.302) 

0.217 

(0.216) 

0.224 

(0.297) 

AE  0.100 

(0.109) 

0.093 

(0.107) 

0.082 

(0.113) 

0.090 

(0.105) 

0.107 

(0.206) 

0.095 

(0.141) 

0.119 

(0.221) 

 

SO2 constraint 

NE  0.209 

(0.226) 

0.239 

(0.231) 

0.214 

(0.217) 

0.239 

(0.224) 

0.242 

(0.305) 

0.222 

(0.219) 

0.227 

(0.302) 

AE  0.119 

(0.140) 

0.098 

(0.116) 

0.084 

(0.116) 

0.091 

(0.107) 

0.109 

(0.209) 

0.099 

(0.145) 

0.123 

(0.228) 

 

NOx constraint 

NE  0.191 

(0.197) 

0.236 

(0.224) 

0.214 

(0.215) 

0.240 

(0.224) 

0.243 

(0.302) 

0.220 

(0.216) 

0.225 

(0.297) 

AE  0.101 

(0.109) 

0.095 

(0.107) 

0.084 

(0.114) 

0.092 

(0.106) 

0.109 

(0.206) 

0.098 

(0.141) 

0.121 

(0.221) 

 

Without emission constraints 

NE  0.384 

(0.503) 

0.445 

(0.583) 

0.347 

(0.453) 

0.344 

(0.338) 

0.384 

(0.636) 

0.458 

(1.155) 

0.300 

(0.432) 

AE  0.295 

(0.449) 

0.304 

(0.534) 

0.217 

(0.411) 

0.196 

(0.238) 

0.251 

(0.574) 

0.335 

(1.153) 

0.195 

(0.368) 

 

Techical efficiency 

TE  0.090 

(0.111) 

0.141 

(0.131) 

0.130 

(0.126) 

0.148 

(0.150) 

0.133 

(0.132) 

0.123 

(0.117) 

0.104 

(0.123) 

 

Nerlovian efficiency averages between 0.19 and 0.24 for the model with both emission 

constraints. Its components – technical and allocative efficiencies – change little over time 

for this model specification. Mean allocative efficiencies range from 0.08 to 0.12, while 

mean technical efficiencies range from 0.09 to 0.159. Their corresponding standard 

deviations are modest and change little over time.  

                                                           
9 The choice of observed variable inputs and outputs as the direction vector for the 

directional distance function provides a natural interpretation for the TE estimates: When 

multiplied with 100 they report the percentage change in a plant’s variable inputs and 

outputs that would put the plant on the boundary of the estimated reference technology.   
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When the DEA model is estimated with either the SO2 constraint separately or the NOX 

constraint separately, the efficiency scores rise only slightly10. When, on the other hand, 

both emission constraints are omitted, the allocative efficiency scores increase substantially. 

Mean Nerlovian efficiencies then range between 0.30 and 0.46, while mean allocative 

efficiencies range between 0.20 and 0.34 for the model estimated without emission 

constraints. 

The difference between the allocative efficiency scores estimated with and without the 

emission constraints is a normalized measure of forgone profits due to environmental 

regulations. It fluctuates over time and ranges from 0.08 to 0.24 for the model estimated 

with both emission constraints. The corresponding standard deviations are also large and 

fluctuating, indicating that the plants in the sample are affected asymmetrically by the 

current regulations.  

Nonparametric testing of differences in the allocative efficiency scores estimated with 

and without the emission constraints is undertaken to evaluate whether the existing 

environmental regulations significantly affect the profitability of power generation. The null 

hypothesis for all tests is that there are no differences between the efficiency scores 

estimated with and without emission constraints in terms of their mean and distribution. 

Table 2 reports the test statistics for the Kolomogorov-Smirnov (KSM), ANOVA, Wilcoxon 

(WILC), and Median (MEDI) tests. P-values are reported in brackets. 

 

 
                                                           
10 A battery of statistical tests suggests that there are no differences between the allocative 

efficiency scores calculated with the SO2 and NOx constraints separately.  
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Table 2: Tests for differences in allocative efficiencies. Test statistics (P-values) 

YEAR 2002 2003 2004 2005 2006 2007 2008 

KSM  0.269 

(0.010) 

0.299 

(0.003) 

0.284 

(0.005) 

0.269 

(0.010) 

0.239 

(0.029) 

0.239 

(0.029) 

0.134 

(0.507) 

ANOVA  11.860 

(0.001) 

10.010 

(0.002) 

6.690 

(0.011) 

11.110 

(0.001) 

3.740 

(0.055) 

2.880 

(0.092) 

2.100 

(0.150) 

WILC 

 

3.018 

(0.003) 

2.976 

(0.003) 

2.793 

(0.005) 

2.337 

(0.019) 

1.890 

(0.059) 

2.374 

(0.018) 

1.440 

(0.150) 

MEDI 6.716 

(0.010) 

5.045 

(0.025) 

8.627 

(0.003) 

3.612 

(0.057) 

0.746 

(0.388) 

2.418 

(0.120) 

0.746 

(0.388) 

*Tests for differences in allocative efficiency scores calculated with and without emission constraints for SO2 and NOx 

 

The test results indicate that the regulatory constraints for SO2 and NOx have significant 

impact on profitability. Mixed results are obtained for the years 2006 and 2007, where in 

2006 the Kolomogorov-Smirnov test is the only test that rejects the null hypothesis at the 5 

percent level, and in 2007 both the Kolomogorov-Smirnov and Wilcoxon tests reject the null 

hypothesis while the ANOVA and Median tests do not. All four tests are unable to reject the 

null hypothesis in 2008. This result is an example of how market conditions influence the 

costs of complying with environmental regulations. That is, the outbreak of the financial 

crisis of 2007-2008 is likely to have reduced the profitability of electricity generation and 

thereby also lowered the power plants’ compliance costs.  

Overall, the results suggest that regulatory implications for allocative efficiency should 

receive more attention in future research. Tables 1 and 2 support the proposition that 

overall efficiency evaluations will underestimate environmentally regulated producers’ 

allocative efficiencies if the economic analysis ignores environmental constraints that 

influence their production possibilities. The allocative efficiency scores increase on average 

by 0.16 when the emission constraints are omitted, and the differences between the 

allocative efficiency scores estimated with and without emission constraints are found to be 

statistically significant for most years between 2002 and 2008.  
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In a recent paper, Aparicio et al. (2013) argue that the Nerlovian profit efficiency 

measure has no obvious economic interpretation. They propose a modified directional 

distance function that allows outputs to expand and inputs to contract by different 

proportions, and show that their distance function is dual to a Nerlovian-type profit 

measure where costs instead of the sum of costs and revenues make up the denominator of 

the profit efficiency measure. As a sensitivity test, I calculate the Aparicio et al.’s modified 

Nerlovian profit measure and directional distance function. The results are reported in 

appendix B. While the magnitudes of the efficiency scores generally are larger for Aparicio 

et al.’s approach than for the traditional Nerlovian efficiency approach, both approaches 

result on average in far larger allocative efficiency scores when emission constraints are 

ignored. Moreover, the intertemporal developments of the efficiency scores appear aligned. 

Using Aparicio et al.’s approach, the majority of the non-parametric tests indicate significant 

differences between allocative efficiency scores calculated with and without emission 

constraints from 2002 to 2004. In the following years, only the Anova test indicates 

significant differences between these efficiency scores.  In 2008, none of the tests suggest 

statistic differences between the efficiency scores.   

According to equation 4, the plants’ production plans are expected to be set according 

to the rule that their marginal costs of cleaning up emissions or purchasing emission permits 

equal the marginal economic benefits from being able to increase their emissions; cf. figure 

1. Changes in profits which follow by a marginal relaxation of the emission constraints 

thereby reflect the plants’ marginal abatement costs.  

Marginal abatement cost estimates are obtainable from the dual of the DEA program in 

equation 15, by evaluating the shadow prices (or dual variables) on the SO2 and NOx 
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constraints. However, since multiple solutions to the dual problem may exist the shadow 

prices are not necessarily unique; see Rosen et al. (1998) for more details. The solution to 

equation 15 is, on the other hand, unique. One option is to approximate the shadow price 

by manually calculating the maximal profits that result by one unit (i.e., one ton) relaxation 

of the SO2 and NOx constraints, respectively. Formally11:  
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 ( 17 ) 

 

Figure 3 reports the mean marginal abatement cost estimates for SO2 (the black bars) and 

NOx (the grey bars) and the corresponding mean quota prices for SO2 (the black line) and 

NOx (the grey line).  

The marginal abatement cost estimates are of the same magnitudes as the quota prices, 

in particular for SO2. This is not surprising since the Acid Rain Program includes market-

based regulation for SO2, while the regulations for NOx are to a larger extent based on 

emission standards. Given a well-functioning quota market for SO2, the quota price will 

reflect the units’ marginal abatement costs.  

 

                                                           
11 Note that equation 17 can be perceived as defining the partial directional derivative “to 

the right” of the current emission constraint. See Rosen et al. (1998, p. 213) for more 

details. 
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*The quota prices are set equal to averages of the price intervals reported by Mekaroonreung and Johnson (2012) 

Figure 3: Marginal abatement costs and quota prices (Dollar per ton) 

 

The marginal abatement cost estimates for NOx are in general higher than for SO2, 

which is in line with the reported quota prices. The estimates’ temporal pattern follows the 

the quota prices; cf. the decline in the average marginal abatement cost for NOx and the 

increase in the average marginal abatement cost for SO2 in the period between 2002 and 

2005. This contrasts the results of Mekaroonreung and Johnson’s (2012) recent 

comprehensive study on shadow prices of U.S. power plants’ SO2 and NOx emissions. Their 

(best) results suggest that the average marginal abatement cost for SO2 was 262 dollar per 

ton, and that it was relatively stable in the period between 2002 and 2008. The steep 

increase in the quota price for SO2 between 2002 and 2005 is thus not reflected by their 

estimates. Mekaroonreung and Johnson further found an average marginal abatement cost 

of 912 dollar per ton of NOx. While the magnitudes of their NOx shadow prices are 

reasonable, their estimates suggest that the marginal abatement costs for NOx peeked in 
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2005. This is the opposite of the developments of the corresponding quota price and the 

results obtained in this study.  

In the period from 2006 to 2008, the marginal abatement cost estimates are on average 

higher than the quota prices, both for SO2 and NOx. This may be the result of the Clean Air 

Interstate Rule (CAIR) that was issued by the Environmental Protection Agency in 2005. This 

program was more ambitious than the Clean Air regulations and is likely to have increased 

the power producers’ compliance costs.  

 

5. SUMMARY AND CONCLUSIONS 

This paper examines the proposition that failing to control for the implications of 

environmental regulations on the performances of regulated decision making units results 

in biased efficiency measurement. A modeling approach that allows disentangling 

managerial and regulatory induced allocative inefficiencies is proposed. Regulatory induced 

allocative inefficiencies are representations of the producers’ compliance costs and 

consequentially provide important economic insights to policy makers.   

The paper utilizes DEA to compute the Nerlovian profit efficiencies and their technical 

and allocative efficiency components for a sample of 67 U.S. power plants equipped with 

coal-to gas substitution capabilities. The sample is observed in the period from 2002-2008, a 

period with fluctuating fuel prices and increasingly more stringent environmental 

regulations. The empirical results support the proposal that failing to control for the impact 

of environmental regulations leads to biased efficiency measurement as the allocative 

efficiency scores are about 2.7 times larger when existing environmental regulations are not 

accounted for. The modeling approach also proves useful for deriving marginal abatement 
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cost estimates that not only are of the same magnitudes as the quota prices for SO2 and 

NOx, but also largely follow their fluctuations.   

 Several previous contributions to environmental economics have been concerned with 

the implications of environmental regulations for technical efficiency. The empirical results 

of this paper suggest that this discussion should be broadened to also include allocative 

efficiency. Future research should focus on developing methods and approaches that allow 

joint evaluation of the implications of environmental regulations on technical and allocative 

efficiencies, and to develop new knowledge about how different compliance strategies 

affect the two types of efficiencies. New insights on these issues will facilitate a better 

understanding of the economic implications of environmental regulations.     
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7. APPENDIX A 

Table 3: Summary Statistics 
 

 YEAR 

 2002 2003 2004 2005 2006 2007 2008 

COAL  (t) 
1207965.0 

(1219278.0) 

1184212.0 

(1225455.0) 

1272225.0 

(1257144.0) 

1282352.0   

(1287343.0) 

1292302.0 

(1294303.0) 

1285967.0 

(1226576.0) 

1243757.0 

(1239058.0) 

GAS     (mCF) 3609969.0 

(7113197.0) 

2045929.0 

(4443897.0) 

2143212.0 

(4817720.0) 

2342252.0 

(5286427.0) 

2371563.0 

(4996507.0) 

2928845.0 

(5701523.0) 

2700399.0 

(6226449.0) 

EL    (MwH) 
2840733.0 

(2997614.0) 

2643367.0 

(2807723.0) 

2813297.0 

(2814453.0) 

2836137.0 

(2895691.0) 

2817207.0 

(2898768.0) 

2880542.0 

(2906832.0) 

2735781.0 

(2855661) 

 COAL
CAP (MW) 

364.2 

(377.1) 

364.2 

(377.1) 

351.5 

(365.4) 

350.9 

(365.7) 

350.6 

(365.4) 

360.5 

(393.0) 

379.7 

(408.2) 

GAS
CAP   (MW) 

327.6 

(331.8) 

327.6 

(331.8) 

355.9 

(347.7) 

356.6 

(347.9) 

366.5 

(361.6) 

363.3 

(338.1) 

355.0 

(336.6) 

2

UC

SO
b       (t) 15368.8 

(19200.0) 

14446.7 

(18264.6) 

15797.5 

(18645.7) 

16849.9 

(21840.7) 

17171.0 

(22536.4) 

16684.6 

(22033.1) 

16236.3 

(22208.4) 

UC

NOX
b      (t) 7054.9 

(7089.2) 

6669.1 

(7039.0) 

7181.8 

(6989.6) 

7377.1 

(7350.7) 

7445.7 

(7394.0) 

7530.2 

(7317.3) 

7204.0 

(7086.3) 

2

COAL

SO
n  

1.51e-02 

(1.28e-02) 

1.48e-02 

(1.25e-02) 

1.51e-02 

(1.27e-02) 

1.59e-02 

(1.44e-02) 

1.56e-02 

(1.31e-02) 

1.48e-02 

(1.22e-02) 

1.56e-02 

(1.40e-02) 

COAL

NOX
n  

5.70e-03 

(1.25e-03) 

5.68e-03 

(1.38e-03) 

5.73e-03 

(1.24e-03) 

5.77e-03 

(1.22e-03) 

5.76e-03 

(1.23e-03) 

5.76e-03 

(1.23e-03) 

5.75e-03 

(1.23e-03) 

2

GAS

SO
n  

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

3.00e-07 

(0.00e+00) 

GAS

NOX
n  

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

1.40e-04 

(0.00e+00) 

EL
r  

45.7 

(9.8) 

47.3 

(10.7) 

48.2 

(11.1) 

57.4 

(15.4) 

60.7 

(16.6) 

61.6 

(13.2) 

66.8 

(15.8) 

COAL
w  

28.1 

(10.5) 

27.8 

(9.9) 

30.2 

(12.8) 

36.6 

(16.6) 

40.1 

(17.6) 

42.9 

(18.5) 

50.3 

(24.2) 

GAS
w  

4.3 

(1.4) 

6.1 

(1.2) 

7.3 

(2.9) 

9.2 

(1.3) 

8.0 

(0.9) 

7.9 

(1.1) 

10.0 

(2.4) 
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8. APPENDIX B 

 

Table 4: Mean Nerlovian (NE), allocative (AE), and technical (TE) efficiencies (St.dev) 
YEAR 2002 2003 2004 2005 2006 2007 2008 

 

Both emission constraints 

NE  0.690 

(0.678) 

0.887 

(0.878) 

0.777 

(0.757) 

0.847 

(0.791) 

0.838 

(1.131) 

0.634 

(0.660) 

0.690 

(0.912) 

AE  0.513 

(0.507) 

0.605 

(0.656) 

0.504 

(0.542) 

0.511 

(0.537) 

0.540 

(0.918) 

0.355 

(0.466) 

0.429 

(0.671) 

 

Without emission constraints 

NE  1.347 

(1.634) 

1.575 

(1.875) 

1.227 

(1.480) 

1.214 

(1.260) 

1.331 

(2.334) 

1.037 

(1.547) 

0.936 

(1.324) 

AE  1.171 

(1.525) 

1.294 

(1.743) 

0.954 

(1.370) 

0.877 

(1.039) 

1.034 

(2.180) 

0.757 

(1.477) 

0.675 

(1.129) 

 

Techical efficiency 

TE  0.177 

(0.219) 

0.281 

(0.264) 

0.270 

(0.276) 

0.336 

(0.371) 

0.297 

(0.327) 

0.280 

(0.292) 

0.261 

(0.353) 

 

Table 5: Tests for differences in allocative efficiencies. Test statistics (P-values) 

YEAR 2002 2003 2004 2005 2006 2007 2008 

KSM  0.284 

(0.009) 

0.224 

(0.070) 

0.179 

(0.233) 

0.179 

(0.233) 

0.179 

(0.233) 

0.194 

(0.160) 

0.149 

(0.444) 

ANOVA  11.220 

(0.001) 

9.010 

(0.003) 

6.160 

(0.014) 

6.580 

(0.011) 

2.880 

(0.092) 

4.460 

(0.037) 

2.320 

(0.130) 

WILC 

 

2.670 

(0.008) 

2.422 

(0.015) 

1.935 

(0.053) 

1.748 

(0.081) 

1.372 

(0.170) 

1.646 

(0.100) 

1.101 

(0.271) 

MEDI 3.612 

(0.042) 

6.717 

(0.008) 

2.418 

(0.083) 

1.463 

(0.150) 

0.269 

(0.365) 

1.463 

(0.150) 

0.269 

(0.365) 

 


