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Abstract 

Background: For marker effect models and genomic animal models, computational requirements increase with the 
number of loci and the number of genotyped individuals, respectively. In the latter case, the inverse genomic relation-
ship matrix (GRM) is typically needed, which is computationally demanding to compute for large datasets. Thus, there 
is a great need for dimensionality-reduction methods that can analyze massive genomic data. For this purpose, we 
developed reduced-dimension singular value decomposition (SVD) based models for genomic prediction.

Methods: Fast SVD is performed by analyzing different chromosomes/genome segments in parallel and/or by 
restricting SVD to a limited core of genotyped individuals, producing chromosome- or segment-specific principal 
components (PC). Given a limited effective population size, nearly all the genetic variation can be effectively captured 
by a limited number of PC. Genomic prediction can then be performed either by PC ridge regression (PCRR) or by 
genomic animal models using an inverse GRM computed from the chosen PC (PCIG). In the latter case, computation 
of the inverse GRM will be feasible for any number of genotyped individuals and can be readily produced row- or 
element-wise.

Results: Using simulated data, we show that PCRR and PCIG models, using chromosome-wise SVD of a core sample 
of individuals, are appropriate for genomic prediction in a larger population, and results in virtually identical predicted 
breeding values as the original full-dimension genomic model (r = 1.000). Compared with other algorithms (e.g. 
algorithm for proven and young animals, APY), the (chromosome-wise SVD-based) PCRR and PCIG models were more 
robust to size of the core sample, giving nearly identical results even down to 500 core individuals. The method was 
also successfully tested on a large multi-breed dataset.

Conclusions: SVD can be used for dimensionality reduction of large genomic datasets. After SVD, genomic predic-
tion using dense genomic data and many genotyped individuals can be done in a computationally efficient manner. 
Using this method, the resulting genomic estimated breeding values were virtually identical to those computed from 
a full-dimension genomic model.
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Background
In recent years, genomic prediction [1] has revolu-
tionized animal and plant breeding methods. With 
decreasing genotyping costs, the number of genotyped 
individuals has increased exponentially over years, with 
up to full sequence of genomic information available 
for prediction. Genomic prediction can be performed 

using two families of genomic models: marker effects 
models (MEM) (e.g. SNP-best linear unbiased predic-
tion (BLUP), BayesA, BayesB, BayesC, etc.), and animal 
models that use a genomic relationship matrix (GRM). 
The latter can be further divided into genomic models 
that include genotyped animals only (genomic BLUP, i.e. 
GBLUP) and single-step GBLUP (ssGBLUP) models [2, 
3] that combine genotyped and ungenotyped animals. 
The advantage of genomic animal models is that they fit 
nicely within the traditional linear models’ framework, 
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and can essentially be adapted to any kind of linear or 
generalized linear animal model (single-trait, multi-trait, 
random regression, etc.).

However, with the increasing number of genotyped 
individuals and increasing density of genotypes, the 
computational requirements of genomic prediction 
models increase accordingly. Hence, MEM analysis of 
full sequence data, e.g. using Bayesian variable selection 
models, will be very demanding in terms of computing 
time. For ssGBLUP [2, 3], the inverse of the GRM is com-
puted prior to analysis, which may be practically impos-
sible when the number of genotyped animals becomes 
very large (e.g. > 100,000). To address the latter, Misztal 
et al. [4] proposed the “algorithm for proven and young 
animals” (APY), which uses a core sample of individuals 
to compute an approximate inverse of the GRM for all 
animals. However, in some cases, the total GRM does not 
have full rank, and thus no inverse. Therefore, Fernando 
et  al. [5] suggested exact methods to obtain ssGBLUP 
solutions. One of the options that they proposed was to 
model animal genetic effects as linear combinations of 
independent factors. In the following section, we propose 
a related strategy that applies singular value decomposi-
tion (SVD) to perform large-scale genomic evaluation, 
both for MEM and animal genomic models. Thus, our 
study aims at: (1) using SVD and principal component 
(PC) ridge regression (PCRR) for genomic prediction as 
an alternative to MEM, using up to full sequence genomic 
data, and (2) applying SVD techniques for computation 
of exact inverses of PC-based GRM, using dimensionality 
reduction.

Methods
Marker effect models
Assume that dense single nucleotide polymorphism 
(SNP) genotypes for k loci are available for N  animals. 
Omitting fixed effects for simplicity, the simplest MEM 
(called SNP-BLUP) can be specified as [1]:

where y is a vector of phenotypes, X is an N × k (cen-
tered) matrix of genotype dosage for all SNPs and all ani-
mals, b ∼ N

(

0, Iσ 2
m

)

 is a vector of SNP allele substitution 
effects, σ 2

m is the variance of SNP effects, e ∼ N
(

0, Iσ 2
e

)

 is 
a vector of random residuals, and σ 2

e  is the residual vari-
ance. The SNP-BLUP equations [6] are:

where � = σ 2
e

σ 2
m

 is the ratio of residual variance to SNP 

effects variance. Here, we assume that the SNP effects 
variance is: σ 2

m = σ 2
g

2
∑k

i=1 pi(1−pi)
, where σ 2

g  is the total 

(1)y = Xb+ e,

(2)
[

X′X + �I
]

b̂ = X′y,

additive genetic variance and pi is the allele frequency 
at locus i. The dimension of the equation system is 
equal to the number of loci (k). Hence, if k is large (e.g. 
full sequence), solving this system of equations may be 
difficult.

Gblup
A GBLUP (animal) model, equivalent to the above SNP-
BLUP model (i.e. assuming all animals have data) is [7]:

where e is as defined above and g ∼ N
(

0,Gσ 2
g

)

 is a vec-
tor of additive genetic effects. Now, the equation system 
becomes [7]:

where � = σ 2
e

σ 2
g
, i.e. the ratio of residual to total addi-

tive genetic variance. The GRM G is a function of the 
observed genotypes, e.g. based on VanRaden’s Method 
1 [8], G = 1

ρ
XX′, where ρ = 2p′(1− p), with p being 

a vector of SNP allele frequencies in the population. In 
populations of limited effective size (Ne), the genomic 
relationships are a result of the segregation of a lim-
ited number of haplotype segments, and thus, G may 
not be positive definite, implying that its inverse does 
not exist. In such cases, G is still positive semidefi-
nite, i.e., for any non-zero vector z of N real numbers: 
z′Gz = 1

ρ
z′XX′z = 1

ρ
u′u ≥ 0 

(

u = X′z
)

. We defined an 
approximated GRM: G̃ = (G+ Iθ) = 1

ρ

(

XX′ + Iρθ
)

 , 
where θ is a small number (e.g.  10−3). The matrix 
G̃ is positive definite, and thus invertible, as: 
z′G̃z = 1

ρ
· u′u + θ · z′z > 0. Adding θ to the GRM diag-

onal elements has a negligible effect on the solutions and 
may be viewed as fitting a (tiny) fraction of the residual 
as a part of the additive genetic effects, and thus is essen-
tially equivalent to the original GBLUP model. Although 
G̃−1 exists, computing it by direct “brute-force” inversion 
will be increasingly challenging, and eventually impos-
sible, as the number of genotyped individuals increases 
(e.g. for N   >  100,000). Another option is to specify the 
equation system as [9]:

which do not require an invertible G. However, for typi-
cal single-step evaluations, the inverse of the GRM is 
still needed [2, 3]. The dimension of the GRM is equal to 
number of genotyped animals N , which may be smaller 
than number of loci k (at least for dense genomic data). 
In the opposite case, when the number of genotyped ani-
mals exceeds the number of loci, G does not exist, but the 

(3)y = g + e,

(4)
[

I+ �gG
−1

]

ĝ = y,

(5)
[

G+ �g I
]

ĝ = Gy,
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exact inverse of G̃ can be calculated by the Woodbury 
formula [10]:

where I and Ik are identity matrices of rank N  (animals), 
and k (number of loci), respectively. This implies that the 
(k × k) matrix 

(

X′X + Ikρθ
)

 has to be inverted rather 
than the (N × N) GRM. Still, for large k, computing a 
direct inverse may be computationally difficult. We will 
show later how dimensionality reduction of genomic data 
can be used for the efficient computation of the inverse of 
large GRM.

Principal component ridge regression (PCRR)
Related animals typically share large segments of DNA, 
and for dense genomic data, substantial linkage dis-
equilibrium (LD) is expected between closely linked 
loci. Hence, the genomic variation, even with up to full 
sequence data, is likely largely explained by a smaller 
number of underlying components, i.e., using principal 
component analysis, majority of the genomic variation 
can be described by a limited number of principal com-
ponents (PC). For a genotype matrix X of size (N × k), 
assuming that N < k (more markers than individuals), 
an economy-sized (i.e. only keeping PC with eigenval-
ues > 0) SVD e.g. [11] would be:

where U is (N × N ), V is (N × k), and S is a diago-
nal matrix of dimension N , with singular values on the 
diagonal (square root of eigenvalues). Furthermore, 
U′U = UU′ = I, and V′V = I, while VV′ �= I (for N < k ). 
The SVD (rectangular matrices) and eigenvalue decom-
position (symmetric matrices) have previously been used 
in genomic models [12, 13]. The SNP-BLUP model can 
be re-parametrized into a PCRR model [13] by defining 
s = V′b (PC regression coefficients). The model can be 
specified as:

where e is as defined above, the score matrix 
T = US = XV, and s ∼ N

(

0, Iσ 2
m

)

. There is an exact 
relationship between solutions to Henderson’s mixed 
model equations (HMME) that correspond to the PCRR 
and MEM models, given as b̂ = Vŝ [14]. As ŝ = V′b̂, this 
implies that b̂ = VV′b̂, even when VV′ �= I (for example 
when the number of loci exceeds the number of animals), 
a proof of which is in the Appendix. We illustrate this 
with the following small numerical example.

(6)

G̃
−1 = ρ

(

XX
′ + Iρθ

)−1

= ρ

(

Iρ−1θ−1 − Iρ−1θ−1
X

(

Ik + X
′
Iρ−1θ−1

X

)−1

X
′
Iρ−1θ−1

)

= 1

θ

(

I− X
(

X
′
X + Ikρθ

)−1
X
′
)

,

(7)X = USV′
,

(8)y = Ts+ e,

Consider centered genotypes of four individuals with 
five loci as:

which has more loci than animals. In addition, the gen-
otypes of the four animals are not linearly independ-
ent, yielding a genotype matrix of rank 3. Assume that 
the four individuals have the following phenotypes: 

y =







− 0.5

− 0.5

0.0

1.0






. Then, using � = 1 gives the following SNP 

effect solutions: b̂ =











− 0.0556

− 0.3535

− 0.1717

− 0.3737

0.2273











.

As X has rank 3, it can be decomposed as X = USV′ , 
keeping the first three components. The SVD matrices of 
X are:

Hence, VV′b̂ = b̂, although VV′ �= I.
The SNP-BLUP equations can then be re-arranged into 

an equivalent PCRR equation system (see Appendix):

X =







0 1 0 1 0

1 − 1 − 1 1 0

− 1 1 1 − 1 0

0 0 − 1 − 1 1






,

U =







0.000000 0.525731 − 0.850651

0.707107 0.000000 0.000000

− 0.707107 0.000000 0.000000

0.000000 − 0.850651 − 0.525731






,

S = diag





2.82843

1.90211

1.17557



, and

V =











0.500000 0.000000 0.000000

− 0.500000 0.276393 − 0.723607

− 0.500000 0.447214 0.447214

0.500000 0.723607 − 0.276393

0.000000 − 0.447214 − 0.447214











.

Then, VV′ =











0.25 − 0.25 − 0.25 0.25 0.00

− 0.25 0.85 0.05 0.15 0.20

− 0.25 0.05 0.65 − 0.05 − 0.40

0.25 0.15 − 0.05 0.85 − 0.20

0.00 0.20 − 0.40 − 0.20 0.40











,

and VV′b̂ =











− 0.0556

− 0.3535

− 0.1717

− 0.3737

0.2273











.

(9)
[

S2 + �I
]

ŝ = T′y.
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Note that T′T = SU′US = S2. Predictions of individual 
genetic effects can then be obtained as:

In this system of equations, there are (at most) N  inde-
pendent effects to be estimated, rather than k effects 
(number of loci), and both S2 and I are diagonal matrices. 
Hence, the entire left-hand side of the BLUP equation 
system is diagonal, with diagonal elements 

(

S2ii + �
)

. This 
equation system is extremely easy to solve, even for very 
large y and many genotypes and animals. The main chal-
lenge thus lies in performing SVD of matrix X.

Performing large‑scale SVD analyses on genomic data
Although both population size and the number of loci 
can be substantial, the effective number of loci is lim-
ited by Ne, which may be rather small in farmed animal 
populations. According to Meuwissen et  al. [15], the 
effective number of loci in a population is: Me = 2NeL

log(2Ne)
 , 

where L is the genome length in Morgans. For example, 
for a population of Ne = 200 and L = 20, Me = 1335, i.e. 
about 67 effective loci per Morgan. This can be explained 
by genomic data coming from larger haplotype blocks 
with restricted recombination, and a reduced number 
of PC can thus explain all or nearly all genetic varia-
tion, even for very large populations, when Ne is limited 
(the smallest PC may actually capture genotyping errors 
or extremely rare alleles). Still, computing a low-rank 
approximation of X through SVD of the entire genotype 
dataset can be computationally very demanding for large 
N  and k. One possibility is to perform SVD on a subset of 
the individuals, which will be referred to as the core sam-
ple, equivalent to the core sample of the APY algorithm 
[4], and use the results for reduced-rank approximation 
of the entire genomic dataset. The core sample should 
be representative of the population and sufficiently large 
such that all or nearly all genetic variation is captured, 
but at the same time be restricted to a computationally 
manageable size. More specifically, a reduced matrix, 
e.g. n rows (individuals) of the genotype matrix X are 
extracted, resulting in the matrix:

For a population with limited Me, it is expected that a 
representative and moderately sized core sample would 
span nearly all genetic variation in the population. Hence, 
for increasing n, the most important eigenvectors of 
X

′
nXn will approach the most important eigenvectors 

of the entire X′X, i.e. the first few columns in Vn likely 
approach the first few columns in V. Hence, Vn can be 
used to approximate the scores for the non-core ani-
mals. In the case where SVD is performed on the entire 

(10)ĝ = Tŝ.

(11)Xn = UnSnV
′
n.

dataset, the score matrix is: T = XV
(

= USV′V = US
)

.  
For a reduced-dimension model, the score matrix is: 
Tq = XVq , where Vq includes the first q eigenvectors of 
V. As now SVD is performed on a smaller core sample, 
the reduced-dimension score matrix can be estimated by 
replacing Vq with Vnq (i.e. the first q eigenvectors of Vn):

The model can now be written as:

and the PCRR equation system becomes:

Now, ŝ = V′
nqb̂ (i.e. Vnq has replaced Vq from the entire 

population). Note that C′C is not a diagonal matrix. The 
dimension of this equation system (genomic effects) is 
the number of chosen components (based on the core 
sample), q (≤ n). Hence, given that an SVD can be per-
formed on the n× k genomic dataset of the core sample, 
a direct solution to the (maximum) n× n PCRR equation 
system would be straightforward.

Alternatively, dimensionality reduction and SVD of 
the entire genomic data set can be performed in three 
steps: (1) SVD on genomic data of the core sub-sample; 
(2) dimensionality reduction of the entire genomic data 
X set using Eq. (12), resulting in the reduced-dimension 
matrix C; and (3) SVD of C (without further dimensional-
ity reduction), resulting in a score matrix T̂ of the entire 
genomic data set X. Hence:

Now: X ≈ CVnq
′ = T̂V

′
CVnq

′ = T̂V̂′.
The model is now:

Here, t̂ = V
′
Cŝ = V

′
CV

′
nqb̂ = V̂′b̂. Note that T̂ has 

the same dimension as C, but T̂′T̂ = S2C (diagonal) and 
V̂′V̂ = I. The PCRR equation system is thus:

for which the coefficient matrix is diagonal, making the 
equation system easy to solve.

A small numerical example illustrates the method. 
Consider the genotypes of five individuals (the four 
given in the earlier example and an additional ani-

mal): X =











0 1 0 1 0

1 − 1 − 1 1 0

− 1 1 1 − 1 0

0 0 − 1 − 1 1

0 1 0 1 0











. This centered genotype 

(12)C = XVnq .

(13)y = Cs+ e,

(14)
[

C′C+ �I
]

ŝ = C′y.

(15)C = UCSCV
′
C = T̂V

′
C.

(16)y = T̂t + e.

(17)
[

S2C + �I
]

t̂ = T̂′y,
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matrix still has rank 3 and, thus, there is room for dimen-
sion reduction. The genotype of the last individual is 
identical to the first individual, and thus we consider the 
first four individuals as core sample and use this in SVD 
(keeping the first three components):

Matrix C can be used directly in PCRR. Assume that 
the five individuals have the following phenotypes 

(assuming no fixed effects): y =











− 0.5

− 0.5

0.0

1.0

− 0.7











 and � = 1 . 

Then, solving the equation system: 
[

C′C+ �I
]

ŝ = C′y, 

yields ŝ =





− 0.111

− 0.497

0.025



 and ĝ = Cŝ =











− 0.522

− 0.222

0.222

0.789

− 0.522











.

Note that C′C is not a diagonal matrix. Alter-
natively, a second-stage SVD can be per-
formed, giving C = UCSCV

′
C = T̂V

′
C. Now: 

T̂ = UCSC =











0.00 1.29 − 0.57 0.00

2.00 0.00 0.00 0.00

− 2.00 0.00 0.00 0.00

0.00 − 1.29 − 1.15 0.00

0.00 1.29 − 0.57 0.00











.

Here, T̂′T̂ = S2C (diagonal) and solving the equation 

system 
[

S2C + �I
]

t̂ = T̂
′
y yields t̂ =





0.111

0.473

− 0.154



, and 

ĝ = T̂t̂ =











− 0.522

− 0.222

0.222

0.789

− 0.522











, i.e. exactly the same animal solu-

tions as above.

Performing SVD in parallel on genome segments
The SVD can be performed independently (in parallel) on 
different genome segments (in this case, chromosomes). 

Xn =







0 1 0 1 0

1 − 1 − 1 1 0

− 1 1 1 − 1 0

0 0 − 1 − 1 1






= UnSnV

′
n

C = XVn3 =











0.00 1.00 − 1.00

2.00 0.00 0.00

− 2.00 0.00 0.00

0.00 − 1.62 − 0.62

0.00 1.00 − 1.00











.

This implies that different (but not necessarily fully inde-
pendent) sets of PC are chosen for each segment. For the 
core sample, the economy-sized SVD of chromosome i is 
thus:

As above, the approximated score matrix T̂ of X can be 
computed in three steps: (1) perform chromosome-wise 
SVD on a core sample of genomic data for each chromo-
some (same core individuals for all chromosomes); (2) 
compute chromosome-specific reduced rank Ci = XiVinq 
for all individuals (core and non-core) and concatenate 
these into C =

[

C1 C2 . . . Cc

]

; and (3) perform SVD 
of C = UCSCVC

′ and compute the reduced dimension 
score matrix T̂ = UCSC (without further rank reduction).

The entire genotype matrix across all chromosomes 
can then be approximated as:

The model and equation system are then as described 
above (Eqs.  16 and 17). As above, matrix C can also 
be used directly in PCRR, although the mixed model 
coefficient matrix may be dense (but of reduced 
dimensionality).

For each chromosome, the effective number of segregat-
ing loci is much smaller than for the whole genome, imply-
ing that fewer PC (< n) will be needed per chromosome 
than for the whole genome. The total number of chosen 
PC (at most n× c, where c is the number of chromosomes) 
is 
∑

qi, where qi is the number of chosen PC for chromo-
some i. Still, since SVD of the core sample genomic data 
is performed chromosome-wise, the final number of cho-
sen PC may potentially exceed the number of animals in 
the core subpopulation. This implies that genetic variation 
of the core and non-core subpopulations is assumed to be 
explained by a limited number of common components 
(i.e. haplotype blocks), and that the number of components 
that segregate in the core may be larger than the number 
of core individuals. In contrast, the APY algorithm assumes 
that all genetic variation is explained by the additive genetic 
effects of the core individuals, rather than by the haplotype 
blocks that segregate among those individuals.

Principal component based algorithm for inverting the 
GRM (PCIG)
Single-step genomic analyses are widely used in the analy-
sis of real data. As mentioned earlier, the (original) single-
step equation system requires the inverse of the GRM 

(18)Xin = UinSinV
′
in,

(19)Tin = UinSin.

(20)

X ≈ C





V1nq
′ 0 0

0 . . . 0

0 0 Vcnq
′



 = T̂V

′

C





V1nq
′ 0 0

0 . . . 0

0 0 Vcnq
′



 = T̂V̂.
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(

G−1
)

 to be computed prior to analysis. If inversion is 
done by “brute force”, large-scale analyses that potentially 
include millions of genotyped animals will be virtually 
impossible to perform. However, in the following section 
we describe how the GRM for such data can be effectively 
approximated through SVD techniques and how the exact 
inverse of an approximated GRM can be obtained.

If SVD of C can be performed as described above: 
X ≈ T̂V̂

′
. A PC-based GRM then is:

where ρ = 2p′(1− p), with p being a vector of SNP 
allele frequencies in the population. An actual inverse 
of G may not exist, as XX′ may not have full rank 
(even with very dense SNP data), while a reduced-
rank T̂T̂′ (rank < N) is never invertible. As above, this 
problem can be circumvented by replacing G with 

G̃ = ρT̂T̂
′
+ Iθ = 1

ρ

(

T̂T̂
′
+ Iρθ

)

, where θ is a small 

value (e.g.  10−3) to ensure that G̃ is positive definite and 
thus can be inverted. Using the Woodbury formula [10], 
the exact inverse of G̃ is:

where Ip is an identity matrix of dimension 
∑

qi (number 
of chosen PC summed over all chromosomes). The only 
matrix that needs to be inverted explicitly is 

(

S2C + Ipρθ
)

 , 
which is diagonal. Hence, given that S2C and T̂ are availa-
ble, computing G̃−1 is not very demanding. Furthermore, 
the inverse relationships can be computed row by row as:

The above inverse of GRM requires an SVD of the C 
matrix (as described in the stepwise procedures above). 
However, since CC′ = T̂Vc

′VcT̂
′ = T̂T̂′, the above 

inverse of the GRM can also be computed as:

Thus, the only explicit inverse needed here is 
(

C′C+ Ipρθ
)−1, which is of full rank and has dimen-

sion 
∑

qi. For example, 
∑

qi ≤ 10,000 components may 
be sufficient to describe essentially all genetic variation, 

(21)G = 1

ρ
· XX′ ≈ 1

ρ
· T̂V̂′

V̂T̂
′
= 1

ρ
· T̂T̂′

,

(22)

G̃−1 = ρ

(

T̂T̂′ + Iρθ
)−1

= ρ

(

Iρ−1θ−1 − Iρ−1θ−1T̂
(

Ip + T̂′Iρ−1θ−1T̂
)−1

T̂′Iρ−1θ−1

)

= 1

θ

(

I− T̂
(

S2C + Ipρθ
)−1

T̂

)

,

G̃−1
i

= 1

θ

(

Ii − T̂i

(

S2C + Ipρθ
)−1

T̂′
)

.

(23)

G̃−1 = ρ
(

CC′ + Iρθ
)−1

= ρ

(

Iρ−1θ−1 − Iρ−1θ−1C
(

Ip + C′Iρ−1θ−1C
)−1

C′Iρ−1θ−1

)

= 1

θ

(

I− C
(

C′C+ Ipρθ
)−1

C′
)

.

even for a large genotyped population if it has limited 
Ne . Under these assumptions, an inverse of GRM can be 
computed for any number of genotyped individuals.

QR‑based algorithm for inverting GRM (QRIG)
Fernando et  al. [5] suggested a QR decomposition of 
the X matrix, which is generally faster than SVD. A QR 
decomposition of matrix Xn

′, of dimension k × n, with 
n < k, is:

where Qn is a k × n matrix with orthogonal columns (i.e. 
Q

′
nQn = I,QnQ

′
n �= I), while Rn is a n× n upper triangu-

lar matrix. Furthermore, R′

n = XnQn. The genomic rela-
tionship matrix for the core sample is:

As in the APY algorithm, this method assumes that 
(nearly) all genetic variation is captured by the additive 
genetic effects of individuals in the core sample. For the 
entire dataset X (sorted such that the core sample comes 
first), this implies that:

where R̂′ =
[

R′
n

R̂′
−n

]

, R̂′
−n = X−nQn, and X−n is the gen-

otype matrix of all non-core individuals. The GRM can 
thus be approximated as:

where R̂ is a n× N  matrix, which is considerably smaller 
than the original X (N × k). This approach is equivalent 
to strategy IV of Fernando et al. [5] (except that core ani-
mals are assumed to explain nearly all genomic variation 
rather than all genomic variation exactly). Here, geno-
types of all animals are expressed as linear functions of 
genotypes of a reduced set of animals (rows in the geno-
type matrix). In their case, this result was used to com-
pute a reduced set of components. Here, instead we use R̂ 
to compute a QR-based inverse of GRM (QRIG) as:

Thus, the only part that needs to be inverted explicitly 
is the n× n matrix 

(

R̂
′
R̂ + Ipρθ

)

. The QR factorization 

(24)
X′
n = QnRn

i.e. Xn = Rn
′Qn

′
,

(25)Gn = 1

ρ
· XnX

′
n = 1

ρ
· R′

nQ
′
nQnRn = 1

ρ
· R′

nRn.

(26)X = R′Q′ ≈
[

R′
n 0

R̂′
−n 0

][

Q′
n 0

0 0

]

= R̂′Qn
′,

(27)G ≈ 1

ρ
· R̂′Qn

′QnR̂ = 1

ρ
· R̂′R̂,

(28)
G̃
−1 = ρ

(

R̂
′
R̂ + Iρθ

)−1

= 1

θ

(

I− R̂

(

R̂
′
R̂ + Ipρθ

)−1

R̂
′
)

.
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can, as for SVD, be parallelized through chromosome-
wise factorizations. Then, an overall QR is performed on 
the combined R matrix:

where Rin is an R matrix that is obtained from QR fac-
torization of the genomic data on chromosome i and Rn 
is a genome-wide matrix. The QRIG algorithm is well 
suited for reduced-rank approximations down to the 
size of the core sample. However, reducing rank below 
the size of the core sample would not be optimal (e.g. in 
chromosome-wise analysis), as this implies a reduction in 
the size of the core sample. For such situations, the PCIG 
approach is more appropriate because this method uses 
all available information in the core sample to estimate a 
reduced number of contributing components.

Weighted genomic relationship matrix
As in MEM, different loci can be given different relative 
weights in the genomic animal model by weighting SNPs 
differently in the calculation of the GRM, as:

where D is a diagonal matrix of locus weights (propor-
tional to the variance of the effect of each locus) and 
ρ = 2p′D(1− p), with p being a vector of allele frequen-
cies in the population, and F = V′DV. In the simplest 
case, i.e. using VanRaden Method 2 [16], elements of D 
are: Di = 1

2pi(1−pi)
. The GRM can then be approximated 

as:

where Fn = V′
nqDVnq, i.e. a symmetric matrix with 

dimension equal to the number of chosen components. 
The exact inverse of the approximated genomic relation-
ship matrix is:

Using this method, a weighted genomic relationship 
matrix can be used even for single-step animal models.

Simulation study
A simulation study was performed to verify the reduced-
rank approximation of genomic data. The simulated 

(29)







R1n

R2n

. . .

Rin






= QnRn,

(30)G = 1

ρ
XDX′ = 1

ρ
USV′DVSU′ = 1

ρ
TFT′

,

(31)G ≈ 1

ρ
CV′

nqDVnqC
′ = 1

ρ
CFnC

′
,

(32)

G̃
−1 = ρ

(

CFnC
′ + Iρθ

)−1

= ρ

(

Iρ−1θ−1 − Iρ−1θ−1
C

(

F
−1
n + C

′
Iρ−1θ−1

C

)−1

C
′
Iρ−1θ−1

)

= 1

θ

(

I− C

(

C
′
C+ F

−1
n ρθ

)−1

C
′
)

.

species had 20 chromosomes of 1 Morgan each. Simula-
tion of sequence data followed the approach of Meuwis-
sen and Goddard [17], except that their scaling argument 
was not applied here, in order not to scale down the com-
putations. The historical effective population size was 
1000, which also reflects its actual size, since simulation 
of new generations followed Wright’s idealized popula-
tion structure. To create LD and mutation-drift equilib-
ria, the historical population was simulated for 10,000 
generations. The per meiosis and per base pair mutation 
rate was  10−8 and mutations followed the infinite sites 
model [18]. After the initial 10,000 generations, Ne was 
reduced to 100 over 10 generations to mimic a livestock 
population. In the last generation, 10,000 animals were 
generated and their genotypes and phenotypes were used 
in genetic analysis. The total number of segregating loci 
in generation 10,000 was 531,836, of which about half 
(279,504) were still segregating in the last generation 
(generation 10,010). Per chromosome, 200 SNPs with a 
minor allele frequency higher than 0.01 were randomly 
sampled as causative SNPs, i.e. 4000 causative SNPs 
in total. Genotypes were standardized to −2pj√

2pj(1−pj)
,  

1−2pj√
2pj(1−pj)

 and 2−2pj√
2pj(1−pj)

 for the genotypes ‘0 0’, ‘0 1’ 

and ‘1 1’, respectively, where pj is the frequency of the 
‘1’ allele, and collected in the genotype matrix X. True 
genetic values of the animals were obtained as:

where b is a (531,836 × 1) vector, including 4000 quanti-
tative trait loci (QTL) (SNPs that were declared as QTL) 
effects, which were sampled from a normal distribu-
tion, and effects of non-causative SNPs set to 0. All QTL 
effects were scaled by α such that total additive genetic 
variance in generation 10,001 was σ 2

g = 1.0. Residual 
environmental effects were sampled from N

(

0, Iσ 2
e

)

, with 
σ 2
e  set such that heritability was 0.25, 0.50 or 0.90. No 

fixed effects were simulated. The resulting dataset was 
analyzed with several statistical models:

(1) Ordinary GBLUP

(2) Reduced-rank PCRR (chromosome-wise SVD)

(33)TBV = αXb,

y = 1µ+ Zg + e,

g ∼ N
(

0,Gσ 2
g

)

.

y = 1µ+ T̂s+ e,

s ∼ N
(

0, Iσ 2
m

)

,

g = T̂s.
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(3) GBLUP using reduced-dimension approximations of 
GRM

a. Chromosome-wise SVD (PCIG-C)
b. Genome-wide SVD (PCIG-G)
c. QR-based (genome-wide)
d. APY (genome-wide)

where G̃ is an approximation of G, using the PCIG-G, 
PCIG-C, QRIG, or APY algorithms.

The chromosome-wise SVD (PCRR or PCIG-C) was 
performed independently for each chromosome based 
on a core sample of 500, 1000 or 2000 individuals. For 
each chromosome, the number of components was set 
such that  >  99% of the chromosome-specific genomic 
variation (in the core) was explained by the chosen PC. 
These PC were then used to compute T̂. For the PCIG-G, 
an economy-sized SVD was performed across all chro-
mosomes for the core sample (500  to  2000 individuals) 
and, thus, the final number of components was equal to 
the core sample size. The QR-based algorithm was based 
on all genotypes of the core sample, while the APY algo-
rithm was based on genomic relationships of core sample 
individuals.

All models and algorithms were compared based on 
their accuracy of predicting the true breeding values of 
validation animals that had masked phenotypes. Valida-
tion animals were randomly sampled among non-core 
animals (with a probability of 10%).

Data preparation and statistical analyses were per-
formed using Julia software scripts (http://julialang.org/). 
All solutions were obtained by solving the mixed model 
equations directly.

Real data analysis
The PCIG-C and APY algorithms were also used in a 
single-step multi-trait genomic evaluation of a real data-
set, which was comprised of data from the Irish beef cat-
tle carcass evaluation and included 8.33 million animals 
with records on nine traits. The model used was identical 
(excluding genetic groups) to the standard Irish beef cat-
tle evaluation model [19]. There were 13.35 million ani-
mals in the pedigree, of which 163,277 were genotyped. 
Genotyping was done by using the Illumina Bovine 
SNP50 Bead Chip (Illumina, San Diego, USA), of which 
54,620 SNPs on 29 autosomes were included in the analy-
sis (after quality edits). The population was heterogene-
ous and included genotypes of animals from 41 breeds. 

y = 1µ+ Zg + e,

g ∼ N
(

0, G̃σ 2
g

)

,

Hence, the dataset was challenging in the sense that a 
large core sample was needed to capture genetic vari-
ation in all breeds. For PCIG-C, the number of compo-
nents per chromosome was set such that it explained a 
given percentage (from 90 to 95%) of the chromosome-
specific genomic variation and core sample sizes were 
30,000  to  50,000. The resulting estimated breeding val-
ues (EBV) using the PCIG-C and APY inverse GRM were 
compared with the original EBV based on direct inver-
sion of (G+ Iθ).

The analysis was conducted using an iterative solver in 
the MIX99 software (http://www.luke.fi/mix99), using 
the preconditioned conjugate gradient method and itera-
tion on data. A value of θ = 10−3 was added to the diago-
nal elements of the GRM to ensure that the matrix was 
positive definite.

Two simple Julia scripts are attached, demonstrat-
ing 1) how to use SVD methods to compute reduced-
dimension approximations of a larger genomic data using 
a core sample (Additional file 1), and 2) how to combine 
reduced-dimension genomic data from multiple chro-
mosomes in computation of an inverse approximated 
genomic relationship matrix (Additional file 2).

Results
Simulation study
When based on the same PC, the PCIG and PCRR mod-
els are equivalent, except that for PCIG a small number 
is added to the diagonal elements of the GRM prior to 
inversion. Thus, for the simulation study, the results of 
PCIG and PCRR were nearly identical and only results 
for PCIG are shown. The correlations of the EBV from 
each model with the EBV of the full-dimensional GBLUP 
are in Fig. 1.

In general, across core sample sizes (500 to 2000) and 
heritabilities (0.25 to 0.90), the PCIG-C model resulted in 
very similar EBV as GBLUP, with EBV correlations rang-
ing from 0.997 to 1.000. The results were less favorable 
for models PCIG-G, APY and QRIG (EBV correlations 
ranging from 0.847 to 0.984). Differences of the PCIG-C 
from the other models were largest for the lowest core 
sample sizes (500) and highest heritability (0.90). With 
respect to accuracy of selection (correlation between 
EBV and true breeding value), GBLUP and PCIG-C had 
very similar and generally higher accuracies than the 
other models (Fig. 2), 0.82, 0.88 and 0.95 for heritability 
equal to 0.25, 0.50 and 0.90, respectively.

Differences in accuracy of GBLUP/PCIG-C from the 
other models were largest at the lowest core samples and 
highest heritabilities (e.g. for a core sample of 500 and 
heritability 0.90, accuracy was 0.95 for GBLUP/PCIG-C 
vs. 0.81 for the other methods). At the lowest core sam-
ple size (500), genomic relationships were so crudely 

http://julialang.org/
http://www.luke.fi/mix99
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described by PCIG-G, APY and QRIG that very little 
information was obtained by changing the heritability 
from 0.25 to 0.90. At higher core sample sizes, the differ-
ences between GBLUP/PCIG-C and the other methods 
were smaller, but not negligible, even at core sample sizes 
up to 2000. As a result, PCIG-C was much more robust 
to core sample size and achieved comparable results 
to the full-dimension GBLUP, even at the smallest core 
sizes tested. Using PCIG-C, the average number of PC 
needed to capture at least 99% of the genomic variation 
per chromosome was 239, 298 and 340 for, respectively, 
500, 1000 and 2000 animals in the core (4770, 5959 and 

6795 components across all chromosomes). Hence, for 
this data structure, the genomic relationships could be 
effectively approximated with a limited number of chro-
mosome-specific PC, even when estimated from core 
sample sizes down to 500 individuals.

With respect to computing time, QR decomposition 
(QRIG) required down to 18% less computing time than 
SVD (PCIG models) when applied to genomic data on 
single chromosomes (~ 25 k loci). The relative difference 
in computation time between QR and SVD was largest 
at smaller core samples. However, at small core samples, 

a 

b 

0.8 
0.82 
0.84 
0.86 
0.88 

0.9 
0.92 
0.94 
0.96 
0.98 

1 

500 1000 1500 2000 

Co
rr

el
a�

on
 

Size of core sample
PCIG-C PCIG-G APY QRIG

0.8 

0.82 

0.84 

0.86 

0.88 

0.9 

0.92 

0.94 

0.96 

0.98 

1 

500 1000 1500 2000 

Co
rr

el
a�

on
 

Size of core sample
PCIG-C PCIG-G APY QRIG

c 

0.8 

0.82 

0.84 

0.86 

0.88 

0.9 

0.92 

0.94 

0.96 

0.98 

1 

500 1000 1500 2000 

Co
rr

el
a�

on
 

Size of core sample
PCIG-C PCIG-G APY QRIG

Fig. 1 Correlations of genomic estimated breeding values for 
validation animals obtained using chromosome-wise PCIG (PCIG-C), 
genome-wise PCIG (PCIG-G), QR-based inversion (QRIG) and the APY 
GBLUP (APY) with those obtained using ordinary GBLUP. Based on 
simulated data with heritability equal to 0.25 (a), 0.50 (b), and 0.90 (c)
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Fig. 2 Accuracies of genomic estimated breeding values (correlation 
with true breeding values) for validation animals, using chromosome-
wise PCIG (PCIG-C), genome-wise PCIG (PCIG-G), QR-based inversion 
(QRIG) and the APY GBLUP (APY). Based on simulated data with 
heritability equal to 0.25 (a), 0.50 (b), and 0.90 (c). Accuracies of the 
original GBLUP method were essentially identical to those from PCIG-
C and are not shown
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both methods were fast, making the relative difference in 
computing time less important.

Multi‑breed beef cattle data
For the real data analysis of the multiple-breed beef cat-
tle population using PCIG-C, the results were essentially 
identical for core sample sizes of 30,000 and 50,000, 
hence only results of the latter are presented. Correla-
tions of EBV from the PCIG-C single step models with 
EBV from the original GBLUP (direct inversion) model 
were high for all traits (0.995 to 0.999, 0.998 to 0.999, and 
1.000 when the chosen components explained ≥ 85, ≥ 90 
and ≥  95% of chromosomal genomic variance, respec-
tively). The corresponding numbers of chosen compo-
nents were 30,208 (≥  85%), 34,655 (≥  90%), and 40,140 
(≥  95%). APY based on a core sample size of 50,000 
individuals resulted in almost identical ranking of ani-
mals based on EBV as the original model (rank cor-
relations ranging from 0.999 to 1.000), while the rank 
of animals based on an APY of a core sample of 30,000 
individuals (corresponding in rank (i.e. no of PC) with 
PCIG-C  ≥  85%) had a slightly lower correlation with 
the rank from the original model (0.952 to 0.996). For a 
similar rank (~  30,000) of the GRM (number of chosen 
PC in PCIG and number of core animals in APY), PCIG-
C needed a smaller number of iterations to converge 
(1351  to  1385 vs. 1619  to  1756, for PCIG-C and APY, 
respectively). Computing times could not be compared 
directly, as these may have been influenced by other jobs 
running simultaneously on the computer cluster.

Discussion
When based on the same PC, the PCRR and PCIG algo-
rithms gave identical EBV. However, the PCIG algorithm 
is more flexible in that it can easily be incorporated into 
existing single-step genomic animal models. The results 
of the current study show that all reduced-dimension 
algorithms (PCRR, PCIG-C, PCIG-G, APY and QRIG) 
approach the GBLUP solutions when core sample size 
becomes large. However, the PCRR and PCIG-C algo-
rithms were, by far, the most robust to reductions in 
core sample size. For the simulated data, the EBV were 
virtually identical to the EBV obtained with full-dimen-
sion GBLUP for all core sample sizes (even down to 500 
individuals) and heritabilities, with correlations between 
EBV ranging from 0.997 to 1.000. For the other methods, 
accuracy of selection dropped considerably at smaller 
core sample sizes (500 and 1000), especially with high 
heritability. In the real data analysis of a multi-breed beef 
cattle population, core sample size was generally large 
and differences between methods were thus smaller, but 
still in the favor of PCIG-C compared with APY.

The PCIG algorithm can be used to calculate the exact 
inverse of an approximated GRM, even for extremely 
large genomic datasets that potentially contain millions 
of individuals and loci, using a limited number of PC per 
chromosome. The SVD-based PCIG-C uses all genetic 
data from the core sample to identify the more impor-
tant PC for each chromosome, and the GRM is based on 
these. The method can be heavily parallelized, since SVD 
is performed separately for each chromosome. The num-
ber of PC needed to describe the relationship structure 
of a population depends on the effective number of seg-
regating genomic segments in the population, which for 
large populations of limited Ne is typically much smaller 
than the actual population size (N). After SVD, the 
inverse of GRM (using PCIG) can be computed easily, 
and potentially row- or element-wise, which gives room 
for further parallelization. Hence, computing time can be 
reduced substantially. Using iteration on data, rows of the 
inverse of GRM can be computed directly during itera-
tion and, thus, the entire inverse GRM does not need to 
be stored explicitly. In contrast, when performing “brute 
force” inversion of the entire GRM, memory require-
ments increase quadratically and numbers of computa-
tions increase cubically with the number of animals in 
the population [20]. Compared with PCIG, QRIG algo-
rithm based on QR-decomposition was slightly faster 
and has potential for parallelization (by chromosome). 
However, this model is less well suited for dimensionality 
reduction below core sample size (e.g. per chromosome) 
and is more sensitive to size of the core sample. Thus, we 
prefer the PCIG-C over the QRIG algorithm.

The PCIG algorithm proposed in this study is related to 
the APY algorithm [4], since both methods use genomic 
data in a core sample to approximate the (inverse) GRM 
of all animals. In APY, the core sample must be suffi-
ciently small such that the inverse of the core GRM can 
be computed directly, and the remaining elements of the 
entire inverse of GRM are computed based on the inverse 
relationships of the core individuals and the relationships 
between core and non-core individuals. Furthermore, 
APY assumes that the non-core part of the inverse GRM 
is diagonal, while PCIG makes no such assumptions. 
Using PCIG, the GRM is approximated by a limited num-
ber of PC and by adding a small number to the diagonal 
elements, while the inverse of this matrix is computed by 
exact methods. Hence, given that the GRM can be appro-
priately approximated using PC estimated from the core 
sample, the computed inverse of GRM from PCIG will 
necessarily also be appropriate, which explains why solu-
tions from reduced-rank PCIG-C were nearly identical to 
those obtained from full-dimension GBLUP in this study, 
even at the smallest core sample sizes. The genome-wide 
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PCIG-G gave similar solutions as APY and (genome-wide) 
QRIG, which can be explained by the fact that the maxi-
mum number of components in genome-wide analysis is 
limited by the size of the core sample, while the maximum 
number of components in chromosome-wise PCIG-C is 
larger (size of core sample x number of chromosomes). 
For PCIG-G, APY and QRIG this is an especially limiting 
factor in smaller core samples, as observed with the simu-
lated dataset, e.g. for these genome-wide methods a core 
size of 500 imply that the GRM is approximated by, at 
most, 500 “components” (PC or animal effects) while up 
to 10,000 PC may be used in the PCRR/PCIG-C models.

Genetic analyses based on chromosome-wise SVD of 
a core sample assumes that genetic variation associated 
with each chromosome can be explained by the chosen 
chromosome-specific components (i.e. haplotype blocks), 
and that the same components are present and responsi-
ble for genetic variation in the entire population. In con-
trast, the APY algorithm assumes that all genetic variation 
in the population is explained by the additive genetic 
effects of individuals in the core sample, i.e. that breed-
ing values of non-core individuals are merely functions 
of breeding values of the core individuals. This implies 
that, if accuracies of core individuals approach unity (e.g. 
bulls with large daughter groups), accuracy of the entire 
genotyped population is also assumed to approach unity, 
even for newly born genotyped individuals, which is not 
likely to be true. Even if thousands of historical bulls with 
progeny are included in the core sample, the EBV of a 
genotyped calf is not expected to be perfect. In PCIG-C, 
a more realistic approach is taken, since the accuracy of 
non-core animals depends on the precision of the esti-
mated effects of the underlying PC, rather than on the 
accuracy of the EBV of core animals. The number of 
underlying components may exceed the number of core 
individuals and, thus, a high accuracy of the EBV of core 
animals does not imply high accuracies for all underly-
ing components. Thus, as the EBV of non-core animals 
are functions of these components, genotyped newborn 
animals are not necessarily assumed to be predicted accu-
rately, even if the core animals are accurate.

In real data, population structures may be more com-
plex and stratified. Hence, real data analyses of complex 
populations may require larger core samples, e.g. as in 
the real multi-population dataset analyzed here.

The methods used herein, only consider simple SNP-
BLUP or genomic animal models, where, a priori, genetic 
variance is evenly distributed across the genome. How-
ever, such simplistic models likely do not use the full 
potential of high-density or sequence data, which may 
include genotypes of the causative mutations themselves. 
One alternative is to combine SVD techniques with 
methods that allow for different weighting of the SNPs in 

the model (i.e. approximating Bayesian variable selection 
models). This approach is described and evaluated in a 
separate study [21].

Conclusions
We propose SVD-based methods for genomic predic-
tion. Although SVD may be computationally demanding, 
the analysis can be performed on a reduced core sample 
of individuals and/or in parallel on different genome seg-
ments, making fast computation possible. After SVD, 
large-scale genomic analysis can be performed either by 
PC ridge regression (PCRR) or by a genomic animal model 
(GBLUP), with the GRM and its inverse defined by the 
chosen PC (PCIG). The principal component-based GRM 
is not of full rank but can be made invertible by adding 
a small number to the diagonal of the entire matrix, and 
its exact inverse can be easily obtained using the Wood-
bury formula. The inverse of the SVD-based GRM can be 
computed row- or element-wise, and the entire matrix 
does not need to be stored explicitly, e.g. when applying 
iteration on data. Based on simulated data, PCRR/PCIG 
models based on chromosome-wise SVD of genomic data 
from a limited core sample resulted in essentially identical 
solutions for the entire population as the full-dimension 
GBLUP model (correlations between EBV = 1.000), while 
other methods (genome-wide SVD, QRIG and APY) were 
less accurate, especially at smaller core sample sizes.
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Appendix
In principal component regression, the original SNP 
solutions can be obtained from the principal component 
solutions as [14]:

Define β̂ = VV′b̂ and ŝ = V′b̂. This is true, if it holds 
that β̂ = b̂, which we will prove now.

The columns of V are orthogonal, V′V = I, while, 
in many cases, VV′ �= I (e.g. when the number of 
loci exceeds the rank of the genotype matrix). As 
X = USV′ = TV′, multiplying X with VV′ yields:

Hence, for any vector ǫ of length equal to number of 
loci, XVV′ǫ = Xǫ. This implies that, Xβ̂ = Xb̂, i.e. the 
predicted genetic effect of an animal is identical, whether 
based on β̂ or b̂. The HMME (excluding fixed effects) 
using an MEM is:

Using that X
(

VV′) = X and 
(

VV′)X′ = X′, this equa-
tion system can easily be modified into an equation sys-
tem for β̂. First, we pre-multiply with 

(

VV′):

as β̂ = VV′b̂ and Xβ̂ = Xb̂, the equation above is identi-
cal to:

The resulting equation system is of full rank and identi-
cal to the original MEM equation system. Thus, there is a 
single solution vector, implying that:

The SNP-BLUP equations can be reformulated into 
equivalent PCRR equations as follows:

Pre-multiplying the equation above with V′ yields:

b̂ = Vŝ.

X
(

VV′) = TV′VV′ = TV′ = X.

[

X′X + �I
]

b̂ = X′y.

[

X′X + �VV′]b̂ = X′y,

[

X′X + �I
]

β̂ = X′y.

β̂ = b̂.

[

X′X + �I
]

b̂ = X′y,

[

VT′TV′ + �I
]

b̂ = VT′y.

[

T′T+ �I
]

V′b̂ = T′y.

Define: ŝ = V′b̂:

The PCRR and SNP-BLUP equations are thus 
equivalent.
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[

T′T+ �I
]

ŝ = T′y.
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