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ARTICLE INFO ABSTRACT

Keywords: Background: One third of parasitic outbreaks with known source in the US are attributable to food of animal

Foodborne origin (FoAO). Among 24 foodborne parasites ranked by FAO/WHO, 14 are associated with FOAO. Management

Parasite of these biological hazards is essential for food safety.

Inactivation Scope and approach: Control measures to inactivate the 12 most relevant parasites in FOAQO are evaluated, in-

Control measure . . . . . . . . .

Meat cluding cooking, freezing, curing, and traditionally applied food-processing techniques, as well as high-pressure

Fish treatment and irradiation.
Key findings and conclusions: How inactivation is determined may affect results, however efficacy of freezing and
heating depends on parasite species and developmental stage, as well as temperature and time conditions.
Cooking at core temperature 60-75 °C for 15-30 min inactivates parasites in most matrices. Freezing at —21 °C
for 1-7 days generally inactivates parasites in FOAO, but cannot be relied upon in home situations. Parasitic
stages are sensitive to 2-5% NaCl, often augmented by lowering pH. Gamma irradiation at > 0.1-0.5kGy is
effective for fish parasites, except Anisakis (10 kGy); > 0.4-6.5 kGy control meatborne parasites. More research
is needed to investigate and improve irradiation technologies using sustainable energy sources. Literature data
are diverse and insufficient to model survival as response to treatment. Research on foodborne parasites should
be improved to standardize experimental approaches for evaluation of inactivation techniques and methods to
monitor inactivation.

1. Introduction and the growing awareness of foodborne parasites enteric protozoa, 48% of cases were foodborne, of which ascariasis and

toxoplasmosis were the most common parasitic diseases (Torgerson,

In 2010, parasitic infections were estimated to cause 91.1 million 2015). However, there were considerable regional differences and low-
cases of human disease and 51,909 deaths globally per year; excluding income countries suffered the highest disease burden.
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F. Franssen et al.

Among foodborne disease events reported in the EU between 2007
and 2011, foods of animal origin (FOAO) were associated with 90% of
outbreaks, 74% of cases, 65% of hospitalizations, and 54% of deaths
(Da Silva Felicio et al., 2015). Appraisal of foodborne illness data from
USA between 1998 and 2008, indicated that FOAO were associated with
approximately 48% of cases, 52% of hospitalizations, and 49% of
deaths (Painter et al., 2013). However, these data cover the spectrum of
infectious agents, and the USA data also include foodborne illnesses
associated with chemicals.

The food vehicle is unknown for most foodborne parasitic diseases
in the USA, but where identified, FOAO account for around one third
(Painter et al., 2013). Some foodborne parasites may have a consider-
able health-related impact, but do not often cause outbreaks (e.g.
Toxoplasma). As data were derived from outbreaks, human health im-
pacts from foodborne parasites are probably underestimated.

Among 24 (potentially) foodborne parasites listed for risk-ranking
by FAO/WHO in 2012 (FAO/WHO, 2014), transmission of 14 of them
(58%) can be associated with FOAO. These include parasites associated
with both marine and freshwater finfish (Anisakidae, Diphyllobo-
thriidae, Heterophyidae, and Opistorchiidae), parasites associated with
freshwater crustacea (Paragonimus spp.), parasites associated with pork
(Trichinella spiralis, other Trichinella species, Toxoplasma gondii, Taenia
solium, and Sarcocystis suihominis), parasites associated with beef
(Taenia saginata, Toxoplasma gondii, and Sarcocystis bovihominis), para-
sites associated with meat from small ruminants (Toxoplasma gondii),
parasites associated with meat from game animals (Trichinella spp. and
T. gondii), and parasites associated with frog and snake meat (Spir-
ometra spp.). In addition, some parasites have been associated with
contamination of molluscs that can accumulate excreted transmission
stages (e.g. Giardia duodenalis), and have also been associated with milk
(Cryptosporidium parvum and T. gondii).

Although certain types of fresh produce are more frequently asso-
ciated with raw consumption or minimal processing than FoAO, in-
tentional or unintentional under-cooking of FoAO is well recognized. In
particular, consumption of raw fish has become a global culinary trend,
with the rise in popularity of sushi, sashimi, and ceviche, and since fish
that is commonly eaten raw may contain infective parasites, e.g.
Anisakis simplex (Mo et al., 2014), this may result in increased exposure
of consumers to fishborne parasites (Robertson, 2018). Although con-
sumption of raw meat occurs in several culinary cultures (e.g. steak
tartare from France, carpaccio from Italy, mett in Germany, koi soi in
Thailand, kitfo from Ethiopia etc.), more common is consumption of
rare meat (cooked briefly to a temperature below 60 °C). This may be
insufficient to inactivate transmission stages of pathogens, including
some parasites. In addition, meat may be inadvertently undercooked.

Given that some cooking techniques or other preparation of FOAO
(e.g. fermentation, drying, freezing, etc.) may be insufficient to in-
activate parasite transmission stages, knowledge on the effects of these
different procedures at inactivating different parasite transmission
stages is of interest, and of particular relevance, given the globalization
of the food chain (Dorny, 2009).

The present study intends to provide a comprehensive overview of
the 12 most relevant parasites in FOAO that have been ranked globally
and regionally for Europe (FAO/WHO, 2014; Bouwknegt et al., 2018).
Although it is clear that the highest burden from foodborne parasitic
infections is in lower income countries, our focus is directed towards
foodborne parasites of greatest relevance in European countries, as an
output from a Eurocentric COST Action (see acknowledgements).
Nevertheless, treatments that are effective in Europe, will also be ef-
fective elsewhere, so the assessment of treatments is of global re-
levance.

Many of the more recent review papers and recommendations by
food safety organisations (e.g. EFSA, FDA, ANSES and others) are based
on the same, sometimes old, original papers, with more recent studies
lacking for many parasites.

Testing for parasitic infections at meat inspection to prevent
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zoonotic parasites entering the food chain is mandatory for Trichinella
in Europe, according to Regulation EU 2015/1375 (European-
Commission, 2015). Testing for some other parasites may be relevant,
but may not be routinely implemented, and some parasites are tested
for, but with limited sensitivity (e.g., tapeworm cysts). In this review we
provide an overview of inactivation techniques with the potential to
prevent transmission of parasitic infections due to consumption of
FoAO. This review does not take into account parasite-derived health
hazards other than infection, such as allergic reactions provoked by
Anisakidae sp. Or toxins associated with Sarcocystis species.

2. Reference inclusion criteria

A non-systematic literature review was used to gather scientific
publications, reports, and official documents relevant for this article.
Original papers were included that quantified effects of methods for
parasite inactivation over a wide range of topics; different parasites,
different matrices, different inactivation methods, and different ways of
assessing inactivation.

With such a breadth of cover, ensuring reference quality is difficult.
Should only references answering to our highest quality requirements
be included (i.e., recent papers providing detailed quantification of
parasite inactivation determined by bioassay), some parasites, matrices,
and different methods (e.g. heat inactivation of Heterophyidae, freeze
inactivation of Opisthorchis spp., all inactivation methods for
Anisakidae), would have no reference material and therefore would not
be included at all. On the other hand, references that have been
founding papers in their field (e.g., Kotula et al. (1983) and Kotula et al.
(1990) for Trichinella control), provide time/temperature combinations
for complete inactivation of Trichinella in pork, but lack quantitative
details regarding parasite inactivation. Such information could be used
to model inactivation as part of a QMRA, to reflect consumer behaviour.
In the example of Trichinella, not all consumers will cook their meat to
safe time/temperature combinations, which will result in partial in-
activation of muscle larvae. Moreover, legal requirements exist for
some parasites, and official authorities conduct tests, like for Trichinella;
whereas for others, it is the sole responsibility of the food business
operators to establish a risk-based limit and to adjust their control
measures accordingly.

3. Current state of knowledge

The reader is referred to Annex 7 of the FAO/WHO multi-criteria
based ranking for risk management of foodborne parasites (FAO/WHO,
2014), for a comprehensive overview of parasite biology, geographical
distribution, disease in humans, relevance for trade and impact on
economically vulnerable populations, concerning the parasites of FOAO
included in the current review.

4. Key aspects of preventive measures

Many different parasites may be transmitted by FOAO, with a wide
range of different transmission stages. Developing universally applic-
able measures to prevent infection with these parasites is therefore
challenging. The key steps in preventive measures in primary produc-
tion of FOAO are environmental hygiene, hygienic production, per-
sonnel hygiene, facility cleaning and maintenance, and monitoring/
surveillance (FAO/WHO, 2016).

Several important parasites transmitted by meat form infectious
tissue stages in animals, for which a main intervention is to prevent
food production animals from being infected. This has been particularly
effective in animals that can be kept confined, e.g. pigs and poultry,
whereas for grazing animals, such as sheep, it may be difficult or im-
possible to avoid exposure. Trichinella is now generally absent in meat
from pigs kept indoors in many European countries (Pozio, 2014).
Recent trends in consumer preferences, favouring organic production
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and improved animal welfare, have led to changes in pig farming, with
an increase in pigs raised outdoors (Park, Min, & Oh, 2017). This may
result in greater Trichinella exposure of these pigs, and thereby in-
creased human Trichinella infection. As sheep are mainly kept outdoors,
and restricting the access of cats (definitive host of T. gondii) to sheep
farms can be impossible, T. gondii is a continuous challenge in sheep
production and for food safety.

Tissue parasites are also potentially problematic in the aquaculture
industry, including farmed and wild-caught fish. Anisakidae are mainly
a hazard in wild-caught fish. It has been argued that Anisakis infection is
not a problem in farmed fish production, as these fish have minimal
access to the parasite's intermediate hosts (crustaceans and smaller
fish). Nevertheless, 0.7% Anisakis pegreffii infestation was reported re-
cently in farmed sea bass from the Mediterranean Sea (Cammilleri,
2018) and Anisakis simplex has been found in farmed salmon (Mo,
2015). Although closed breeding facilities may reduce exposure of
farmed fish to parasite infective stages such as Anisakis spp., it has not
yet been implemented at a large scale, but may become a future in-
dustry standard.

5. Evaluation of inactivation

Unlike bacteria and viruses, the infective unit for parasites may be
one individual (e.g. amoeba), one egg or one larval stage (helminths),
or four to eight individuals (mature oocysts of coccidians). For parasites
that form tissue cysts, one infective unit (the tissue cyst) may contain a
few to 1000 individuals per tissue cyst (e.g. Toxoplasma). Because of
this variation in units of infection, using the standard log reduction
measure for inactivation, as commonly applied for bacteria and viruses,
is not a uniform measure for inactivation of individual parasites.
However, log reduction may still be used mentioning the unit of in-
fection (e.g. tissue cyst, cyst, oocyst, egg). Parasites on or in foods do
not grow or replicate during storage, unlike bacterial contaminations
that may increase to very high numbers. As a result, a two or three log
reduction that may be considered marginal for bacteria, may be highly
relevant for parasitic contamination.

Transmission stages of most foodborne parasites require an animal
host and are not suitable for laboratory cultivation. The gold standard
to evaluate parasite (stage) inactivation is method-induced elimination
of infectivity in bioassays. In recent decades, use of experimental ani-
mals has become controversial, and in more recent studies, infection
experiments have been replaced by surrogate indicators. Such in-
dicators may be loss of a parasite's ability to proceed in development
(e.g. oocyst sporulation), evaluation of motility or morphological in-
tegrity as determined by microscopy, or molecular methods to evaluate
genetic activity (Rousseau et al., 2018), which should be validated in
relation to the gold standard.

6. Conventional processing
6.1. Heat treatment

Heat treatment remains one of the most reliable methods to control
parasites in FOAO (Gajadhar, 2015). Table 1 provides an overview of
reported data on the efficacy of different heat treatments to inactivate
parasites in a variety of food matrices of animal origin.

For Anisakis, heating at = 60 °C core temperature of fishery pro-
ducts for at least 1 min is sufficient to kill the larvae (Bier, 1976; EFSA,
2010); consequently, fish fillets 3 cm thick should be heated for 10 min
to reach and maintain 60 °C in the core (Wootten, 2001).

Metacercariae of trematodes seem more tolerant to heat, since for
Heterophyes in fish, temperatures as high as 100 °C for more than 15 min
are required to kill the metacercariae (Hamed & Elias, 1970), whereas
isolated metacercariae of Opisthorchis viverrini are inactivated at 70 °C
for 30min or at 80°C for 5min (Waikagul, J., 1974, cited in:
Abdussalam, Kaferstein, & Mott, 1995). Metacercariae of Ascocotyle
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were inactivated by heating at =60 °C for 15 min (Novo Borges, Corréa
Lopes, & Portes Santos, 2018).

Several studies (Table 1) have highlighted the efficacy of microwave
heating in killing some parasites in FOAO, like Anisakis in Arrowtooth
flounder (Adams, Miller, Wekell, & Dong, 1999; Vidacek et al., 2011).
However, heating in standard domestic microwave ovens (2450 MHz,
700 W) may not penetrate all areas of the food, resulting in hot and cold
spots, and thus some parasites may evade inactivation (Vidacek et al.,
2011). Toxoplasma cysts in mutton steaks processed in a microwave
oven at 65 °C remained infective (Lunden & Uggla, 1992) and micro-
wave exposures for 1-3 s (43.2-62.5 °C) partially, but not significantly,
reduced infectivity of Cryptosporidum parvum oocysts in oysters for
neonatal mice, but treatment above 43.2°C caused unacceptable
changes in oyster meat texture and colour (Collins, Flick, Smith, Fayer,
Rubendall, et al., 2005).

Larvae isolated from pork chops cooked at 71-82 °C core tempera-
ture in the microwave oven (2.9-3.1 min) did not prevent T. spiralis
infection of rats (Kotula, Murrell, Acosta-Stein, Lamb, & Douglass,
1983Db). Inactivation temperatures for T. spiralis may vary from 60 °C for
roasted pork (Carlin, Mott, Cash, & Zimmermann, 1969; Kotula,
Murrell, Acosta-Stein, Lamb, & Douglass, 1983a) to 66 °C for pork chops
prepared in a conventional oven, convection oven, and flat grill, and
77 °C for char broiler or deep fat fryer (Kotula et al., 1983b).

Several studies highlight that heating duration is as important as
temperature, and should be chosen such that desired temperatures are
reached, maintained, and evenly distributed throughout the meat
(Kotula et al., 1983a). Heat inactivation of T. spiralis in pork was tested
at a range for both time (2min-6h) and temperature (49-63°C) on
2mm thick pieces of experimentally infected pork (Kotula et al.,
1983a). In that study, the intrinsic freeze sensitivity for T. spiralis in
pork was defined by linear regression as Log(t) = 17.3 — 0.302T, where
t represents time (hours) and T temperature (°C). By this equation, it is
possible to define time/temperature combinations to which pork should
be exposed for complete T. spiralis inactivation (Table 1). Notably, these
time - temperature combinations refer to the conditions in the core of
the meat piece. More recently, Franssen et al. (2018, under review)
developed a heat-inactivation model based on experimental data in-
cluding bioassay in mice. According to this model, consumer cooking of
portions of pork for a total time of 15min would expose Trichinella
muscle larvae to 60 °C during 10 min, inactivating 99% (T. britovi) or
96% (T. spiralis) of Trichinella larvae.

Based on the work of Kotula et al. (1983a), Taenia cysticerci can be
inactivated by cooking whole cuts of beef and pork to at least 62.8 °C
core temperature and subsequent rest for at least 3 min (FDA, 2012).
Nevertheless, both higher and lower temperature values can also be
found in the literature (Table 1).

The US Department of Agriculture recommends that whole cuts of
pork, lamb, veal, or beef are cooked to an internal temperature of
62.8°C, with a 3-min rest to inactivate T. gondii in meat (Jones &
Dubey, 2012), based on the work of Kotula et al. (1983a). Dubey,
Kotula, Sharar, Andrews, and Lindsay (1990) exposed 20 g samples of
Toxoplasma gondii infected and spiked pork, compressed to 2mm in
thickness, to temperatures ranging from 49 to 67 °C for 0.01-96 min.
Parasite inactivation was evaluated by bioassay in mice. T. gondii tissue
cyst inactivation was characterised in that study as Log
(t) = 7.918-0.146T. Following this equation, time/temperature com-
binations to which T. gondii in pork should be exposed for complete
parasite inactivation were provided, e.g. > 61 °C for 3.6 min (Dubey
et al., 1990). However, in their experiments, T. gondii tissue cysts sur-
vived 64 °C for 3 min once and therefore, Jones and Dubey (2012) ad-
vised that whole cuts of pork, lamb, veal, or beef, should be cooked to
an internal temperature of at least 65.6 °C, with a 3-min rest.

C. parvum oocysts in either water or milk lose infectivity when held
at 71.7 °C for 5 s or more, indicating that conditions used in commercial
pasteurization (71.5-72 °C for 15 s) are sufficient to inactivate C. parvum
oocysts in milk (Harp, Fayer, Pesch, & Jackson, 1996); milkborne
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cryptosporidiosis outbreaks have been exclusively associated with un-
pasteurized milk.

6.2. Freezing

Table 2 gives an overview of freezing to inactivate parasites in
FoAO.

Anisakis spp. in fish have been inactivated in a blast freezer at
—35°C for =15h or at —20°C for at least 24 h (Deardorff & Throm,
1988; McClelland, 2002). Anisakis spp. inactivation was evaluated by
observing larval movement after physical stimulation. Some larvae seen
to be moving after freeze-treatment at —35 °C for 1 h were considered
moribund. Subsequent sub-zero storage after freezing is recommended
for complete inactivation of anisakidae larvae (Deardorff & Throm,
1988).

Trematode metacercariae appear to be more resistant to freezing
temperatures, although not many studies have been performed to date.
Clonorchis sinensis in fish and fishery products are considered to be in-
activated at —10 to —20 °C for 5-20 days (EFSA, 2010). However, C.
sinensis metacercariae in fish that had been frozen at —12 °C for 10-18
days or at —20°C for 5-7 days remained viable and infective in
bioassays using rats and rabbits. Only 20 days of freezing at —12°C or 3
days of freezing at —20°C followed by thawing and another freeze
treatment for 4 days at —20 °C eliminated infectivity in rabbit and rat
bioassays (Fan, 1998). Freeze-treatment of mullet fillets for 30 hat —10
or —20°C is not effective at inactivating Heterophyes metacercariae
(Table 2). At temperatures below —20°C for 2-32h, the viability of
Opisthorchis spp. in fish has been markedly, but not completely, reduced
(Table 2). Although anecdotal evidence, an outbreak of opisthorchiasis
in Italy was due to consumption of infected fish that had been frozen in
a household freezer at —10°C for 3 days (Armignacco, Caterini,
Marucci, Ferri, et al., 2008).

In contrast, larval stages of cestodes appear more sensitive to freeze
treatment, although primary literature is scarce; one paper describes
inactivation of isolated Diphyllobothrium spp. plerocercoids (Table 2).
Taenia solium cysticerci in pork are inactivated by freezing at —24 to
—5°C for 1-4 days, whereas inactivation of Taenia saginata cysticerci in
beef requires freezing at —5 to —25 °C for 10-15 days (Table 2).

Freeze inactivation of T. spiralis in pork was tested at a wide range
for both time (1s-182 days) and sub-zero temperatures (—1 to
—193°C) on 2 mm thick pieces of experimentally infected pork (Kotula
et al., 1990). In that study, the intrinsic freeze sensitivity for T. spiralis
in pork was defined by linear regression as Log(t) = 5.98 + 0.40T,
where t represents time (hours) and T temperature (°C). Using this
equation, time/temperature combinations have been defined to which
T. spiralis in pork should be exposed for complete parasite inactivation
(Table 2). Note that the time needed to reach the desired temperature in
pork must be determined for each situation and should be added to the
calculated inactivation time. Based on the work of Kotula et al. (1990),
the International Commission on Trichinellosis (ICT) recommends
freezing at —21 °C for 7 days for complete inactivation of T. spiralis in
pork. However, freeze inactivation of Trichinella in bulk packages may
need lower temperatures or longer exposure times (e.g. —29 °C for 6
days to —15°C for 30 days) to ensure safety, depending on meat
thickness and stacking height in industrial freezers (ICT, 2006). These
recommendations have been included in EU recommendation 2015/
1375 (European-Commission, 2015), laying down specific rules on of-
ficial controls for Trichinella in meat regarding freeze treatment, and its
previous version (EU Recommendation 2075/2005).

Inactivation studies on Trichinella spp. in other matrices than pork
are less elaborated and limited in number. T. spiralis and T. britovi in
experimentally infected wild boars, 24 weeks post infection, were in-
activated by freezing at —21 °C for 1 week as determined by mouse
bioassay (Lacour et al., 2013). Freezing to inactivate Trichinella species
other than T. spiralis in pork, game, and horse meat, cannot be relied
upon. Frozen wild boar meat from a naturally T. britovi-infected animal

Ref

Srivastava, Saha, and
Sinha (1986)
Saleque et al. (1990)
Lunden and Uggla
(1992)

Dubey et al. (1990)

Pork from infected pigs mixed with
infected mouse brains and

Naturally infected sheep
homogenized

Matrix
Buffalo heart
Pork (minute pieces)

Log reduction

n.s.
n.s.

Not always effective, partial inactivation n.s.

Sarcocystis levinei sarcocysts become
of cysts

non-infective to pups
Does not eliminate infectivity to mice

Sarcocystis miescheriana sarcocysts

become non-infective to pups
Partial inactivation of Tissue cysts

Eliminates infectivity to mice
Eliminates infectivity to mice

Effect

Bioassay (dogs)
Bioassay (mouse)
Bioassay (mice)

Method

> 61 °C; 3.6 min (internal temperature)

52 °C; 9.5 min (internal temperature)
thickness of 2 mm

thickness of 2 mm
58 °C; 9.5 min (internal temperature)

thickness of 2 mm
64 °C; 3 min (internal temperature -

65 °C; Microwave oven
thickness of 2 mm)

Condition

65-75 °C; 20-25 min
70°C; 15 min

100 °C; 5min

Toxoplasma gondii
# n.s.: not stated.

Transmission stage
Tissue cysts

Sarcocystis spp.
Sarcocysts

Table 1 (continued)
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(3 larvae per gram), kept at —35 °C for one week, caused clinical tri-
chinellosis in six people (Gari-Toussaint et al., 2005). Moreover, Tri-
chinella nativa, associated with human trichinellosis after consumption
of walrus meat or bear meat, was found to be infective by bioassay after
naturally infected walrus or bear meat was stored frozen at —20 °C for
up to 20 months. In contrast, T. nativa muscle larvae in experimentally
infected pig meat were inactivated by freezing for 106 hat —17.7°C
(0 °F), as determined by mouse bioassay (Table 2).

Toxoplasma gondii in pork, mutton, and other meat is completely
inactivated by freezing at between —7 and —13°C for 2-4 days
(Table 2). After freezing at — 2 °C for 24 h, Sarcocystis levinei tissue cysts
in buffalo meat remained infective to dogs, but freezing of beef, buffalo,
and pork at —4 to —20 °C for 2-4 days renders Sarcocystis spp. tissue
cysts inactive (Table 2).

Parasites such as C. parvum and Cyclospora cayetanensis may play a
role as foodborne pathogens through faecal contamination of milk and
other dairy products. Oocysts of these protozoan parasite species have
been spiked into dairy products to evaluate their freeze inactivation,
mimicking ice cream production. Freezing at —15°C for 2 days in-
activated oocysts of both C. parvum and Cyclospora cayetanensis in milk
matrices (Table 2).

More work is needed to evaluate techniques such as rapid chilling to
very low temperatures, which is commonly used in food processing
industries.

6.3. Engymatic and chemical preservation

Parasites in FOAO do not grow during storage, but they are able to
survive for days to weeks under cold storage conditions (> 0°C) in
meat or fish flesh (Hamed & Elias, 1970; Fan, Ma, Kuo, & Chung, 1998;
Neumayerova et al., 2014). This means that production of ready-to-eat-
foods from animal origin at the production plant must ensure parasite
absence or inactivation. Some traditionally applied food-processing
techniques, such as marination, fermentation, smoking etc., have
parasite-inactivating potential, often as a result of a combination of
several mechanisms, occasionally acting synergistically. Table 3 gives
an overview of the effects of enzymatic and chemical inactivation of
foodborne parasites in meat and fish products. Both drying and addition
of salt reduce the amount of available water and increase osmotic
pressure, which is detrimental for all living cells. Marination can be
defined as treatment of meat or fish with brines containing salt, organic
acids, and, occasionally, essential oils. Fermentation is an enzyme-
driven breakdown of the main constituents of flesh, most notably de-
gradation of carbohydrates to lactic acid. The resultant acidification
and oxygen consumption have major immediate effects (Ockerman &
Basu, 2017).

Marination of fish is a traditional processing method with some
effect on nematode larvae. As regards composition of brine, ranges in
NaCl and acetic acid of 5-20%, and 2.6-40%, respectively, have been
studied (Table 3). With increasing salt concentrations, time to in-
activation decreases (AESAN, 2007; CEVPM, 2005; Karl, 1998; Karl,
Roepstorff, Huss, & Bloemsma, 1994), but is still in the range of more
than one week. In herring, an NaCl content of 20% in the fish tissue
water phase resulted in a 1 log reduction in Anisakis larvae motility
within 14 days, and a > 2 log reduction in 28 days (Karl & Leinemann,
1989). In contrast, when the fish tissue water phase contained 15%
NaCl, the reduction was less than 1 log after 21 days. In cod, a com-
bination of brine salting (13% NaCl) at 5°C for 24 h, in combination
with dry-salting for another 14 days, inactivated Anisakis larvae
(Smaldone, Marrone, Palma, Sarnelli, & Anastasio, 2017).

Even for dry-salted herring, 20 days of storage is recommended in
order to ensure inactivation of Anisakis larvae (CEVPM, 2005). For dry-
salted anchovies, 15 days of storage inactivated Anisakis pegreffii at a
salt concentration of 21% in the anchovies fillets (Anastasio et al.,
2016). Also Marination in vinegar (6% acetic acid) for 4-24h is con-
sidered insufficient to inactivate larvae (AESAN, 2007), and
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recommended procedures comprise marinating for 31 days in brine
with 2.5% NaCl and 6% acetic acid or 6% NaCl and 12% acetic acid for
13 days.

Essential oils have proven antibacterial properties, and there is
evidence that such substances can inactivate parasites. Giarratana,
Muscolino, Beninati, Giuffrida, and Panebianco (2014) were able to
inactivate third stage larvae of Anisakis in 5 and 10% solutions of es-
sential oils of Thyme vulgaris (containing mostly thymol, linalool and
pinens) in sunflower seed oil with 14 and 7 h, respectively (Giarratana
et al., 2014). Anisakis L3 larvae were inactivated after 2 h in 1% and 5%
solutions of essential oils of Tagetes minuta (containing mostly (-oci-
mene, limonine and (Z)-tagetone) in saline solution, and after 4h in
0.1-5% essential oil in an industrial marinating solution (water and
vinegar 1:1, with 3% NaCl and 1% citric acid), but not in sunflower oil
(Giarratana et al., 2017). Inactivation was assessed by motility and
electron-microscopic observation of structural damages of the cutis in
both studies. Even when this anti-Anisakis effect might be delayed in a
fish flesh matrix, there should be ample time during the time periods of
food distribution and display in the shelves before it reaches the con-
sumer.

Inactivation of Clonorchis sinensis metacercariae in heavily-salted
freshwater fish (3 g NaCl/10g fish) at 6 °C took at least 8 days (Fan,
1998). Inactivation of Opisthorchis metacercariae in fish flesh salted
with 13.6% NaCl was observed after 24 h (Kruatrachue, Chitramvong,
Upatham, Vichasri, & Viyanant, 1982), whereas 20% NaCl for 5h was
less effective (Tesana, 1986). In fermented fish, inactivation was in-
fluenced by the duration of both cold storage of the fish and the fer-
mentation time (Onsurathum et al., 2016). As could be expected,
among the traditional salted fish products in Thailand, those salted and
stored for 2-3 months (Sithithaworn & Haswell-Elkins, 2003) have the
least risk to contain viable metacercariae.

Due to the highly variable conditions for above described methods
to inactivate parasites in fish, EU Regulation (EC) 853/2004 and its
amendment (EC) 1276/2011 demand that fishery products intended for
raw consumption, cold smoking preparation (< 60 °C), or processing by
marinating and/or salting, must be frozen at —20 °C in all parts of the
product for at least 24 h or at — 35 °C for at least 15 h to inactivate other
parasites than trematodes (European-Commission, 2004, 2011). As
shown in section 6.2 and Table 2, trematodes require exposure to
freezing during longer time periods for complete inactivation.

For Trichinella, most studies refer to T. spiralis, although other spe-
cies might occur in meat. Zimmermann (1971) studied salt content,
drying time and temperature and concluded that 28 days curing with
40 g NaCl/kg, plus re-salting at day 14, followed by 7 days drying at
37 °C or above would render Trichinella larvae non-infectious (bioassay
in mice). The procedure was not safe when drying was performed at
room temperature. Lin et al. (1990b) studied Trichinella survival in dry-
(hind legs of 8.5-11.1 kg initial weight) and bag-cured (11.1 kg initial
weight) hams. Pork contained 300-525 larvae/g. The dry curing pro-
cess included covering the ham with a cure mix (40 g NaCl/kg ham and
additional 20 g NaCl/kg at day 10) for 28-39 days (according to ham
weight) at 2.2°C, followed by rinsing and an equalisation period to
allow even distribution of salt in the muscle, whereas for bag curing,
hams with 11.1 kg weight were salted with 44 g NaCl/kg and then
stored in wrapped condition (Lin et al., 1990a). Dry hams were stored
at 10-32.2 °C for up to 90-11 days; storage at 10 °C was only effective
after 90 days, whereas this was considerably shorter when hams were
stored at 23.9 °C (Table 3).

European dry ham production generally relies on low aging tem-
peratures. In a German study, pork with 400-700 larvae/g was cured by
injection or immersion and stored at 10 °C (Lotzsch & Leistner, 1979);
depending on the type of ham, no infectivity was demonstrated in
mouse bioassay at day 10 of storage (aw 0,904; pH 5.6) or day 29 (aw
0.921; pH 5.6). The time to loss of infectivity of T. spiralis in fermented
sausages made with 2.8% nitrite curing salt and 0.5% sugar, ranged
from 6 to 14 days with NaCl content from 3.2 to 3.8% in the finished
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products (Table 3). Since inactivation was observed at ay of 0.93-0.95
for fermented sausages and 0.90-0.92 for dried hams, it was suggested
that ayw of 0.90 and 0.87 could be used as threshold levels for fermented
sausage and dried hams, respectively (Lotzsch & Leistner, 1979).

The United States Department of Agriculture (USDA) requires that
cured pork products are produced with pork that tested negative for
Trichinella muscle larvae at meat inspection, or have been produced
according to validated procedures (Hill et al., 2017). To determine
Trichinella muscle larva inactivation in cured ready-to-eat dry type
sausage, Hill et al. (2017) performed a validation study monitoring five
parameters during curing: salt/brine concentration, a,,, pH, tempera-
ture and time, using experimentally Trichinella infected pork for the
production of batter. In their experiments, pH ranged 4.6-5.2 and salt
varied between 1.3% and 2.8%. Loss of infectivity of T. spiralis in fer-
mented sausages was determined by mouse bioassay after 0-11 days.
From these experiments, key conditions could be defined for the pro-
duction of cured dry sausages that simultaneously inactivated T. spirals
muscle larvae. These included NaCl concentrations > 1.3% and fer-
mentation to pH < 5.2 for complete T. spiralis inactivation after 7-10
days post-stuffing (Hill et al., 2017, Table 3). However, there are also
raw sausages with no fermentation or only short-term fermentation,
such as “Teewurst” or “Mettwurst” types. For Teewurst sausages (2.8%
nitrite-curing-salt) containing 950 larvae/g, 21 days of ripening were
required for loss of infectivity (bioassay in mice), corresponding to ay
of around 0.949 and pH of 5.3 (Lotzsch & Rodel, 1974), whereas in the
same product with 200 larvae/g, 14 days of ripening (a,, ca. 0.944; pH
5.3) were sufficient. Nockler and Kolb (2000) studied larval survival in
sausage batter starter culture manufactured with lower content of ni-
trite-curing-salt (2%). The number of viable larvae decreased markedly
between the 4th and 7th day after manufacture. Loss of motility of
digested larvae and of infectivity in mice were observed from the 9th
day onwards. Although these studies indicate that Teewurst sausages
with respect to Trichinella would be a safe product after 9-14 days of
storage, such products are usually placed on the market and consumed
before this period. In sum, ay of 0.92 is reported as the limit for sur-
vival of Trichinella larvae (species not specified), which corresponds to
dry, rather than semi-dry to fresh, fermented sausages (Ockerman &
Basu, 2017). Control of this parasite for fermented meats can also be
achieved by the use of industrially deep-frozen meat for production or
from pig production systems of adequate biosecurity level to ensure a
lack of Trichinella in the pork.

Rodriguez-Canul et al. (2002) reported inactivation of Taenia solium
cysts in pork salted with 70-105 g/kg and left overnight at ca. 30 °C.
The authors observed structural changes in the cyst and inability of the
scolex to evaginate. They attributed this inactivation to changes in os-
motic pressure rather than to the pH decline from about 6.0 to 5.3. For
cysts of T. saginata in beef, a water activity of 0.98 is regarded as the
limit for survival (Ockerman & Basu, 2017).

Protozoan parasite stages in meat and fish flesh are sensitive to salt
concentration. Toxoplasma tissue cysts in muscle of mice were in-
activated within 1 day at 2.5% NaCl (Pott et al., 2013). Nitrite-curing
salt (99.5% NaCl with 0.5% NaNO,) proved more effective than NaCl
alone. In contrast, Toxoplasma tissue cysts have a high pH tolerance: at
lower pH (pH 5 and 6 compared to pH 7), infectivity was not reduced
with exposure for 24-26 days at 4 °C. This finding was regarded as
relevant, not only for fresh meats, but also for fermented meats where
the pH can be around 5.0. In cured-dried and cured-cooked meats, the
pH is typically at 6 or above, but the infectivity of tissue cysts in loin
has been demonstrated to decrease rapidly with exposure to 2% NacCl.
Toxoplasma tissue cysts in pork loin that was injected with brine to give
2% NaCl or 1.4% sodium- or potassium lactate (injection volume 10%
of loin weight) followed by storage for 7 days at 4°C, were not in-
fectious when the pork was fed to cats (Hill, Sreekumar, Gamble, &
Dubey, 2004). Moreover, it was shown that inactivation of cysts (as-
sessed via bioassay) in pork loins held at 4 °C with addition of 2% so-
dium chloride or 1.4% potassium or sodium lactate occurs within the
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first 8h after treatment (Hill et al., 2006). In contrast, infectivity of
positive controls (infected, but injected with 0.85% NaCl only) was
demonstrated at least partially, even after 45 days of storage. Sodium
triphosphate and sodium diacetate, both common compounds in meat
enhancers, had no effect. A study on processing of mutton (Lunden &
Uggla, 1992) indicated that in meat cured for 64 h at 4 °C with 30-50 g
sodium chloride and 25-40 g sucrose for 200-360 g of meat, cysts lost
infectivity. Also, warm-smoking at above 50 °C for 24-48 h inactivated
Toxoplasma tissue cysts in brine-injected mutton (as assessed via
bioassay in mice). The survival and infectivity of Toxoplasma tissue
cysts in ham from experimentally infected pigs after the standard curing
process required for Parma ham (storage for 12, 14 and 16 months and
typical average NaCl contents from 4.2 to 6.2%) was recently assessed
(Genchi et al., 2017). Bioassay in mice and in vitro culture followed by
PCR were used to determine infectivity and viability. None of the mice
became infected and the in vitro culture/PCR did not provide evidence
that the Toxoplasma were viable after the curing process (Genchi et al.,
2017). Thus, a,, below 0.95 and/or pH below 5.3 are recognized as
being detrimental to survival of Toxoplasma tissue cysts (Ockerman &
Basu, 2017).

7. High pressure and irradiation

With the survival of some parasites under the conditions of tradi-
tional inactivation methods for FOAO, such as freezing and curing, there
is interest in alternative approaches. However, data are relatively lim-
ited, and there is a clear need for further testing.

7.1. High pressure processing (HPP)

High pressure processing (HPP) is a non-thermal processing tech-
nique that uses a liquid compression medium and constant pressure to
treat vacuum-packaged food products. Typically, a pressure range from
200 to 600 MPa is used. Time, temperature, decompression time and
liquid temperature vary, depending on product and food composition.
During HPP, pressure is transmitted uniformly and instantly with little
variation in temperature, independent of food shape or size (Rendueles
et al., 2011). In general, temperature increases approximately 3 °C per
100 MPa pressure increase, depending on food composition.

Table 4 provides an overview of the efficacy of HPP on parasites in
fish, meat, and oysters, although only a limited number of parasites has
been investigated. Anisakis larvae in fish filets were killed at a pressure
of 200-300 MPa for 5-10 min at a temperature between 0 and 15 °C
using motility as an indicator of larval death. Cryptosporidium parvum
oocysts have been HPP treated at pressures of 305-550 MPa for =180s,
which significantly reduced infectivity to mouse pups in a bioassay, but
could not totally prevent infection.

Significant inactivation of T. spiralis larvae isolated from infected
pork using hydrodynamic pressure (Hydrodyne process, method for
tenderising meat or fish using explosion induced shock waves in water)
has been reported, although the pressure generated (55-60 MPa) did
not eliminate the infectivity to mice as determined by bioassay.
Toxoplasma gondii tissue cysts in ground pork were successfully in-
activated using 300-400 MPa for 30 s, whereas 100 and 200 MPa were
ineffective (Table 4).

7.2. Electron beam irradiation

Electron beam (E-Beam) is a process used for microbial inactivation
that utilizes high-energy electrons, accelerated to close to light speed.
The resulting high energies (up to 12 million electron volts) are capable
of uniformly penetrating food materials. Foodstuffs are typically placed
on pallets for large throughput and the dose received is controlled by
manipulating the beam current and the beam scanning length, along
with the under-beam conveyor speed (McFadden et al., 2017; Murray
et al., 2015).
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Collins et al. (2005) examined the efficacy of E-Beam irradiation on
the viability of the Beltsville strain C. parvum oocysts as artificial con-
taminants of Eastern Oysters (Crassostrea virginica), by feeding E-beam
treated oyster tissues to neonatal mice. A dose of 2kGy completely
eliminated C. parvum infectivity and did not adversely affect the visual
appearance of the oysters (Table 5).

7.3. Gamma irradiation

The inactivation effect of gamma irradiation is quite diverse, as
reflected in the huge variation of the observed minimum effective dose
(MED) and directly related to the type of parasite, the parasite stage,
and food product assayed (Table 5).

The radio resistance of A. simplex is high; doses as high as 2-10 kGy,
on isolated Anisakis larvae in physiological salt produced a reduction in
penetration ability and infectivity in rats (up to 70% worm recovery
rate), but a dose of 2 kGy was not fully effective to prevent infection in
rabbits (up to 25% recovery rate; Chai, Hong, & Lee, 1991). When
salted fish products were assayed, similar results were observed; doses
as high as 6 kGy were not effective for larvae in salted herring, with
substantial numbers surviving the treatment (Table 5).

The radio resistance of trematodes varies depending on parasite
species and whether the treatment is applied to meat or another matrix.
Metacercariae of Clonorchis sinensis were three-fold less susceptible to
gamma irradiation when encysted in the flesh of fish than when they
were isolated from the fish; i.e. the MED for metacercariae in fish was
0.15 kGy, but 0.02 KGy when metacercariae had been isolated from the
fish (Table 5). A similar situation was observed for Paragonimus wes-
termani; the MED for metacercariae in crab was 25 times higher than
that for metacercariae isolated from the crustacean (2.5kGy vs
0.1 kGy). Thus, the higher dose is required for practical application.
However, identical MED (0.1kGy) were required for inactivating
Opisthorchis viverrini metacercariae in fish or after isolation from fish
(Table 5).

The MED needed to inactivate Trichinella in heavily contaminated
pork carcasses is 0.3 kGy (Table 5). The US FDA approved irradiation
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for the control of T. spiralis in pork under Regulation 21 CFR 179 in
1985, allowing treatments of 0.3 kGy as minimum and 1 kGy as max-
imum.

The MED for Taenia saginata cysticerci in beef varied significantly,
ranging from 3.7 to 6.5kGy. Doses of 0.2-0.6 KGy on Taenia solium
cysticerci produce an irreversible effect on the development of the adult
worms, affecting the viability of the cells in the neck region (Table 5).

Studies of inactivation of T. gondii by gamma irradiation in meat
demonstrated that intermediate irradiation doses (0.1-1kGy) sig-
nificantly reduce the infectivity of bradyzoites and tissue cysts in pork
products. However, differences in radio resistance between T. gondii
strains have been observed, with MEDs ranging from 0.4 to 0.7 kGy
(Table 5).

8. Future perspectives

Bioassay is regarded the gold standard for evaluation of treatment
efficacy of parasites in food. However, 65% of the people questioned in
a 2016 UK survey accepted the use of experimental animals for medical
research, but, at the same time, 35% of respondents think that experi-
mental animal use should be banned on animal welfare grounds and
75% agreed that more needs to be done to search for alternatives to
experimental animal use (Clemens & Leaman, 2016). Alternative
methods to evaluate parasite inactivation include morphological ex-
amination of structure integrity, evaluation of movement after me-
chanical stimulation, or in vitro essays to evaluate parasite development
into the next life stage. However, sensitivity and specificity of alter-
native indicators remain to be determined in most cases and more re-
search is needed to evaluate such indicators in comparison with the
gold standard. Future efforts to modify and advance treatment methods
may benefit from next-generation sequencing (NGS) and bioinformatics
regarding (absence of) gene expression, although finding anti-parasitic
targets using NGS would be more relevant. Free availability and open
access data that come with NGS will improve standardization and
harmonization of research efforts.

Although low doses of irradiation were long ago found to be

Table 4
Effects of high pressure and irradiation on foodborne parasites. Control measure: High Pressure Processing.
Transmission stage Condition Evaluation method Effect Log reduction Matrix Ref
Anisakis
Larvae 140 MPa; 1 h Motility tests, methylene Inactivates Anisakis Low numbers used; log Fish: Nile perch ~ Molina-Garcia and Sanz
150 MPa; 30 min  blue fluorescence larvae reductions cannot be fillet (2002)
200 MPa; 10 min calculated
170 MPa; 3 x
2min
180 MPa; 2 x
2min
190 MPa; 15 min
100 MPa; 5 min Motility test 8% larval inactivation Low numbers used; log Fish: Mackerel Brutti et al. (2010)
200 MPa; 5 min 97% larval inactivation  reductions cannot be filet
300 MPa; 5 min 100% larval calculated
inactivation
Cryptosporidium
Oocysts 400 MPa; 3 min Bioassay (mice) Reduction of infected Low numbers used; log Shellfish: Collins et al. (2005)
mice by 40% reductions cannot be Oysters
370 MPa; 3 min 57% calculated
480 MPa; 3 min 57%
305 MPa; 3 min 48%
550 MPa; =65%
=3 min
Trichinella spp.
Larvae 55-60 MPa Bioassay (mice) Does not inactivate n.s. Pork Gamble, Solomon, and Long
Trichinella spiralis (1998)
Toxoplasma gondii
Tissue cysts 300 MPa; 30s Bioassay Inactivates tissue cysts n.s. Meat: Ground Lindsay, Collins, Holliman,
400 MPa; 30s pork Flick, and Dubey (2006)
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effective at inactivating at least seven genera of parasites, this metho-
dology has barely been considered for use in controlling foodborne
parasites in FOAO. This is partly due to considerable controversy con-
cerning the safety of irradiated food. Fierce opposition against the use
of irradiation from consumer groups in Europe is often based on old
information and plays on consumer fear (Roberts, 2014). Although ir-
radiation is increasingly used for treatment of various foods globally, its
use in the European Union is limited and even decreasing; strict legis-
lation only permits irradiation treatment of dried herbs and frog legs
(Feliciano, 2018).

E-beam is a potential methodology that circumvents the need of
radioactive isotopes, but E-beam electrons have a limited penetration
depth of, at most, 5 cm, considerably below that of X-rays (penetration
depth 60-400 cm, depending on the energy used) (Collins, Flick, Smith,
Fayer, Rubendall, et al., 2005). However, this limited penetration has
been proven appropriate for some foods (e.g. oysters). E-beam irra-
diation doses =2.0kGy may be used in commercial processes, but ir-
radiation at 2 kGy changes meat tenderization, colour, and flavour (Yim
et al., 2015). In industrialized regions especially, such as the US and
Europe, a trend towards more critical consumer attitudes regarding
sustainability of food products and production methods is ongoing,
with increasing demands for freshness and “naturalness” of foods,
thereby excluding additives and human intervention (e.g. irradiation,
but also freezing) (Roméan, Sanchez-Siles, & Siegrist, 2017). This calls
for better communication and more research to investigate and improve
irradiation technologies. Using sustainable energy sources may improve
public acceptance of irradiation treatment of foods. Indeed, evaluation
of electrical equipment to generate E-beam and X-ray irradiation to
replace Cobalt-60 use for irradiation of foods is ongoing (Feliciano,
2018).

High pressure processing (300 MPa for 0.5-5 min) may be used to
inactivate Anisakidae larvae in fish and Toxoplasma tissue cysts in
(minced) meat, but Cryptosporidium oocysts in oysters appear to be
highly resistant to HPP. Also here, more research is needed to evaluate
applicability of HPP to inactivate parasites in FOAO.

Research on foodborne parasites should be improved towards
standardization of experimental approaches to evaluate inactivation
methods, but also towards standardization of methods to monitor in-
activation. Literature data are diverse and are currently generally in-
sufficient for modelling survival as a response to treatment. Although
inactivation effects vary considerably between parasites and methods,
modelling may help to determine minimal effective treatment para-
meters to ensure food safety for FOAO.

9. Conclusions

Based on our extensive literature review, information on the effects
of different inactivation techniques on 12 most relevant parasites in
FoAO has been assimilated. The efficacy of time-temperature combi-
nations for freezing and heating procedures is influenced by parasite
species and developmental stage, but, in general, heating to 60-75 °C
for 15-30 min or freezing at —21 °C for 1-7 days inactivates parasites
in meat or fish, as determined using bioassays. USDA recommends
heating meat at a core temperature of 62.8-73.9°C or freezing at
—18°C to inactivate parasites in meat or fish, but freezing cannot be
relied upon for total inactivation in home situations. Industrial pas-
teurization of fluids (15 sec 71.7 °C) or fish and crabs (175-65 min
85-92.2°C) is effective for control of parasites in milk and in fish.

Meat- and fishborne parasitic stages are generally sensitive to NaCl
contents of 2-5%, associated with higher osmotic stress and often
augmented by lowering pH (fermentation or organic acids). Literature
on high pressure treatment and E-beam to inactivate parasites in animal
origin matrices is scant. The minimal effective dose for gamma radia-
tion ranges > 0.1-0.5kGy for fish parasites except Anisakis (10 kGy)
and > 0.4-6.5kGy for meatborne parasites. Literature data are cur-
rently insufficient for modelling survival as response to treatment.
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This assimilation of data clearly shows that research on foodborne
parasites should be improved, and efforts should be directed towards
sustainable novel inactivation methods for parasites in FoAO and
standardization of experimental approaches for the evaluation of in-
activation methods.
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