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Abstract

Air is a microbial habitat of crucial importance for public health. As such it is relevant

for detection of potential epidemic or biothreat agents. The study of microbiological

diversity in air through metagenomic analysis is a field under rapid development, and

demands more knowledge. The work presented in this thesis investigated the current

procedures used in metagenomic analysis of air samples, and consists of two parts.

The first part assessed how long-time storage at low temperatures affects the stability

of DNA concentration of filter-based air samples. Qubit and qPCR targeting the 16S

rRNA gene were used to measure the DNA concentration. No evidence was found

suggesting a detrimental effect of filter storage at -80°C. However, the findings may

suggest negative effect of repeated freeze-thaw cycles on the yield of purified DNA.

The second part assessed the performance of three metagenomic classification tools for

creation of taxonomic profiles of air samples: Kraken 2, One Codex and Kaiju. The

testing was conducted on various datasets. The results showed that Kraken 2 is the

superior classification tool of well-studied species. However, Kraken 2 performed poorly

on more complex datasets closer resembling the biological composition in air samples,

due to inadequacies in the reference database. The classification of real air samples

showed substantial variation between the profiles made by the tools. These findings

further emphasise the need for improvements of the reference databases by adding more

species specific for air, which should be a key objective for further work. There could

also be improvements from altering the lowest common ancestor approach implemented

in the classification algorithms, which seems to be a limiting factor for the taxonomic

resolution.
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Sammendrag

Luft er et mikrobielt habitat med stor betydning for folkehelsen, med relevans for

deteksjon av potensielle smittestoffer som kan føre til epidemiske utbrudd. Studiet av

mikrobiell diversitet i luft ved metagenomisk analyse er et forskningsfelt i rask endring,

og det kreves mer kunnskap. Arbeidet som er presentert i denne oppgaven tok for seg

prosedyrene brukt for metagenomanalyser av luft, og består av to deler. Den første delen

tok for seg hvordan langtidslagring på lave temperaturer påvirker DNA-konsentrasjonen

av filterbaserte luftprøver. Qubit og qPCR basert på 16S rRNA-genet ble brukt til å måle

DNA-konsentrasjonen. Det ble ikke funnet bevis for at lagring på -80°C opp til syv

måneder har negativ effekt på konsentrasjonen. Resultatene antyder imidlertid negativ

effekt fra gjentatte tine-fryse-sykluser på DNA-konsentrasjonen av renset DNA. I den

andre delen vurdertes prestasjonen av tre metagenomiske klassifiaksjonsverktøy brukt

til å lage taksonomiske profiler av luft: Kraken 2, One Codex og Kaiju. Testingen

ble gjennomført på ulike typer datasett. Resultatene viste at Kraken 2 gjør den beste

klassifiseringen på velstuderte arter, men presterte dårligst på mer komplekse datasett

som ligner mer på artene funnet i luft. Dette skyldes mangler i referansedatabasen.

Klassifikasjonen av reelle luftprøver viste betydelige avvik mellom profilene fra de

testede verktøyene. Disse funnene understreker at databasene må utbedres ved å legge

til arter mer spesifikke for luft, som bør være et hovedpunkt for videre arbeid. «Least

common ancestor»-tilnærmingen som brukes av verktøyene kan også forbedres, da det

ser ut til å være en begrensende faktor for den taksonomiske oppløsningen.
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1 | Introduction

Air is a microbial habitat of crucial importance for public health. As such it is relevant

for detection of potential epidemic or biothreat agents (Kuske, 2006; Be et al., 2014).

Microbial studies of air was first of scientific interest due to disease transmission, but

it has been shown that air is a habitat where microbes can grow and reproduce (Sattler

et al., 2001; Dimmick et al., 1975; Amato et al., 2007). The acknowledgement of air

as a relevant microbial environment combined with the rapidly decreasing cost of next

generation sequencing (NGS) (Shokralla et al., 2012) has led to sequencing being the

gold standard in the field. Specifically, shotgun metagenome sequencing is becoming a

widely adapted method for determining the biological composition of air (Tringe et al.,

2008; Behzad et al., 2015; Rosario et al., 2018). With increasing access to high quality

sequence data (Lindgreen et al., 2016), adequate metagenomic classification tools are

crucial for reliable taxonomic profiles.

1.1 Microbes in the air

The term bioaerosol is often used when addressing microbes in the air. Aerosols are

liquid or solid particles suspended in a gaseous medium, typically air (Dybwad, 2014).

Accordingly, bioaerosols are defined as aerosols of microbial, plant or animal origin

(Heedrik et al., 2003). This includes bacteria, virus, fungi, toxins and pollen, animal and

plant debris. There is a distinction between microbial compositions in indoor and outdoor

air. While the largest contributor to microorganisms in indoor air are humans (Prussin

and Marr, 2015), the origin of components in outdoor air varies greatly (Kuske, 2006).

There are seasonal variations, variation between local climates, and due to changing

weather conditions.

The density of biomass in air is extremely low compared to other environmental

samples (Behzad et al., 2015). The density is estimated to be approximately 104 cells/m3

(Burrows et al., 2009), compared to 1010 − 1011 cells per gram of soil, or 1013 − 1014
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in the human gut (Gill et al., 2006). This puts high demands on sampling and sample

processing to get the DNA yield required for sequencing.

1.2 Studying the biological diversity in

environmental samples

Breitwieser et al. (2017) states that the hierarchical taxonomy being used to classify life is

not optimal for microorganisms, as it was first intended for multi-cellular organisms. The

microbial world has turned out to be a lot more complex than scientist first thought when

they started creating taxonomic naming schemes. The term "species" originally refers

to individuals that can interbreed and produce fertile off-springs in the next generation

(Rosselló-Móra and Amann, 2015). This definition is not directly transferable to bacteria

for instance, as they do not sexually reproduce, and there is a possibility for horizontal

gene transfer. Despite these problems, scientist has to adhere to this taxonomy. It is

hence important to keep in mind that the classification system is not ideal when assessing

the microbial content in aerosol samples.

For a long time, the study of bacterial content in environmental samples was based

on cultivation. This includes the study of bioaerosols (Fang et al., 2005; Cronholm, 1980;

Dybwad, 2014). A major drawback of this technique is that the proportions of cultivable

microorganisms may not necessarily reflect the true composition of the environment.

Amann et al. (1995) suggested that less than 1 % of the bacteria in any environmental

sample is cultivatable. Although there is increasing knowledge of how to cultivate

bacteria in the laboratory, the representation of the biological composition is still biased

(Stewart, 2012).

As NGS became widely available at the onset of the 21st century, the use of amplicon

sequencing increased (Mardis and McCombie, 2017). Amplicon sequencing, also known

as marker gene sequencing, is a cost and labour effective method for investigation of

the biological diversity. A highly conserved gene is targeted, most commonly the 16S

ribosomal gene for bacteria and 18S for eukaryotes (Yooseph et al., 2013). However,

there are major drawbacks for studying the entire biological diversity when only parts

of the genomic content is sequenced. As the targeted gene is conserved, the taxonomic

resolution, which is a required for a species-level classification, is reduced (Zou et al.,

2019). Further, amplicon sequencing suffers from a primer bias, because the primers of

less known species are less likely to be amplified and represented in the final metagenomic

profile (Schirmer et al., 2015).
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Shotgun sequencing is an alternative to amplicon sequencing. Shotgun offers direct

sequencing of the entire genomic content, instead of being limited to a marker gene

(Breitwieser et al., 2017; Yooseph et al., 2013). The method randomly fragments the

DNA into pieces. The fragments are then sequenced, which results in short nucleic acid

sequences called reads.

A major benefit of shotgun sequencing is the increased taxonomic resolution com-

pared to amplicon sequencing (Be et al., 2014). Shotgun sequencing allows both analysis

of taxonomic composition and metabolic potential. It is also possible to screen for

virulence factors and genes associated with antibiotic resistance with shotgun sequence

data. Furthermore, as viral genomes do not contain an analogue gene to the 16S and

18S gene often used for amplicon sequencing, viral species will not be detected. Hence

this is a major drawback of amplicon sequencing if the entire biological diversity is to

be studied. While amplification based methods are less costly to perform (Breitwieser

et al., 2017), the high taxonomic resolution from shotgun is beneficial when studying

environmental samples at species-level.

1.3 Bioaerosol metagenomics

Despite the choice of amplicon or shotgun sequencing, metagenomic classification

tools are used for the creation of taxonomic profiles. This is done by mapping the

reads to sequences contained in a reference database (Gardner et al., 2019). The term

metagenomics can be used for a variety of techniques and bioinformatic tools, ranging

from taxonomic profiling to the study of expressed genes of an environment (Thomas

et al., 2012). For the purpose of this work, metagenomics referrers to taxonomic profiling

with the use of shotgun sequence data.

Metagenomics of bioaerosol samples is a novel field under rapid development.

One of the greatest challenges is the lack of standardised protocols and methodologies,

according to Behzad et al. (2015). This makes studies on the biological content of air

difficult or even impossible to compare, due to a variety of methods being used for both

sampling and quantitative or qualitative analysis (Dybwad, 2014). With a proliferation

of bioinformatic tools for analysing metagenomic datasets, the selection of adequate

tools are more important than ever (Gardner et al., 2019). Many benchmarkings of

metagenomic classification tools are conducted (Lindgreen et al., 2016; Peabody et al.,

2015; Sczyrba et al., 2017; Almeida et al., 2018), but none specifically for bioaerosol

samples.
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Another challenge in the field of metagenomic profiling is the substantial part of

novel organisms not yet contained in any existing databases. As this used to be the case

for other environmental samples, such as the gut microbiota, it has been shown that the

development of more environment specific reference databases may solve this problem

(Zou et al., 2019; Forster et al., 2019).

McIntyre et al. (2017) states that identification of microorganisms in clinical and

environmental samples is one of the main challenges of metagenomics. Both the number

of studies using metagenomics for analysis of environmental samples and new bioinfor-

matic tools are rising with the decreasing cost of NGS (Breitwieser et al., 2017). This

makes selection of appropriate tools more demanding, but also of a greater importance

than before (Gardner et al., 2019).

1.4 Translating air into sequence

The creation of metagenomic profiles from bioaerosol samples is a process consisting of

several steps. The first step is the collection of bioaerosol samples. There is a variety of

sampling methods that can be used, ranging from collection into a liquid, to collection

onto a dry filter (Dybwad et al., 2014). The next step is DNA isolation optimised for

bioaerosol samples, followed by sequencing. The read data can then go through a quality

control, removing adapters and reads of poor quality. Lastly, the files are used as input to

a metagenomic classification tool, with the final result being a taxonomic profile of the

bioaerosol sample.

Since the whole process from air to sequence takes several days, it is not one

continuous workflow, and hence often require storage before further processing or after

DNA isolation. How the stability of DNA samples are affected by storage by freezing is

an unexplored subject. Ross et al. (1990) found that after freezing DNA extracted from

blood once, the yield decreased by more than 25 %. This indicates a departmental effect

of freezing DNA samples. However, the research was conducted using isolated DNA

from one cell type. On the contrary, bioaerosol samples are often stored as filters and

contains a complex mixture of cell types a variety of taxa, including both gram-positive

and gram-negative bacteria, spores and fungi. As a result of this, differences in their

cell wall composition could lead to different effects from freezing and storage. If that

is the case, the resulting composition found in the taxonomic profiles may be biased.

Additionally, the DNA concentration in bioaerosol samples are considerably lower than

that used by Ross et al. (1990) which could impact the stability.
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At FFI, bioaerosol samples are often stored at -80°C on order to preserve the samples.

It is of interest to confirm that the storage is not disrupting the stability of the samples.

Further, as a way of making the handling of samples more streamlined is to store the

samples in a buffer, this storage method is also of interest to investigate.

1.5 Aims of the study

The overall goal of this study is to expand the knowledge of metagenomic analysis of

filter-based bioaerosol samples to improve the current procedures. This is carried out

through two subgoals:

1. Assess how filter-based bioaerosol samples are affected by long time storage at

low temperatures.

2. Getting insight into how the selection of metagenomic classification tools influence

the resulting taxonomic profiles of bioaerosol samples.

An outline of filter-based bioaerosol sample preparation, subjects of matter and

methods used for investigation in this thesis are illustrated in Figure 1.1.
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Figure 1.1: The flowchart shows the steps in filter-based bioaerosol sample preparation, with
associated subjects of matter relevant in this thesis, and the method used for assessment. The
sequencing (red colour) was conducted by FFI.
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2 | Materials and methods

All data analysis was carried out using Rstudio 3.5.0 (RStudio Team, 2015). The figures

are made with the ggplot2 (Wickham, 2016) and ggtree (Yu et al., 2017) packages.

2.1 Storage study

The storage study was conducted to investigate whether aerosol samples have a stable

DNA concentration after storage at -80 °C up to seven months. To quantify this, 78

aerosol samples were collected and stored for different time periods (three and seven

months) and by different storage conditions (filter storage and buffer storage). DNA

was then isolated from the samples and concentration was measured by two methods;

quantitative polymerase chain reaction (qPCR) targeting the 16S rRNA-gene, and by

using Qubit which measures the total DNA concentration by fluorescence.

2.1.1 Sample collection

Collection of aerosol samples was done using SASS 3100 high-volume air samplers

(Research International, Monroe, WA, USA). The air was sampled directly onto a dry

electret filter, at a flow rate of 265 L/min for 3 hours, resulting in a filtration of 47.7m3

of air per sample. The sample collection was carried out between 1st and 13th of June

2018 at Kjeller in a rural environment. Six identical SASS air samplers were used per

sampling day, giving six parallels of filters from each of the 13 days, which in total

resulted in 78 air filters.

2.1.2 Sample storage

The six parallel samples from each day were then divided into three groups:
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1. DNA isolated directly after collection

2. DNA isolation after storage for three months at -80°C

3. DNA isolation after storage for seven months at -80°C

The two groups being stored (2 and 3) were further divided into two groups:

1. Half of the samples stored filters

2. Half of the samples stored as filter extracts

Separation into groups is illustrated in Figure 2.1. The filters were put directly into

a 50 ml Falcon tubes and frozen. In order to prepare the filter extract, samples from

2-3 days were accumulated in the freezer, thawed and then filter extracted. This is the

first step in the DNA isolation procedure, resulting in a supernatant and a pellet (see

Figure 2.2). The supernatant (NucliSENS lysis buffer) was stored in 50 ml Falcon tubes,

while the pellet was resuspended in 150 µl of the buffer solution Phosphate-buffered

saline (PBS) in 1,5 ml Eppendorf tubes. This storage methods will be refereed to as filter

storage and buffer storage.

Figure 2.1: Sampling setup for 78 aerosol samples conducted in June 2018. Six SASS air
samplers collects six aerosol samples per day of sampling. Two of the six samples are isolated
directly, two stored for three months, and two stored for seven months, by either storage as filter
or buffer.
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2.1.3 DNA isolation

The DNA isolation was conducted according to the method optimised for bioaerosol

samples by FFI (Bøifot et al., 2019). An overview of the method is shown in Figure 2.2.

Figure 2.2: Illustration of DNA isolation procedure optimised for bioaerosol samples. After filter
extraction, the sample is split into supernatant and pellet, which can be stored separately. Figure
reprinted by permission of Bøifot et al. (2019)

The DNA isolation procedure starts by filter extraction. The filters are transferred

into Falcon tubes with 10 ml NucliSens Lysis Buffer (BioMérieux, Marcy-l’Étoile,

France), before vortexing for 20 seconds. The filters are then put into a syringe to extract

the liquid.

Separation of supernatant and pellet is done by centrifuging the samples at 7.000 g

for 30 minutes. The supernatant is transferred to a new tube. The pellet is dissolved in

150 ml PBS (pH 7.5, Sigma-Aldrich, St. Louis, MO, USA) and centrifuged at 17.000 g

for 5 minutes. The liquid is added to the Falcon tubes containing the supernatant. 10 µL

5 mM MetaPolyzyme (Sigma-Aldrich, St. Louis, MO, USA) and 5 µL sodium acid (0.1

M, Sigma-Aldrich, St. Louis, MO, USA) was added to the pellet, before 60 minutes of

incubation at 35 °C.

The samples were transferred to ZR BashingBead Lysis Tubes (0.1/0.5 mm beads,

Zymo Research Corp) pre-filled with 550 µL PowerSoil Bead Solution (Qiagen, Hilden,

Germany) and 60 µL PowerSoil Solution C1. Tubes were put on a Mini Bead Beater-8

(BioSpec Products) at 17.000 g for 3 minutes. The tubes were then centrifuged at 13.000
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g for 2 minutes. The supernatant was treated with Solution C2 and C3 according to the

DNeasy PowerSoil protocol (Qiagen, Hilden, Germany). The resulting supernatant was

combined with the supernatant from the filter extraction.

DNA was purified according to the protocol of the NucliSENS Magnetic Extraction

Reagents kit (BioMérieux, Marcy-l’Étoile, France). Instead of 60 µL silica suspension,

the volume was increased to 90 µL, with a 20 minute incubation.

2.1.4 Measurements of DNA concentration

Qubit

A QubitTM 3.0 Fluorometer (ThermoFisher Scientfic) was used to quantify the total DNA

concentration in all 78 aerosol samples. 10 µL of each sample was measured immediately

after isolation. The high-sensitivity dsDNA Qubit Kit has a detection range of 0.2–100

ng, and binds specifically to DNA (Mardis and McCombie, 2017). A house standard was

also measured for each round Qubit measurements to ensure a stable signal.

16S rRNA qPCR

qPCR is a DNA quantification method that when used with probes is marker specific. It

is widely used for quantifying microorganisms in environmental samples (Zhang and

Fang, 2006). The amount of PCR product is measured during the course of the reaction

by monitoring the fluorescence of dyes or probes. With an exponential growth, it is

then possible to estimate the initial concentration (Kubista et al., 2006). The method

is reproducible and highly sensitive, compared to older techniques, but only amplified

DNA will produce a signal strong enough for detection. The output is a quantification

cycle (Cq), that can be translated to a 16S rRNA gene copy number using a standard

curve (Bustin et al., 2009). This is refereed to as absolute quantification.

A standard curve was constructed ranging from 10 to 100.000 genome copies of

the 16S gene in Escherichia coli. The amplification and standard curve can be found in

Figure 1 and in Figure 2 in the attachments.

The number of E. coli gene copy equivalents, or gene copies for short, of all 78

samples was measured with qPCR of the 16S gene. This was done using the BactQuant

assay designed by Liu et al. (2012) on a LightCycler480 (Roche Diagnostics, Oslo,

Norway) for universal bacterial quantification. Two parallels of each sample were
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measured, in addition to three parallels of the standard solution with known concentration

of E. coli. The mean value for each sample was used for further analysis.

2.1.5 Statistical analysis

The dataset of DNA concentration measured by Qubit and qPCR was analysed by

subtracting the mean value of the two samples without any storage time per sampling day

from the four other parallels. Hence, all values displays the change in DNA concentration

relative to the samples not stored.

Model of DNA concentration by linear mixed models

Linear mixed models are linear models containing both fixed and random effects. Eisen-

hart (1947) found that there are two fundamentally different explanatory variables: fixed

and random effects. Fixed effects affects the response variable in a non-random manner,

for example if storage time is used as an predictor variable for DNA concentration. On

the other hand, random effects affect the response variable in a random way that can not

be manipulated in the experiment. For example, the effect of sampling day in this study,

where the weather, temperature or other factors can give random effects to the DNA

concentration in the sample. In general; fixed effects influence the mean of the response

variable, while random effects influence the variance. This is variation from differences

between the levels of the random effects. (Crawley, 2013). Therefore, a key point is to

estimate how much of the total variation is from the random effects in the model.

Equation 2.1 shows a mixed model for DNA concentration (yk) explained by the

two fixed effects storage time (α) and method (β) and the random effect (Dk) of sampling

day k = 1,2,..,13. µ is the change in concentration of a sample stored for three months as

filter, hence α is change when the fixed effect of storage time is changed from three to

seven months, while β is the effect of changing storage method from filter to buffer. As

said, there are two types of variation in the a model with random effects:

• σ2 is the overall variation in the model

• σ2
D is the variation from differences between the levels of the random effect
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yk = µ+ α + β +Dk + e (2.1)

Dk = N ∼ (0, σ2
D)

e = N ∼ (0, σ2)

A linear mixed effect model was stated for each of the two methods of measurements

by the lme4 package (Bates et al., 2015) in R, referred to as Qubit model and qPCR

model. DNA concentration for the two models refers to change in Qubit concentration

after storage in the Qubit model, and change in gene copy equivalents in the qPCR model.

95 % confidence intervals were calculated for the data to test for statistically signifi-

cant differences between the groups.

2.1.6 Model simulation by bootstrapping

To get more robust model estimates, bootstrapping can be used to simulate alternative

datasets by re-sampling from the original dataset (Rodgers, 1999). While non-parametric

bootstrapping methods re-samples from the original data, semi-parametric methods

instead re-samples from the residuals of the data. This gives a better view of how the

parameter estimates are affected by the underlying dataset.

Semi-parametric bootstrapping for mixed models in the bootMer function in the

lme4 package was used in this work. 10.000 simulations were conducted, only including

the fixed effects of storage time and storage method.

2.1.7 Freeze-thaw cycles

To test for a possible effect of freeze-thawing, five repeated cycles of freezing and

thawing were conducted. Isolated DNA samples were thawed at room temperature and

frozen at -20°C, extracting 15 µL between each cycle for measurement by Qubit.
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2.2 Comparing tools for taxonomic profiling

The second main aim in this work was to better understand how the taxonomic profiles

of bioaerosol samples are affected by the selection of metagenomic classification tools.

The performance of the three tools Kraken 2, One Codex and Kaiju were evaluated on

test sets, and on real aerosol samples.

2.2.1 Shotgun-sequencing

Since the first high throughput sequencing in the mid-2000s, the technology has evolved

dramatically (Goodwin et al., 2016). There are currently two main paradigms in NGS;

short and long read sequencing. The increased read length from long-read sequencing

is preferable for genome assembly projects. On the contrary, short read sequencing

introduces a more challenging assembly step, but has a lower cost and a higher throughput

of reads. More reads increases the chances of detecting rare taxa, which is beneficial for

the purpose of this study.

While there are many NGS technologies, Illumina tends to be the most widely

used in the realm of short read sequencing (Goodwin et al., 2016). HiSeq2000 and

MiSeq are leading options among these. As was stated by Caporaso et al. (2012), these

platforms successfully recaptures known biological composition in the tested microbial

communities. The two technologies use similar chemistry and produce similar data, but

at different scales, making the applications differ. HiSeq produces more reads at a lower

cost per read, and is better suited for large projects with larger time scales. MiSeq is

better fitted for smaller projects, producing fewer reads with higher quality (Caporaso

et al., 2012).

The fragments created in shotgun sequencing can either be sequenced from the

5’-end, called single-end, or from both sides (5’-end and 3’-end), called paired-end.

The nucleic acid sequence of each fragment is called a read, with a length measured in

numbers of base pairs (bp) (Goodwin et al., 2016). Quail et al. (2012) showed that using

paired reads on the Illumina MiSeq gave a strong positive effect on the coverage of bp.

In this work both real and synthetic sequence read sets were used:

• Illumina X Ten HiSeq 150 bp paired-end sequence reads sets (2 samples) for

metagenomic profiling of mock microbial community samples.
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• Illumina MiSeq 150 bp paired-end sequence reads sets (6 samples) for metage-

nomic profiling of bioaerosol samples from a subway environment.

• Simulated MiSeq 250 bp paired-end sequence read set (1 test dataset and 2 shuffled

test datasets) from downloaded genomes.

2.2.2 Metagenomic classification tools

The decision of which tools to test was based on the results of the newly published article

by Gardner et al. (2019), assessing four former benchmarkings. Kraken and One Codex

were amongst the tools consistently ranked on top. Kaiju was selected due to a proposed

increased accuracy for metagenomic samples with a large proportion of novel organisms.

Lowest common ancestor

The lowest common ancestor (LCA) approach is used by many metagenomic classifica-

tion tools. LCA determines at what taxonomic level a read should be assigned to when

multiple taxa matches (Bender et al., 2005). This could be either on the same or different

taxonomic levels. The taxonomic hierarchy can be viewed as a directed graph with taxa

as the nodes. The LCA-approach will then output the deepest node connecting the taxon.

For example, if a read matches both the species E. coli and the genus Yersinia, their least

common ancestor will be the family Enterobacteriaceae. This is illustrated in Figure 2.3.

All metagenomic classification tools in this work uses the LCA approach.

Kraken

Kraken is a metagenomic classification tool using exact matching of k-mers to gain a high

accuracy, created by Wood and Salzberg (2014). K-mers are all possible subsequences of

length K of the original sequence. A sequence of length L have L-k+1 possible k-mers.

For example a sequence of length 8 would have 5 4-mers (8-4+1 = 5), as illustrated in

Figure 2.4.

The algorithm used in Kraken created k-mers of a given read, and searches against

a database also stored as k-mers with exact matching. Each k-mer is then assigned to a

taxa with the LCA-approach already described. The number of times a k-mer is assigned

to a LCA taxa for a given read is counted, and the entire read is classified as the most
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Figure 2.3: The lowest common ancestor-approach illustrated by a directed graph, with taxa as
the nodes. The green nodes represents taxa on different taxonomic levels that both matches to the
same read. The lowest common ancestor will be the classified taxa (orange node).

abundant taxa. If there is no exact match, the k-mer will be assigned ’unclassified’. The

default k-mer length is 31-mers.

Figure 2.4: The five possible 4-mers for a DNA sequence of 8 bases. Exact matching with k-mers
is used to increase speed for many metagenomic classification tools.

Kraken 2

Kraken 2, which is a newer version of Kraken, was used in this work. The major

improvement from the original Kraken is that the database is stored as minimizers instead

of entire k-mers. This further increases the classification speed (Wood and Salzberg,

2014). Minimizers are used to bin the k-mers without disrupting the contiguity of the

sequence. A minimizer is the first subsequence of a k-mer after sorting the subsequences
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alphabetically, as illustrated in Figure 2.5 (Hunt et al., 2004). A given sequence only

have one minimizer, and hence will always go to the same bin.

Figure 2.5: Illustration of minimizers, which is used by Kraken 2. The minimizer of a k-mer is
the first of the subsequences after sorting all possible subsequences alphabetically.

The classification speed is increased because a given k-mer is first translated into a

minimizer, and mapped to the matching bin. In the next step, the content of the bin can

be loaded, and the query k-mer can be mapped to the k-mer with the exact match, without

loading all other possible bins. In addition to minimizers, Kraken 2 has implemented a

compact hash table for storing the database, further reducing the memory requirements

(Wood and Salzberg, 2014).

Another benefit of Kraken 2 is the easily modifiable databases. It is possible to add

new genomes, or remove parts of the existing one. The latter is sometimes used to serve

as a negative test when assessing specificity.

To adjust the stringency of the classification, a confidence score can be set for Kraken

2 in the interval [0,1]. The score (equation 2.2) of 1 is the strictest possible setting. A

sequence with a score lower than the confidence score will be labelled "unclassified".

C

Q
=

k-mers mapped to the LCA values in the clade rooted at the label
k-mers in the sequence that lack the ambiguous nucleotide

(2.2)

Kraken 2 was in this benchmarking assessed with the default setting of 31-mers and

confidence level = 0.0. The standard databases for archaea (RefSeq), bacteria (RefSeq),
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fungi (RefSeq), human (GRCh38) and viral (RefSeq) were used. In addition UniVec_core

was used, which is a database containing vector, adapter, linker, and primer sequences

that may be a source of contamination.

One Codex

Similarly to Kraken, One Codex uses a k-mer based algorithm. The main advantages of

this taxonomic classification tool is the use of a large database of microbial reference

genomes and being user friendly for non-expert users (Minot et al., 2015). The algorithm

used by One Codex is the same as the first version of Kraken by Wood and Salzberg

(2014), as well as the default of 31-mers. One Codex is fully Web-based. The tool is

semi-commercial, in that up to 25 samples can be uploaded for free.

Kaiju

Kaiju is fundamentally different from Kraken and One Codex. While most super fast

metagenomic classifiers use a k-mer based algorithm at a nucleotide-level, Kaiju instead

finds maximum exact matches (MEMs) at the protein-level. It is possible to allow

mismatches using a greedy mode. All six possible reading frames of a given sequence

are compressed with the Burrows Wheeler Transform (BWT).

The BWT lists all possible rotations of a given string in the reference database, and

sort them alphabetically. The last character of each of the sorted rotations make up the

transform. An example of a transform is shown in Figure 2.6. A benefit of transforming

the strings with BWT is that there is now a set ordering that can easily be used to search

up similar sequences. The transform is reversible. The BWT is done for all six possible

reading frames of an amino acid sequence from the original nucleotide sequence.

Protein-level is used to increase accuracy, as the degree of conservation at protein-

level is higher (Menzel et al., 2016). If there are several matches to sequences contained

in the database, Kaiju will output the taxonomic identifier, or determine the LCA.

Since k-mer based methods needs at least one k-mer per read to match to sequence

contained in the database, these tools work best for samples where the majority of the

diversity already are sequenced and stored in the databases. In environmental samples,

and aerosol samples in particular, there are a large proportion of novel sequences not

yet contained in any databases. Therefore, it is possible that Kaiju will be well suited to
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Figure 2.6: Example of a Burrows Wheeler Transform compressing the six first amino acids of a
protein sequence. All possible rotations of the sequence are listed and sorted alphabetically. The
last character for the rotations in this order is the Burrows Wheeler Transform.

aerosol samples. Menzel et al. (2016) claims that Kaiju can classify up to 10 times more

reads in real metagenomes compared to other tools.

Kaiju can either be downloaded locally or be used through a Web Server. The latter

was done in this work. The default greedy mode was used with the minimum match score

= 75 and allowed mismatches = 5. The non-redundant National Center for Biotechnology

Information (NCBI) Basic local alignment search tool (BLAST) database including fungi

and microbial eukaryotes was used.

2.2.3 Selecting control datasets

According to Gardner et al. (2019), selection of a adequate control dataset for bench-

marking of metagenomic tools is essential, and should be given considerable thought. A

functional control dataset needs to have a known composition, and should also resemble

real data as closely as possible. There are two main types of positive control datasets:

In vitro datasets that are real samples with predetermined ratios of taxa that have been
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sequenced, while in silico datasets can either be downloaded from publications, or they

can be simulated using a variety of tools (Gardner et al., 2019). To truly represent an

environmental sample, part of the dataset should consist of novel sequences that is not

contained in the databases used. Both categories of control datasets were used for this

work.

2.2.4 ZymoBIOMICS dataset

As in vitro datasets, the sequence data of two samples of ZymoBIOMICS Microbial

Community Standard was obtained from FFI. The standard consist of eight species of

bacteria and two species of yeasts in known proportions, shown in Table 2.1. All species

in the ZymoBIOMICS dataset are well-studied species expected to be contained in the

databases of metagenomic classification tools. A phylogenetic tree of the ten species

is shown in Figure 2.7 as a visualisation of the evolutionary relationships between the

species. The method used for creating the phylogenetic tree will be discussed in section

2.2.7.

Table 2.1: The microbial composition of the ZymoBIOMICS Microbial Community Standard
used as a test dataset.

Organism name Proportion

Listeria monocytogenes 12 %
Pseudomonas aeruginosa 12 %
Bacillus subtilis 12 %
Escherichia coli 12 %
Salmonella enterica 12 %
Lactobacillus fermentum 12 %
Enterococcus faecalis 12 %
Staphylococcus aureus 12 %
Saccharomyces cerevisiae 2 %
Cryptococcus neoformans 2 %

2.2.5 Simulating control datasets

Considering the novelty of the field of metagenomics on aerosol samples, finding an

excising well-tested dataset reflecting the contents of air proved to be problematic.

Instead, as an in silico dataset of synthetic metagenomes were created for this study

by using the simulation tool ART on genomes known to be present in aerosol samples.

ART is developed to improve testing and benchmarking of tools (Huang et al., 2012).
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Figure 2.7: Phylogenetic tree of taxa in the ZymoBIOMICS community standard dataset used to
visualise the evolutionary relationship between them. The x-axis shows Tamura and Nei-distances,
and a higher distance compares to a greater evoltionary distance.

Mimicking of error profiles for several sequencing technologies are supported, amongst

them are the Illumina MiSeq 250 bp paired-end sequencing. The same technology is

used for sequencing of aerosol samples at FFI except from the read length of 150 bp.

The selection of genomes for the synthetic metagenome was based on the results

from Tringe et al. (2008). The study collected aerosol samples at two shopping centres

in Singapore, and the 16S ribosomal DNA was sequenced. The genomes of the 12 most

abundant species, based on the number of phylogroups from the study was downloaded

from the RefSeq database by NCBI (O’Leary et al., 2015). The chosen species are

confirmed as species found in aerosol samples by FFI.

A total of 1.000.000 read pairs were simulated from the genome of the most abundant

of the 12 species, and 500.000 for each of the remaining 11 genomes. The magnitude of

this simulation was selected to ensure that the dataset was simulated from a large enough

pool of reads. In addition, reads from the human genome was simulated as a contaminant

control. The simulated metagenome was then created by randomly sampling simulated

reads in the same proportions of species as the phylogroups found in Tringe et al. (2008).

This is illustrated in Figure 2.8. In total this made up 1.000.000 read pairs. Table 2.2

shows an overview of the species and composition of simulated metagenome, and figure

2.9 shows a phylogenetic tree of the species in the dataset. The method used for creating
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the phylogenetic tree will be explained in section 2.2.7. The simulated dataset was

utilised as a part of the evaluation of Kraken 2, One Codex and Kaiju.

Figure 2.8: Illustration of creation of simulated in silico metagenome dataset. Paired-end reads
are simulated from complete genomes obtained from the RefSeq database using ART simulation
tool. Reads are then randomly sampled in a given proportion to make up a metagenome.

Table 2.2: The composition of the simulated metagenome made of genomes from the RefSeq
database. There are in total 1.000.000 simulated read pairs.

Organism name Number of simulated
read pairs

Proportion of simulated
metagenome

Brevundimonas abyssalis 523459 52,3 %
Stenotrophomonas acidaminiphila 201840 20,2 %
Brachybacterium alimentarium 66421 6,6 %
Acinetobacter apis 60534 6,1 %
Methylobacterium aquaticum 27047 2,7 %
Microbacteriaceae bacterium 25575 2,6 %
Micrococcaceae bacterium C1-50 15087 1,5 %
Sphingomonas adhaesiva 10304 1,0 %
Sphingobacterium cellulitidis 9016 0,9 %
Massilia alkalitolerans 8648 0,9 %
Bacillaceae bacterium B16-10 8464 0,8 %
Janthinobacterium agaricidamnosum 6808 0,7 %
Homo sapiens 36799 3,7 %
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Figure 2.9: Phylogenetic tree of taxa in the simulated metagenomic dataset. The x-axis shows
Tamura and Nei-distances. A greater distane makes a greater evolutionary distance.

2.2.6 Simulating negative control datasets

As emphasised by Gardner et al. (2019), an adequate test dataset should also mimic the

proportion of unknown reads. There are several strategies for this. One approach is to

remove sequences from the reference database used by the tools, as done by Peabody

et al. (2015). Almeida et al. (2018) instead simulated random mutations in 2 % of the

bases in the sequences, while Lindgreen et al. (2016) shuffled genomes using the shuffle

program from HMMER (Eddy, 2011) to simulate unfamiliar DNA. For the purpose of

this study, the latter approach was chosen for simulation of negative reads. This choice

was made because both One Codex and the web server version of Kaiju has no option

for excluding parts of the database.

The shuffling method used by Lindgreen et al. (2016) makes the original sequence

totally disrupted, thus no longer resembling actual DNA. To maintain more of the

sequence integrity, another shuffling method was made for the purpose of this thesis.

By dividing the genome into sub-sequences of a given length, referred to as window

length, these sub-sequences can be shuffled. The shuffled sequence will be increasingly

disrupted with a decreasing window length.

To choose a window length appropriate for detection of false positives, a selection

of lengths ranging from 20 to 250 bp were tested by shuffling the reference genome of

Acinetobacter apis from the RefSeq database. Distance from the original genome was
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evaluated by MinHash distances from the Mash program by Ondov et al. (2016). This

dissimilarity tool is a convenient way of getting an indication of the effect of shuffling.

The ideal window length should not completely dismantle the biological composition,

but should still differ enough not to be recognised. The test results reviled two window

lengths of particular interest; 25 and 50 bp. A negative dataset was created for each of the

two window lengths, by sampling 1.000.000 simulated read pairs from shuffled genomes

(listed in Table 2.2), as shown in Figure 2.10.

Figure 2.10: Creation of simulated negative dataset. Reference genomes from the RefSeq
database are shuffled before read simulation. The shuffled reads are then sampled to make up a
metagenome to act as a negative test.

2.2.7 Metrics for comparing metagenomic tools

The selection of metrics is a crucial step when evaluating taxonomic classification tools

(Gardner et al., 2019). For classification, the terms negatives and positives are used.

When using these terms for metagenomic classification tools, the number of true positives

are equivalent to the number of reads classified to the correct taxa. False positives are

the number of reads classified to anything else than the true taxa. False negatives are

the number of reads remaining unclassified, while true negatives are only relevant when

negative control reads are added to the test dataset intended to be unrecognisable by the

tools. This can be illustrated with a confution matrix, as seen in Table 2.3.

Common measures are sensitivity and specificity. Sensitivity (also called recall) is

the proportion of true positives that are identified as positives. Specificity measures the

proportion of actual negatives that are identified as negatives (equation 2.3). Another

similar and widely used measure is precision, which is the proportion of true positives

amongst all positives.
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Table 2.3: General confusion matrix. If both the predicted and actual class are positive or negative,
the classification is correct.

Actual
Positive Negative

Positive True positive False positivePredicted
Negative False negative True negative

Sensitivity = recall =
True positive

True positive + False negative
(2.3)

Specificity =
True negative

True negative + False positive

Precision =
True positive

True positive + False positive

When selecting metrics, the application the classification tool is intended for has

to be taken into account. Some cases require a high sensitivity, which means that

there is a high probability of the tool classifying the the given read, even though the

classification has a higher chance of being false. Detection of rare species is an example

of a situation when a high sensitivity is beneficial. On the other hand, a false positive

could have unfortunate consequences in many cases, for example in medical diagnostics.

In applications like this, an increased specificity at the expense of the sensitivity is

beneficial.

Even though sensitivity, specificity and precision are essential metrics, combining

these with more application specific measures could help getting a more profound

evaluation of the metagenomic classification tools.

Abundance estimate metrics

Metrics considering abundance estimates for each taxa can be advantageous when

evaluating metagenomic tools. A common output from these tools is abundance estimates

listing the number of reads for each detected taxa. Metrics used for calculating the

distances between metagenomic profiles include Bray-Curtis and UniFrac (Meyer et al.,

2019).
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Bray-Curtis dissimilarity has been widely used for assessing community similarity

in microbial ecology (Beiko and Parks, 2012). The dissimilarity is calculated by dividing

the sum of the absolute pairwise differences of taxa abundance i by the sum of all

abundances at a given taxonomic level (equation 2.4) (Meyer et al., 2019). xi is the true

taxa abundance, while x∗i is the estimated abundance.

Bray-Curis distance =

∑
i |(x)i − (x∗)i|∑
i(x)i +

∑
i(x∗)i

(2.4)

The Bray-Curtis dissimilarity can be viewed as the proportion of dissimilarity

between two compositions, bounding the value between 0 and 1. 0 means that the two

profiles have identical compositions, while 1 would indicate that the profiles do not share

any taxa.

UniFrac is a distance measure that also includes the genetic distance in the calcu-

lation (Beiko and Parks, 2012). By adding a phylogenetic tree, the weighted UniFrac

measures the total amount of predicted abundances that must be moved to overlap with

the true abundances by branch length (Meyer et al., 2019). On the contrary, the un-

weighted UniFrac distance only measures the overlap of presence and absence of taxa in

the true and estimated profiles, and is hence not used in this study.

Bray-Curtis dissimilarities and UniFrac distances are implemented in the Vegan

(Oksanen et al., 2019) and GUniFrac (Chen, 2018) R-packages respectively, and were

used to evaluate both the ZymoBIOMICS and simulated dataset.

Creating phylogenetic trees

Phylogenetic trees shows the evolutionary relationship between taxa, and is used for

calculation of UniFrac-distances. 16S- and 18S-rRNA sequences were downloaded from

the Silva database (Quast et al., 2012), and multiple sequence alignments (MSA) using

Clustal Omega by Sie (2011) were created. Tamura-Nei distances (TN93) were then

calculated, which is a model of DNA evolution accounting for the difference between

transitions and transversions (Tamura and Nei, 1993). Neighbour joining was used to

cluster the taxa. Phylogenetic trees were plotted with the ggtree (Yu et al., 2017) package

for both the ZymoBIOMICS and the simulated dataset.
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2.2.8 Metagenomic profiles of aerosol samples from
Nationaltheatret subway station

Metagenomic profiles of aerosol samples collected at Nationaltheatret subway station

was made by using all tested tools. The sampling was conducted by FFI at three locations

(at the platform inside the subway station at day time, night time and outside the station

building at day time). Two parallel samples were taken at each location, resulting in six

bioaerosol samples. The samples were sequenced with Illumina Miseq 2x150 bp paired

end sequencing. The sample names Di1 and Di2 refers to the parallel samples collected

inside the station building at day time and Du1 and Du2 refers to the samples collected

outside the station building at day time, while Ni1 and Ni2 refers to the samples taken

inside at night time.

Mash distances (described in section 2.2.6) between the six metagenome samples

were calculated to investigate their similarity. Sketches of genomes can be used to make

the comparison less computationally demanding. For the purpose of this thesis, sketches

were made with a k-mer length of 21, and sketch size of 10.000, as done by Ondov et al.

(2016) for metagenomes. A dendrogram using average linkage was created.
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3 | Results

3.1 Storage study

To investigate how the DNA concentration is affected by storage, quantitative measure-

ments by Qubit and qPCR were conducted. The raw data visualised as boxplots in Figure

3.1 shows a larger decrease in DNA concentration for Qubit measurements of buffer

storage relative to filter storage, seen by the group medians. This is true for both storage

times, but with a larger spread of data for the samples with seven months storage. The

qPCR-measurements (Figure 3.1 B), shows that samples with three months buffer storage

has a marginally higher median than the filter stored samples. This contradicts the trend

observed with Qubit measurements. However, the group of samples stored for seven

months as filter shows the same relatively large spread as in Figure 3.1 A, as seen by the

75th and 25th percentile containing a wider interval.

Box plots grouped by the sampling day (Figure 3.2) shows that this variable con-

tributes to variation in the data. Each of the groups consists of six parallel samples, which

has a group medians in the range 0.1-0.3 ng/µL for Qubit and 2500-10.000 gene copies

for qPCR, which is considered large in this context.

3.1.1 Statistical analysis

The parameter estimates for the two mixed linear models (Qubit and qPCR) in equation

3.1 both show negative β estimates, which means an estimated decrease in DNA concen-

tration from buffer storage. However, the 95 % confidence intervals in Table 3.1 shows

that there are no significant differences between the parameter estimates, since none of

the intervals contain 0. Hence, the hypothesis of no difference between the groups can

not be rejected. The original Rstudio output is presented in Listing A.1 and Listing A.2

in the attachments.
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Figure 3.1: DNA concentration Measurements by Qubit and qPCR represented by box plots
grouped by storage time (3 and 7 months) and storage method (filter and buffer). The values are
difference compared to the parallel samples without storage.

yk = µ+ α + β +Dk + e (3.1)

Dk = N ∼ (0, σ2
D)

e = N ∼ (0, σ2)

Qubit model estimates: qPCR model estimates:

µ̂ = 0.0021 µ̂ = −918.6

α̂ = 0.0046 α̂ = 841.7

β̂ = −0.0457 β̂ = −379.0

σ̂2
D = 0.054 σ̂2

D = 1506

σ̂2 = 0.069 σ̂2 = 1849
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Figure 3.2: Variation in measured DNA concentration between 13 sampling days. Each day
contains n = 6 measurements. The upper plot shows DNA concentration measured by Qubit, and
the lower qPCR measurements in number of gene copy equivalents.

Table 3.1: Confidence intervals for Qubit and qPCR model.

Qubit model qPCR model
2.5 % 97.5 % 2.5 % 97.5 %

µ̂ -0.051 0.056 -2397 560
α̂ (Stored for seven months) -0.035 0.042 -175 1859
β̂ (Stored as buffer) -0.115 0.024 -2291 1533

Qubit model =
σ̂D

σ̂D + σ̂
=

0.0542

0.0542 + 0.0692
= 0.38 = 38% (3.2)

qPCR model =
σ̂D

σ̂D + σ̂
+

1506.22

1506.22 + 1849.22
= 0.40 = 40%

A noteworthy result from the mixed model estimations are the estimated proportions

of variation explained by sampling day, which are are 38 % and 40 % of the variation

for Qubit and qPCR respectively, as shown in equation 3.2, suggesting that the sampling

should be included as a random effect.
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3.1.2 Model simulation by bootstrapping

The model estimates from bootstrapping, shown in Figure 3.3, shows that filters stored

for seven months are estimated to have a change in DNA concentration close to 0 by

both measurement methods. Further, the density plots indicate a difference in DNA

concentration between storage method measured by Qubit. There is no detectable

difference between groups of samples with different storage times (three and seven

months) for the Qubit parameter estimates. The qPCR measurements however, show a

separation of density curves for storage time, where samples that are stored for three

moths has a decreased yield compared to samples that are stored for seven months.

Figure 3.3: Density plots of group estimates from mixed models of DNA concentration change af-
ter storage by qPCR and Qubit. The estimates are made by bootstrapping with 10000 simulations,
and hence creating 10.000 sets of group estimates.
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3.1.3 Freeze-thaw cycles

The freeze-thawing included in the buffer storage preparation procedure was suspected as

a cause for the observed difference in Qubit measurements. Therefore the effect of freeze-

thaw cycles were exclusively tested on four isolated DNA samples. The concentrations

measured by Qubit is shown in Figure 3.4. The values indicates a decrease after repeated

cycles of freezing and thawing.

Figure 3.4: DNA concentration measured by Qubit of four DNA samples freeze-thawed from one
to five times.
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3.2 Comparing tools for taxonomic profiling

Kraken 2, One Codex and Kaiju were selected as metagenomic classification tools for

assessment of performance on aerosol samples specifically. Some main differences

found when comparing the features of the three tools include Kaiju searching against

the reference database at protein-level with MEMs, and the Kraken 2 and One Codex

implementing k-mers in their classification algorithm. One Codex has a larger database

than Kraken 2, while they are both difficult to compare with the database of Kaiju, which

stores the entries as protein sequences, and not as genomes. The major differences

between the metagenomic tools Kraken 2, One Codex and Kaiju in terms of features are

shown in table 3.2.

Table 3.2: The major differences between the taxonomic classification tools Kraken 2, One Codex
and Kaiju. *As of April 2019.

Kraken 2 One Codex Kaiju

Sequence comparison level DNA DNA Protein

Algorithm
K-mer with
minimizer K-mer

MEMs with
BWT

Default K-mer length 31-mer 31-mer
Not fixed,
using MEMs

Database size*
∼42.000
genomes

∼83.000
complete genomes

∼103.000.000
protein sequences

Special feature
Highly ranked
in benchmarks

Large and
manually curated
database

Protein-level
comparison giving
increased sensitivity
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3.2.1 ZymoBIOMICS dataset

The estimated taxa abundances in Figure 3.5 shows a difference between the species

and genus-level for the three metagenomic classification tools. The abundance of reads

classified to "other species" (referring to other than the taxa in the dataset) is larger at

species-level compared to genus-level for all tools. Kraken 2 is prominent, with the

abundance estimates resembling the real abundances at a higher degree than Kaiju and

One Codex. For the exact abundance estimates, see Table 1 in the attachments.

Kraken 2 has the highest precision and recall (Figure 3.6 and Table 2 in the attach-

ments) for both genus and species-level for sample A and B. Kaiju has a similar recall as

One Codex, but a lower precision. The Bray-Curtis dissimilarities and UniFrac distances

also shows that Kraken 2 is closest to the true composition of the dataset (3.3).

Table 3.3: Calculated Bray-Curtis dissimilarities and weighted UniFrac distances from true
metagenomic profiles of ZymoBIOMICS standard to estimates derived from three different
metagenomic classification tools.

Genus-level Species-level
Tool Sample Bray-Curtis Weighted UniFrac Bray-Curtis Weighted UniFrac

Kraken 2
A 0.108 0.0580 0.161 0.0766
B 0.128 0.0560 0.175 0.105

One Codex
A 0.196 0.0830 0.553 0.161
B 0.263 0.0865 0.557 0.143

Kaiju
A 0.284 0.0936 0.597 0.123
B 0.276 0.104 0.599 0.102
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Figure 3.5: Real and estimated taxa abundances for profiles of sample A and B of ZymoBIOMICS
standard by Kraken 2, One Codex and Kaiju. The estimates are presented for genus-level (on top)
and species-level (on bottom).
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Figure 3.6: Precision and recall for Kraken 2, One Codex and Kaiju on ZymoBIOMICS dataset.
On top is the measures on genus-level, while species-level is at the bottom. A and B referrers to
two parallel samples.

3.2.2 Simulated metagenome dataset

The simulated dataset was included in the benchmarking to evaluate the performance on

a dataset with a more realistic composition of species. The taxonomic profiles (Table

3.4) show that the most abundant species, Brevundimonas abyssalis, is underestimated

by both Kraken 2 and One Codex which both estimates this taxa to be ~20 % of the total

reads, when the actual proportion is ~52 %. Kaiju is the closest to the known composition

with ~51 %. As this species makes up approximately half of the reads in the dataset,

this error may impact the performance of the tools accordingly. Conversely, estimates of

the second most abundant taxa Stenotrophomonas acidaminiphila by Kraken 2 and One

Codex are closer to the real values than Kaiju. Due to the possibly extensive impact by

the first taxa, distances were also calculated without the estimate of the first taxa.

One Codex is the only tool that classifies some reads to all of the species in the

dataset. Kraken 2 does not classify any reads to half of the species.

For evaluation of the tools by the simulated dataset, precision and recall were

calculated (barplots in Figure 3.7 and exact abundances in Table 3 in the attachments).

Kraken 2 has the lowest precision and recall of the three tools at genus and species-level.
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Table 3.4: Overview of the real and estimated proportions of taxa on the in silico simulated
metagenome dataset. *Taxa classified to family-level.

Kraken 2 One Codex Kaiju
Taxa Proportion Genus Species Genus Species Genus Species

Brevundimonas
abyssalis 52.35 19.43 0 22.26 21.86 50.57 50.39

Stenotrophomonas
acidaminiphila 20.18 20 19.8 24.81 24.55 10.37 10.29

Brachybacterium
alimentarium 6.64 3.76 0 13.06 13.06 2.76 0

Acinetobacter
apis 6.05 2.37 0 12.09 12.09 3.54 0

Methylobacterium
aquaticum 2.70 2.36 0.47 3.09 0.14 2.25 2.2

Microbacteriaceae
bacterium* 2.56 0.08 0.08 3.14 3.14 2.74 2.74

Micrococcaceae
bacterium C1-50* 1.51 0.03 0.03 0.54 0.54 1.14 1.14

Sphingomonas
adhaesiva 1.03 0.81 0 1.81 1.78 0.75 0.7

Sphingobacterium
cellulitidis 0.90 0.25 0 1.75 1.75 0.76 0

Massilia
alkalitolerans 0.86 0.47 0 1.56 1.55 0.59 0.57

Bacillaceae
bacterium B16-10* 0.85 0.01 0.01 0.09 0.09 0.69 0.69

Janthinobacterium
agaricidamnosum 0.68 0.73 0.7 1.36 1.36 0.65 0.65

Classified to other 0 28.54 57.75 7.61 11.26 18.89 26.33
Unclassified 0 21.16 21.16 6.83 6.83 4.30 4.30

Both Kaiju and One Codex has a high recall score, Kaiju has lower precision than One

Codex.

Further the Bray-Curtis dissimilarities and UniFrac distances (Figure 3.8) for both

the full and reduced profile without B. abyssalis were made. Since not all tools listed

Homo sapiens in their results, the taxa were removed from the profiles. The taxa

abundance metrics show that Kaiju has the most correct abundance estimates at both

taxonomic levels on the full dataset. Kraken 2 is by far the least correct tool at species-

level due to estimating 0 % on six of 12 taxa. The results from the reduced profile

however, show that One Codex has the best estimates at species-level, but ambiguity at

genus-level, with no tool standing out in terms of good abundance estimations.
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Figure 3.7: Precision and recall measurements for profiles by Kraken 2, One Codex and Kaiju on
a simulated dataset containing 12 species found in air on genus and species-level.

Figure 3.8: Performance of Kraken 2, One Codex and Kaiju on a simulated metagenomic dataset.
The performance is measured by two distance measures: Bray-Curtis and Weighted UniFrac. Full
(left) refers to the full profiles of 12 taxa, while reduced (right) to the most abundant species B.
abyssalis being removed.
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3.2.3 Simulated negative datasets

The two window lengths 25 and 50 bp were chosen for creation of shuffled genomes

acting as negative control datasets, by the distances plotted in Figure 3.9. The graph

shows a steep increase between 50 and 25 (the two red points) for the mash distances

to the original A. apis genome. The rapid change indicates that the shuffled genome of

length 25 has lost much of the original integrity, compared to results when shuffled with

a window length of 50. To see whether this is reflected in the classification results, both

lengths were used to create negative datasets.

Figure 3.9: Mash distance from the original genome to the shuffled genome of A. apis shuffled
with different window lengths. The two red points are the window lengths lengths 25 and 50.

The shuffled genomes represents novel taxa in aerosol samples, and is included in

the benchmarking for detection of false positives. The results (Table 3.5) shows that

Kraken 2 has a relatively low precision of 0.81 on the dataset shuffled with window

length 25, compared to 0.99 by the other tools. Amongst the reads classified by Kraken

2, there are none classified to the most abundant species B. abyssalis, while about 1 %

of the reads are classified to Brevundimonas (genus-level), indicating that the reads are

mainly falsely classified. The confidence level of Kraken 2 was increased from 0.00

(default setting) to 0.05, which drastically increased to the specificity to 1, indication few

false positives.
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Table 3.5: Specificity of classification by metagenomic classification tools of datasets simulated
from shuffled genomes.

Tool Confidence level Window length
50 25

Kraken
0 0.54 0.81
0.05 0.71 1.00

One Codex 0.50 0.99
Kaiju 0.51 0.99

3.2.4 Aerosol samples from Nationaltheatret subway station

When assessing the performance of the metagenomic classification tools on real data

from Nationaltheatret subway station, the results show substantial variation between the

tools. Figure 3.10 lists the 10 most abundant taxa by read count found by the three tools

on both genus and species-level. None of the species listed are found at all three lists,

and only four of the genera are consistently found at all three lists. The top 10 most

abundant taxa at family-level is listed in Table 3.6, and shows four corresponding taxa,

which is the same at at genus-level.

The fraction of unclassified reads are similar between the tools: Kraken 2: 47 %

unclassified, One Codex: 58.4 % unclassified and Kaiju: 57.9 % unclassified.

Table 3.6: The ten most abundant families found in samples from Nationaltheatret subway station
by Kraken 2, One Codex and Kaiju. Taxa consistently found at the top 10 list by all tools are
marked with bold text.

Kraken 2 One Codex Kaiju

1 Micrococcaceae Sphingomonadaceae Enterococcaceae
2 Propionibacteriaceae Microbacteriaceae Nocardioidaceae
3 Streptomycetaceae Nocardioidaceae Micrococcaceae
4 Nocardioidaceae Micrococcaceae Mycobacteriaceae
5 Microbacteriaceae Hymenobacteraceae Microbacteriaceae
6 Sphingomonadaceae Comamonadaceae Plasmodiidae
7 Corynebacteriaceae Intrasporangiaceae Propionibacteriaceae
8 Pseudomonadaceae Geodermatophilaceae Streptococcaceae
9 Moraxellaceae Propionibacteriaceae Pseudonocardiaceae
10 Staphylococcaceae Pseudomonadaceae Geodermatophilaceae
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Figure 3.10: The ten most abundant species (a) and genera (b) by read count for profiles made
by 1) Kraken, 2) One Codex, and 3) Kaiju in bioaerosol sample from Nationaltheatret subway
station.

A distinct feature seen in Figure 3.10 is the abundance of Enterococcus faecium

classified by Kaiju, with more than than 300.000 classified reads. This is not listed in the

top 10 lists of neither Kraken 2 nor One Codex, despite all tools having entries for this

species in their databases. Furthermore, the reads classified to E. faecium by Kaiju was

shown to be mainly classified as "other sequences" and H. sapiens by Kraken 2.

The Mash distances between the six bioaerosol samples are overall similar, as seen

in Figure 3.11. The parallel samples (Di1 and Di2 etc.) are clustered together, proving

that they are most similar. Samples taken at night time are most dissimilar from the

samples taken inside at day time. Still, the distances are all in the range 0.149-0.18,

which can be considered a low spread in this context.
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Figure 3.11: Mash distances between six bioaerosol samples from Nationaltheatret subway station
represented by a dendrogram (left) and a tile plot (right). The dendrogram is clustered using
average linkage.
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4 | Discussion

4.1 Storage study

The aim of the storage study was to determine whether current storage procedure at

FFI of bioaerosol samples affect the DNA concentration. No evidence was found that

suggested a negative effect on DNA concentration from storage time up to seven months.

However, freeze-thawing was expected as a cause for the observed difference between

the storage methods.

4.1.1 Model simulation by bootstrapping

The density plots from bootstrapping (Figure 3.3) shows that there is a measured differ-

ence between storage method by Qubit, but none for storage time. This suggests that the

samples are not affected by the storage time itself, but rather the buffer storage. Filter

storage has a mean value for change in concentration close to 0, indicating no departmen-

tal effect of storage of filters. These robust group estimates are possible interpret because

small deviations caused by random variation are removed by sub-setting 10.000 times.

The separation between the density curves by qPCR measurements is not as conclu-

sive. Estimates for both buffer and filter storage for three months indicate a decrease in

DNA concentration, but the same is not true for seven months storage. It would not make

sense to consider the samples stable for seven months, but not for three months, and for

that reason one should not put too much emphasis on the qPCR measurements. Consid-

ering the distributions, there seems to be a horizontal offset by the samples stored for

three months. A likely cause is a deficiency in the qPCR measurement for those samples

since the qPCR measurements are done in three batches: samples without storage, three

months storage and seven months storage. If the standard solution used to convert (Cq)

to gene copy equivalents by the standard curve has a too low concentration, the estimated
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concentration of all the samples will be underestimated. Yet, there are no evidence to

underpin this hypothesis.

4.1.2 Freeze-thaw cycles

Judging by the density plot of Qubit parameter estimates, storage method have an effect

on DNA concentration. The handling of samples stored in buffer includes one extra

freeze-thaw cycle compared to samples stored in filter storage. This may to some

degree explain the detectable difference. Ross et al. (1990) concluded that the DNA

concentration of blood samples were affected by freeze-thaw cycles. Too our knowledge,

there is no other existing studies for bioaerosol samples or other low-concentration

environmental samples. However, Figure 3.4 shows that there could be a detectable effect

on bioaerosol samples, where all four samples measured by Qubit had a decrease in DNA

concentration after repeated freeze-thaw cycles. This is not conclusive evidence, since

there are no statistical test conducted as a result of there not being enough data points.

The realisation of that there could be an effect of freeze-thawing was unfortunately

detected too late in the study for further investigation of the matter.

4.1.3 Sources of variation

There is substantial variation in the raw data. By visual inspection of the box plots in

Figure 3.1, one can see that the spread of data points are generally large which make

the uncertainty is high. As expected by the large spread of data in the box plots, no

significant differences could be found between groups by the confidence intervals in

Table 3.1. This, however, could as well be caused by the uncertainty being too large,

instead of there truly being no difference between groups.

There was found substantial variation between samples collected on different days,

as it accounts for 38 % and 40 % of the total variation in the dataset (equation 3.2). Both

the median and the spread of data is variable (Figure 3.2), but including sampling day as

a random effect eliminates a considerable amount of the variation seen in the raw data.

Similarly, the DNA isolation procedure also contributes to variation. The isolation

protocol contains many steps, and several possibilities for loss of sample. Even though

the potential loss is small for each step, this could sum up to substantial variation. This

is also true for the qPCR measurements, requiring more steps and more reagents than the

Qubit, and also requiring parallel measurements of the same sample.
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4.2 Comparing tools for taxonomic profiling

The benchmarking of Kraken 2, One Codex and Kaiju included testing on four types of

datasets; the in vitro dataset ZymoBIOMICS, an in silico simulated dataset, a negative

test dataset and real bioaerosol samples. The measured performance on the various

datasets gave ambiguous results. An overview of the overall performance of the tools

can be found in Table 4.1.

4.2.1 ZymoBIOMICS dataset

Kraken 2 seems to be the most optimal metagenomic classification tool for datasets con-

taining only well studied organisms. This is an important result, as the ZymoBIOMICS

dataset is derived from real samples with known proportions. Kraken 2 is most similar

to the true taxa composition valuating by both Bray-Curtis dissimilarity and UniFrac

distances at both genus and species-level as seen in Figure 3.3, and is superior at species-

level compared to the other tools as measured by Bray-Curtis. However, the performance

is more similar between the tools when measured by UniFrac, indicating that a proportion

of the falsely classified reads may be classified to taxonomic neighbours. The fact that

Kraken 2 gives the best abundance estimates is also visible in Figure 3.5.

Figure 3.6 shows that Kraken 2 has the highest precision and recall. For this

application, a high precision is equivalent to few reads classified to the wrong taxa among

all the classified reads. A high recall or sensitivity means that a large proportion the reads

are classified.

One Codex and Kaiju has a drastically reduced precision at species-level compared

to genus-level (Figure 3.6). The LCA algorithm will classify reads to genus-level if

k-mers in the read matches several species. If this happens often, the precision at species-

level will be reduced, which could explain what is observed here. Still, Kraken 2 has

by far the smallest decrease in precision form genus to species-level. The explanation

could be that Kraken 2 has a smaller reference database than One Codex and is hence

less likely to get several hits for a read within a genus.
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4.2.2 Simulated metagenome dataset

The purpose of the simulated dataset was to test the performance on data containing

species similar to real bioaerosol samples. The three tools use different reference

databases that do not necessarily contain entries for taxa in the dataset, in contrast to the

ZymoBIOMICS dataset. This had a major impact on the results, as Kraken 2 had the

poorest performance on this dataset.

The reference database has a big influence on the result. Table 3.4 shows that

Kraken 2 is not able to classify any reads to six of the twelve species in the dataset, as

the species are not contained in the database. Kaiju lacks three species, while One Codex

classifies reads to all species in the simulated data. This reflects that One Codex has a

large and well curated database, which is one of the main strengths of the tool according

to the creators Minot et al. (2015). It also underlines a crucial point when testing of

metagenomic classification tools: A tool will never be better than the reference database.

Even with the best possible algorithm, the classification results will be poor if the taxa in

the dataset are not contained in the database. With a inadequate database, the tool will

only perform well on datasets with well known species, as the ZymoBIOMICS dataset

is an example of. This could give a exaggerated impression of how well the tool will

perform on real environmental metagenome datasets. With this problem in mind, it is not

surprising that Kraken 2 gets a low precision and recall (Figure 3.7) and high distance

measures by Bray-Curtis and UniFrac (Figure 3.8) relative to the other tools.

It can be argued that the Bray-Curtis distance is the most meaningful metric to

use for evaluation of the tools on this dataset. The abundance estimation metrics not

only considers whether taxa was predicted as present or absent in the sample, but also

considers their per taxa abundances (Meyer et al., 2019). A metric evaluating abundance

estimations can be considered more informative than recall and precision on its own.

If there are many unclassified reads, usually detected by a low recall, the proportions

will be underestimated resulting in a high Bray-Curtis distance. Many reads classified

to the wrong taxa, detected by a low precision, will also be detected by the abundance

estimation metrics. Further, a distance measure that includes a phylogenetic tree, such

as UniFrac, may not be optimal either. To UniFrac, a read classified to a neighbouring

species of the true species is not as bad as a read classified to a species in another

genus. Yet in practise, both wrongly classified reads could be just as wrong. As one of

the desired applications for the metagenomic classification tools is to be able to detect

pathogens, it does not matter how wrong the classification is, merely whether it is right

or wrong.
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Which tool is the most optimal for this dataset is ambiguous. Judging by the

abundance estimate metrics, Kaiju performs better than One Codex at species-level, but

only when B. abyssalis is present (see Figure 3.8). Kaiju and One Codex both have a

high recall (Figure 3.7). About 92-95 % of the reads were classified correctly by these

tools. One Codex has a higher precision than Kaiju, meaning that a larger proportion

of the classified reads are classified to the correct taxa. Nevertheless, it is inadequate to

conclude with one tool as the most optimal when the differences are marginal and the

results are easily affected by the choice of taxonomic level or metric. It is more relevant

to highlight strengths and weaknesses of the tools at different types of datasets.

4.2.3 Simulated negative datasets

The negative dataset was created to see how the tools perform on data representing novel

species. One may expect Kaiju to perform differently from the others because of the

increased sensitivity at protein-level. Surprisingly, it was Kraken 2 that classified the

most reads after shuffling with a window length of 25. A plausible reason for Kraken 2

classifying the negative control reads is the confidence level being set too low. Kraken 2

and Kaiju both has adjustable mismatch-allowances, in contrast to One Codex. It was

decided to run all the tools on default settings, which turned out to be too sensitive for

Kraken 2. As seen in Table 3.5, the specificity was increased to 1 when the confidence

level was adjusted to 0.05. This result suggests that the confidence level of 0 is too low,

and should possibly have been increased for all the runs on other datasets as well.

The selection of window length was based on Mash distances that by default

compares the genomes with a k-mer length of 21, which is shorter than the 31-mers

Kraken 2 and One Codex are searching with. When the window length is shorter than

the k-mer length, it is unlikely that parts long enough to match an entire k-mer is intact.

If that were to happen, it would be because at least two neighbouring subsequences

would randomly be placed next to each other after shuffling. As the probability for this

occurring is extremely low for a long sequence, any shuffling with window length shorter

than the k-mer length used by the tools should be sufficient to act as negative control as

long as not too many mismatches are allowed when classifying the reads.

4.2.4 Aerosol samples from Nationaltheatret subway station

The dissimilarities between the profiles of the same sample are striking. None of the

species are present in the top 10 list of all three profiles from the tools tested, and only
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four taxa are consistently ranked at the top for both genus- (Figure 3.10) and family-level

(Table 3.6). Though not an accurate measure of profile similarity, the lists suggests

considerable variation.

This could in part be caused by the tools operating with different levels of stringency

associated with assigning taxa to the reads. Even if the differences in stringency are

small, there could be substantial accumulative effect if there is ambiguity between the

tools for many reads. The settings for One Codex are not accessible, and Kraken 2 and

Kaiju both have adjustable but different measures of stringency, by confidence level and

number of allowed mismatches respectively. It is therefore impossible to make a good

comparison. This factor alone does not explain why the most abundant species are that

dissimilar between the tools.

Further exacerbating the ambiguity between the profiles is the differences in

databases. In section 4.2.2 it was shown that this can severely influence the perfor-

mance of the tools. Also, this could further complicate how the LCA approach affect the

classification. For example if one of the tools has a many entries strains of a species, the

classification is likely to be better at species-level compared to a tool with only one entry

for the species, which could be either unclassified or classified to a higher taxonomic

level. Bioaerosol samples has a high degree of biological diversity, that may increase the

magnitude of this problem. Still, the expected effect of a higher similarity at a higher

taxonomic level was only detected when comparing number of similar taxa between the

tools at species to genus-level, and not at family-level.

These are daunting findings, suggesting that the profiles from different classification

tools are incomparable. Hence, the listed species are highly uncertain, emphasising that

one has to be critical of the taxonomic profiles of bioaerosol samples, as it is impossible

to say what tool has the most correct classification. The differences in performance also

indicates that the test datasets are not good representatives of real bioaerosol samples.

Another conspicuous finding is that Kaiju classifies more than 300.000 reads to E.

faecium, which is not detected by any of the other tools. By Kraken 2, these reads were

mainly classified to "other sequences" and H. sapiens. A proposed benefit of Kaiju is

that searches at the protein-level increase the sensitivity (Menzel et al., 2016). With a

higher sensitivity, more reads can be classified. If the increased sensitivity is of such a

magnitude that Kaiju correctly classifies 300.000 reads the two other tools can not detect,

this is a striking result. However, these findings could merely be due to contamination

in the reference database. For instance, if the E. faecium entries in the NCBI BLAST

non-redundant database used by Kaiju in fact contains a contamination from H. sapiens,
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it is possible for human DNA in the sample to match this entry and falsely be classified

to E. faecium, and explain why there are 20 times more of reads classified to this taxa

than the second most abundant species.

The results of the variation between samples (Figure 3.11) point to the differences

being small. The distances in the dendrogram shows that even though the parallel

samples are grouped together and most similar, the distances are overall short. Still,

Mash distances are only a rough estimate of distance, and not a precise measure.

4.2.5 The curse of the lowest common ancestor approach

The use of the LCA approach has some disadvantages. If there are many entries for

very closely related species in the reference data base, it is more likely that some reads

will also match to the neighbouring species. This is a disadvantage, because the LCA

algorithm will then classify the entire read to genus-level. Using the same logic, it will

be an advantage to have many entries of strains of a species if species-level is the desired

classification level.

Schaeffer et al. (2017) states that the usage of the LCA algorithm is a step in the

wrong direction for quantification at species-level. MEGAN was one of the first reference

based read assignment programs with direct strain level taxonomic classification (Huson

et al., 2007). GASiC by Lindner and Renard (2013) took the classification a step further,

and implemented statistical methods for classifying ambiguous reads. Unfortunately,

this method requires read alignment, which is computationally demanding (Schaeffer

et al., 2017). One year after the publication of GASiC, Wood and Salzberg (2014)

released Kraken. Kraken had to discard the direct classification in benefit of a super fast

k-mer hashing. While the increased speed and accuracy was considered an enormous

breakthrough, Schaeffer et al. (2017) claims that Kraken is unsuitable for quantification

due to the LCA algorithm at low taxonomic levels. This also extends to One Codex

and Kaiju. Yet, the abundance estimates by Kraken 2 on the ZymoBIOMICS dataset in

section 4.2.1 proved that the quantification can be good with an adequate database for

the given taxa.

4.2.6 Notes on the the test datasets

The ZymoBIOMICS dataset consists exclusively of well-studied species, which is far

from the biological content of a real bioaerosol sample. The species are also all present
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in high abundances, making this dataset excessively simplified. Real bioaerosol samples

are complex, with a combination of a high biological diversity with most taxa lowly

abundant. Hence, there is a large amount of organisms only visible by few reads. Also,

there are considerable pars of novel species not contained in reference databases, as seen

by the simulated dataset discussed in section 4.2.4.

Even though the ZymoBIOMICS community standard used in this work is a gross

under-representation of the complexity in air, it still serves a purpose. As this is an in

vitro dataset, it is real data with an identical DNA isolation procedure to the bioaerosol

samples. On the other side, the in silico simulated dataset is more realistic in regards

to the biological composition, but still only represents a fraction of the real biological

complexity. According to Almeida et al. (2018) "in silico datasets are better for highlight-

ing the computational pipelines—independently of experimental variation and technical

biases, but may require further validation in real-world datasets". They further explain

that the combination of in silico and in vitro datasets are essential for understanding the

entire analysis.

When creating a simulated metagenome dataset, the selection of taxa will have

a huge impact on the results. As seen by the results of the simulated dataset (section

4.2.2), deficiencies in the reference databases can affect the performance dramatically. In

this study, the selection of taxa was based on a paper from 2008 (Tringe et al., 2008),

in which the abundances were expressed in number of phylogroups. As the species

selection should be as close to reality as possible, a newer publication based on shotgun

metagenome sequencing data should be used. Still, there is evidence suggesting that the

microbiome in outdoor air is extremely variable which makes the creation of one true

dataset non-trivial (Kuske, 2006; Behzad et al., 2015). Further, more species should be

included in the simulated dataset, as 12 species are only a fraction of the diversity found

in air.

The read length simulated by ART is fixed at 2x250 bp, but the real dataset from

Nationaltheatret is sequenced with 2x150 bp. Longer reads in the test dataset could mean

that they are more easily recognised by the metagenomic tools compared to real reads,

which could contribute to an overly optimistic estimated performance on the test datasets

compared to real data.
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4.3 Concluding remarks and further perspectives

In this work, two subjects related to the creation of metagenomic profiles of aerosol

samples were investigated.

The first aim was to confirm that the currently used storage procedure by FFI does

not affect the DNA concentration. There could not be found any evidence suggesting

a departmental effect of filter storage up to seven months at -80°C. The samples with

buffer storage showed a decrease in DNA concentration, which could be caused by the

samples being freeze-thawed in the preparation. However, there was not enough data to

further investigate this effect. The impact of repeated freeze-thaw cycles on both isolated

DNA, filter extracts and filters should be examined. Also, the effect on mock community

with known abundances should be studied.

The second aim was to benchmark three metagenomic classification tools for aerosol

samples specifically. As this was done by four different categories of datasets which

gave ambiguous results, there was no tool with the overall best performance. Instead,

strengths and weaknesses for the different types of datasets are pointed out. Kraken 2 is

superior for the purpose of abundance estimates of well-known species, but the negative

dataset suggested that Kraken 2 was run on a too low confidence level, resulting in an

overly sensitive classification. The simulated dataset with a more realistic selection of

species highlighted the importance of an adequate reference database, as One Codex was

the only tool classifying reads to all species in the dataset. The real dataset underlined

how vastly simplistic the test datasets were compared to the complexity of real aerosol.

A peculiar finding suggested that Kaiju may have an advantageous increased sensitivity

from protein-level classification, but whether this was in fact due to contamination in the

reference database should be investigated further.

The extensive disagreement between the metagenomic classification tools of real

bioaerosol samples proves that there is an imminent need for more research and im-

provements in the field. A key objective should be to improve the reference databases

specifically for the species in the environment, as this has shown to be essential for similar

research fields, such as the gut microbiome (Zou et al., 2019; Forster et al., 2019). As

stated by Behzad et al. (2015): "The solution is more metagenomic study. Metagenomic

studies lead to larger genomic databases, whereas larger databases make metagenomic

analysis easier".

The rapid development in the field of sequencing techniques could help improve

metagenomic classification tools. Currently, third generation sequencing such as Nanopore
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are increasing in popularity. These are long read technologies, better suited for assembly.

This could lead to better metagenome assembled genomes (MAGs), that can be included

in the reference databases to decrease the proportion of novel reads in bioaerosol sam-

ples. MAGs has proven to increase the insight into the microbial diversity of novel

environments (Wilkins et al., 2019).

It was further concluded that the LCA approach has some drawbacks for quan-

tification. A future solution could be to use approaches that utilises a better statistical

framework that allows for probabilistic assignment of reads, for example Metakallisto as

suggested by Schaeffer et al. (2017) to improve the metagenomic classification tools.
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Attachments

Listing 1: R output of Qubit-model.

> summary(modQb)

Formula:

Qubit ~ Storage + Method + (1 | Sampling_nr)

Data: DNA2

REML criterion at convergence: -99.9

Scaled residuals:

Min 1Q Median 3Q Max

-3.6897 -0.3618 0.0803 0.5086 2.2760

Random effects:

Groups Name Variance Std.Dev.

Sampling_nr (Intercept) 0.002946 0.05428

Residual 0.004800 0.06928

Number of obs: 52, groups: Sampling_nr, 13

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.002108 0.027987 0.075

StorageLong 0.004200 0.019215 0.219

MethodBuffer -0.045715 0.035822 -1.276

Correlation of Fixed Effects:

(Intr) StrgLn

StorageLong -0.343

MethodBuffr -0.689 0.000
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Listing 2: R output of qPCR-model.

Formula:

qPCR_16S ~ Storage + Method + (1 | Sampling_nr)

Data: DNA3

REML criterion at convergence: 899.6

Scaled residuals:

Min 1Q Median 3Q Max

-1.98026 -0.48453 -0.04173 0.56739 2.49477

Random effects:

Groups Name Variance Std.Dev.

Sampling_nr (Intercept) 2268756 1506

Residual 3419479 1849

Number of obs: 52, groups: Sampling_nr, 13

Fixed effects:

Estimate Std. Error t value

(Intercept) -918.6 765.7 -1.200

StorageLong 841.7 512.9 1.641

MethodBuffer -379.0 983.3 -0.385

Correlation of Fixed Effects:

(Intr) StrgLn

StorageLong -0.335

MethodBuffr -0.691 0.000
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Figure 1: qPCR standard curve from Escherichia coli genomes

Figure 2: Amplification curve used to make qPCR standard curve
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Table 1: Abundance estimated for ZymoBIOMICS community standard dataset made by Kraken2,
OneCodex and Kaiju. All abundances are listed as estimated percent of all reads. Abundances
are listed for sample A and B, and at genus and species level.

Real Kraken2 OneCodex Kaiju
A B A B A B

Genus

Listeria 12 12.08 11.49 11.56 9.90 11.40 10.86
Pseudomonas 12 10.32 9.02 9.04 8.39 3.45 3.00
Bacillus 12 9.55 9.39 8.61 7.20 4.98 4.89
Escherichia 12 6.14 5.24 3.28 3.20 3.04 2.59
Salmonella 12 7.52 6.85 6.75 6.06 5.82 5.29
Lactobacillus 12 9.02 14.51 14.99 7.56 8.53 13.71
Enterococcus 12 11.81 11.00 5.39 4.83 4.00 3.68
Staphylococcus 12 14.17 13.39 9.41 8.13 12.46 11.79
Saccharomyces 2 2.05 1.98 1.88 1.47 1.49 1.61
Cryptococcus 2 1.99 2.90 2.98 1.66 1.38 2.01
Unclassified 0 0.04 0.04 13.02 12.64 7.62 7.40

Species

Listeria monocytogenes 12 11.83 11.25 9.55 8.96 6.65 6.34
Pseudomonas aeruginosa 12 4.18 3.53 0.95 0.80 1.67 1.41
Bacillus subtilis 12 9.34 9.16 2.42 2.35 1.64 1.61
Escherichia coli 12 5.87 5.00 3.21 2.65 2.81 2.40
Salmonella enterica 12 5.64 5.09 4.12 3.68 4.57 4.16
Lactobacillus fermentum 12 8.80 14.17 2.92 4.70 1.66 2.64
Enterococcus faecalis 12 11.66 10.86 2.25 1.99 2.31 2.10
Staphylococcus aureus 12 13.41 12.68 1.12 1.06 2.50 2.41
Saccharomyces cerevisiae 2 2.04 1.96 0.42 0.41 0.37 0.38
Cryptococcus neoformans 2 1.97 2.87 1.83 2.64 1.11 1.63
Unclassified 0 0.04 0.04 13.02 12.64 7.62 7.62

Table 2: Recall and precision for Kraken 2, One Codex and Kaiju on the ZymoBIOMICS dataset.
The recall and precision is calculated at both species and genus level, and for both sample A and
B.

Kraken OneCodex Kaiju
A B A B A B

Precision
Species 0.75 0.77 0.42 0.42 0.33 0.33
Genus 0.83 0.84 0.83 0.63 0.56 0.59

Recall
Species 1.00 1.00 0.69 0.70 0.77 0.77
Genus 1.00 1.00 0.85 0.82 0.88 0.89
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Table 3: Recall and precision for Kraken 2, One Codex and Kaiju on the simulated dataset
containing 12 species found in air samples. The recall and precision is calculated at both species
and genus level.

Kraken 2 One Codex Kaiju
Genus Species Genus Species Genus Species

Recall 0.70 0.50 0.93 0.92 0.95 0.94
Precision 0.64 0.27 0.92 0.88 0.80 0.72
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