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Abstract 

Globally, coral reefs are under threat from climate change and increasingly frequent bleaching 

events. However, corals in Kāneʻohe Bay have repeatedly shown resilience and the ability to 

acclimatize to rising temperatures and increased frequencies of bleaching events. The Malaukaʻa 

fringing reef -first surveyed in 2000- is revisited to compare species composition and percent 

cover of corals, algae, and mixed sand to investigate how the reef has fared over 18 years. 

Despite climate change-induced temperature increases and two major bleaching events, the 

fringing reef saw no significant change in total coral cover percent, nor a change in percent cover 

of the two dominant reef-building corals: Montipora capitata and Porites compressa. However, 

the loss of two coral species and addition of one new coral species between surveys indicates that 

while the fringing reef remains intact, a shift in species composition has occurred. While locally 

rare species from the 2000 study were not found in 2018, the reef remains. The survival of the 

fringing reef studied indicates resilience and suggests these Hawaiian corals are capable of 

acclimatization to climate change and bleaching events. A reciprocal transplant experiment was 

also conducted to determine if calcification (linear extension and accretion) for M. capitata and 

P. compressa varied between two sites 600 meters apart at either end of the surveyed reef and 

whether or not genetics or environmental factors were responsible for the differences. Linear 

extension did not vary between sites for either species, however accretion (measured as change 

in mg g -1 d -1) was significantly different between sites for P. compressa. Differences in 

accretion following transplantation suggest both environment and genetics impacted calcification 

of  P. compressa in Kāneʻohe Bay. 
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Synthesis 

Coral reefs are one of the most biodiverse ecosystems in the world, providing ecosystem goods 

and services such as fisheries, cultural benefits, and coastal protection (Moberg & Folke, 1999). 

However, reef ecosystems around the globe are in anthropogenically-driven ecological declines 

which can lead to a phase shift from coral-dominated reefs to algae-dominated reefs (De’ath et 

al., 2012; Bonaldo & Hay, 2014). Climate change-driven increasing sea surface temperatures 

threaten coral reefs globally as thermal stress can cause coral bleaching (Hoegh-Guldberg et al. 

2007; Jokiel & Coles, 1990). Some Hawaiian corals, however, have shown resilience through 

acclimatizing to thermal stress and resisting coral bleaching (Coles et al., 2018). Reefs in Hawaii 

have proven to be more resilient than reefs in other regions as they have sustained their percent 

coral cover from 1999-2012 while other reefs were in decline (Rodgers et al., 2015; De’ath et al., 

2012).  

Corals in Kāneʻohe Bay, O’ahu (one of the most intensively studied estuarine-reef systems in the 

world) have repeatedly demonstrated their resilience to anthropogenic and environmental 

stressors such as bleaching events (Bahr et al., 2017). Kāneʻohe Bay is an excellent site to study 

coral resilience as the bay represents one of the few examples of a phase shift reversal back to 

coral after an algae-dominated phase (Stimson, 2018). Coral reefs have persisted in the bay 

following dredging, years of effluent sewage output, flood-induced freshwater kills, and three 

major thermal-induced bleaching events (Reviewed in Bahr et al., 2015). In spite of major 

environmental stressors, Kāneʻohe Bay retains one of the highest levels of coral cover across the 

Hawaiian islands (Jokiel et al., 1993; Rodgers et al., 2015). 

A masters thesis from nearly 2 decades ago (Mühlig-Hofmann, 2001) surveyed a 600 meter 

section of Kāneʻohe Bay’s Malauka`a fringing reef which had yet to be repeated. The paper for 

the first chapter of this thesis: Decadal Trends and Coral Resilience at Malauka`a Fringing 

Reef, Kāneʻohe Bay, O’ahu returns to Malauka`a fringing reef to explore how the reef has fared 

in the 18 years since its initial survey. Has the reef shown resilience through maintaining coral 

cover and biodiversity at levels similar to the 2000 survey, despite facing climate change 

induced sea surface temperature increases and two major bleaching events over the 18 years?  

Following the resurvey of Malauka`a fringing reef, differences in benthic cover in the North and 

South portions of the reef drove the paper for the second chapter of this thesis: Reciprocal 

Transplant Demonstrates Acclimatization in Porites compressa and Montipora capitata, 

Kāneʻohe Bay, O’ahu. Through a reciprocal transplant experiment, environmental and genetic 

influences on calcification at the two ends of the reef are explored.  

These two papers converge on the theme of reef resilience to global (i.e. thermal stress from 

climate change) and local (e.g. depressed aragonite saturation levels, low salinity levels, etc.) 

stressors as corals at the Malauka`a fringing reef endure.  
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Chapter 1 

Decadal Trends and Coral Resilience at Malauka`a Fringing Reef, Kāneʻohe Bay, O’ahu  

Kelsey A. Barnhill1, Keisha D. Bahr2 

1Faculty of Environmental Sciences and Natural Resources, Norwegian University of Life 

Sciences 

2Department of Life Sciences, Texas A&M University-Corpus Christi 

Abstract 

Globally, coral reefs are under threat from climate change and increasingly frequent bleaching 

events. Yet, corals in Kāneʻohe Bay have demonstrated the ability to acclimatize and resist 

increasing temperatures. The Malauka`a fringing reef, first surveyed in 2000, is revisited to 

compare species composition and percent cover of corals, algae, and mixed sand to investigate 

how the reef has fared over 18 years. Despite climate change induced temperature increases and 

two major bleaching events, the fringing reef saw no significant change in total coral cover 

percent, nor a change in percent cover of the two dominant reef-building corals: Porites 

compressa and Montipora capitata. However, the loss of two coral species and addition of one 

new coral species between surveys indicates that while the fringing reef remains intact, a shift in 

species composition has occurred. While locally rare species from the 2000 study were not found 

in 2018, the reef itself remains. The survival of the fringing reef studied indicates resilience and 

suggests these Hawaiian corals are capable of acclimatization to climate change and bleaching 

events.  

Keywords: coral reefs, macroalgae, resilience, species composition  

Introduction  

Warming sea surface temperatures caused by climate change threaten coral reefs globally 

(Hoegh-Guldberg et al. 2007). Increased water temperatures cause coral bleaching (reviewed in 

Jokiel & Coles, 1990) which can cause total or partial mortality for colonies if the corals are 

unable to recover (reviewed in Baker et al., 2008). Coral mortality leads to reef degradation as 

the reef loses structural complexity and is overgrown by algae, often leading to an algae-

dominated phase shift (Graham et al., 2006). Reef degradation directly causes the loss of reef-

related ecosystem services such as seafood production, shoreline protection, habitat provision, 

materials for medicines, and nitrogen fixation, among others (Moberg & Folke, 1999).  

Significant ecological declines driven by anthropogenic stressors are occurring on coral reefs 

around the world (De’ath et al., 2012). In 2000 an estimated 11% of all coral reefs had already 

been lost with an additional 16% damaged beyond the point of being functional ecosystems 
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(Wilkinson, 2000). From 1985-2012 the Great Barrier Reef experienced a 50.7% decrease in 

coral cover (De’ath et al., 2012) and coral cover in the entire Indo-Pacific is 20% less than 

historical levels from 100 years ago (Bruno & Selig, 2007). Hawaiian reefs, however, have one 

of the lowest threat ratings in the Pacific (less than 30% threatened) (Burke et al., 2011). From 

1999-2012 mean Hawaiian coral cover and diversity remained stable statewide, including within 

Kāneʻohe Bay (Rodgers et al., 2015). Reefs within Kāneʻohe Bay have repeatedly shown 

resilience by recovering from natural and anthropogenic disturbances such as bleaching events 

(Bahr et al., 2017). Increasingly frequent bleaching events threaten the longevity of coral reef 

ecosystems (Hughes et al., 2017) and whether or not corals can become adaptive or resistant to 

bleaching is contested in current literature (Hughes et al., 2017). However, corals in Kāneʻohe 

Bay have shown resilience through acclimatization to increased temperatures (Coles et al., 

2018). 

Kāneʻohe Bay 

Kāneʻohe Bay is located on the northeast side of Oʻahu, Hawaiʻi (21°4‘ N and 157°8’ W). The 

bay has some of the highest levels of coral cover (54-68% compared to statewide average of 

24.1%) across the Hawaiian islands (Bahr et al., 2017; Jokiel et al., 1993; Rodgers et al., 2015). 

Reefs in the bay experience elevated temperatures which offshore reefs will not be subjected to 

for several years due to restricted circulation which increases summer water temperatures by 1-

2° Celsius (Bahr et al., 2015b).  

Kāneʻohe Bay represents one of the few recorded examples of a phase shift back to coral 

following an extended algae-dominated phase (Stimson, 2018). From 1960-1970 the population 

in Kāneʻohe doubled leading to effluent municipal and military sewage to be discharged in the 

bay, causing eutrophication and a subsequent decline in coral cover and diversity (Banner, 1974). 

Following the release of effluent sewage into the bay, the algae Dictyosphaeria cavernosa, 

stimulated by increased nutrient availability, spread widely, causing a phase shift from coral-

dominated to algae-dominated (Smith et al., 1981; Stimson et al., 2001). Following the 1979 

sewage diversion, coral cover in the bay more than doubled in just four years (Hunter & Evans, 

1995) as nutrient levels decreased (Smith et al., 1981).  

Experiencing the effects of climate change for the first time, corals across Kāneʻohe Bay first 

bleached in 1996 but recovered within months causing only 2% total mortality (Jokiel & Brown, 

2004). A second, more severe bleaching event occurred in 2014 (Bahr et al., 2015b). While 

nearly half of all corals in the southern region of the bay were pale or bleached immediately 

following the 2014 bleaching, there was only 1% total coral mortality 3 months later (Bahr et al., 

2015a). In 2015 another widespread bleaching event affected the Kāneʻohe Bay reefs, however a 

15% decrease in bleaching compared to the 2014 event suggested some corals may be 

acclimatizing to increased temperatures (Bahr et al., 2017). Kāneʻohe Bay has retained high coral 

cover despite Hawaiian offshore water temperatures increasing by 1.15° Celsius over the past 60 
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years (Bahr et al., 2017). The historical resilience of corals in Kāneʻohe Bay and the consistently 

high coral cover while many reefs around the globe are in decline led to the research question: 

How has species percent cover and community composition changed in response to 18 years of 

warming temperatures and 2 major bleaching events at Malauka`a fringing reef?   

Methods 

Study Site 

The study site was a 600-meter section of the Malauka`a fringing reef (21.44300899°N, -

157.80636°W to 21.43853104°N, -157.806541°W) in the south-west of Kāneʻohe Bay which 

was initially surveyed in 2000 (Mühlig-Hofmann, 2001). Similar to other reefs in the bay, 

Porites compressa and Montipora capitata are the dominant reef-building corals. The northern 

section of the reef is approximately 125 meters offshore of Kealohi Point at He’eia State park. 

The southern 200 meters of the study site is adjacent to the Paepae o He‘eia (traditional 

Hawaiian fishpond) where there is ongoing estuarine restoration focusing on socio-cultural 

benefits (Bremer et al., 2018). The southern end of the reef is subjected to freshwater stream and 

pond output from He’eia stream and a triple mākāhā (sluice gate) within Paepae o He‘eia 

(Möhlenkamp, 2019).  

Experimental setup 

Benthic Survey 

A modified version of the Point Intercept Transect (PIT) as described by Hill & Wilkinson 

(2004) was used in both the 2000 and 2018 surveys. The PIT method identifies benthic cover 

every 50 centimeters along a transect (Jokiel, et al. 2015). During the 2000 study (Mühlig-

Hofmann, 2001) benthic cover was recorded every meter and thus repeated as such in the 2018 

study. Additionally, transects from the 2000 study continued until the edge of the reef platform 

was reached, causing transects to consist of varying lengths dependent on the width of the reef. A 

Garmin GPSMAP 78s was used to mark the 60 transects which were spaced 10 meters apart to 

survey the 600 meter portion of the fringing reef (Figure 1). The locations of the 2000 transects 

were replicated in 2018 to the best of our ability. Both surveys were conducted with one 

snorkeling observer identifying all species in situ.  



13 
 

 

 

Figure 1. Map of Malauka`a fringing reef with transects overlaid within Kāneʻohe Bay, O’ahu. 

Note the variation in transect length due to reef width. Photo Credit: Digital Globe.   

Temperature 

Temperatures were recorded at various sites along the fringing reef for one month from mid-

September 2000 to mid-October in 2000 at depths of 35-40 cm (YSI Inc. Model 30/10 FT). Hobo 

Water Temp Pro temperature loggers (Onset Computer Corporation) continuously recorded 

temperatures at 30 minute intervals at 9 of the sites from the 2000 survey from mid-September 

2017 to mid-October 2017 to compare temperature changes between years (McGowan, 

unpublished data). Temperature data is from 2017 as opposed to 2018 as the benthic survey took 

place in July 2018. Time of temperature recordings was not noted in the 2000 data whereas 

12:00 noon was selected for 2017 temperatures.  
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Statistical Analysis 

A Permutational multivariate analysis of variances (PERMANOVA) was used to determine if 

overall species composition changed between 2000 and 2018 within R studio (RStudio Team, 

2015). A Non-metric multidimensional scaling (NMDS) ordination plot was created to visualize 

the 2000 and 2018 benthic communities within R studio (RStudio Team, 2015). A Matched Pair 

analysis was used to compare changes in temperatures between years (2000 vs 2017) within sites 

as well as individual species and groups (i.e. corals, algae, and sand/sediments) between years 

(2000 vs 2018) within transects using JMP 13 Pro (SAS Institute Inc., USA).  

Results 

Benthic Survey 

Transects ranged from 6 to 32 meters in length, with 1219 observations recorded at one meter 

intervals along the fringing reef in both 2000 and 2018. Six species of coral (i.e., Porites 

compressa, Porites lobata, Montipora capitata, Lobactis (formally Fungia) scutaria, 

Pocillopora damicornis, Pocillopora meandrina) were recorded at the site in 2000 and four (i.e., 

P. compressa, M. capitata, P. damicornis, Leptastrea purpurea) were recorded in 2018. Four 

species of macroalgae (i.e. Dictyosphaeria cavernosa, Dictyosphaeria versluyii, Gracilaria 

salicornia, Kappaphycus alvarezii) were present in 2000 and two (i.e. D. cavernosa, D. 

versluyii) in 2018. Unidentified species of turf algae, crustose coralline algae, and mixed sand 

and rubble were present in both surveys.  

Statistical Analysis 

Temperature 

The mean temperature at the site increased from 27.50 ± 1.13° Celsius in 2000 to 28.68 ± 0.43° 

Celsius in 2017 (p < 0.0001).  

Community-level changes 

Overall community composition at the site changed from 2000 to 2018 (F model= 17.47, p = 

0.001, PERMANOVA) (Figure 2). 
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Figure 2. Non-metric multidimensional scaling (NMDS) ordination plot representing the benthic 

communities from the 2000 and 2018 surveys (Dimensions = 2, Stress < 0.2). Ellipses represent 

95% confidence intervals of each community. Coral species are written in pink, algae in green, 

and sand in yellow.  

Mixed Sand and Rubble 

Total mixed sand and rubble cover decreased significantly from 12% to 4.6% from 2000 to 2018 

(p < 0.0001) (Figure 3, Figure 4).  

Algae 

The total overall algae cover increased significantly from 42.9% in 2000 to 56.8% in 2018 (p = 

0.001) (Figure 3, Figure 4). Dictyosphaeria spp. (D. cavernosa and D. versluyii) decreased 

significantly from 16.7% in 2000 to 1.1% 2018 (p < 0.0001). Gracilaria salicornia and 

Kappaphycus alvarezii were both present in 2000 (2.8%, and 0.33% respectively) and absent 

from the 2018 survey (p = 0.0008, 0.045). Non-coral substrate (turf, crustose coralline algae) 

increased significantly from 23.1% in 2000 to 55.6% in 2018 (p < 0.0001). 
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Corals 

The change in total overall coral cover was insignificant with 45.1% in 2000 and 38.6% in 2018 

(p = 0.0637) (Figure 3, Figure 4). Neither dominant reef-building species Porites compressa nor 

Montipora capitata experienced a significant change in percent cover as P. compressa was found 

to cover 33.6% and 33.7% of the reef (p = 0.9618) and M. capitata 4.4% and 4.2% (p = 0.8207) 

in 2000 and 2018, respectively. Porites lobata (5%, p < 0.0001), Pocillopora meandrina (0.16%, 

p = 0.1590), and Lobactis scutaria (0.16%, p = 0.1590) were all present in the 2000 survey but 

absent in 2018 (however, L. scutaria was observed on the reef but did not land on any survey 

marks). Pocillopora damicornis decreased significantly from 1.8% to 0.25% from 2000 to 2018 

(p = 0.0006). Leptastrea purpurea was not present in the 2000 survey but represented 0.49% 

total cover in 2018 (p = 0.0327).  

 

Figure 3. Mean Percent cover of each species or category in 2000 vs. 2018. Each standard error 

bar is one standard error from the mean. * Indicates significant difference between years at p < 

0.05 
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Figure 4. Spatial trends in 1) Total benthic cover and 2) coral species composition. A. 2000 

survey, B. 2018 survey. Photo credit: Digital Globe 

1
. 

2
. 
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Discussion 

While many reefs globally are in decline due to anthropogenic factors, Hawaiian coral cover has 

remained stable from 1999-2012 (Rodgers et al., 2015). Returning to the Malauka`a fringing reef 

provided an opportunity to explore decadal trends in coral cover across an entire 600-meter reef. 

This study explores how Malauka`a fringing reef has fared over the past 18 years, comparing the 

site to reefs across the Hawaiian islands. We predict the reef will show the same resilience as 

other Hawaiian reefs through maintaining high coral cover in the face of climate change like 

most Kāneʻohe Bay reefs. 

Temperature 

Temperature increased by more than 1° Celsius along the fringing reef from 2000 to 2017. 

However, the time of day which the temperature was taken in 2000 was not specified, and the 

large variation (SD = 1.13 in 2000 compared to 0.43 in 2017) suggests temperatures may not 

have been taken at the same time each day. Therefore, while the data points to increasing 

temperatures, the uncertainty in the 2000 data makes the comparison unreliable. As Hawaiian 

offshore water temperatures have risen by 1.15° Celsius over the past 60 years (Bahr et al., 

2017), the observed 1.18° increase in 17 years at the study site is likely influenced by error 

possibly caused by deviation in temperature recording times between years.  

Mixed Sand and Rubble 

The significant decrease in percent cover of mixed sand and rubble indicates the reef expanded 

between surveys. This is further supported by a break in the fringing reef in 2000 (represented as 

a transect with 100% sand cover) which was not observed in the 2018 survey. 

Algae 

Dictyosphaeria cavernosa was once the dominant algae species in Kāneʻohe Bay, responsible for 

one of the first well-studied reef phase shifts from coral-dominated to algae dominated (Stimson 

et al., 2001). The release of effluent sewage in the 1970’s provided particulate nutrients to 

stimulate growth of D. cavernosa, causing the phase shift (Smith et al., 1981). Following sewage 

diversion, the algae persisted in the bay due to overfishing of herbivorous fish that would have 

placed grazing pressure on the species (Stimson et al., 2001).  D. cavernosa remained abundant 

in Kāneʻohe Bay, averaging 16% total cover during a 1996-1997 survey (Stimson et al., 2001). 

The findings of the 2000 survey indicate the percent cover of Dictyosphaeria spp. remained at a 

comparable level 3 years later at the fringing reef (16.7%). In 2006, following an unusually rainy 

period, decreased irradiance combined with slow spring growth rates for the species caused D. 

cavernosa to effectively disappear from the bay (Stimson & Conklin, 2008). Immediately 

following the rapid decline, reefs nearby Moku o Loe averaged 0-4% total cover of D. cavernosa 
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(Stimson & Conklin, 2008). Twelve years later, the prevalence of D. cavernosa has remained 

greatly diminished at this fringing reef (1.1%), suggesting an enduring phase shift reversal.  

The invasive species G. salicornia was introduced to Kāneʻohe Bay in the 1970’s and quickly 

spread, overgrowing and smothering reef-building corals (Smith et al., 2004). The invasive algae 

has since decreased over the past few years as a result of biocontrol (Stimson et al., 2007), 

manual removal (Neilson, et al., 2018), and increased grazing from Chelonia mydas, a green sea 

turtle (Bahr, et al., 2018). The management efforts and return of C. mydas to Kāneʻohe Bay 

likely explain why the once dominant macroalgae was not observed during the 2018 survey.  

Like G. salicornia, Kappaphycus alvarezii (formerly Eucheuma striatum) was introduced to 

Kāneʻohe Bay in the 1970’s (Russel, 1983) and had spread across the southern and central bay 

by 1996 in a near-cosmopolitan distribution (Rodgers & Cox, 1999). A total percent cover of 

0.33% in the 2000 survey was slightly higher than the mean 0.06 ± 0.02% cover found at four 

shallow fringing reefs in the central bay in 1996 (Rodgers & Cox, 1999). Amidst fears of further 

spreading, preliminary management options for Kappaphycus spp. were assessed in 2002 

(Conklin & Smith, 2005). Divers used an underwater vacuum and outplanted juvenile urchins 

(Tripneustes gratilla) to remove and control the species in 2011-2013, leading to an 85% 

decrease in invasive macroalgae across sites (Neilson et al., 2018). Management efforts have 

continued to be successful as K. alvarezii was not observed at the study site during the 2018 

survey.  

Despite Dictyosphaeria spp., G. salicornia, and K. alvarezii all decreasing or disappearing from 

the reef, a total increase in algae percent cover from 2000 to 2018 was observed, mainly due to 

the increase in ‘non-coral substrate’. It should be noted that 18.6% of the non-coral substrate 

from the 2018 survey was crustose coralline algae (CCA). CCA was not given its own category 

as CCA was not differentiated from ‘encrusted corals’ in the 2000 study. Thus, the percent cover 

of total algae as well as non-coral substrate is inflated in the 2018 data and likely the 2000 data 

as well. Unlike turf and macroalgae, CCA promotes coral recruitment and recovery (Price, 2010) 

and would have ideally been separated into its own category. The high percentage of non-coral 

substrate in 2018 (55.6%) was also impacted by the prevalence of (perhaps short-lived) turf on 

the tips of P. compressa and M. capitata. The tips of these reef-building corals were susceptible 

to warming events and air exposure at extreme low tides as the 2018 survey was conducted in 

late July following a warm period and spring tides (Figure 5). Most algae observed in the 2018 

survey was found on the Northern portion of the reef (Figure 4). 
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Figure 5. Reef exposed during low tide in Kāneʻohe Bay (Picture Credit: Dr. Keisha Bahr). Tips 

of a pale P. compressa colony covered with turf (Picture Credit: Kelsey Barnhill).  

Corals 

Despite a significant increase in algae percent cover between surveys, total coral percent cover 

was similar in 2000 and 2018. 

Porites compressa sustained a high percent cover over 18 years at the fringing reef despite 

decreasing in percent cover by 22.9% in 14 years (1999-2012) across the Hawaiian islands, with 

significant declines on the island of O’ahu (Rodgers et al., 2015). Porites compressa is known to 

be sensitive to increased temperatures which can cause bleaching and decreased calcification 

rates for the species (Carricart-Ganivet et al., 2012). Despite temperature increases over the 18 

years, P. compressa has maintained its dominance as the most prevalent coral species at 

Malauka`a fringing reef, implying the ability to acclimatize and persist in warming waters.  

Montipora capitata percent cover remained at a similar level between surveys despite increasing 

in percent cover by 56.8% in 14 years (1999-2012) across the Hawaiian islands (Rodgers et al., 

2015). However, this study extended transects only to the end of the continuous reef pavement 

and many M. capitata colonies were located inshore of the reef (personal observation). 

Montipora capitata colonies in Kāneʻohe Bay have shown resilience through the ability to 

acclimatize/adapt to temperature increases in lab experiments (Coles et al., 2018). The continued 

presence of M. capitata at Malauka`a fringing reef despite temperature increases supports the 
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findings of Coles et al. (2018) through indicating resilience not just in lab manipulations, but in 

the field as well.  

Percent cover of Pocillopora damicornis decreased significantly between the 18 years. The 

species is known to be highly sensitive to decreased salinity levels (Jokiel et al., 1993). Increased 

freshwater input onto the southern portion of the surveyed reef may have impacted the 

abundance of P. damicornis. Following biocultural restoration of the Paepae o He‘eia, water 

exchange between the fishpond and the adjacent reef increased, with an additional 14,418 m3 of 

pond water being flushed out onto the reef during each ebb tidal cycle (Möhlenkamp, 2019)  

In 2000, P. lobata was a common reef-building coral at the study site. However, P. lobata was 

not observed in the 2018 survey. P. lobata was described as ‘common to Kāneʻohe Bay’ in 1999 

(Grottoli, 1999), however more recently it was estimated to have 0-1% cover along Kāneʻohe’s 

fringing reefs (Franklin et al., 2013). There is now evidence P. lobata and P. compressa may be 

different morphotypes of the same species or hybridize frequently (Forsman et al., 2017). If this 

is the case, the disappearance of P. lobata may mean one morphospecies is selected over the 

other and there has not been a decrease in biodiversity for Porites. Due to similarities between P. 

lobata and P. compressa as well as the possibility of hybridizations, there may have been 

misidentifications in the 2000 survey.  

Similar to P. lobata, P. meandrina was also estimated to have 0-1% cover along fringing reefs in 

Kāneʻohe Bay, supporting its absence in the 2018 survey (Franklin et al., 2013). Pocillopora 

meandrina has been similarly decreasing in percent cover across the Hawaiian islands, with a 

36.1% decrease from 1999-2012 (Rodgers et al., 2015). Following the 2015 bleaching event, 

98% of P. meandrina colonies on the west side of the island of Hawai’i were partially or fully 

bleached, demonstrating they are one of the more susceptible species to thermal stress (Maynard 

et al., 2016). They were similarly listed as the least resistant species to thermal stress at Kahe 

Point, O’ahu (Jokiel & Coles, 1974). The species vulnerability to increased temperatures may 

explain its disappearance in the 2018 survey.  

Lobactis scutaria was recorded during the 2000 survey but not observed in the 2018 survey. 

While it did not appear in the survey, it is present at the study site (personal observation). While 

present, the absence from the survey would classify L. scutaria as ‘very rare’ (Jokiel & Maragos, 

1978). Low densities of L. scutaria are expected at the site, as the species is abundantly found on 

patch reefs in Kāneʻohe Bay, not fringing reefs (Lacks, 2000). Future studies of the area should 

employee a survey method such as the ‘quadrat method’ which avoids sampling from a small 

number of points to ensure rare and very rare species are included (Jokiel, et al., 2015). 

Leptastrea purpurea was the only new species seen in the 2018 survey. This encrusting species 

is tolerant to elevated temperatures and has been seen in areas where other coral species have 

succumbed to thermal stress (Jokiel & Coles, 1974). The hardy species has been declared one of 

the ‘long-term winners’ as L. purpurea increase in abundance during thermal stress events (van 
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Woesik et al., 2011). Leptastrea purpurea has a relatively low metabolic rate, a characteristic 

known to help corals tolerate high temperatures (Mayer, 1917). Increasing temperatures may 

have allowed L. purpurea to settle in an area it had not before been present in, as it now holds a 

competitive advantage over other species which are less tolerant to thermal stress.  

Coral cover did not change significantly over the past 18 years although two bleaching events 

(2014 and 2015) occurred during that time frame. While the fringing reef has shown resilience, it 

is unclear whether or not acclimatization and resistance to climate change has impacted its 

success. Coles et al. (2018) found all three species (i.e., M. capitata, L. scutaria, P. damicornis) 

of Hawaiian corals tested within Kāneʻohe Bay have higher survivorship at 31°C today than they 

did in 1970 suggesting these corals can adapt to higher temperatures. As the corals in this study 

were from similar locations as those used by Coles et al. (2018), it is possible the resilience seen 

on the reef can be attributed in part to adaptation or acclimatization.  

While the total coral cover remained relatively stable over the past 18 years, the species 

composition changed. The decrease in the total number of coral species present in the survey (6 

in 2000, 4 in 2018) represents an overall loss in biodiversity. Additionally, two (or one if P. 

lobata is considered to be the same species as P. compressa) species of coral were lost in the 18 

years while one non-reef building coral (L. purpurea) was added. This change suggests a 

temperature-driven shift in species composition over the 18 years. Even though the total coral 

cover remains high, the loss of locally uncommon species has negative impacts as rarer species 

often support more vulnerable and unique ecosystem functions (Mouillot, 2013).  

Despite a shift in coral biodiversity, total coral cover percent remained unchanged over the 18 

years and populations of the two dominant species of coral remained at comparable levels. 

Despite evidence of Hawaiian coral adaptation to increased temperatures, this adaptation might 

not occur fast enough to tolerate projected increasingly frequent bleaching events (Coles et al., 

2018). While the Malauka`a fringing reef has shown resilience over the past 18 years, its future 

is uncertain. 
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Abstract 

Coral reefs are susceptible to climate change, anthropogenic influence, and environmental 

stressors. However, corals in Kāneʻohe Bay have repeatedly shown resilience and the ability to 

acclimatize to climate change-induced rising temperatures and increased frequencies of 

bleaching events. A 2018 benthic survey completed on the Malauka`a fringing reef saw 

variations in coral and algal benthic cover at two sites just 600 meters apart from one another 

suggesting genetic and/or environmental differences in resilience between corals at the sites. A 

reciprocal transplant experiment was conducted to determine if calcification (linear extension 

and accretion) for the dominant reef-building corals Montipora capitata and Porites compressa 

varied between the two sites and whether or not genetics and/or environmental factors were 

responsible for the differences. The two sites represent distinct environmental conditions with 

significant differences between temperature, salinity, and aragonite saturation. Linear extension 

did not vary between sites for either species, suggesting the reef-building corals were able to 

acclimatize to the different environments. However, accretion (measured as change in mg g -1 d -

1) was significantly different between sites for P. compressa. Differences in accretion following 

transplantation suggest both environment and genetics impact secondary calcification of  P. 

compressa in Kāneʻohe Bay.  

Keywords acclimatization, calcification, coral reefs, reciprocal transplant, resilience 

Introduction 

Climate change-induced sea surface temperature increases and progressively frequent bleaching 

events threaten coral reef ecosystems globally (Hoegh-Guldberg et al., 2007, Hughes et al., 

2017). Currently, many reefs are in decline as phase-shifts from coral-dominated to algae-

dominated reefs occur (Bonaldo & Hay, 2014). Resilience of coral reefs to anthropogenic and 

environmental stressors is key to ensuring their longevity (Mumby et al., 2014). Some corals and 

coral reefs, for example, exhibit resilience through a natural resistance to bleaching (West & 

Salm, 2003). Additionally, individual corals are able to acclimatize to more frequent bleaching 

events (Coles & Brown, 2003) and survive to pass down their resistance, so the population can 

adapt and become more resilient (Baker et al., 2004; Pandolfi et al., 2011; Putnam et al., 2018). 



28 
 

While genotype and genetic variation can impact coral survivorship, environmental conditions 

also influence coral responses (e.g. growth, bleaching, etc.) (Drury et al., 2017). 

The coral reefs in Kāneʻohe Bay, one of the most well-studied estuarine reef ecosystems, have 

shown resilience in response to various stressors (Bahr et al., 2015). Coral reefs in Kāneʻohe Bay 

have recovered from anthropogenic and environmental stressors such as sewage discharge 

(Pastorok & Bilyard, 1985), freshwater kills (Jokiel et al., 1993), and three major bleaching 

events (Bahr et al., 2017). The reefs in Kāneʻohe can be exposed to the air at low tides (Jokiel, 

1991) and during summer months experience 1-2° Celsius elevated water temperatures- similar 

to middle/end of the century scenarios- which offshore reefs will not be exposed to for several 

years due to restricted flow (Bahr et al., 2015). Environmental disturbances, such as those in 

Kāneʻohe Bay, may allow for higher tolerance for bleaching (West & Salm, 2003). The 

resilience of the corals to environmental stressors as well as extreme temperatures (Bahr et al., 

2015) makes Kāneʻohe Bay an ideal study site to explore responses of individual corals to 

different environmental conditions. 

Following the most recent thermal-stress driven bleaching event in 2015, corals in different areas 

of the bay recovered at different rates (Bahr et al., 2017). A 2018 benthic survey completed on 

the Malauka`a fringing reef saw variations in benthic cover at two sites just 600 meters apart 

from one another (Barnhill, unpublished data). The northernmost 30 meters of the reef had 

38.9% coral cover and 58.3% algae cover while the southernmost 30 meters of the reef had 

62.5% coral cover and 25% algae cover (Barnhill, unpublished data). These observations led to 

the question of whether or not there were genetic differences influencing resilience between the 

corals in the bay, specifically at Malauka`a fringing reef.  

In the era of molecular and genetic studies, common garden and reciprocal transplant 

experiments are often overlooked despite their ability to test whether or not local adaptations 

affect phenotypic traits (de Villemereuil et al., 2016). A reciprocal transplant experiment was 

used to test whether or not local adaptations and/or the environment influenced calcification 

differences between two sites. Porites compressa and Montipora capitata were the selected 

species for this experiment as they are the most common reef-building corals in Kāneʻohe Bay 

(Bahr et al., 2015). Calcification was the chosen parameter for measurements as Smith et al. 

(2016) suggests basing coral reef health on reef-building capacities of the corals, defining 

healthy reefs as those dominated by accreting and calcifying reef-building corals. Unhealthy, 

algae-dominated reefs show depressed calcification rates compared to coral-dominated reefs 

(Gattuso et al., 1998) and temperature-induced bleaching can decrease or halt calcification rates 

(Carilli et al., 2009), which must remain above the rate of erosion/dissolution to maintain coral 

cover and net accretion (Gattuso et al., 1998). The objectives of this experiment were to 1.) 

determine if M. capitata and P. compressa were calcifying at different rates between the two 

sites and if so, 2.) determine if environment or genetics explained the differences in calcification 

between sites. 
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Methods 

Study Site 

This research was conducted in Kāneʻohe Bay, Hawaiʻi (21.4°N, 157.8°W). A barrier reef 

separates the ocean from the inshore Kāneʻohe Bay estuarine system which is characterized by 

numerous shallow patch reefs (<1 meter depth) and a shallow fringing reef (0.3-0.9 meters 

depth) ringing the majority of the shoreline (Jokiel, 1991). Reefs in the bay have one of the 

highest percentages of coral cover (54-68%) among the Hawaiian islands (Hawaii average = 

24.1%) (Bahr et al., 2017; Jokiel et al., 1993; Rodgers et al., 2015). Site 1 (21.44300899°N, -

157.80636°W) was located approximately 125 meters offshore of Kealohi Point at He’eia State 

park. Site 2 (21.43853104°N, -157.806541°W) was located just 25 meters away from the Paepae 

o He‘eia (He’eia traditional Hawaiian fishpond), directly in front of a triple mākāhā (sluice gate). 

Both sites were located on the inshore edge of Malauka`a fringing reef (Figure 1).  

 

Figure 1. Map of Malauka`a fringing reef situated in Kāneʻohe Bay, O’ahu with site 1 and site 2 

identified and benthic cover described. Picture credit: Digital Globe & Google Earth.  
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Environmental Parameters 

Temperature (°C) at the two sites was recorded continuously during the experimental period (50 

days) using Hobo Pro V2 temperature loggers (Onset Computer Corporation). Sedimentation 

(mg cm2 hr1) was measured five separate times during quarterly sampling from May 2017-June 

2018 by deploying two sediment traps at each site for 24 hours. Preliminary nutrient data (i.e. 

Nitrogen, Phosphorous, Phosphate, Silicate, and Ammonia) (μmol L1) was taken during three 

quarterly samplings in September 2017, December 2017, and March 2018. Salinity (ppt), 

turbidity (NTU), pH, and Aragonite saturation (ΩArag) were recorded during preliminary 

seawater chemistry sampling over two 12-hour cycles in July 2018. Salinity was recorded using 

an YSI 556 MPS (Xylem Analytics) and turbidity was measured using a 2100Q Portable 

Turbidimeter (Hach). Some additional turbidity measurements were collected during the 

experimental period (June-July 2018). Optical pH measurements were made with m-cresol 

purple dye using an on-site LC Mass Spectrometer. Two or more analyses were done for each 

sample to reach a standard deviation of 0.01 or less. ΩArag was calculated from pH and Total 

Alkalinity values using the CO2SYS V2.1 Calc program for Excel Pierrot).  

Experimental Setup 

Colonies of Porites compressa (n = 5) and Montipora capitata (n = 5) were collected at each site 

(with ~35 m of the site) at approximately 1 m depth and fragmented into coral nubbins (six 

nubbins per colony) of comparable size (11.66 g ± 2.95) for a total of 120 nubbins of P. 

compressa (n = 60) and M. capitata (n = 60). 

Coral nubbins were tagged and affixed onto ceramic pedestals in an upright position and placed 

on a tray. Thirty nubbins of each species were randomly selected to either stay at their own site 

(‘Site 1 resident’: coral nubbin originally from site 1 which remained at site 1 during the 

experiment) or be transplanted to the other site (‘Site 1 transplant’: coral nubbin originally from 

site 2 which was transplanted to site 1 during the experiment). One nubbin per colony was placed 

on each tray to avoid pseudoreplication. The experiment took place over 50 days (11 June- 31 

July) during the summer of 2018. Extension and accretion were the selected parameters to 

monitor coral calcification. Corals with high levels of partial mortality (>80% tissue loss) at the 

end of the 50-day period were removed from calcification analysis. 

Coral Growth Measurements: Extension 

To measure linear extension rates, nubbins were stained before the start of the experiment using 

the Alizarin sodium monosulfonate (hereafter Alizarin) technique (Barnes, 1970). Coral nubbins 

were stained in an aerated 475-liter tank with Alizarin concentration at 15 ppm for 8 hours in 

direct sunlight (Rodgers & Cox, 2003). Corals were unharmed during the staining process as 

Alizarin concentrations below 20 ppm are not damaging (Lamberts, 1973). After the conclusion 

of the 50-day experiment, all nubbins were exposed to a mixture of freshwater and bleach for 12 
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hours to remove tissue and expose the stained skeleton. Calipers were used to measure coral 

skeletal growth from the stain to the point of maximum linear growth in mm to 1 decimal point 

(Figure 2). If a nubbin had multiple branches, maximum linear growth was measured for each 

branch, and the mean value was recorded. All linear extension values were converted to mm d-1 

 

Figure 2. A stained P. compressa nubbin’s exposed skeleton. Linear extension was measured 

from the stain up to the white growth tip. Picture credit: Kelsey Barnhill. 

Coral Growth Measurements: Accretion 

To measure coral accretion rates, each nubbin was weighed using the buoyant weight technique 

(Jokiel et al., 1978) before the start of the experiment and at the end of the 50-day experiment. 

Values were converted to dry skeletal weight (Jokiel, et al., 1978) and percent change in mg g -1 

d -1 was calculated. 

Statistical Analysis 

The effects of the resident and transplant sites on calcification (i.e. accretion and linear 

extension) for each species was determined using a Type II ANOVA. Post-hoc pairwise 

comparison (Tukey, 95% CI) was used to determine differences in coral growth between sites for 

each species. Environmental conditions (i.e., temperature, salinity, turbidity, sedimentation, pH 

and ΩArag) between site 1 and site 2 were analyzed using two-tailed paired T-tests. A 

Bonferroni correction was used to counteract the multiple tests (n = 6) between environmental 

parameters. The relationship between accretion and extension was fitted using a linear 

regression. Assumptions of normal distribution and homoscedasticity were assessed through 

graphical analysis of the residuals. Descriptive and statistical analyses were conducted using R 
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Commander (Fox & Bouchet-Valat, 2019). Graph of mean accretion rates was created using 

JMP 13 Pro (SAS Institute Inc., USA). 

Results 

Environmental Parameters 

Midday (11:00-14:00) temperature (°C) (mean ± SD) was  27.72 ± 0.94 at site 1 and 27.48 ± 

0.96 at site 2 (p < 0.0001) (Table 1). Temperatures ranged from 25.89°C to 31.94°C at site 1 and 

25.67°C to 30.72°C at site 2 during the 50-day experiment. The mean salinity (ppt) was 32.91 ± 

2.20 at site 1 and 29.68 ± 2.86 at site 2 (p = 0.0037). The mean turbidity (NTU) was 0.38 ±0.17 

at site 1 and 0.97 ±0.39 at site 2 (p = 0.011). The mean sedimentation (mg cm2 hr1) was 0.34 ± 

0.09 at site 1 and 0.66 ± 0.29 at site 2 (p = 0.078). The mean pH was 8.28 ± 0.21 at site 1 and 

8.26 ± 0.10 at site 2 (p = 0.744). The mean ΩArag was 2.13 ± 0.50 at site 1 and 1.73 ± 0.56 at 

site 11 (p = 0.0079). The average of three nutrient samplings for Nitrogen, Phosphorus, 

Phosphate, Silicate, and Ammonia (μmol L1) was 5.88, 0.33, 0.19, 10.34, and 0.45 respectively, 

for site 1 and 7.11, 0.37, 0.16, 21.07, and 0.71, respectively for site 2.  

Table 1. Environmental Parameters for each site. * Indicates significant difference at Bonferroni 

corrected p < 0.008

 

Relationship between Extension and Accretion 

The regression line for extension and accretion was y = 1.0224 + 0.6268x with an R2 value of 

0.317 for M. capitata and y = 1.5012 + 0.6305x with an R2 value of 0.358 for P. compressa 

(Figure 3). 
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Figure 3. Linear regression showing the relationship between extension and calcification for A) 

M. capitata and B) P. compressa.. 

Coral Growth Measurements: Extension  

Mean extension rates were similar for each species across sites. The mean extension rate for M. 

capitata was 0.076 ± 0.026 mm d-1 for site 1 and 0.087 ± 0.027 mm d-1  at site 2 (p = 0.123) 

while the mean extension rate for P. compressa was 0.091 ± 0.032 mm d-1  for site 1 and 0.106 ± 

0.032 mm d-1  for site 2 (p = 0.137) (Table 2). Neither Resident nor Transplantation site had an 

effect on extension rates. 

Table 2. Mean linear extension and accretion rates for resident and transplant M. capitata and P. 

compressa coral nubbins at each site.  

 

Coral Growth Measurements: Accretion 

Montipora capitata had a mean accretion rate of 4.082 ± 1.408 mg g -1 d -1 and did not show any 

significant differences in accretion between sites. Neither the original site nor the transplant site 
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impacted accretion rates for M. capitata, however both variables significantly impacted accretion 

of P. compressa (p = 0.028, 0.005, respectively). Porites compressa showed a significant 

difference in calcification accretion rates between sites. Site 1 residents had significantly lower 

accretion rates (mean ± SD) (3.51 ± 0.70 mg g -1 d-1) compared to site 2 residents (5.05 ± 1.19 

mg g -1 d -1) (p = 0.006). Porites compressa site 2 transplants had a mean accretion rate of 3.757 

± 1.187 mg g -1 d -1while site 1 transplants had a mean accretion rate of 3.426 ± 1.343 mg g -1 d-1. 

Both site 1 transplants and site 2 transplants had significantly reduced accretion rates compared 

to site 2 residents (p = 0.004, 0.028, respectively) (Table 3 & Figure 4).  

Table 3. Multiple comparisons of accretion rates between resident and transplant sites for P. 

compressa.   * Indicates a significant response at p < 0.05     ** Indicates significant response at 

p < 0.01

 

 

Figure 4.  Accretion rates (mg g -1 d -1) for resident and transplant M. capitata and P. compressa 

nubbins at both sites. 
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Discussion 

Differences in coral percent cover between sites at the Malauka`a fringing reef could be caused 

by environmental differences between sites, genetic variations in individual corals, or a 

combination of the two. Calcification differences between populations of each species at the two 

sites during the reciprocal transplant could indicate genetic-based coral resilience (Barshis et al., 

2013).  

Corals at the two sites experienced different environmental conditions during the experiment as 

there were significant differences in temperature, salinity, and ΩArag between sites. The mid-

day average temperature experienced by corals at site 1 was 0.24°C higher than the average 

temperature experienced by corals at site 2. Additionally, corals at site 1 experienced two days 

with temperatures above the upper thermal threshold for Hawaiian corals (31°C) (Jokiel & Coles, 

1974; Jokiel & Coles, 1977) while the maximum temperature reached at site 2 was 30.72°C.  

Salinities were also significantly different between the two sites. At site 1 the mean salinity 

(32.91 ppt) was significantly higher than at site 2 (29.68 ppt). The lower salinity at site 2 was 

likely caused by freshwater input from He’eia stream and Paepae o He‘eia. Site 2 also 

experienced greater fluctuations in salinity levels with higher salinities during flood tides 

(maximum salinity observed = 33.01) and lower levels during ebb tides (minimum salinity 

observed = 23.7), as water from Paepae o He‘eia flowed out of the triple mākāhā onto the site. 

While the average salinity at each site was within tolerable levels for coral reefs (> 25 ppt , < 45 

ppt) salinity at site 2 was below the previously recorded salinity range for Kāneʻohe Bay of 30.9-

36.2 (Coles & Jokiel, 1992). Site 2’s historically low salinity may be attributed to Paepae o 

He‘eia biocultural restoration (e.g. fishpond wall repair, alien mangrove removal) as a mean 

5802 m3 of water flowed onto the reef during each ebb tidal cycle pre-restoration (2012) 

compared to 20220 m3 in 2018 (Möhlenkamp et al., 2019). 

Based on two days of 12-hour cycle preliminary carbonate chemistry sampling, the ΩArag levels 

appear to be different between sites as well. Mean ΩArag levels at both sites (2.13, 1.73, 

respectively) were significantly lower than the 1998 global average of 3.8, as well as the global 

minimum mean of 3.3 (Kleypas et al., 1999). Guinotte et al., (2003) stated that ΩArag levels are 

above 3.0 for all prominent reef ecosystems, however, since then, inshore reefs have been found 

capable to continue growing in ΩArag levels below what was once predicted as detrimental to 

coral health (Uthicke, 2014).  

pH at both sites (8.28, 8.26 at site 1 and 2, respectively) was within mean pH value 

measurements at coral reefs (Ningaloo reef = 8.22-8.64, Great Barrier reef = 7.98-8.37, Media 

Luna reef (Puerto Rico) = 8.01-8.09) (Gagliano, et al., 2010; Gray et al., 2012). While the mean 

sedimentation (mg cm2 hr1) rates were not significantly different from one another between sites 

(0.34, 0.66 at sites 1 and 2, respectively) the rate seen at site 1 is within mean rates for reefs not 

greatly impacted by human development, while the rate at site 2 implies sedimentation has been 
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anthropogenically-elevated (Rogers, 1990). Turbidity (NTU) was also similar between sites 

(0.38, 0.97 at sites 1 and 2, respectively) and was within mean turbidity levels seen at the Great 

Barrier Reef (Fabricius, et al., 2013). 

Preliminary nutrient data suggests there may be further differences between sites. Values of 

Nitrogen and Silicate (μmol L1) were higher at site 2 (7.11, 21.07) than site 1 (5.88, 10.34). 

These elevated nutrient levels at site 2 were likely caused by input from He’eia stream and 

Paepae o He‘eia. Enriched Nitrogen levels can reduce calcification rates in corals by up to 50%, 

however these reductions are seen at higher Nitrogen concentrations (20 μmol L1) than observed 

at either site (Kinsey & Davies, 1979; Fabricius, 2005) 

Calcification is a good indicator of coral health as up to 30% of a coral’s energy is allocated to 

calcification (Allemand et al., 2011). Extension is characterized by low-density, fast upward 

growth at the tips and can be referred to as primary calcification (Gladfeiter, 1982). Accretion 

follows extension and is a slower, outward growth from the sides of the coral, also referred to as 

secondary calcification (Gladfeiter, 1982). Through measuring extension and accretion, the 

results of this study explored both primary and secondary calcification. Extension and accretion 

did not show a strong correlation (R2 of 0.317 and 0.358 for M. capitata and P. compressa, 

respectively) indicating that the two growth mechanisms occur at different time scales for these 

species (Jokiel et al., 2016). The low R2 value for the relationship between extension and 

accretion for both species corroborates the findings of Dodge & Brass (1984) who suggest 

measuring one parameter alone is insufficient to describe coral growth. Secondary calcification 

in P. compressa was affected more than primary calcification as there were significant 

differences in accretion rates between sites whereas the linear extension rate did not differ. 

Primary calcification for both species were similar to rates in Kāneʻohe Bay quantified by Cox 

(1986) and Grottoli (1999). Neither the original site (genetic legacies) nor the transplant site 

(environmental influences) impacted extension rates of either species of coral. The similarity in 

extension rates for both species between sites indicates that the transplanted corals were able to 

acclimatize to their new environment and continue to extend upwards at the same rate. 

M. capitata accretion rates (4.082 ± 1.408 mg g -1 d -1) were higher than the previous maximum 

of 3.5 mg g -1 d -1 seen in Kāneʻohe Bay (Jokiel & Coles, 1977). Accretion rates in M. capitata 

did not vary between sites or treatments implying that the species may be relatively tolerant of 

environmental stressors. The consistency between sites also shows that M. capitata is able to 

quickly acclimatize to new environments, including environments with thermal stressors and low 

ΩArag levels, as linear extension and accretion of both transplanted groups did not differ from 

residents.  

Both the environment (p = 0.005) and individual traits (p = 0.028) of each colony affected 

accretion for P. compressa, though the environment had a larger effect. This indicates secondary 

calcification of P. compressa in Kāneʻohe Bay is influenced by the interaction of environmental 
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conditions and colony genetics. This finding is further supported by the results of the multiple 

comparisons test (Table 3). Through the multiple comparisons test, secondary calcification of P. 

compressa between site 1 and site 2 residents was significantly different. The secondary 

calcification was significantly different between nubbins which remained at Site 2 and those 

which were transplanted to Site 1, indicating environment determines growth rates. However, as 

secondary calcification rates were also significantly different between Site 2 resident nubbins 

and the Site 2 transplant nubbins, colony genetics also affects growth. Aside from population-

wide acclimatization trends, variation occurred at the individual level as well. Two out of three 

nubbins from the same colony of P. compressa died at the site 1 control treatment, while the 

third nubbin suffered 50% mortality with the remaining 50% pale. Future studies should further 

explore responses of individuals from the same colony to better understand genetic influence to 

acclimatization and resilience.  

P. compressa’s survivorship and calcification rates have previously been found to be highly 

susceptible to temperature and acidification stressors, indicating the species is sensitive to 

changes in environmental conditions (Bahr et al., 2016). The significantly higher temperatures at 

site 1 likely decreased accretion rates of P. compressa. Accretion rate was higher at site 2 despite 

its depressed salinity values (minimum observed = 23.7 ppt) and low ΩArag (Minimum 

observed = 1.19). While calcification rates can be affected by different environmental conditions 

(e.g. nutrient levels, light, ΩArag, etc.) temperature has been found to be particularly important 

(Carricart-Ganivet et al., 2012; Jokiel & Coles, 1977). Calcification rates for Porites spp. are 

sensitive to thermal stress as a 1°C increase in temperature decreases calcification rates by 0.40 g 

cm-2 yr -1(Carricart-Ganivet et al., 2012) and a 2.8°C increase can reduce calcification rates in P. 

compressa by 51% (Coles et al., 2018). The increased availability of nutrients at site 2 likely also 

impacted calcification rates. The changes in accretion between sites thus corroborates previous 

findings that P. compressa is sensitive to environmental changes.  

The major finding that both environment and genetics influence P. compressa’s secondary 

calcification rates in Kāneʻohe Bay has management implications. It is important to not only 

consider the environment when modeling coral responses to stressors, but also the genetic 

legacies of the corals.  
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