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I 1. Preliminaries • 

•• 

About 40 years ago, important research work on the prin 

ciples of experimentation was started at Rothamsted Experimental 

Station in England. The first general account of the results of 

this research work was given by R.A. Fisher in his book "The Design 

of Experiments", the first iseue of which appeared in 1935. Ten 

years previously, the first issue of his "Statistical Methods for 

Research Workers" had been published. In this book the new 

statistical tool of analysis, known as the analysis of variance, 

was made known to research workers. A large number of papers and 

books, dealing with experimental design and statistical analysis, 

are inspired by these two important treatises. 

It is probably well known that the results of the Rotham 

sted research work were not recognized and valued by the authori 

ties on atatistical methods at the time. Today the principles of 

the Rothamsted school are accepted by almost all statisticians, 

and it is interesting to notice that now these principles seem 

to be accepted "hook and line". On the other hand, the principles 

are not throughout accepted by all research workers. It isa fact 

that all over the world experimental research work is carried out 

according to other principles. Often the principle of randomi 

zation, perhaps the most important anda lasting contribution made 

by the Rothamsted school, is ignored. The consequence is that 

a large num.ber of reports on experimental results are published, 

describing effects that are partially due to erroneous designinga. 
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The work on design and statistical methods of analysis 

carried out by the Rothamsted school, is certainly most important. 

It is difficult, however, to accept the principles in full. In 

short, criticism can be raised against the following elements: 

1) the conception of the experimental material as something fixed, 

2) the purpose for which an experiment is carried out,and 3) the 

medels upon which the theory rests. 

A research worker deals with questions. In planning and 

carrying out an experiment, he wants to obtain data upon which 

answers to his questions can be given. Then, he uses induction 

and this meana that he discoversa rule or, merely presents state 

ments, as answers to them. But surely, a rule ora statement is 

always something that refers toa population. In experimental 

research this population is an abstraction. Therefore, the research 

worker can.not look upon his experimental material as f'ixed, because, 

if he does so, the population cannot be an abstraction. 

In statistical theory we are taught that a generalization 

is justified only if same units or replications are, or can be 

regarded, as a random sample. Usually, in practical situations, 

such a sample cannot be drawn. Drawing a random sample implies 

that it can be drawn from an existing population. If the population 

is an abstraction, no random sample can be drawn from it. 

Therefore, the only possibility left for the research worker, is 

to regard the sample as a random one, being the representative of 
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the population about which inferences are being drawn. This is, 

in fact, the population with which research workers in other 

fields of research most often have to be satisfied. But neither 

in experimental nor in other fields of research does this mean 

that the research worker has to be content with any sample. 

In this treatise we shall throughout regard the experi 

mental material as random in the sense that it consists of a 

number of replioations, which are capable of being interpreted 

as a random sample. We do not see that any serious objections 

can be raised against this point of view even if there might be 

difficultiea to overcome in some cases, e.g. in field plot experi 

mentation. On the other hand, it is evident that research workers 

who regard the experimental material as non-random, are bound to 

encounter serious difficulties in their interpretation of the 

results of the experiment. 

Turning next to the second point, it seems evident that 

the most commom view among statisticians who accept the Rothamsted 

principles, is that the testing of null hypotheses is the principal 

purpose for which an experiment is carried out. In "The Design of 

Experiments" (6.ed., p.16) Fisher writes: "Every experiment may be 

said to exist only in order to give the facts a chance of dis 

proving the null hypothesis." Even if this point of view is aften 

rega.rded as extreme, it is in the main followed up by most writers 

of papers and text-booka dealing with experimental design and 

statistical analysis. But, of course, such extreme and unrealistic 

points of view are not shared by all. In some treatises the 
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problems concerning the estimation of treatment effects and 

differences in such effects are pointed out as just as important as 

those of testing null hypotheses. It may also be demonstrated 

that Fisher's point of view is not shared by independent research 

workers. 

The function of an experiment is the production of data 

that can be used in order to find the answers to questions. What 

these questions are, is the concern of the research worker. In a 

discussion of the methodology of experimental research, it must 

be emphasized that the questionsare asked in advance of the design 

ing and the carrying out of the experiment. In order to anawer 

the questions it is necessary to test statistical hypotheses and/or 

to estimata treatment effects and differences between such effects. 

l 

For the testing of statistical hypotheses and the esti 

mation of treatment effects, a number of apparently satisfactory 

methods have been invented, pa.rticularly me thcda for testing 

purposes. But on the whole, it can hardly be maintained that the 

situation is quite satisfactory, i.e. satisfactory in the sense of 

meeting the requirements of the research workers. 

Heterogeneity of the experimental materiali
1
seems,now to 
L-----....: 

be commonly accepted. It has been known and discussed at consider- 

able length by several writers, and it was discovered befare the 

work on experimental design was begun at Rothamsted. It is, of 

course, the combined effect of a number of factors which are not 

under control of the research worker. These factors affect the 
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experimental uni ts in the same way as the experimental :f'actors, 

and therefore interactions between the two groups of factore 

must be assumed to exist. It can be noted as a rather curioue 

circumstance, that wri ters who are much concerned w i th the 

possible interactions between experimcntal factors, are dis 

regard1ng the interactions between experimental factors and 

the heterogeneity factors. However, to proceed as if such 

interactions do not exist, ~\Ould be to assume a too simple and 

unrealistic model o~ nature. 

The model describing the null hypothesis can be written 

any way, provided it is capable of" being tested. But, if it 

is unrealistic, the implication of' tre rejection of the null 

hypothesis may b e e e ne very mfxed , The usual mod e Ls of" 

null cypo,heses presume additivity of treatment effects and 

the effects of the heterogeneity factors. Such models may give 

rise to atriet mathematical treatment, but they are lacking 

realism. In dealing with the estimation ot' treatrrent eflects 

and the di~ferences between such effects, it is even more 

important that the model is realistic. Therefore, models tha t 

do not account for interactions between the t reatments and the 

heterogeneity factors should never be accepted. 
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2. Treatments, Questions and Randomization. 

To apply a certain treatment to an experimental unit 

means, of course, that it is being applied according toa certain 

description. Therefore, it is impossible to repeat a treatment 

two or more times, if perfect repetition is understood. A treat 

ment can only be repeated in the sense that a particular description 

of the treatment is fulfilled. Therefore, even if it were possible 

to find a num.ber of experimental units that are exactly alike, the 

same treatment applied to these u.nits would not produce exactly 

the same effect. Furthermore, no two units of an experimental 

material are exactly alike. All kinds of experimental material 

are more or less heterogene-ous. There are, therefore, always same 

variation in the effect of the same treatment among a number of 

experimental units. The most important factor causing this vari 

ation, is usually the heterogeneity of the material, but the failure 

of the treatment to be exactly repeated plays some part. There 

are also errors of observation. 

Suppose now, that the units of an experimental material are 

divided into two samples, and that the same treatment is applied to 

the units in both samples. Then, in order that the distributions of the 

observed ra:ndom variable are identical in the populations represented 

by the two samples, it is necessary that the division is carried out. 

by neans of sone technique of ·randomization. If such technique has 

not been used, we have no guarantee that the two samples are random 

representatives of the same population. Conseq_uently, if a treatment 

T1 is 
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applied to the units in the first sample and another treatment 

T2 is applied to the units in the second sample, we have no 

guarantee that a comparison of the effects of the two treatments 

will turn out to be unbiassed. A division of the material :in a 

non-random way, will therefore very often lead to false conclusions 

with regard to the relative effects of the two treatments. In 

spite of the fact that this consequence has been known for the last 

30 years, research workers still try toget around it, claiming 

that other ways of dividing the material lead to more preciae com 

parisons a..~d fargetting the bias. In the last section of this 

troatise we are returning toa particular aspect of the principle 

of randomization. Until then, we shall assume that the principle 

has consistently been applied. 

The purpose for which an experiment is planned and carried 

out, is the concern of the research worker. But, if the intention 

is to point out the method of the statistical treatment of the 

experimental data, a general classification of the questions can 

be fra.med. The following ihree groups should be satisfactory for 

all situations: 

1. The treatments are quantities, and the leading question 

concerns the ranking of them on the outcome of the experiment. 

2. The treatments are qualities and/or quantities, and the question 

concerns the differences of the effects between treatments chosen 

in advance. 

3. The treatments are qua:ntities, and the question concerns the 

rule, if any, describing the way the effect depends on these 

quantities. 
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In answering such questions, it is obviously important 

that the expcrimental material is such that the nnswerscan be 

applied iF a population of reasonable width. It is evident that 

the material can be chosen in· such away that small and unimportant 

differences may turn out to be statistically significant. Moreover, 

there is probably always some difference between the effects of two 

treatments, sothat the null hypothesis can be rejected only by 

choosing an experimental material having sufficiently small 

heterogeneity. 

The research worker should therefore always ask himself 

whnt he is going to do with the results of the experiment. It is 

important to lmow if the results are intended to be used for same 

practical purpo~e or, if the purpose is to supplement the insight 

and knowledge in some field. An experimental material which serves 

the latter purpose, might be largely unsatisfactory for the first. 

There are also poseibilities for describing the population in which 

the inferences are intended to be applied, even if the description 

might turn out to be vague. Such a description isa description 

of the exporimental material and the external circumstances under 

which the experiment has been carried out. 

In the different treatises of the methodology of today 

there usually isa cry for efficiency. But, obviously, choosing 

a design that is more efficient thon another, practically always 

implies a reduction of the width of the population anda reduction 

of the generality of the inferences. The consequence is that the 

same difference obtained with the more efficient design, does not 
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usually mean the same as if a less efficient design had been used. 

Therefore, the common and general recommendation to the effect 

t~_at the most efficient design ought to be used, is liable to 

objection. 

' 
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l: ComElete Randomization. 

Suppose that the experimental material consists of 2n 

units or replications and that the experimenter divides it, in a 

random way, into two samples, each sample consisting of n units. 

Then, if one of the samples is used for treatment T1 and the other 

sample for treatment T2, and the treatments are allocated the 

samples in a random way, the research worker can be confident that 

the difference between the effects of the two treatments (the 

contrast) can be estimated without bias. Therefore, the most 

impor~ant requirement of estimation is fulfilled, Also confidence 

limits of the contrasts can be computed, 

The generalization tok> 2 treatments is simple and 

straightforward: an experimentalimterial consisting of nk units, 

is divided randomly into k samples, and the k treatments are randomly 

allocated the samples. In this case also a contrast between treat 

ments can be estimated without bias. 

It is hardly possible to deal with any experimental situ 

ation without the aid of a model that gives a general description 

of the possible outcome of the experiment. In the present case, 

with k treatments Tj (j=1,2,.,k) and n experimental units for each 

treatment, the model is: 

( 3 .1) ( i=1 , 2, •• n) 

In this model x .. * are the observations, µ is a general level, Jl 
C 

* Here and in the following sections we shall use the same letter to 

denote a ran.dom variable and the observation of it. This simpli 

fication can hardly lead to confusion. 
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and aj are effects of the treatments. Without loss of generality 

we can let llij = 0 because, if Eaj f O, aj contain a common element 

that can be included in µ. 

The e1s are ordinary random variables. Without loss of 

generality it can be assumed that E(eji) = O, and we may also 

assume that the form of the distribution of e is the same for all 

treatments. But, it cannot be assumed that the k distributions 

are identical. Such assumption would imply that all effects of the 

treatments are included in a., and this would be a too simple idea 
J 

concerning the rather complicated mechanism that usually regulates 

the effect of a treatment. 

The differences between the k distributions of e may 

be differences in skewness and differences in kurtosis. But the 

differences that are most important for the analysis of the 

experimental data, are differences in the variance of e arnong the 

treatments. Thi13 means that the research worker, in his analysis 

of the data, has to deal with k variances, Varj(e). If the 

necessary caution is exercised during the planning and the admini 

stration of the experiment, the e1s can be regarded as being 

stochastically independent both within and between the treatments, 

and Varj(e) can therefore be estimated in the usual way • 

It will be found that the mean of x. . for treatment T . 
Jl J 

is equal to 

• ( 3. 2) x. = µ + a. + e. 
J J J 
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Since E(ej1) = O, it will be seen that E(ij) = µ + a., 
J 

showing 

that ij is an unbiassed estimator of the effect of Tj. TherE:.tore, 

the means yield an unbiassed ranking of the treatments. 

A contrast is by definition a linear fu.nction of aj or, 

a linear function of a sub-set of these parameters, e.g. the 

difference ( ap-aq). It will be seen that· 

(3.3) x -i = ( a -a ) + (e -e ) p q p q p q 

and, hence, that the difference between the menns is an unbiassed 

estimator of the contrast. It will also be found that the 

variance of the difference is equal to 

Therefore, except if Varj(e) isa constant, the precision of the 

estimator of a contrast is not the same for all contrasts. Thus, 

the cornmon practice to use the same error mean square for the 

computation of the confidence limits of all contrasts, should not 

be recommended. The research worker can never know that Va:rj(e) 

is the same for all treatments. On the contrary, it is very un 

likely that this variance is ever a constant. 

If the distribution of e is normal and VJ. = _L1E(x .. -x.)2 
n- Jl J 

approximately correct con.fidence limits of the contrast (ap-aq) 

are 

( 3. 4) 

• 
where t is the tabulated significance point of Student's t, a 
the number of degrees of freedom being 2(n-1). That the limits 
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are approximately correct means, of course, that the probability 

of the interval covering the contrast is approximately equal to 

( 1-a) . 
Usually, however, the research worker wants to estimate 

more than one contrast. If two contrasts are (ap-aq) and (ar-a8), 

where p+qfr+s, no difficulty is involved. But the research 

worker may want to deal with e,gr the contrasts (a -aq) and (a -a) P p r 
simultaneously. In this case the two estimators (xp-xq) and 

(xp-~) are correlated. The same is the case with (VP-+-Vq) and 

(VP+Vr). Nevertheless, the probability of the intervals 

• 

simultaneously covering the contrasts (ap-aq) and (ap-ar) is 

approximately equal to (1-a)2• As will be shown in sections 

6-7, this implies that, if we compute the confidence limits of 

the two contrasts in the described way, the confidence probability 

of each of the two intervals is but slightly different from (1-tt). 

It will also be shown that this result can be generalized 

to cover k treatments and (k-1) contrasts or, that there is ample 

ground for such a generalization. It is very important, however, 

that a separate error mean square is used for each contrast. 

In the methodology as it is usually presented, much 

empha.si.ae is placed on the so-called orthogonal functions of the 

treatment means. For instance, 

and 
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are regarded as being orthogonal, i,e. non-eorrelated. It is 

easy to show, however, that the two functions are orthogonal 

only if Varj(e) is the same for j=1,2 and 3. In practice it 

would, therefore, be rather rash to regard them as being 

orthogonal. But, in the defence of the use of such functions, 

it must be pointed out that it is reaaonable to assume that the 

correlation between them is weaker than the correlation between 

other functions, and that they may be preferred forthat very 

reason. The difficulty is that they very seldom correspond to 

actual questione. 

• 
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4. Randomized Blocks. 

In a randomized block experiment a replication isa 

group of experimental units, and the number of units per 

replication is usually chosen equal to the num.ber of treatments. 

For instance, in a feeding experiment in which a pig is an 

experimental unit, a litter can be used as a replication. In 

a field experiment the experimental area is divided into a number 

of smaller areas of equal size, the blocks or replications, and 

each of these into a number of plots (the units). In these cases 

randomization means complete randomization within each replication. 

In this case the replications must be regarded as a Tn::i:.·.d.om 

sample. Thus, the pupulation is the ene the sample of replications 

represents in the sense of a random sample, and it is an abstraction. 

In our first example this idea is easily conceived, as the sample 

of litters might actually havs been drawn at random from an exist 

ing population of litters,which in turn can be regarded as the 

random representation of an abstract population. 

In our second example the idea might be more difficult to 

accept. However, suppose a research worker is planning a local 

field plot experiment, and that the total cultivated area of a 

farm is placed at his disposal. Then, he can divide the who Le erea 

into a number of blocks of the size he wants to use, and f:r'7m <:L-Ls 

existing population of blocks he can draw at ran.dom a aamp.l.o c~( 

blocks. After having drawn this sample, he might find tho,t the 
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blocks, belonging to the sample, are scattered over the whole area 

of the farm. He may therefore find that this sample is toa 

troublesome to use in practice, and forthat reason choose ane of 

the samples having the practical advantage that the blocks are 

lying side by side. It is evident that usually this latter sample 

represents, in the sense of a random sample, an abstract population 

of less width than the one that is represented by the randomly 

drawn sample. Nevertheless, the chosen sample of blocks can be 

regarded as a random representation of same abstract population. 

Usually, this population is rather narrow and, therefore1 the 

inferences (if any) that are drawn from the experimental data, can 

be applied in a small range only. 

This idea is nota new one. Somewhat hesitatingly, it 

has been forwarded by several authors. However, it isa fact - in 

aur opinion a regrettable one - that this way of thinking has not 

been found worthy of being followed up. 

In this case there are always two components of hetero 

geneity of the experimental material~ heterogeneity among the 

units within the replications and heterogeneity runong the repli 

cations. Therefore, we must deal with 11intra block" and 11inter 

block" heterogeneity factors. They are not necessarily different 

factors per se. In a field experiment they are usually the same 

factors. Nevertheless, it is necessary to distinguish between 

them because of the interactions between the treatments and these 

factors. 



17 

Suppose that the number of treatments is k, the number 

of replications isn, and let j=1,2, •• k, i=1,2, •• n. Then, the 

general model for the experimental data. is 

( 4 .1) x .. == µ+a. + z. + u .. + e .. J1 J 1 J1 J1 

In this model µ and aj are parameters, z, u, ande are random 

variables. Without loss of generality we can let Eaj=O and 

E(e) = 0 for each j and i. However, since e is an effect of the 

intra block heterogeneity factors, and therefore also covers the 

interactions between the treatments and these factors, the dis 

tribution of e must be talren to be different from the different 

treatments implying e.g. that Var(e) is not the srune for all 

treatments. 

The variables z and u are both effects of the inter block 

heterogeneity factors: z the effect common to all treatments, and 

u the interactions between the treatments and the heterogeneity 

factors. Without loss of generality we can let E(z) = 0 and 

E(u) = 0 for each j. But in other characteristics (e.g. the 

variance) the distribution of u must be assumed to be dependent on 

the treatments. It is important to notice that z and u cannot be 

taken to be independent variables, and that the u's cannot be 

regarded as being independent among themselves. Of course, some 

of the u's might be independent. In saying that correlations 

are present, we do not mean that such is the case for all com 

parisons and under all circumstances. It is evident, however, 
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that the research worker can never know that such correlations 

do not exist, and he must therefore use such statistical treatment 

of the experimental data as allows forthese correlations. 

It will be found that the mean of x for treatment Tj 

is equal to 

(4.2) x.=µ+a.+z+u.+e. 
J J J J 

and, since E(z) = E(u) = E(e) = O, that E(xj) = µ + aj. 

This shows that the mean is an unbiassed estimator of the effect 

(µ+aj) and, hence, that the means yield an unbiassed ranking of 

the treatments. 

For j=p and j=q it will be found that 

i -i = ( a -a ) + (u -u ) + (e -e ) p q p q p q p q 

and, hence, that E(ip-xq) == ap-aq, i.e. that the difference 

between the means is an unbiassed estimator of the contrast. 

On account of the interactions, the variance of the difference 

cannot be taken to lbe the same for all contrasts, and an individual 

estimate of the variance must therefore be used for each contrast. 

If we for each replication use the difference dpqi = xpi-xqi' 

it will be found that dpq = xp-xq and the variance is estimated 

by Vpg/n, where 

Owing to the robustness of Student's t the research worker can be 
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• con:fident that the probability or the interval 

(4-3) 

covering the contrast (a -a ), is approximately equal to p q 

The method of com:puting the c on.f'idence limits can be 

used :for any contrast. But in this case e.l.so , the research 

worker usually wants to estimate more than one contrast. On 

accoWlt of the interactions between the treatments and the 

inter block heterogeneity factors, the estimators of the 

di~ferent contrasts are correlated, having different vari 

anc e s , Nevertheless, the confidence probabili ty of e a ch of' 

the intervals, the limits of' which are computed as de scr'Lbed , 

is but slightly dif'f'erent f'rom (1-a). We return to this state 

ment in section 7 to Which we refer. 

It is evident that if the number (n) of' re:plications 

is small, the precision o'f: the estimator of' a contrast is 

usually very low. It is right, of course, that even if nis 

very small, interesting inferences might be drawne But usually 

these inf'erences are such as are obtained through the rejection 

of the null hypothesis. If the r esearch worker is interested 

in the estimation of contrasts, and the number of replications 

is very small, he cannot expect to find the estinators precise 

enough to serve any reasonable purpose. 

Of cou.rse, it is so al so if' complete randomization 

has been used. However, i:f the number of' experimental unit s 

:for each treatment is the same as in case a randomized block 

design had 
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been used, the number of degrees of freedom is greater for the 

first than it is for the latter plan, i.e. 2(n-1) for the first 

and (n-1) for the latter. For small n this difference means 

an important difference in the value of ta• This difference may, 

however, be more than counterbalanced if the inter block hete 

rogeneity is materially greater than the intra block hetero 

geneity. Therefore, the precision of randomized blocks aa compared 

to complete randomization, depends both on the value of n and on 

the difference between the inter and intra block heterogeneity. 

Thus, if nis small, the arrangement of the experimental units 

into blocks mustresult in removing a very large part of the hete 

rogeneity in order that the difference in \x can be expected to 

be neutralized. 

Raving carried out a randomized block experiment, the 

research worker may find that same observations are missing or, 

that they are to such an extent deviating from the rest of the 

observations that it is reasonable to doubt if they are correctly 

recorded. Such results may happen through failure to recor~ or to 

gross errors. 

In order to restere the orthogonality of the observations, 

techniques known as missing plot techniques have been invented, 

presuming additivity of the effects of the treatments and the 

heterogeneity factors. Since we do not regard such a model as a 

realistic one, and the research worker cannot lmow that it is 

realistic, we think that these techniques should not be recommended. 

It is obvious that, if the research worker is engaged in the 
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estimation of contrasts, the use of such techniques is unnecessary. 

If one or more observations are missing for two treatments TP 

and Tq, and the research worker wants to estimate the contrast 

(ap-aq), he should be content with those observations that he has 

obtained and accepted. 

If the research worker is interested in carrying out 

an analysis of variance and an F test, it might not do any da.mage 

if a few observations are replaced by means of a missing plot 

technique. But, not even then, the use of such a techllique is 

necessary as there always is same part of the observations which 

is orthogonal. For this part an analysis of variance can be 

carried out and, i~ it matters much, the observations for the other 

treatments can be linked to the orthogonal part by means of linear 

functions. Even if the number of degrees of freedom for the error 

mean square is reduced by onemit for each restored observation, 

it seems to be evident that the use of a missing plot technique 

to any large extent might completely falsify the result of the 

analysis. 

The situation might be much more difficult to deal with 

if an observation seems to be faultily recorded. In same cases 

the observation ia to such an extent different from what should 

be expected, that there can be no doubt that a gross error in the 

recording has been made. In such a case it is reasonable to 

treat the observation as a missing datum. However, there are 

cases in which the research worker may be in doubt concerning the 

reliability of the record. Then, it may be very difficult to say 

what to do about it. The most unsatiafactory way of dealing with 
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the matter in such a case, is to use a missing plot technique. 

An apparent faultily recorded observation might be due to 

interaction between the treatment and the heterogeneity factors, 

and the use of a technique which is invented under the assumption 

of additivity, might therefore lead to false conclusions. 
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5. The Rele of Mathematics. 

If by statistics is meant method of research, statistics 

is not applied mathematics. However, mathematics has played and 

still playsan important role in the development of statistics and 

research method. It must necessarily be so. But research workers 

should always remember that a mathematical deduction needs some 

premises. It should also be remembered that such premises as it 

has been necessary to use, are rarely in keeping with the actual 

experimental situation. 

This implies that usually the result obtained by mathe 

matical deduction, i~ it holds any interest whatever, is merely a 

part of the development of a research method. In one way or an 

other the result has to be tested in order to find out whether the 

use of it is limited to cases satisfying the premises or, if it can 

safely be applied in a wider field. In general, the premises that 

are used, are too limited in scope to justify the classification 

of the result of a mathematical deduction as a method of research. 

For instance, consider the distribution of the statistic 

t developed by W. s. Gosset, Student, ( t5), for which a rigorous 

pz-oo f was given by R.A. Fisher (13). An important premise for the 

mathematical deduction was that the observed random variable is 

normally distributed. There are several grounds for doubling the 

realism of this premise. It is hardly possible that ar:~~ random 

variable exists, which is so distributed. Certainly, a large 

number of actual random variables are found, the distributions of 
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which closely resemble the normal form, but there also are actual 

distributions that deviate considerably from this model. In conse 

quence, the distribution of tas developed by Gosset, had to be 

tested. On the whole, the results of these test are satisfactory, 

and the t distribution is therefore now commonly accepted as a tool 

of research within a very wide field. 

In the development of a statistical method there usually 

are two elements: mathematical deduction on chosen premises and the 

testing of the result of the deduction in order to see whether or not 

the premises are important. Statistics, as it is presented and 

regarded as a body, consists partly of a large bulk of techniques 

that are never tested satisfactorily, if at all. This may be the 

result because most people find mathematical deductions more interest 

ing and entertaining than they find the very tedious work involved 

in the testing of techniques. With the development of the electronic 

computers the testing of techniques is much simplified, sothat 

research workers may look forward to interesting and useful develop 

ments. 

In the present treatise same new techniques are suggested. 

We have tried to test them as elaborately as it has been possible. 

But we have not had the f acili ties to use the electronic computer to the 

extent we would have wanted to. Therefore, results from new tests 

would be very welcome. 
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6. Simultaneous Statistical Inferences. 

Suppose that m independent experiments have been carried 

out - by one ora number of research workers - for the specific 

purpose of producing data upon which a certain parameter can be 

estimated. Mareover, suppose that the confidence limits of the 

parameter are computed for each of the m cases, and it is stated 

for each case that the value of the parameter is covered by the 

confidence interval. Then, the probability ofr correct statements 

is given by the binomial 

(6.1) 

where (1-a) is the chosen confidence probability. Therefore, the 

expected number of correct statements is m(1-ca.). It is also worth 

noticing that the probability of all statements being true is 

Pm= (1-a.)m, and the probability of at least one false statement is 

1-(1-a)m. Consequently, in a very large number (m) of cases, the 

probability of all statements being true approaches zero, and the 

probability of at least one false statement approaches unity. 

These results are consistent with the conclusion that, 

if the number of cases is large enough, at least two confidence 

intervals will be found that do not overlap and, hence, that at 

least two statements contradict each other. It is fairly easy to 

see that the results can be extended to cases in which different 

parameters are being estimated. 

Now, suppose that the research worker wants to estime.te 

two parameters, •\ and f 2. Then, in order to obtain two confidence 

6'1 E\_ 
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intervals that are consistent with (6.1), he should carry out two 

independent experiments, one for the purpose of estimating s1 
and one for the purpose of estimating e2• However, this would be 

too expensive. Therefore, he has to be content with one experiment, 

the consequence being that the data which are used for the estimation 

of the paramenters, are not stochastically independent. This fact 

raises the problem of how confidence limits of the contrasts ought 

to be computed. Several methods have been suggested. We refer to 

the summary given by Federer ( 8 ) , to Mood and Graybill ( 2L~), to 

Miller ( 23) , and to the li terature ei ted in the se treatises. 

The solution has been sought in the experimentwise con 

fidence coefficient, which is the confidence probability of the 

confidence intervals of all possible contrasts simultaneously!' Mood 

and Graybill ( 24 ,p. 268) wri te : "Lf in 95 per cent of the experi 

ments each of the t(t-1) confidence intervals covers its respective 

difference (µ.-µ.), we shall say that the experimentwise confidence 
1 J 

coefficient is .95." These attempts to find the solution to an 

intricate problem give rise to the following questions and objections. 

There must be an upper limit to the num.ber of contrasts, 

less than the total nu.rober of possible contrasts, that can be 

immediately estimated. We think it is easy to see that this limit 

is (k-1), where kis the number of treatrnents. 

A contrast is by definition a linear function of the 

parameters 8 . = µ + a. 
J J 

(j=1,21 •• k) i.e. 

,, C = IA. 9. = ~A. a 
P JP J JP j 
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for which EA. = o. If aset of (k-1) contrasts is chosen in 
JP 

such away, sothat none of the contrasts can be derived from the 

other ones, all other contrasts are linear functions of sub-sets 

or the whole set of the chosen anes. This implies that the esti 

mates of CP for p ~ k can be derived from the estimates of CP for 

p < k. The confidence limits of C for p ~ k cannot be derived p 
from the confidence limi ts of C for p < k, but the central values 

:P 
of the confidence intervala can be regarded as derived estimates. 

Therefore, our argument also holda for the confidence intervals. 

This conclusion is consistent with the well known .fact that the 

treatment mean square in the analysis of variance can be divi_ded. 

into (k-1) components. 

Suppose that there are m ~ k-1 contrasts to be estiD.atod, 

and the confidence limits of these contrasts are being computed. 

Phen , the use of the experimentwise confidence techniques ir:.iplies 

that the limits ought to 1''3 oomputed in such away that the proba 

bility of all intervals covering the contrasts is equal to (1-a), 

e.g. 0.95. This means that the confidence probability of the 

confidence intervals simultaneously covering the contrasts is 

chosen independent of the number of contrasts. 

We are notable to see the justification of this principlc. 

In our opinion the limits of the intervals should be computed in 

such away that the confidence probability of the intervals simul 

tnneously covering the contra.sts is equal to (1-a)m. This implies 

~hnt the intervals computed by means of the observations obtainPd 
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~n the same experirnent, even if therc are correlations among the 

estimators, will obey the same prob-a.bility rule as the intervals 

obtained from independent experiments. The technique for the 

computations of such confidence limits is treated in the next 

section to which we refer. 

If we are dealing with tests of significance, we are 

also faced with the problem of testing m null hypotheses in cases 

in which correlations are found be twecn the different test vari0h7 ~, 

Then, in the same way, we should use such points of significance 

~.R will make the :probabili ty equal to am for simul taneous false 

rejectiona of all null hypotheses. 
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l• The Estimation of Contrast..a. 

It will now be assumed that in planning the experiment, 

the research worker has decided on the contrasts he wants to 

estimate. If the number of these contraats is k-1, the experi 

ment must be carried out with k treatments, c.p. the preceeding 

section. 

The usual me thods for the computation of the conf"idence 

limits of a contraat, rest on the assumption that the effects 

of the treatments and the heterogeneity factors are additive. 

The conf i denc e limit s of the contras t arli.,. the re :fore, compu ted 

by means of the e rror mean square :for the whole experiment. 

As the assumption of additivity is unrealistic, this method 

is lacking justi:fication and, if it is used, the research 

worker cannot know the con.fidence probabili ty o:f the con.fidence 

interval. He should therefore use the methods described in 

sections 3 and 4e Then, choosing the value of a in advance 

(e.g. a = 0.05) and using these methods, the research worker 

can be reasonably certain that he is working on a confidence 

level that is very close to {1-a). 

However, in practice the research worker usually wants 

to estimate more than one contrast. In fact, i~ k treatments 

have been included in the experiment and the principal purpose 

is to e stima te contrasts, the r-ea son for including k trea t 

ment s must be that he has decided upon k-1 contrasts. Then, 

the problem is to decide which method should be us ed in order 
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that the probability of the k-1 con:Cideroe intervals covering 
k-1 

simul taneously the c orrt re at s j a s equal to ( 1-cx) , c s p , se o t+on 

6. It will now be shown that, in spite of the correlations 

and to the extent our data can be relied upon, the me_thods 

described by (3.4) and (4.3) approximately satisfy thie 

reg_uirement. 

Suppose that the experiment is a randomized block 

experiment w i th k == 3 trea tments and n replicat iona. Let the 

The u.nbi ass ed 

- e stimators of' th ose c ontrasts are d1 == x1-x2 and d2 = x2-x3, 

d
1 

and d
2 

being defined in section 4. Let v1 and v2 be the 
2 2 

two relevant mean squares (c.p. section 4), o1 and o2 the 

corresponding population variances, r the sample correlation 

coe:f:ficient, and p the population correlation coefficient 

between d
1 

and d
2

• Then, assuming that d1 ahd d2 are both 

normally distributed, it will be found that the multiple 

distribution is 

where Q isa known constant, 

a -C 
t = 1 1 and 

1 Jiln· 
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The probability of' the numerical values of t1 and t2 being 

simul taneously less than t , where t is the point of' sig- a a 
nificance of Student's t f'or n-1 degrees of freedom, is t re n 

equal to the integral: 

The integration intervals are 

< < and -1 = r = + 1. 

< < < < -t = t = + t , 0 =V= 
0: a: 

For given values of' a1 and o2 A d epend e on p and ne 

It can be shown tha. t f'o r a ny n, A is a minimum for p = O, 
2 the minimum being equal to (1-a) • In order to find to what 

extent A depends on p and n, numerical integrations have 

b een carried out for a = 0.05, o1 = o 2 = 1 and some chosen 
1 

values of n and P• The results for A2 are shown in Table 

7.1. It will be seen that the values are but slightly larger 

than 1-cx = 0.95, indicating that the e:ffect of' n and p on 

the con:Cidenc e probabili ty is too small to be of pract Le a I 

significance. 

Table_1.1 __ JA 
p 

n 
0.3 o.6 0.9 

4 0.950 0.953 0.959 
8 0.951 0.955 

15 0.951 0.955 
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Turning next to an experiment a ssumed to be carried out 

according to the principle of' complete r-andomf aat.Lons we shall 

'""..'Onsider the contrasts c1 = a1-a2 and c2 = a2-a3• The estimators - ~ ..•. -- are x1-x2 and x2-x3, which are both unbiassed. Let 

and t2 
= x2-x3-c2 

.J(v2+v3)/n 

where the V's are the usual treatment mean squares. Then, assuming 

that the observed random variable is normally distributed, the 

multiple distribution F(t
1
,t2,v1,v2,v3) can be derived. Then, let 

the integration intervals being -t ~ t ~ t and o ~ V ~ •, a a 
where t is the point o:f signif'icance of Student's t for 2(n-1) a 
degrees of" :freedom. · Numerical computations of' this integral have 

been carried out for o1 = o2 ·= o3 = 1, a = 0. 05, and :for three 
1.. 

chosen values of' n. The results for A2 are shown in Table 7.2. 

It will be seen that in this case also the values are but 

slightly larger than 1-a = 0.95. 
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Table 7.2. 
1 

n 2 (n-1) A2 

3 4 0.953 
5 8 0.953 

10 18 00954 

The implication of these results {Table 7.1 and 7.2) is: 

having chosen the value ora and computed the con:Cidence 

limits of the two contrasts in the desoribed way, i.e. by 

(4.3) and (3.4), the research vorker can be satisf'ied that 

the con.fidence probabili ty of the two conf'idence intervals 

simultaneously covering the contrasts is approximately equal 

to (1-a)2• This means that, in spite of' the correlation, the 

conf'idence probability or each of the two intervals is 
approxin:a tely equal to 1-a. 

It is obvious that the scope of these results is 

rather limited. It has been assumed that the random variable 

is normally distributed, and tha t the re are no interactions 

between the treatments and the heterogeneity factorsø Further 

more, no more than k = 3 treatments have been included. In 

order to widen the scope, such computations might have been 

extended to cases covering larger numbers of treatments and 

non-normal random variables. The computations should also 

have been carried out f'or different values cC a. Lack of 

racilities have prevented the extension in these directions. 

As a substitute we have carried out tests by means of con- 
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structed e xamp Le s , 

Three examples of randomized block expe riments were 

constructed by means of' Wold' s table of' normal devia tes, Yvold (;~). 

The rows in this table were then regarded as representatives of 

the replications. If' h stands f'or the column number, the examples 

were constructed aecording to the model 

where the z's are the normal deviates, i=1,2, •• n=5, h=2,3, •• (k+1), 

and j=h-1. In examples 1 and 2 {3j was chosen equal to unity 

f'or all j. In example 3 the c hosen values of' {3j were : 

( -1 0 ) , { - 5 ) , ( 1 O ) , ( 2 O ) , ( 2 5 ) , and ( 30 ) 

:for treatments T 
1
, T2, • • .T6 • 

It will be seen that in the first two examples additivity 

is assumed, while in the third example interactions b etween the 

treatments and the inter block heterogeneity f'actors are included. 

Conf'idence limits of' the contrasts aj-aj+1 = 0 were computed by 

(4.3), using the observed di:ff'erences dji = xj1-x(j+1)1• 

Let r stand for the number or confidence intervals that 

do not cover th o contrast. Then, i:f the correlationsbetween the 

d's among the contrasts do not aft'ect the conf'I dence probability, 

the probability of (k-1-r) intervals covering the contrast will 

be the binomial (c.p. section 6): 
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and the expected number of such intervals will be N.f(r), where 

N is the nu.niber of samples. In Table 7 .3 the ob served number 

(n) and the expected nu.rober of su.oh samples are compared for r 
each of the three examples. 

Table ]•:J• n = 5 bloeks, k treatments, ex:::: 0.05. 

Exam~le no 

r 1 (k=4) 2 (k= 10) 3 (k=6) 

nr Nf(r) nr N:r(r) n Nf(r) r 

0 159 159.47 61 63.02 76 77-38 
1 25 25.18 29 29.84 22 20.36 
2 2 1,35 10 7.14 2 2.26 

N 186 100 100 
n
0
/N 00855 0.610 0.760 

o.95k-1 0.857 0.630 0.774 

(n /N) 1/k-1 0.949 0.947 0.947 
0 

1-r/k-1 0.949 0.946 0.947 

Let 1-a' be the co nf'Ldenc e probabili ty of the c onfidence 

interval of a single contrast regarded a l one , Then, if' the 

b ef'o r e mentione d correla t iona do not affect the conf'idence level, 

the conf'idence probability of all intervals simultaneously covering 

)k-1 the c ontrasts is e qual to ( 1-a' , the estimator of which is 

n /N. Thus, the estimator of 1-cx' would be (n /N) 1/k-1• The 
0 0 

latter estimator is not unbiassed, but if the number (N) of 

samples is large, it will give a fairly satisfactory app r-oxdma t.Lon , 
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On the other hand, 1:f the correlations do not affect 

the distribution of r (a.p. Table 7,3), also 1-r/k-1, whe r e r 
is the ari thmetic mean of' r, 1s an unb taase d estimator of' 1-a'. 

l-!owever, the correlations do, in fact, cbarige the distribution 

of' r to some extent, and, therefore, not even the lattere stimator 

of' 1-a:' is quite satisf'actory. 'ille have therefore used both esti 

mators in ouP examples. It will be seen from T.able 7.3 tmt f'or 

the three cases considered, the val.ues o:f bo th estimators are 

very close to the chosen value of' 1-a, i.e. 0.95. That this is 

so in other cases as well, is s hown by the :following examp Le s , 

In examples nos. 4 and 5 the experiments were carried 

out acoording to the principle of complete randomization, and in 

both examples the additive model was used. For example 4 (n=5, 

k=3) the observations were taken from Wold's table of normal 

deviates in the same w ay as in the f'irst two examples, but now 

the values in a column were regarded as observations in a c.1.e-way 

classification. The estimated contrasts were (a1-a2) and (a2-a3). 

In our fifth e~ample (n=5, k=5) the observations were taken in 

exactly the same way f'rom the table presented by Quenouille (31), 

column 8, which are saropled from the two-sided exponential C, 

The estimated contraata were (a1-a2), (a2-a3), (a3-a4),and (a4-a5). 

In both examples the confidence limits of the contrasts were 

computed by (3.4), using separate mean squares for the different 

contrasts. 

This part of the investigation was accomplished several 

years ago, at a time when we had ne access to the use of an 
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electronie computer. Theref'ore, we were bound to use existing 

tables of random values, and small numbers {N) of samples. In 

our last six examples most of' the work has been carried out on an 

electronic computer. 

In our last six examples the samples were drawn f'rom 

the distribution 

f'(z) = R z8 (10-z)b O ~ z i 10 

In examples 6 and 9: a = b = 2, E(z) = 5 

" 7 " 10: a=2, b=4, E(z) = 3.75 

" 8 VI 11: a=O, b=2, E(z) == 2.5 

In e.xamples 6, 7 and 8 the experiments were carried out according 

to the principle o:f complete randomization, and the model was 

[~ = 1,2, •• 10] 
J = 1,2, •• 10 

The values of.' a. were for j = 1,2, •• 10: 
J 

(4), (1.5), (1), (3), (3.75), (2.75), (3.5), (2.5), (3.25), (2). 

In examples 9, 10 and 11 the expe riment s were carried out 

acco rding to the randomized blotk design, and the model was 

i = 1 , 2, •• 10 = n, h = 2, 3, •• 11 = k+ 1 , j = h-1 • The val u es o-f' 

!3ii were f.'or j = 1,2, •• 10 

(4), (1.5), (1), (3), (3.8), (2.8), (3.5), (2.5), (3.2), (2) 
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and yh = ½~- 
In all six examples the e stima ted c ontrasts w ere 

For each of the six examples N = 300 experiments were sampled. 

The percentage number of' exporiments f'or which the 

contrast (=O) is covered by the confidence interval is shown 

in Table 7.4. The conridence limits were computed by (3.4) 

and (4.3) and a = 0.05. It will be seen tha t for all contrasts 

and examples the percentage nu.mber is very c Lo se to 95%. Since 

the departure of' the distributions in the se examples :from the 

normal is considerable, and the variances are c hanged to a 

large extent among the treatments, the results are new veri 

fications of the robustness of Student's t distribution. 

Table. 7 .4" Per c en tage number of c onf'Ldence interval s which 
cover the contrast. ex == Oo05. 

Example no. 
j 

6 7 8 9 10 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

93 
94 
92 
96 
95 
96 
94 
93 
94 

95 
95 
96 
94 
94 
93 
95 
94 
93 

92 
94 
93 
93 
94 
93 
94 
9~- 
93 

94 
96 
93 
97 
96 
92 
94 
95 
96 

94 
93 
95 
96 
96 
96 
96 
93 
93 

94 
94 
94 
96 
96 
97 
94 
94 
95 

Total 94.24 94.25 94,75 94.67 94.99 
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Among the k-1 == 9 estimator s in example s 6, 7 and 8 

independent seta can be selected. For instance, there are 

two seta of ~our estimators. The results ~or these nre given 

in Table 7.5 under the notation: examplæno. 6, 7 and 8 and 

k = 5. 
Let n stand for the number of samples, or experiments, 

0 

:for which the contrast is covered by the con:fidene e interval. 

In Table 7.5 are s hown fbr examples no. 4 to 11 the values of 

I ( )k-1 k-1 / 1/k-1 - n
0 

N, 1-o: = 0.95 , (n
0 

N) and 1-r/k-1. It will be 

found that some of the frequencies (n ) di:f:fer signif'i cantly 
0 

k-1 from N( 1-o:) , which is to be exp ec t ed , Nevertheless, the 

/ 
1/k-1 - values of both (n N) and 1-r/k-1 are very close to 

0 

1-a = o. 95 fur all example s. 

Table 7.5. a = 0.05. 

Example Design k n N n /N o.95k-1 (n /N)1/k-1 1-r/k-1 no. 0 0 

4 Compl.Rand 3 5 100 0.92n 0.903 0.959 0.955 
5 " 5 5 40 0.875 0.815 0.967 0.963 
6 H 10 10 300 0.617 0.630 0.948 0.942 
7 tf 10 10 300 0.600 0.630 0.945 0.943 
8 H 10 10 300 0.573 0.630 0.940 0.937 
6 n 5 10 600 0.815 0.815 0.950 0.944 
7 " 5 10 600 0.803 0.815 011946 0.944 
8 " 5 10 600 0.783 00815 0.941 0.935 
9 RRnd.Bloeks 10 10 300 o.6so 0.630 00958 0.947 

10 11 10 10 300 0o663 oq630 0.955 0.947 
11 " 10 10 300 o.687 0.630 0.959 0.945 
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Comments on these re sul ts are not ne cessary. It might 

be well to remember, however, that in practice there hardly 

exists a case which perrectly satist'ies the assumptions under 

lying the use of Student's t for the computation of confidence 

limits of a parameter. Therefore, if the research worker com 

pu t e s the confidence limi ts of' a con trast, us ing the tabu 

lated value of t that corresponds to eog. a = 0.05, he should 

remember that the conridence probability of the resulting 

interval is hardly ever exactly equal to 1-a = 0.950 It is 

necessary for him to know, however, that the con:fidence pro 

babili ty is el ose to the chosen 1-a:. 

The results obtained in our investigation, indicate 

strongly that if the confidence limits of the contrast are 

computed by (3o4), or (4.3), the confidence probabili ty of 

each contrast is simultaneously a:pproximately equal to 1-a:. 

Non-normality, unequal variances, correlations botween the 

estimators of the contrasts, and correlations between the 

estimators of the mean squares, do not materially affect the 

conf'idence :probability. Of rourse, a pertinent question is 

whether or not the included examples cover so much ground 

that a general conclusion is justified. This isa question 

that may be raised in all situations of this kind. A geæral 

answer can hardly be given. However, the larger th8 number of 

examples is, the more confidence can be placcd on the resultso 

We have tried to cover as much ground as it has been po ssi b.l e 

for us to do. But it is evident that re sul ts f'r-om new investi- 

gations are welcome. 



B. The Analysis of Variance and the F Test. 

Consider an experiment according to the principle of 

corn.plete randomization with k treatments (T., j=1,2, •• k) and n 
J 

experimental units' for each treatment. The general model for 

the observed ro.ndom variable is givon by (3.1). For this case 

R.A. Fisher (1e) introduced the two mean squares 

and the statistic z = ½log.F, where F = VT/VR. 

It can be shown that if eji are stochastically inde 

pendent values of a random variable e, the expectations of the 

two mean squares are 

1 = k EVar. ( e) 
J 

and 

where Vs:rj(e) is the mean square of efor treatment Tj. Therefore, 

VT » VR indicates that 1:aj 2 > O, i.e. that the effect is ne 0 th.--e 
"!Ame for all treati:1ents. However, the problem still is how large 

F = VT/V~ must be in order to be taken as meaning, on some chosen 

level of significance, that Eaj2> O. The answer to this question, 

given by Fisher, was his deduction of the distribution of F (or,z) 
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ai.~d the premise was 

x .. =µ.+e .. Jl. JJ. 

where eji is assumed to be N = nk stochastically independent values 

of a normally distributed random variable. Regarding this as the 

null hypothesis (H
0
), it can be tested by means of the tabulated 

significance points of F. 

In practice it is usually taken for granted that rejection 

of H
0 

implies that Eaj 2 > O, but obviously this is not the only 

alternative. The null hypothesis also covers the statements that 

e is normally distributed and thnt Var(e) is the sam.e for all 

treatments. Therefore, statistj_cians have been concerned with 

the effect on the distribution of' P of changine; these two parts of 

the null hypothesis.. The resul ts of the different investigations 

are that the test seems to be too sensitive. This is chiefly due 

to differences in Va:r(e) arnong the treatments and not so much to 

the forn of the distribution of e. We confine ourselves to referring 

to Horsnell ( 19), the sumrnaries given by Coohran and Cox ( 5 ) and 

Scheffe (32~, and to the literature cited in these publications. 

If proper randomization has been used, differences in 

Var(e) among the treatments are due to interactions between the 

treatments and the heterogeneity factors. The research worker can 

hardly know to what extent the distribution of Fis affected by such 

interactions in the actual case under consideration. He is bound 

to place reliance on the results of the different investigations, 

which indicate that the effect is not important. This is sub 

stanciated by the results of same new investigations to which we are 
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returning. Even so the F test should be used with some amount or 

reserve also in the present case. 

Turning next to the randomized block experiment, we shall 

assume that there are k treatments (Tj, j=1,2, •• k), n blocks or 

replications (i=1,2, •• n) and m experimental units (h=1,2, •• m) for 

each treatment and block. In this case the analysis of variance 

results in the following relevant mean squares: 

V R 
1 - 2 = . 1) iii(x .. h-x .. ) m- J1 Jl 

The assumptions underlying the F test for this case is 

the simplified model, c.p. model (4.1), 

in which ejih are assumed to be N = nkm stochastically independent 

values of a normally di stributed rand.om variable. It is also 

assumed that Var(e) is the same for all treatments. Then, it can 

be shown that FT,= Vrrf'VTR and FTR = Vn/VR are both distributed 

in the standard F distribution. 

As a side issue it must be pointed out that the two mean s qua r= 

ratios are not independent. Thererore, to enter the F table 
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with the two ratif¼ll. simultaneously cannot be recommended. In 
/ 

practice mis usually chosen equal to unity, sothat the problen of 

the effect of the correlation is not important. 

From the ~eneral model (4.1) the expectations of the 

three menn squares can be developed ensily. Letting m = 1, and 

writing, for short, Var(u) and Var(e) for the means of the k values 

of Varj(u) and Varj(e), the formulae are 

n E 2 = E(VT) - k-1 aj 

Therefore, also in this case VT >> VTR indicates that Eaj2 > O, 

i.e. that the effect is not the same for all trentm0nts. Howevor, 

if by the null hypothesis is meant a. = 0 (or, ra.2 = O), the model 
J J 

to be tested is 

xji = µ + zi + uji + e ji • 

Therefore, the~ test is merely an approximation. That this is so, 

has been recognized by several statisticians. But as far as we have 

been able to make out,sufficient information on the degree of 

approximation is wanting. 

Lacking the necessary facilities, we have not been nble to 

use large numbers of examples showing the effect of the interactions. 
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The results obtained by using the examples from section 7 might, 

however, throw some light upon the reliability of the test. 

In exrunple 3 k=6 and n=5, sothat the numbers of degrees 

of freedom are k-1~5 and (k-1)(n-1) = 20 for VT and VTR• According 

to the standard F distribution we should, therefore, expect in 100 

experinents to find 5 F-values less than 1/4.56 == 0.22 and the same 

nunber larger than 2.71. The nm:iber of F-values actunlly found in 

the different classes are 

F ~ 0.22 
< < 0.22 = F = 2.71 

) 
F = 2. 71 

16 

68 

_1§ 
100 

This result indicates that the null hypothesis aj= 0 might be 

fnlsely rejected about three tines as aften as is prescribed by the 

theory underlying the tabulated points of significance. Since 

interaction between treatments and replications would be expected 

to affect the F distribution in this direction, the trend shown by 

the result is not sur~rising. The interaction effects are not 

exaggerated to auch an extent, that the experinental situation is 

totally lacking realiso. The imrealistic part of these experinents 

is thnt intra block interactions are not included. It is likely 

that the influence of the latter interactions is to the effect of 

bringing the distribution of F into better agreeoent with the 

standard distribution of the normal theory. The results fron sone 

small experinents that havo been carried out with nornal deviates, 

seen to substnnciate this belief. 
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We have also used exa.mples 6 and 9 in section 7. In 

both cases the observations were dravm. from a symmetrical Beta 

distribution. In exar:i:ple 6 the experiments were constructed 

according to the principle of complete randoraization with n=10 

replications and k=10 treatments. In exanple 9 we used the 

randomized block design with n=10 replications and k=10 treatnents. 

The results are shown in Table 8.1 where Nis the num.ber of expcri 

ments and r the frequency of F ~ Fa• 

Table 8.1 

Exam.ple no (l N r r/N 

6 0.1 375 43 0.115 
0.05 li 20 0.053 
o. 01 li 4 0.011 

9 0.01 300 49 0.163 
0.05 lf 31 0.103 
0.01 11 1 1 0.037 

It will be seen that in example 6 the relative frequencies (r/N) 

are approximately equal to the expected anes according to the 

standard F distribution. However, in exam.ple 9 the freq_uencies 

are larger, e.g. the estimated probability of F exceeding the 5 

per cent level of significance is equal to 0.1. 

These results are consistent with the results found with 

normal deviates. Together, the results show that if the randomizcd 

block design is used, the effect of interactions between the treat 

oents and the inter block heterogeneity factors, is on inflation of 

the sensi ti vi ty of the F test. This io-ea not seem to be . . · 

so :for experi- 
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nente carried out according to the principle o.f coraplete randor.ii 

zo.tion. 

In enses in which the experiment has been carried out 

according to the randooized block design, the F testasa test of 

the null hypothesis a. = o, ought to be rega.rded with considerable 
J 

lnck of con.fidence. But of course, the research worker can use the 

F test, choosing a lower level of significance thnn the one he would 

have used if he regarded the test as being fully reliable, e.g. 1 

per cent instead of 5 per cent level of significance. 

To be in doubt with regard to the reliability of the F 

test does not imply, however, to be in doubt regarding the useful 

ness of the analysis of variance. A research worker may very well 

be interested in the results of such an analysis, even if he does 

not use the F test. 



g. The F test in Cases 1n which a Nu.mber of Mean Sguare Ratios 

are computed b:x; Means of the same Residual Mean Sguare. 

In some ca111es the research worker wants to testa number 

of null hyJ;>otheses by means of the F test and is bound to use the 

same residual (or,error) mean square for all F ratios. It is 

evident that in such cases the mean sq~are ratios are not stochasti 

cally independent. This implies that the ratios cannot be gauged 

against the tabulated points of' signifi cance of' the standard F 

dis:bribution. 

Suppose that v1v1/o
2, v2v2/J and v0V0/o2 are stochastically 

independent x2 with v1, v2 and v
0 

degrees of freedom, and let 

F1 = v1/V0 and F2 = v2/v0• Then, cht can be shown that the regression 

of F2 on F1 is linear and that the coefficient of correlation is 

• 

~~ will be seen that if v
0 

is large as compared to v1 and v2, the 

correlation is trivial and cannot make the F test invalid. 

However, the effect of the correlation is better measured 

> I > by means of the conditional probability P(F2=Fa F1=Fa), where Fa 

are the tabulated points of significance corresponding to the 

respective numbers of degrees or freedom: v2 and v
0 

for F2 and v1 
Bnd v

0 
for F1• Under the stated assu.mption-, this probability can 

be computed. In Table 9.1 the values of Pare shown fora= 0.05, 



Table 9,1. 

p 

2 
4 

10 
60 

200 

0.380 
0.217 
0.111 
0.059 
0.053 

It will be seen tha t if' v > 60, the correlati on between the two 
0 

ratios does not matter, but this is not so f'or smaller values of 

v
0
• Furthermore, the effect of' the correlation can be shown to be 

greater f'or larger values o:f v 1 and v2• The ef'f'ect is al sa greater 

:for larger nunibers of' F ratios. 

The usual way of deal ing wi th this problem seems to be to 

ignore it. This attitude is rather surprising, since simultaneous 

tests of null hypotheses in such cireumstances occur regularly in 

both experimental and non-experimental research work. It is a Lso 

surprising~ since solutions of' the p1~blem have been forwarded. One 

of' the solutions has been sought in the development and tabulation 

of the distribution o:f the largest ratio. Investigations along this 

line, by Hartley (17), Finney ( 9) and Nair (25), have resulted in the 

generalization due to Hartley (1s). If there are m null hypotheses, 

-i:.:i:n..rtley has suggested the use o:f f'a/ (v. ,v ) , i=1,2, •• m, as the 
ID. 1 0 

points o:f significance. In our view the use of this technique implies 

that we take a too critical a t't Ltude , and it might in some cases result 

in inacceptable inf'erences, c.p. the next section. 

A dif'ferent solution was sugge sted by the pre sent author (28). 

For the simultaneous testing o:f m null hypotheses (H ., i=1,2, •• m) 01 
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it was sugge sted tha t all H01 should be re je cted only if' a 11 

p > h i = c1, w ere 

( 9 .1) c. == F (v.,v /m) 
1 a i o 

It was shown tha t the probabili ty (under the null l1y];)oth eses) of 

all F. exceeding c. is approximately equal to am. In the case in 
l 1 

which the F ratios are stochastically independent, this is the 

probability of' all F
1
. exceeding f (v.,v) simultaneously. Therefore, a: 1 0 

-· +n.ce the same t echnique is used f' or all F ratios, re j ection of' H01 
if F.; c. means rejection of' any one null hypothesis on thea level 

1 l 

of signi:ficance. 

Most o:ften some of' the F ratios are smaller than c1• For 

such cases it was suggested that we should proceed sequentially: 

Step 1: Remove the F ratio with the smallest value of' F/c. 
Then compute c

1 
with m substituted by m-1. If then, all 

F. (nu.mber m-1) are l arger t han the new c. , the corresponding 
1 1 

H. are rejected. 
01 

second step. 

If' at least one f'. 
1 

< c., proceed to the 
1 

Step 2l Remove the F ratio (among the remaining m-1 ratios) having 

the smallest value of F/c. Then, compute new c. (number m-2) 
1 

wi th m substi tuted by m-2, and proceed as under s tep 1. 

It is evident that if' at least one of' the F ratios is larger t.n an 
lh.e... e.a rres:ponding F (v

1
,v ) , this step-wise procedure will eventually ex o 

cease w t th at least one F ratio judged signifi cant. It might be 
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necessary to emphasize that to remove an F ratio does not imply 

tha t the c orre spond.ing null hypothesis is accep t ed, It mere ly 

means that it is placed among those null hypo1theses 'th a t are not 

rej ected on the chosen le vel of' si gni.ficance by the experimental 

:f'acts. This distinction is obviously very important. 

o:r course, it is not necessary to make a start with all 

F ratios. On the f'irst step only those ratios that are~ F (v1,v) 0: 0 

should be incl ud ed , Those ra tios which are <:Jr (v. ,v ) can be 
CX 1 0 

judged not signif'icant at once and removed. 

The assumptions underlying this testing method are 1) t ha t 

v1v1/o
2 are independent x2, and 2) that o2 isa constant var-I ance , 

None of' t he ae assumptions are realized in actual experimen t s , 

There:rore, c1 by (9 .1) is mere ly an appr-oxfma t Ion, It is necessary 

tha t the research worker, using thi s me th od , do es not f'o rget tha t 

usually the test is too sensitive. 
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10. The Regression Method. 

It will be assumed now that the treatments are q_uantities, 

x~ .(j=1,2, •• k), and that the purpose of' the experiment is to produce ,c,.J 
the data upon which a response function can be estimated. The :f'i rst 

q_uestion turning Ul) is then: response on what? Since an exact 

repetition of' a treatment is never possible, this is an appropriate 

question. Following Berkson (3) we can write x .. = h. + v. and 
~ J J J 

assume th at v. are random errors f'or which it can be a ssumed tha t 
J 

E(v) = O f'or each j. There are, theref'ore, two response :functions. 

If' x . are the means of' the observed random varia ble, the re sponse 
OJ 

variable, the two f'unctions are 

E(x .) = f'(x1 .) and E(x .) = g(h~_) 
OJ J OJ d 

As yet no recommendable method seems to have been f'ound by 

means of' which the latter :function can be estimated except, perhaps, 

if' the function is linear. We are theref'ore dealing with the first 

f'unction only~ 

Since the f'ormula of' f'(x1) is hardly ever known, the research 

worker is bound to assume that it can be substituted by the Taylor 

expansion, and the practical problem is the very cornmon one: to 

estimate the coef'f'icient ( (3
0
, 131, 132, ••• ) in the e qua t Lon 

(10.1) 2 
X O j = j3 0 + j31 X 1 j + j32 X 1 j + 0 • • + e j 

It can be assumed that E(e) = 0 f'or each j and that e is stochas 

tically independent of' x1, x1
2 •••• But we cannot assume that Var(e) 
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is the same f'o r all j. 

It is well known that, if' e is stochastically independent 

of' x1, the method of' least squares yields unbiassed esti mators of' 

the regress ion co efficien ts ( '3r). The difficul ty is tha t the research 

worker must decide in advance which terms i3rx1~ ought to be included 

initially. The invention of the electronic computers has simplified 

matters, as it is now po eai b'l e , without too heavy cost, to include 

large number of terms. Of' cour-se , in the f'inal, estimated 

:function the maximum number of' terms is k (the constant term included), 

and the terms need not ne ce ssarily be a sub set of the se t r = 1, 2, •• (k-1 

However, in practice the research worker has to compromise to avoid 

being involved in too heavy and expensi ve computati ons , If' his 

experience from former investigations does not indicate tbat diffe- 

rent terms ought to be used, it is, perhaps, sound practice to 

include initially the terms f'or r = 1,2,3 and 4. Having inclu.ded 

the se terms, the research wo rker w ill be able to de eide, both if 

all the se terms should be incl uded in the f' inal estimat ed re sponse 

function and if it is a dviceable to try to incl ude addi tional terms. 

The advice to use ini tially the terms for r = 1, 2, 3 and 4 

is certainly lacking logical justif'ication. It is merely the author's 

inference from a rather limited f'ield of experience. However, if 

the research worker, for one reason or a not he r-, want.s to start wi th 

a different set of terms, the technique is in principle exactly the 

same as it is with the choice r = 1,2,3,4. 

In order to simplify the formulae we shall introduce the 
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deviations from the mean Yr= x1j - mean (x1j)o Furthermore, 

we shall use orthogonal functions of these deviations. There 

isa number of sets of such functions. One of the sets is 

u1 = Y2 

u2 = Y1 - b12Y2 

u = y -b y· -b y 3 4 4 2 • 1 · 2 1,. ;,, " 2' 4 

where the coefficients (b) are least squares reg-ression coeffi 

cients. However, this is one of the possible sets of such functions, 

the total number of sets being 4l = 24. 

Suppose now that this particular set of cuch functions (u) 

has been chosen. Then, it is possible to show that the reductions 

(mean square) due to the different u's are as presented in Table 10.1: 

where the R's are correlation coefficients (sinple or multiple). 

Table 10.1. 

Reduction 

2 (- - ) 2 Ro. 2 :m:: xoj-xo 

r 2 2 l (- - ) 2 
lRo .12-Ro. 2J ru:: xoj-xo 

u3 ~;.124-R;.12\nE(Xoj-Xo)2 

f 2 2 l· (- - ) 2 u 4 lR o • 1 2 3 4 -Ro • 1 2 4 nI: x o j -x o 

. l 2 ! (- - ) 2 Residual 1-R
0
_1234)m: x

0
j-xo 

Degzee a of Mean 
.trB ~-a 0111 SqRare 

1 v1 

1 v2 

1 V -:z. 
.,) 

1 v4 

k-5 v5 

Total n}:(x .-x )2 
OJ 0 
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In model (1081) x1, x~ ••• can be substituted by u1, u2 ••• 

and the result is 

(10.2) xo j = 'Ao + ~1 u 1 j + ½ u2 j + • o • + e j 

Assuming 1) that e isa random variable, independent of' u1, u2.u 

2) that Var(e) is the same f'or all j, and 3) that e is normally 

distributed, it can be shown that V/Var(e) (r = 1,2,3 ••• ) is 

a x2 if' ~ = O" There:fore, rr the assumptions are f'ulf'illed, r 
the null hypotheses A. = 0 can be test ed by means of' the mean r 
sg_uare ratios F1 = v1/vR, F2 = v2/vR .. ,,, where VR is the resi- 

dual (or, error) mean square in the analysis of' variance0 If' 

the experiment has been carried out according to the principle 

of' complete randomization 

and i:f randomized blocks havebeen used, 

In both cases nis the number o:f replications. 

It will be seen that this isa case in which a number 

of' null hypotheses are being tested simultaneously by mean 

square ratios, which are correlated because a common VR is used. 

The problem has been treated in section 9 9 to which we r-ef'e r , 

In our dealing with the problem of' choiosing a test 

me thod , it was stated that the use of' the largest ratio might 

result in inacceptable inferences. Suppose now, for the sake 

of argument, that F
1 

is the largest ratio and that it is greater 
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than F ai 1,vR), vR being the nu.moer of degrees of freedom of' 

vR. f:yuppose, furthermore, t.ha t F1 < Fa,1m(1,vR), where m=5 in 

the present case. Then, if the technique based on the largest 

ratio is used, and ifall ratios are declaired not significant 

if the largest is less than Fa,1m(1,vR), none of the reductions 

in Tab le 10 o 1 should be regarded as being si gnl:ficant. Bu t such 

in:Cerence is hardly acceptable because, since F 1 > F c/ 1, vR), the 

research worker would reasonably regard the reduc 't i.on due to u1 

as being significant and include u1 in the regression flu1ction. 

Suppose now that the method described in section 9 is 

used, and that it is fbund that V 5/vR is significant on the 

chosen level of significance. This result should be taken as 

indicating that probably at least one of the terms Au r r 

(r=5,6.o k-1) ought to be included in the response function. 

However, it does not imply that we shall eucæed if we t ry to 

do ao , 

Of course, the greater part of the residual reduction 

might be due to one of the variables..,~:3' u6, as o uk_1• For this 

reason the residual ought to be used with one degree of freedom, 

as this will imply that we are using a more efficient testo 

However, significance does merely indicatestlnt a more satis 

factory description of the response function might be obtained 

if at least one of the terms r:=5,6 • e ok-1 is includ.ed. It does 

not imply that it will be found that this is soo In the experi 

ence of the author such outcome of the testing will happen 

very rarely. The reason is, of course, that response functions 
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are not usually so complicated that a linear iunction oi 

x 1 •• • x1
4 does not, when es tima ted, give a suf'f'iciently acc u 

ra te description of' them. 

In our description of the statistical procedure we have 

assumed that the set u1 ••• u4 has been cnoaen, But we have 

pointed out that there are 4! = 24 such sets. Furtherrnore, in 

order to compute the reductions in Table 10.1 the sample values 

of' the coefiicients of' correlation must be known. New, among 4 

variables there are 4 seta consisting of one variable, 12 sets 

consisting of' two variables, 24 sets consisting oi three vari 

ables and 24 sets consisting of fbur variables. This makesa 

total of 64 sets. It is reasonable to suppose that for any 

electronic computer a program can be werked out f'or the selection 

of all these sets anda t the same time :for the computation of the 

corresponding coefficients of correlation. Then, it isa very 

simple matter, at each step, to select among the variables (u) 

that are not included, the one that yields the largest reductiono 

Testing null hypotheses concerning the reductions due to 

the dif'ferent u-variables, the four F ratios must be gauged 

against F c/ 1, vRi~·), c .p. se et ion 9. Then, if' the set of' u-variable s 

is chosen in advance, the null hypotheses will be rejected simul 

taneously on a level of significance that is approximately equal 

to ex. It is not obvious, however, that this is æ i:f the set of' 

variables is chosen in the described way. In order to estimate 

the effect on the level of si gnif'icance of the sele ction of' the 

u-variables, we have carried out experiments according to the 

:following plan:. 
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x is a nor-nn L ranclom variable , E(x) = 0 and a = 1 
0 0 

x1 is a normal random variable f E ( x 1 ) = O and a = 1 

e is a nor-r.a L random variable , E(e) = o and a = 1 

X = '3x~, + e 2 

The chosen val ue s of '3 were {3 = 1/3 in examp Le 1 and 13 == 3/4 
in example 2o Thue, the coeff'icient of correlation is p12 = 0.32 

in example 1 and p12 = 0.6 in example 2. 
~ 

Suppose now, tha t the area covcring b oth F ratios :-.:: 0 

is dividod into three pnrts A being the part f'o r which 

both F ra tios are ~ F c/ 1, vR), Q being the part f'o r which both 

F ratios are -1 t( 1,vR/2), and B being the rest of' the area. Then, 

i:f' the two u-variables are chosen in advance, the app roxåna te 

probabili ties or the two P ratios falling inside .A, B and C 

are given by the binomial terms (1-a)2, 2a(1-a) and a2• 

Choosing ex = 0.05, the values of these terms (P) are as shown 

in Table 10.2. 

The number o:f experiments that were constructed and 

analysed, is N = 1048 in example 1 ane N = 1025 in example 2. 

In ·rable 10.2 n stands for the number of' experimcmts for which 

thtJ two F ratios were found in the dif:ferent areas (A,B and C). 

If it is assumed that the particular way in which the 

u-variables are selected does not a:ff'ect the level of signifi 

cance, NP will be the expeeted number of.' e xpe r-Lment s , It will 

be seen that for both examples the values of n are coneistent 

with those expected (NP). 



59 

Table 10 .2. a = o. 05. 

Area p Exam:;gle 1 Exam12le g 
n NP n NP 

.A 0.9025 948 945.82 926 925.06 

B 0.0950 97 99.56 98 97-38 
C 0.0025 3 2.62 1 2.56 

Total 1.0000 1048 1048.00 1025 1025.00 

In these examples the variable x1 and x2 and, hence, 

the u-va r-t ahLe s , are random variables, while in the experimen 

tal case they are values chosen by the research woz-ker , Our 

invcstigation was planned in this way fb r the reason that we 

were concerned with the problem as it is presented in multiple 

regression. It ~eems evident, however, that the results can 

be applied in the situation with which we are dealing in the 

present section. 

Raving chosen the set of u-variables and having decicled 

which of the variable s ought to be included in the estimated 

response function, it will be necessary to estimate the regression 

coeff'icients in model (10.2). Then, it is also necessary to 

compute the regress ion coefficients f'or the cUf'f'erent regressions 

among the varia bles x1 ••• x~ which are incl uded in the f'ormulae 

of' the u-variable s. These computations are carried out by stan 

dard technique described in a number of text-books and we do not, 

therefore, go into the matter here. The last step consists of 

substituting the u-variables in the response f'unction by x 

variables. 



60 

The described technique can hardly be recornrænded to 

research workers lacking the facili.tiae to use an electronic 

computer. Forthese research workers this technique would 

,./~ too time consuming. li.S an alternative approach it can b e 

r-e commended to choose initially a parti cular s e t of u-cvar-Lab Lcs , 

for instance 

u1 = y 1 

u2 = y 2 - b21Y 1 

U3 = Y3-b32.1Y2-b31.~1 

• • • • • • • • • • • • 

Choosing initially such a s e t, the u-varh:.bles can be included 

one at the time, and for each new u-variable the residual 

reduction in 'rable 10.1 can be c omput.ed , In this way the research 

wor-ke r can de c Ld e at each s t.ep if' it aecms worth ·,v:iile to con 

tinue add.Ln g new va rua b Le s , 1rhus, the work can be reduced to 

such a minimum that the computations are easily carried out by 

means of a de ak calculator. Using this t echnf que , the research 

workcr ,Nill be laclcing the opportuni ty ·jf trying the dif':ferent 

combinations of' the y-variables, and the :final estimated r e sponae 

f'unction cannot bo claimed to be the "be s t" one in the sense 

t.ha t it includes t.he minimum number of terms. Even so , th e 

estimated function may be qu i t e a cc ep t.ab Le as a description of 

the ros:ponse f'unction, it might even happen to be the "bcs t." 

one 
The assumptions underlying the Ii\ tests used above, are 
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1) tha t e in the models is a normally di stributed random variable, 

and 2) that Var(e) is the same f'or all treatments, i.e. the same 

for all chosen values of' x1• None of these assum:ptions can be 

regarded as being realistic. We have discussed this point in 

section 8 and shall not repeat our arguments. "\:Ve shall conf'ine 

oursel ve s to pointing out tha t the research worker ought to re 

member th at the lcvel of' si gni:ficance is not the oric he has cho sen, 

e s g , a == 0.05, but usually an in:flated orie , 

In a case in which the treatments are quantities, the 

research worker may want to estirnate the response f'unction and , 

at the same time, he may want to estimate particular contrasts. 

A contrast can, of' course, be estimated by means of' the estimated 

response function. But in our opinion, the methods described in 

section 7 are better suited f'or this purpos e , 

The research wor-ke r may al so want to estimate particular 

x
1
-values as, fbr instance, the value for which the response is 

a maximum or, the value for which the increase of' the response is 

a maximum. As far as we can see, unbia ssed es timates of' the se 

values of x
1 
can never be obtained, but even so useful approximations 

can be f ound , It is evident, however, that in order to be able 

to estimate s uch values of' x1 it is ne cessary tha t the apa ce of' 

the selected values covers them. This means that the research 

worker must be in ~ossession of advance information ~~th regard 

to these values and use such infbrma tion in the p.Lann i.ng of' the 

expe r-Imen t , 

An important que stion concerns the choice of the value s of' 
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x1• For- the computations it would be advantageous to choose 

equally spaced values or, equally spaced values of' trans:forms 
1 

such as log x1 and (x1)
2• This will enable the research worker 

to use the orthogonal polynomials introduced by Fisher (12), 

tabula ted by Fisher and Ya tes (1ij and by Pearson and Hartley '29) • 

These polynomials are pro:gortional to our u-variables, and the 

use of the polynomials will there:fore e:ffecti vely simplify the 

computations. This is important, especially if the comDutations 

have to be carried out by desk calculator. It must be remembered, 

however, that the use of these polynomials means the use of a 

particular set of u-variables, implying that the research worker 

renounces from trying out the uifferent sets of these variables. 



11. The Problem of the Ga:QS and the Grouping of the Treatments. 

In planning the experimen t it is not always po ss ible for 

the rosearch worker to decide on particular contrasts that he 

.carrt s to es t.Ima t.e , In such cases a commonly used and acceptable 

procedure is to range the treatments acco rdi ng to the value or 
the trea truent means (x . ) and to compute the di :f'f'erences (or' the ;J 
gaps) between two and two neighbour means. Let r be the rank, 

r = 1,2, •• k, where kis the nwnber of' treatments. Then, u = r 
xr+ 1-xr (r = 1, 2, ••• k-1) are the gapa= , 

It is evident that the expe cf s t f on of a gap is pos i ti ve, 

i.e. that E(ur) > O, and that it is usually dependent on r. If 

the distribution 0~ X. is rectangular, i.e. that f'(x.) = 1/A 
J J 

(0 ~ xj ~ A), it can be shown that the distribution of ur is 

f(ur) = k A-k (A-u )k-1 r 

and tha t E (ur) = A./k+ 1, L. e" tha t it is the same f'or all gapa. 

In other cases, e.g. the normal, the distribution of u depends r 
on rand k, and the expectation isa f'unction o~ rand k. Since 

the research wor-ker cannot know this function, he is not able to 

utilize the diff'erences ur-E(ur)• However, in practice the gaps 

might be used even if ~(u) remains unknowno r 
Suppose that an analysis of var:iance has been c arriod out 

and that F = V,/VR (c,p, section 8) is signi:ficant on some chos en 

1.evel of s ignificanse, e s g , the 5 per cent leve 1. Then, a strongly 



marked gap in the series u can reasonably be taken to be an r 
indication of a grouping of the treatments. There might also 

be indications of' more than two groups. 

In most caee s , hcweve r-, a more detailed ana Ly e La is 

needed. Then, the mean range can be used to advantage. The 

meqn rangeE(Wk) of the normal distribution has been tabulated 

by Pearson and Hartley (29) fb r sample sizes ranging from 2 to 

1000. Using this mean range" the condi tional expected range 

of the mcans (xj) 1 i.e. condi tioned by VR regarded as a non 

rqndom quantity, is Vk = E(V{k)Jvp. In this formula n is the 

number of replications" eog. the numbcr of blocks in a random- 
- - ized block experiment. Then, if x 1 and x are the smallest m n max 

and the largest treatrent means, we can use (xmin+Vk) and 

(x -Vk) as borders between groups o:f trcatments. The treat max 
ments, the means of which are included between x. and min 
(x . +Vk) 1 are regarded as ane group. In the same way the min 
treatments, the means of' which are included between (i -Vk) max 
and x , are regarded as another group , max 

There are three possible outcomes of this preliminary 

grouping of the treatments: 

a) (xmin+Vk) < (xmax-Vk) and no mean is found between the two 

borders. 

b) .l'l number, at least ane, of treatment means is found in the 

interval between the two borders. 

c) The two intervals are overlapping. 

\''Vhen tryir.;::; to di vide the treatments into groups, it is 
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necessary to know the purpose fbr mich the grouping is w ant.ed , 
·Jvta,i.· 

In basic research work it -W·· be important to find the borders 

between all gr-oup s , and then it nny be necessary to proceed 

with the two or three intervals found on the first step of the 

analysiso Most o:ften, however, the purpose is to pick out 

among the k treatments those that, in a certain sense, are 

supcr-i or-, In such cases the research worker nced not bother 

'With more than one of' the preliminary gr-oup s , Surrpose th a t a 

treatment having a large value o f' E(x.) is r-ega rdcd as being 
J 

superior, anQ that the interval bordered by (xmax-Vk) and 

x covera m treatments. Then, on the second step an analysis max 
of" variance should be c arried out ibr t his group alone. I:f 

the randomized block design has been used, this means the com 

pu t.a t.Lon of' a new treatment mean aqua r e VT and a new residual 

mean square VR' the numbers of degrees of f'reedom being now 

(m-1) and (m-1)(n-1). Then, if' the new ratio F = VrrfVR is 

f'ound to be non-signif'icant, the research worker has to be 

corrt errt wt th the group f'ound on tn e first s t.ep , If', however, 

the mean square ratio is significant on some chosen level o~ 

signif'icance, a ~roup border can be computed by i -V, 
,1:.f r max m 
-~::L where Vm = E(~n)v~R'/ This process can, of course, be repeated 

on a third. s t ep , a :rourth step a.s.o., andwill be terminated 

as soon as a non-significant mean square ratio is found. 

It is necessary, p enhap s , to point out t hat tho uae of 

the mean range in this way, must not be rogarded as a test of' 



signi:ficance. To use the me an range for the computation of' 

the conditional range, merely implies the pointing out o:r the 

consequence o.f the null hypothesis having been rejected by 

means of' the mean square ratio. 

i~ weak point in the sug ge s t ed technique is, that it is 

based upon the use of the mean range of' the normal distribu 

tion. Because o:r the in.flated sensitivity of the F test 

(c s p , section 8) it will add to our conf'Ldericc in th c tech 

nique to know that this mean range is usunlly larger than it 

is in cases ba s ed on more realL3tic distributions. A summa.ry 

of' the present inf'ormation, rc:garding the distribution of the 

range and the me an range has 'b een given by Kendall and Ltuo.rt 

(2t, to which we r et'er , c;omc new inforna ti on could have been 

ob t.a Ln ed f'rom the example s used. in sec t ion 7, if la ck of' f'unds 

had not prevcnted the utilization of the observations to this 

end. The t.r-ea tmerrt means obtained in examp Le 6 wcr-e , however, 

used :for the purpo ae , In this example the observations were 

drawn from a symmetri cal di stribution. Since the standard devi 

ation is k.~own - for the treatment means it is equal to 

0.5976 Øj - the mean range can be estimated in samples of 

experiments. The results are shoNn in Table 11.1 where kis 

the size of the sample and N the number of samples. For the 

sake of' com:parison the values of' ~fk:J°.~G.Tr t'bf31::DO!J!ma-l.·di·s.tr:inut.ion. 

are included. 

The mcan range can also be computed che~~ly for selected, 
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mathematically simple distribution. It is well known :for the 

rectangular distribution. For the exponential f(x) = e-x (:60) 

it can be shown that the mean range is equal to 

where kis the size o~ the sample. Some values are shown in 

Table 11.1. 

Table 11 .1. 

Example no. 6 E (111Ik) 
k 

,.. 
Normal f'(x)=e -x N wk 

5 150 2.353 2.326 2.083 
10 148 30081 3.07a 2.829 
20 72 3.570 3.735 3.548 

375 10 5.833 5-896 6.503 

It is obvious tha t s uch re sul ts do not justi:fy the drawing of' 

extensive conclusions. But it will be seen that, for moderate 

values o:f k, the results seem to indicate that the mean range 

of the normal distribution is as large as that o~ the compared 

distributions. 

Federer (8), p , 122, presents t.h e results of a random 

ized block e.xperiment for the comparison of k = 7 varieties in 

n = 5 blocks. We choose this example because prior infbrmations 

concerning the grouping of' the varieties are ava i.Lab Le , The 

exper-Lmerrt was carried out with two units f'or e ach variety pe r 

block, and we have used the total :for the two uni t s , 
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In this case the mean square ratio F = VT"TR = 3e4 which 

is significant, and the variety means are 

Variety xj 

416 6.34 
405 10.08 
109 10.22 
407 11.09 
593 11042 
130 11 QI 83 
406 13.32 

1 

From the data given by Federer we havethat (VR/n)2 = 1.179, and 

since ~t=:2. 70436 :for the normal di stribution, we f'ind v7 = 3n 19 

and that 

X• + V7 = 6.34 + 3,19 = 9.53 min 

X - V7 = 13.32 - 3.19 = 10.13 max 

The seven varieties are there:fore divided into three groups: 

group A 

H 

B : 
C 

Variety 416 
'' 405 

the rest of varieties. 

'I'h en , trea ting w i th group C only, it is found tha t V T = 6 .49 

(with 4 degrees of' :freedom) and VR = 6.23 (with 16 degrees of 

f'reedom), implying that no division o:f the group should be 

a t t emp t.ed , Hence, the grouping on the :first step is tile final 

one. 

Federer, using the prior inf'ormation, concluded that the~e 



are significant dif'ferences 1) between group (130, 406, 593) 

versus group (405, 407, 416), and 2) among {405, 407, 416). It 

will be seen that these results are consistent with aur findingse 

His second conclusion is consistent w ith our finding tha t 405, 

407 and 416 belong to diff1erent group s , His first concl usion is 

consistent with our finding that 130, 406 and 593 belong to group 

C, 'While 405 belongs to group B and 416 to group A" 
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12. The Statistical Treatment of Fractions. 

Most o:ften the ran dom variable tha t is the sub je et of' 

the statistical analysis, is directly observed, e.g. yield in 

an agricultural f'ield plot experiment. It is not always so. 

For instance, in same cases the research worker observes the 

number (m) of' uni ts of' a c ertain kind wi thin each exper imental 

unit, and at the same time he observes the number (x) of' these 

unit s ha ving a c ertain characteristi c (A, say). In an agricul 

tural field plot experiment m may be the nu.mber of roots within 

plots and x the number of diseased roots. In such cases the 

research worker has to deål with y == x/m or, in percentage 100 y. 

The sta tistical problem concerns the method of investi 

gating the ef'f'ect on the probabili ty P(A) = p of the different 

treatments and the comparison between the treatments. Both m 

and p might tie dependent en the heterogeneity f'actors, implying 

tha t bo th of' them must be regarded as being rand.om v ar Lab Le s , 

In any case, the research worker can never assume that m and p 

are independent en the heterogene i ty factors. There:fore, it 

must also be assumed tha t m and p are co r-r-e La t ed , 

In this case we are therefore concerned wi th a si tuation 

in which we have to deal wi th three random variables (x, m and p), 

and only two of them (x and m) can be observed. The distribu 

tion is 

(12.1) 

Writing w = 1/m, it can be shown that 
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(12.2) 

(12.3) 

E(y) = E(p) = P
0 

Var(y) = p (1-p )E(w) + (1-E(w)] Var(p) 
0 0 

2 + Covar(p,w) - Covar(p ,w) 

The model is evidently the same as it is fbr any 

other random variable. If the randomized block design has been 

used, the model is 

(12.4) Y ji = µ + aj + zi + uji + e ji 

(j==1,2, •• k, i=1,2, •• n) where kis the number of' treatments and 

n the number of replications. In this model (µ:t-a.) can evidently 
J 

be sub s t .. :"~uted by p .• Using this sub s t.Ltu td on , it will be seen OJ 
that 

(12.5) z+u.+e. 
J J 

Referring to section 4 regarding the properties of' z9 u ande, 

it will a Ls o be fbund tha t E(y .)= p . and that E(y -y ) = p -p • J OJ p q op oq 
.ti. con trast in this case is, of' c ourse, a linear function of' all 

or, a sub-set, of' p .• It will be seen that the same f'unction OJ 
of y. is an unbiassed estimator. 

J 
The diff'iculties met with in the statistical analysis, 

first and foremost originate in the interaction between the 

treatments and the heterogeneity f'actors, causing dif'f'erences 

in Var(y) and correlations between contrnst estimators among 

the treatments. DiITiculties also partly spring f'rom excessive 
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skewness of' the dis tribution of y. We cannot see, however, tba t 

the difficulties are greater and our mistrust in the suggested 

statistical technique ought to be more serious, th an is the case 

with other random variables. Our conclusion is, therefore, tæt 

the methods described in sections 7-11 are applicable in these 

cases also. 

In statistical literature it will be found that certain 

transforn:a tions are r-ecommen deds c s p , Bartlett (2). In the present 

case, examples are log y, Jy and the inverse sine function, are si.neJy~ 

It is evident that skewness of the distribution will be 

re due ed by means of the lo gar i thmic or the square root trans:for- 

ma tion, but the ef:rect may be small and insignificant. 

The purpose of some transformations, e.g. the inverse sine 

f'unction, is to stabilize the variance. Assuming an additive model 

and that p = P(A) isa constant, it can be shown that Var(y) is 

approximately independent on P• But if the model is non-additive, 

the effect may be very small. 

Some years ago the present author (27) recormnended the 

use of' co-variance analysis, using w = 1/m as the independent 

random variable in the regression function. No doubt the eff'ect 

o:f the use of such regression is to reduce the di:fferences in the 

variance among the treatments. We have found, however, that the 

ef:fect is not sufficient to counterbalance the reduction of the 

width of the population in which the conclusions are being applied. 

Problems arising as a consequence of the use of covariance technique 

will be dealt with in section 15, to which we refer. 
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13. The Idea of the Non-Random Experiment al Material. 

In the proceeding sections the replications have been 

regarded as a sample representing an abstract population. We 

now go on to show in more detail wha t the difference is between 

a non-random sample and a rand.om sample of replications and what 

this diff'erence implies. 

As an example we shall use m experimen t carried out 

according to the randomized block design. Let the replications 

(the blocks) be numbered 1=1,2, •• n, and the treatments numbered 

j=1,2, •• k. Also, let the experimental units wi thin any repli 

cation be numbered r=1,2, •• k. Thenp the value (and, the obser 

vation) o:f the random variable under ccnsideration can be sym 

bolized by x( j) ri, meaning tha t it stands for the value of the 

random variable which would have occurred for the r'th unit in 

replica tion no. i provided the trea troe nt T . were applied to this 
J 

unit as a result of randomization. If the experimental material 

is regarded as non-random, we have to consider the number of 

possible allocations of the k treatments to the units. This 
n number is K = {kl) • 

The null hypothesis under consideration is now one 

sta ting tha t x( j) ri is the same for a 11 j. This means tha t the 

resul t for unit no. r in replication no. i is the same Lr-r e sp ec ta ve 

of the treatraent actually placed on the unit by randomizationo 

Even if this null hypothesis is true, some variation of the 

observations will occur, being the erfect of the heterogeneity 



of the experimental material. 

As we understand it, this is the null hypothesis 

considered by Fisher (11). .i~ modi:fication Ls sugge sted by 

Neyman (as). 

Sup~ose that N=nk values of a variable are randomly 

arranged in all K ways. 'I'h en , to any arrangement w·e Jr.ave 

the usual two relevant mean aquares: VT with k-1 degrees of 

freedom, and VR wi th (k-1) (n-1) degree s of' freedom. Hence, 

for ecch arrangement there is one mean square ratio F = V,./VR. 

The distribution of these K values of F is thus the dis tribution 

of F in the population that consists of the K random arrange 

menta. Since no two experimental materials are exactly alike, 

the distribution of F will change .from one expe riment to ano t he r , 

In any actual case the research worker knows the observations 

o.f the random variable under consideration for the actual arrange 

ment. However, the distribution of F remains unknown to him. 

For some cases in which Fisher' s null hypothesis can be 

regarded as being satisf"ied, the dis tri bu ti on of F has be en 

obtained by rearrangements of the values of the observed random 

variable. The distributions obtained in this way, have been 

compared wi th the F distribution derived under the normal theory. 

Most often a satisfactory compatibi~ity has been found. We 

ref er to p ep er s by Eden and Yates (7), Welch (.?4), Pi tman '30), 

Hack (16), Baker and Collier (1), and to other rontributions 

ei ted in the se p ap er-e , Same of the se pa:pers deal wi th expe ri 

ments according to the principle of complete randomizatione 
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The re sul ts ob tained through such inves tiga tions, are 

supposed to establish the necessary foW1dation for the use of' 

the F test of' the normal theory in the analysis of expe rimen 

tal da ta , 

The model which is assumed to give a satisfactory des- 

cription of' the observed random variable (x) is 

where µ, a. and b. are -regarded as parameters, while e is re- 
J l 

garded as a random var1able.. It tJill be s een tha t no inter- 

ac-tion between the treatments and the inter block heterogeneity 

factors is included On the other hand~ interaction between -· 
the treatments and the 'intra block heterogeneity f'actors might 

some t t æes be recognized and included in the term e e Usually 

e is regarded as a r-andom variable belonging to the population 

consisting of' the K arrangements. It is also iound that it is 

regarded as being a normal random variable. 

The pupulation consisting o~ the K arrangements, is 

certainly a lucid construction. It seems to be a fact that the 

majority of' statisticians and, possibly al so the rna jority of 

research workers, regard it as being f'ully adequate, For 

reasons explained in section 1, we do not regard it as s uch , 

V,Je aLeo f'ind tlhl.a t some wri ters who accept it, seem t.o f'ee L some 

uneasiness wi th regard to the interpretation of' tre experimental 

results. By some of them it is recommended to generalize to 

a broadsr poput e t.t on , For instance, Kempthorne (20), p. 152, 
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wri tes :"We shall re gard the inferences that we na ke as being 

inferences about the experimental units actually used, the 

extrapolation of these toa broader population beinga matter 

of" jUdgment in the present state of' knowl.edge ;." This is im 

portant, and it shows the inadequacy of the commonly accepted 

idea of a population. We think nobody will insis t tha t the 

population consisting of the K arrangement, is the ane the 

research worker is interested in. We have therefore come to 

the conclusion tha t thi s pupul.a tion is inadequate and tha t, if' 

the research methodology is founded upon this construction, 

the research worker can make inferences about the treatment 

ef'fects only by means of support from evidence obtained outside 

the experiment. This is certainly most unsatisfactory, and it 

seems to us that the only way open fb r avo iding the diff'icul ty, 

is to regard the actual replications (blocks) as a random sample 

of' replications representing the popul.a td on , This population 

is always an abstraction and is the one the sample represents 

in the sense of' a random sample. This is the answer in othe r 

f'ields of' empiri cal research work and it is al so so when we are 

dealing with experimental research. 

It seems al so to be a f'act that most stat i sti cians 

accept the assumption that the ef'f'ect of' treatments and that 

of' replications are additive. Some writers even think that if 

this assumption is not satisfied, the randomized block design 

cannot be used. However, it is impossible to a ccept such an 

assumption because such acceptace would imply that the research 
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worker knows very much about the effects of the treatments 

in advance. To allow for interactions merely means that an 

u.nprejudiced point of view is taken. It does not mean that 

it is held generallythat interactions always exist. The 

standpoint is that the research worker can never know in 

advance - and, hard.ly by analysis of the e.xpe rimental data - 

whether interactions exist and, therefore, that he must treat 

his data as if interactions are present. 
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14. Factorial Experiments and the_Split-Plot Design. 

Fora number of reasons investigations concerning the 

combined effect of two or more f'ac to , .. s are important. When 

research i.a stærted. in same new field, it is na tural to be gin 

wi th single factor experiments and by means of the data ob 

tained in these, to learn something about the e:ffects of 

several :factors talten alone. But the e:ffect of a factor may 

depend upon other factors, and therefore it will become necessary 

to carry out experiments with combinations. 

Suppose that ~rs combinations ar two factors P p 
(p=1,2,e •• r) and Q (q=1,2, ••• s) are included in the experiment. q 
Then, the experiment can be regarded as an experiment wi t h the 

treatmen ts T. ( j= 1, 2, •• k=rs), and the analysis can be c arri ed 
J 

out as if justone factor is involved. Of course, in these 

cases same parti cular contrasts are planned to be estimated by 

means of linear :functions of the treatment means. 

The simplest me thod of analysis amounts to di vid ing the 

total treatment eff'ect into a main effect (or, sole ef'f'ect) of' 

each f'actor and an interaction. The models that cover such 

divisions, are obtained by the substitution of' a. in model (3.1) 
J 

and model (4.1) by 

a.=b+c+d 
J p q pq 

The term uji in model (4.1) must be substituit:oo 

It 

e 

The model for an experiment carried out according to the prin 

ciple of' complete randomization is thus 
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(14.1) • 

For randomized blocks with one experiræntal unit for each treat 

ment per block, the model is 

(14.2) x . = µ:1-b +c +d +z.+u .+v 1+w .+e . p qz, p g_ pq 1 pi q p qa pqa 

In both models e 1 stands for the ecrect of' the hete- pq 
rogeneity factors (for randomized blocks: the intra block 

heterogenei ty factors) and the interactions between the se f'ac 

tors and the experimental factors. In model (14.2) upi' v41, 

and w 
1 

stand for the interactions between the experimental 
pq 

factors and the inter block heterogenei ty factor s. Wi thout 

loss o:f gene rali ty we can let lb =O, ~ =O, .Z d 4= .Z d n=O-, and p q p p g_ p':2. 

E(z)=O. Referring to the discussion in section 4, we conf'ine 

ourselves to the f'ollowing statement: 

pendent values of a random variable z, 

1) z. stands forn inde- 
1 

2) u . stands f'or n pi 

independent values of each ofr random variables, one f'or each 

3) v. stands forn independent values of' each of s random 
ql. 

variables, one for each Q, and 4) w 1 stands forn independent q pq 
values of' each of rs rand.om variables, one f'or each PQ combi- 

nation. Since z, u, vand w are effects of' inter block heterogenei~ 

factors, they cannot be assumed to be stochastically independent. 

Neither can it be assumed that Var(u), Var(v), Var(w), and Var(e) 

are constant among the treatments. 

If the experiment has been carried out ~or testing pur 

poses, there are three null hypotheses to be considered, i.e. 



b=O, c=O and d=O. In the case of randomized blocks six mean 
are 

squarea and three F ratios/available fur the testing. Using 

for the me an squares the symbola VP, V 4, VPQ' VPR' V QR and 

VPQR (R symbolising replication), we have for example 

ns - - 2 V = - 2 (x -x) P r-1 p 

s - - - - 2 
VPR = (n-1) (r-1) Z.Z (xpi •Xi-xp +x) 

the numbers of degrees of freedom being (r-1) and (n-1)(r-1), 

and Fp = Vp/VpR• This ratio is the only one, if any, that 

can be used for the testing of" b=O. Writing b=O, it will be 

found from model (14.2) that 

X -X = (u -u) + (w -w) + (e -e) p p p p 

and 

X -X.-X +X = pi l. p (u -u.-u +u) + (w .-w -w +w) + (e -e.-e +e) pi l. p pl. i p pi l. p 

It will be seen tha t the two diff'erences b:> th depend ... on u, w 

ande, and it can be shown that if b=O, E(Vp) = E(VPR). It can 

also be shown that ti" c=O, E(VQ) = E(VQR), and if d=O that 

E(VPQ) = E(VPQR). Therefore, if the research worker wants to 

test the three null hypotheses, using the F test, an analysis 

of variance must be carried out according to the key shown in 

'1able 14"1 e 



Table 14.1. 

Source of' Number of' Mean square F varia tion degrees of' f'reedom 

Replication n-1 
Vi/VPR p r-1 vp 

PR (n-1)(r-1) VPR 
Q s-1 VQ VQ/VQJl 
QR (n-1)(s-1) VQR 
PQ (r-1)(s-1) VPQ VpQ/'VpQR 
PQR (n-1)(r-1){s-1) VPQR 

As it is in experiment s v1i th one f ac tor, large va lues 

of' the mean square ratios are indications of' si gnificant 

departurea from the null hypotheses. However, in this case. 

also, it should always be remembered that the probability on 

the null hypotheses of F ~ F is larger than ex, implying that ex 
the in terac t ions t end to in.fla te the le vel of' s igni.fi cance , 

In cases in which complete randomization has be en used, 

we have the same mean squares fur P, Q and PQ and only one 

residual (or,error) mean aquar-e wi th rs (n-1) degrees of' free·dom. 

Using this mean square, the research worker must choose a 

method of' testing that is adapted for such correlated F ratios, 

c .p. section 9. 

Findings of signiricant main effects am significant 

interaction are certainly interesting. In cases in which 

the experiment has been planned f'or some practical purpose, 

such knowledge might als o be useful. It is evident, however, 



that such findings do not imply that the analysis is completed. 

Usually the research worker wants to know more about the details. 

Then, the method of' amlysis will be dif'f'erent for the 

dit"ferent types of treatments. If the al ternatives of both 

f'actors are quantitative, e.g. quantitative levels of f'ertili 

zers, a caref'ul problem analysis prior to and incl ud ed in the 

designing of the e.xperiment, may very often point out the 

treatment contrasts that should be es tima t ed , The sta tistical 

problem will thus be reduced to the estimation (including 

computation of con.fidence limits) or these contrasts, the 

technique of which is described in section 7. A careful problem 

analysis might also show that it is unnecessary to include all 

rs oombina tions of the al terna tives of the factors. This will 

imply a reduction of cost of the experiment, a reduction that 

may be used to increase precision by increasing the number of 

replications. 

Regression analysis is an alternative technique in such 

cases. Suppose that the quantitative alternatives of the P 

factor are x11,x12, ••• x1r, and those of the Q factor are 

x21,x22, ••• x28or, x1P (p=1,2, •• r) for the P f'actor and x2q 

(q=1,2, •• s) for the Q f'actor. Then a regression analysis can 

be carried out, using for independent variables x1 , x2, x1
2, 

2 2 . P q P 
x24 ••• (x1px2q), (x1px2q) •••• The maximum number of independent 
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variables is, of courseT equal to rs-1. If, for instance, 

r=s=2, the independent variablesthat should be used are 

x1P, x2q and (x1Px24). The regression technique is described 

in section 10, to which we refer. 

It is well k:nown, however, tha t in some cases the 

problem analysis pointing out the contrast to be estimated, 

is very difficult. For instance, in agricultural experiments 

with varieties such an analysis might often be impossible~ 

In such cases the statistical problem is reduced to the problem 

of ranking the trea tment s ( P, say) acco rding to the me an val ue 

of the observed random variable and, possibly, to the grouping 

of the treatments, c.p. section 11. In a factorial experiment 

this can be carried out for each alternative of the other 

factor (Q). Then, if the interaction between the two factors 

is trivial, the ranking of P will be expected to be the same p 
for the dif'ferent alternative of Q. It is reasonable to 

expect, however, that tre alternatives of P belonging to the 

group of' superior treatments, are different for the differenil 

alternatives of Q. For instance, if P are varieties of wheat, p 

Q different levels of Nitrogen fertilizer, and the observed q 
random variable is stif'fness of' the straw, such resul ts may very 

well be f'ound , and would be very important and us ef'u L, 

We do not think, however, that a definite methodology 

fort he analysis of' data obtained in factorial e xpe riment s, 

should be recommended. The diversity of the questions that 

are wanted answered, is too great from ane case to another. 

The important thing is tha t a care:ful problem ana lys is is 
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carried out in advance , and that the experiment is planned and 

carried out in such away that answers can be expected to the 

questions which such an analysis has pointed out. If such a 

working rule is adopted, the methods outlined in sections 7-11, 

will serve the purpose. 

It is well known that it isa disadvantage of factorial 

ex_periment that an increasing number~ of factors, even if the 

num.ber of alternatives for each factor is small, may lead to 

large and sametimes toa prohibitive number of treatments. The 

difficulties that fellow from such large numbers of treatments, 

have been tried overcome in various ways. In a forthcoming 

section we shall re turn to the problem, and shall for the present 

confine ourselves with the plan known as the split-plot design. 

The necessity for the use of this design arises in two 

ways. It may arise because the number of possible experimental 

units belonging to the same replication, is less t.han the number 

of treatment combinations, for instance, if a replication con 

sists of animala (e.g. pigs) belonging to the same litter. It 

may also arise because some treatments need larger experimental 

units than other treatments. Federer (8) has listed a number 

of cases in which the split-plot plan ought to be used. 

In an agricultural field plot experiment with two 

:factors P and Q (p=1,2, •• r, q=1,2, •• s) the replications p q 
(blocks) are each divided into s (say) main plots am each 

main plot is divided into r sub-plots. The main plota are 



8-5 

treated with Q , randomly allocated. The Sub-plots are treated q 
with P, also randomly allocated. p 

The model for this case isa simple extension of (14.21-, 

the extension being the inclusion of' a term e;1 (1=1,2, •• rii). 

Now e 
1 
stands for the effect of' the heterogene i ty f' actors 

pq 
intra main-plots ar:d interaction between these factors and P • p 
In the same way e'. stands for the effect of' the he terogenei ty qJ. 
f'actors inter main-plots and the interaction betwean these 

f'actors and Q. As in (14.2) u,v and w are the interactions q 
between the expe riment al :factors and the inter block hetero- 

gene i ty f'ac.tors. 

It will now be :found that 

X = µrb +c +d + z+u+v+w + e' + e pq p q pq p q pq q pq 

X == µ + b + Z + U + V + W + e' + e p p p p p 

X ::::::: µ + C + Z + U + V + W + e' + e q q q q q q 

It will be seen tha t the dif'f'erence between two x , being an q 

u.nbia ssed estimator of' the co rre spond ing con trast, dep ends on 

v, w, e' ande, while the diff'erence between two x is depen- 
P 

dent on u, w ande. It is commonly thought that a contrast 

among P-alternatives is estimatedwith higher precision than 

a contrast among Q-alternatives. This would certainly be true 

if the additive model were adequate. However, if we use a non 

additive and realistic mod.el, including all kinds of' interactions, 
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nothing can in general be known about the relative precisions or 
the two estimators. If the method described in section 7 is adopted, 

con:fidence limits of contrasts among Q alternatives, among P alterna 

tives, as well as contrasts among PQ alternatives can easily be com 

puted. 



15. On Methods intended to yield Estirnators of increased Precision. 

It is but natural that both research workers and statisti 

cians have been concerned with the development of experimental 

designs which are intended to yield increased precision of the 

estimators o Amorig the se designs) that of con.founding and the use 

of concommå tant random variables are perhaps the most utilized 

in pr-ac t Lcc a Identical twins and the like are used in some more 

exceptional situations. If the replications are regarded as a 

sample, representing an abstract population, it is easy to see, 

howeve:r:-, that most designs invented with the point in view of 

increasing precision, are meeting the requirement at the sacri 

fice of the generality of the inferences. Therefore, it is 

important that the research worker should always bear in mind the 

purpose for which the experiment is planned. 

It isa well known fact that whatever the outnome of an 

experiment is, a rule or merely a statement, it is not unrestric 

tedly universal. For instance, it is always restricted by the 

limited heterogeneity of the experimental material. With regard 

to the precision of an estimator this implies that the extent of 

heterogeneity is directly related to the width of the population. 

In basic research the date produced by an experi.ment, rnay be 

se,tisfactory as evidence for same rule or statement even if the 

heterogeneity of the experimental material is very small. However, 

if the research worker wants to find a rule that can be used as 

a guidance for practical activity, it is necessary that it is 

inferred from data obtained in an experiment which is planned and 
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carried out in such away, that the heterogeneity of the material 

is dependent on all those factors which are not controlled in the 

practical activity. If the rule is an inference based on data 

from an experiment on material of less heterogeneity, it 

might be overshadowed by the effect of these factors. Therefore, 

if~ucharule is used as a guidance, the chance for the activity 

to achieve the desired end might be very small. 

For instance, this would be the case if identical twin 

calves were used as experimental units in a randomized block 

experiment for the comparison of the effects of two feeding 

alternatives, and the purpose is to learn which of the two 

alternatives should be used in practice for the feeding of calves. 

The use of identical twins as units irnplies that the research 

worker controls genetic factors which ma.y be important sources 

of heterogeneity. However, the results of an experiment of such a. 

kind may be important if the limitations of the validity of the 

results are not forgotten or ignored. Other examples of this 

sort are discussed by Linder (22), p.13, and Cox (6), p. 25. 

The use of confounding means that each replication is divided 

into a num.ber of main units (usually called blocko)~and each 

main unit is divided into a number of sub-units. Then, same of 

the treatment effects are confounded with the effects of hetero 

geneity among the main units. Thus, the split-plot design 

belongs to this class. The consequence of the use of confounding 

is that the contrasts corresponding to the differences between 

confounded effects, must be estimated by means of differences 
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between main units. The other contrasts can be estimated by 

means of differences between sub-units. However, all contrasts 

can be estimated by means of observations obtained in each 

single replication, and the inf'erences thus possess such validity 

or generality as the sample of replications permits. Often, but 

not always, contrasts corresponding to the nonconfounded effects 

are estimated with higher precision tha.n the other ones. 

The inference is different if observations of a concommitant 

random variable are used for the purpose of reducing the hetero 

geneity of the experimental material. Suppose, for instance, that 

an experiment for the comparison of the effects of k=2 feeding 

alternatives to calves is carried out, and that the design is 

complete randomization. Let the principal random variable (x0) 

be increase of weight during the feeding period. In this case 

it might be possible to reduce to some extent the heterogeneity 

by menns of the observations of the weight (x1) of the animals 

at the start of the experiment. Then, assuming that the use of 

the observations of x1 reduce the heterogeneity, it is evident 

that the validity of the inference with regard to the relative 

effects of the treatments is also reduced as compared to the validity 

of the result obtained without the use of the observations of x1• 
Suppo s e that e in (3.1) is sub s tLt.ut ed by '3j(x1j1-x1) + eji' 

where x
1 

is the concommitant random variable, the distribution 

of which is completely independent o~ the treartunents. Thus, the 

model is 

(j = 1,2, •• k, i= 1,2 •• n). It f'ollows that 
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It will be seen that it is not assumed that the regression 

coef:ficient o:f e on x1 is the same f'or all treatments. In 

our opinion such an assumption would be unrealistic. 

The so-called adJusted treatment means are 

x~ j = x0 j - b j (X, j-x1) • 

It will be f' ound that E(x' .) == µ + a ., so that an unbiassed OJ J 
ranging o:f the trea tment s will be obtained by means of' the 

adjusted means , Theref'ore, the dif:ference d' = x' - x0' pq cp q 

is an unbiassed estimator of the contrast (a -a ). p q 

Writing Aj = .Z(x1j1-X1j)2 and Bj = .Z(x0j1-X0j)2 it 

will be :found that the mean square of' d~q is equal to* 

2 2· --2 --2 
s2 = BP ( 1-rp) + Bg ( 1-r q) br 2 + (x1p-x1) + _(_x..;.,1 q....,-_x __ 1 __ )_] 
d' 2(n-2) n A A p g_ 

where r and r are the coe:fficients of correlation between x 
p q 0 

and x
1 
for the treatments T and T. Hence, approximately p q 

correct confidence limits for the contrast (a -a) are d' + t sd, P q pq ex 

~I~ the number (n) of replications is dif:ferent for the 

different treatments, the formula is 

2 2 B (1-r) + B (1-r) 
P P . 9 9 

n +n -4 p q 
[ 
n +n. p g + 
n .n p q 

(x -x )2 
+ _jg 1 

A q ] 
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the number of degrees of' rreedom being 2(n-2). 
....••. 2---2 

In the formula of ad, both (x1P-x1) , (x1q-x1) , 

A, and A must be treated as f'ixed, non-random, quantities. p q 
This represents the sources of the loss of' validity of' the 

inf'erence. Therefore, if d' is used instead of d = x -x op oq 

as the estimator of the contrast, and sd, is used for the 

computation of the cont'idence limits, the inference cannot be 

applied in the whole populati on represented by the experiment al 

units. We are now bOund to deal with a sub-population charac- 
- - 2 - - 2 terized by Ap, A

4
, (x1p-x1), and (x1q-x1) • This loss of 

validi ty of' the inf'erence should not be ignored, as it usually 

is. 

Among the designs that are intended to increase precision 

we may also include the Latin Square design. In a randomized 

block experiment randomization is carried out according to the 

principle of' complete randomization within each replication. The 

function of randomization is to :prevent a bi as fromi. damæg:illm~?l' the 

estimata rs of the treatment contrasts. 

In field plot experimentation it has been t emp t.Lng to 

affect a partial control over the heterogene i ty, not only in 

ane direction but in two orthogonal directions. This has to 

lead to the invention of the Latin Square design. If the number 

of treatments is k, the field is divided into k2 units (plots) 

.Lying in k rows and k columns. The treatments are then allocated 

these units in a random manner, but in such away that each 

treatment occurs once in each row and once in each column. 
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The theory concerning this design and the statistical 

analysis deals with a population that consists of all possible 

k2 squares. It does not seem possible to look at this design 

in a different way. Therefore, if we are concernedwith an 

abstract population represented bya saIIlJ_)le of replications, 

the Latin Square design is lacking significance, except if the 

whole square is regarded as a replication. In the latter case 

the experiment must be carried out by means of a sample of such 

squares. Such an experiment would be very expensive and would 

not necessarily yield significantly more precise estimators than 

a randomized block experiment. Therefore, being concerned with 

designs to be used in order to produce data upon which inferences 

with regard to an abstract population can be drawn, our con 

clusion is that the Latin Square design should not be recommended. 
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16. Experiments wi th large Numbers o:r Treatments. 

In some experimental situationsthe number of treatments 

is very large as, for instance, in some field plot experiments 

where the treatments are varieties. In such cases the number 

o:f experimental uni ts, necessary :for a complete replication in 

a randomized block layout, might become so large that the advan 

tage of the rand.omf aed block design over complete randomization 

is illusory. Other examples are f'actorial experiments w1 th large 

numbers o:f :factors ana/tir large numbers o:f al ternatives of the 

single :factors. However, a large number of treatments sometimes 

means that the number is large in comparison to the nu.mber of 

easily accessible experimental units. 

In order to counterbalance the loss of precision caused 

by the large complete replications, a nuniber o:f designs known as 

Incomplete blocks have been invented. Much work and time is 

spent and much ingenuity is demonstrated in the c ons t.ruc tt on of' 

these designs; Most modern text-books on experimental design 

give detailed descriptions of the different types. 

In the lattice designs for the comparison of k treatments, 

the replications are divided into a number of main units (usually 

called b1ocks), each con sis ting of' m ex:perimental uni t s , This 

means that the number of main plots is k/m for each replication. 

In a quadratic lattice k = m2, sothat the number of main plots 

per replication is equal to m and the total nunib er of main plots 

equal to b = nm. The treatments are also di vided into m groups, 

each consisting of' m treatments, and the groups are allocated 
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the plcts in such a wey that the conpar-Ls on between two treat 

ments,, belonging to the same gr-oup , can be made between plota 

belonging.to the same rrain plot. The grouping of the treatments 

is changed f'rom one replication to another according to the ru Le 

that each pair of' treatments shall occur together in the same 

main plot the same number of times. 

It is usually thought that such arrangenents of the treat 

ments lead to increaåed pre ei sion of the e stima tors of' the 

contrasts_, as 'l"()mpared to randomized block experiments wi thout 

grouping. However, disadvantages have also been recognized. 

Federer (9) writes: "Missing data or unequal error variances 

considerably complicate the analysis; if either situation is 

likely to occur, it is suggested that the experimenter improve 

the experimental technique and (or) use a randomized comp Le t e block 

design." In our thinking, research workers should al ways regard 

missing data to be likely to happen, and equal error variances are 

practically never realized. Therefore, we f'ind it very difficul t 

to recommend the use of the se designs. Be sides, we also think. 

that the designs are impracticable because of their inflexibility. 

There are, of course, practical advantages in grouping 

the treatments if the number of them is very ~arge. For instame, 

in a field plot experiment such activities as the planting and 

the sowing take considerable time. The same is the case with 

operations during harvesting. Therefore, it would be advantageous 

1.r the area of land that represent s a replication, we~(I;- dui.v.i.ded 

into main plots, sothat the research worker can deal with these 

one at the time. The split-plot plan will meet this requirement. 
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Suppose that the treatments are divided into a n:umber '(s) øf 

groups and the replications are divided into the same number o:f 

main units. Then, the s groups of treatments can be allocated 

the main units in a rand.om way, and the treatments belonging to 

a group can be allocated randomly the ex:perimental units within 

the ma Ln unit. Statisticians are familiar with the use of the 

split-plot design in this way, c.p. Cochran and Cox (6). The 

reason why incomplete block designs are pre:ferred and recommended 

seems to be, first and f'oremost, that it is thought that th ese 

designs yield comparisons of equal precision. Research workers 

who do not believe in equal precision of the contrast estimators, 

will hardly :find any advantage in the incomplete block designs 

over the split-plot plan. On the other hand, it is easy to point 

out several advantages of the latter. 

The most important advantages of the split-plot design 

are the :f ollowing: 1) It is unnece ssary that the group s are of the 

same size, i.e. that they cover the same number of treatments, 
, 

On the contrary, it is important that the treatments are divided, 

if possible, into "natural" groups. 2) The re is no rule connecting 

the number of treatments, the number of groups, and the numbe r 

of replications. 3) Missing data and interactions between the 

treatments and the heterogenei ty factors do not complicate the 
I 

statistical analysis any more than if randomized blocks wi thout 

any grouping of' the treatments havebeen u eed , 

Interactions b etween the treatments and the heterogene i ty 

factors render any prior judgement of' the relative precision of 

the di:CTerent contrast estimators quite impossible. It is likely, 



however, that the precision is higher f'or contrasts among treat 

ments belonging to the same g roup t.han it is among treatments that 

belong to different groups. To eo me exten t the effect of' the hete 

rogene i ty among the ma Ln units can be reduced if a check treatment 

is included in all treatment groups. Then, if r is the number of' q 

trea tments in group no. q, the main unit used for this gr-oup must 

cover at least r +1 experimental units. The check treatment must q 
be regarded as belonging to the group and, along with the other 

treatments, allocated the experimental units in a random way. If 

f'or practical reasons, the research worker deals w L th the na in units 

ane at the time, a time factor is introduced. In such a case it is 

particularly important t ha t a check treatment is included, so that 

the b ias caus ed by the time f'ac tor can be removed. 

Let the observations o:f some random variable (e.g. yield) 

be x i' where p=1,2, •• r , q=1,2, •• .a, and i=1,2, •• n, n being the pq q 
nu.rober of replications (blocks). The model describing xpqi is 

now a simplification of the model for a two-factor experiment accor ding 

to the split-plot design, and can be written thus 

(16.1) x . = ~z1+a +v 1+w 1+e' 1+e . p qa pq q pq q p qa • 

In this model e' stands f'or the e:ffect of' heterogeneity among main 

uni ts and e f'or the e f'f'cc t of heterogene i ty am.ang the experimental 

units wi thin main uni ts; but, of' course, e' and e also cover the 

interaction between the treatments and the heterogeneity f'aceor-s , 

The terms v and w stand :for the interactions between groups and 

replications, and between treatments within groups and replications. 



Since the replications are r-e ga t-ded as a random sample, representing 

an abstract population, all terms in the mod.el, except µ and ~must 

be regarded as being rand.om var-fab Le s , The term a can be written pq 

apq = aq + (a:pq-aq), and we can wi tnout loss of general i ty, let 

i'a = o. q 
It will be :found in this case also, that the treatment mean 

x is an unbiassed estimator of the effect (µ+ a ) and, hence, pq pq 
t ha t the t reatment means yield an unbiassed rang ing of the treat- 

ments. Consequently, a linear f'unction of treatment means is an 

unbiassed estimator of the corresponding contrast. Interactions 

between treatments and the heterogene i ty factors imply, in this 

case also, that correlations exå s t between x 1 among the treatments pq 

and that Var(x) is dirf'erent :for the dir:ferent treatments. However, 

the method described in section 7, can be used ror the computation 

of the con:Cidence limits of the contrasts. The method described in 

section 11, can be used ror the grouping of the treatments, e.g. for 

the isolation of a group of superior treatments, It is likely, but 

not obvf ous , that the conf'idence intervals of some o:f the contrasts 

can be shortened by means or the ob serva t ions ror the ch eck trea tment. 

If a check treatment has been included, T (say) x i can 0 pq 

be substituted in all the procedures by y 1 = x .-x ., where p qa p qa o qa 
x 

1 
are the observations :for the check treatment. In practice the 

oq 

research worker will hardly use more than one or, perhaps, two 

experimental units per main unit and replication for the check treat- 

ment. I:f two uni ts have been used, x . stands ror the mean value o qa 
or two observations. 
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The preceeding discussion concerns cases in which the 

number of treatments is large, but where there is no shortage 

with regard to ex:perixæntal units per replication. There are 

cases, however., wher-e there nny be such a shortage. For example, 

this may be so if' the research worker wants to use litters as 

replications in a .feeding e xpe riment to p i gs, In s uch a case the 

number of treatments tbat can be included is much restrictede 

In such cases a number of samples of experimental uni ts 

can be used as the main units in an experiment according to the 

split-plot design. Then, a replication would consist of a sample 

of' such main units. :rn our exam:ple the research worker can use 

litters to represent the main units, am a replication would t.h en 

consis t of a number of litt ers. Thus, if the tot al num ber of 

lit ters for the whole experiment is sampled f'rom the same sto ck , 

the heterogeneity among the main units is equal to the hetero 

genei ty among the replications, and the spli t-plot plan ought 

to be combined wi t h complete randomization. li-f the research 

worker wants to use the s:pli t-plot p Lan and the randomized block 

design, the replications ought to be s am p Le d in a different way, 

For instance, he can use a sample of stocks to represent the 

sample of' replications. There are c the r reasons f'@r such selec 

tion of' the replications to which we are returning i.n the rext 

section. 



17. Experiments which are intended to give Re sul ts 

for Practical Utilisation. 

It has been touched upon previously tha t if an expe rlment 

is carried out for the express purpose of providing a base upon 

which advice to practitioners can be given, it must be designed 

sothat none of those factors are controlled that are not under 

control in practice. To design an experiment that satisfies this 

requirement, is certainly a difficult task. These factors are not 

usually fu.lly known to the re search worker, and the expe riment 

must be planned in such away, that the effect of them can be 

regarded as random effects. AJ.so, the hard fact is that the in 

ference, if any, can only be applied in the population represented 

by the actual experiment al material in the sen se of a remdom sample. 

This abstract population might not be broad enough to cover all 

cases that may occur in practical activity. Therefore, the research 

worker being consul ted in a parti cular case, is well ad vi sed to 

show such modesty as to recommend a treatment only provided the 

case belongs to this population. If he does not make sucha ll"®Bervait1iron 

he may take the chance of using ex t r-apo La t Lon of' his expe r-Lme nt a L 

result outside the sphere covered by the experiment. However, the 

research worker can do much to en sure tha t the popu La ti on is b road 

enough to cover the great majority of cases occurring in practice. 

Another fact is that, if' the research worker's recommendation 

is acted upon by all practitioners and the choice of treatment 

involves economic consequences, very of'ten ecme practitioners would 

bie better off by using another treatment. This is so because all 
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populationsconsist of sub-populations differing in ane charac 

teristic or another, and the most successful treatment might not 

be the same in all sub-populations. In practice there are always 

limits to what a research worker can know about the circumstances 

under which a particular treatment among a num.ber of treatments is 

the superior one , Therefore, he can only recommend a pa r tå cular 

treatment for cases belonging toa certain population, which is the 

one that is represented by his experimental replications. 

For instance, if a research worker in the agricultural field 

of research recommends a certain variety of wheat to all farmers 

in a geographical area, he should know from the results of his 

experiment that it is to be expected that the use of this variety 

will inflate the yield for the whole area as cornpared to the use 

of another variety included in the experirnent. But, possibly, he 

also knows or can guess that the yield might be even larger if 

some of the farmers do not act upon his recommendations. 

Befare he starts the detailed planning of the experiment, 

it is necessary :ror the research worker to make some dif'ficult 

decisions, however vague, with regard to the width of' the population. 

Then, first of all he must decide what kind o:f experimental units 

should be used. In agricultural e.xperimentations a unit must be a 

field sui ted f'or the growing of the plant in question, and which 

fields are suited is something that must be decided upon. In 

industrial research a unit may be an industrial plant, but it is 

not evident tha tall :plant s should be regarded as being sui t ed , 

Theref'ore, in :practically all cases there are a nurnber of difficult 

decisions to be taken in advance o:f the planning of' the experiment, 
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decisions to be t.aken f'o r the purpose of' marking the borders of' 

the population about which knowledge is wanted. 
k.. 

When these d:i.cisions have been made, it might seem obvious 

what to do next: take one or more random samples from the accepted 

cases to be used as the experimental material. But it may not be 

so simple as that The research worker IIDY encounter many obstacles, • 
for instance, it rnay aften happ en tha t a field selected for an 

agricul tural experiment, is planned to be us ed for same other pur- 

pose. 

Consulting the literature, dealing with experimental design, 
"rl, 

it will be found that most sciejtific work and discussion have cen- 

tered around the experiments tha t can be characterised as "Loc al "; 

Jt local experiment in agricultural field plot experimentation, is 

one carried out in a chosen field in one aeason, A loe al expe ri ment 

in experimentation on feeding p f.g s , is one carried out wi th pigs 

chosen :from a single s tock and at a chosen f'arm. A local experiment 

is al so one carried out in a single industri al plant o 

It is evident tha t for an experimental re sult to be used 

as a base for recommendations f'or practical activities, a local 

experi ment does not su rr i ee , The reason is, of co urse, tha t most 

often the population in which such re sult s can be app Ld ed , is too 

narrow. In any case this is true if interactions exist between 

the treatments and the environmental factors that are not controlled 

during the practical acitv.ity~ 

Junong research workers in the agricultural field of research 

it now seems to be gene rally recognizecl t ha t both geogra:phic hetero 

genei ty factors and f'actors, the ef'fects of which are varying from 
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sea son to sea son, make themsel ves f'e.I t and, al s o , tha t the re are 

interactions between these heterogeneity factors and the treatments. 

I.f it were not so , the re sul ts .from lo cal experiment s would be 

su.f.ficient. Therefore, research workers in this .field of research 

are compe Lf.ed to plan and carry out experiments in such a way that 

the replications covera geographical area anda number o.f seasons. 

In principle the situation is hardly different in other .fields o:r 

research, even if the importance of tre interactions b etween the 

treatments and the heterogeneity factors may be quite different :ror 

the different cases. 

Cåmsul ting the 11 terature, dealing with such expe rimental 

situations, it is most aften :round that the experiment is regarded 

as consisting of' a number of repeated local expe r-Lmen t.å. In our 

opinion it should not be considered thus. It ought to be regarded 

as a5 experiment of' its own , planned and carried out :for its own 

specific purpose. 

Keeping to the example from the agricultural :t'ield of re 

search, the extension both geographically and in time can be achieved 

in two different weys. A sample of loca1i ties must be chos en and, 

within each locality a site for the replication. Then, the research 

worker can use the same sample of localities for all seasons, only 

changing the site for the replication f'rom season to s ea sori, He 

can also choose a new sample of localities ror each season included 

in the experiment. The latter plan is probably the best one, since 

it can be expected that the heterogeneity factors are better covered 

in an experiment according to this planthan they are if the same 
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sample of localities are used for all seasons. But it is evident 

that the use of the same sample of localities in all seasons is the 

simpler one of the two plans to manage in practice. Now, the re 

search worker may succeed in choosing localities and sites so as to 

have a sample of r eplications which closely resembles an ordinary 

random sample, representing the agricul tural area. But b oth a sample 

of seasons and a population of seasons are t oo vague. The term 

"sea son" does not imply more than a kind of' c lassification w i th re gard 

to the variation in the effects of some envirorunental factors. 

The conclusion is tha t whether a new sample of loe ali ties 

has been taken for ea ch sea son or, thQ same smnn_:: 1e. ±_a n-sed 

for all sea aons , the research worker has to be content wi th a sample 

of replications, and the population in which the inf'erences can be 

applied is the one this sample of replication represents in the sense 

of a rand.om sample. Most aften the width of the populati on is larger 

if' a new sample of localities is taken f'or each season than it is if 

the same sample is used in all seasons. But the dif'f'erence cannot 

ordinarily be very important. In both cases the question is whether 

the sample gives a satisfactory coverage for the geographical hete 

rogenei ty factors and for tha t period of' time f'or which the inf'erences 

(er, f'o recasts) are intended. It is pos si ble to ascertain to some 

extent whether there is a satis.f'actory coverage f'or the geogra:phical 

factors. But f'or the time f'actors, i.e. climatic factors, the answer 

to the question regarding the coverage depends on what can be said 

about the changes of' the clima te in coming years, which :for the pre 

sent is very little. It is evident, however, that if relatively large 



climatic changes have t ak en place in the seasons covered by the 

experimental replications, the research worker can be more confident 

in giving advice to practitioners than he can be if' the replications 

cover less variation in the climatic f'a c tor s , The interaction bet 

ween a treatment and the climatic :ractors may be small and insig 

ni:ficant, and it is obvious that the research worker should f'e ef, 

more con:fident in recommending a treatment showing small interaction 

with these :factors than he can :reel if' the interaction is greater. 

The same is the case with regard to the interaction between the 

treatments and the geographic heterogeneity f'actors. Theref'ore, both 
AJ 

kinds of' interaction whould be taken into account when the research 

worker is dealing with the ranging and classification of' the treat 

ments. 

It has been mentioned above that there are, at least in 

theory, two ways that can be used f'or the sampling of' replications. 

We can take a new sample of' localities f'or each season included in 

the experiment or, we can use the same sample of localities in all 

seasons and rnerely change the site within the localities. In the 

f'irst case, if' there are n1 seasons and n2 localities, f'o r each season, 

the sample consists of' n=n1n2 replications. If' only the site is 

changed f'rcm season to sea son and the number of' seasons and locali ties 

are n1 and n2, the sample still consists of' n=n1n2 replications. In 

both cases the population is the one the sample of' replications re 

presents in the sense of a random sample. The two populations are 

not identical, but the difference cannot be important. On the other 

hand, the use of the same sample of' localities in all seasons has the 

advantage over the other planthat it makesa more detailed analysis 

po ae fb Le , 
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No matter which o:f the two plans is used, a replication do es 

not usually consist of' k experimental units, k being the number of' 

treatments. :Most of'ten a number (m) of' units is used :for each treat 

ment, and the design may be complete randomization or, it may be ran 

domized blocks. 

Buppo ae :first that a new sam:ple of' localities is taken :for 

each season, and that the design f'or each replication is com:plete 

randomiza tion. Then, the model fbr the mean of' the ob served rand.om 

variable f'or treatment T. (j=1,2, •• k) and replication no. i (1=1,2, •• m) 
J 

is 

(17.1) xji = µ+-atz1+uji+eji 

where the di:f.ferent terms stand f'or the same effects as they do in 

the model :for a randomized block ex:periment. It will be :found tha t 

the model fbr the treatment mean is 

Without loss of' generality, we can let l'B.. = o, E(z) = O, E(u) = O 
J 

:for each j, and E(e) = 0 :for each combination (j,i). Theref'ore, it 

will be f'ound that 

and E(x -x) = a -a p q p q 

i.e. tha t x. is an unb iassed estimator of' the trea tment e f'f'ect 
J 

(µ1-aj), and (x -x) is an unbiassed estimator o:f the contrast p q 
(a -a ) • If' the experimental uni ts are of' the same s ize as those p q 
used in a lo cal exp er-Imerrt , it w ill usually be f'ound tha t Var( e ), 
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or ~ 1\Tar j ( e), is approxima tely the same as is f'ou.nd in a local 

experiment. However, since the heterogeneity among the replica 

tions is usually much greater than it is in a local experiment 

according to the randomized block experiment, it must be expected 

that Var(u) = ~Z\Tarj(u) is much Lnt'La t.ed as compared to a local 

ex:periment. Theref'ore, the reliability of' the F test f'or the test 

ing of' the null hypethesis aj= 0 is questionable, the probability 

of' Fl F being also inf'lated. However, the treatment mean x. is a J 

an unbiassed estimator of' the treatment ef'f'ect, implying that an 

unbiassed ranging of' the treatments is ob tained by means of' the 

trea trnent me ans , 

Suppose, next, that the same sample of loe ali ties is used 

in all seasons, the mean of' the ob served random varia ble f'or treat 

ment Tj (j=1,2, •• k), in season no. i (i=1,2, •• n1), and locality 

no. h (h=1,2, •• n2) can be written xjih' and the model is 

(17.2) 

Also in this case it can be shown tha t the t reatment mean xj is 

an unbiassed estimator of the e:ff'ect ( µi-a.), and tha t (x -x ) is J p q 

an unbiassed estimator of' the contrast (a -a ). p q 
It can al so be shown, no rna tt er which of' the two plans is 

used, that a linear f'unction of the treatment means is an unbiassed 

estimator of' the corresponding contrast. Howev er , the precision 

of the estimator is different for the dif'f'erent contrasts. There 

f'ore, the confidence limits of the contrasts must be computed by 

means of individual mean squares as described in section 7. 



It has briefly been touched upon that, if the problem 1a to 

group the trea tments and, particularly, if the problem is to isolate 

a group of superior treatments, the research worker should also 

consider the interactions, f'irst and furemost the interaction bet 

ween the treatments ar:d the seasons. Now, if' a new sample of locali 

ties is chosen for each season, it is impossible to separate the 

treatment-locality interaction and the treatment-season interaction. 

However, if the same sample of localities has been used in all 

seasons, we may consider the function 

and the graphs of åj i. aga_ins:fl;; :i., ene ··fu:m' eaca tæeætment , as a 

probably useful aid •. Probably also 

(17.3) 

may prove to be useful for the characterization of' the treatments. 

For example, if the treatments are varieties, the research worker 

would prefer for recommendation a high-yielding variety for which 

the value of A. is small. 
J 

With regard to the treatment-locality interaction the 

equivalent statistic is 

( 17 .4) 

where 

• 



It is evident, however, that of the two "J,..., (17.3) is the more 

useful in practice. 

If a new sample of localities is taken for each season, tht!r 

research worker can use (17.3). Bu t in th is case "'A.. is dependent 
J 

upon the conf'ounded treatment-locality and the treatment-season 

interaction. 

So f'ar we ha. ve been eene erned w ith probl eros in agricul 

tural field experimentation. It seems likely, however, that the 

difficulties encountered in this sphere of' research, toa large 

extent reflect the problems wi th Which research wo rkers ha ve to 

deal generally. It may be possible, of course, that industrial 

plants are so far advanced technically that heterogeneity among 

plants and effects of climatic factors are negligible. But it 

is most like ly tha t such examples are e xceptions rat her than the 

ru Le , 

To return to another example, we were in section 16 

di scussing the design ft,r an experiment for the co mpa r Laon of a 

number of' feeding alternatives to pigs in a situation where the 

number of' treatments is t oo large to be covered bya litter. It 

was suggested that a litter should be used in the same way as a 

main unit in a field experiment according to the split-plot plan. 

In this case a number of' lit ters must be sampled to co nsti tute 

a replic atI on, It was f'urther suggested tha t the replic ati ons 

should be sarnpled from different stocks, one replication from 

each stock. There certainly is heterogeneity among stocks, 

particularly heterogeneity due to genetic factors, as there is 
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heterogene i ty among loe al it ies in a fi eld expe riment. Bu t th ere 

might also exist heterogeneity due to differences in the environ 

mental conditions under which the pigs are living, indicating 

that clirna.tic f'actors may be important in this case also. In 

fact the e xpe rimental si tuation is es sent ially the same as the 

one described above. The diff'erence is found merely in the 

relative heterogeneity due to the di:f:ferent sources. Our con 

clusion is therefore, that such experiments should be planned 

and carri ed out accor ding to the same :princ i:pl es as thos e used 

in field experimentation. The experimental material (the repli 

cations) should be sampled in such away tha t a reasonabl e am ourrt 

of th~ heterogeneity among stocks as well as heterogeneity due 

to di:f:ferences in living conditions are covered. In order to 

satis:fy the latter requirement the replications must rover a 

number of years. 

, If' the purp os e is to obtain data upon 

which rules for practical acti vi ty can be ba sed, it is likely that 

it will be found that there are numerous f'actors causing hetero 

genei ty that cannot be or are not controlled in pra cti ce. The 

experimen t must there::'-)re be planned so th at the a amp Le o:f repli 

ca tions covers the heterogeneity due to these factors. If great 

care is not taken to ensure tha t this requirement is ea t Ls f'Le d , 

the popu La tion represent ed by the sample of' replic ations covers 

merely a :Qart of the sphere of practical activity :ror which the 

research worker9s recommendations are intended. 

It is evident that an experiment of this kind and ~or 

this purpose should cover the largest possible number of repli- 
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cations. If' we re:flect on the best way of' using tre r esources 

which are at the research worker's command, the conclusion will 

be to the eff'ect tha t a very simple design should be used for the 

single re:plication. Merely one experimental unit for each treat 

ment per replication will do, but in practice q couple of units 

ought to be used in order to guard against f'a t Lur-e s , 

If' m uni ts (h=1,2, o .m) are used fore ach treatment per 

replication and the design is complete randomization, the model 

for the observed random variable is 

xj.h == µra .+z.+u .. +e. "h 
1 J 1 J1 J1 

(j=1,2, •• k} i=1,2,s.n). For the contrast (a -a ) the estimator p q 
is (x -x ) , the variance of which can be ah own to be p q 

_ _ Var(u -u) Var(e -e) 
Var ( x -x ) = · P 9 + P :L p q n run • 

It will be seen that the effect of increasing m merely is to 

reduce the last term. Theref'ore, e xcep t in cases in which the 

interaction (u) between the treatments and the heterogeneity fac 

tors is very small, an increase of mwill not strenghten the pre 

cision of the estimator very much. On the other hand, an increase 

of' the number (n) of replications will a Lwav s aff'cct the precision 

:favourably. 

From the pr eceeding dis cus sion it w i 11 be fo und tha t, as 

regards the method ot' analysis, the situation is equivalent to the 

ene met with in randomized block experiments., The dift'erence is 
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tha t most of t en the interaction b etween the tre atm ents and the 

heterogeneity ~actors is more important than it is in randomized 

block experiments. Even so, it is thought tha t the re thods des 

cribed in sections 7-12 are adequate ~or the statistical analysis. 
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18. Some Supplementary Mattere. 

A. Every research worker vvho is consistently using the 

principle of randomization, sooner or later will come across 

examples where the result of the randomization may seem unaccept 

able. The reason for this is, that most often some trend or 

regularity must be assumed to exist among the experimental unitso 

For instance, this is so in a field plot experiment where there 

of ten is s ome regulari ty in more t han one d irection of' the quaJ.1 t~y 

of the uni t s , Then, if the randomization leo.ds to a resul t show ing 

congr\lity between the allocation of the treatments to the expcri 

mental units and the regularity among the units, the research 

worker is probably t emp t ed to do something abou t it" He n å gh't , 

of course, stick to the randomization principle and acc ep t the 

result, knowing that also such a result must be left n place in 

a long run procedure. However, of'ten the resenrch worker has to 

make a decision 1mmed1aitæ]y, and the re fore, it is na tural f'o r 

him to consider rejecting the re sult of' the r-an dom i za t.Lon and 

rerandomize. 

Regarded from a principål point of' view, any tampering 

with the result of the randomization ought to be r-ef'ut ed , But, 

we do not think. tha t this would be the right atti tude to take, and 

it is known that highly qualif'ied re search w orkers do, in f'a et, 

reject some arrangements of' the t r ea tme nt e , 

In the li te ra ture dealing wi th the problem of' exp er-Lme ntal 

design, the g_uestion is usually Lgno r-ed, However, Cox ( 5) has 

discussed the question at same length, ref'erring also to relevant 
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literature. In his treatice some methods of dealing with the 

question, are being discussed. Two of the methods are founded 

upon the idea of the re jectidn of the more ext r-eme a rrangements 

of the treatments. The dif:ficulty involved in this apl)roach, is 

that it will be necessary to use a dichotomy, grouping the re- 

sults of the randomization into acceptable and unacceptable arrange- 

ments. 

Since it is necessary to submit to the fact that our sta- 

tistical too Ls are merely approximate, the :problem to consider is 

what effect, e.g. on the F test, rejection of same of the arrange 

ments migh t have. Pro ba bly, the e f'f'ect ofmJ.!C:'l a re striction of' the 

randomization is to bring the distribution of F into better har 

mony with the standard distribution of the normal theoryo Regar 

ding the conf'idence probabili ty of the confidence interval of a 

contrast, it is reasonable to think that the effect is small and is 

directed towards an inflation of the confidence coefficiento But 

theee statements are based on mere guessingo A statistician who 

has amp Le access to an electronic computer, might be able to obtain 

satisfactory evidence by using constructed examples. Then, of' 

course, the examples must be constructed according to realistic 

medels, and the re je ction of' ext r-eme arrangemen ts of the trea tment s 

must be carried out on an exaggerated scale. Only as soon as 

results from s uch investigations are presented, is j_t possible to 

make up anes mind what standpoint should be taken to the practice 

of' curtailing the random arrangements. 
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E3. At the time when the research work on experimental designs 

began, the common attitude among learned s ta t Ls t t c å ens was that 

useful inf'ormations could hardly be obtained from small samples. 

The explanation of' some of the oriticism raised against the work 

by Fisher and his collaborators, may be found in this attitude. 

Tofday it is generally recognized that even very small samples 

may yield data upon which important conclusions can be drawn. 

However, it is ha rdly questionable tha t the founders of' the de 

signs of ex:periments went to the other extreme, pa r t.Ly because 

they were too engaged in the problems o:f tests of significance. 

If the attention is turned to the problem of' the estimation of 

contrasts, larger samples are usually required" 

For instance, suppose that an industrial leader is con- 

templating to replace old mass manufacturing machinery by new 

machinery. Then, it is not enough :for him to know tha t it has 

been shown by some test of significance that e.g. the new machinery 

is producing at a higher rate of speed than the old orie , In his 

economic calculations he needs same measure of the difference of 

speed and, also, a value showing the lower margin for the differ 

ence , This means tha t he must utilize the out come of' an experi 

ment in which the old and the new machinery are the treatments 

and base his c a.l.cu'La tions upon the re sul t Lng estimate of the con 

trast and the confidence limi ts of the c o ng r-ae t , Also, it is 

important to hirn tha t the conf'i dence iftterval of' the co ntrast is 

not too wide, which in fact implies tha t the size of the experi 

rnent or, the number of replications, cannot be very small. 
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We believe that this is a most common si tuation. I:f the 

purpose of an experiment is changed :from that o.f signiflcant test 

to the estima.tion o:f contrasts, an increase of' the numb e r of' re 

plications is usually required. But, o:f course, in some cases the 

replacement of one treatment by another does not imply new econo 

mic inves tm ent s and, i:f so , it is e nough to know tha t at le ast one 

of the treatments can be classi:f'ied as the superior one. 

SupJ?OSe now, t ha t k treatrnents are included in an experiment 

carried out according to the randomized block de sd gn , n being the 

nwrib er of' rep li ca tions. In section 7 it is explained why the 

re search worker in this case should use Student' s t wi th (n-1) 

degrees o:f freedom in his cornputations of' the coni'idence limits 

of a contra st. The re are two principal reasons f'o r this point of' 

view. The :f'irst one is that the presence o.f interactions between 

the treatments and the heterogeneity factors implies that there are 

dif:ferences in precision anong the contrasts. The second reason 

is, that, if' a common errcbr mean square is used fbr all contrasts, 

the research worker cannot possibly know the level of conf"idence 

of the conf'idence intervals. Therefore, the use of a common error 

mean square will always mean that the confidence limits of' the 

contrasts are biassed and, hence, that they may be misleading. 

It is evident that the use of individual mean squares in 

the computations of the conf'idence limits of the contrasts, im:plies 

that the number of' re:plications cannot be too srra Ll , I:f this 

number is too small and, consequently, the confideree inter- 

vals of the contrasts are very wide, it is difficult to see what 

object the experimental data are ca:pable of achieving. Therefore, 
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the research worker, in plarming his experiment, should always 

try to estimate the number of replications tha t will be necessary 

in order tha t a chosen minimum precision can be expected to be 

obtained. Obviously, this isa very difficult task to be charged 

with, and it is evident that the research worker has to utilize 

experience from previously conducted expe r-Lmcnta.of' a simj_lar k Lnd , 

C. The last que stion to be considered, concerns the relative 

importance of the loe al and the non-local e xpe ri ment s de scribed 

in section 17. In p Lann Lng an experiment it is Lmpo r-t.arrt to know 

if the results are intended to be used for æ me practical pu rpos e 

or, if the purpose is to aupp Lemen t the research wo r-zer-s kncw Ie dg e 

in same field of r e aea r-ch , In the first case it is c vrd errt t ha t 

a non-local experiment is needed. In the second case, w:~at is 

needed is either a non-local experiment or, an experiment in which 

a very large number of externsl f'actors are included Ln the capaci ty 

of experimental f actors. Therefore, a loe al e xpe r ine nt as described, 

will not meet the r equirement s in ei ther case o However, an expe ri 

ment of auch a kind may furnish the necessary data upon wh i ch pre 

liminary conclusions can be drawn, conclusions that may be used as 

a guide for the planning of a non-local experimentn For instance 

the data may show that same treatments are to such an extent in- .. 

f'erior tha t they can be 1 eft out in the p Larm t.ng of' the non-lo cal 

ex:periment. This is Lmpor t ant., because a non-local experiment is 

usually very expensive, and it is thcrefore im:gortant tha t the 

number of treatments can be reduced toa minimum. 

There are, of course, exceptions to this appraisal of the 

local experirrents as, f'or instance, in our e xarnp Le in which it was 
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assumed that an industrial leader is interested in the compari- 
1' 

" son o:f two kinds o:f machinery. In this case the out come of a~ 

experiment may be important to the particular industrial plant 

in g_uestion. There:fore, the experiment can be carried out as a 

local experiment, even if' the outcome is intended to be used a a 

a guide :for same practical decision. 

There is al so a third category of' experirænts, consist- 

ing o:f such experiments as are carried out in a laboratory or, 

under lab ora tory cand.i tions, where a number of external f'a ctors 

can be controlled. A f'ourth category consists of' such experiment s, 

dis cu ssed in section 15 9 ·'as·~ are planned to yield high precisi on 

of' the contrast estimators. In a comprehensive research program 

• 

it may be possible to make advantageous use of all these categories 

of' experimental plans. Then, one of the :problems for the research 

leader is to decide how and to what extent the diff'crent categories 

ought to be utilized. In vi ew of' the f'act tha t the re search f'unds 

are usually vecy restricted, it is important that a balance is 

f'ound in order to achieve a kind of optimum. In practice to f'ind 

such a balance is certainly very diff'icult. If agricultural field 

plot experimentation is considered, it seems to be a fact that 

research workerB;:are inclined to spend a too great part of the 

research :fund on local ex:periments. This may partly be due to 

the history of the development of' the experimental designso In 

this field of' research it is ra the r obvious tha t the out come of' 

a local experiment can be regarded as be ing merely p relimlnary ~ 

Therefore, it also seems somewhat conf'using that so nuch emphasize 

is placed on the development of the designs of such experimentso 
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