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1. Preliminaries.

About 40 years ago, important research work on the prin- |
ciples of experimentation was started at Rothamsted Experimental
Station in England. The first general account of the results of -
this research work was given by R.A. Fisher in his book "The Design
of Experiments'", the first issue of which appeared in 1935, Ten
years previously, the first issue of his "Statistical Methods for
Research Workers" had been published. In this book the new
statistical tool of analysis, known as the analysis of wvariance,
was made known to research workers., A large number of papers and
books, dealing with experimental design and statistical analysis,

are inspired by these two important treatises,

It is probably well known that the results of the Rotham-
sted research work were not recognized and valued by the authori-
ties on statistical methods at the time., Today the principles of
the Rothamsted school are accepted by almost all statisticians,
and it is interesting to notice that now these principles seem
to be accepted "hook and line". On the other hand, the principles
are not throughout accepted by all research workers, It is a fact
that all over the world experimental research work is carried out
according to other principles. Often the principle of randomi-
zation, perhaps the most important and a lasting contribution made
by the Rothamsted school, is ignored. The consequence is that
a large number of reports on experimental results are published,

describing effects that are partially due to erroneous designings.



The work on design and statistical methods of analysis
carried out by the Rothamsted school, is certainly most important.
It is difficult, however, to accept the principles in full. 1In
short, criticism can be raised against the following elements:

1) the conception of the experimental material as something fixed,
2) the purpose for which an experiment is carried out,and 3) the

models upon which the theory rests.

A research worker deals with questions, In planning and
carrying out an experiment, he wants to obtain data upon which
answers to his questions can be given. Then, he uses induction
and this means that he discovers a rule or, merely presents state-
ments, as answers to them. But surely, a rule or a statement is
always something that refers to a population., In experimental
research this population is an abstraction. Therefore, the research
worker cannot look upon his experimental material as fixed, because,

if he does so, the population cannot be an abstraction.

In statistical theory we are taught that a generaligation
is justified only if some units or replications are, or can be
regarded, as a random sample. Usually, in practical situations,
such a sample cannot be drawn. Drawing a random sample implies
that it can be drawn from an existing population. If the population
is an abstraction, no random sample can be drawn from it.

Therefore, the only possibility left for the research worker, is

to regard the sample as a random one, being the representative of



the population about which inferences are being drawn. This is,
in fact, the population with which research workers in other
fields of research most often have to be satisfied, But neither
in experimental nor in other fields of research does this mean

that the research worker has to be content with any sample.

In this treatise we shall throughout regard the experi-
mental material as random in the sense that it consists of a
number of replications, which are capable of being interpreted
as a random sample. We do not see that any serious objections
can be raised against this point of view even if there might be
difficulties to overcome in some cases, e.g. in field plot experi-
mentation. On the other hand, it is evident that research workers
who regard the experimental material as non-random, are bound to
encounter serious difficulties in their interpretation of the

results of the experiment.

Turning next to the second point, it scems evident that
the most commom view among statisticians who accept the Rothamsted
principles, is that the testing of null hypotheses is the principal
pﬁrpose for which an experiment is carried out. In "The Design of
Experiments" (6.ed., p.16) Fisher writes: "Every experiment may be
said to exist only in order to give the facts a chance of dis-
proving the null hypothesis." Even if this point of view is often
regerded as extreme, it is in the main followed up by most writers
of papers and text~books dealing with experimental design and
statistical analysis. But, of course, such extreme and unrealistic

points of view are not shared by all. In some treatises the



problems concerning the estimation of treatment effects and
differences in such effects are pointed out as just as important as
those of testing null hypotheses. It may also be demonstrated

that Fisher's point of view is not shared by independent research

workers,

The function of an experiment is the production of data
that can be used in order to find the answers to questions. What
these questions are, is the concern of the research worker., In a
discussion of the methodology of experimental research, it must
be emphasiged that the questionsare asked in advance of the design-
ing and the carrying out of the experiment. In order to answer
the questions it is necessary to test statistical hypotheses and/or

to estimate treatment effects and differences between such effects.

For the testing of statistical hypotheses and the esti-~
mation of treatment effects, a number of apparently satisfactory
methods have been invented, particularly methods for testing
purposes. But on the whole, it can hardly be maintained that the
situation is quite satisfactory, i.e. satisfactory in the sense of

meeting the requirements of the research workers.

Heterogeneity of the experimental materialgigggginow to
be commonly accepted. It has been known and discussed at consider-
able length by several writers, and it was discovered before the
work on experimental design was begun at Rothamsted. It is, of
courge, the combined effect of a number of factors which are not

under control of the research worker, These factors affect the



experimental units in the same way as the experimental factors,
and therefore interactions between the two groups of factors
must be assumed to exist. It can be noted as a rather curious
circumstance, that writers who are much concerned with the
possible interactions between experimental factors, are dis-
regarding the interactions between experimental factors and
the heterogeneity factors. However, to proceed as if such
interactions do not exist, would be tc assume a too simple and
unrealistic model of nature.

The model describing the null hypothesis can be written
any way, provided it is capable of being tested. But, if it
is unrealistic, the implication of the rejection of the null
hypothesis mnay becomne very mixed. The usual models of
null hypod®heses presume additivity of treatment effects and
the effects of the heterogeneity factors. Such models may give
rise to strict mathematical treatment, but they are lacking
realism., In dealing with the estimation of treatment effects
and the differences between such effects, it is even more
important that the model is realistic. Therefore, models that
do not account for interactions between the t reatments and the

heterogeneity factors should never be accepted.



2. Treatments, Questions and Randomigation.

To apply a certain treatment to an experimental unit
means, of course, that it is being applied according to a certain
description. Therefore, it is impossible to repeat a treatment
two or more times, if perfect repetition is understood. A treat-
ment can only be repeated in the sense that a particular description
of the treatment is fulfilled. Therefore, even if it were possible
to find a number of experimental units that are exactly alike, the
same treatment applied to these units would not produce exactly
the same effect. PFurthermore, no two units of an experimental
material are exactly alike. All kinds of experimental material
are more or less heterogeneous. There are, therefore, always some
variation in the effect of the same treatment among a number of
experimenfal units. The most important factor causing this vari-
ation, is usually the heterogeneity of the material, but the failure
of the treatment to be exactly repeated plays some part. There
arc also errors of observation.

Suppose now, that the units of an experimental material are
divided into two samples, and that the same treatment is applied to
the units in both samples. Then, in order that the distributions of the
observed random variable are identical in the populations represented
by the two samples, it is necessary that the division is carried out.
by means of some technique of randomization. If such technique has
not been used, we have no guarantee that the two samples are random
representatives of the same population. Consequently, if a treatment

T1 is



applied to the units in the first sample and another treatment

T2 is applied to the units in the second sample, we have no
'guarantee that a comparison of the effects of the two treatments
will turn out to be unbiassed. A division of the material in a
non-random way, will therefore very often lead to false conclusions
with regard to the relative effects of the two treatments. In
spite of the fact that this consequence has been known for the last
30 years, research workers still try to get around it, claiming
that other ways of dividing the material lead to more precise com-
parisong and forgetting the bias, In the last section of this
treatise we are returning to a particular aspect of the principle
of randomization. Until then, we shall assume that the principle

has consistently been applied.

The purpose for which an experiment is planned and carried
out, is the concern of the research worker., But, if the intention
is to point out the method of the statistical treatment of the
experimental data, a general classification of the questions can
be framed., The following three groups should be satisfactory for

all situations:

1. The treatments are quantities, and the leading question

concerns the ranking of them on the outcome of the experiment.

2. The treatments are qualities and/or quantities, and the question
concerns the differences of the effects between treatments chosen

in advance,

3, The treatments are quantities, and the question concerns the
rule, if any, describing the way the effect depends on these

quantities,



In answering such questions, it is obviously important
that the experimental material is such that the answerscan be
applied ir a population of reasonable width. It is evident that
the material can be chosen in such a way that small and unimportant
differences may turn out to be statistically significant. Moreover,
there is probably always some difference between the effects of two
treatments, so that the null hypothesis can be rejected only by
choosing an experimental material having sufficiently small

heterogeneity.

The research worker should therefore always ask himself
what he is going to do with the results of the experiment. It is
important to know if the results are intended to be used for some
practical purpose or, if the purpose is to supplement the insight
and knowledge in some field. An experimental material which serves
the latter purpose, might be largely unsatisfactory for the first.
There are also possibilities for describing the population in which
the inferences are intended ‘o be applied, even if the description
night turn out to be vague. Such a description is a description
of the experimental material and the external circumstances under

which the experiment has been carried out.

In the different treatises of the methodology of today
there usually is a cry for efficiency. But, obviously, choosing
a design that is more efficient than another, practically always
implies a reduction of the width of the population and a reduction
of the generality of the inferences. The consequence is that the

same difference obtained with the more efficient design, does not



Usually mean the same as if a less efficient design had been used.
Therefore, the common and general recommendation to the effect

that the most efficient design ought to be used, is liable to

objection.
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%. Complete Randomization.

Suppose that the experimental material consists of 2n

units or replications and that the experimenter divides it, in a
random way, into two samples, each sample consisting of n units.,
Then, if one of the samples is used for treatment T1 and the other
sample for treatment T2, and the treatments are allocated the
samples in a random way, the research worker can be confident that
the difference between the effects of the two treatments (the
contrast) can be estimated without bias. Therefore, the most
important requirement of estimation is fulfilled. Also confidence

limits of the contrasts can be computed,

The generalization to k > 2 treatments is simple and
straightforward : gn experimentsl material consisting of nk units,
is divided randomly into k samples, and the k treatments are randomly
allocated the samples. In this case also a contrast between treat-

ments can be estimated without bias.

It is hardly possible to deal with any experimental situ-
ation without the aid of a model that gives a general description
of the possible outcome of the experiment. In the present case,
with k treatments Tj (i=1,2,..k) and n experimental units for each
treatment, the model is:

(3.1) ’ X35 % pFoagtoeyy (i=1,2,..0)

In this model in* are the observations, u is a general level,

*
Here and in the following sections we shall use the same letter to
denote a random variable and the observation of it., This simpli-

fication can hardly lead to confusion,
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and aj are effects of the treatments., Without loss of generality
we can let Ehj = 0 because, if Zaj + 0, aj contain a common element
that can be included in p.

The e's are ordinary random variables., Without loss of

generality it can be assumed that E(e = 0, and we may also

31
assume that the form of the distribution of e is the same for all
treatments. But, it canmmot be assumed that the k distributions

are identical. Such assumption would imply that all effects of the
treatments are included in aj, and this would be a too simple i1dea

concerning the rather complicated mechanism that usually regulates

the effect of a treatment.

The differences between the k distributions of e may
be differences in skewness and differences in kurtosis. But the
differences that are most important for the analysis of the
experimental data, are differences in the variance of e among the
treatments, This means that the research worker, in his analysis
of the data, has to deal with k variances, Varj(e). If the
necesgary caution is exercised during the planning and the admini-
stration of the experiment, the e's can be regarded as being
stochastically independent both within and between the treatments,

and Varj(e) can therefore be egtimated in the usual way.

I+t will be found that the mean of in for treatment Tj

is equal to



12

Since E(eji) = 0, it will be seen that E(Ej) = u o+ ay, showing

that Ej is an unbiassed estimator of the effect of Tj‘ Therefore,
the means yield an unbiassed ranking of the treatments.

A contrast is by definition a linear function of aj or,
a linear function of a sub-set of these parameters, e.g. the
difference (ap—aq). It will be seen that

(3.3) Ep;iq = (ap-aq) + (EPJEq)

and, hence, that the difference between the means is an unbiassed
estimator of the contrast. It will also be found that the

variance of the difference is equal to
Var(xp-xq) = [Varp(e)+Varq(e)]/n

Therefore, except if Varj(e) is a constant, the precision of the
estimator of a contrast is not the same for all contrasts. Thus,
the common practice to use the same error mean square for the
computation of the confidence limits of all contrasts, should not
be recommended. The research worker can never know that Varj(e)
is the same for all treatments. On the contrary, it is very un-

likely that this variance is ever a constant.

If the distribution of e is normal and V., = —mr5(x..-%.)2
J n-1 ji 73
approximately correct confidence limits of the contrast (ap—aq)
are
o4 X -X. + '
(3.4) (Xp Xq ¥ taV(Yb+Vq)/n

where ta is the tabulated significance point of Student's t,

the number of degrees of freedom being 2(n-1). That the limits
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are approximately correct means, of course, that the probability
of the interval covering the contrast is approximately equal to
(1-a).

Usually, however, the research worker wants to estimate
more than one contrast. If two contrasts are (a_-a

J
where p#fr#s, no difficulty is involved. But the research

) and (s -2,),

worker may want to deal with e,g. the contrasts (ap—aq) and (ap-ar)
simultaneously. In this case the two estimators (Ep4§q) and
(xp—xr) are correlated. The same is the case with (Vp+Vq) and
(Vp+Vr). Nevertheless, the probability of the intervals

% F) Tt T ,)7R %) T g (VT /A
(xp xq) T ta 'Vp+Vq n and (xp Xr) ¥ty (Vp+Vr) n

simultaneously covering the contrasts (ap—aq) and (ap—ar) is
approximately equal to (1—a)2. As will be shown in sections
6-7, this implies that, if we compute the confidence limits of
the two contrasts in the described way, the confidence probability
of each of the two intervals is but slightly different from (1-a).
I+ will also be shown that this result can be generaliged
to cover k treatments and (k-1) contrasts or, that there is ample
ground for such a generalization. It is very important, however,
that a separate error mean square is used for each contrast.
In the methodology as it is usually presented, much
emphesiz: is placed on the so~called orthogonal functions of the
treatment means. For instance,

Yq = Xq=X5 and Vo = x1+x2-2x3
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are regarded as being orthogonal, i,e., non~correlated. It is
easy to show, however, that the two functions are orthogonal
only if Varj(e) ig the same for j=1,2 and 3. In practice it
would, therefore, be rather rash to regard them as being
orthogonal. But, in the defence of the use of such functions,
it rmust be pointed out that it is reasonable to assume that the
correlation between them is weaker than the correlation between
other functions, and that they may be preferred for that very
reason. The difficulty is that they very seldom correspond to

actuzal questions.
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4, Randomized Blocks.

In a randomized block experiment a replication is a
group of experimental units, and the number of units per
replication is usually chosen equal to the number of treatments.
For instance, in a feeding experiment in which a pig is an
experimental unit, a litter can be used as a replication. In
a field experiment the experimental area is divided into a number
of smaller areas of equal size, the blocks or replications, and
each of these into a number of plots (the units). In these cases
randomization means complete randomization within each replication.

In this case the replications must be regarded as a random
sample. Thus, the pupulation is the one the sample of replications
represents in the sense of a random sample, and it is an avbstraction.,
In our first example this idea is easily conceived, as the sample
of litters might actually have been drawn at random from an exist-
ing population of litters,which in turn can be regarded as the
randon representation of an abstract population.

In our second example the idea might be more difficult to
accept. However, suppose a research worker is planning a local
field plot experiment, and that the total cultivated area of a
farm is placed at his disposal, Then, he can divide the whole erea
into a number of blocks of the size he wants to use, and from his
existing population of blocks he can draw at random a sample ci

blocks. After having drawn this sample, he might find thot the
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blocks, belonging to the sample, are scattered over the whole area
of the farm. He may therefore find that this sample is too
troublesome to use in practice, and for that reason choose one of
the samples having the practical advantage that the blocks are
lying side by side. 1t is evident that usually this latter sample
represents, in the sense of 2 random sample, an abstract population
of less width than the one that is represented by the randomly
drawn sample. Nevertheless, the chosen sample of blocks can be
regarded as a random representation of some abstract population.
Usually, this population is rather narrow and, therefore, the
inferences (if any) that are drawn from the experimental data, can
be applied in a small range only.

This idea is not a new one. Somewhat hesitatingly, it
has been forwarded by several authors. However, it is a fact - in
our opinion a regrettable one - that this way of thinking has not
been found worthy of being followed up.

In this case there are always two components of hetero~
geneity of the experimental material : heterogeneity among the
units within the replications and heterogeneity among the repli-
cations. Therefore, we must deal with "intra block" and "inter
block" heterogeneity factors. They are not necessarily different
factors per se. In a field experiment they are usually the same
factors, Nevertheless, it is necessary to distinguish between
them because of the interactions between the treatments and these

factors.
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Suppose that the number of treatments is k, the number
of replications ig n, end let j=1,2,..k, i=1,2,..n. Then, the

general model for the experimental data is

(4.1) Xgg T ptagtozg Uy b ey
In this model u and aj are parameters, z, u, and e are random
variables., Without loss of generality we can let zaj=0 and
E(e) = 0 for each j and i. However, since e is an effect of the
intra block heterogeneity factors, and therefore also covers the
interactions between the treatments and these factors, the dis-
tribution of e must be taken to be different from the different
treatments implying e.g. that Var(e) is not the same for all
treatments.

The variables z and u are both effects of the inter block
heterogeneity factors : z the effect common to all treatments, and
u the interactions between the treatments and the heterogeneity
factors. Without loss of generality we can let E(z) = 0 and
E(u) = O for each j. But in other characteristics (e.g. the
variance) the distribution of u must be assumed to be dependent on
the treatments. It is important to notice that z and u camnnot be
taken to be independent variables, and that the u's cannot be
regarded as being independent among themselves. Of course, some
of the u's might be independent. In saying that correlations
are present, we do not mean that such is the case for all com-

parisons and under all circumstances, It is evident, however,
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that the research worker can never lknow that such correlations
do not exist, and he must therefore use such statistical treatment
of the experimental data as allows for these correlations.

It will be found that the mean of x for treatment Tj

is egual to

. X. = .+ Z 4+ U, + 6.
(4.2) Xy = p+oag+ 3+ Uyt ey

and, since E(z) = E(u) = E(e) = 0, that E(Ej) = p+ ay.
This shows that the mean is an unbiassed estimator of the effect
(p+aj) and, hence, that the means yield an unbiassed ranking of
the treatments.

For j=p and j=q¢ it will be found that

ip;iq = (apnaq) + (E§4ﬁq) + (Ep¥€q)

and, hence, that E(EPJEQ) = ag=ag i,e. that the difference
between the means is an unbiassed estimator of the contrast.
On account of the interactions, the variance of the difference
cannot be taken to Be the same for all contrasts, and an individual
estimate of the variance must therefore be used for each contrast.
If we for each replication use the difference 4_,. . = x

pai =~ FpiTFqi!

it will be found that qu = §p4§q and the variance is estimated

by qu/n, where

_

2
qu T on=1 )

E(dpqi':apq

Owing to the robustness of Student's t the research worker can be
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confident that the probability of the interval

covering the contrast (ap~aq), is approximately equal to
oot

The method of computing the confidence limits can be
used for any contrast. But in this case also, the research
worker usually wants to estimate more than one contrast. On
account of the interactions between the treatments and the
inter block heterogeneity factors, the estimators of the
different contrasts are correlated, having different vari-
ances. Nevertheless, the confidence probability of each of
the intervals, the limits of which are computed as descritved,
is but slightly different from (1-a). We return to this state-
ment in section 7 to which we refer.

It is evident that if the number (n) of replications
issmall, the precision of the estimator of a contrast is
usually very low. It is right, of course, that even if n is
very small, interesting inferences might be drawn. But usually
these inferences are such as are obtained through the rejection
of the null hypothesis. If the research worker is interested
in the estimation of contrasts, and the number of replications
is very small, he cannot expect to find the estimators precise
enough to serve any reasonable purpose.

Of course, it is so also if complete randomization
has been used. However, if the number of experimental units
for each treatment is the same as in case a randomized block

design had
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been used, the number of degrees of freedom is greater for the
firat than it is for the latter plan, i.e. 2(n-1) for the first
and (n-1) for the latter, PFor small n this difference means

an important difference in the value of t,., This difference may,
however, be more than counterbalanced if the inter block hete-
rogeneity is materially greater than the intra block hetero-
geneity. Therefore, the precision of randomized blocks aas compared
to complete randomization, depends both on the value of n and on
the difference between the inter and intra block heterogeneity.
Thus, if n is small, the arrangement of the experimental units
into blocks must result in removing a very large part of the hete-
rogeneity in order that the difference in t, can be expected to

be neutraliged.

Having carried out a randomized block experiment, the
reséarch worker may find that some observations are missing or,
that they are to such an extent deviating from the rest of the
observations that it is reasonable to doubt if they are correctly
recorded, ©Such results may happen through failure to record, or to
gross errors.

In order to restore the orthogonality of the observations,
techniques known as missing plot techniques have been invented,
presuming additivity of the effects of the treatments and the
heterogeneity factors. Since we do not regard such a model as a
realistic one, and the research worker cannot know that it is
realistic, we think that these techniques should not be recommended,

It is obvious that, if the research worker is engaged in the
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estimation of contrasts, the use of such techniques is unnecessary.
If one or more observations are missing for two treatments TP

and Tq, and the research worker wants to estimate the contrast
(ap—aq), he should be content with those observations that he has
obtained and accepted.

If the research worker is interested in carrying out
an analysis of variance and an F test, it might not do any damage
if a few observations are replaced by means of a missing plot
technique, But, not even then, the use of such g techuique is
necessary as there always is some part of the observations which
is orthogonal., For this part an analysis of variance can be
carried out and, if it matters much, the observations for the other
treatments can be linked to the orthogonal part by means of linear
functions. Even if the number of degrees of freedom for the error
mean square is reduced by onewmit for each restored observation,
it seems to be evident that the use of a missing plot technique
to any large extent might completely falsify the result of the
analysis,

The situation might be much more difficult to deal with
if an observation seems to be faultily recorded. In some cases
the observation is to such an extent different from what should
be expected, that there can be no doubt that a gross error in the
recording has been made., In such a case it is reasonable to
treat the observation as a missing datum. However, there are
cases in which the research worker may be in doubt concerning the
reliability of the fecord. Then, it may be very difficult to say

what to do about it. The most unsatisfactory way of dealing with
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the matter in such a case, is to use a missing plot technique.

An apparent faultily recorded observation might be due to
interaction between the treatment and the heterogeneity factors,
and the use of a technique which is invented under the assumption

of additivity, might therefore lead to false conclusions.
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5. The Role of Mathematics.

If by statistice is meant method of research, statistics
is not applied mathematics. However, mathematics has played and
still playsan important role in the development of statistics and
research method. It must necessarily be so. But research workers
should always remember that a mathematical deduction needs some
premises. It should also be remembered that such premises as it
has been necessary to use, are rarely in keeping with the actual
experimental situation.

This implies that usually the result obtained by mathe-
matical deduction, iy it holds any interest whatever, is merely a
part of the development of a research method. In one way or an-
other the result has to be tested in order to find out whether the
use of it is limited to cases satisfying the premises or, if it can
safely be applied in a wider field. In general, the premises that
are used, are too limited in scope to justify the classification
of the result of a mathematical deduction as a method of research.

For instance, congider the distribution of the statistic
t developed by W.S. Gosset, Student, (45), for which a rigorous
proof was given by R.A. Fisher (13). An important premise for the
mathematical deduction was that the observed.fandom variable is
normally distributed, There are several grounds for doubling the
realism of this premise. It is hardly possible that ary random
variable exists, which is so distributed. Certainly, a large

number of actual random variables are found, the distributions of
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which closely resemble the normal form, but there also are actual
distributions that deviate considerably from this model., In conse-
quence, the distribution of t as developed by Gosset, had to be
tested. On the whole, the results of these test are satisfactory,
and the t distribution is therefore now commonly accepted as a tool
of research within a very wide field.

In the development of a statistical method there usually
are two elements : mathematical deduction on chosen premises and the
testing of the result of the deduction in order to see whether or not
the premises are important. Statistics, as it is presented and
regarded as a body, consists partly of a large bulk of techniques
that are never tested satisfactorily, if at all., This may be the
result because most people find mathematical deductions more interest-
ing and entertaining than they find the vefy tedious work involved
in the testing of techniques. With the development of the electronic
computers the testing of techniques is much simplified, so that
research workers may look forward to interesting and useful develop-
ments,

In the present treatise some new techniques are suggested.
We have tried to test them as elaborately as it has been possible,
But we have not had the facilitiesto use the electronic computer fo the
extent we would have wanted to. Therefore, results from new tests

would be very welcome,
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6, Simultaneous Statistical Inferences.

Suppose that m independent experiments have been carried
out -~ by one or a number of research workers - for the specific
purpose of producing data upon which a certain parameter can be
estimated. Moreover, suppose that the confidence limits of the
parameter are computed for each of the m cases, and it is stated
for each case that the value of the parameter is covered by the
confidence interval., Then, the probability of r correct statements

is given by the binomisal
_ (m r m-r
(6.1) P.=(,) (1-x)7a

where (1-q) is the chosen confidence probability. Therefore, the
expected number of correct statements is m(1-®@), It is also worth
noticing that the probability of all statements being true is

P, = (1~a)m, and the probability of at least one false statement is
1-(1-q)™. Consequently, in a very large number (m) of cases, the
probability of all statements being true approaches gzero, and the
probability of at least one false statement approaches unity.

These results are consistent with the conclusion that,
if the number of cases is large enough, at least two confidence
intervals will be found that do not overlap and, hence, that at
least two statements contradict each other, It is fairly easy to
see that the results can be extended to cases in which different
parameters are being estimated. :

Now, suppose that the research worker wants to estimate
two parameters, 91 and 62. Then, in order to obtain two confidence

&, €,
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intervals that are consistent with (6.1), he should carry out two
independent experiments, one for the purpose of estimating 81

and one for the purpose of estimating 82. However, this would be

too expensive, Therefore, he has to be content with one experiment,
the consequence being that the date which are used for the estimation
of the paramenters, are not stochastically independent. This fact
raises the problem of how confidence limits of the contrasts ought

to be computed, Several methods have been suggested., We refer to
the summary given by Federer ( 8), to Mood and Graybill (24, to
Miller (23, and to the literature cited in these treatises.

The solution has been sought in the experimentwise con-
fidence coefficient, which is the confidence probability of the
confidence intervals of all possible contrasts simultaneously. Mood
end Graybill (24 ,p.268) write : "If in 95 per cent of the experi-
ments each of the t(t-1) confidence intervals covers its respective
difference (Mi—Mj), we shall say that the experimentwise confidence
coefficient is .95," These attempts to find the solution to an
intricate problem give rise to the following questions and objections.

There must be an upper limit to the number of contrasts,
less than the total number of possible contrasts, that can be
irmediately estimated. We think it is easy to see that this limit
is (k-1), where k is the number of treatments.

A contrast is by definition a linear function of the

parameters Gj = p+ a. (j=1,2,..k) i.e.

J

- C = 2A. 0, = ZA, .
p ip 3 ip?;
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for which Bhsy = 0. If a set of (k~1) contrasts is chosen in
such a way, so that none of the contrasts can be derived from the
other ones, all other contrasts are linear functions of sub-sets
or the whole set of the chosen ones., This implies that the esti-
mates of Cp for p 2 ¥ can be derived from the estimates of Cp for
p < k. The confidence limits of Cp for p 2 k cannot be derived
from the confidence limits of Cp for p ¢ k, but the central values
of the confidence intervals can be regarded as derived estimates.
Therefore, our argument 2lso holds for the confidence intervals.
This conclusion is consistent with the well known fact that the
treatment mean square in the analysis of variance can be divided
into (k-1) components.

Suppose that there are m é k-1 contrasts to be estimated,
and the confidence limits of these contrasts are being computed.
Then, the use of the experimentwise confidence techniques implies
that the limits ought to te oomputed in such a way that the proba-
" bility of all intervels covering the contrasts is equal to (1-a),
€«8. 0.95. This means that the confidence probability of the
confidence intervals simultaneously covering the contrasts is
chosen independent of the number of contrasts.

We are not able to see the justification of this principle.,
In our opinion the limits of the intervals should be computed in
such a way that the confidence probability of the intervals simul-

taneously covering the contrasts is equal to (1-a)m. This implies

*hat the intervals computed by means of the observations obtained
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“n the same experiment, even if there are correlations among the
estimators, will obey the same probability rule as the intervals
obtained from independent experiments, The technique for the
computations of such confidence limits is treated in the next
section to which we refer.

If we are dealing with tests of significance, we are
also faced with the problem of testing m null hypotheses in cases
in which correlations are found betwecn the different test variohi~-
Then, in the same way, we should use such points of significance
as will make the probability equal to «™ for simultaneous false

rejections of all null hypotheses.
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7+ The Estimation of Contraats.

It will now be assumed that in plamning the experiment,
the research worker has decided on the contrasts he wants to
éstimate. If the number of these contrasts is k-1, the experi-
ment must be carried out with k treatments, c.p. the preceeding
section.

The usual methods for the computation of the confidence
limits of a contraat, rest on the assumption that the effects
of the treatments and the heterogeneity factors are additive,
The confidence limits of the contrast ake, therefore, computed
by means of the error mean square for the whole experiment,

AS the assumption of additivity is unrealistic, this me thod

is lacking justification and, if it is used, the research
worker cannot know the confidence probability of the confidence
interval. He should therefore use the methods described in
sections 3 and 4. Then, choosing the value of « in advance
(eege a = 0.05) and using these methods, the research worker
can be reasonably certain that he is working on a confidence
level that is very close to (1-a).

However, in practice the research worker usually wants
to estimate more than one contrast. In fact, if k treatments
have been included in the experiment and the principal purpose
is to estimate contrasts, the reason for including k treat-
ments must be that he has decided upon k~1 contrasts. Then,

the problem is to decide which method should be used in order
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that the probability of the k~1 confidemnce intervals covering
simultaneously the contrastg,is equal to (1—a)k-1, c.p. section
6. It will now be shown that, in spite of the correlations
and to the extent our data can be relied upon, the methods

described by (3.4) and (L.3) approximately satisfy this
requirement.

Suppose that the experiment is a randomized block
experiment with k = 3 treatments and n replications. Let the

two contrasts be C1 = a,~a, and G, = The unbiassed

178 2 T BpT8ge

estimators of these contrasts are d1 = x1—x2 and d2 = x2-x3,
d, and 4, being defined in section 4. Let V1 and V, be the

1 2
two relevant mean squares {(c.p. section L), 012 and 022 the

corresponding population variances, r the sample correlation
coefficient, and p the population correlation coefficient

between d1 and dz. Then, assuming that d1 ahd d2 are both

normally distributed, it will be found that the maltiple

distribution is

Vz,r) = Q(V1V2)%(n_2)(1-r2)%(n—u)exp.-;ﬁ—§;

(7.%)  P(t,,t,,V
ve 2(1-p

1)

where 4 is a known constant,

q,-C d,~C
t = . A and t2 - 22
T fiy/m “az/n
and
4 +ne=1 t +n—1 ' v
M = "J“"——V + 2 V. - 2plt, t, + (n-1)r 12
o 2 1 2 2 L7172 0,0,
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The probability of the numerical values of t,,f and t2 being
simultaneously less than ta' where ta is the point of sig-
nificance of Student’s t for n-1 degrees of freedom, is then

equal to the integral:

A= j. ..] F. dt1dt2dv1dvzdr

A
A

The integration intervals are : -t

A

and -1 = r = + 1,

For given values of o, and o, A depends on p and n.

1
It can be shown that for any n, A is a ninimum for p = O,

the minimum being equal to (1-a)2. In order to £ind to what
extent A depends on p and n, numerical integrations have
been carried cut for a = 0,05, o, = o, = 1 and some chosen
values of n and p. The results for Ajf are shown in Table
7.1. It will be seen that the values are but slightly larger

than 1-a = 0.95, indicating that the effect of n and pon

the confidence probability is too small to be of practical

significance.
Table 7.1 VA
p
n
0.3 0.6 0.9
L 0.950 0.953 0.959
8 0.951 0.955

15 0.951 0.955
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Turning next to an experiment assumed to be carried out
according to the principle of complete randomization; we shall

~onsider the contrasts C1 = a,l-a2 and 02 = a2-a3. The estimators

are 214§2 and §2¥§3, which are both unbiassed. Let

1 72 71 2 3 2
and t, =
1 J@2+V257n 2 J(V2+V3)/n

where the V’s are the usual treatment mean squares. Then, assuming
that the observed random variable is normally distributed, the
multiple distribution F(t1,t2,V1,V2,V3) can be derived. Then, let

A= f.../ F. dt1dt2dv1dV2dV3

the integration intervals being -ta 22 ta and o = v = &b,
where t_ is the point of significance of Student’s t for 2(n-1)
degrees of freedom. Numerical computations of this integral have

been carried out for 9, = 02‘= = 1, a= 0.05, and for three

a
3 4

chosen values of n. The results for &% are shown in Table 7.2.

It will be seen that in this case also the values are but

slightly larger than 1-a = 0.95.
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Tahl.e 7.2_-

nNj=

3 L 0.953
5 8 0.953
10 18 0.954

The implication of these results (Table 7.1 and 7.2) is:
having chosen the value of a and computed the confidence
limits of the two contrasts in the described way, i.e. by
(4+3) and (3.4), the research worker can be satisfied that
the confidence probability of the two confidence intervals
simultaneously covering the contrasts is approximately equal
to (1—a)2. This means that, in spite of the correlation, the
confidence probability of each of the two intervals is
approxim tely equal to 1-a.

It 1s obvious that the scope of these results is
rather limited. It has been assumed that the random variable
is normally distributed, and that there are no interactions
between the treatments and the heterogeneity factors. Further-
more, no more than kK = 3 treatments have been included. In
order to widen the scope, such computations might have been
extended to cases covering larger numbers of treatments and
non-normal random variables. The computations should also
have been carried out for different values of ., Lack of
facilities have prevented the extension in these directions.

AB a substitute we have carried out tests by means of con-



structed examples.

Three examples of randomized block experiments were
constructed by means of Wold’s table of normal deviates, Wold (29).
The rows in this table were then regarded as representatives of
the replications. If h stands for the column number, the examples

were constructed according to the model
Xgp = B ¥ ByZag vt 2y

where the z’s are the normal deviates, i=1,2,..n=5, h=2,3,..(kt1),
and j=h-1. In examples 1 and 2 Bj was chosen equal to unity

for all Jj« 1In example 3 the chosen values of Bj were

(=10), (~5), (10), (20), (25), and (30)
for treatments T1, T2""T6'

It will be seen that in the first two examples additivity
is assumed, while in the third example interactions between the
treatments and the inter block heterogeneity factors are included.

Confidence limits of the contrasts aj—a = 0 were computed by

1
(4L.3), using the observed differences dji = xji'x(j+1)i'

Let r stand for the number of confidence intervals that
do not cover the contrast. Then, if the correlationsbetween the
d’s among the contrasts do not affect the confidence probability,
the probability of (k-1-r) intervals covering the contrast will

be the binomial (c.p. section 6):

£(r) = (k;1)a; (1_a)k-1—r
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and the expected number of such intervals will be N.f(r), where
N is the number of samples. In Table 7.3 the observed number

(nr) and the expected number of such samples are compared for

each of the tkree examples.

Table 7.3. n = 5 blocks, k treatments, a= 0.05.

Txample no

r 1 (k=L) 2 (k=10) 3 (k=6)
n, Nf(r) n, Nf(r) n, Nf(r)
0 159  159.47 61 63.02 76 77.38
1 25 25.18 29 29.84 22  20.36
2 2 1.35 10 7.14 2 2.26
N 186 100 100
nO/N 0.855 0.610 0.760
0.95%1 0.857 0.630 0.774
1/k~1
(ng/N) 04949 0,947 0.947
1-1/K~1 0.949 0.946 0.947

Let 1-a’ be the confidence probability of the confidence
interval of a single contrast regarded alone. Then, if the
before mentioned correlations do not affect the confidence level,
the confidence probability of all intervals simultaneously covering

the contrasts is equal to (1-a’)k—1, the estimator of which is

n/N. Thus, the estimator of 1-a’ would be (nb/N)1/k_1. The
latter estimator is not unbiassed, but if the number (¥) of

samples is large, it will give a fairly satisfactory approxination,
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On the other hand, if the correlations do not affect
the distribution of r (e.p. Table 7.3), also 1-r/k-1, where T
is the arithmetic mean of r, is an unbiassed estimator of 1-a’.
However, the correlations do, in fact, change the distribution
of r to some extent, and, therefore, not even the latter e stimator
of 1-a’ is quite satisfactory. We have therefore used both esti-
mators in our examples. It will be seen from Table 7.3 that for
the three cases considered, the values of both estimators are
very close to the chosen value of 1-q, i.e. 0.95. That this is
so in other cases as well, is shown by the following examples.

In examples nos. 4 and 5 the experiments were carried
out according to the principle of complete randomization, and in
both examples the additive model was used. TFor example 4 (n=5,
k=3) the observations were taken from Wold’s table of normal
deviates in the same way as in the first two examples, but now
the values in a column were regarded as observations in a chie-way
classification. The estimated contrasts were (a1-a2) and (a2—a3).
In our fifth example (n=5, k=5) the observations were taken in
exactly the same way from the table presented by Quenouille 1),
column 8, which are sampled from the two-sided exponential.
The estimated contrasts were (a1—a2), (az-aj), (aB—au),and (au—a5).
In both examples the confidence limits of the contrasts were
computed by (3.4), using separate mean squares for the different
contrasts,

This part of the investigation was accomplished several

years ago, at a time when we had nc access to the use of an
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electronie computer. Therefore, we were bound to use existing
tables of random values, and small numbers (N) of samples. In
our last six examples most of the work has been carried out on an
electronic computer.

In our last six examples the samples were drawn from

the distribution

£(z) = R 2% (10-2)° 0%z% 10
In examples 6 and 9: a=b = 2, E(z) = 5
" 7 " 10: a=2, b=lk, E(z) = 3.75
" 8 " 11: a=0, b=2, E(z) = 2.5

In examples 6, 7 and 8 the experiments were carried out according

to the principle of complete randomization, and the model was

X

Wi

1,2,..10}

- ‘ i
ji = vt By lzy-B(2)] {;; 175710

The values of Bj were for J = 1,2,..10:

(L), (1:5), (1) (3)5 (3475), (2.75), (3.5), (2.5), (3.25), (2).

In examples 9, 10 and 11 the experiments were carried out

acco rding to the randomized blosk design, and the model was
Xjy = u+ gh[z -E(z)] + Yh[zhi -E(z) ]

i=1,2,010=n, h = 2,3,..11 = k+1, j = h~1. The values of

ﬁh were for j = 1,2,..10

(W), (1.5), (1), (3), (3.8), (2.8), (3.5), (2.5), (3.2), (2)
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and Y, = %Bh.
In all six examples the estimated contrasts were

-oo.C = a . -a L]

3’ 9 9 10

C, = a

g = 8478y Cp = 8

2‘-'8

Por each of the six examples N = 300 experiments were sampled.
The percentage number of expcriments for which the

contrast (=0) is covered by the confidence interval is shown

in Table 7.4. The confidence limits were computed by (3.4)

and (4.3) and a = 0.05. It will be seen that for all contrasts

and examples the percentage number is very close to 95%. Since

the departure of the distributions in these examples from the

normal is considerable, and the variances are changed to a

large extent among the treatments, the results are new veri-

fications of the robustness of Student’s t distribution.

Table. 7.4. Percentage number of confidence intervals which
cover the contrast. a= 0.05.

Example no.

6 7 8 9 10 11
1 93 95 g2 gL oL oL
2 94 95 aL 96 93 9L
3 92 96 93 93 95 g4
4 96 gl 93 97 96 96
5 95 9L 9L 96 96 96
6 96 93 93 92 96 97
7 9k 95 94 9l 96 ol
8 93 9L oL 95 93 oL
9 9L 93 93 96 93 95

Total  94.24  9L.25  G3.45 94.75 9L.67 9L .89
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fmong the k~1 = 9 estimators in examples 6, 7 and 8
independent sets can be selected. For instance, there are
two sets of four estimators. The results for these are given
in Table 7.5 under the notation: examplesno. 6, 7 and 8 and
k = 5.

Let n, stand for the number of samples, or experiments,
for which the contrast is covered by the confidence interval.
In Teble 7.5 are shown for examples no. 4 to 11 the values of
n /N, (1-0)"7" = 0.95577, (nO/N)‘/”"‘1 and 1-7/k-1. It will be
found that some of the frequencies (no) differ significantly

from N(1-a)k—1, which is to be expected. Nevertheless, the

1/k=-1

values of both (no/N) and 1-r/k-1 are very close to

1-a = 0.95 for all examples.

Table 7.5 a= 0,05,

Exig?le Design k¥ n N nO/N 0.95k L (1rxo/N)1/k 1 1-1/k~-1
L Comple.Rand 3 5 100 0.920 0.903 0.959 0.955
5 " 5 &5 LO 0.875 0.815 0.967 0.963
6 " 10 10 300 0.617 0.630 0,948 0.942
7 " 10 10 300 0,600 0.630 0.945 0.943
8 " 10 10 300 0.573 0.630 0.940 0,937
6 " 5 10 600 0.815 0.815 0.950 0.944
7 " 5 10 600 0.803 0.815 0.946 0.944
8 Y 5 40 600 0.783% 0.815 0.941 0.935
9 Rend.Bloecks 10 10 300 0.680 0.630 0.958 0.947
10 " 10 10 300 0.663 0.630 0.955 0.947
11 " 10 10 300 0.687 0.630 0.959 0.945
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Comments on these results are not necessary. It might
be well to remember, however, that in practice there hardly
exists a case which perfectly satisfies the assumptions under-
lying the use of Student’s t for the computation of confidence
limits of a parameter. Therefore, if the research worker com-
putes the confidence 1limits of a contrast, using the tabu-
lated value of t that corresponds to e.g. a = 0.05, he should
remember that the confidence probability of the resulting
interval is hardly ever exactly equal to 1~a = 0.95. It is
necessary for him to know, however, that the confidence pro-
bability is close to the chosen 1-q.

The results obtained in our investigation, indicate
strongly that if the confidence limits of the contrast are
computed by (3.4), or (L.3), the confidence probability of
each contrast is simultaneously approximately equal to 1-a.
Non-normality, unequal variances, correlations between the
estimators of the contrasts, and correlations between the
estimators of the mean squares, do not materially affect the
confidence probability. Of oourse, a pertinent question is
whether or not the included examples cover so much ground
that a general conclusion is Justified. This is a questicn
that may be raised in all situations of this kind. A gereral
answer can hardly be given. However, the larger the number of
examples is, the more confidence can be placed on the results.
e have tried to cover as much ground as it has been possible
for us to do. But it is evident that results from new investi--

gations are welcoue.
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8, The Analysis of Variance and the F Test.

Consider an experiment according to the principle of
conplete randomization with k treatments (Tj, J=1,2,..k) and n
experimental units for each treatment. The general model for
the observed random variable is given by (3.1). For this case

R.A, Pisher (4@8) introduced the two mean squares

i

n - =2
Vp = g1 E(xy-x)
V. U O Y
R = k(n-1) i

and the statistic z = $log.F, where F = V/ Ve

It can be shown that if eji are stochastically inde-

pendent values of a random variable ¢, the expectations of the
two mean squares are

n 23,2

E(Vq) = g 2Ver;(e) + g2y Za,

=

and

i

% ZVarj(e)

E(Vg)
where Varj(e) is the mean square of ¢ for treatment Tj' Therefore,
V, » Vg indicates that Zaj2> 0, i.c. that the effect is nc. the
~ame for all treatments, However, the problem still is how large
P = VT/VE must be in order to be taken as meaning, on some chosen

2

level of significance, that Zaﬁ > 0. The answer to this question,

given by Fisher, was his deduction of the distribution of F (or,z)
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and the premise was

where eji is assumed to be N = nk stochastically independent values
of a normally distributed random variable, Regarding this as the
null hypothesis (HO), it can be tested by means of the tabulated
significance points of F.

In practice it is usually taken for granted that rejection

2 > 0, but obviously this is not the only

of Ho implies that Eaj
alternative., The null hypothesis also covers the statements that
e is normally distributed and that Var(e) is the same for all
treatments. Therefore, statisticiens have been concerned with
the effect on the distribution of P of changing these two parts of
the null hypothesis. The results of the different investigations
are that the test seems to be too sensitive, This is chiefly due
to differences in Var(e) among the treatments and not so much to
the form of the distribution of e. We confine ourselves to referring
to Horsnell (19), the summaries given by Coochran and Cox ( 5) and
Scheffé (32', and to the literature cited in these publications.

If proper randomization has been used, differences in
Var(e) among the treatments are due to interactions between the
treatments and the heterogeneity factors. The research worker can
hardly know to what extent the distribution of F is affected by such
interactions in the actual case under consideration. He is bound
to place reliance on the results of the different investigations,
which indicate that the effect is not important. This is sub-

stanciated by the results of some new investigations to which we are
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returning. Even so the F test should be used with some amount of
reserve also in the present case.

Turning next to the randomized block experiment, we shall
assume that there are k treatments (Tj’ =1,2,.+k}, n blocks or
replications (i=1,2,..n) and m experimental units (h=1,2,..m) for
each treatment and block. In this case the analysis of variance

results in the following relevant mean squares:

S

in"™ %51
The assumptions underlying the F test for this case is

the simplified model, c.p. model (L.1),

= + z2, + €
b 1

Xs54in jih

in which ejih are assumed to be N = nkm stochastically independent
values of a normally distributed random variable. It is also
assumed that Var(e) is the same for all treatments. Then, it can
be shown that Fp = VT/VTR and Fpp = VTR/VR are both distributed
in the standard F distribution.

As a side issue it must be pointed out that the two mean square

ratios are not indépendent. Therefore, to enter the F table
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with the two rati;;; simultaneously, cannot be recommended, In
practice m is usually chosen equal to unity, so that the problen of
the effect of the correlation is not important.

Prom the xeneral model (4.1) the expectations of the
three mean squares can be developed easily., Letting m = 1, and
writing, for short, Var(u) and Var(e) for the means of the k values
of Varj(u) and Varj(e), the formulae are

n —_ 1 - 2 ¥l 2
E(VT) = Var(e)+Var(u) EXE;HT-ZZCovar(up,uq)+ = Zaj

where pzq, and

{ - __n 2
F'VTR) = E(VT) = Zaj

Therefore, also in this case Vp >> Vqp indicates that Zan > 0,
i.e, that the effect is not the same for all treatments. However,
if by the null hypothesis is meant a; = 0 (or, Zaj2 = 0), the model

to be tested is

S I B PR ST I
Therefore, the P test is merely an approximation. That this 1s so,
has been recognized by several statisticians, But as far as we have
been able to make out,sufficient information on the degree of
approximation is wanting.
Lacking the necessary facilities, we have not been able to

use large numbers of examples showing the effect of the interactions.
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The results obtained by using the examples from section 7 might,
however, throw some light upon the reliability of the test,

In example 3 k=6 and n=5, so that the numbers of degrees
of freedom are k-1=5 and (k-1)(n~1) = 20 for Vp and Vop. According
to the standard F distribution we should, therefore, expect in 100
experinents to find 5 F-values less than 1/4.56 = 0,22 and the sane
nunber larger than 2.71. The number of F~values actually found in

the different classes are

z < 0.20 16

0,225 7 < 2,7 68
Flo.71 16

100

This result indicates that the null hypothesis aj = 0 night be
falsely rejected about three times as often as is prescribed by the
theory underlying the tabulated points of significance. Since
interaction between treatments and replications would be expected
to affect the F distribution in this direction, the trend shown by
the result is not surprising. The interaction effects are not
exaggerated to puch an extent, that the experimental situation is
totally lacking realism. The lnrealistic part of these experinents
is that intra block interactions are not included., It is likely
that the influence of the latter interactions is to the effect of
bringing the distribution of F into better agreement with the
standard distribution of the normal theory. The results from sone
snall experiments that have been carried out with normal deviates,

seen to substanciate this belief,
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We have also used examples 6 and 9 in section 7. In
both cases the observations were drawn from a symmetrical Beta
distribution. In example 6 the experiments were constructed
according to the principle of complete randomization with n=10
replications and k=10 treatments. In example 9 we used the
randomiged block design with n=10 replications and k=10 treatnments.
The results are shown in Table 8.1 where N is the number of experi-

nents and r the freguency of F 2 Py,

Table 8.1

Example no o N Cr r/N
6 0.1 375 43 0.115
0.05 " 20 0.053

0.01 " 4 0.011

9 0.01 300 49 0.163
0.05 " 31 0.103

0.01 A 11 0.037

It will be seen that in example 6 the relative frequencies (r/N)
are approximately equal to the expected ones according to the
standard F distribution. However, in exanple 9 the frequencies
are larger, e.g. the estimated probability of F exceeding the 5
per cent level of significance is equal to 0.1.

These results are consistent with the results found with
normal deviates. Together, the results show that if the randomized
block design is used, the effect of interactions between the treat-
nents and the inter block heterogeneity factors, is an inflation of
the sensitivity of the F test. This d0d6s not stem to be ..

so for experi-
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nents carried out according to the principle of complete randomi-
zation.

In cases in which the experiment has been carried out
according to the randomizmed block design, the F test as a test of
the null hypothesis aj = 0, ought to be regarded with considerable
lack of confidence, But of course, the research worker can use the
F test, choosing a lower level of significance than the one he would
have used if he regarded the test as being fully reliable, e.g. 1
per cent instead of 5 per cent level of significance,

To be in doubt with regard to the reliability of the F
test does not imply, however, to be in doubt regarding the useful-
ness of the analysis of variance, A research worker may very well
be interested in the results of such an analysis, even if he does

not use the F test,



9. The F test in Cases in which a Number of Mean Square Ratios

are computed by Means of the same Residual Mean Sguare.

In some cases the research worker wants to test a number
of null hypotheses by means of the F test and is bound to use the
same residual (or,error) mean square for all F ratios. It is
evident that in such cases the mean square ratios are not stochasti-
cally independent. This implies that the ratios cannot be gauged
against the tabulated points of significance of the standard F
distribution.

Suppose that v1V1/02, v2V2/o2 and vOVO/c2 are stochastically
independent x2 with v1, v2 and vO degrees of freedom, and let
F, = V1/V0 and F, = vz/vo. Then, &t can be shown that the regression

1

of F2 on F1 is linear and that the coefficient of correlation is

(3
V4Vo

p = - -
(vo+v1 2)(vo+v2 2)

7% will be seen that if Vs is large as compared to v, and v the

1 2°
correlation is trivial and cammot make the F test invalid.

However, the effect of the correlation is better measured

. > >
by means of the conditional probability P(F2:Fa|F =Fa), where F

1
are the tabulated points of significance corresponding to the

respective numbers of degrees of freedom: Vs and A for F2 and v,
and v, for F1. Under the stated assumption, this probability can
be computed. In Table 9.1 the values of P are shown for o = 0.05,

v1 = v2 = 1 and some values of vo.
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Table 9910

v, P
2 0380
L 0.217
10 0.111
60 0.059
200 0.053

It will be seen that if vy > 60, the correlation between the two
ratios does not matter, but this is not so for smaller values of
Ve Furthermore, the effect of the correlation can be shown to be
greater for larger values of vy and Ve The effect is also greater
for larger nunbers of F ratios.

The usual way of deal ing with this problem seems to be to
ignore it. This attitude is rather surprising, since simultaneous
tests of null hypotheses in such circumstances occur regularly in
both experimental and non-experimental research work. It is also
surprising, since solutions of the problem have been forwarded. One
of the solutions has been sought in the development and tabulation
of the distribution of the largest ratioc. Investigations alcng this
line, by Hartley (17), Finney (9) and Nair (25, haveresulted in the
generalization due to Hartley (1g). If there are m null hypotheses,
Yartley has suggested the use of fo/m(vi’vo)’ i=1,2,..m, as the
points of significance. In our view the use of this technigque implies
that we take a too critical attitude, and it might in some cases result
in inacceptable inferences, c.p. the next section.

A different solution was suggested by the present author @28).

For the simultaneous testing of m null hypotheses (Hoi’ i=1,2,..m)
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it was suggested that all Hoi should be rejected only if all

n 2
i = Ci’ where ) )
(v,~2) (m~1)
(9.1) c; = Fa(vi’vo/m) i+ -—1;72_____
o)

It was shown that the probability (under the null hypoth eses) of
all Fi exceeding s is approximately equal to ap. In the case in
which the F ratios are stochastically independent, this is the
probability of all Fy exceeding fa(vi’vo) simultaneously. Therefore,
-ince the same technique is used for all F ratios, rejection of Hoi
if Fi : ci means rejection of any one null hypothesis on the a level
of significance.

Most often some of the F ratios are smaller than Cye For
such cases it was suggested that we should proceed sequentially:
Step 1: Remove the F ratio with the smallest value of F/c.

Then compute ¢y with m substituted by m=1. If then, all

Fi (number m-4) are larger than the new ci, the corresponding

Hoi are rejected. If at least one fi < Cyo proceed to the

second step.

Step 2! Remove the F ratio (among the remaining m=1 ratios) having
the smallest value of F/c. Then, compute new cy (number m-2)
with m substituted by m-2, and proceed as under step 1.

It is evident that if at least one of the F ratios is larger than

the corresponding Fa(vi’vo)’ this step-wise procedure will eventually

cease with at least one F ratio judged significant. It might be
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necessary to emphasize that to remove an F ratio does not imply
that the corresponding null hypothesis is accepted. It merely
means that it is placed among those null hypotheses that are not
rejected on the chosen level of significance by the experimental
facts. This distinction is obviously very important.

Of course, it is not necessary to make a start with all
F ratios. On the first step only those ratios that are Z Fa(vi,vo)
should be included. Those ratios which are-eFa(vi,vo) can be
judged not significant at once and removed,

The assumptions underlying this testing method are 1) that
viVi/O'2 are independent x2, and 2) that 02 is a constant variance.
None of these assumptions are realized in actual experiments.
Therefore, ey by (9.1) is merely an approximation. It is necessary

that the research worker, using this method, does not forget that

usually the test is too sensitive.
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10. The Regression Method.

It will be assumed now that the treatments are quantities,
Xij(j=1’2’°‘k)’ and that the purpose of the experiment is to produce
the data upon which a response function can be estimated. The first
question turning up is then: response on what? Since an exact
repetition of a treatment is never possible, this is an appropriate
guestion, Following Berkson (3) we can write Xﬁj = hj + vj and
assume that vj are random errors for which it can be assumed that
E(v) = 0 for each j. There are, therefore, two response functions.
It on are the means of the observed random variable, the response
variable, the two functions are

E(x_.) = f(x”.)and E(?coj) = g(h

0J

As yet no recommendable method seems to have been found by
means of which the latter function can be estimated except, perhaps,
if the function is linear. We are therefore dealing with the first
function onlys

Since the formula of f(x1) is hardly ever known, the research
worker is bound to assume that it can be substituted by the Taylor
expansion, and the practical problem is the very common one: to

estimate the coefficient (Bo, 61, 62,..,) in the equation

L

_ , 2
(10.1) 0j = B, * 31"13 + B2x1j toeee * By

It can be assumed that E(e) = O for each j and that e is stochas-

tically independent of Xy x12.... But we cannot assume that Var(e)



53

is the same for all j.
It is well known that, if e is stochastically independent
of Xqs the method of least squares yields unbiassed estimators of
the regression coefficients (Br). The difficulty is that the research

worker must decide in advance which terms Brx ought to be included

r
13
initially. The invention of the electronic computers has simplified
matters, as it is now possible, without too heavy cost, toc include
a rather large number of terms. Of course, in the final, estimated
function the maximum number of terms is k (the constant term included),
and the terms need not necessarily be a subset of the set r = 1,2,..(k-1
However, in practice the research worker has to compromise to avoid
being involved in too heavy and expensive computations. If his
experience from former investigations does not indicate that diffe-
rent terms ought to be used, it is, perhaps, sound practice to
include initially the terms for r = 1,2,3 and 4. Having included
these terms, the research worker will be able to decide, both if
all these terms should be included in the final estimated response
function and if it is adviceable to try to include additional terms.

The advice to use initially the terms for r = 1,2,3 and L
is certainly lacking logical justification. It is merely the author’s
inference from a rather limited fiela of experience. However, if
the research worker, for one reason or anotlz=r, wants to start with
a different set of terms, the technique is in principle exactly the
same as it is with the choice r = 1,2,3,4.

In order to simplify the formulae we shall introduce the
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deviations from the mean Ip = X1§ - mean (X1§), Furthermore,
we shall use orthogonal functions of these deviations. There

is a number of sets of such functions. One of the sets is

W=

o
N
It

Yy = Pyp¥,

3 = Y470 oy oYy

Uy = I37Psa,10Y4 T P32,1472 T P31.2471
where the coefficients (b) are least squares regression coeffi-
cients, However, this is one of the possible sets of such functions,
the total number of sets being 4! = 24.

Suppose now that this particular set of cuch functions (u)
has been chosen. Then, it is possible to show that the reductions

mean square) due to the different u’s are as presented in Table 10,
( ) d to the 4diff t u’ ted in Table 10,1

where the R’s are correlation coefficients (sinple or multiple).

Table 10.1.

. Degrees of Mean
Reduction frgeggm gguare
2 2
Yy .2 12y 5-%,) 1 vy
{2 2 % o
Yo {Ro.127Ro,ofnE Xy yx,) 1 Vo
2 2 % = = 2
Uz B 12478012 nZ(Xoj” o) 1 Vg
2 p) - =2
Yy {Ro.1234“Ro.124} nZ (%, 5%, ! Vs
. 2 s - =2 _
Residual {j Ro.1234 nZ(XOj XO) k-5 V5
Total ne(x _ .-x )2 k=1
o} To




In model (10.1) X, x§ +oe can be substituted by Uys Ugese

and the result is

(10.2) Xo3 = A+ A1u1j + A2u2j toees + o€y

Assuming 1) that e is a random variable, independent of Uys Ugoeos

2) that Var(e) is the same for all j, and 3) that e is normally

i

distributed, it can be shown that Vr/Var(e) (r

a xz if hr = 0, Therefore, if the assumptions are fulfilled,

1,2,30..) iS

the null hypotheses hr = 0 can be tested by means of the mean
square ratios F, = V1/VR, F, = V2/VR «+., where Vo is the resi-
dual (or, error) mean square in the analysis of variance, ITf
the experiment has been carried out according to the principle

of complete randomization

= 1 —-
r = Ty P20 517%0;

and if randomized blocks havebeen used,

)2

V.=V ]

R = Vg = T ooy 2

c::j:?.:;{oi;:);‘o,jq":"?C))2
In both cases n is the number of replications.

It will be seen that this is a case in which a number
of null hypotheses are being tested simultaneously by mean
square ratios, which are correlated because a common VR is used,
The problem has been treated in section 9, to which we refer.

In our dealing with the problcm of choosing a test
method, it was stated that the use of the largest ratio might
result in inacceptable inferences. Suppose now, for the sake

of argument, that F, is the largest ratio and that it is greater

1
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than Faﬁ1,vR), vy being the nuidber of degrees of freedom of
Vpe guppose, furthermore, that F, < Fq/m(1’vR)’ where m=5 in
the present case. Then, if the technigue based on the largest
ratio is used, and if all ratios are declaired not significant
if the largest is less than Fq/m(j’vR)’ none of the reductions
in Table 10.1 should be regarded as being significant. But such
inference is hardly acceptable because, since F1 > Fa(1’VR)’ the
research worker would reasonably regard the reduction)due to u1
as being significant and include u, in the regression function.

Suppose now that the method described in section 9 is
used, and that it is found that V5/VR is significant on the
chosen level of significance. This result should be taken as
indicating that probably at least one of the terms krur
(r=5,6.. k=1) ought to be included in the response function.
However, it does not imply that we shall sucesed if we try to
do s0.

Of course, the greater part of the residual reduction
might be due to one of the variables@%? Uy eoo Uy g FPor this
reason the residual ought to be used with one degree of freedom,
as this will imply that we are using a more efficient test,
However, significance does merely indicatestint a more satis—
factory description of the response function might be obtained
if at least one of the terms r=5,6 ...k-1 is included. It does
not imply that it will be found that this is so. In the experi-
ence of the author such outcome of the testing will happen

very rarely. The reason is, of course, that response functions



are not usually so complicated that a linear function of
x1... x1u does not, when estimated, give a sufficiently accu-
rate description of them.

In our description of the statistical procedure we have
assumed that the set u‘l.,..u}_L has been chosen. But we have
pointed out that there are 4! = 24 such sets. Furthermore, in
order to compute the reductions in Table 10.1 the sample values
of the coefficients of correlation must be known. Now, among U4
variables there are 4 sets consisting of onc variable, 12 sets
consisting of two variables, 24 sets consisting of three vari-
ables and 24 sets consisting of four variables. This makes a
total of 64 sets. It is reasonable to suppose that for any
electronic computer a program can be w@rked out for the selection
of all these sets and at the same time for the computation of the
corresponding coefficients of correlation. Then, it is a very
simple matter, at each step, to select among the variables (u)
that are not included, the one that yields the largest reduction.,

Testing null hypotheses concerning the reductions due to
the different u~variables, the four P ratios must be gauged
against Fa(1,vRﬁéﬂ, C.p. section 9. Then, if the set of u~-variables
is chosen in advance, the null hypotheses will be rejected simul-
taneously on a level of significance that is approximately equal
to as It is not obvious, however, that this is so if the set of
variables is chosen in the described way. In order to estimate
the effect on the level of significance of the selection of the

u-variables, we have carried out experiments according to the

following plan:



58

x, is a norml random variable , E(xo) =0 and o= 1

x, is a normal random variable , E(x1) = 0 and o= 1

e 1is a nornal random variable , E(e) = 0 and o= 1
= +

Xy Bx1 €

The chosen values of B were f = 1/3 in example 1 and B = 3/4
in example 2. Thus, the coefficient of correlation is Py = C.32
in example 1 and p,, = 0.6 in cxample 2.

Suppose now, that the area coveringboth ¥ ratios:Z 0
is divided into three poxio : A being the part for which
both F ratios are £ F_(1,v;), @ being the part for which both
¥ ratios are 2 EJ1’VR/2% and B being the rest of thce area. Then,
if the two u-variables are chosen in advance, the approxim te
probabilities of the two I ratios falling inside 4, B and C
are given by the binomial terms (1—a)2, 2a(1-a) and o2,
Choosing a = 0.05, the values of these terms (P) are as shown
in Table 10.2.

The mamber of experiments that were constructed and
analysed, is N = 1048 in example 1 and N = 1025 in example 2.
In Table 10.2 n stands for the number of experimcnts for which
the two P ratios were found in the different areas (£4,B and C).
If it is assumed that the particular way in which the
u~-variasbles are selected does not affect the level of signifi-
cance, NP will be the expected number of experiments. It will
be seen that for bhoth examples the values of n are consistent

with those expected (NP).
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Table 1002. o= 0|O50

. Example 1 Bxample 2

Area P n NP n NP
A 0.9025 oL8 9L45.82 926 925.06
B 0.0950 97 99.56 98 97.38
C 0.0025 3 2.62 1 2,56

Total 41.0000 1048 1048.00 1025 1025.00

In these examples the variable x1 and X, and, hence,
the u-variables, are random variables, while in the experimen-
tal case they are values chosen by the research worker. Our
investigation was planned in this way for the reason that we
were concerned with the problem as it is presented in multiple
regression. It ceems evident, however, that the results can
be applied in the situation with which we are dealing in the
present sectione.

Having chosen the set of u-variables and having decided
which of the variables ought to be included in the estimated
response function, it will be necessary to estimate the regression
coefficients in model (10.2). Then, it is also necessary to
compute the regression coefficients for the different regressions
among the variables x1...x& which are included in the formulae
of the u~variables, These computations are carried out by stan-
dard technique deseribed in a number of text-books and we do nots
therefore, go into the matter here. The last step consists of
substituting the u-variables in the response function by x-

variables.
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The described technique can hardly be recomme nded to
research workers lacking the facilities to use an electronic
computer. Tor these research workers this technique would
L~ too time consuming. &5 an slternative approach it can be
rocommended to choose initially a particular set of u-variables,

for instance

o
-
it

Yy

i

Yo = Ppyiy

Uz = Y37bap Y5 P34, oYy

L] L] » ° L] . L] - ’ [ ° -

Choosing initially such a set, the u-variables can be included
one at the time, and for each new u-variadble the residual
reduction in Table 10.1 can be computed. In this way the research
worker can decide at each step if it seems worth while to con-
tinue adding new variadles. Thus, the work can be reduced to
such a minimum that the computations are easily carried out by
means of a desk calculator. Using this technique, the research
worker will be lacking the opportunity uf trying the diffecrent
combinations of the y-variables, and the final estinated response
Function cannot be claimed to be the 'best’ one in the sense

that it includes the minimum number of terms. Even so, th e
estimated function may be quite acceptable as a description of
the rcsponse function, it might even happen to be the pest”

one

The assumptions underlying the I’ tests used above, are
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1) that e in the models is a normally distributed random variable,
and 2) that Var(e) is the same for all treatments, i.e. the same
for all chosen values of Xyqe None of these assumptions can be
regarded as being realistic. We have discussed this point in
section 8 and shall not repeat our arguments. We shall confine
ourselves to pointing out that the research worker ought to re-
member that the level of significance is not the one he has chosen,
e.g. a= 0.05, but usually an inflated one.

In a case in which the treatments are quantities, the
research worker may want to estimate the response function and,
at the same time, he may want to estimate particular contrasts.
A contrast can, of course, be estimated by means of the estimated
response function. But in our cpinicn, the methods described in
section 7 are better suited for this purposee.

The research worker may also want to estimate particular

x,-values as, for instance, the value for which the response is

1
a maximum or, the value for which the increase of thc response is

a maximum. As far as we can see, unbiassed estimates of these

values of x, can never be obtained, but even so useful approximations
can be found. It is evident, however, that in order to be able

to estimate such values of Xy it is necessary that the space of

the selected values covers them. This means that the research
worker must be in possession of advance information with regard

to these values and use such information in the planning of the

experiment.

An important question concerns the choice of the values of
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X For the computations it wculd be advantageous to choose

1°
equally spaced values or, equally spaced values of transforms

such as log Xy and (x1)%. This will enable the research worker

to use the orthogonal polynomials introduced by Fisher (12,
tabulated by Fisher and Yates (4§ and by Pearson and Hartley @9).
These polynomials are proportional to our u-variables, and the
use of the polynomials will therefore effectively simplify the
computations., This is important, especially if the computations
have to be carried out by desk calculator. It must be remembered,
however, that the use of these polynomials means the use of a

particular set of u-variables, implying that the research worker

renounces from trying out the different sets of these variables.
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11, The Problem of the Gaps and the Grouping of the Treatments.

In planning the experiment it is not always possible for
the rcsearch worker to decide on particular contrasts that he
sants to estimate. In such cases a commonly used and acceptable
procedure is to range the treatments according to the value of
the treatment means Cij) and to compute the differences (or, the
gaps) between two and two neighbour means. Let r be the rank,

r = 1,2,..k, where k is the number of treatments. Then, u, =

b |

r+1;§r (r = 1,2,...k~1) are the gaps*.

It is evident that the expectstion of a gap is positive,
i.e. that E(ur) > 0, and that it is usually dependent on r. If
the distribution of Ej is rectangular, i.e. that f(Ej) = 1/A

(0 £ Ej $£ 4), it can be shown that the distribution of u, is

-k

f(u,) = k 4 yk-1

(A~ur

and that E(ur) = 4£/k+1, i.e., that it is the same for all gaps.
In other cases, e.g. the normal, the distribution of u, depends
on r and k, and the expectation is a function of r and k. Since
the research worker cannot know this function, he is not able to
utilize the differences ur—E(ur). However, in practice the gaps
might be used even if :(ur) remains unknown.

Suppose that an analysis of variance has been carricd out
and that F = V’T/VR (cep. section 8) is significant on some chosen
level of significanse, e.ge. the 5 per cent level., Then, a strongly

¥

Ceps Tukey (33,
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marked gap in the series u, can reasonably be taken to be an
indication of a grouping of the treatments. There might also
be indications of more than two groups.

In most cases, hdawever, a more detailed analysis is
neededs Then, the mean range can be used to advantage. The
mean rangeliwk) of the normal distribution has been tabulated
by Pearson and Hartley (29 for sample sizes ranging from 2 to
1000, Using this mean range, the conditional expected range
of the means (Ej), i.e. conditioned by VR regarded as a non-
rgndom quantity, is V, =‘E0mk)46;751 In this formula n is the
number of replications, e.g. the number of blocks in a random-
ized block experiment. Then, if Emin and ':Emax are the smallest
and the largest treatment means, we can use (Emin+vk) and
(E -V, ) as borders between groups of treatments. Thc treat-

max

ments, the means of which are included between Emin and
(;ﬁinka)’ are regarded as one group. In the same way the
treatments, the means of which are included between (Emax_vk)

and X

nax’ 2T€ regarded as another groupe.

There are three possible outcomes of this preliminary
grouping of the treatments:
a) (Eﬁin+vk) < (gmax-vk) and no mean is found between the two
borders.
b) A number, at least one, of treatment means is found in the
interval between the two borders.
¢) The two intervals are overlapping.

Vhen trying to divide the treatments into groups, it is
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neeessary to know the purpose for which the grouping is wanted.
In basic research work it é%;;" be important to find the barders
between all groups, and then it my be necessary to proceed
with the two or three intervals found on the first step of the
analysis. Most often, however, the purpose is to pick out
among the k treatments those that, in a certain sense, are
supcrior. In such cases the research worker nced not bother
%ith more than one of the preliminary groups. Suppose that a
treatment having a large value of E(Ej) is regarded as being
superior, and that the interval bordered by (;max_vk) and

;max covers m treatments. Then, on the second step an analysis
of variance should be carried out for this group alone. If

the randomized block design has been used, this means the com-
putation of a new treatment mean square VT and a ncw residual
mean sqguare VR’ the numbers of degrees of freedom being now
(m-1) and (m-1)(n-1). Then, if the new ratio I = VT/VR is
found to be non-significant, the research worker has to be
content with the group found on the first step. If, however,

the mean square ratio is significant on some chosen level of

significance, a new _group border can be computed by ;max;vm’
YVm i
where Vm = E(ng ﬂf This process can, of course, be repeated

on a third step, a fourth step a.s.o., and will be terminated
as soon as a non-significant mean square ratio is found.
It is necessary, perhaps, tc point out that the use of

the mean range in this way, must not be rcgarded as a test of
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significance. To use¢ the mean range for the computation of
the conditional range, merely implies the pointing out of the
consequence of the null hypothesis having been rejected by
means of the mean square ratio.

A weak point in the suggested teehnique is, that it is
based upon the use of the mean range of the normal distribu-
tion. BRecause of the inflated sensitivity of the F test
(c.p. section 8) it will add to our confidence in thec tech-
nique to know that this mean range is usually larger than it
is in cases based on more realistic distributions. A summary
of the present information » rcgarding the distribution of the
range and the mean range has bheen given by Kendall and Ltuart
(29, to which we refer. Somc new information could have been
obtained from the examples used in section 7, if lack of funds
had not prevented the utilization of the observations to this
end. The treatment means obtained in example 6 were, however,
used for the purpose. In this example the observations were
drawn from a symmetrical distribution. Since the¢ standard devie
ation is known -~ for the treatment means it is equal to
0.5976 Bj - the mean range can be estimated in samples of
gxperiments. The results are showvn in Table 11.1 where k is
the size of the sample and N the number of samples. For the
sake of comparison the values of’E%Wé}ﬂfﬁr thernormal-distribution
are included.

The mean range can also be computed cheaply for selected,
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mathematically simple distribution. It is well known for the
rectangular distribution. For the exponential f(x) = e (xéo)

it can be shown that the mean range is equal to

k=1,
E Wy )= i: T

where k is the size of the sample. Some values are shown in

Table 11.1.

Table 11.1.

N Example no., 6 E("™,)
N hk Normal f(x)=e >
5 150 2.353 2. 326 2.083
10 148 3.081 34078 2.829
20 72 3.570 3.735 3.548
375 10 5.833 5.896 6.503

It is obvious that such recsults do not justify the drawing of

extensive conclusions. But it will be seen that, for moderate
values of k, the results seem to indicate that the mean range

of the normal distribution is as large as that of the compared
distributions.

Federer (8), p. 122, presents thc results of a random-
ized block experiment for the comparison of k = 7 varieties in
n = 5 blocks. We choose this example because prior informations
concerning the grouping of the varieties are available. The
experiment was carried out with two units for each variety per

hlock, and we have used the total for the two units.
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In this case the mean square ratio F = VT/TR = 3,4 which

is significant, and the variety means are

Variety X

J
16 6.34
405 10.08
109 10422
407 11.09
593 11.42
130 11.83

L0o6 13432

!

1
From the data given by Federer we have that (VR/n)2 = 4.179, and

sinceE$%y=2.70u36 for the normal distribution, we find Vo = 3.19
and that

Xpin V? = 6.34 + 3,19 = 9.53

X oax ~ V7 = 13.32 - 3.19 = 10.13

The seven varieties are therefore divided into three groups:

group A : Variety 416
114 B . 1" Ll'05
i C : the rest of variecties.

Then, treating with group C only, it is found that Vg = 6.49

(with L4 degrees of freedom) and V, = 6.23 (with 16 degrees of

R
freedom), implying that no division of the group should be
attempted. Hence, the grouping on the first step is the final

OIc.,.

Federer, using the prior information, concluded that theze



€9

are significant differences 1) between group (130, 406, 593)
versus group (405, 407, 416), and 2) among (LO5, L4O7, L16). It
will be seen that these results are consistent with our findings.
His second conclusion is consistent with our finding that LO5,
1407 and 416 belong to different groups. His first conclusion is
consistent with our finding that 130, 406 and 593 belong to group

C, while 405 belongs to group B and 416 to group A.
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12. The Statistical Treatment of Fractions.

Most often the random variable that is the subject of
the statistical analysis, is directly observed, e.g. yield in
an agricultural field plot experiment. It is not always so.
For instance, in some cases the research worker observes the
number {(m) of units of a certain kind within each exXperimental
unit, and at the same time he observes the number (x) of these
units having a certain characteristic (4, say). In an agricul-
tural field plot experiment m may be the number of roots within
plots and x the number of diseased roots. In such cases the
research worker has to deal with y = x/m or, in percentage 100 y.

The statistical problem concerns the method of investi-
gating the effect on the probability P(Aj = p of the different
treatments and the comparison between the treatments. Both m
and p might Be dependent cn the heterogeneity factors, implying
that both of them must be regarded as being random variables.
In any case, the research worker can never assume that m and p
are independent cp the heterogeneity factors. Therefore, it
must also be assumed that m and p are correlated.

In this case we are therefore concerned with a situation
in which we have to deal with three random variables (x, m and p),
and only two of them (x and m) can be ~bserved. The distribu-
tion is

(12.1) f(X,m,P) = CP(m,P) (1;1() PX (1_p)m—x

Writing w = 1/m, it can be shown that
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(12.2) E(y) = E(p) = p,
(12.3) Var(y) = p, (1-p )E(w) + [1-E(w) ] Var(p)

+ Covar(p,w) - Covar(pz,w)

The model is evidently the same as it is for any
other random variable. If the randomized block design has been

used, the model is

+ e,

(12.4) Yy = g+ ay TR 31

Jji
(571,2,4+k, i=1,2,..n) where k is the number of treatments and
n the number of replications. In this model (“*aj) can evidently

be subesti:tuted by p Using this substitution, it will be seen

oj°*
that

(12.5) Y35 = Doy + z + uy + e‘_‘.1

Referring to section 4 regarding the properties of z, u and e,

it will also be found that E(y.)= p_. and that E(y -y ) = -
0 Hun (yJ) Py (yp Yq) Pop

i contrast in this case is, of course, a linear function of all

Poq*
or, & sub-set, of poj‘ It will be seen that the same function
of §j is an unbiassed estimator.

The difficulties met with in the statistical analysis,
first and feoremost originate in the interaction between the
treatments and the hetercgeneity factors, causing differences
in Var(y) and correlations between contrast estimators among

the treatments. Difficulties also partly spring from excessive
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skewness of the distribution of y. We cannot see, however, that
the difficulties are greater and our mistrust in the suggested
statistical technique ought to be more serious, than is the case
with other random varisbles. Our conclusion is, therefore, that
the methods described in sections 7-11 are applicable in these
cases alsoe.

In statistical literature it will be found that certain
transformtions are recommended,c.p. Bartlett (2). In the present
case, examples are log ¥, J& and the inverse sine function, arcsineJ&.

It is evident that skewness of the distribution will be
reduced By means of the logarithmic or the square root transfor-
mation, but the effect may be small and insignificant.

The purpose of some transformations, e.g. the inverse sine
function, is to stabilize the variance. Assuming an additive model
and that p = P(A) is a constant, it can be shown that Var(y) is
approximately independent on p. But if the model is non-additive,
the effect may be very small.

Some years ago the present author (27) recommended the
use of co-variance analysis, using w = 1/m as the independent
random variable in the regression function. No doubt the effect
of the use of such regression is to reduce the differences in the
variance among the treatments. We have found, however, that the
effect is not sufficient to counterbalance the reduction of the
width of the population in which the conclusions are being applied.
Problems arising as a consequence of the use of covariance technique

will be dealt with in section 15, to which we refer.
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13. The Idea of the Non-Random Experimental Material.

In the proceeding sections the replications have been
regarded as a sample representing an abstract population. Ve
now go on to show in more detail what the difference is between
a non-random sample and a random sample of replications and what
this difference implies.

48 an example we shall use mexperiment carried out
according to the randomized block design. Let the replications
(the blocks) be numbered i=1,2,..n, and the treatments numbered
j=1,2,++k. Also, let the experimental units within any repli-
cation be numbered r=1,2,..kK. Then, the value (and, the obser-
vation) of the rpandom variable under consideration can be sym-
bolized by x(j)ri’ meaning that it stands for the value of the
random variable which would have occurred for the r’th unit in
replication ho. i provided the treatment Tj were applied to this
unit as a result of randomization. If the experimental material
is regarded as non-random, we have to consider the number of
possible allocations of the k treatments to the units., This
number is K = (k!)™.

The null hypothesis under consideration is now one
stating that x(j)ri is the same for all Jj. This means that the
result for unit no.r in replication no.i is the same irrespective
of the treatment actually placed on the unit by randomization.
Even if this null hypothesis is true, some variation of the

observations will occur, being the effect of the heterogeneity
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of the experimental material.

As we understand it, this is the null hypothesis
considered by Fisher (149). A modification is suggested by
Neyman (2).

Suppose that N=nk values of a variable are randomly
arranged in all K ways. Then; to any arrangement we have

the usual two relevant mean squares: V,, with k-1 degrees of

T
freedom, and V, with (k-1)(n-1) degrees of freedom. Hence,

R

for ecch arrangement there is one mean square ratio F = VT/VR'
The distribution of these K values of I is thus the distribution
of F in the population that consists of the K random arrange-
ments. Since no two experimental materials are exactly alike,
the distribution of F will change from one experiment to another,
In any actual case the research worker knows the observations
of the random variable under consideration for the actual arrange-
ment, However, the distribution of F remains unknown to him.

For some cases in which Fisher’s null hypothesis can be
regarded as being satisfied, the distribution of F has been
obtained by rearrangements of the values of the observed random
variable. The distributions obtained in this way, have been
compared with the F distribution derived under the normal theorye.
Most often a satisfactory compatibility has been found. We
refer to papers by Eden and Yates (7), Welch (34), Pitman (30),
Hack (16), Baker and Collier (1), and to other contributions
cited in these papers. Some of these papers deal with experi-

ments according to the principle of complete randomization.
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The results obtained through such investigations, are
supposed to establish the necessary foundation for the use of’
the F test of the normal theory in the analysis of experimen-
tal data.

The model which is assumed to give a satisfactory des-

cription of the observed random variable (x) is

X = W+ bi + aj + €,

Ji Ji

where W, aj and bi are regarded as parameters, while € is re-
garded as a random variable. It will be seen that no inter-
action between the treatments and the inter block heterogenelity
factors is included, ©On the other hand, interaction between
the treatments and the intra block heterogeneity factors might
sometimed be recognized and included in the term e. Usually

e is regarded as a random variable belonging to the population
consisting of the K arrangements. It is also found that it 1is
regarded as being a normal random variable.

The pupulation consisting of the K arrangements, is
certainly a lucid construction. It seems to be a fact that the
majority of statisticians and, possibly also the ma jority of
research workers, regard it as being fully adequate, For

reasons explained in section 1, we do not regard it as such.
We also find that some writers who accept it, seem to feel some
uneasiness with regard to the interpretation of the experimental
results. By some of them it is recommended to generalize to

a broader  population. For instance, Kempthorne (20, p. 152
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writes:"We shall regard the inferences that we make as being
inferences about the experimental units actually used, the
extrapolation of these to a broader population being a matter
of judgment in the present state of knowledge." This is im-
portant, and it shows the inadequacy of the commonly accepted
idea of a population. We think nobody will insist that the
population consisting of the K arrangement, is the one the
research worker is interested in. We have therefore come to
the conclusion that this puapulation is inadequate and that, if
the research methodology is founded upon this construction,

the research worker can make inferences about the treatment
effects only by means of support from evidence ¢btained outside
the experiment. This is certainly mcst unsatisfactory, and it
seems tc us that the only way open for avoiding the difficulty,
is to regard the actual replications (blocks) as a random sample
of replications representing the population. This population
is always an abstraction and is the one the sample represents
in the sense of a random sample. This is the answer in other
fields of empirical research work and it is also so when we are
dealing with experimental research.

It seems also to be a fact that most statisticians
accept the assumption that the effect of treatments and that
of replications are additive. Some writers even think that if
this assumption is not satisfied, the randomized block design
cannot be used. However, it is impossible to accept such an

assumption because such acceptace would imply that the research
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worker knows very much about the effects of the treatments

in advance. To allow for interactions merely means that an
unprejudiced point of view is taken. It does not mean that
it is held generally that interactions always exist. The
standpoint is that the research worker can never know in
advance - and, hardly by analysis of the experimental data -
whe ther interactions exist and, therefore, that he must treat

his data as if interactions are presents
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14. PFactorial Experiments and the Split-Plot Design.

For a number of reasons investigations concerning the
combined effect of two or more factors are important. When
research is started in some new field, it is natural to begin
with single factor experiments and by means of the data ob~
tained in these, to learn something about the effects of
several factors taken alone. But the effect of a factor may
depend upon other factors, and therefore it will become necessary
to carry out experiments with combinations.

Suppose that $he-rs combinaticons of two factors Pp
(p=1,2,004er) and Qq (g=1,2,+4+8) are included in the experiment.
Then, the experiment can be regarded as an experiment with the
treatments Tj (3=1,2,+.k=rs), and the analysis can be carried
out as if just one factor is involved. Of course, in these
cases some particular contrasts are planned to be estimated by
means of linear functions of the treatment means.

The simplest method of analysis amounts to dividing the
total treatment effect into a main effect (or, sole effect) of
each factor and an interaction. The models that cover such
divisions, are obtained by the substitution of aj in model (3.1)
and model (4.1) by

a.=b + ¢ + 4 .
J P Q joie ]

The term Uiy in model (4.1) must be substituted

The model for an experiment carried out accocrding to the prin-

ciple of complete randomization is thus
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141 X, = wb +c +d_ _+e
(ke 1) pai =~ ¥Pp%q “pq" “pat
For randomized blocks with one experimental unit for each treat-

ment per block, the model is

o2 . = b +¢c +d +z.+u_ .+ +W__ .¥e ;
(1442) Xpqi = WPt gt Bt Yp1T V1" pait “pal

In both models e stands for the effect of the hete-

pai
rogeneity factors (for randomized blocks: the intra block
heterogeneity factors) and the interacticns between these fac-

tors and the experimental factors. In model (1L.2) Uoir Vair

and qui stand for the interactions between the experimental

factors and the inter block heterogeneity factors. Without

loss of generality we can let szzo, ch=0, %p@pdzzqdpqzo’ and
E(z)=0. Referring to the discussion in section L4, we confine
ourselves to the following statement: 1) z4 stands for n inde-
pendent values of a random variable z, 2) upi stands for n
independent values of each of r random variables, one for each

Pp, 3) ti stands for n independent values of each of s random
variables, one for each Qq, and L) qui stands for n independent
values of each of rs random variables, one for each PQ combi-
nation. Since z, u, v and w are effects of inter block heterogeneit;
factors, they cannot be assumed to be stochastically independent.
Neither can it be assumed that Var(u), Var(v), Var(w), and Var(e)
are constant among the treatments.

If the experiment has been carried out for testing pur-

poses, there are three null hypotheses to be considere&, i.ee.
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b=0, ¢=0 and d=0. In the case of randomized blocks six mean
are

squares and three F ratios/mvailable for the testing. Using

for the mean squares the symbols Vﬁ, Vq, VPQ’ VP ’ VQR and

VPQR (R symbolising replication), we have for example

. .ns T =2
Vp = 729 Z(xp x)
Vo = S 23 (X -%,-% +%)°2
PR (n-1)(r-1) pi i p

the numbers of degrees of freedom being (r-1) and (n-1)(r-1),
and Fp = VP/VPR. This ratio is the only one, if any, that
can be used for the testing of b=0. Writing b=0, it will be
found from model (14.2) that

%&=@ﬁh+@ﬁpﬂ%£)

and

xpi—xi—xp+x = (upi~ui-up+u) + (wpi-wi-wp+w) + (epi—ei—ep+e)

It will be seen that the two differences to th depend.. on u, w
and e, and it can be shown that if b=0, E(VP) = E(VPR). It can
also be shown that if c=0, E(VQ) = E(VQR), and if d=0 that
E(VPQ) = E(VPQR)' Therefore, if the research worker wants to
test the three null hypotheses, using the F test, an analysis

of variance must be carried out according to the key shown in
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Table 1Ll-0 1 )

Source of Number of

variation degrees of freedom  leon square F
Replication n-1
i ! p V9V
PR (n-1) (r-1) VeR
N s-1 A Vo/Ver
QR (n-1) (s-1) VQ.R
PQ (r=1) (s=1) Vpg oo/ Vper
PQR (n=1) (r-1) (s=1) VPQR

As it is in experiments with one factors; large values
of the mean square ratios are indications of significant
departures from the null hypotheses. However, in this case.
also, it should always be remembered that the probability on
the null hypotheses of F 2 Fa is larger than a, implying that
the interactions tend to inflate the level of significance.

In cases in which complete randomization has been used,
we have the same mean squares for P, Q@ and PQ and only one
residual (or,error) mean square with rs(n-1) degrees of freedom.
Using this mean square, the research worker must choose a
method of testing that is adapted for such correlated F ratios,
c.ps section 9.

Pindings of significant main effects and significant
interaction are certainly interesting. 1In cases in which
the experiment has been planned for some practical purpose,

such knowledge might also be useful. It is evident, however,
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that such findings do not imply that the analysis is completed.
Usually the research worker wants to know more about the details.

Then, the method of analysis will be different for the
diffcrent types of treatments. If the al ternatives of both
factors are quantitative, e.g. quantitative levels of fertili-
zers, a careful problem analysis prior to and included in the
designing of the experiment, may very often poiﬁt out the
treatment contrasts that should be estimated. The statistical
problem will thus be reduced to the estimation (including
computation of confidence limits) of these contrasts, the
technique of which is described in section 7. 4 careful problem
analysis might also show that it is unnecessary to include all
rs combinations of the alternatives of the factors. This will
imply a rcduction of cost of the experiment, a reduction that
may be used to increase precision by increasing the number of
replications.

Regression analysis is an alternative technique in such
cases. Suppose that the quantitative alternatives of the P
factor are 311,x12,...x1r, and those of the @ factor are
XpqrXppseeeXpy OTs x1p (p=1,2,.+7) for the P factor and X4
(¢=1,2,..8) for the Q factor. Then a regression analysis can
be carried out, using for independent variables x1 y X 2

5 5 p’ "2q¢° "1p’
xaq ceos (X1px2q)’ (X1px2q) eses The maximum number of independent

s X
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variables is, of courses equal to rs-1. If, for instance,
r=s=2, the independent variables that should be used are
X

’ x2q and (x1px2q). The regression technique is described

1p
in section 10, to which we refer.

It is well known, however, that in some cases the
problem analysis pointing out the contrast to be estimated,
is very difficult. PFor instance, in agricultural experiments
with varieties such an analysis might often be impossiblea.

In such cases the statistical problem is reduced to the problem
of ranking the treatments (P, say) according to the mean value
of the observed random variable and, possibly, to the grouping
of the treatments, c.p. section 11. In a factorial experiment
this can be carried out for each alternative of the other
factor (Q). Then, if the interaction between the two factors
is trivial, the ranking of Pp will be expected to be the same
for the different alternative of Q. It is reasonable to
expect, however, that the alternatives of P belonging to the
group of superior treatments, are different for the different
alternatives of Q. For instance, if PP are varieties of wheat,
Qq different levels Qf Nitrogen fertilizer, and the observed
random variable is stiffness of the straw, such results may very
well be found, and would be very important and useful.

We do not think, however, that a definite methodology
for t he analysis of data obtained in factorial experiments,
should be recommended. The diversity of the questions that
are wanted answered, is too great from one case to another.

The important thing is that a careful problem analysis is
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carried out in advance, and that the experiment is planned and
carried out in such a way that answers can be expected to the
questions which such an analysis has pointed out., If such a
working rule is adopted, the methods outlined in sections 7-11,
will serve the purpose.

It is well known that it is a disadvantage of factorial
experiment that an increasing numberé of factors, even if the
number of alternatives for each factor is small, may lead to
large and sometimes to a prohibitive number of treatments. The
difficulties that follow from such large numbers of treatments,
have been tried overcome in various ways. In a forthcoming
section we shall return to the problem, and shall for the present
confine ourselves with the plan known as the split-plot design.

The necessity for the use of this design arises in two
ways. It may arise because the number of possible experimental
units belonging to the same replication, is less than the number
of treatment combinations, for instance, if a replication con-
sists of animals (e+g» pigs) belonging to the same litter. It
may also arise because some treatments need larger experimental
units than other treatments. Federer (8) has listed a number
of cases in which the split-plot plan ought to be used.

In an agricultural field plot experiment with two
factors Pp and Qq (p=1,2,+.7, g=1,2,..5) the replications
(blocks) are each divided into s (say) main plots and each

main plot is divided into r sub-plots. The main plots are
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treated with Qq, randomly allocated. The Sub-plots are treated
with PP’ also randomly allocated.

The model for this case is a simple extension of (14.2),
the extension being the inclusion of a term eai (i=1,2,¢em),
Now epqi stands for the effect of the heterogeneity factors
intra main-plots and interaction between these factors and Pp'
In the same way eai stands for the effect of the heterogeneity
factors inter main-plots and the interaction between these
factors and Qq. As in (14.2) u,v and w are the interactions
between the experimental factors and the inter block hetero-
geneity factors,

It will now be found that

|

b +te +d + zZ+ U+ VW _+ e’ + e
Pa P Q9 Pp4a P q bq a pa

it

X, = B+ Dbzt E§+ Y+ w+ e+ e

M
1

L+ c+ 2+ u+ v+ W+ e
q a g

It will be seen that the difference between two Eq, being an
unbiassed estimator of the corresponding contrast, depends on
v, w, €’ and e, while the difference between two ;P is depen-
dent on u, w and e. It is commonly thought that a contrast
among P-alternatives is estimated with higher precision than

a contrast among Q-altermatives. This would certainly be true
if the additive model were adequate., However, if we use a non-

additive and realistic model, including all kinds of interactions,
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nothing can in general be known about the relative precisions of

the two estimators. If the method described in section 7 is adopted,

confidence limits of contrasts among Q alternatives, among P alterna-

tives, as well as contrasts among PQ alternatives can easily be com-

puted.

t
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15. On Methods intended to yield Estimators of increased Precision.

Tt is but natural that both research workers and statisti-
cians have been concerned with the development of experimental
designs which are intended to yield increased precision of the
estimators. Among these designs}that of confounding and the use
of concommitant random variables are perhaps the most utilized
in practice, Identical twins and the like are used in some more
exceptional situations. If the replications are regarded as a
sample, representing an abstract population, it is easy to see,
however, that most designs invented with the point in view of
increasing precision, are meeting the requirement at the sacri-
fice of the generality of the inferences, Therefore, it is
important that the research worker should always bear in mind the
purpose for which the experiment is planned.

It is a well known fact that whatever the outzome of an
experiment is, a rule or merely a statement, it is not unrestric-
tedly universal. For instance, it is always restricted by the
linited heterogeneity of the experimental material. With regard
to the precision of an estimetor this implies that the extent of
heterogeneity is directly related to the width of the population.
Tn basic research the date produced by an experiment, may be
setisfactory as evidence for some rule or statement even if the
heterogeneity of the experimental material is very small. However,
if the research worker wants to find a rule that can be used as
o guidance for practical activity, it is necessary that it is

inferred from data obtained in an experiment which is planned and
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carried out in such a way, that the heterogeneity of the material
is dependent on all those factors which are not controlled in the
practical activity. If the rule is an inference based on data
from an experiment on material of less heterogeneity, It

might be overshadowed by the effect of these factors, Therefore,
ifsuch arule is used as a guidance, the chance for the activity
to achieve the desired end might be very small.

For instance, this would be the case if identical twin
calves were used as experimental units in a randomized block
experiment for the comparison of the effects of two feeding
alternatives, and the purpose is to learn which of the two
alternatives should be used in practice for the feeding of calves.,
The use of identical twins as units implies that the research
worker controls genetic factors which may be important sources
of heterogeneity. However, the results of an experiment of such a
kind may be important if the limitations of the validity of the
results are not forgotten or ignored, Other examples of this
sort are discussed by Linder (22, p.13, and Cox (), p. 25.

The use of confounding means that each replication is divided
into a number of main units (usually called blocks), and each
main unit is divided into a number of sub-units., Then, some of
the treatment effects are confounded with the effects of hetero-
geneity among the main units. Thus, the split-plot design
belongs to this class. The consequence of the use of confounding
is that the contrasts corresponding to the differences between

confounded effects, must be estimated by means of differences



between main units. The other contrasts can be estimated by
means of differences between sub-units. However, all contrasts
can be estimated by means of observations obtained in each

single replication, and the inferences thus possess such validity
or generality as the sample of replications permits., Often, but
not always, contrasts corresponding to the nonconfounded effects
are estimated with higher precision than the other ones.

The inference is different if observations of a concommitant
random variable are used for the purpose of reducing the hetero-
geneity of the experimental material. Suppose, for instance, that
an experiment for the comparison of the effects of k=2 feeding
alternatives to calves is carried out, and that the design is
complete randomization., Let the principal random variable (xo)
be increase of weight during the feeding period. In this case
it might be possible to reduce to some extent the heterogeneity
by means of the observations of the weight (x1) of the animals
at the start of the experiment., Then, assuming that the use of
the observations of X4 reduce the heterogeneity, 1t is evident
that the validity of the inference with regard to the relative
effects of the treatments 1is also reduced as compared to the validity

of the result obtained without the use of the observations of x1.
Suppose that e in (3.1) is substituted by Bj(x1ji—x1) + 631’

where Xy is the concommitant random variable, the distribution
of which is completely independent of the treamments. Thus, the
model is
- e ’
Xygp = BE a5 % 6j(x1ji X1) + el

(3 = 1,2,00k, 1= 1,2..n). It follows that
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— T = B
X535 W+ 8 + Bj(x1j x1) + ej

i

It will be seen that it is not assumed that the regression
coefficient of € on Xy igs the same for all treatments., In
our opinion such an assumption would be unrealistice.

The so-called adjusted treatment means are

- = . F =
Xhy = *oq bj@jxﬂ .
It will be found that E(;éj) = p+ ajy, so that an unbiassed

ranging of the treatments will be obtained by means of the

adjusted means. Therefore, the difference déq = Eép - Eéq

is an unbiassed estimator of the contrast (ap-aq).
‘s _ - 2 _ = \2
Writing Aj = 2(x1ji X1j) and Bj = Z(Xoji Xoj) it

will be found that the mean square of @

i 1 to=
oq is equa o

- .2 -

2 2. —_— -2
> Bp(1~rp) + Bq(1—?g2 g 2 . (x1p x1) . (x1q x1) }

S = -
a’ 2(n=-2 )
(n-2) n Ap Aq

where PP and rq are the coefficients of correlation between Xo

and Xy for the treatments TP and Tq. Hence, approXximately

correct confidence limits for the contrast (a_~-a ) are 4’ + t s,
P 4 ra ad

B i

*I° the number (n) of replications is different for the

different treatments, the formula is

n_.n A L

2 2 — -
o Bp(1—rp) + Bq(1—rq} {:nb+ng (x1p—x1 . (x1q—x1 }
P 4 o] a

a’ n +n -4 *
D g
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the number of degrees of freedom being 2(n-2).
- = 2 = w2
In the formula of &, both (x1p—x1) ’ (x1q~x1) ,
Ap’ and Aq must be treated as fixed, non-~random, gquantities.
This represents the sources of the loss of validity of the
inference., Therefore, if 4’ is used instead of d = Eop;qu

as the estimator of the contrast, and s is used for the

a’
computation of the confidence limits, the inference cannot be
applied in the whole population represented by the experimental
units. We are now bound to deal with a sub-population charac-
terized by A, A_s 6{19&1)? end (§1q—§1)‘2. This loss of
validity of the inference should not be ignored, as it usually

is.

Among the designs that are intended to increase precision
we may also include the Latin Square design. In a randomized
block experiment randomization is carried out according to the
principle of complete randomization within each replication. The
function of randomization is to prevent a bias from dammgimg the
estimators of the treatment contrasts.

In field plot experimentation it has been tempting to
affect a partial control over the heterogeneity, not only in
one direction but in two orthogonal directions. This has &0
lead to the invention of the Latin Sguare design. If the number
of treatments is k, the field is divided into k2 units (plots)
lying in k rows and k columns. The treatments are then allocated

these units in a random manner, but in such a way that each

treatment occurs once in each row and once in each column.
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The theory concerning this design and the statistical
analysis deals with a population that consists of all possible
k2 squares. It does not seem possible to look at this design
in a different way. Therefore, if we are concerned with an
abstract population represented by a sample of replications,
the Latin Square design is lacking significance, except if the
whole square is regarded as a replication. In the latter case
the experiment must be carried out by means of a sample of such
squares. Such an experiment would be very expensive and would
not necessarily yield significantly more precise estimators than
a randomized block experiment. Therefore, being concerned with
designs to be used in order to produce data upon which inferences
with regard to an abstract population can be drawn, our con-

clusion is that the Latin Square design should not be recommended.



16, Experiments with large Numbers of Treatments.

In some experimental situations the number of treatments
is very large as, for instance, in some field plot experiments
where the treatments are varieties. In such cases the number
of experimental units, necessary for a complete replication in
a randomized block layout, might become so large that the advan-
tage of the randomized block design over complete randomization
is illusory. Other examples are factorial experiments with large
numbers of factors and/or large numbers of alternatives of the
single factors. However, a large number of treatments sometimes
means that the number is large in comparison to the number of
easily accessible experimental units.

In order to counterbalance the loss of precision caused
by the large complete replications, a number of designs known as
Incomplete blocks have been invented. Much work and time is
spent and much ingenuity is demonstrated in the construc tion of
these designs. Most modern text-books on experimental design
give detailed descriptions of the different types.

In the lattice designs for the comparisoﬁ of k treatments,
the replications are divided into a number of main units (usually
called blocks), each consisting of m experimental units. This
means that the number of main plots is k/m for each replication.
In a quadratic lattice k = m2, so that the number of main plots
per replication is equal to m and the total number of main plots
equal to b = nm. The treatments are also divided into m groups,

each consisting of m treatments, and the groups are allocated



the plots in such a way that the comparison between two treat-
ment s, belonging to the same group, can be made between plots
belonging.to the same min plot. The grouping of the treatments
is changed from one replication to another according to the rule
that each pair of treatments shall occur together in the same
main plot the same number of times.

It is usually thought that such arrangements of the treat-
ments lead to increaded precision of the estimators of the
contrasts, as wompared to randomized block experiments wi thout
grouping. However, disadvantages have also been recognized.
Federer (9) writes: "Missing data or unequal error variances
considerably complicate the analysis; if either situation is
likely to occur, it is suggested that the experimenter improve
the experimental technique and (or) use a randomized complete block
design.'" In our thinking, research workers should always regard
missing data to be likely to happen, and equal error variances are
practically never realized. Therefore, we find it very difficult
to recommend the use of these designs. Besides, we also think
that the designs are impracticable because of their inflexibility.

There are, of course, practical advantages in grouping
the treatments if the number of them is very rarge. For instamce,
in a field plot experiment such activities as the planting and
the sowing take considerable time. The same is the case with
operations during harvesting. Therefore, it would be advantageous
§f the area of land that represents a replication, were divided
into main plots, so that the research worker can deal with these

one at the time. The split-plot plan will meet this requirement.



Suppose that the treatments are divided into a number (s) eof
groups and the replications are divided into the same number of
main units. Then, the s groups of treatments can be allocated
the main units in a random way, and the treatments belonging to
a group can be allocated randomly the experimental units within
the main unit., Statisticians are familiar with the use of the
split-plot design in this way, c.p. Cochran and Cox (6). The
reason why incomplete block designs are preferred and r ecommended
seems to be, first and foremost, that it is thought that these
designs yield comparisons of equal precision. Research workers
who do not believe in equal precision of the contrast estimators,
will hardly find any advantage in the incomplete block designs
over the split-plot plan. On the other hand, it is easy to point
out several advantages of the latter.

The most important advantages of the split-plot design
are the following: 1) It is unnecessary that the groups are of the
same size, i.e. that they cover the same number of treatments,

On the contrary, it is impértant that the treatments are divided,
if possible, into "natural" groups. 2) There is no rule connecting
the number of treatments, the number of groups, and the number

of replications. 3) Missing data and interactions between the
treatments and the heterogeneity factors do not complicate the
statistical analysis any ﬁore than if randomized blocks wi thout

any grouping of the treatments have been used.

Interactions between the treatments and the heterogeneity
factors render any prior judgement of the relative precision of

the different contrast estimators quite impossible. It is likely,



however, that the precision is higher for contrasts among treat-
ments belonging to the same group than it is among treatments that
belong to different groups. To some extent the effect of the hete-
rogeneity among the main units can be reduced if a chedk treatment
is included in all treatment groups. Then, if rq is the number of
treatments in group no. g, the main unit used for this group must
cover at least rq+1 experimental units. The check treatment must
be regarded as belonging to the group and, along with the other
treatments, allocated the experimental units in a random way. If
for practical reasons, the research worker deals with the main units
one at the time, a time factor is introduced. In such a case it is
particularly important that a check treatment is included, so that
the bias caused by the time factor can be removed.

Let the observations of some random variable (e.g. yield)

be XP i? where p=1,2,..rq, g=1,2,++8, and i=1,2,..n, n being the

q

number of replications (blocks). The model describing X5qi is
now a simplification of the model for a two-factor experiment according

to the split-plot design, and can be written thus

fuuerd k
(16.1) qui ”Pzi+aquvqi+wpqi+eqi+epqi

In this model e’ stands for the effect of heterogeneity among main
units and e for the effect of heterogeneity among the experimental
units within main units; but, of course, e’ and e also cover the
interaction between the treatments and the heterogeneity facoors.
The terms v and w stand for the interactions between groups and

replications, and between treatments within groups and replicationse.
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Since the replications are regapded as a random sample, representing
an abstract population, all terms in the model, except p and g must
be regarded as being random variables. The term apq can be written

= Eq + (anJEq), and we can without loss of generality, let

Pq
Ja_ = 0.
q
It will be found in this case also, that the treatment mean
qu is an unbiassed estimator of the effect (p + apq) and, hence,

that the treatment means yield an unbiassed ranging of the treat-
mentse. Consequently, a linear function of treatment means is an
unbiassed éstimator of the corresponding contrast. Interactions
between treatments and the heterogeneity factors imply, in this

case also, that correlations exist between qui among the treatments
and that Var(x) is different for the different treatments. However,
the metﬁod described in section 7, can be used for the computation
of the confidence limits of the contrasts. The method described in
section 11, can be used for the grouping of the treatments, e.g. for
the isolation of a group of superior treatmentss It is likely, but
not obvious, that the confidence intervals of some of the contrasts

can be shortened by means of the observations for the check treatment.

If a check treatment has been included, TO (say) qui can
be substituted in all the procedures by ypqi = qui—xoqi’ where
qui are the observations for the check treatment. 1In practice the

research worker will hardly use more than one or, perhaps, two
experimental units per main unit and replication for the check treat-
ment. If two units have been used, qui stands for the mean value

of two observations.
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The preceeding discussion ccncerns cases in which the

number of treatments is large, but where there is no shortage
with regard to experimental units per replication. There are
cases, however, where there my be such a shortage. For example,
this may be so if the research worker wants to use litters as
replications in a feeding experiment to pigs. In such a case the
number of treatments that can be included is much restricted.

In such cases a number of samples of experimental units
can be used as the main units in an experiment according to the
split-plot design. Then, a replication would consist of a sample
of such main units., In our example the research worker can use
litters to represent the main units, and a replication would then
consist of a number of litters. Thus, if the total number of
litters for the whole experiment is sampled from the same stock,
the heterogeneity among the main units is equal to the he tero-~
geneity among the replications, and the split-plot plan ought
to be combined with complete randomization. Zf the research
worker wants to use the split-plot plan and the randomized block
design, the replications ought tc be sampled in a di fferent way,
For instance, he can use a sample of stocks to represent the
sample of replications. There are other reasons for such selec-
tion of the replications to which we arc returning in the e xt

section.
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17, Experiments which are intended to give Results

for Practical Utilisation.

It has been touched upon previously that if an experiment
is carried out for the express purpose of providing a base upon
which advice to practitioners can be given, it must be designed
so0 that none of those factors are controlled that are not under
control in practice. To design an experiment that satisfies this
requirement, is certainly a difficult task. These factors are not
usually fully known to the research worker, and the experiment
must be planned in such a way, that the effect of them can be
regarded as random effects. Also, the hard fact is that the in-
ference, if any, can only be applied in the population represented
by the actual experimental material in the sense of a random sample.
This abstract population might not be broad enough to cover all
cases that may occur in practical activity. Therefore, the research
worker being consulted in a particular case, 1s well advised to
show such modesty as to recommend a treatment only provided the
case belongs to this population. If he does not make sucha reservation
he may take the chance of using extrapolation of his experimental
result outside the sphere covered by the experiment. However, the
research worker can do much to ensure that the population is broad
enough to cover the great majority of cases occurring in practice.

Another fact is that, if the research worker’s recommendation
is acted upon by all practitioners and the choice of treatment
involves economic conseguences, very of ten some practitioners would

be better off by using another treatment. This is so because all
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populationsconsist of sub-populations differing in one charac-
teristic or ancother, and the most successful treatment might not

be the same in all sub-populations. In practice there are always
limits to what a research worker can know about the circumstances
under which a particular treatment among a number of treatments is
the superior one. Therefore, he can only recommend a particular
treatment for cases belonging to a certain population, which is the
one that is represented by his experimental replicationse.

For instance, if a research worker in the agricultural field
of research recommends a certain variety of wheat to all farmers
in a geographical area, he should know from the results of his
experiment that it is to be expected that the use of this variety
will inflate the yield for the whole area as compared to the use
of another variety included in the experiment. But, possibly, he
also knows or can guess that the yield might be even larger if
some of the farmers do not act upon his recommendations.

Before he starts the detailed planning of the exXperiment,
it is necessary for the research worker to make some difficult
decisions, however vague, with regard to the width of the population.
Then, first of all he must decide what kind of experimental units
should be used. In agricultural experimentations a unit must be a
field suited for the growing of the plant in question, and which
fields are suited is something that must be decided upon. In
industrial research a unit may be an industrial plant, but it is
not evident thatall plants should be regarded as being suited.
Therefore, in practically all cases there are a number of difficult

decisions to be taken in advance of the planning of the experiment,
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decisions to be taken for the purpose of marking the borders of
the population about which knowledge is wanted.

When these dgéisions have been made, it might seem obvious
what to do next: take one or more random samples from the accepted
cases to be used as the experimental material. But it may not be
so simple as thatZ The research worker my encounter many obstacles,
for instance, it may often happen that a field selected for an
agricultural experiment, is planned to be used for some other pur-
pose.

Consulting the literature, dealing with experimental design,
it will be found that most sci;iific work and discussion have cen-
tered around the experiments that can be characterised as "loecal".

A local experiment in agricultural field plot experimentation, is
one carried out in a chosen field in one season, A local experiment
in experimentation on feeding pigs, is one carried out with pigs
chosen from a single stock and at a chosen farme A local experiment
is also one carried out in a single industrial plant.

It is evident that for an experimental result to be used
as a base for recommendations for practical activities, a local
experiment does not suffiee. The reason is, of course, that most
often the population in which such results can be applied, is too
narrow. In any case this is true if interactions exist between
the treatments and the environmental factors that are not controlled
during the practical acitwity.

Among research workers in the agricultural field of research
it now seems to be generally recognized that both geographic hetero-

geneity factors and factors, the effects of which are varying from
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season to season, make themselves felt and, also, that there are
interactions between these heterogeneity factors and the treatments.
If i1t were not so, the results from local experiments would be
sufficient. Therefore, research workers in this field of research
are compelled to plan and carry out experiments in such a way that
the replications cover a geographical area and a number of seasons.
In principle the situation is hardly different in other fields of
research, even if the importance of the interactions between the
treatments and the heterogeneity factors may be quite different for
the different casss.

Consulting the literature,dealing with such experimental
situations, it is most often found that the experiment is regarded
as consisting of a number of repeated local experimenté. In our
opinion it should not be considered thus. It ought to be regarded
as am experiment of its own, planned and carried out for its own
specific purpose,

Keeping to the example from the agricultural field of re-
search, the extension both geographically and in time can be achieved
in two different ways. A sample of localities must be chosen and,
within each locality a site for the replication. Then, the research
worker can use the same sample of localities for all seasons, only
changing the site for the replication from season to season. He
can also choose a new sample of localities for each season included
in the experiment. The latter plan is probably the best one, since
it can be expected that the heterogeneity factors are better covered

in an experiment according to this plan than they are if the same
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sample of localities are used for all seasons. But it is evident
that the use of the same sample of localities in all seasons is the
simpler one of the two plans to manage in practice. Now, the re-
search worker may succeed in choosing localities and sites so as to
have a sample of replications which closely resembles an ordinary
random sample, representing the agricultural area. But both a sample
of seasons and a population of seasons gre too vague. The term
"season'" does not imply more than a kind of classification with regard
to the variation in the effects of some environmental factors.

The conclusion is that whether a new sample of localities
has been taken for each season or, the same sampy le is used
for all seasons, the research worker has to be content with a sample
of replications, and the population in which the inferences can be
applied is the one this sample of replication represents in the sense
of a random sample. Most often the width of the population is larger
if a new sample of localities is taken for each season than it is if
the same sample is used in all seasons. But the difference cannot
ordinarily be very important. In both cases the question is whether
the sample gives a satisfactory coverage for the geographical hete-
rogeneity flactors and for that period of time for which the inferences
(er, forecasts) are intended. It is possible to ascertain to some
extent whether there is a satisfactory coverage for the geographical
factors. But for the time factors, i.e. climatic factors, the answer
to the question regarding the coverage depends on what can be said
about the changes of the climate in coming years, which for the pre-

sent is very little. It is evident, however, that if relatively large



climatic changes have taken place in the seasons covered by the
experimental replications, the research worker can be more confident
in giving advice to practitioners than he can be if the replications
cover less variation in the climatic factors. The interaction bet-
ween a treatment and the climatic factors may be small and insig-
nificant, and it is obvious that the research worker should feel
more confident in recommending a treatment showing small interaction
with these factors than he can feeél if the interaction is greater.
The same is the case with regard to the interaction between the
treatments and the geographic heterogeneity factors. Therefore, both
kinds of interaction-%hould be taken into account when the research
worker is dealing with the ranging and classification of the treat-
ments.

It has been mentioned above that there are, at least in
theory, two ways that can be used for the sampling of replications.
We can take a new sample of localities for each season included in
the experiment or, we can use the same sample of localities in all
seasons and merely change the site within the localities. In the
first case, if there are n, seasons and n, localities, for each season,
the sample consists of D=n N, replications. If only the site is
changed frcm seascon to season and the number of seasons and localities
are n, and Ny the sample still consists of n=n1n2 replications. 1In
both cases the population is the one the sample of replications re-
presents in the sense of a random sample. The two populations are
not identiecal, but the difference cannot be important. On the other
hand, the use of the same sample of localities in all seasons has the
advantage over the other plan that it makes a more detailed analysis

possible.



185

No matter which of the two plans is used, a replication does
not usually consist of k experimental units, k being the number of
treatments. Most often a number (m) of units is used for each treat-
ment, and the design may be complete randomization or, it may be ran-
domized blocks.

Suppose first that a new sample of localities is taken for
each season, and that the design for each replication is complete
randomization. Then, the model for the mean of the cobserved random
variable for treatment Tj (j=1,2,++k) and replication no. i (i=1,2,..n)

is

(17+1) Xgq T Wagzeu ite

Ji "Ji

where the different terms stand for the same effects as they do in
the model for a randomized block experiment. It will be found that

the model for the treatment mean is

Ej = L&aj+E¥E +Ej

J

Without loss of generality, we can let Eaj = 0, E(z) = 0, E(u) = 0
for each j, and E(E) = 0 for each combination (j,i). Therefore, it

will be found that
E ; = a. and E(x -x = a =a
(j) m:; (p q) P q

lees. that Ej is an urbiassed estimator of the treatment effect

(H*aj): and (EPJEQ) is an unbiassed estimator of the contrast

(ap—aq).

used in a local experiment, it will usually be found that Var(e),

If the experimental units are of the same size as those
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k
experiment. However, since the he terogeneity among the replica-

or-12Varj(e), is approximately the same as is found in a local

tions is usually much greater than it is in a local experiment

according to the randomized block experiment, it must be expected

k
experiment. Therefore, the reliability of the F test for the test-

that Var(u) = lZVarj(u) is much inflated as compared to a local

ing of the null hypethesis aj = 0 is questionable, the probability
of ¥ 2 Fa'being also inflated. However, the treatment mean.gj is
an unbiasssed estimator of the treatment effect, implying that an
unbiassed ranging of the treatments is obtained by means of the
treatment means.

Suppose, next, that the same sample of localities is used
in all seasons, the mean of the observed random variable for treat-
ment Tj (j=152,+0K), in season no. i (i=1,2,..n1), and locality
no. h (h=1,2,..n2) can be written'Ejih, and the model is

(17.2) X = p+aj+zi+y U, +V, +W, el +

jih n % n V31590 € 340" ®94n

Also in this case it can be shown that the treatment mean Ej is
an unbiassed estima tor of the effect (u&aj), and that (Eb—?q) is
an unbiassed estimator of the contrast (ap—aq).

It can also be shown, no matter which of the two plans is
used, that a linear function of the treatment means is an unbiassed
estimator of the corresponding contrast. However, the precision
of the estimator is different for the different contrasts. There-

fore, the confidence limits of the contrasts must be computed by

means of individual mean squares as described in section 7.
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It has briefly been touched upon that, if the problem if to
group the treatmentsand, particularly, if the problem is to isoclate
a group of superior treatments, the research worker should also
consider the interactions, first and foremost the interaction bet-
ween the treatments and the seasons. Now, if a new sample of locali-
ties is chosen for each season, it is impossible to separate the
treatment-locality interaction and the treatment-season interaction.
However, if the same sample of localities has been used in all

seasons, we may consider the function

= X,.-X
51 7 Fy1m™y
and the graphs of 6ji' against I, one for each treatment, as a
probably useful aid. Probably also
_ 2 2
(17.3) xj = ziéji/zmji

may prove to be useful for the characterization of the treatments.
For example, if the treatments are varieties, the research worker
would prefer for recommendation a high-yielding wariety for which
the value of hj is small.,

With regard to the treatment-locality interaction the

equivalent statistic is
(17.4) N, = 26,2/356.°
J f’jh/ %n

where
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It is evident, however, that of the two A, (17.3) is the more
useful in practice.

If a new sample of localities is taken for each season, thwe
research worker can use (17.3)s. But in this case lj is dependent
upon the confounded treatment-locality and the treatment-season
interaction.

So far we have been concerned with problems in agricul-
tural field experimentation. It seems likely, however, that the
difficulties encountered in this sphere of research, to a large
extent reflect the problems with which research workers have to
deal generally. It may be possible, of course, that industrial
plants are so far advanced technically that heterogeneity among
plants and effects of climatic factors are negligible. But it
is most likely that such examples are exceptions rather than the
rale.

To return to another example, we were in section 16
di scussing the design for an experiment for the comparison of a
number of feeding alternatives to pigs in a situation where the
mumber of treatments is too large to be covered by a litter. It
was suggested that a litter should be used in the same way as a
main unit in a field experiment according to the split-plot plan.
In this case a number of litters must be sampled to constitute
a replication. It was further suggested that the replications
should be sampled from different stocks, one replication from
each stock. There certainly is heterogeneity among stocks,

particularly heterogeneity due to genetic factors, as there is
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heterogeneity among localities in a field experiment . But there
might also exist heterogeneity due to differences in the environ-
mental conditions under which the pigs are living, indicating
that climatic factors may be important in this case also. In
fact the experimental situation is essentially the same as the
one described above. The dif ference is found merely in the
relative heterogeneity due to the dif ferent sources. Our con-
clusion is therefore, that such experiments should be plamned
and carried out according to the same principles as those used

in field experimentation. The experimental material (the repli-
cations) should be sampled in such a way that a reasonabl e amount
of thle heterogeneity among stocks as well as heterogeneity due

to differences in living conditions are covered. In order to
satisfy the latter requirement the replications must cover a
number of years.

If the purpose is to dbtain data upon
which rules for practical activity can be based, it is likely that
it will be found that there are numerous factors causing hetero-
geneity that cammot be or are not controlled in practice. The
experiment must theref>re be planned so that the sample of repli-
cations covers the heterogeneity due to these factors. If great
care is not taken to ensure that this regquirement is satisfied,
the population represented by the sample of replications covers
merely a part of the sphere of practical activity for which the
research worker’s recommendations are intended.

It is evident that an experiment of this kind and for

this purpose should cover the largest possible number of repli-
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cations. If we reflect on the best way of using the resources
which are at the research worker’s command, the conclusion will
be to the effect that a very simple design should be used for the
single replication. Merely one experimental unit for each treat-
ment per replication will do, but in practice q couple of units
ought to be used in order to guard against failures,

If m units (h=1,2,..m) are used for ¢ ach treatment per
replication and the design is complete randomization, the model

for the observed random variable is

Xyip " p+aj+zi+uji+ejih

(J=1,2,..k) i=1,2,..n). For the contrast (aphaq) the estimator
is (Ep;iq)’ the variance of which can be shown to be
Var(u -u_ ) Var(e_-e )
D_q D__q’

Var(xp-xq) = = + = .

It will be seen that the effect of increasing m merely is to
reduce the last term. Therefore, except in cases in which the
interaction (u) between the treatments and the heterogeneity fac-
tors is very small, an increase of m will not strenghten the pre-
cision of the estimator very much. On the other hand, an increase
of the number (n) of replications will always affect the prccision
favourably.

From the preceeding discussion it will be found that, as
regards the method of analysis, the situation is equivalent to the

one met with in randomized block experiments. The difference is
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that most often the interaction between the treatments and the

heterogeneity factors is more important than it is in randomized

block experiments. Even so, it is thought that the me thods des-

cribed in sections 7-12 are adequate for the statistical analysise.
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18. Some Supplementary Matters.

A Every research worker who is consistently using the
principle of randomization, sooner or later will come across
examples where the result of the randomization may seem unaccept-
able. The reason for this is, that most often some trend or
regularity must be assumed to exist among the experimental units.
For instance, this is so in a field plot experiment where there
often is some regularity in more than one direction of the guality
of the units. Then, if the randomization leads to a result showing
congruity between the allocation of the treatments to the expcri-
mental units and the regularity among the units, the research
worker is probably tempted to do something about it. He night,
of course, stick to the randomization principlie and accept the
result, knowing that alsc such a result must be left a place in
a long run procedure. However, often the resecarch worker has to
make a decision immediately, and therefore, it is natural for
him to consider rejecting the result of the randcmization and
rerandomize.

Regarded from a principal point of view, any tampering
with the result of the randomization ought to be refuted. But,
we do not think that this would be the right attitude to take, and
it is known that highly qualified research workers do, in fact,
reject some arrangements of the treatments.

In the literature dealing with the problem of experimental
design, the question is usually ignored. However, Cox (5) has

discussed the question at some length, referring alsc to relevant
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literature. 1In his treatice some methods of dealing with the
question, are being discussed. Two of the methods are founded

upon the idea of the re jectidn of the more extreme arrangements

of the treatments. The difficulty involved in this approach, 1is
that it will be necessary to use a dichotomy, grouping the re-

sults of the randomization into acceptable and unacceptable arrange-
ments.

Since it is necessary to submit to the fact that our sta-
tistical tools are merely approximate, the problem to consider 1is
what effect, e.g. on the F test, re jection of some of the arrange-
ments might have. Probably, the effect ofsyzaa restriction of the
randomization is to bring the distribution of F into better har-
mony with the standard distribution of the normal theory. Regar-
ding the confidence probability of the confidence interval of a
contrast, it is reasonable to think that the effect is small and 1is
directed towards an inflation of the confidence coefficient. But
these statements are based on mere guessing. A statistician who
has ample access to an electronic computer, might be able to obtain
satisfactory evidence by using constructed examples. Then, of
course, the examples must be constructed according to realistic
models, and the rejection of extreme arrangements of the treatments
must be carried out on an exaggerated scale. Only as soon as
results from such investigations are presented, is it possible to
make up ones mind what standpoint should be taken to the practice

of curtailing the random arrangementse



1L

B, At the time when the research work on experimental designs
began, the common attitude among learned statisticians was that
useful informations could hardly be obtained from small samples.
The explanation of some of the oriticism raised against the work
by Pisher and his collaborators, may be found in this attitude.
Tofday it is generally recognized that even very small samples
may yield data upon which important conclusions can be drawne.
However, it is hardly questionable that the founders of the de-
signs of experiments went to the other extreme, partly because
they were too engaged in the problems of tests of significance.
If the attention is turned to the problem of the estimation of
contrasts, larger samples are usually reguired.,

For instance, suppose that an industrial leader 1s con-
templating to replace old mass manufacturing machinery by new
machinery. Then, it is not enough for him to know that it has
been shown by some test of significance that e.g. the new machinery
is producing at a higher rate of speed than the old one. In his
economic calculations he needs some measure of the difference of
speed and, also, a value showing the lower margin for the differ-
ence. This means that he must utilize the outcome of an experi-
ment in which the old and the new machinery are the treatments
and base his calculations upon the resulting estimate of the con-
tpast and the confidence limits of the congrast. Also, it is
important to him that the confidence ifterval of the contrast is
not too wide, which in fact implies that the size of the experi-

ment or, the number of replications, cannot be very smalle
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We believe that this is a most common situation. If the
purpose of an experiment is changed from that of significant test
to the estimation of contrasts, an increase of the number of re-
plications is usually required. But, of course, in some cases the
replacement of one treatment by another does not imply new econo-
mic investments and, if so, it is enough to know that at least one
of the treatments can be classified as the superior one.,

Suppose now, that k treatments are included in an experiment
carried out according to the randomized block design, n being the
nutber of replications. In section 7 it is explained why the
research worker in this case should use Student’s t with (n-1)
degrees of freedom in his computations of the confidence 1limits
of a contrast. There are two principal reasons for this point of
view. The first one is that the presence of interactions between
the treatments and the heterogeneity factors implies that there are
differences in precision among the contrasts. The second reason
is, that, if a common errdér mean square is used for all contrasts,
the research worker camnot possibly know the level of confidence
of the confidence intervals. Therefore, the use of a common error
mean square will always mean that the confidence limits of the
contrasts are biassed and, hence, that they may be misleading.

It is evident that the use of individual mean squares in
the computations of the confidence limits of the contrasts, implies
that the number of replications cannot be too smlle. If this
number is too small and, consequently, the confidernce inter-
vals of the contrasts are very wide, it is difficult to see what

object the experimental data are capable of achieving. Therefore,



the research worker, in plamning his experiment, should always
try to estimate the number of replications that will be necessary
in order that a chosen minimum precision can be expected to be
obtained. Obviously, this is a very difficult task to be charged
with, and it is evident that the research worker has to utilize
experience from previously conducted expe riments.of a similar kind.
Cs The 1last question to be considered, concerns the relative
importance of the local and the non-local experiments described
in section 17. 1In planning an experiment it is important to know
if the results are intended to be used for some practical purpose
or, if the purpose is to supplement the research workers lkncwledge
in some field of research., In the first case it is evident that
a non-local experiment is needed. In the second case, what is
needed is either a non-local experiment or, an experiment in which
a very large number of externel factors are included in the capacity
of experimental factors. Therefore, a local experiment as described,
will not meet the requirements in either case. However, an experi-
ment of such a kind may furnish the necessary data upon which pre-
liminary conclusions can be drawn, conclusions that may be used as
a guide for the planning of a non-local experiment. For instance
the data may show that some treatments are to such an extent in-
ferior that they can be left out in the plarmming of the non~local
experiment. This is important, because a non-local experiment is
usually very expensive, and it is therefore important that the
number of treatments can be reduced to a minimum.

There are, of course, exceptions to this appraisal of the

local experiments as, for instance, in our example in which it was
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assumed that an industrial leader is intercsted in the compari-
son of two kinds of machinery. In this case the outcome of an
experiment may be important to the particular industrial plant
in question. Therefore, the experiment can be carried out as a
local experiment, even if the outcome is intended to be used as
& guide for some practical decision.

There is al so a third category of experiments, consist-
ing of such experiments as are carried out in 2 laboratory or,
under laboratory conditions, where a number of external factors
can be controlled. A fourth category consists of such experiments,
discussed in section 15, “mp. are planned to yield high precision
of the contrast estimators. In a comprehensive research prcgram
it may be possible to make advantageous use of all these categories
of experimental plans. Then, one of the problems for the research
leader is to decide how and to what extent the diffcrent categories
ought to be utilized. In view of the fact that the re search funds
are usually very restricted, it is important that a halance is
found in order to achieve a kind of optimum. In practice to find
such a balance is certainly very difficult. If agricultural field
plot experimentation is considered, it seems to be a fact that
research workers .are inclined to spend a too great part of the
research fund on local experiments. This may partly be due to
the history of the development of the experimental designs. In
this field of research it is rather obvious that the outcome of
a local experiment can be regarded as being rerely preliminary-
Therefore, it also seems somewhat confusing that so nuch emphasize

is placed on the development of the designs of such experiments.
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