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Abstract: The maternal microbiota plays an important role in infant gut colonization. In this work
we have investigated which bacterial species are shared across the breast milk, vaginal and stool
microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and
a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species
predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good
correspondence between their relative abundances estimated by both approaches. Both approaches
also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis
identified only two species common to most women and in all sample types (Bifidobacterium longum
and Enterococcus faecalis). Breast milk was the only sample type that had significantly higher intra-
than inter- individual similarity towards both vaginal and stool samples. We also searched our
RMS dataset against an in silico generated reference database derived from bacterial isolates in the
Human Microbiome Project. The use of this reference-based search enabled further separation of
Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis.
We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement
by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation
and estimation.
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1. Introduction

Microorganisms that colonize humans are tightly associated with our health and well-being.
Our gut microbial community, for example, plays a role in immune system development and response
to medications [1,2]. Its composition and structure is also associated with a number of mental and
digestive disorders [3,4]. Numerous studies on germ-free animals also suggest the importance of
microbes in the proper functioning of the host [5]. This evidence has led to a recently-developed
view of humans as holobionts—as “super-organisms”, where both the host and its microbiome are
so closely interconnected that they become inseparable [6,7]. However, some researchers argue that
not all microbes that thrive in our bodies should be regarded as essential parts of the super-organism
since some of them are merely passersby that were acquired “by chance” [8]. They point out that for
any microbe to be viewed as an essential part of a super-organism it should be vertically transmitted
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and present in a large proportion of the population, in addition to having a symbiotic relationship
with the host. Indeed, a mothers microbiome plays an important role in the shaping of her infant’s
gut microbiota. Vaginally born children are initially colonized by their mother’s vaginal microbes and
this imprinting can be seen for years [9]. There are also reports of maternal gut microbes that have
been detected in the gut microbiota of their offspring [10], but whether this colonization happens pre-
or postnatally is still debated [11]. Breast milk also contributes to the initial structuring of the infant
gut microbiota and its composition over several years [12,13]. In addition to direct transmission of
viable bacteria from mother to child, breast milk contains maternal IgA that reflects the mother’s own
microbial exposures and which may prime the infant immune system [14].

There are two major approaches for microbial community analysis—targeted marker gene
sequencing or whole genome shotgun (metagenome) sequencing. Targeted sequencing uses only a
small fraction of the genome from each microbial community member and is often insufficient for
species separation [15]. On the other hand, metagenome sequencing provides deeper taxonomic
resolution by utilizing information from a large proportion of each genome, yet requires substantial
computational power to reconstruct the genomes [16,17]. Moreover, this approach results in the
sequencing of a number of DNA fragments that are excessive to the tasks of species resolution
and functional assessment and thus sequencing depth is lost without providing new information.
A reduced metagenomic sequencing (RMS) approach combines the advantages of both targeted
and shotgun metagenomics. Depth of sequencing is increased by “targeting” special signatures
whilst resolution depth is also increased by sequencing more than one signature from each microbial
community member. Sequencing of double digest restriction site associated DNA (ddRAD) fragments
was recently assessed for this purpose [18]. Briefly, the ddRAD approach uses a mixture of two
restriction enzymes, N1aIII and HpyCH4IV, to digest template DNA prior to attachment of adapters
to fragments for PCR amplification and sequencing. Here we use an alternative approach that was
widely used for species differentiation in the past, namely amplicon length polymorphism (AFLP) [19],
coupled with deep sequencing. The concept is similar to that of the ddRAD method, but EcoRI and
MseI restriction enzymes are used for DNA digestion. We have previously demonstrated successful
use of this method combined with the MiSeq Illumina platform for metagenome estimation and
functional assessment [20].

In this work, we aimed to identify bacterial species that (a) were shared across breast milk, vaginal
swab and stool samples of 109 mothers from mid-Norway and (b) were present in a large proportion of
this population. We hypothesized that bacteria fulfilling these two criteria are more likely to constitute
a holobiotic part of the human microbiota.

2. Materials and Methods

2.1. Study Cohort

All samples analyzed in the current work were collected during the previously published
Probiotics in Prevention of Allergy among Children in Trondheim (ProPACT) study [21]. Participants
were asked to collect stool samples during pregnancy and 3 months after birth and breast milk samples
at 10 days and 3 months after birth. Both stool and breast milk samples were to be frozen immediately
at −20 ◦C and delivered to the laboratory within 4 weeks for further storage at −80 ◦C until analysis.
Vaginal swab samples were collected either by the participants 4 weeks prior to their expected due
date and immediately placed into the home freezer until they were sent for further storage at −80 ◦C,
or by medical staff at admission to the hospital for labor.

We have previously described microbial composition of the breast milk [22], vaginal swab [23] and
stool [24] samples independently of each other using 16S rRNA gene sequencing. In this work, we sought
to analyze the complete maternal microbiome and identify bacteria shared between the breast milk,
vaginal swab and stool samples. Therefore, we have combined and compared the three individually
sequenced datasets, keeping only individuals who had information for all three sample types. The final
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16S rRNA dataset comprised of 327 samples (109 breast milk; 109 vaginal swab and 109 stool samples)
from 109 women (Table S1). For some women, data was available from two collection time points for
either breast milk, stool or vaginal swabs samples. In these cases, the 16S rRNA results were averaged
across the two time points since the primary aim in this work was to identify microbes shared across
maternal body sites around the time of birth. The ProPACT study is a randomized, placebo controlled
trial, in which women who were allocated to the probiotic arm of the trial received a fermented milk
product which contained Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis ssp. lactis Bb-12 and
Lactobacillus acidophilus La-5 from 36 weeks gestation until 3 months after birth. Based on our previous
analyses, probiotic intake did not affect the overall microbiota of these samples [22–24]. Therefore,
we have not stratified mothers into probiotic/placebo groups in this work. The information on probiotic
intake is available in Table S1 and the presence of the administered bacteria was assessed in the RMS data.

2.2. Generation of the Common 16S rRNA Dataset

16S rRNA gene amplicon datasets for each sample type were generated separately and at different
time points. To create a common dataset, we combined OTUs that shared more than 97% identity
with each other, into OTU sets. Each OTU set comprised of one representative OTU sequence from
the breast milk (B), vaginal swab (V) and stool (S) datasets respectively and therefore we called
these sets BVS-OTUs. We then filtered BVS-OTUs based on their taxonomy assignments, discarding
any BVS-OTUs that included representative sequences with two conflicting assignments at the same
taxonomy level. For those BVS-OTUs that had representative sequences classified at different taxonomy
levels, the lowest assigned level was kept for identification.

2.3. Generation of the RMS Dataset

A subset of 34 samples from 16 women was subjected to RMS analysis. Samples were selected from
women with high counts of OTUs that were included in the BVS-OTUs in at least two sample types.
As such the RMS analysis included 13 of the 109 women in the combined 16S rRNA gene sequencing
analysis and was augmented with another 3 women who also had high levels of these OTUs in two
sample types, but where their third sample type was not available (Table S3). Previously isolated DNA
(~10 ng) was digested using 8 U of EcoRI (New England Biolabs, UK) and 4 U of MseI (New England
Biolabs, UK) with addition of 1× CutSmart Buffer (New England Biolabs, UK) at 37 ◦C for 1 h and
AFLP adapters (EcoRI-F: 5′-CTCGTAGACTGCGTACC-3′; EcoRI-R: 5′-AATTGGTACGCAGTCTAC-3′;
MseI-F: 5′-GACGATGAGTCCTGAG-3′; MseI-R: 5′-TACTCAGGACTCAT-3′) were ligated. Resulting
fragments were enriched in PCR reaction with EcoRI (5′-GACTGCGTACCAATTC-3′) and MseI
(5′-GATGAGTCCTGAGTAA-3′) primers [19]. Cycling protocol comprised of polymerase activation
step of 95 ◦C for 15 min followed by 25 cycles of denaturation at 95 ◦C for 30 s, annealing at 56 ◦C for
1 min and elongation at 72 ◦C for 30 s with a final elongation step at 72 ◦C for 7 min.

Fragments of around 500 bp were selected using AmPure XP beads (Beckman Coulter, Brea, CA, USA),
quantified, normalized and then sequenced on HiSeq platform (Illumina, San Diego, CA, USA) at the
Norwegian Sequencing Centre (Oslo, Norway).

Sequencing reads (104 bp) were filtered against the human database using BBMap [25] and
then additionally BLAST-searched and filtered against the NCBI Human genome reference database.
The remaining reads were clustered at 97% identity level using USEARCH v 8.0 [26].

RMS analysis was verified using mock communities of four bacteria mixed in various proportions
including one negative control with no genomic DNA template (Appendix A).

2.4. Generation of the RMS Database Based on the Human Microbiome Project Representative Isolates
(HMP-RMS Database)

Reference genomes of bacteria isolated from oral, gastrointestinal and urogenital tracts,
were downloaded from the Microbial Reference Genomes database (Human Microbiome Project; HMP).
For each of the genomes, a restriction map with EcoRI and MseI enzymes was created using MATLAB
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R2016b (MathWork Inc., Natick, MA, USA); and those fragments that contained a combination
of EcoRI/MseI or MseI/EcoRI cutting sites on their ends, were selected using MATLAB R2016b
(MathWork Inc., Natick, MA, USA). All fragments were pooled in one database and clustered on
a 97% identity level using USEARCH v 8.0 [26] restricting minimal cluster size to one (-minsize 1).
The complete HMP-RMS database comprised of 707,811 clusters from 970 HMP reference isolates
belonging to 475 bacterial species.

2.5. Statistical Analyses

All analyses were performed in MATLAB R2016b (MathWorks Inc., Natick, MA, USA) unless
stated otherwise. Similarity between samples from different body sites was assessed using Jaccard
distance. To compensate for different sequencing depths, a cutoff of 1% was set as a detection threshold
for diversity estimation. This cutoff ensured that any bacterial community with a true relative amount
over 2% would exceed the detection threshold, even in the most-shallow sequenced dataset which was
rarefied to 1000 sequences per sample (Figure S1).

Non-parametric Kruskal-Wallis test with Benjamini-Hochberg FDR correction for multiple testing
was used for assessment of statistical significance at the 5% level.

2.6. Data Availability

All generated datasets can be made available upon request to the corresponding author.

3. Results

3.1. Sharing of Bacteria between Breast Milk, Vaginal and Stool Microbiota, as Determined by 16S rRNA
Gene Sequencing

In total, 307, 463 and 1313 OTUs were detected in the breast milk, vaginal swabs and stool datasets
respectively. Among those, we detected 67 BVS-OTUs (i.e., sets of OTUs from breast milk, vaginal
swab and stool datasets that have ≥97% similarity with each other). The majority of these BVS-OTUs
belonged to Bacilli and Clostridia classes and their cumulative relative abundance comprised 72%
of the total microbial load in all breast milk samples, 45% in vaginal swab samples and 15% in stool
samples (Figure S2).

Generally, there was no similarity between the overall microbial communities detected in the three
samples types when they were compared between individuals. Within individuals, comparison across
samples types also indicated that these sample types have no similarity for most women. However,
the Jaccard dissimilarity score for a few women indicated at least some similarity with sharing of
several BVS-OTUs across sample types, particularly between breast milk and stool samples (n = 9) and
between breast milk and vaginal swabs samples (n = 5) (Figure S3).

None of BVS-OTUs were detected in more than half of the tested population (at least 55 women)
in all three sample types (i.e., prevalence > 50% in the breast milk, vaginal swab and stool datasets).
We then searched for BVS-OTUs that were shared across all three sample types within a given
individual. Thirty-four women (31% of the study cohort) were found to have at least one common
BVS-OTU across all three sample types. In most cases, each woman had only one common BVS-OTU
among her samples (Table S2) with BVS-OTU identified as Streptococcus being the most frequently
encountered individually shared (found in 15 out of 109 women; 13.2% prevalence).

3.2. RMS Analysis of Samples from Mothers with Shared BVS-OTUs

We generated 28,657,029 raw human DNA-free RMS reads (Table S4) for 34 samples from
16 women and clustered these raw RMS reads with 97% similarity threshold, resulting in 1,232,959 RMS
clusters. Whilst the majority of raw RMS reads belonged to stool samples (67.4% of the sequencing data),
a similar number of RMS clusters were detected in the different sample types (426,892, 373,230 and
432,837 RMS clusters for breast milk, vaginal swabs and stool samples, respectively). The breast milk
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and vaginal swab samples exhibited the greatest similarity, with 23,775 RMS clusters found in common
in at least half of the tested population, as compared to 220 and 107 RMS clusters shared between
breast milk/stool samples and stool/vaginal swab samples, respectively.

To address inter-individual sharing of bacteria, we searched for RMS clusters that were detected
in both breast milk, vaginal swabs and stool samples of more than half of tested women (n > 8).
In total, we identified eighty-six RMS clusters that satisfied the criteria. Based on BLAST searches
of these RMS clusters against the NCBI nucleotide database (Table S5), most of them belonged
to Bifidobacterium longum ssp. longum and Enterococcus faecalis (31 and 28 common RMS clusters
respectively). Collectively, these clusters were detected in all tested samples (n = 34) and represented
around 10−4 fraction of all clustered RMS reads (Figure 1).
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Figure 1. Fraction of RMS reads that belong to commonly detected RMS clusters identified as B. longum
ssp. longum and E. faecalis. Median values, as well as 25th and 75th percentile, are depicted in red.

We then searched for RMS clusters shared among different sample types within each individual
separately. Each woman shared 1925 (median value; interquartile range IQR = 13,281) RMS clusters
among her samples. BLAST search of these clusters against the NCBI database revealed that both
B. longum ssp. longum and E. faecalis RMS clusters were also two of the most frequently identified shared
clusters within individuals (Table S6). One woman had RMS data on all three sample types. In total,
328,114 RMS clusters were detected in her samples and 405 were shared across all of them. The majority
of these shared RMS clusters were identified as E. coli and E. faecalis (Figure S4). These RMS clusters
spanned the whole genomes with an average identity of 97.7% and 96.2% for E. coli and E. faecalis,
respectively and their relative abundance ranged between 0.01% and 0.52%.

3.3. Microbiota Sharing between the Study Cohort and the HMP Database

We extracted the genome information for all bacterial isolates obtained from skin, oral and
gastrointestinal tracts of the USA residents in the Human Microbiome Project Genome database
(downloaded in February 2017), generated RMS clusters from these data (HMP-RMS database) and
mapped our raw reads against this database. Twenty-three percent of raw RMS reads from our cohort
mapped towards 78,822 in silico generated HMP-RMS clusters, which constituted 11.1% of the whole
HMP-RMS database. These clusters belonged to 332 bacterial isolates.

Forty-two bacterial species from the HMP database were detected in more than 50% of the study
cohort in all three sample types (Table S7). B. longum reads mapping towards HMP-RMS clusters
belonging to B. longum ssp. longum and B. longum ssp. infantis were detected in all individuals and
all sample types. We therefore pooled raw RMS reads into stool, breast milk and vaginal pools and
mapped them onto the genomes of B. longum ssp. longum and B. longum ssp. infantis. Two of B. longum
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ssp. longum HMP isolates (F8 and JCM1217), as well as B. longum ssp. infantis JCM1222, had whole
genome sequences available in the HMP database of reference genomes. Our mapped reads spanned
the whole genomes of each of these isolates with an average coverage ranging from 12.7 to 83.7 reads
per mapped genome region and an average identity ranging from 95.3% to 96.7% (Figure 2).Genes 2018, 9, x FOR PEER REVIEW  6 of 12 
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Figure 2. Mapping of raw RMS reads from breast milk, stool and vaginal swab pools towards whole
genome sequences of B. longum. F8 and JCM1217—B. longum ssp. longum; JCM1222—B. longum ssp.
infantis. Median values, as well as 25th and 75th percentile, are depicted in red; (a) Coverage of mapped
genome regions; (b) Pairwise identity of raw RMS reads towards mapped genome regions.
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3.4. Correlation between RMS and 16S rRNA Analysis

Among the samples subjected to RMS analysis, the high-count BVS-OTUs included species
from the Streptococcus, Veillonella, Bifidobacterium, Blautia, Sphingomonas, Anaerococcus, Moraxella and
Dolosigranulum genera, as well as some bacterial groups classified down to class level (Table S3).

We mapped raw RMS reads from samples targeting species-classified BVS-OTUs towards the
representative sequences of the target species (only those species that either had a whole genome or a
scaffold > 1.5 Mbp deposited at the NCBI Genome database). Reads mappings towards the in silico
predicted RMS regions of the respective target species were detected in all tested samples (Table S8).

In samples, where more than 50% of the mapped reads mapped towards the in silico predicted
RMS regions, we observed significant correlation between the expected relative abundance of the target
species and the proportion of raw RMS reads mapping towards the target genomes (Spearman rho = 0.8,
p = 0.0052) (Figure 3).
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Figure 3. Correlation between 16S rRNA relative abundance and RMS estimates of expected target
species in samples where >50% of the mapped regions corresponded to the in silico predicted
RMS fragments.

Since Streptococcus was detected as the most commonly shared BVS-OTU, we extracted raw
RMS reads from breast milk and vaginal swab samples from one woman who was predicted to
have high relative counts of Streptococcus BVS-OTU (>1%). We then mapped these reads against
23 streptococcal species that had whole genome sequences deposited in NCBI Genome database
(Table S9). All samples had reads mapping towards streptococci, however genomes of S. agalactiae and
Enterococcus saccharolyticus (previously identified as S. saccharolyticus) were most widely represented
(Figure S5) across the samples.

B. longum and E. faecalis were identified as the most commonly detected bacteria across all sample
types by the RMS approach, but not through 16S rRNA gene sequencing. Therefore, we returned to the
original breast milk, vaginal swab and stool datasets to investigate whether OTUs with >97% similarity
towards the 16S rRNA gene of E. faecalis V583 and B. longum (both subspecies) were detected in the
subset of samples subjected to RMS analysis. B. longum OTU was detected in nine vaginal swab
samples, one breast milk and none of the stool samples. E. faecalis OTU was detected in three breast
milk, three vaginal swab and two stool samples. To assess whether these low detection rates were a
result of rarefaction, we simulated datasets to estimate the probability of detecting a single read from a
taxon at varying relative abundances and using rarefication cutoffs of 1000, 2000 and 3000 sequences per
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sample, as was the case for the breast milk, stool and vaginal swab datasets, respectively. According to
these calculations, a taxon that comprises around 0.01% of the community, has a 7% chance of inclusion
into the rarefied dataset when limited to 1,000 sequences per sample and this rises to 27% when
3000 sequences per sample is the rarefication cutoff (Figure S6).

3.5. Assessment of the DNA Kitome

A control sample with no gDNA template was also included into the mock community analysis in
order to assess technical contamination that might rise from the DNA handling kits. In total, 4676 reads
were generated by HiSeq sequencing from this negative control. Given that the 10 ng gDNA mock
community samples yielded on average 2,557,913 reads per sample; the gDNA template in the negative
control probably comprised around 0.02 ng. We BLAST searched all the negative control reads against
the Reference Prokaryotic (RefProk) NCBI database (Table S10).

Less than 40% of the reads (1790 of 4676 reads) could be matched against the reference database,
using a lenient requirement of at least 50% concordance of the read length. In total, 736 and 47 reads
were assigned to E. faecalis and B. longum, respectively. Since both of these bacteria were detected as
the most commonly shared bacteria in maternal samples, we aligned all the negative control reads
assigned to these bacteria to all RMS fragment clusters that were shared among maternal samples.
The best-matching pairwise alignments between negative control reads and fragment clusters had
36.4 ± 9.8% and 61.0± 29.0% identity for E. faecalis and B. longum reads, respectively. Seven of B. longum
negative control reads were completely identical to RMS fragments shared among maternal samples,
whereas none of E. faecalis negative control reads matched maternal fragment clusters. Moreover,
all of the negative control reads matched uniquely towards E. faecalis V583 which was included into
the mock community. RMS clusters from maternal samples, however, gave best BLAST hits against
numerous E. faecalis strains (KB1, L12, AMB05, CLB21560, D32, LD33) in addition to V583.

3.6. Search for Probiotic Bacteria in RMS Dataset

As described, the samples were collected from women participating in a randomised, placebo
controlled trial and 10 out of the 16 women in the RMS dataset had received a probiotic
supplement containing Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis ssp. lactis Bb-12 and
Lactobacillus acidophilus La-5. We have searched for RMS clusters assigned to these bacterial species
using BLAST against the Reference Prokaryotic (RefProk) NCBI database. All of the probiotic species
were identified in the dataset (Table S12) with 100% identity over the whole read length (104 bp).
B. animalis ssp. lactis was detected only in one stool sample; L. acidophilus—in two breast milk samples,
two vaginal swabs and one stool samples, whereas L. rhamnosus was found in one vaginal swab
and four stool samples (Table S13). Interestingly, all of the RMS fragments that were identified as
L. rhamnosus, were mapped specifically to LGG although there are 106 different L. rhamnosus strains in
the RefProk NCBI database.

4. Discussion

There are number of papers addressing sharing of bacteria across various body sites [27,28],
but none have focused on the sharing of the maternal microbiota. Initially, we compared microbiotas
of 109 women using 16S rRNA gene sequencing data. BVS-OTUs belonging to the Clostridia class
were highly represented in stool samples and remained low in breast milk and vaginal swabs, whereas
those belonging to the Bacilli class accounted for the majority of the shared microbiota in the latter
two sample types. Interestingly, over 70% of the total microbial load across all breast milk samples
can be attributed to one or more of the 67 BVS-OTUs identified. Moreover, breast milk was the only
sample type that was significantly more similar to either vaginal swabs or stool samples from the
same mother than among different mothers. We believe that this observation may point towards
translocation of maternal bacteria to breast milk. Several reports have shown recovery of intestinal
bacteria in breast milk [13,29,30] and an internal entero-mammary pathway has been proposed to
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explain this translocation (reviewed in [31]). This, however, does not explain the individual similarity
between vaginal and breast milk samples. Alternatively, the external pathway via hands and skin may
also contribute to the aforementioned similarities.

Generally, RMS data corresponded well to 16S rRNA gene sequence data. All the species that
were predicted to be found in the samples by 16S rRNA gene sequencing were also detected using
the RMS approach. In all cases, reads mapped towards several regions of the target genome and the
majority of these regions were covered by more than one RMS read. There was also a significant
correlation in the relative abundance estimates between the two approaches. However, there were also
some discrepancies between the two datasets. Whilst Streptococcus was the most commonly shared
bacterium between breast milk, vaginal swabs and stool samples in the 16S rRNA gene sequencing
dataset, it was only detected in all sample types for 13.2% of women and none of BVS-OTUs was
universally distributed across the study cohort. The RMS approach and deeper HiSeq sequencing
also suggested that few bacteria were common among women and body sites, although here it was
B. longum and E. faecalis that were identified as common across the maternal microbiotas in the majority
of the women. Both of these species were detected at very low levels, representing around 10−4 of the
total microbial load. The probability of detecting such low abundant taxa would not have exceeded
30% in the rarefied datasets used for the 16S rRNA gene sequencing analysis and this may explain why
16S rRNA gene sequencing did not identify the sharing of these taxa. Nonetheless, we also investigated
the possibility that the recovery of these species was due to contamination through an assessment of
the negative control in the mock community analyses. Both B. longum and E. faecalis were detected in
the negative control sample, yet the vast majority of reads in the negative control could not be mapped
to the fragment clusters from the maternal samples. Reassuringly, this suggests that the presence of
B. longum and E. faecalis in all samples in the RMS dataset is not artefactual. Indeed, they are common
residents of breast milk, gut and vaginal microbiota [32–34] and both of them are capable of being
transmitted from mother to child [13].

B. longum consists of three subspecies (longum, infantis and suis), but standard 16S rRNA gene
sequencing is usually unable to differentiate between them due to a low degree of variation in
16S rRNA gene [35]. Therefore, other genes are normally targeted in order to distinguish between
these subspecies [35,36]. Using an RMS approach, we were able to separate between two subspecies,
B. longum ssp. longum and B. longum ssp. infantis, demonstrating that RMS may be an efficient
alternative to the shotgun metagenomics approach despite the lower complexity of the data. The RMS
approach may also offer efficient strain-level resolution. We observed some indication of this potential
in the specific identification of the L. rhamnosus GG strain, which was used as a probiotic supplement in
our dataset. However, this needs to be more thoroughly tested using mock communities with various
strains of the same species.

One mother had RMS information on all three sample types and the majority of RMS clusters
shared between all her samples belonged to E. coli. E. coli is a common resident of the human gut and it
has also been detected in breast milk of healthy women [37]. Vaginal E. coli, on the other hand, is often
associated with a higher risk of urogenital infections and various complications during pregnancy,
including premature rupture of membranes [38]. This mother, however, did not report any symptoms
of vaginal infections during pregnancy and she gave birth at term.

5. Conclusions

In this work we demonstrate a low degree of overall maternal microbiota sharing suggested
both by 16S rRNA gene sequencing data on 109 mothers, as well as by deeper reduced metagenomics
sequencing of samples from 16 mothers. Interestingly, breast milk was the only sample type with
higher intra- than inter-individual similarity, coinciding with higher total bacterial load of shared
microbial classes. Based on RMS analysis, only three bacteria, Bifidobacterium longum ssp. longum,
Bifidobacterium longum ssp. infantis and Enterococcus faecalis, were frequently encountered in all sample
types across the tested population. The genomes of these bacteria were evenly covered, although with
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varying identity levels, suggesting species, but not strain sharing across the population. The wide
spread of B. longum and E. faecalis in breast milk, vaginal and stool samples of mothers, was possibly
missed by 16S rRNA gene sequencing due to low rarefaction levels used for data normalization.
We also demonstrate that the use of a reduced metagenomics approach for identification of bacterial
species can be successfully applied for resolution of bacteria down to a subspecies level while reducing
the complexity of the metagenomic dataset.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/5/
231/s1, Figure S1: Probability of OTU to exceed a given detection threshold given its true relative amount;
sequencing depth is set to 1000 sequences per sample. Probability of detection above the set threshold is
calculated based on 500 random permutations; Figure S2: Relative amount of BVS-OTUs in breast milk,
stool and vaginal swab samples (Actinob—Actinobacteria; γ-Prot—Gammaproteobacteria; Bacter—Bacteroidia;
β-Pr—Betaproteobacteria; α—-Alphaproteobacteria; F—Fusobacteria; Cyan—Cyanobacteria); Figure S3: Jaccard
index of dissimilarity between vaginal, breast milk and stool samples. Jaccard index ranges from 0 (identical)
to 1 (completely different) and is calculated based on the proportion of common taxa detected between pairs of
samples. To herself: intraindividual dissimilarity; to others: interindividual dissimilarity. Median values, as well
as 25th and 75th percentile, are depicted in red; Figure S4: Taxonomic distribution of 405 RMS clusters shared
across breastmilk, stool and vaginal swab samples of one individual; Figure S5: Number of regions in Streptococcus
target genomes that are covered by raw RMS reads from samples of the woman in who Streptococcus BVS-OTU
was detected based on 16S rRNA data. B1—breast milk sample; V18 and V19—vaginal swab samples; Figure S6:
Probability of detecting a single read from a taxon using a given rarefaction level and its true fraction in the
community. Probability is calculated based on 500 random permutations; Figure S7: Verification of RMS analysis.
(a) Number of RMS reads mapping towards in silico generated RMS clusters from target species. (b) Correlation
between “true” and “estimated” target bacteria concentrations; Table S1: Description of the study cohort; Table S2:
List of women who shared BVS-OTUs across all three sample types; Table S3: List of samples used for RMS
analysis; Table S4: Number of RMS sequencing reads; Table S5: BLAST search of RMS clusters that are shared
across all sample types in at least half of the population, against the NCBI genome database; Table S6: E. faecalis
and B. longum shared across breast milk, stool and vaginal swabs of individuals; Table S7: List of HMP bacterial
species that RMS reads mapped towards; Table S8: Correlation between 16S rRNA prediction and RMS detection.
RMS reads mapping towards target species; Table S9: List of Streptococcus species genomes used for mapping of
raw RMS reads; downloaded from the NCBI Genome database; Table S10: BLAST search of negative control reads
against the NCBI Reference Prokaryotic RefProk database; Table S11: Composition of mock community samples;
Table S12: Identification of probiotic bacteria in the RMS dataset; Table S13: List of samples where probiotic
bacteria were detected.
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Appendix A

Verification of the RMS Sequencing Approach

Mock communities of E. coli ATCC25922; E. faecalis V583; B. longum DSM20219 and B. infantis
DSM20088 mixed in varying proportions ranging from 0% to 100% (Table S11), were used to assess
the sensitivity of the AFLP sequencing in prediction and identification of bacterial strains. More than
95% of the AFLP reads that were generated from pure bacterial strains mapped only to the target
in silico AFLP fragments (Figure S7a). There also was high correlation (R2 > 0.93) between true bacterial
mixtures and bacterial concentrations estimated based on the number of unique AFLP fragment reads
in these mixtures (Figure S7b).
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