On the Application of Machine Learning Techniques for Phenotypic Classification and Clustering of Heart Failure Patients

On the Application of Machine Learning Techniques for Phenotypic Classification and Clustering of Heart Failure Patients

Samir Adrik

Thesis submitted for the degree of
Master of Science in Bioinformatics and Applied Statistics

Norwegian University of Life Sciences
November 19, 2018

Abstract

In this thesis, we attempt to investigate how well various clustering algorithms (hierarchical clustering, k-means and expectation-maximization) perform in producing phenotypically distinct clinical patient groups (i.e. phenomapping) with heart failure with preserved ejection fraction (HFpEF) and mid-range ejection fraction (HFmrEF). Furthermore, we evaluate the performance of various classification algorithms (k-nearest neighbours, logistic regression, naive Bayes, linear discriminant analysis, support vector machines and random forest) in predicting patient mortality and readmission. All the algorithms were applied on a data set consisting of 375 patients with symptomatic heart failure (HF) identified at a tertiary hospital in the United Kingdom.

In the cluster analysis, we found that the hierarchical and k-means algorithms show signs of clustering more mutually exclusive patient groups with HF compared to the physicians. By examining the important attributes of the participants enrolled at the start of the study, i.e. the baseline characteristics. We found that the patient groups produced by these algorithms had 62 significantly different baseline characteristics compared to 59 produced by the physicians.

In the classification of mortality and readmission, we found that linear discriminant analysis (LDA) and logistic regression show promising potential. That is, the level of accuracy for which the algorithms predicted mortality and readmission rank high compared to the other algorithms evaluated. LDA predicted mortality with approximately 69.9% accuracy and readmission with 99.7%. Logistic regression had similar results with approximately 69.6% accuracy for mortality and 98.7% for readmission. Similar results are reported in the literature. Our findings lend support to the idea that the application of such algorithms may help in better understanding the complex nature of a clinical syndrome such as heart failure.

Acknowledgments

Firstly, I would like to thank my supervisors, Ulf Geir Indahl and Kristin Tøndel, for helpful guidance throughout the process of writing my thesis. They have always been available to answer my questions and their many comments and suggestions have certainly been of great help. They have shown great patience and for that I am truly thankful.

I would also like to thank my family for the support which they have shown over the years. I would especially like to thank my sister for proofreading and much good advice.

Lastly, I would like to thank all my friends from the university for making studying for this degree a memorable experience.

All errors or ambiguities are solely my responsibility.

Samir Adrik

Ås, November 19, 2018

Contents

1 Introduction 1
1.1 Problem statement 2
1.2 Thesis structure 3
2 Background 4
2.1 HF detection 4
2.2 Subtype estimation 9
2.2.1 Supervised learning 11
2.2.2 Unsupervised learning 14
2.3 Prediction of clinical outcomes 17
3 Methodology 23
3.1 Overview 23
3.2 Data 26
3.2.1 Missing data 28
3.2.2 Little's test for MCAR 30
3.2.3 Imputation 33
3.2.4 Dimensional reduction 38
3.3 Clustering patient groups 40
3.3.1 Hierarchical 40
3.3.2 k-means 41
3.3.3 Expectation-maximization 43
3.4 Classifying clinical outcomes 44
3.4.1 k-nearest neighbours 45
3.4.2 Logistic regression 46
3.4.3 Naive Bayes 47
3.4.4 Linear discriminant analysis 48
3.4.5 Support vector machines 49
3.4.6 Random forest 50
3.5 k-fold cross-validation 51
4 Experiments 54
4.1 Cluster analysis 54
4.1.1 The binary clustering HF problem 55
4.1.2 Analysis of post-diagnosis 58
4.2 Classification 61
4.2.1 Mortality classifier 61
4.2.2 Readmission classifier 64
4.3 Discussion 66
5 Conclusion 69
A Data Description 71
A. 1 Variables 71
A. 2 R-packages 73
A. 3 Descriptive statistics 74
A. 4 Relevant plots 90
B Source code 97
B. 1 Packages 97
B. 2 Utilities 98
B. 3 Descriptive statistics 110
B. 4 Pre-processing 113
B.4.1 Consolidation 116
B. 5 Clustering 122
B. 6 Classification 127
Bibliography 143

List of Figures

2.1 ESC diagnostic algorithm of heart failure 6
2.2 Comparison of HF serverity systems 19
3.1 Machine learning procedure adopted in the thesis 25
3.2 BEM procedure 38
4.1 Process flow clustering of patient groups 56
4.2 Process flow classification of clinical outcomes 61
4.3 Binary classification results: mortality 62
4.4 Binary classification results: readmission 66
A. 1 Missing values in HFpEF data set 90
A. 2 Missing values in HFmrEF data set 91
A. 3 Binary clustering problem 92
A. 4 HFpEF with Post-Diagnosis 93
A. 5 HFmrEF with Post-Diagnosis 94
A. 6 HFpEF without Post-Diagnosis 95
A. 7 HFmrEF without Post-Diagnosis 96

List of Tables

2.1 Literature review of HF detection 7
2.2 HF subtypes based on LVEF 10
2.3 Literature review of HF subtype classification 12
2.4 Literature review of HF subtype clustering 15
2.5 Literature review of prediction of HF outcomes 20
3.1 Clinical outcome classes 27
3.2 Summary of missing values 29
3.3 Little's MCAR test 32
4.1 Baseline characteristics of actual clustering 55
4.2 Baseline characteristics of Hierarchical and K-Means clustering 57
4.3 Baseline characteristics of EM clustering 58
4.4 Number of significant baseline characteristics 59
4.5 Summary statistics for the mortality classification 63
4.6 Summary statistics for the readmission classification 64
A. 1 Phenotype domains used for clinical metrics 71
A. 2 Packages used in thesis 73
A. 3 Patient characteristics: HFpEF 74
A. 4 Patient characteristics: HFmrEF 75
A. 5 Hierarchical clustering HFpEF based on post-diagnosis 78
A. 6 K-Means clustering HFpEF based on post-diagnosis 79
A. 7 EM clustering HFpEF based on post-diagnosis 80
A. 8 Hierarchical clustering HFmrEF based on post-diagnosis 81
A. 9 K-Means clustering HFmrEF based on post-diagnosis 82
A. 10 EM clustering HFmrEF based on post-diagnosis 83
A. 11 Hierarchical clustering HFpEF without post-diagnosis 84
A. 12 K-Means clustering HFpEF without post-diagnosis 85
A. 13 EM clustering HFpEF without post-diagnosis 86
A. 14 Hierarchical clustering HFmrEF without post-diagnosis 87
A. 15 K-Means clustering HFmrEF without post-diagnosis 88
A. 16 EM clustering HFmrEF without post-diagnosis 89

Chapter 1

Introduction

Heart failure (HF) is a clinical syndrome typically associated with high prevalence, high mortality, frequent hospitalization and overall reduced quality of life (QoL). Approximately 65 million people are effected by HF globally (Hay et al., 2017). With an aging population, it is expected that the prevalence of HF is to increase. In developed countries, about 3-5\% of hospital admissions are linked with HF, accounting for about 2% of the total health cost (Tripoliti et al., 2017). It is not unusual for HF to be characterized as a global pandemic with prognosis being worse than that of most cancers, see e.g. Braunwald (2015) and Savarese and Lund (2017).

In terms of clinical classification, there is no single "universally agreed upon" system for classifying the causes of HF. Typically HF manifests it self as at least two major subtypes (Alonso-Betanzos et al., 2015). All being commonly distinguished based on measures of the left ventricle ejection fraction (LVEF) ${ }^{1}$. The first subtype encompasses patients with LVEF values larger than or equal to 50%. These patients are characterized as having HF with preserved ejection fraction (HEpEF). The second subtype includes patients with LVEF values less than 40%, and are characterized as having HF with reduced ejection fraction (HErEF). However, the European Society of Cardiology (ESC) recently defined a third subtype with patients belong to the "gray zone" or the "the middle child", namely when the LVEF values

[^0]lies between 40% and $49 \%^{2}$. These patients are defined as having HF with mid-range ejection fraction (HFmrEF), see e.g. Lam and Solomon (2014) and Ponikowski et al. (2016). Clinically clustering patients according to HF subtypes and identifying HF patients most at risk of mortality and readmission is something that remains challenging. Especially considering that the 1-year mortality rates for acute HF across different regions in Europa ranges from 21.6% to 36.5% ($35.1 \%-37.5 \%$ in the US), see e.g. Cheng et al. (2014), Inamdar and Inamdar (2016) and Crespo-Leiro et al. (2016). Patients with HFmrEF have also a clinical profile and prognosis that is close to those of HFpEF who have LVEF values considered to be normal. Current therapies have also shown to be unable to reduce both morbidity and mortality in patients with HFmrEF and HFpEF, see e.g. Ponikowski et al. (2016) and Hsu et al. (2017). All of which makes the overall job of identifying and distinguishing these patients challenging. It is also unknown if improving phenotypic classification is clinically useful or even possible (Shah et al., 2014).

Nonetheless, the rapid increase in available medical data on patients has led to machine learning (ML) techniques gaining widespread attention by researchers. The application of such techniques is one that may offer an opportunity to build better management strategies, as well as early detection and better prediction of adverse effects associated with HF. Of the ML techniques gaining most attention, one typically finds clustering and classification methods being intensely studied. Accordingly, the use of these ML techniques to identify distinct patient groups with post-diagnosed HFmrEF and HFpEF most at risk of mortality and readmission, is one we will try to examine to its full potential.

1.1 Problem statement

In this thesis, we investigate how well various clustering algorithms (hierarchical clustering, k -means and expectation-maximization) perform in producing phenotypically distinct clinical patient groups (i.e. phenomapping) with HFpEF and HFmrEF. Furthermore, we evaluate the performance of various classification algorithms (k-nearest neighbours, logistic regression,

[^1]naive Bayes, linear discriminant analysis, support vector machines and random forest) in predicting the clinical outcomes mortality and readmission among the patients studied. When evaluating the results, we compare the clusters according to their level of homogeneity, i.e. the number of significantly different baseline characteristics between each patient group and rank methods accordingly. For the classification of the clinical outcomes, we evaluate the estimations based on the classification accuracy and Cohen's Kappa. The algorithms are validated with 10 -fold cross-validation in order to rank methods accordingly. All the models and techniques are applied on a data set consisting of 375 patients with symptomatic HF identified at a tertiary hospital in the United Kingdom.

1.2 Thesis structure

The thesis is divided into five chapters and proceeds as follows: The next chapter (2) reviews the literature related to the application of ML techniques for the assessment of heart failure. This is done to put the proposed research in a relevant context. Chapter (3) details the methodology, including presenting the data and the quality of the data. Preliminary analysis of the data will also be dealt with in this chapter. This includes evaluating and treating the data set based on methods of imputation and dimensional reduction. Next, chapter (4) presents the results of the clustering comparisons and the prediction accuracy of the clinical outcomes classification, with conclusive remarks found in chapter (5). The source code and relevant statistical output can be found in the appendix.

Chapter 2

Background

The following chapter presents a thorough treatment of the literature on the application of ML techniques for the assessment of heart failure ${ }^{1}$. Important topics such as HF detection, subtype estimation and prediction of clinical outcomes in the context of ML will be presented and explained.

2.1 HF detection

The ESC defines HF as a clinical syndrome caused by structural and/or functional cardiac abnormality, resulting in a reduced cardiac output (CO) and/or elevated intracardiac pressures at rest or during stress. It is typically characterized by symptoms, such as breathlessness, ankle swelling and fatigue that may be accompanied by signs, such as elevated jugular venous pressure (JVP), pulmonary crackles and peripheral oedema (swelling in lower limbs) (Ponikowski et al., 2016). HF prevents the heart from fulfilling the circulatory demands from the body, due to its impairing abilities on the ventricles to maintain the bodies hemodynamics (blood flow). As there is no broad definitive industry accepted diagnostic test for HF, one finds in clinical practice that medical diagnosis is done with a combination of careful examinations (physical and historical) with assisting tests, such as blood tests, chest radiography (chest X-ray, CXR), electrocardiography (EKG) and echocardiography (cardiac echo), see e.g Henein (2010) and Son et al. (2012). As a result of this, several criteria for determining the presence of HF have

[^2]been proposed, including the Framingham criteria (McKee et al., 1971), the Boston criteria (Carlson et al., 1985), the Gothenburg criteria (Eriksson et al., 1987) and the ESC criteria (Swedberg et al., 2005) (Roger, 2010). All of which are widely used in clinical practise.

In a non-acute onset, the ESC has also defined an algorithm for diagnosing HF (Ponikowski et al., 2016). The algorithm is structured in the following way: First, the probability of $\operatorname{HF}\left(\hat{p}_{H F}\right)$ is evaluated along three dimensions:
(i) Prior clinical history: History of coronary artery disease (CAD) or arterial hypertension, exposition to cardiotoxic drugs/ radiation, diuretic use (any substance that promotes the production of urine) or orthopnea (shortness of breath when lying down)
(ii) Physical examination: Crackles/rales, bilateral ankle oedema (swelling in both ankles), abnormal heart sounds/murmur, jugular venous dilatation, laterally displaced/broadened apical beat (pulse felt at the point of maximum impulse (PMI))

(iii) Abnormalities in electrocardiography (EKG)

If all elements along the three dimensions are normal/absent, $\hat{p}_{H F}$ is estimated to be highly unlikely. If at least one element is abnormal, then plasma Natriuretic Peptides (NP) ${ }^{2}$ should be measured in order to identify patients who need echocardiography. Specifically, if the NP values are above the exclusion threshold ${ }^{3}$ or should the assessment of NPs not be routinely done in clinical practice then patients need to be forwarded for an echocardiography. With the help of the cardiac echo, specialists can detect abnormalities in the heart rhythm. Should the results of the plasma NP or the echocardiography be normal ${ }^{4}$, then HF is also considered unlikely. Should the results of the echo yield any abnormal results, appropriate HF treatment should be initiated. The structure of the ESC algorithm is

[^3]

Figure 2.1: ESC diagnostic algorithm for the diagnosis of heart failure of non-acute onset (Ponikowski et al., 2016, page. 2141).
illustrated in the flow chart in Figure (2.1). Being that the ESC algorithm is much used in clinical practice throughout the world, there is research that suggest that the medical and economic benefits of applying ML in the detection of HF should not be ignored. In the context of diagnosing patients with HF, the benefits typically include: (i) less time consumption, (ii) more support (large global community of ML practitioners in business and academia) and (iii) same level of accuracy as conventional tools when applied on available data. Many ML methods used to detect HF as a statistical learning problem, fall in the category of supervised statistical learning (see section 2.2.1). The relevant ones include expressing the detection of HF as a two class classification problem, where the presence of HF is the output of the classifiers. Methods including logistic regression, linear discriminant analysis (LDA), Bayesian classifier, k-nearest neighbours (k-NN), random forests (RF), boosting, support vector machines (SVM) and neural networks (NN) are all very popular. As the response variable of the classification problem is categorical, most ML studies tend to use measures of heart rate variability (HRV) ${ }^{5}$ as the main predictors for distinguishing patients as normal or with HF (Tripoliti et al., 2017). Other predictors include parameters from clinical tests (i.e. blood test, echo, EKG, chest radiography), clinical variables (e.g. gender, age, blood pressure, smoking habit) and other lab-

Table 2.1: Literature review of HF detection

Author	HRV?	Method	Data	Features	Evaluation
Masetic and Subasi (2016)	False	$\begin{aligned} & \text { SVM, } \\ & \text { k-NN, NN, } \\ & \text { RF } \end{aligned}$	$N=28(13$ normal and 15 HF)	Response: Normal \& HF. Predictor: Features extracted by EKG.	SVM: Accuracy: 99.53\% k-NN: Accuracy: 99.93\% NN : Accuracy: 99.20\% RF: Accuracy: 100.00\%
					Validation: 10-fold cross validation

[^4]Table 2.1: Literature review of HF detection (continued)

Author	HRV?	Method	Data	Features	Evaluation
Liu et al. (2014)	True	$\begin{aligned} & \text { SVM, } \\ & \text { k-NN } \end{aligned}$	$N=47$ normal and 17 HF)	Response: Normal \& HF. Predictor: Short term HRV measure (ST-HRV)	SVM: Accuracy: 100.00\% Validation: Crossvalidation
Narin et al. (2014)	True	$\begin{aligned} & \text { SVM, } \\ & \text { k-NN, } \\ & \text { LDA, NN } \end{aligned}$	$N=83$ normal and 29 HF)	Response: Normal \& HF. Predictor: ST-HRV	SVM: Accuracy: 91.56\% k-NN: Accuracy: 85.54\% LDA: Accuracy: 85.54\% NN: Accuracy: 89.15\% Validation: Leave-one-ut cross validation.
Gharehcho- pogh and Khalifelu (2011)	False	NN	$N=40(26$ normal and 14 HF)	Response: Normal \& HF. Predictor: Gender, age, blood pressure, smoking habits.	NN : Accuracy: 95.00\% Validation: Testing set.
Yang et al. (2010)	False	NaiveBayes, SVM, NNC	$N=153$ (58 Nor- mal, 30 HF-prone, 65 HF)	Response: Non-HF group (Health or HF-prone) \& HF. Predictor: clinical test results	SVM: Accuracy: 74.40\% Validation: Test set of $N=90$ subjects

oratory findings. Relevant articles where one applies ML techniques to address the statistical learning problem of detecting patients with HF is shown in table (2.1). Some common evaluation measures used in such research include: sensitivity (true positive rate), specificity (true negative rate), accuracy ${ }^{6}$ and Cohen's Kappa κ (Cohen, 1960). The accuracy is the only evaluation measure reported in Table (2.1). We also need to emphasize that as this particular statistical learning problem (i.e. detection of HF) is outside of the scope of the problem statement mentioned in chapter (1), we will not be pursuing a further literature review of this problem. However, we highly recommend reading the likes of Tripoliti et al. (2017), Acharya et al. (2017) or Awan et al. (2018), for a more up-to-date overview of the literature on ML used for HF detection.

2.2 Subtype estimation

According to the ESC algorithm (Figure 2.1), once HF is confirmed and the probability of HF is assessed and estimated to be likely, the next step is to estimate the causes (aetiology) and the subtype of HF. The main definition of HF subtypes is based on historical research. Most of the research done after the 1990s emphasize estimating the subtype of HF patients based on the measure of the left ventricle ejection fraction (LVEF). The two usual ways of obtaining the LVEF values are through an echocardiography or cardiac magnetic resonance imaging (CMR or cardiac MR) (Ponikowski et al., 2016). In prior guidelines presented by the ESC, HFrEF and HFpEF were the two main subtypes of HF (McMurray et al., 2012). The ESC did however acknowledge that a gray zone existed between the two. As a result of this a new subtype was introduced, namely HFmrEF. The ESC did so in hopes of stimulating research into the underlying characteristics, pathophysiology and treatment of this group of patients (Ponikowski et al., 2016). Details about the criteria for the various HF subtypes are shown in Table (2.2). The differences between HFmrEF and HFpEF are difficult to distinguish. As mentioned, these two groups were previously classified as HFpEF. Diagnosing HFpEF is a very complex process with the diagnosis of chronic HEpEF being especially cumbersome in elderly patients with one or more additional diseases (comorbidity). With the exception of the LVEF
${ }^{6}$ The fraction/proportion of true positives (sensitivity) or true negatives (specificity) correctly identified (James et al., 2013).

Table 2.2: HF subtypes based on LVEF (Ponikowski et al., 2016, page. 2137)

Criteria	HFrEF	HFmrEF	HFpEF
1	Symptoms \pm Signs	Symptoms \pm Signs	Symptoms \pm Signs
2	LVEF $<40 \%$	$40 \leq$ LVEF <50	$50 \leq$ LVEF
3	-	1. Elevated NP levels (fig 2.1)	1. Elevated NP levels (fig 2.1) 2. At least one additional criteria:
2. At least one			
additional criteria:			
a) Relevant	a) Relevant		
structural heart	structural heart disease		
disease			

values, signs and symptoms between HFmrEF and HFpEF are often nonspecific and do not discriminate well between other clinical conditions. LVEF $\geq 50 \%$ is also considered to be normal. The ECS has also underlined the difficulties with an emphasis on the LVEF as the main discriminant between HFmrEF and HFpEF. The cut-off at 50% is set arbitrary and in clinical trials patients with LVEF between 40% and 49% are often classified as HFpEF, see e.g. Kelly et al. (2015) and Ponikowski et al. (2016). The ESC places an emphasis on additional objective measures of cardiac dysfunction in order to sufficiently discriminate the two subtypes, but currently no gold standard exists. The hope of stimulating more research into the characteristics of the patient group HFmrEF has fuelled much research into the application of ML, to further advance the literature. The appeal from the ESC into further research has also served as a motivation for much of the research done. We have organized the literature review of the "state-of-the-art" research into two parts and have structured the literature based on the statistical learning problem category, i.e. supervised or unsupervised.

[^5]
2.2.1 Supervised learning

In this thesis we use the terms machine learning (ML) and statistical learning (SL) interchangeably. Even though the two are very closely linked, they do differ in terms of emphasis and terminology. ML is defined as "a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty" (Murphy, 2012). SL on the other hand is often considered to be the statistical framework of ML, and emphasize the importance of building probabilistic models for the analysis and prediction of data in order to draw inference, see e.g. Friedman et al. (2009), Murphy (2012), James et al. (2013) and Wasserman (2013). Individuals of both camps (i.e. computer scientists and statisticians) often use different language for the same thing. In this thesis we refer to the underlying learning problem to be solved by a given algorithm as a statistical learning problem. The actual algorithms used to solve the SL problem are referred to as ML methods/algorithms ${ }^{9}$. This is done in an effort to reduce confusion among the readers.

Most SL problems fall into one of two main categories, i.e. supervised and unsupervised learning, see e.g. Friedman et al. (2009) and James et al. $(2013)^{10}$. The example of detecting HF we discussed in section (2.1) is typically a learning problem that falls into the supervised learning domain. For each predictor(s) (input(s) or independent variable(s)) $x_{i}, i=1, \ldots, n$ there is an associated response (output or dependent variable), y_{i}. The objective of supervised learning is to fit a model that relates the response $\left(y_{i}\right)$ to the predictors $\left(x_{i}\right)$ (James et al., 2013). Supervised learning is the most common category of SL problem in practice. Of the ML methods most used to solve supervised SL problems, one typically mentions classification. The goal of classification is to learn a mapping from the predictors $\left(x_{i}\right)$ to the response $\left(y_{i}\right)$, where $y \in\{1, \ldots, C\}$, with C being the number of classes. We can formalize classification as a SL problem by referring to it as a functional approximation problem. We assume that a functional form $y=f(\mathbf{x})$ exists for some unknown function f, and the goal of the learning process is to estimate f given a training set with labeled and known values. We can then use the estimated function $\hat{y}=\hat{f}(\mathbf{x})$ to make predictions on a testing / validation set (Murphy, 2012).

[^6]The application of classification to estimate HF subtypes is a relatively new approach. HF subtype estimation using ML in earlier research have similarities with HF detection. Both subjects reduce the classification problem to a two class classification problem with the assumption that the predicted responses are mutually exclusive. As $C=2$, one often calls this a binary classification problem. In which case one often assumes that $y \in\{0,1\}$ (Murphy, 2012). Prior to the ESC introduction of HFmrEF as a third subtype of HF, most ML research focused on classifying HF patients according to the two common subtypes, i.e. HFrEF and HFpEF. A list of some relevant literature can be found in Table (2.3). Most predictors are features including measures of demographic characteristics, HRV, signs and symptoms, vital signs, results of laboratory investigations and previous medical history. Methods include bagging, boosting, random forest, supp-

Table 2.3: Literature review of HF subtype classification

Author	Method Data	Features	Evaluation
Austin et al.(2013)	Bagging, $N=8212$ (3697	Response:	Bagging:
	Boost- for training,	HFrEF \& HFpEF.	Sensitivity: 45.1\%
	ing, 4515 for testing)	Predictor:	Specificity: 84.9%
	RF,	Demographics,	Boosting:
	SVM	vital signs,	Sensitivity: 87.6\%
		symptoms, lab	Specificity: 45.3\%
		investigation	Random Forest:
		and prev.	Sensitivity: 37.8\%
		history.	Specificity: 89.7\%
			SVM:
			Sensitivity: 40.1%
			Specificity: 88.7%
			Validation: Testing set of 8339 subjects

Table 2.3: Literature review of HF subtype classification (continued)

Author	Method	Data	Features	Evaluation
Alonso- Betanzos et al. (2015)	NaiveBayes, SVM, NNC	$\begin{aligned} & N=111 \text { (48 for } \\ & \text { training, } 63 \\ & \text { Monte Carlo } \\ & \text { simulated } \\ & \text { instances for } \\ & \text { testing) } \end{aligned}$	Response: HFrEF \& HFpEF. Predictor: End-systolic Volume Index.	Naive-Bayes: Train error: 4.14\% Test error: 9.52\% SVM: Train error: 2.08\% Test error: 4.76\% NNC (ib1, see Aha et al. (1991)): Train error: 2.08\% Test error: 4.76\% Validation: Testing set of 63 instances. 10 -fold cross validation.
Isler (2016)	$\mathrm{k}-\mathrm{NN},$ NN	$\begin{aligned} & N=30 \text { (} 18 \text { with } \\ & \text { HFrEF \& } 12 \\ & \text { with HFpEF) } \end{aligned}$	Response: HFrEF \& HFpEF. Predictor: Short term HRV measures	$\mathrm{k}-\mathrm{NN}$: Sensitivity: 87.5\% Specificity: 91.07% Accuracy: 89.29\% NN : Sensitivity: 93.75\% Specificity: 100.00\% Accuracy: 96.43\% Validation: Leave-one-out cross-validation.

ort vector machines (SVM), naive-Bayes, nearest neighbour classifiers (NNC), k-nearest neighbours (k-NN) and neural networks (NN). As classification methods are much used in the literature for HF subtype estimation, we reserve the use of these methods to a later section dealing with the prediction of clinical outcomes (see section 2.3). Supervised learning methods also assume a priori that there exists a response y_{i} with a predefined number of classes (C). Because of this we feel that such an application to the problem of HF subtype estimation would fall outside the scope of the problem statement mentioned in chapter (1). One of the main motivations of this thesis is to investigate how well it is possible to produce pheno-
typically distinct clinical patient groups using dense phentoypic data (i.e. phenomapping). Given the motivation, we seek to better understand the possible relationship between patient groups by placing an assumption of no response variable to supervise our analysis. To answer this question, we turn to the second main category of SL problems, namely unsupervised learning.

2.2.2 Unsupervised learning

The main goal of unsupervised learning is to discover hidden structures in the data that are not predefined. Sometimes it's also refereed to as knowledge discovery and is widely used, as it is arguably more typical for animal and human learning. The formalization of unsupervised learning is often done in the setting of unconditional density estimation, i.e. we want to build models of the form $p\left(\mathbf{x}_{i} \mid \theta\right)$. Instead of a conditional setting as done with supervised learning, i.e. $p\left(y_{i} \mid \mathbf{x}_{i}, \theta\right)$, the use of unsupervised learning is often considered to be more "convenient" than supervised learning, as it does not require an expert to manually label all the data (Murphy, 2012). This convenience is often stated as a major reason for the relevance of unsupervised learning done for distinguishing phenotypical characteristics between HF patient groups. Not to mention that there is no agreed-upon measure of what distinguishes HF subtypes (see section 2.2). Furthermore, because of the complex nature and high degree of heterogeneity of HF subtypes such as HFpEF, the sole use of genetic information for helping to precisely classify HF subtypes has often been seen as unlikely. Uncertain behavior by weak genetic factors is very probable in eliciting disease phenotypes (Deo, 2015). This additional complexity is avoided by framing the SL problem in the setting of unsupervised learning.

A lot of research has been conducted using unsupervised learning to group HF patients into subtypes with phenotypically distinct characteristics. Of the ML methods most used here, one typically finds clustering methods. These methods are designed to find subgroups or clusters within a data set. The goal of clustering is to partition the data set into distinct groups with high degree of homogeneity and arranging the clusters into a natural hierarchy (Friedman et al., 2009). A list of the newest literature on the application of clustering methods for phenomapping of HF patients is shown in Table (2.4). Of the clustering methods found here, one can men-

Table 2.4: Literature review of HF subtype clustering

Author	Method	Data	Features	Results
Shah et al. (2014)	Hierarchical, model-based clustering	$\begin{aligned} & N=397 \text { with } \\ & \text { HFpEF } \end{aligned}$	67 continuous clinical variables	The analysis revealed 3 distinct pheno-groups.
Ahmad et al. (2014)	Hierarchical clustering (Ward's minimum variance method)	$\begin{aligned} & N=2331 \\ & \text { (1619 incl., } \\ & 712 \text { excl.) } \end{aligned}$	45 baseline clinical variables	Four clusters were identified whose patients varied considerably along measures of age, sex, race, symptoms, comorbidities, HF etiology, socioeconomic status, quality of life, cardiopulmonary exercise testing parameters, and biomarker levels.
Alonso- Betanzos et al. (2015)	k-Means clustering, EM, SIBA.	3 Data sets: D1: $N=48$ (13 HFrEF, 35 HFpEF) D2: $n=63$ (29 HFrEF, 34 HFpEF) D3: $N=403$ (137 HFrEF, 150 HFpEF)	End-systolic Volume Index, End-diastolic volume index	Algorithms generated dividing patterns
Kao et al. (2015)	Latent class analysis (LCA)	$\begin{aligned} & N=4113 \\ & \text { with HFpEF } \end{aligned}$	11 prospectively selected clinical features	Identified 6 subgroups of HFpEF patients with significant differences in event-free survival.

Table 2.4: Literature review of HF subtype classification (continued)

Author	Method	Data	Features	Results
Ahmad et al. (2016)	Hierarchical clustering (Ward's minimum variance method)	$\begin{aligned} & N=433(172 \\ & \text { incl. }) \end{aligned}$	29 baseline clinical variables	Four advanced HF clusters were identified. The analysis was done on patients diagnosed with acute decompensated heart failure (ADHF).
Katz et al. (2017)	Hierarchical clustering, model-based clustering	$N=1273$	47 continuous clinical variables	Identified 2 distinct groups that differed markedly in clinical characteristics, cardiac structure /function, and indices of cardiac mechanics.

tion hierarchical, k-means and model-based clustering, such as expectation maximization (EM), sequential information bottleneck algorithm (SIBA) and latent class analysis (LCA). Addressing phenomapping within an unsupervised setting started with Ahmad et al. (2014) and Shah et al. (2014). The latter employed the use of hierarchical and penalizing model-based clustering to distinguish HFpEF patients. The analysis was done on 67 continuous variables including clinical, laboratory, electrocardiographic and echocardiographic features. The results suggest that HFpEF patients can be clustered into three distinct pheno-groups with meaningful, clinically relevant categories.

Ahmad et al. (2014) did a similar analysis using 45 baseline clinical variables on a much larger data set consisting of 1619 patients with chronic HF (i.e. both HFrEF and HFpEF). The study identified four clusters of patients which varied considerably along measures of demographics, symptoms and comorbidities. The study underscored the high degree of disease heterogeneity that exists within chronic HF patients and the need for improved phenotyping of the syndrome. Alonso-Betanzos et al. (2015) used a
somewhat different approach for phenomapping HF patient groups. Their objective was to use ML techniques to discriminate between patients with preserved EF and those with reduced EF using the concept of the Volume Regulation Graph (VRG) ${ }^{11}$. The authors evaluated three clustering methods (i.e. k-means, EM and SIBA) and found that the algorithms generated dividing patterns. Kao et al. (2015) used latent class analysis (LCA) on a data set of 4113 HFpEF patients along 11 prospectively selected clinical features. The use of LCA is in many ways different from other clustering algorithms as it does not require continuous variables. It is optimized for analyzing categorical variables and identifies clusters based on several traits rather than a single trait. With the use of LCA the authors identified 6 subgroups of HFpEF patients with significant differences in event-free survival. Other authors like Katz et al. (2017) and Ahmad et al. (2016) have organized their research along different phenomapping objectives. The latter addressed phenomapping on patients diagnosed with acute decompensated heart failure (ADHF), and Katz et al. (2017) on the systemic hypertensive patients with myocardial substrate (i.e. abnormal cardiac mechanics). As the two studies have a different phenomapping objective from the ones mentioned earlier, they still managed to identify four and two respective patient groups with acute ADHF and systemic hypertension with myocardial substrate, respectively.

The number of studies done on phenomapping HF patients is significant and as evident from Table (2.4), the results vary considerably with respect to the optimal number of clusters. This is something that this thesis will try to address by re-evaluating a number of the clustering methods used in the literature, but along a single phenomapping objective. Before that time, we move on to reviewing the literature associated with the second objective of the problem statement, namely predicting clinical outcomes due to HF.

2.3 Prediction of clinical outcomes

As we mentioned in chapter (1), HF is a syndrome that globally effects approximately 65 million people (Hay et al., 2017). In addition to the high prevalence and overall reduced quality of life (QoL), one cannot but mention the many serious clinical outcomes. This includes, but is not limited

[^7]to mortality, morbidity, destabilization and readmission. These outcomes effect not only the patients and their families, but also the society. The patients and their families are effected by the many constraints that HF places on family life and an overall reduction in QoL. With the emotional dimensions often being more important than the physical dimensions (Dunderdale et al., 2005), the society is effected by the many economic consequences, such as an increase in the burden and cost of national health care expenditures. The main economic driver of costs related to HF being that of hospitalization, where about 60-70\% of HF costs are related to inpatient care and almost 20% to primary care (Braunwald, 2015). The use of prognostics can assist in the monitoring and treatment of HF patients, with the goal of improving the quality of care and the outcomes of patients hospitalized with HF (Tripoliti et al., 2017).

Conducting good prognostics is often conditional on estimating the severity of HF for a given patient. Accordingly, the two most used classification systems for the severity estimation, is the New York Heart Association (NYHA) Functional Classification (NYHA, 1994) and the American College of Cardiology/American Heart Association (ACC/AHA) stages of HF (Hunt et al., 2001). The NYHA system places the patients in one of four categories based on how much they are limited during physical activity and is based on symptoms as well as physical activity. The ACC / AHA system on the other hand structures HF stages based on structural changes to the heart and symptoms. Both systems provide complementary information about the presence and severity of HF. The various stages and classes of the two systems are shown in Figure (2.2). Being that the NYHA classification system is based on subjective evaluation, it has been criticized because of a lack of taking into account the variability that can occur within patient groups. Furthermore, with the ACC/AHA system there is no moving backwards to prior stages, i.e. ones a patient is assigned a HF stage. The patient can never again achieve a different prior stage. With the NYHA it's different as patients can move between classes relatively quickly, as these are all based on symptoms alone, see Fleg et al. (2000) and Yancy et al. (2013). Most studies address HF severity estimation by expressing the statistical learning problem as a two or three class classification problem. The use of ML to address this particular SL problem will not be pursued, as the focus will be on the second objective of the problem statement, namely the prediction of clinical outcomes. However, the use of severity estimation is very important as it serves as complementary information for medical

Figure 2.2: Comparison of ACCF/AHA Stages of HF and NYHA Functional Classifications (Yancy et al., 2013, page. 1502).
practitioners to give objective prognostics about HF patients. A lot of studies have been conducted on the use ML to estimate HF severity, and again we recommend reading Tripoliti et al. (2017) for a further overview of the literature. As for the prediction of clinical outcomes it's especially readmission and mortality that has gained a lot of interest by researchers. Readmission is important because of the negative impact on healtcare systems' budgets. Mortality is obviously important as HF is one of the leading causes of death worldwide. The use of prediction models for mortality can benefit both physicians and patients. The literature is full of models taking into account various factors in producing statistics that have the objective of predicting mortality. Some of the most used statistical methods include the Kaplan-Meier estimator (Kaplan and Meier, 1958) and multiple variable

Cox proportional hazard models (Cox, 1972). All of which have lead to the formation of multiple scores that estimate the risk of mortality that are much used in clinical practice. Examples include: The enhanced feedback for effective cardiac treatment (EFFECT) score (Lee et al., 2003), the Seattle heart failure model (Levy et al., 2006), the get with the guidelines (GWTG) score (Peterson et al., 2010) and the heart failure survival score (Ketchum and Levy, 2011). A small list of the relevant literature related to the applica-

Table 2.5: Literature review of prediction of HF outcomes

Author	Outcome	Method	Data	Features	Evaluation
Austin et al. (2012)	Mortality	Logistic regression Logistic, Bagged and Boosted trees. Random Forrest	Baseline: $N=9945$ (8240 incl.) Followup: $N=8339$ (7608 incl.)	Response: Whether 30-day death in hospital Predictors: 34 clinical variables	Logistic regression: (Splines) AUC: 0.786 $R^{2}: 0.203$ Brier's score: 0.119 Boosted regression: (depth four) AUC: 0.777 $\mathrm{R}^{2}: 0.180$ Brier's score: 0.107 Validation: Follow-up sample used as validation.
Zolfaghar et al. (2013)	Re-hospitalization	Logistic regression Random Forrest	No. of data: 1681562.	Response: 30-day risk of readmission. Yes or No Predictor: more than 100 features	Logistic regression: Accuracy: 78.03\% Random Forest: Accuracy: 87.12\% Validation: 70\% training 30\% testing
Shah et al. (2014)	Mortality \& Re-hos-pitalization	SVM	$N=397$ with HFpEF	Response: mortality and readmission: Yes or No. Predictor: 67 features	Mortality: Precision: 60.90\% Re-hospitalization: Precision: 63.60\%

Table 2.5: Literature review of prediction of HF outcomes (continued)

Author	Outcome	Method	Data	Features	Evaluation
Panahiazar et al. (2015)	Mortality	Logistic Regres- sion Random Forest	$N=5044$	Response: 1, 2 and 5 yr survival Predictor: 45 clinical variables	1-year: Log Regression: AUC: 81.00\% Random Forest: AUC: 80.00\% 2-year: Log Regression: AUC: 74.00\% Random Forrest: AUC: 72.00\% 5-year: Log Regression: AUC: 73.00\% Random Forrest: AUC:72.00\%
					Validation: Testing set of 3484 patients.
Koulaouzidis et al. (2016)	Re-hospitalization	Naive Bayes classifier	$N=308$	Response: High or Low Risk of HF hospitalization Predictor: 25 clinical variables	Naive Bayes classifier: AUC: 82.00\% Validation:10-fold-cross-validation

tion of ML for predicting readmission and mortality is shown in Table (2.5). One of the first to use ML methods for this particular SL problem was Austin et al. (2012). They investigated predicting the 30-day mortality using a binary variable to denote whether a patient died within 30 days of hospital admission. Methods used include: Logistic regression, boosted regression and Random forest. The researchers used the methods on a total of 8240 baseline patients ${ }^{12}$ and 7608 follow-ups ${ }^{13}$. The results seem to

[^8]suggest that logistic regression and boosted regression trees are the most accurate with an area under the curve (AUC) of 0.786 and 0.777 respectively. Zolfaghar et al. (2013) applied logistic regression and random forest to predict 30 day risk of readmission. This was done on a data set consisting of 1681562 patients. The predictors of the analysis contained more than 100 features. The accuracy was 78.03% and 87.12%, with 70% of the data set being reserved for training and 30% for testing. Shah et al. (2014) analyzed the prediction of both readmission and mortality on 397 patients and 67 clinical variables using support vector machines (SVM). The precision of mortality and readmission were 60.90% and 63.60%. As is evident from Table (2.5), the accuracy and precision of the prediction models using ML methods varies throughout the various studies. Along with the variability in the number of optimal clusters mentioned in section (2.2.2), we'll also try to address this point by again re-evaluating the performance of a number of classification algorithm related to the SL problem of predicting clinical outcomes.

Chapter 3

Methodology

In this chapter, we present the methodology and research structure used in this thesis. Some pre-processing of data, including imputation and dimensional reduction, will also be presented and explained. A high level description of the implementation details of the ML algorithms that produces the results are also presented in this chapter.

3.1 Overview

As stated in chapter (1), the aim of the thesis is split into two parts. The first part is seeing how well various clustering methods perform in producing phenotypically distinct clinical patient groups with HFpEF and HFmrEF. We frame the SL problem in the setting of unsupervised learning and accordingly use the following clustering methods: hierarchical clustering, k-means and expectation-maximization to evaluate which produce the most mutually exclusive patient groups. The use of these clustering methods are common in the literature (see section 2.2.2) and serves as the main motivation for including them in our analysis. The second part of the problem statement looks at evaluating the accuracy of various classification algorithms in predicting the mortality and readmission of patients with post-diagnosed HF. In accordance with the literature as presented in section (2.3), we reduce the SL problem of predicting the mortality and readmission into a two class classification problem where both classes of outcomes are whether or not mortality/readmission occurred. The classification algorithms that will be evaluated are k-nearest neighbours (k-NN),
logistic regression, naive-bayes, support vector machines (SVM), linear discriminant analysis (LDA) and random forest (RF). All the algorithms are much used in the literature. The motivation behind the use of the chosen algorithms, has always been to confirm the practices done in the literature. We do, however, need to emphasize that many additional algorithms exist that can be used to further broaden the analysis done in this thesis. We have not done this due to time limitations.

The machine learning procedure adopted in this thesis is illustrated in Figure (3.1). The procedure starts by pre-processing the data. This preprocessing step consists of three sub processes: consolidation, imputation and dimension reduction. The consolidation process merges the HFpEF and HFmrEF datasets into one data set with the same types of variables. In addition to having one data set with all the observations, the process also leaves the data separate (but with equal variables), so that an analysis on each separate data set can be done. Furthermore, the clinical outcomes of the patients in the data set are extracted by this process and stored for later use in the classification part of the thesis. The imputation process imputes missing data to ensure that the data is balanced, and the dimensional reduction process (principal component analysis (PCA)) addresses eventual problems with higher dimensional multi-correlated variables. The pre-processing step is explained in further detail later in this chapter (see section 3.2). After the pre-processing is done, the procedure continues by first addressing the cluster analysis. We use the principal components derived from the dimension reduction process as input into the clustering algorithms evaluated. The cluster analysis runs the produced components through the three cluster algorithms (hierarchical clustering, k-means and expectation maximization). After the procedure is done, three sets of clusters are produced. The next step is to evaluate the clusters by assessing their level of homogeneity. This is done by comparing the number of significantly different baseline characteristics.

The supervised classification track is structured in a somewhat different way. The imputed data is run through the six classification algorithms
 component analysis and validated with 10 -fold cross-validation to produce approximately unbiased estimates of the test errors/accuracy. The accuracy are also adjusted by means of the Cohens' Kappa κ. After the data is run thought the classification process and the accuracy is calculated, the algorithms are ranked and evaluated accordingly. The outputs of the whole

Figure 3.1: Machine learning procedure adopted in the thesis

ML procedure are i) clinical clusters that may have distinct phenotypical properties and ii) the accuracy of the various classification algorithms in predicting readmission and mortality in the data sets. All the processes mentioned in the ML procedure in Figure (3.1) are developed using the R statistical programming language (version 3.4.4 - Someone to Lean On) (R Core Team, 2018a) with RStudio as the integrated development environment (IDE), version 1.1.423 (RStudio Team, 2018). We use a number of external libraries and self-made algorithms in order to make the whole research process more efficient. Data description with variable explanations, descriptive statistics and some relevant plots can be found in appendix (A). The source code used to produce all the results in this thesis, can also be found in appendix (B). As we now have given an overview of the ML procedure used in this thesis, we move on to presenting the data.

3.2 Data

The data used is comprised of two data sets (data_use_HFpEF.mat, dim: 193×92 and data_use_HFmrEF.mat, dim: 182×87). Since both data sets have different types of clinical variables, we consolidated the data into three main data sets with the same number and types of variables:
(i) Full sample (HFfullDataSet.Rdat, dim: 374×55)
(ii) HFpEF sample (HFpEFdataSet .Rdat, dim: 193×55)
(iii) HFmrEF sample (HFmrEFdataSet.Rdat, dim: 182×55)

The data was collected by the medical staff at a tertiary hospital in the United Kingdom. At this particular hospital NT-proBNP led heart failure service were run on all patients with suspected heart failure. All patients with suspected HF based on an assessment of the HF probability and raised NT-proBNP/BNP levels (see Figure 2.1) were included and forwarded for an echocardiography. An expert HF physician reviewed all the patients after the echocardiography was performed. The patients were diagnosed with HF according to the 2016 ESC guidelines (Ponikowski et al., 2016). Accordingly, signs and symptoms of HF, raised NP values, echocardiographic results including left ventricular ejection fraction (LVEF) and evidence of structural or functional heart abnormalities were the primary basis for the
assessment done by the hospitals cardiac physicians. After the diagnosis, patients were categorized based on LVEF following the ESC guidelines, i.e. patients with LVEF $>50 \%$ were classified as HFpEF and those with $40 \leq$ LVEF <50 as HFmrEF. The patients with LVEF $<40 \%$, greater than moderate valvular heart disease and prior cardiac transplantation were excluded. The data was collected over a one-year period from October 10th 2014 to October 9th 2015. In total 375 patients were analyzed over this one-year period with data from almost 100 clinical features being recorded. The outcomes were evaluated through the hospital databases and mortality was confirmed with the Office for National Statistics. All the data was collected as part of the hospitals approved Clinical Audit. As mentioned in the previous section, we reduced the SL problem in the supervised learning part of the ML procedure to a two-class classification problem. The way this was done was with respect to the various patient_groups in the data. The patients were grouped based on various outcomes. In total six outcome categories were defined in the data sets. The outcome categories are as follows: IN - inhospital mortality, Z mortality within 30 days, Y - mortality within 1 year, X - mortality by Fluorouracil (medication), V - cardiac readmission within 30 days, U - readmission and R - the rest. The various combinations of the outcome classes found in the data sets, and the way in which they were classified, are listed in Table (3.1). From this table, we can

Table 3.1: Clinical outcome classes

	PANEL I: Full Sample (HFfullDataSet.Rdat)			
Group	Mort?	Readm?	n	\% Tot
R	no	no	186	0.496
U	no	yes	59	0.157
X, R	yes	no	29	0.077
Y	yes	no	16	0.043
IN	yes	no	15	0.040
V	no	yes	15	0.040
Y, U	yes	yes	13	0.035
X, U	yes	yes	11	0.029
Y, V	yes	yes	11	0.029
X	yes	no	9	0.024
Z	yes	no	7	0.019
X, V	yes	yes	3	0.008
Z, V	yes	yes	1	0.003

Chapter 3. Methodology

PANEL II: Outcome Classes by Clinical Syndrome									
HFpEF (HFpEFdataSet.Rdat)					HFmrEF (HFmrEFdataSet.Rdat)				
Group	Mort?	Readm?	n	\% Tot	Group	Mort?	Readm?	n	\% Tot
R	no	no	85	0.440	R	no	no	101	0.555
U	no	yes	40	0.207	U	no	yes	19	0.104
X, R	yes	no	29	0.150	Y	yes	no	15	0.082
V	no	yes	10	0.052	IN	yes	no	8	0.044
IN	yes	no	7	0.036	X	yes	no	8	0.044
Y, U	yes	yes	7	0.036	Z	yes	no	7	0.038
Y, V	yes	yes	7	0.036	Y, U	yes	yes	6	0.033
X, U	yes	yes	6	0.031	V	no	yes	5	0.027
X	yes	no	1	0.005	X, U	yes	yes	5	0.027
Y	yes	no	1	0.005	Y, V	yes	yes	4	0.022
					X, V	yes	yes	3	0.016
					Z, V	yes	yes	1	0.005

see that approximately 36.8% of all the patients in the HFpEF data set were readmitted in some form, i.e either within 30 days or more. In the HFmrEF data set, this number was somewhat smaller being approximately 23.4%. In the full sample, approximately 29.1% of the patients were readmitted. The number also differed with respect to whether the patients were confirmed deceased or not. In the HFpEF data set, approximately 29.9% of the patients had confirmed mortality and in the HFmrEF data set this number was 31.1%. For the full sample, the number is approximately 30.7%. Further descriptive statistics on the data can be found in appendix (A.3). The source code for the two-class outcome classification shown in Table (3.1), can be found in appendix (B.3). As the data used in this thesis is cross-sectional, we need to emphasize that it is not ideal. Limitations to the data sets are many and one of the most relevant one is that of missing data.

3.2.1 Missing data

Missing values in data is a very important concept in data management and a highly prevalent problem in any data analysis. If one does not handle missing values properly, this may lead to inaccurate or invalid inference being drawn from the data. Results where improper treatment of missing data is present may differ significantly from those where missing data is

Table 3.2: Summary of missing values

PANEL I: Full Sample (HFfulldataSet . Rdat)									
Variable (V)		\#Na		\%n		\%Na		\%V	
grand.tot		3081		0.149		1.000			
irondef		254		0.012		0.082		0.677	
ferritin		250		0.012		0.081		0.667	
bmiadmission		223		0.011		0.072		0.595	
ironlevels		210		0.010		0.068		0.560	
tsat		210		0.010		0.068		0.560	
timetohfadm		184		0.009		0.060		0.491	
pasp		181		0.009		0.059		0.483	
admissionwgt		164		0.008		0.053		0.437	
ecgqrsduration		141		0.007		0.046		0.376	
obesity		137		0.007		0.044		0.365	
HFpEF (HFpEFdataSet. Rdat)					HFmrEF (HFmrEFdataSet.Rdat)				
Variable (V)	\#Na	\%n	\%Na	\%V	Variable (V)	\#Na	\%n	\%Na	\%V
grand.tot	973	0.092	1		grand.tot	2108	0.211	1	
irondef	124	0.012	0.127	0.642	bmiadmission	178	0.018	0.084	0.978
timetohfadm	124	0.012	0.127	0.642	admissionwgt	131	0.013	0.062	0.720
ferritin	122	0.011	0.125	0.632	irondef	130	0.013	0.062	0.714
tsat	99	0.009	0.102	0.513	obesity	129	0.013	0.061	0.709
ironlevels	98	0.009	0.101	0.508	ferritin	128	0.013	0.061	0.703
pasp	71	0.007	0.073	0.368	breathless	127	0.013	0.060	0.698
bmiadmission	45	0.004	0.046	0.233	ironlevels	112	0.011	0.053	0.615
ee	41	0.004	0.042	0.212		111	0.011	0.053	0.610
ecgqrsduration	36	0.003	0.037	0.187	pasp	110	0.011	0.052	0.604
ecgrate	34	0.003	0.035	0.176	ecgqrsduration	105	0.010	0.050	0.577

not present. In medical research, it is not uncommon for patient data to be missing. Missing data from patients clinical variables are typically defined as the values that are not directly observed (Ibrahim et al., 2012). Data can be missing due to a number of reasons. In clinical research some reasons may include: poor communication with study subject, difficulties assessing the clinical outcomes, lack of consolidation from test, duration of trial etc. The latter is often a reason for missing data, as longer trials tend to produce more risk of missing data. Especially considering that patients often run the risk of being dropped from the studies before completion
(Myers, 2000). In our data sets, the problem with missing values is very much present. In the full data set, a total of 3081 observations are missing accounting for about 14.9% of the total data set. The main non-indicator variables accounting for the highest amount of this number is the lack of registering ferritin levels (ferritin, 8.1% of missing), BMI at admission (bmiadmission, 7.2%), ironlevels (ironlevels, 6.8%), transferrin saturation (tsat, 6.8\%), time of HF admission (timetohfadm, 6\%), pulmonary artery systolic pressure (pasp, 5.9\%), weight at admission (admissionwgt, 5.3\%) and ECQ QRS duration (ecgqrsduration, 4.6\%). We can also look at the missing values in both sub data sets. In the HFpEF data set a total of 973 observations, i.e. approximately 9.2% of the data set is missing. Of the non-indicator variables, the largest contributors can be attributed to the failure of registering time to HF admission (timetohf adm, 12.7% of missing), ferritin levels (ferritin, 12.5\%), transferrin saturation (tsat, 10.2\%), iron levels (ironlevels, 10.1\%), pulmonary artery systolic pressure (pasp, 7.3\%), registering body-mass-index (BMI) at admission (bmiadmission, 4.6\%), E/e' ratio (ee, 4.2\%), ECQ QRS duration (ecgqrsduration, 3.7\%) and ECG rate (ecgrate, 3.5%). These variables contribute to approximately 68.8% of the missing values in the HFpEF data. In the HFmrEF data set, the picture is very much different. In general, we can say that this data set has a much larger presence of missing values even though the clinical variables used in both sets are the same. In total 2108 observations, i.e. approximately 21.1% of the data is missing. The largest non-indicator contributors are: inability to record the body mass index (BMI) at admission (bmiadmission, 8.4\%), the weight of patients at admission (admissionwgt, 6.2%), ferritin levels (ferritin, 6.1\%), iron levels (ironlevels, 5.3\%), transferrin saturation (tsat, 5.3\%), pulmonary artery systolic pressure (pasp, 5.2\%) and ECQ QRS duration (ecgqrsduration, 5%). These variables account for 41.1% of the missing values in the HFmrEF data. An overview of the variables with the most missing values in each data set can be found in Table (3.2).

3.2.2 Little's test for MCAR

The presence of missing values has to be addressed by any individual conducting data analysis. Missing values may make the data corrupted and introduce statistical bias that may lead to invalid results and inferences. This is vital for us as many of the statistical methods used later in this thesis
cannot be conducted in the presence of missing values. When talking about missing values one typically mention three distinct types of missing values, see e.g. Sterne et al. (2009) and Kaushal (2014) for further explanation. These are as follows:
(i) Missing completely at random (MCAR): This type assumes that there is no systematic difference between the missing values and the observed values. An example can be if blood pressure values are missing due to breakdown in automatic sphygmomanometer, or if blood sugar values are missing due to a non working glucometer.
(ii) Missing at random (MAR): The second type of missing values assumes that any difference between the missing values and the observed values can be explained by differences in the observed values. Again, an example can be that missing blood pressure values or blood sugar values may be lower than the measured values, but only because younger people may be more likely to have missing blood pressure and blood sugar as missing.
(iii) Missing not at random (MNAR): The last and final type assumes that even after the observer data are taken into account, the systematic differences between the observed and missing values are still present. An example can be that people with high values of blood pressure or blood sugar may be less likely to attend an appointment due to headache.

MNAR can only be speculated and thus never determined, see e.g. Rubin (1976), Schafer and Graham (2002) and Moons et al. (2006). In our data, we assume that the missing data is at least missing at random (MAR). This is an assumption that many in the literature place on their data without any attempt at supplying some arguments to support such an assumption. To this we have carried out Little's MCAR test (Little, 1988) on our data (separately on indicator and continuous variables). The test is structured with the following three steps :
(i) The test starts by using the expectation-maximization (EM) algorithm (Dempster et al., 1977) to estimate the maximum likelihood of the population mean $\tilde{\boldsymbol{\mu}}_{o b s, j}$ and variance-covariance matrix $\tilde{\Sigma}_{o b s, j}$. Here one enters the $Y: N \times p$ matrix of data into the EM algorithm.
(ii) Next step is to create a set of matrices S_{j} for $j=1, \ldots, J$ where each matrix of the data set consists of all cases that are identified with particular missing patterns $(0=$ not-missing and $1=$ missing $)$. Define m_{j} to be the number of cases that belong to a given missing response pattern in S_{j}. From these $J-1$ cases, calculate the observed vector of means $\hat{\boldsymbol{y}}_{\text {obs,j}}$ for each random response pattern.
(iii) The final step comprises of calculating the difference between the observed means in step 2 with the estimated EM-means from step 1 weighted by m_{j} and the inverse variance-covariance matrix to obtain the following test statistics:

$$
\begin{equation*}
d^{2}=\sum_{j=1}^{J} m_{j}\left(\hat{\boldsymbol{y}}_{o b s, j}-\tilde{\boldsymbol{\mu}}_{o b s, j}\right) \tilde{\boldsymbol{\Sigma}}_{o b s, j}^{-1}\left(\hat{\boldsymbol{y}}_{o b s, j}-\tilde{\boldsymbol{\mu}}_{o b s, j}\right)^{T} \tag{3.1}
\end{equation*}
$$

Little (1988) showed that d^{2} is asymptotically χ^{2}-distributed with $f=$ $\sum_{j=1}^{J} p_{j}-p$ degrees of freedom, where p_{j} is the number of observed variables for cases in S_{j}. Thus, with the use of d^{2}, a large-sample test of the MCAR assumption compares d^{2} with a chi-squared distribution with f df can be done, and rejecting the null hypothesis when d^{2} is large. Following this procedure, we have carried out Little's MCAR test and the results are presented in Table (3.3). The results were produced using the function LittleMCAR () in the r package BaylorEdPsych (Beaujean, 2012). We removed the variables that had more than 15% missing values from the

Table 3.3: Little's MCAR test

	num col	missing.patterns	Chi.squared $\left(\chi^{2}\right)$	df	p-value
Panel I: Full Sample					
indicator	24	27	273.7770	242	0.07844
continuous	14	15	96.3276	96	0.47141
Panel II: HFpEF					
indicator.1	26	16	103.7992	109	0.62273
continuous.1	17	14	101.7398	103	0.51661
Panel III: HFmrEF					
indicator.2	24	19	141.8979	135	0.32518
continuous.2	14	11	53.9340	51	0.36284

HFpEF data set, 25% from the HFmrEF data set and 20% from the full data set (see table 3.2 for top 10 missing variables). Next, we split the variables into two data sets, one for the continuous variables and one for the indicator variables. We also removed the variables that had near zero variance using the nearZeroVar () function in the caret package (Kuhn et al., 2018). As remarked by Beaujean (2012), the LittleMCAR() function can be very time inefficient for data sets with more than 50 variables. This time inefficiency is why we split the data sets into the two subsets, i.e. continuous and indicator and thus conducted separate tests on both subsets. The test assumes that the data is MCAR, and this is accordingly the null-hypothesis. From Table (3.3), we can see that all the p-values are insignificant at 5% significance level. This suggests that we cannot reject the null hypothesis of the missing data being MCAR. However, as argued by Allison (1999), just because the data passes this test, does not mean that the MCAR assumption is satisfied. The assumptions for MCAR are strong, and a simple test such as the one suggested by Little (1988) does not in and of itself satisfy those assumptions. It merely lends evidence in its support, and given the test results presented in Table (3.3), we consider this assumption to be intact. When it comes to the question regarding missing values, there exists many ways of dealing with this problem. Each of these ways have different advantages as well as disadvantages. One of the most common way of dealing with missing values is through the use of imputation techniques. This is something we will present in the next section.

3.2.3 Imputation

There exists a wide variety of methods that fall under the class of imputation. In general, all methods that attempt to replace each missing value in a data set with an estimate or a guess, are typically classified as being an imputation method (Allison, 1999). A very popular and conventional method of imputing missing values is through the use of mean imputation. This method implies swapping each missing value with the mean of the observed values in the given variable column. The method is very easy to use and maintains the sample size, but it has a problem with underestimating both the variance and standard deviation estimates. This implies that the estimates that produce the imputed values are unbiased see e.g. Scheffer (2002), Enders (2010) and Eekhout et al. (2012). Another class of imputation method that have proven to handle missing values in
a wide variety of cases, is the maximum likelihood methods. The use of set methods requires that the assumption of MCAR is intact and if this is done, can produce estimates that have the desirable properties normally associated with maximum likelihood. These properties are consistency (estimates will be approximately unbiased in large samples), asymptotic efficiency (estimates are close to being fully efficient i.e., having minimal standard errors) and asymptotic normality (allows the use of normal approximation to calculate confidence intervals and p-values). Additionally, the use of maximum likelihood methods can produce standard errors that fully account for the fact that some data is missing (Allison, 1999). It is exactly based on these qualities that we have chosen maximum likelihood based imputation as one of the strategies to address the problem with the missing values in our data set presented in subsection (3.2.1). We have also shown that this is relevant as the assumption of MCAR is assumed intact, see subsection (3.2.2).

A maximum likelihood method typically starts out by expressing a likelihood function. This function expresses the probability of the data as a function of the unknown parameters. Assuming two discrete random variables: \mathbf{X} and \mathbf{Z} with a joint probability function defined by $p(x, z \mid \boldsymbol{\theta})$, where $\boldsymbol{\theta}$ is a vector of parameters. The joint probability function gives us the probability that $\mathbf{X}=x$ and $\mathbf{Z}=z$. If we assume no missing values and that the observations are independent, i.e. $\operatorname{cov}(\mathbf{X}, \mathbf{Z})=0$, then the likelihood function is defined by:

$$
\begin{equation*}
L(\boldsymbol{\theta})=\prod_{i=1}^{n} p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right) \tag{3.2}
\end{equation*}
$$

To find an estimate of the maximum likelihood, we need to find the value for $\boldsymbol{\theta}$ that maximizes the likelihood function (eq. 3.2). This can be done using the \log-likelihood function $(\mathcal{L}(\boldsymbol{\theta})=\log L(\boldsymbol{\theta}))$ and should give us an estimate defined by:

$$
\begin{equation*}
\hat{\theta} \in\left\{\underset{\theta \in \Theta}{\arg \max } \sum_{i=1}^{n} \log p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right)\right\} \tag{3.3}
\end{equation*}
$$

If we assume that the data is MAR on \mathbf{Z} for the first r cases, and MAR on X for the next s cases, we can then split the likelihood function into parts that correspond to each missing value pattern and accordingly factor these
parts. This is in order to get a likelihood function that takes into account the missing data patterns. The likelihood function becomes as follows:

$$
\begin{equation*}
L(\boldsymbol{\theta})=\prod_{i=1}^{r} g\left(x_{i} \mid \boldsymbol{\theta}\right) \prod_{i=r+1}^{r+s} h\left(z_{i} \mid \boldsymbol{\theta}\right) \prod_{i=r+s+1}^{n} p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right) \tag{3.4}
\end{equation*}
$$

where $g(x \mid \theta)$ and $h(z \mid \theta)$ are the marginal distributions of \boldsymbol{X} and \boldsymbol{Z}, so that:

$$
\begin{equation*}
\prod_{i=1}^{r} g\left(x_{i} \mid \boldsymbol{\theta}\right) \prod_{i=r+1}^{r+s} h\left(z_{i} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{r+s} p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right) \tag{3.5}
\end{equation*}
$$

For each missing data pattern, the likelihood is found by summing the joint distribution over all possible values of the variables with missing data. The estimated maximum likelihood parameters in this particular example should therefore be defined by:

$$
\begin{equation*}
\hat{\theta} \in\left\{\underset{\theta \in \Theta}{\arg \max }\left(\sum_{i=1}^{r+s} \log p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right)+\sum_{i=r+s+1}^{n} \log p\left(x_{i}, z_{i} \mid \boldsymbol{\theta}\right)\right)\right\} \tag{3.6}
\end{equation*}
$$

We assumed the variables were discrete in the begin, and as such if the variables were continuous, the summations would be replaced by integrals. The extension to multiple variables is also relatively straightforward (Allison, 1999). In order to implement a maximum likelihood method on data that contains missing values, it is important to have a model for the joint distribution for all variables in the data set, and accordingly have a numerical method for maximizing the likelihood of this distribution. Determining this model can vary with the type of data that one is dealing with.

In our data set, we have both continuous and indicator variables. When the data is continuous it is common to assume a multivariate-normal model, i.e. that all the variables are independently identically normally distributed (iid) and can be expressed as a linear function of all other variables (or subsets). There is also an assumption that the errors are homoscedastic, i.e. constant and have a mean of 0 . In the case of the indicator variables, it is difficult to assume that these variables are normally distributed. However, according to Schafer (1997), Schafer and Olsen (1998) and Allison (1999) simulation evidence and practical experience have shown that maximum likelihood methods can do a good job in imputing missing values, even if the variables in question are indicator variables. Still, we opted to use
a different imputation method for each of the types of data, i.e. we use a bootstrapped expectation-maximization (EM) imputation method for the variables that are continuous and a classification- and regression tree (CART) based imputation method for the indicator variables.

As we mentioned, one needs to have a numerical method for maximizing the likelihood of the joint probability distribution. One of the most common numerical methods is the expectation-maximization (EM) algorithm (Dempster et al., 1977). We mentioned it slightly in subsection (3.2.2), but it is an iterative algorithm that is used to maximize the likelihood function (eq. 3.2) of a number of missing data models. It is comprised of two steps; the expectation step (often called the E step) and the maximization step (called the M step). In the expectation step, the expected values of the log-likelihood is taken over the variables with missing values using the current estimated parameters (Allison, 1999). Afterwards the maximization step involves maximizing the expected log-likelihood in order to get new estimates of the parameters. These two steps are continued until convergence is achieved, i.e. until the estimated parameters of the joint probability distribution doesn't change from one iteration to the next. Most standard software packages using an EM implementation have as a principal output a set of maximum likelihood parameters related to the joint probability distribution. The imputed values are often included in addition, but are not recommended for further analysis. The reason for this is that these imputed values are not designed for that purpose and as such will produce biased estimates of many parameters if used in further analysis (Allison, 1999).

A way to get around this problem is using multiple-imputation. Honaker et al. (2011) introduced a bootstrapped EM algorithm that combines the nice properties of the EM algorithm, i.e. consistency, asymptotic efficiency etc. with the accuracy property of the bootstrap re-sampling method, see Efron (1992) and James et al. (2013). Honaker et al. (2011) also argue that the EMB algorithm they developed is much faster and more reliable than alternative algorithms, in addition to making valid and much more accurate imputations for cross-sectional data. The algorithm is implemented in the Amalie II package in r. The assumptions of the algorithm are as follows: if we assume that the data set can be expressed as a matrix D consisting of dimensions $(n \times k)$. Let the matrix D be comprised of two parts, i.e. $D^{m i s}$ the missing part and $D^{o b s}$ the observer part. The matrix D is assumed to follow a multivariate distribution with mean vector μ and
covariance matrix $\boldsymbol{\Sigma}$. This assumption can be stated as $\boldsymbol{D} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. In addition to the multivariate normality assumption, the algorithm assumes that the data is MAR. The latter have we already shown to be intact, but the first assumption is somewhat difficult. As the data is by definition incomplete due to the missing data, we assume that this assumption is intact. Typically one would test if this assumption is intact by using a multivariate normality test similar to the ones mentioned by Mardia (1970), Henze and Zirkler (1990) or Royston (1982). Most of these tests assume that the data is complete, and should the data be incomplete then it is common to remove the missing observations and conduct the tests on the remaining data. The challenge for our part is that approximately 15% of our data set is missing which may cast doubt on the statistical power that these tests may have. As a result of this, we have chosen to assume that the normality assumption is intact. The schematic approach of this algorithm and the way it used in this thesis is described in Figure (3.2). The procedure starts by producing n bootstrapped data sets for which the EM algorithm is run on each bootstrapped data sets. For all the data sets in the thesis, i.e. the full data (HFfullDataSet.Rdat), HFmrEF (HFmrEFdataSet.Rdat) and HFpEF HFpEFdataSet. Rdat we let the algorithm produce $n=100$ bootstrapped data sets. After the imputed data sets are produced they are collapsed by averaging all the imputed values produced by the EM algorithm. All the data from the incomplete data set that the procedure started with should be the same, with the exception of the missing values, i.e. these have been replaced by the average of the imputed values.

For the indicator variables, the imputation technique is defined by a classification- and regression tree (CART) algorithm. This algorithm is implemented in the mice package in r (Buuren and Groothuis-Oudshoorn, 2010). The implementation proceeds as follows: for each variable k in the matrix D, the algorithm fits a classification or regression three by recursive partitioning. Then for each missing value in k, the algorithm finds the terminal nodes, i.e. the nodes the missing value can end up in according to the fitted tree. Lastly, the algorithm makes a random draw among the members in the nodes, and takes the observed value from that draw as the imputation. Rather than collapsing the multiple imputed data sets as with the BEM algorithm, we simply use the first imputed data sets for further analysis. Further description of the procedure of the algorithm can be found in Burgette and Reiter (2010). Our implementation of the algorithms with the source code can be found in appendix (B.2). This concludes

Figure 3.2: Bootstrapped Expectation Maximization (BEM) procedure
our treatment of the challenge with missing data in this thesis. Next, we present our treatment of the challenge with the higher dimensional data in the thesis.

3.2.4 Dimensional reduction

As we can see from Figure (3.1), the number of features in each HF data sets are 92 and 87 . After the consolidation process, we reduce the number of features to 39 in each data sets. The problem with higher dimensional data is that some of these features may be noise features that are not truly associated with a given response. This may lead to a deterioration in a fitted model, and thus increase the uncertainty. Noise features may also exacerbate the risk of overfitting, i.e. having a statistical model that contains more parameters than can be justified by the data (Friedman et al., 2009), (James et al., 2013). One can also run the risk of drawing invalid inference, as many of the features may be correlated with each other and thus one may face the case of multicollinearity, i.e. risking inflated standard errors.

We have chosen to address this problem with the use of Principal Com-
ponent Analysis (PCA). The purpose of PCA is to express the information in the data set \mathbf{D} by a lower number of variables \mathbf{Z}, called principal components. These principal components act as a lower dimensional representation of the data that contains as much as possible of the variation in the original dataset. Each of the principal components are computed as linear combinations of the p features, and are orthogonal and linearly uncorrelated. This property is ideal for addressing the challenge with multicollinearity.

For a given $n \times p$ data set \mathbf{D}, we assume that each of the variables has been centered to have mean zero. We then want the linear combination of the sample feature values of the form $z_{i 1}=\theta_{11} x_{i 1}+\theta_{21} x_{i 2}+\ldots+\theta_{p 1} x_{i p}$ that has the largest sample variance, subject to the constraint $\sum_{j=1}^{p} \theta_{j 1}^{2}=1$. The optimization problem becomes (James et al., 2013):

$$
\begin{equation*}
\max _{\theta_{11}, \ldots, \theta_{p 1}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \theta_{j 1} x_{i j}\right)^{2}\right\} \text { subject to } \sum_{j=1}^{p} \theta_{j 1}^{2}=1 \tag{3.7}
\end{equation*}
$$

In the optimization problem above, we want to maximize the sample variance of the n values of $z_{i 1}$. The elements $z_{11}, \ldots, z_{n 1}$ are referred to as the scores of the first component, and solving the optimization problem can be done using an eigen value decomposition. One can compute these principal components by using the estimated correlation or co-variance matrix of \mathbf{D}. We have chosen to use the correlation matrix and the implementation of this is done using the princomp() function in the stats-package in r, (R Core Team, 2018b). We run the imputed data sets produced in subsection (3.2.3) through the PCA function and select the first principal components that explain most of the variance in the data set for further analysis. The number of components used for the full sample data set is 4 , which explains approximately 27% of the variation in the original data set. For the other data sets, i.e. the HFpEF and HFmrEF datasets, we use the first two principal components. These explain approximately 15% of the variation in the orginal data set. In the succeeding analysis, we use these principal components as input to the cluster analysis. Much of the literature on the topic applies the same procedure to address the challenge of higher dimensional data, see e.g. Shah et al. (2014), Ahmad et al. (2014) and Katz et al. (2017).

3.3 Clustering patient groups

In this section, we present the unsupervised clustering algorithms used in this thesis. The clustering algorithms used are as mentioned: hierarchical, k-means and expectation-maximization (EM) clustering. As there exists many clustering algorithm, we follow the strategy defined in section (3.1) and try to keep to the ones most used in the literature. An overview of the implementation and the source code can be found in appendix (B.5).

3.3.1 Hierarchical

The first clustering algorithm evaluated in the cluster analysis process is the hierarchical clustering algorithm, Sibson (1973), Defays (1977) and (Rohlf, 1982). This algorithm uses a simple algorithm that takes into account the dissimilarity between clusters and accordingly produces a graphical representation in the form of a dendrogram. The algorithm starts by calculating

```
Algorithm 1: Hierarchical clustering
    initialization;
        n observations
        Distance measure
        Treat every observation }n\mathrm{ as its own cluster
    for i=n,n-1,\ldots,2 do
        Examine and fuse the most similar clusters
        Compute the pairwise inter-cluster dissimilarities
            among the i-1 remaining clusters
    end
    Cut dendrogram based on max relative loss of inertia criteria
    return Clusters
```

the dissimilarity between each pairs of observations, i.e. the patients. A common measure of the dissimilarity is the euclidean distance between pairs of observations. For all clustering algorithms where the distance is required, we have assumed that the euclidean distance measure is the most optimal. However, there exists many other distance measures, e.g. squared, polynomial, Manhattan, maximum and Mahalanobis distance that may be equally optimal. After calculating the distance, the algorithm starts at
the bottom of the dendrogram, i.e. where the observations are the most similar, and treats each of the n observations as its own clusters. Next, the algorithm fuses the two clusters that are most similar and this continued iteratively for the remaining $n-1$ clusters. When the algorithm is finished and the dendrogram is complete, all the clusters are now part of the same cluster. It is then up to the user to choose where to cut the dendrogram. In our implementation, we cut the dendrogram based on the criteria of maximizing the relative loss of inertia. The pseudocode for this algorithm is presented above.

The advantage of the hierarchical clustering algorithm, is that one does not need to define the number of clusters a priori, and thus a user can cut the dendrogram at any given height based on a given index or heuristic. There are many implementations of this algorithm, but since we use the principal components as input to this and all the other clustering algorithms, we have chosen to use the Hierarchical Clustering on Principal Components function HCPC() in the FactoMineR-package in r (Lê et al., 2008). We have also created our own function (pca.var. plot ()) that visually presents the clustering results from all the clustering algorithms chosen for evaluation in this thesis. This function is very useful as it can supply the user with a visual illustration of the clustering results for each clustering algorithm. The evaluation criteria used to evaluate the clustering methods is something that we will be addressing in later sections. The hierarchical clustering algorithm is, however, just one of the algorithms that we use and accordingly, we now move on to explaining the k-means algorithm.

3.3.2 k-means

The k-means clustering algorithm (Forgy, 1965) is a prototype-based technique for partitioning data into a pre-defined number of clusters (K). The clusters are represented by the centroids (means) of the clusters (Tan et al., 2007). The algorithm assumes that each observation x_{i} belongs to at least one of the K clusters and that the clusters are non-overlapping, i.e. that no observations belong to more than one cluster. The idea behind the kmeans clustering algorithm is that a good clustering is one that minimizes the within-cluster variation, i.e. a measure of how much the amount of observations within a cluster varies $W\left(C_{k}\right)$, where C_{k} is the set containing the indices of the observations in cluster K. Similar to the hierarchical clustering algorithm, this measure is often the euclidean distance between
each pair of observations. Accordingly, the algorithm seeks to solve the following optimization problem (James et al., 2013):

$$
\begin{equation*}
\min _{C_{i}, \cdots, C_{k}}\left\{\sum_{k=1}^{K} \frac{1}{\left|C_{k}\right|} \sum_{i, i^{\star} \in C_{k}} \sum_{j=1}^{P}\left(x_{i j}-x_{i^{\star} j}\right)^{2}\right\} \text { where } i \neq i^{\star} \tag{3.8}
\end{equation*}
$$

The solution to this optimization problem is very difficult as there exists K^{n} possible ways of partitioning n observations into K clusters. The k-means algorithm solves this problem with the following steps represented with the following pseudocode:

```
Algorithm 2: k-means clustering
    initialization;
        n observations
        Distance measure
        The number of clusters \(K\) to be produced
    for \(i=1, \ldots, n\) do
        Randomly assign a number in \(\{1, K\}\) to \(i\)
    end
    while Cluster assignment continuous to change do
        for Each cluster \(C_{k}\) do
            Compute cluster centroid
            for Each observation in \(C_{k}\) do
            Assign each observation to the cluster
                    whose centroid is closest
            end
        end
    end
    return Clusters
```

The algorithm takes as input n observations, the defined distance measure and the number of clusters K to be produced. Then all the observations n are assigned a number in the set of the number corresponding to the clusters. This assignment is done at random and serves as the initial cluster assignment for the observations. Then the algorithm iterates until there is no change in cluster assignment between cluster assignment a_{t} and a_{t-1}.

The cluster assignments is done by computing the cluster centroid and assigning each observation in the cluster C to the cluster C_{1}, \ldots, C_{k} whose centroid is closest, i.e. given the distance measure.

The disadvantage of the k -means algorithm is that it requires a user to define the number of clusters a priori, which in some cases may be seen as defeating the purpose of the cluster analysis, i.e. the results may vary with the number of clusters chosen. We have tried to address this problem by using the r function NbClust () (Charrad et al., 2014) that uses almost 25 indices for determining the number of clusters and proposes to the user the "optimal" number of clusters by the use of a majority-rule of all the indices. As for the actual implementation of the k-means clustering algorithm, we use the kmeans () function in the stats-package (R Core Team, 2018b). The implementation of this algorithm is wrapped in the pca.cluster.plot() function we mentioned in the preceding section.

3.3.3 Expectation-maximization

The k-means algorithm is closely related to the EM algorithm (Dempster et al., 1977) for estimating certain Gaussian mixture model(s). As we mentioned in section (3.2.3), the EM algorithm consists of estimating the maximum likelihood parameters of the given Gaussian(s) in question. This is done in the E-step of the algorithm and as such this is responsible for assigning the "responsibilities" for each data points based on its relative density under each mixture components. Whilst the M-step is responsible for recomputing the component density parameters based on the current responsibilities (Friedman et al., 2009). The aim of the EM clustering algorithm is to assign the data into K clusters according to the observations probability of belonging to each of the clusters. It is often stated that the EM algorithm is a "soft" version of the k-means algorithm, as the points are assigned based on a probabilistic (rather than a deterministic) approach (James et al., 2013). The pseudocode for the EM algorithm is given below. Accordingly, the algorithm starts by having the user input the data matrix \mathbf{D}, a parametric model f_{θ}, an initial distribution π_{0} and a randomly selected parameter vector $\boldsymbol{\theta}$. The algorithm then computes the expected responsibilities of each observations and updates the parameters $\boldsymbol{\theta}$ with the maximum likelihood estimates $\boldsymbol{\theta}_{\max }$. This is done iteratively until convergence. Being that the EM algorithm is similar to the k-means algorithm, it has also the same disadvantages, i.e. the user needs to define the number of
clusters to be produced a priori. In addition, it can sometimes be very time consuming or even impossible for the algorithm to achieve convergence, i.e. no changes in cluster assignment between iterations. In theory, as the exit criteria of the EM algorithm may be defined by convergence, this could mean that the algorithm may never stop as convergence is not guaranteed in all cases. One could however define an exit criteria as a set number of iterations $i_{\max }$ to terminate the algorithm, but this is something we have not done and accordingly the algorithm stops once convergence is reached. As for the implementation, we use the Mclust () function in the mclust package in r (Scrucca et al., 2017). All the default setting are used in the implementation and as with the previous clustering algorithms, the EM algorithm is also wrapped in the pca.var.plot() function.

```
Algorithm 3: EM clustering
    initialization;
    Data set \(\mathbf{D}=\left\{X_{1}, \ldots, X_{n}\right\}\)
    Parametric model \(f_{\theta}\)
    Choose an initial distribution \(\pi_{0}\) and pick
        a parameter vector \(\boldsymbol{\theta}\) at random.
    while No convergence do
        E step:
        Compute expected responsibilities on each observation
        M step:
        Update the parameters in \(\theta\) with the likelihood
            maximization parameters \(\boldsymbol{\theta}_{\text {max }}\).
    end
    return Clusters produced by EM process
```


3.4 Classifying clinical outcomes

In this section, we present the supervised classification algorithms used in this thesis. As we mention in section (3.1), the classification algorithms that will be evaluated are: k-nearest neighbours, logistic regression, naive Bayes, linear discriminant analysis, support vector machines and random forest. We will also mention the way in which we evaluate the algorithms with the K-fold cross validation. All the source code can be found in appendix (B).

3.4.1 k-nearest neighbours

The first algorithm we will be presenting is the k-nearest neighbours (k NN) algorithm. The k-NN algorithm (Fix and Hodges Jr, 1951) is a widely used algorithm, and often for good reason. It is very intuitive and simple to understand. In addition, the algorithm performs very well in many cases. This classifier is a memory-based algorithm that classifies a given observation based on the k nearest neighbours of that observation in the feature space. Mathematically, given a query point x_{0}, the $\mathrm{k}-\mathrm{NN}$ algorithm tries to find the k training points $x_{(r)}, r=1, \ldots, k$ closest in distance to x_{0}, and thus classify the point x_{0} according to the majority rule of the k closest points to x_{0}, see (Friedman et al., 2009) and (James et al., 2013). The pseudocode for the algorithm is given below. Based on the pseudocode, we can see that the k-NN algorithm starts out by taking as input the training data \mathbf{X} which is a subset of the full dataset $\mathbf{X} \subseteq \mathbf{D}$, the class labels \mathbf{Y} of \mathbf{X} and the distance measure to be used d. The distance measure between two data points are typically assumed to be a Minkowski distance:

$$
\begin{equation*}
d[i, j]=\left(\sum_{i=1}^{n}\left|X_{i, k}-X_{j, k}\right|^{p}\right)^{1 / q} \tag{3.9}
\end{equation*}
$$

where if $p=1$ or 2 , the distance d will correspond to the Manhattan or the Euclidean distance. As q approaches infinity, the distance measure d convergence to the maximum distance, i.e. the largest coordinate difference between data points. After computing the distance between data points, the algorithm classifies the labels of the unknown sample x based on the mapping learned by the training data done with the majority rule.

The observant reader will probably wonder how the unknown sample x is determined. This is something we will address in a later section dealing with cross-validation. However, what we can say is that the implementation of the k-NN algorithm used in this thesis is that of the knn() function from the stats package in r (R Core Team, 2018b). We also need to emphasize that the k-NN algorithm is not without disadvantages. That is, the k-NN algorithm is slow when one has many observations, since it does not generalize over data in advance. It scans all the data each time a prediction is needed. It also has disadvantages with higher dimensional data as even normalizing the data makes the distances "blurred". This is because the distance to all neighbors becomes more or less the same in
higher dimensional space. Another critique of the k-NN algorithm is that it in many ways classifies observations based on heuristics, i.e. it lacks probabilistic intuition and rational similar to other classification algorithms. Still, it is very popular and one that we will attempt to examine in this thesis.

```
Algorithm 4: k-NN classification algorithm
    initialization;
        X: training data
        \(\mathbf{Y}\) : class labels of \(\mathbf{X}\)
        \(x\) : unknown sample
        Distance measure \(d\)
    for \(i=1, \ldots, n\) do
        Compute distance \(d\left(\mathbf{X}_{i}, x\right)\)
    end
    Compute set \(I\) containing indices for the \(k\) smallest
        distances \(d\left(\mathbf{X}_{i}, x\right)\).
    return Majority label for \(\left\{\mathbf{Y}_{i}\right.\) where \(\left.i \in I\right\}\)
```


3.4.2 Logistic regression

Logistic regression is a very popular classification algorithm in medical research. The algorithm uses a logistic function to model the dependent discrete class labels corresponding to a given observation. In our example, the algorithm tries to model the probability that a given patient "belongs" to a particular clinical outcome (mortality or readmission) using a probabilistic approach. In the case of modeling this probability using multiple predictors, the algorithm tries to estimate the probability using the following generalized logistic function (Friedman et al., 2009):

$$
\begin{equation*}
P(X)=\frac{\exp \left\{\beta_{0}+\sum_{i=1}^{p} \beta_{i} X_{i}\right\}}{1+\exp \left\{\beta_{0}+\sum_{i=1}^{p} \beta_{i} X_{i}\right\}} \tag{3.10}
\end{equation*}
$$

Where $X=\left(X_{1}, \ldots, X_{p}\right)$ are the independent variables. The slope parameters $\beta_{0}, \ldots, \beta_{p}$ are estimated using the maximum likelihood, i.e. each slope parameter β_{i} is estimated so that the following holds:

$$
\begin{equation*}
\hat{\beta} \in\left\{\underset{\beta \in \Theta}{\arg \max } \sum_{i=1}^{p} \log p\left(x_{i}, \beta\right)\right\} \tag{3.11}
\end{equation*}
$$

Unlike linear regression, logistic regression uses the logistic function (3.10) to map the patient to a given clinical outcome. The mapping is done by selecting a threshold p^{\star} and if the calculated probability is above this threshold, we assign the given patient to that particular clinical outcome. In our case, we use $p^{\star}=0.50$ as this is the default value in the implementation. Logistic regression works well for categorical outcomes, but has a significant disadvantage in working with response variables of continuous scale. The algorithm also requires that each data point be independent of all other data points. Should this not be the case, then the model may tend to overweight the significance of those observations, Friedman et al. (2009) and James et al. (2013). Still, logistic regression is one of the most used algorithms in medical statistics. It is a relatively "simple" algorithm that perform very well in classification, see e.g. Austin et al. (2013) and Zolfaghar et al. (2013). The implementation of this algorithm is done using the $g \operatorname{lm}()$ function from the stats-package in r (R Core Team, 2018b). All default arguments are used with the exception of family = binomial (link='logit') which guarantees that the link function is the logistic function (eq. 3.10).

3.4.3 Naive Bayes

The naive Bayes algorithm (also called "simple" Bayes) is a popular probabilistic classifier used to classify data based on the probability that a given observation belongs to a particular class. It is in many ways very similar to logistic regression, but the classifier is based on the Bayes theorem and assumes that the effect of an attribute value on a given class is independent of the value of the other attributes. For a given classification problem, we want to determine $P(H \mid \boldsymbol{X})$, i.e. the probability that the hypothesis H holds given the "evidence" (i.e. the observed data sample \boldsymbol{X}). The probability $P(H \mid \boldsymbol{X})$ is also known as the posteriori probability and is according to Bayes' theorem calculated by the following:

$$
\begin{equation*}
p(H \mid \boldsymbol{X})=\frac{p(\boldsymbol{X} \mid H) p(H)}{p(\boldsymbol{X})} \tag{3.12}
\end{equation*}
$$

The probabilities $p(\boldsymbol{X} \mid H), p(\boldsymbol{X})$ and $p(H)$ can all be estimated from the given data sample. The procedure for which the algorithm classifies a given observation into a discrete categorical outcome is given by the following (Leung, 2007). Given a sample \boldsymbol{X}, the naive Bayes' classifier will predict that \boldsymbol{X} belongs to the class having the highest posteriori probability, conditioned on \boldsymbol{X}. That is X is predicted to belong to the class C_{i} if and only if $P\left(C_{i} \mid \boldsymbol{X}\right)>$ $P\left(C_{j} \mid \boldsymbol{X}\right)$ for $1 \leq j \leq n, j \neq i$. Rather than using a threshold value p^{\star} as with logistic regression, one seeks to maximize the posteriori probability and accordingly assign labels to observations. For large sample data sets the naive Bayes' classifier is especially appropriate as it can outperform many sophisticated algorithms. However, the assumption of independence among the variables is often very unrealistic and although it simplifies the estimation, the risk of high bias is very much present with the algorithm. In this thesis we will be implementing the Naive Bayes algorithm using the nb() function in the caret package (Kuhn et al., 2018).

3.4.4 Linear discriminant analysis

The LDA algorithm is very similar to principal component analysis (PCA). Both try to look for linear combinations that best explain the data. However, LDA, tries explicitly to model the difference between the classes of data. This is done by modeling the distribution of the predictors X separately in each of the response classes. The objective of LDA is to perform dimension reduction (similar to PCA), while preserving as much of the class discrimination information as possible. Assuming we have a p dimensional random variable X, where X follows a multivariate normal distribution, i.e. $X \sim N(\mu, \Sigma)$. This distribution is formally given by the following, see Friedman et al. (2009) and James et al. (2013):

$$
\begin{equation*}
f(x)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \tag{3.13}
\end{equation*}
$$

In the case where we have $p>1$ independent variables, the LDA classifier assumes that the observation in the k th class is drawn from a multivariate normal distribution $N\left(\mu_{k}, \Sigma\right)$. Plugging eq. (3.13) into the formula for the posterior probability and solving for the Bayes classifier yields:

$$
\begin{equation*}
\delta_{k}(x)=x^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}+\log \pi_{k} \tag{3.14}
\end{equation*}
$$

Where π_{k} is the prior probability that an observation belongs to the k th class. The LDA algorithm assigns a new observation $X=x$ by plugging the estimates of $\mu_{1}, \ldots, \mu_{K}, \pi_{1}, \ldots, \pi_{K}$ and Σ into (3.14) and classifying X to the class for which $\hat{\delta}_{K}(x)$ is the largest. The LDA is considered to be an approximation of the Bayes' classifier similar to the naive Bayes. The major difference being that the LDA is more flexible. It does not rely on the assumption of independence between predictors (Friedman et al., 2009). For large samples and many variables, the LDA is also preferred to other discriminant classifiers due to its dimensional reduction nature. The same can be said in the opposite direction. LDA suffers from two main problems: the small sample size and the linearity problem (Tharwat et al., 2017). The linearity problem is present if the underlying structure in the data is non-linear. Should this be the case (which is very common in many domains), then the LDA cannot find a LDA space where the discriminatory information exists in the mean, since it exists in the variance. In a two class situation with a non-linear structure in the data, this means that the means are equal. Either way, the LDA is one of the most popular classification algorithms used in the literature related to HF. The implementation of this algorithm is done using the lda() function from the MASS-package in r (Venables and Ripley, 2002).

3.4.5 Support vector machines

The next classification algorithm is the support vector machines (SVM) (Vapnik, 1963). This classifier is based on the concept of a separating hyperplane, i.e. a flat affine subspace of dimension $p-1$. A major drawback to the LDA and other linear classifiers is the fact that they fail to address the underlying non-linear nature of data. This is where the SVM has a clear advantage. The support vector machine algorithm can be generalized to classify clinical outcomes with non-linear decision boundaries. By choosing a radial kernel (function that quantifies the similarities between two observations), we can create a classifier that takes into account the non-linear nature that is often assumed on higher dimensional data. This radial kernel is defined by the generalized inner product function:

$$
\begin{equation*}
K\left(x_{i}, x_{i}^{\prime}\right)=\exp \left\{-\gamma \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}\right\} \tag{3.15}
\end{equation*}
$$

Where γ is a positive constant and is often described as a hyperparameter that controls the tradeoff between errors due to bias and variance in our model. The kernel function works by having training observations that are far away from the test observation x^{\star} playing essentially no role in the predicted class label for x^{\star}. If the euclidean distance between the test observation and training observation is large, then the radial kernel $\exp \left\{-\gamma \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}\right\}$ becomes very small, because the term $\sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}$ is large. This means that the radial kernel has very local behaviour, i.e. that only nearby training observations will have an effect on the class label of a test observation, see (Friedman et al., 2009) and (James et al., 2013). The advantage of classifying using a SVM with a kernel like the radial one described above, is that computationally one only needs to compute $K\left(x_{i}, x_{i}^{\prime}\right)$ for all $\binom{n}{2}$ distinct pairs of i and i^{\prime}. However, the classification results are very sensitive to the chosen γ parameter. The algorithm is also very complex and requires extensive memory for large scale tasks. This is not relevant in our thesis as our datasets are relatively small. The implementation of the svm algorithm with the radial kernel is done with the help of the svm() function in the e1071 package (Meyer et al., 2018).

3.4.6 Random forest

The random forest algorithm (Ho, 1995) is a decision tree based ensemble learning classifier that is used for both classification and regression tasks. The random forest algorithm uses a multitude of decision trees to classify the outcome/class of a classification problem. The decision trees are built using the bootstrap re-sampling algorithm, and each time a split in the decision tree is considered, a random sample of m predictors are chosen from the full sample of p predictors. At each split, a fresh sample of m predictors are chosen, where the number m is typically defined as \sqrt{p}. By doing this, the random forest algorithm overcomes the problem of small reductions in variance due to correlated decision trees as is often the case for algorithms like the bootstrapped aggregating algorithms such as bagging. The use of the bootstrapped technique and random selecion of features guaranties that the decision trees are uncorrelated. The pseudocode for the random forest algorithm is shown below. The random forest algorithm can be used for both classification and regression, but we present only the pseudocode for the classification case. This is true for all classification algorithms used,
see (Friedman et al., 2009) and (James et al., 2013).
Advantages of the random forest algorithm are, as mentioned, that one reduces the risk of overfitting since the algorithm averages over all the decision trees generated. It also reduces the overall variance since it splits the variables at random each time it builds a decision tree from the given bootstrapped data set. The disadvantages are that it is often difficult to interpret how the algorithm works. The results may also vary significantly with the number of trees that are to be produced. Regardless, the random forest algorithm is one of the most popular algorithms for doing classification and accordingly has good performance on many problems including non-linear ones. The actual implementation of this algorithm in this thesis is done using the randomforest () function in the randomForest-package in r (Liaw and Wiener, 2002).

```
Algorithm 5: Random forest
    initialization;
        X: training data
        \(x\) : unknown sample
        Number of Bootstrap samples \(B\)
    for \(i=1, \ldots, B\) do
        Draw a bootstrap sample \(\mathbf{Z}^{\star}\) of size \(N\) from the training data \(\mathbf{X}\)
        Grow a random forest \(T_{b}\) by the following:
        (i). Select \(m\) variables at random from the \(p\) variables.
        (ii). Pick the best variable/split-point among the \(m\).
        (iii). Split the node into two daughter nodes.
    end
    Output the assembled trees \(\left\{T_{b}\right\}_{1}^{B}\).
    return \(\hat{C}_{r f}^{B}(x)=\) majority vote \(\left\{\hat{C}_{b}(x)\right\}_{i}^{B}\).
```


3.5 k-fold cross-validation

When talking about evaluating a given classification algorithm, one typically mentions the test error rate, i.e. the average prediction error that results from using a statistical learning algorithm. The most common way of estimating the average prediction error is through the way of crossvalidation (CV). This is a direct method of estimating the expected extra-
sample error $E r r=E[L(Y, \hat{f}(X))$, $]$, i.e. the average generalization error when the method $\hat{f}(X)$ is applied to an independent test sample from the joint distribution of X and Y, see (Friedman et al., 2009) and (James et al., 2013). In the K-fold cross-validation method (Geisser, 1975) one typically splits the data into K roughly equal-sized parts (also called folds) and for a k th part, we fit the model on the remaining $K-1$ parts of the data and test/predict the classes in the k th part. This is done for $k=1, \ldots, K$ and after this is done we are left with K estimates of the prediction error. This prediction error is typically defined as the mean square error (MSE), but could be any evaluation parameter, e.g. the accuracy, absolute mean square error etc. Assuming that the evaluation parameter was the MSE, then after calculating it for the $k=1, \ldots, K$ folds, we average the MSEs to produce the k-fold cross-validation estimate. The formula is given by the following:

$$
\begin{equation*}
C V_{k}=\frac{1}{n k} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(Y_{i j}-\hat{Y}_{i j}\right)^{2} \tag{3.16}
\end{equation*}
$$

The K-fold cross-validation estimate is one of many criteria used to evaluate the performance of various classifiers. One clear advantage of using a K fold cross-validation estimate is computational, i.e. the runtime properties

```
Algorithm 6: K-fold cross validation
    initialization;
        X : training data
        Set of evaluation parameters \(\Theta\)
        Learning algorithm \(A\)
        Number of folds \(K\)
    Partition \(\mathbf{X}\) into \(X_{1}, \ldots, X_{k}\)
    for each \(\theta \in \Theta\) do
        for \(i=1, \ldots, K\) do
        \(h_{i, \theta}=A\left(X_{i}, \theta\right)\)
        end
        \(\operatorname{error}(\theta)=\frac{1}{k} \sum_{i=1}^{k} L_{X_{i}}\left(h_{i}, \theta\right)\)
    end
    return \(\theta^{\star} \in \Theta^{\star}\)
```

of the K-fold cross-validation algorithm is good as one limits the number of splits of the data to K-folds. This can also lower the variance of the prediction error since there is a higher chance that all the K-folds are less similar compared to a choice of $K=N$ (also called leave-one-out cross validation), see (Friedman et al., 2009). In the setting of this thesis, we will evaluate the classification algorithm mentioned earlier using only the K-fold cross validation algorithm. The psedo-code for the K-fold algorithm is illustrated above. The implementation of the algorithm is done using the trainControl () function in the caret package in r (Kuhn et al., 2018). We have chosen to use $K=10$ folds for all algorithms to be evaluated. This is a very common choice in the literature, see e.g. Liu et al. (2014), Alonso-Betanzos et al. (2015), Masetic and Subasi (2016) and Koulaouz-idis et al. (2016).

Chapter 4

Experiments

In this chapter, we present the results of the experiments done in this thesis. The results are split into two sections. The first section presents the results from the cluster analysis and the second section that of the classification of clinical outcomes. For each of the sections we present an overview of the statistical learning problems that the algorithms are to solve. In this, we also present the assumptions and the evaluation criteria that are used to rank the algorithms and the final results.

4.1 Cluster analysis

In the cluster analysis, we try to see how well the various clustering algorithms perform in producing phenotypically distinct clinical patient groups with HFpEF and HFmrEF. We organize this section in the following way: we start out by looking at the full sample data set, i.e. HFfullDataSet . Rdat. After the pre-processing, we will run the principal components thought the clustering algorithms. The idea is to see how well the clustering algorithms perform in producing patient groups that are more homogeneous compared to the physicians evaluation. Our measure of success is the number of unique baseline characteristics that are statistically significant using the Person χ^{2} test for categorical variables, ANOVA for normally distributed variables and Kruskal-Wallis test for non-normally distributed variables (Kruskal and Wallis, 1952). All the tests are run using conventional levels of significance. The implementation is done using the multigrps-function from the CBCgrps-package in r (Zhang et al., 2018). The algorithms are
performed on the binary clustering HF problem, i.e. to see how unique the patient groups produced are given that the only HF subtypes in the dataset is HFmrEF and HFpEF. This means that we assume a priori that there are only two clusters in the data set. After this we will see how well the algorithms perform in producing "new clusters" within the already defined patient groups from the first round. We will do the same analysis on both the groups that have been defined by the physicians and the "best" first round clustering algorithm. The full process flow for the cluster analysis is illustrated in Figure (4.1).

4.1.1 The binary clustering HF problem

The current clustering problem assumes that the dataset is only comprised of two clusters, i.e. HFmrEF and HFpEF. Accordingly, we allow the algorithms to determine the patients that best correspond to each cluster. We have plotted the results of the binary clustering problem in Figure (A.3). This plot can in many ways seem very misguiding as it only displays the results along the first two principal components. Still, the figure illustrates that even if we only cluster based on the first four principal components (27.32% of variance explained), we can produce more distinct patient

Table 4.1: Baseline characteristics of actual clustering

	Total	Cluster1	Cluster2	p-value
hb	109.34 ± 20.29	107.85 ± 21.22	110.93 ± 19.18	0.141
pcv	0.34 ± 0.06	0.33 ± 0.06	0.34 ± 0.06	0.159
age	$78.64(69.22,84.17)$	$78.9(69.46,85.37)$	$78.08(68.73,82.74)$	0.141
ewave	$0.9(0.74,1.05)$	$0.92(0.8,1.1)$	$0.9(0.7,1.01)$	0.056
gfr	$48(32.5,70)$	$47(32,72)$	$51.96(33,67.77)$	0.968
k	$4.4(4,4.7)$	$4.4(4.1,4.7)$	$4.4(4,4.78)$	0.664
los	$10(4,22)$	$10(4,22)$	$10.5(4,21)$	0.880
lvef	$50(45,57.5)$	$57.5(55,60)$	$45(42,47.5)$	$0.000^{* * *}$
mcv	$90.55(85.5,95)$	$89(85,94)$	$91.33(87,96)$	0.011^{*}
na	$139(136,141)$	$139(136,141)$	$139(136,141)$	0.650
ntprobnp	$2848(1230.5,7374)$	$2217(997,5305)$	$4063.5(1886.5,9968.25)$	$0.000^{* * *}$
plts	$204(156,268)$	$217(163,284)$	$190.87(148.5,241)$	$0.003^{* *}$
wbc	$7.8(5.9,10.5)$	$7.6(6,10.5)$	$8.1(5.9,10.4)$	0.727
Total number of significant baseline char:	59			
Continuous:			4	
Categorical:		55		

Figure 4.1: Process flow clustering of patient groups

Table 4.2: Baseline characteristics of Hierarchical and K-Means clustering

	Total	Cluster1	Cluster2	p-value
hb	109.34 ± 20.29	106.79 ± 21.29	111.73 ± 19.06	0.019^{*}
pcv	0.34 ± 0.06	0.33 ± 0.07	0.35 ± 0.06	0.035^{*}
age	$78.64(69.22,84.17)$	$78.9(68.94,85.36)$	$78.26(69.73,82.8)$	0.416
ewave	$0.9(0.74,1.05)$	$0.97(0.8,1.1)$	$0.9(0.7,1)$	$0.002^{* *}$
gfr	$48(32.5,70)$	$46(31,70)$	$54.44(34,71)$	0.205
k	$4.4(4,4.7)$	$4.4(4,4.7)$	$4.4(4,4.8)$	0.219
los	$10(4,22)$	$10(4,22)$	$11(4.25,21)$	0.889
lvef	$50(45,57.5)$	$57.5(52.5,60)$	$45(42.5,47.5)$	$0.000^{* * *}$
mcv	$90.55(85.5,95)$	$89(84,94)$	$91.14(87,96)$	$0.002^{* *}$
na	$139(136,141)$	$139(136,141)$	$139(136,141)$	0.321
ntprobnp	$2848(1230.5,7374)$	$2327(1007,5695)$	$3723.5(1731.5,9557.75)$	$0.000^{* * *}$
plts	$204(156,268)$	$215(163,287)$	$194(151,241)$	$0.007^{* *}$
wbc	$7.8(5.9,10.5)$	$7.7(5.9,10.5)$	$8.05(5.92,10.47)$	0.731
Total number of significant baseline char:				
Continuous:	62			
Categorical:			7	

groups than the physicians. As we can see from Table (4.2), the hierarchical and k -means clustering algorithms both give the highest number of significant baseline characteristics (7 continuous and 55 categorical variables) compared with the actual clustering done by the physicians (4 continuous and 55 categorical variables, see Table 4.1). The EM algorithm produces overall the lowest number of significant baseline characteristics (5 continuous and 49 categorical variables). Both the hierarchical and k-means algorithm produce the same clustering configurations. The baseline characteristics in the clustering of the patients using the hierarchical and k-means clustering show that for the HFpEF cluster the LVEF is on average 57.5\% and for the second cluster (HFmrEF) the LVEF is on average 45%. These are very similar values to what the physicians produced. We can also see that for other baseline characteristics such as ntprobnp the average is at 2327 ng/L for the HFpEF group which is significantly different than that of the HFmrEF group $3723.5 \mathrm{ng} / \mathrm{L}$. This is also very similar to what the physicians concluded with. For characteristics that are significantly different in the clustering with hierarchical and k-means, but not found in the clustering done by the physicians one can include the following continuous variables: hemoglobin (hb), packed cell volume (pcv) and the ewave (ewave). This may suggest that both the hierarchical and k-means clustering algorithms

Table 4.3: Baseline characteristics of EM clustering

	Total	Cluster1	Cluster2	p-value
hb	109.34 ± 20.29	111.2 ± 19.07	107.48 ± 21.34	0.075
pcv	0.34 ± 0.06	0.34 ± 0.06	0.33 ± 0.06	0.115
age	$78.64(69.22,84.17)$	$77.81(69.22,82.76)$	$78.9(69.22,85.36)$	0.199
ewave	$0.9(0.74,1.05)$	$0.9(0.71 .101)$	$0.93(0.8,1.1)$	0.040^{*}
gfr	$48(32.5,70)$	$51.96(33,68.25)$	$47(32,72)$	0.956
k	$4.4(4,4.7)$	$4.4(4,4.8)$	$4.4(4,4.7)$	0.363
los	$10(4,22)$	$11(4,21)$	$10(4,22)$	0.906
lvef	$50(45,57.5)$	$45(42,47.5)$	$57.5(53.75,60)$	$0.000^{* * *}$
mcv	$90.55(85.5,95)$	$91.14(87,96)$	$89(84.5,94)$	$0.007^{* *}$
na	$139(136,141)$	$139(136,141)$	$139(136,141)$	0.330
ntprobnp	$2848(1230.5,7374)$	$3985(1849.5,10038.25)$	$2226(990,5500)$	$0.000^{* * *}$
plts	$204(156,288)$	$192.64(149.5,241.5)$	$217(163.5,286)$	$0.002^{* *}$
wbc	$7.8(5.9,10.5)$	$8.1(5.97,10.63)$	$7.6(5.9,10.35)$	0.561
Total number of significant baseline char:				
Continuous:	54			
Categorical:		5		

can be used as appropriate tools for physicians. The results from the EM algorithm (Table 4.3) show that many of the similar baseline characteristics are not statistically significant. The LVEF (lvef) and NTproBNP (ntprobnp) are very similar to both the hierarchical and k-means clustering, but other characteristics such as hemoglobin (hb) and the packed cell volume (pcv) are not. Throughout the analysis we have found that the EM algorithm does not perform as well in clustering patient groups as the hierarchical and k-means clustering algorithms. This could be because the assumption of multivariate normal distribution does not hold for this data set or the fact that there is a high presence of categorical variables in the data set.

4.1.2 Analysis of post-diagnosis

In this section we will investigate the clustering results discussed previously. We have placed an assumption of whether the physicians diagnosis is representative given an objective of producing the most unique patient groups. The clustering problem in this section assumes that the diagnosis done by the physicians is sufficient in regards to this objective, i.e. the clustering based on the post-diagnosis done by the physicians produces the

Table 4.4: Number of significant baseline characteristics

	With Post-Diagnosis		Without Post-Diagnosis		
C $=3$	HFpEF	HFmrEF	HFpEF	HFmrEF	Mean
Hierarchical	53 (tab. A.5)	53 (tab. A.8)	48 (tab. A.11)	51 (tab. A.14)	51.25
K-Means	49 (tab. A.6)	53 (tab. A.9)	48 (tab. A.12)	53 (tab. A.15)	50.75
EM	56 (tab. A.7)	44 (tab. A.10)	42 (tab. A.13)	42 (tab. A.16)	46.00
Mean	52.67	50.00	46.00	48.67	

most unique patient groups. We compare these results to a clustering without an assumption of post-diagnosis done by the physicians and see if there are any substantial differences in results. We will only use the first two principal components (14.64% of variance explained) to cluster the patients. The evaluation criteria are the same as in the previous section. The number of clusters for the k-means and EM algorithm recommended by the NbClust () (Charrad et al., 2014) function in r was three, i.e. 13 of the 23 indices in the procedure recommended using $C=3$ as the optimal number of clusters for both the HFmrEF and HFpEF data sets. We can see from Table (4.4) that the hierarchical and k -means clustering algorithms produces the same number of significant baseline characteristics in half of the cases examined. We can also see from Table (4.4) that all algorithms analyzed produce on average more statistically significant baseline characteristics with the post-diagnosis assumption compared to without. The EM algorithm produces overall the lowest number of significant baseline characteristics (in three cases). An exception is when the EM algorithm is clustering HFpEF with post-diagnosis.

Beginning with the subtype HFpEF given the assumption of postdiagnosis, we can see from tables (A.5) and (A.6) that cluster 2 (hierarchical \& k-means) seems to contain patients that have a higher average age (85.45) with a packed cell volume (pcv) that is on average 0.33 ± 0.05. This cluster is very similar to cluster 1 produced by the EM algorithm. The ntprobnp (ntprobnp) of cluster 3 (hierarchical \& k-means) is the lowest at $1417 \mathrm{ng} / \mathrm{L}$ which is also statistically significant. The average number of red blood cells, i.e. the mean corpusular volume (mcv) is at its lowest for cluster 1 (hierarchical \& k-means) with an average of 87 femtolitres. The number of significant baseline characteristics produced by the hierarchical clustering is 53 (8 cont. and 48 categorical) and for the k-means its 49 (8 cont. and 41 categorical). The EM algorithm produces almost similar results for the
subgroup HFpEF as the hierarchical and k-means algorithm (table A.7). The second cluster produced by the EM algorithm is very similar to the third cluster produced by the hierarchical and the k-means algorithm. The ntprobnp (ntprobnp) for cluster one and two produced by the EM are very similar. Both are approximately $2750 \mathrm{ng} / \mathrm{L}$. The third cluster produced by the EM algorithm has the lowest values for the ntprobnp ($1525 \mathrm{nl} / \mathrm{L}$). The total number of significant baseline characteristics for the EM algorithm is 56 (8 cont. and 48 categorical).

When looking at the HFmrEF clustering based on post-diagnosis (tables A.8, A. 9 and A.10), we can see somewhat different results, i.e. there are on average less significantly different baseline characteristics in all clusters produced by the algorithms regardless of whether the assumption of post-diagnosis is intact. For cluster 3 (hierarchical and k-means), we find the lowest ntprobnp (ntprobnp) at $2898.5 \mathrm{ng} / \mathrm{L}$ with a packed cell volume of 0.38 ± 0.04. This cluster also contains the patients with the lowest length of stay (7 days). The length of stay (LOS) is also a uniquely statistically significant baseline characteristic that is only significant in the HFmrEF subgroup of patients for all algorithms studied. Cluster 3 also has the highest hemoglobin (hb) at $123.79 \pm 12.89 \mathrm{~g} / 100 \mathrm{~mL}$. The clustering results without the post-diagnosis assumption show very different results. In general, Figure (A.6) and (A.7) show that the assignment of clustering have with very few similarities, i.e. the cluster numbering as well as the baseline characteristics vary more when the assumption of post-diagnosis is removed. Comparing the number of significant baseline characteristics between the HFmrEF groups both with and without the post-diagnosis assumption shows that the latter has on average fewer baseline characteristics, see Table (4.4). The same goes for the HFpEF group, i.e. we have reasons to believe that assuming the physicians diagnosis is representative, one can get additional clustered patient groups with higher degree of homogeneity compared to when this assumption is not intact. We have also demonstrated that the ML algorithms can be very useful in producing patient groups that are more phenotypically unique given that the objective is to challenge the diagnosis of the physicians, see section (4.1.1). Now that we have presented the results of the clustering analysis, we move on to the results of the classification of the clinical outcomes. The source code, relevant plots and tables can be found in the appendix (A).

Figure 4.2: Process flow classification of clinical outcomes

4.2 Classification

In this section we will present the results of the classification analysis. As mentioned in the ML procedure (Figure 3.1), we train the algorithms using the imputed data sets with all the principal components and accordingly run cross validation in order to estimate the accuracy of the various algorithms. The accuracy along with Cohen's kappa are the two evaluation criteria we use to rank the algorithms in this section. The process flow for the mentioned classification section is illustrated in Figure (4.2).

4.2.1 Mortality classifier

The statistical learning problem in this section is a two-class classification problem where mortality is the clinical outcome in question. Our objective is to see how well the algorithms mentioned in Figure (3.1) perform in predicting the probability of mortality. We will train the algorithms using PCA and 10 -fold cross validation and evaluate the results using the accuracy, i.e. the proportion of true results and Cohen's kappa defined by:

$$
\begin{equation*}
\kappa \equiv \frac{p_{0}-p_{e}}{1-p_{e}} \tag{4.1}
\end{equation*}
$$

where p_{0} is the accuracy given by $A C C=(T P+T N) /(P+N)$, and $p_{e}=$ $1 / N^{2} \sum_{k} n_{k 1} n_{k 2}$, where k is the number of categories / classes, N the number of items and $n_{k 1}$ the number of times rater i predicted category $k . p_{e}$ is also referred to as the expected accuracy, i.e. what the accuracy that any random classifier would be expected to achieve. Accordingly, Cohen's kappa is also regarded as the inter-rater agreement for qualitative (categorical) items, i.e. it is similar to the classification accuracy, except that it is normalized at the baseline of random chance on a dataset. A possible interpretation of this

Mortality

Confidence Level: 0.95
Figure 4.3: Binary classification results: mortality
statistics is given by the following (Ashby, 1991): less than $0.20=$ Poor agreement, 0.20 to $0.40=$ Fair agreement, 0.40 to $0.60=$ Moderate agreement, 0.60 to $0.80=$ Good agreement and 0.80 to $1=$ Very good agreement. As mentioned earlier, the statistical learning problem is a binary classification problem given by whether readmission / mortality occurred (TRUE) or not (FALSE), i.e. the expected accuracy is $p_{e}=0.50$. We use principal component analysis to address the problem of higher dimensional multi-correlated variables. Accordingly, in the process of training the algorithms we use all principal components from the training in the classification of the clinical outcomes. The total number of patients with post-confirmed mortality in this data set is 115 (approx 36% of the total number of patients, see Table 3.1). The results of the mortality classification is illustrated in Figure (4.3) and Table (4.5). In the table we notice that there are three algorithms that overall yield very decent results given the accuracy and the kappa. These are in order of importance: linear discriminant analysis (lda), logistic regression (logr) and naive Bayes (nb). As we can see the LDA (lda) produces the best overall accuracy and kappa. The mean accuracy of the LDA classifier is estimated at 69.9% with a kappa at 0.19 . The next classifier which compared to LDA also yields decent results is the logistic regression (logr) with a

Table 4.5: Summary statistics for the mortality classification

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
PANEL I: Accuracy							
knn	0.605	0.632	0.649	0.659	0.696	0.730	0.000
logr	0.649	0.676	0.684	0.696	0.725	0.757	0.000
lda	0.632	0.658	0.703	0.699	0.730	0.784	0.000
nb	0.568	0.618	0.676	0.664	0.684	0.757	0.000
svm	0.684	0.684	0.693	0.693	0.703	0.703	0.000
rf	0.632	0.662	0.684	0.688	0.709	0.757	0.000
PANEL II: Kappa							
knn	-0.101	-0.073	-0.029	-0.001	0.056	0.161	0.000
logr	0.032	0.114	0.176	0.189	0.259	0.417	0.000
lda	-0.030	0.086	0.204	0.190	0.255	0.417	0.000
nb	-0.145	-0.002	0.130	0.098	0.193	0.238	0.000
svm	0.000	0.000	0.000	0.000	0.000	0.000	0.000
rf	-0.101	-0.052	0.000	0.017	0.083	0.238	0.000

mean accuracy of 69.6% and a kappa of 12 . The last algorithm is the naive Bayes (nb). With the naive Bayes the estimated mean prediction accuracy of mortality is 66.4% with a kappa of 0.098 . We need to emphasize that even though one gets a somewhat high accuracy, the kappa is often considered to be a more robust evaluation criterion compared to the accuracy. This is because it takes into account that the agreement between estimated classification and actual classification can occur by chance. As the kappa is very low for all the classifiers mentioned in table (4.5), we cannot say with certainty that the classification algorithms can systematically predict mortality. However, we have reasons to believe that the three algorithms (linear discriminant analysis, logistic regression and naive Bayes) all show signs of being fair algorithms when it comes to predicting mortality in HF patients. Similar results are reported in the literature, see e.g. Shah et al. (2014) and Panahiazar et al. (2015).

4.2.2 Readmission classifier

In this section, we examine the classification problem related to readmission. We have defined the readmission outcome as whether a given patient was re-admitted in some form during the one-year follow-up period. As we mentioned in section (3.2) this could be either within 30 days (patient group V) or any other way (patient groups U). The results of the readmission classification is illustrated in Figure (4.4) and Table (4.6). The results are very different from what we found with the mortality classification. Surprisingly, three algorithms seem to distinguish themselves from the others, namely the linear discriminant analysis (lda), support vector machines (svm) and

Table 4.6: Summary statistics for the readmission classification

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
PANEL I: Accuracy							
knn	0.789	0.868	0.892	0.878	0.894	0.919	0.000
lda	0.974	1.000	1.000	0.997	1.000	1.000	0.000
nb	0.868	0.919	0.933	0.936	0.967	1.000	0.000
logr	0.973	0.973	0.987	0.987	1.000	1.000	0.000
svm	0.974	1.000	1.000	0.995	1.000	1.000	0.000
rf	0.842	0.892	0.919	0.909	0.941	0.947	0.000

Table 4.6: Summary statistics for the readmission classification (continued)

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
PANEL II: Kappa							
knn	0.437	0.657	0.719	0.680	0.731	0.811	0.000
lda	0.934	1.000	1.000	0.993	1.000	1.000	0.000
nb	0.630	0.789	0.834	0.835	0.918	1.000	0.000
logr	0.934	0.937	0.969	0.968	1.000	1.000	0.000
svm	0.934	1.000	1.000	0.987	1.000	1.000	0.000
rf	0.542	0.727	0.790	0.763	0.855	0.878	0.000

logistic regression (logr). Interestingly, all three of these algorithm score very high both in terms of accuracy and kappa. The algorithm with the most promising results is the linear discriminant analysis. It has an estimated mean prediction accuracy of 99.7% with a kappa of 0.993 . The LDA is found to be the most superior classification algorithm in both predicting mortality and readmission. The next algorithm that show potential in predicting readmission is the support vector machines (svm) algorithm. It has an estimated mean accuracy of 99.5% with a kappa of 0.987 . We consider this to be interesting as in the previous section we found that the SVM was one of the lowest performing algorithms when it comes to predicting mortality. This might suggest that modelling readmission with a non-linear structure is more realistic than doing so with mortality. The last algorithm that show potential is that of the logistic regression (logr). The estimated mean accuracy for this algorithm was 98.7% with a kappa of 0.968. In addition to having a very good accuracy and kappa, its worth mentioning that given its level of simplicity, one can argue that the logistic regression algorithm is preferable to more advanced classification algorithms. This is not uncommon as in the literature there are many studies that report of logistic regression being a very effective algorithm for classifying clinical outcomes, see e.g. Austin et al. (2013) and Zolfaghar et al. (2013). In both the cases that we have examined, we have found that the linear discriminant analysis and the logistic regression algorithms perform decently. These algorithms are very different in terms of their level of complexity. They are also very much used in the literature and often favourites among practitioners of medical statistical analysis, see e.g. Austin et al. (2013), Zolfaghar et al. (2013), Shah et al. (2014) and Panahiazar et al. (2015). Accordingly, we have reasons to believe that
the linear discriminant analysis and the logistic regression are the two algorithms that show the most potential in predicting both the mortality and readmission of HF patients.

Readmission

Confidence Level: 0.95
Figure 4.4: Binary classification results: readmission

4.3 Discussion

The objective of this thesis was two fold: (i) we attempted to give a though analysis of how well various clustering algorithms (hierarchical, k-means and expectation-maximization) perform in producing phenotypically distinct clinical patient groups (i.e. phenomapping) with HFpEF and HFmrEF. Our strategy for answering this research question has been to compare the level of dissimilarity between patient groups that are produced at two
levels. Firstly, we looked at the binary clustering problem where we compared the patient groups produced by the algorithms with those produced by the physicians. We found that if one defines the optimal clustering as that which has the highest number of significantly different baseline characteristics, then we have reasons to believe that the hierarchical and k-means clustering algorithms show signs of being better at clustering patients with HF compared to the physicians. Overall these algorithms produce 62 significantly different baseline characteristics compared to 59 produced by the physicians. Secondly, we looked at how well the clustering algorithms performed in producing "new" patient groups within both subtypes of HF. We analyzed this by attempting to re-cluster patient groups from both subtypes (HFmrEF and HFpEF) produced by the physicians and the "best" ML algorithms. Re-clustering within the subtypes generated by the physicians (also called the 'post-diagnosis' assumption) seem to show the greatest potential as the average number of significantly different baseline characteristics is the highest for this clustering compared to when the assumption is removed. On average all algorithms produce approximately 53 (HFpEF) and 50 (HFmrEF) significantly different baseline characteristics when the post-diagnosis assumption is present compared to when its removed (46, HFpEF and 49, HFmrEF). However, if the objective is to use the results to find additional "new clusters", we cannot say with certainty that the choice of clustering algorithms or the clustering data used (whether it is with or without post-diagnosis) will systematically enhance the "uniqueness" of the patient groups. We need to emphasize that the results need to be treated with great caution as they are very sensitive to the number of principal components used, the imputation method and the sample size. Nevertheless, the hierarchical and k-means algorithms seems to have the potential to be used as tools by physicians to cross-check their assumptions and rational in order to further improve the diagnosis of patients with the preserved and mid-range subtypes of HF. Similar findings are also reported in the literature, see e.g. Shah et al. (2014), Ahmad et al. (2014), Alonso-Betanzos et al. (2015), Kao et al. (2015), Ahmad et al. (2016) and Katz et al. (2017).

In the second (ii) part of the thesis we attempted to evaluate the performance of various classification algorithms (k-nearest neighbour, logistic regression, linear discriminant analysis, support vector machines and random forest) in predicting mortality and readmission. The results suggest that linear discriminant analysis and logistic regression are good candi-
dates for doing that. They both rank very high compared to the other algorithms evaluated. The LDA algorithm has an estimated accuracy of approximately 69.9% for mortality and 99.7% for readmission. The logistic regression had similar results with approximately 69.6% accuracy for mortality and 98.7% for readmission. The results seem promising, but we need to emphasize that these results also need to be treated with great causation. As we mentioned in section (3.2), the data set used in this thesis had 15% missing values. This is an aspect about our study that should not be neglected. We addressed the problem of missing values by imputation with a bootstrapped EM algorithm (Honaker et al., 2011). Maximum likelihood methods such as this one are praised by many in the literature for its ability to impute missing values, even if the variables in question are mixed, see Schafer (1997), Schafer and Olsen (1998) and Allison (1999). However, we cannot with certainty say that this is the most optimal method of treating the missing values in the data set. Similarly to the clustering results, we need to emphasize that the results of the classification are sensitive to a number of factors, such as the imputation method and sample size. Nevertheless, our findings seem to confirm the findings reported in the literature, see e.g. Austin et al. (2012), Zolfaghar et al. (2013), Shah et al. (2014), Panahiazar et al. (2015) and Koulaouz-idis et al. (2016).

For future analysis, we recommend broadening this study by evaluating more algorithms. This is especially the case for the clustering analysis. All the algorithms that we analyzed have assumed that all the patients belong to a cluster. This is a somewhat strong assumption as it could be the case that some patients lay in an area that is "too uncertain" to assign to either subtypes. It could be interesting to see how density-based algorithms such as DBSCAN (Ester et al., 1996) would perform in producing phenotypically distinct patient groups. It could also be interesting to see how the classification results vary with the subtype of HF, i.e. is it reasonable to assume that some algorithm predicts mortality and readmission more accurately if one limits the data to one subtype of HF? These are all suggestions for future analysis that can broaden our understanding of the complex syndrome of heart failure.

Chapter 5

Conclusion

In this thesis, we attempted to investigate how well various clustering algorithms (hierarchical clustering, k -means and expectation-maximization) perform in producing phenotypically distinct clinical patient groups (i.e. phenomapping) with heart failure with preserved ejection fraction (HFpEF) and mid-range ejection fraction (HFmrEF). Furthermore, we evaluate the performance of various classification algorithms (k-nearest neighbours, logistic regression, naive Bayes, linear discriminant analysis, support vector machines and random forest) in predicting patient mortality and readmission. All the algorithms were applied on a data set consisting of 375 patients with symptomatic heart failure (HF) identified at a tertiary hospital in the United Kingdom.

In the clustering of the patients based on the subtypes HFmrEF and HFpEF, we found that the hierarchical and k-means clustering algorithms show signs of being better at clustering patients with HF compared to the physicians. Overall these algorithms produced 62 significantly different baseline characteristics compared to 59 produced by the physicians. However, if the objective is to use the results to find additional "new clusters", then we cannot say with certainty that the choice of clustering algorithms or the clustering data used (whether it's with or without post-diagnosis) will systematically enhance the "uniqueness" of the patient groups.

In the classification of mortality and readmission, we found that linear discriminant analysis (LDA) and logistic regression show promising potential. That is, the level of accuracy for which the algorithms predicted mortality and readmission rank high compared to the other algorithms evaluated. The LDA algorithm predicted mortality with approximately
69.9\% accuracy and readmission with 99.7%. The logistic regression had similar results with approximately 69.6% accuracy for mortality and 98.7% for readmission. Similar results are reported in the literature. Our findings lend support to the idea that the application of such algorithms may help in better understanding the complex nature of a clinical syndrome such as heart failure.

Appendix A

Data Description

In this appendix we present a descriptive overview of the data used in this thesis. This includes: an overview and explanation of the variables used (A.1), the R-packages (A.2) used and some relevant plots (A.4) to support the finding in the thesis. The source code used to produce the relevant plots can be found in appendix (B).

A. 1 Variables

Table A.1: Phenotype domains used for clinical metrics

Phenotype domain	Clinical Variables
Demographics	Age (age), gender (gender), ethnicity (white, asian, black).
Admission symptoms	Breathless (breathless)
Admission signs	Admission systolic blood pressure (sbp), admission diastolic blood pressure (dbp), admission weight (admissionwgt), admssion blood presure (bp), ad-
	mission body mass index (bmiadmission), admission pulse (pulse).

Table A. 1 Continued: Phenotype domains used for clinical metrics

Phenotype Clinical Variables

domain

Risk factors Atrial fibrillation (a-fib), chronic obstructive pulmonary disease (copdasthma), diabetes (dm), history of ischaemic heart disease (ihd), iron deficiency (irondef), obesity (obesity).

Comorbidities Number of comorbidities (comorbidities)
12 lead elec- Rhythm (ecgrhythmother), rate (ecgrate), QRS dutrocardiogram ration (ecgqrsduration), other QRS abnormalities (ECG) (ecgqrsother), normal QRS (normalecgqrs), evidence of left ventricular hypertrophy (lvh), left bundle branch block (lbbb), right bundle branch block (rbbb), abnormalities in Sinus rythm (sr).

Laboratory tests Hemoglobin (hb), mean cell volume (mcv), packed cell volume (pcv), white blood cells (wbc), platelets (plts), sodium (na), potassium (k), glomerular filtration rate (gfr), albumin, HbA1C, glucose, iron levels, transferrin saturations (tsat), ferritin (ferritin), NTproBNP (ntprobnp), high blood cholesterol levels (chol), iron levels (ironlevels).

Echocardiography Left ventricular ejection fraction (lvef), E wave (ewave), E/e' (ee), pulmonary artery systolic pressure (pasp), right ventrical function (rvfunction), mitral regurgitation (mr), tricuspid regurgitation (tr), aortic stenosis (as), aortic insufficiency (ai), atrial flutter (af).

Outcome Length of stay (los), time to heart failure hospitalization (timetohfadm), heart failure hospitalization (hfhospitalization).

A. 2 R-packages

Table A.2: Packages used in thesis

Package	Title	Version
Amelia	A Program for Missing Data	1.7 .5
BaylorEdPsych	R Package for Baylor University Educational	0.5
	Psychology Quantitative Courses	
caret	Classification and Regression Training	$6.0-80$
CBCgrps	Compare Baseline Characteristics Between Groups	2.3
docstring	Provides Docstring Capabilities to R Functions	1.0 .0
factoextra	Extract and Visualize the Results of Multivariate	1.0 .5
	Data Analyses	
FactoMineR	Multivariate Exploratory Data Analysis and Data	1.41
	Mining	
ggpubr	'ggplot2' Based Publication Ready Plots	0.1 .8
gridExtra	Miscellaneous Functions for "Grid" Graphics	2.3
Hmisc	Harrell Miscellaneous	$4.1-1$
mclust	Gaussian Mixture Modelling for Model-Based	5.4 .1
	Clustering, Classification, and Density Estimation	
mice	Multivariate Imputation by Chained Equations	3.3 .0
mlbench	Machine Learning Benchmark Problems	$2.1-1$
NbClust	Determining the Best Number of Clusters in a	3.0
	Data Set	
plotrix	Various Plotting Functions	$3.7-4$
reporttools	Generate LaTeX Tables of Descriptive Statistics	1.1 .2
rlist	A Toolbox for Non-Tabular Data Manipulation	0.4 .6 .1
tikzDevice	R Graphics Output in LaTeX Format	0.11
VIM	Visualization and Imputation of Missing Values	4.7 .0
xtable	Export Tables to LaTeX or HTML	$1.8-2$

A. 3 Descriptive statistics

Table A.3: Patient characteristics: HFpEF

Variable	n	\#Na	Min	Max	\bar{x}	\widetilde{x}	s	q_{1}	q_{3}
PANEL II: Demographics									
age	193	0	29.0	100.8	76.3	78.9	12.1	69.5	85.4
gender	193	0	0.0	1.0	0.6	1.0	0.5	0.0	1.0
white	193	0	0.0	1.0	0.7	1.0	0.5	0.0	1.0
asian	193	0	0.0	1.0	0.1	0.0	0.2	0.0	0.0
black	193	0	0.0	1.0	0.3	0.0	0.4	0.0	1.0
PANEL III: Admission symptoms									
breathless	185	8	0.0	1.0	0.8	1.0	0.4	1.0	1.0
PANEL IV: Admission signs									
sbp	182	11	55.0	242.0	146.9	145.0	31.7	125.0	167.0
dbp	183	10	25.0	195.0	80.5	80.0	22.1	67.0	89.0
admissionwgt	160	33	41.5	158.0	78.9	76.7	23.3	60.1	93.9
bp	192	1	0.0	1.0	0.8	1.0	0.4	1.0	1.0
bmiadmission	148	45	16.8	107.1	30.7	29.3	10.5	23.6	35.4
pulse	182	11	44.0	211.0	84.7	83.0	22.1	70.0	95.0
PANEL V: Risk factors									
a-fib	189	4	0.0	1.0	0.5	0.0	0.5	0.0	1.0
copdasthma	190	3	0.0	1.0	0.4	0.0	0.5	0.0	1.0
irondef	69	124	0.0	1.0	0.6	1.0	0.5	0.0	1.0
dm	188	5	0.0	1.0	0.5	1.0	0.5	0.0	1.0
obesity	185	8	0.0	1.0	0.5	1.0	0.5	0.0	1.0
ind	186	7	0.0	1.0	0.4	0.0	0.5	0.0	1.0
PANEL VI: Comorbidities									
comorbidities	193	0	0.0	9.0	4.2	4.0	1.8	3.0	5.0
PANEL VII: Electrocardiography									
ecgqrsduration	157	36	55.0	177.0	101.3	98.0	20.8	88.0	112.0
ecgqrsother	193	0	0.0	1.0	0.0	0.0	0.2	0.0	0.0
ecgrate	159	34	41.0	191.0	83.0	80.0	23.1	70.0	92.0
ecgrhythmother	193	0	0.0	1.0	0.1	0.0	0.2	0.0	0.0
lvh	169	24	0.0	1.0	0.1	0.0	0.3	0.0	0.0
normalecgqrs	193	0	0.0	1.0	0.6	1.0	0.5	0.0	1.0
lbbb	193	0	0.0	1.0	0.0	0.0	0.2	0.0	0.0
rbbb	193	0	0.0	1.0	0.1	0.0	0.3	0.0	0.0
sr	193	0	0.0	1.0	0.6	1.0	0.5	0.0	1.0
PANEL VIII: Laboratory tests									
hb	192	1	47.0	185.0	107.6	107.5	21.1	91.8	123.0
wbc	192	1	2.9	209.4	10.2	7.6	15.8	6.0	10.5
tsat	94	99	4.0	92.0	20.4	18.0	13.8	11.0	24.8
plts	192	1	51.0	497.0	229.4	217.0	89.5	163.0	284.2
pcv	193	0	0.2	0.6	0.3	0.3	0.1	0.3	0.4
ferritin	71	122	9.0	2223.0	378.2	173.0	533.8	61.5	443.5

Table A.3: Patient characteristics: HFpEF (continued)

Variable	n	\#Na	Min	Max	\bar{x}	\tilde{x}	s	q_{1}	q_{3}
k	189	4	2.4	8.7	4.4	4.4	0.6	4.1	4.7
ironlevels	95	98	2.0	23.0	8.6	7.0	4.8	5.0	11.0
chol	190	3	0.0	1.0	0.5	1.0	0.5	0.0	1.0
ntprobnp	193	0	81.0	7000.0	5047.3	2217.0	8487.4	997.0	5305.0
gfr	193	0	3.0	221.0	54.1	47.0	31.1	32.0	72.0
mcv	193	0	57.0	117.0	88.8	89.0	8.9	85.0	94.0
na	193	0	110.0	148.0	138.2	139.0	4.9	136.0	141.0
		PANEL IX: Echocardiography							
lvef	191	2	50.0	72.5	57.1	57.5	4.5	55.0	60.0
ewave	174	19	0.4	1.6	0.9	0.9	0.3	0.7	1.1
pasp	122	71	14.0	85.0	43.5	42.5	14.2	34.0	51.8
ee	152	41	2.0	37.0	13.4	12.5	5.8	9.0	16.0
mr	193	0	0.0	2.0	0.5	0.0	0.7	0.0	1.0
tr	193	0	0.0	3.0	0.9	1.0	0.8	0.0	1.0
as	193	0	0.0	2.0	0.1	0.0	0.3	0.0	0.0
ai	193	0	0.0	2.0	0.2	0.0	0.5	0.0	0.0
rvfunction	192	1	0.0	4.0	0.6	0.0	1.2	0.0	0.2
af	193	0	0.0	1.0	0.2	0.0	0.4	0.0	0.0
			PANEL X: Outcomes						
timetohfadm	69	124	3.8	718.8	192.5	122.7	197.8	33.0	270.0
hfhospitalisation	193	0	0.0	1.0	0.4	0.0	0.5	0.0	1.0
los	171	22	1.0	372.0	15.8	8.0	31.3	4.0	19.0

Table A.4: Patient characteristics: HFmrEF

Variable ${ }^{\text {i }}$	n	\# Na	Min	Max	\bar{x}	\widetilde{x}	s	q_{1}	q_{3}
PANEL I: Identification									
patientid	182	0	1.0	193.0	96.9	97.5	56.6	47.2	146.5
PANEL II: Demographics									
gender	182	0	0.0	1.0	0.4	0.0	0.5	0.0	1.0
white	182	0	0.0	1.0	0.7	1.0	0.5	0.0	1.0
asian	182	0	0.0	1.0	0.1	0.0	0.3	0.0	0.0
black	182	0	0.0	1.0	0.2	0.0	0.4	0.0	0.0
PANEL III: Admission symptoms									
breathless	55	127	0.0	3.0	2.4	3.0	1.0	2.0	3.0
PANEL IV: Admission signs									
sbp	98	84	86.0	242.0	132.6	126.5	27.7	114.2	147.8
dbp	95	87	45.0	591.0	80.2	72.0	55.7	62.0	85.0
admissionwgt	51	131	21.0	134.9	80.6	80.6	21.8	66.7	96.4
bp	182	0	0.0	1.0	0.7	1.0	0.5	0.0	1.0
bmiadmission	4	178	18.7	36.1	26.0	24.7	8.0	20.2	30.5
pulse	98	84	54.0	144.0	88.8	85.0	21.9	71.2	100.0

Table A.4: Patient characteristics: HFmrEF (continued)

Variable	n	\#Na	Min	Max	\bar{x}	\widetilde{x}	s	q_{1}	q_{3}
PANEL V: Risk factors									
a-fib	182	0	0.0	1.0	0.4	0.0	0.5	0.0	1.0
copdasthma	181	1	0.0	1.0	0.3	0.0	0.5	0.0	1.0
irondef	52	130	0.0	1.0	0.4	0.0	0.5	0.0	1.0
dm	180	2	0.0	1.0	0.4	0.0	0.5	0.0	1.0
obesity	53	129	0.0	1.0	0.5	1.0	0.5	0.0	1.0
ihd	181	1	0.0	1.0	0.5	0.0	0.5	0.0	1.0
PANEL VI: Comorbidities									
comorbidities	182	0	0.0	7.0	3.2	3.0	1.7	2.0	4.0
PANEL VII: Electrocardiography									
ecgqrsduration	77	105	71.0	182.0	104.9	99.0	24.0	88.0	116.0
ecgqrsother	182	0	0.0	1.0	0.1	0.0	0.2	0.0	0.0
ecgrate	88	94	42.0	135.0	86.2	83.5	21.5	72.2	99.2
ecgrhythmother	182	0	0.0	1.0	0.0	0.0	0.1	0.0	0.0
lvh	180	2	0.0	3.0	0.6	0.0	0.8	0.0	1.0
normalecgqrs	182	0	0.0	1.0	0.3	0.0	0.4	0.0	1.0
lbbb	182	0	0.0	1.0	0.0	0.0	0.2	0.0	0.0
rbbb	182	0	0.0	1.0	0.0	0.0	0.2	0.0	0.0
sr	182	0	0.0	1.0	0.0	0.0	0.2	0.0	0.0
PANEL VIII: Laboratory tests									
hb	168	14	54.0	153.0	110.7	111.0	19.9	98.0	125.0
wbc	166	16	1.5	39.2	8.3	7.6	4.2	5.9	9.4
tsat	71	111	1.0	65.0	20.4	19.0	12.5	14.0	25.0
plts	166	16	55.0	638.0	203.8	187.0	92.3	143.2	246.5
pcv	166	16	0.2	0.5	0.3	0.3	0.1	0.3	0.4
ferritin	54	128	17.0	3853.0	370.2	225.0	556.3	102.8	448.0
k	165	17	3.0	6.1	4.4	4.4	0.6	4.0	4.8
ironlevels	70	112	2.0	41.0	9.5	8.0	7.1	5.0	11.0
chol	181	1	0.0	1.0	0.4	0.0	0.5	0.0	1.0
ntprobnp	182	0	5.0	70000.0	9604.4	4063.5	14051.2	1886.5	9968.2
gfr	167	15	3.0	400.0	53.5	47.0	39.8	31.0	68.5
mcv	166	16	65.0	112.0	91.0	92.0	8.4	86.0	96.0
na	168	14	4.7	155.0	137.5	139.0	11.5	136.0	141.0
PANEL IX: Echocardiography									
lvef	182	0	40.0	50.0	44.0	45.0	2.9	42.0	47.5
ewave	139	43	0.3	5.0	0.9	0.9	0.5	0.7	1.0
pasp	72	110	18.0	251520.0	3856.5	40.0	29625.6	32.0	53.2
ee	88	94	3.0	43.0	14.9	13.5	7.3	9.0	19.2
mr	159	23	0.0	3.0	0.8	1.0	0.8	0.0	1.0
tr	157	25	0.0	3.0	0.9	1.0	0.9	0.0	1.0
as	140	42	0.0	2.0	0.2	0.0	0.5	0.0	0.0
ai	151	31	0.0	3.0	0.3	0.0	0.5	0.0	0.0
rvfunction	146	36	0.0	6.0	1.2	0.0	2.0	0.0	1.0
af	182	0	0.0	1.0	0.2	0.0	0.4	0.0	0.0
PANEL X: Outcomes									
timetohfadm	122	60	0.4	575.9	84.5	44.9	109.6	11.9	114.7

Table A.4: Patient characteristics: HFmrEF (continued)

Variable	n	$\# N a$	Min	Max	\bar{x}	\tilde{x}	s	q_{1}	q_{3}
hfhospitalisation	182	0	0.0	1.0	0.2	0.0	0.4	0.0	0.0
los	169	13	1.0	196.0	16.9	9.0	24.2	4.0	19.0

[^9]Table A.5: Baseline characteristics of Hierarchical clustering HFpEF based on post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	89.62 ± 15.25	107.37 ± 15.78	120.22 ± 19.61	$0.000^{* * *}$
pcv	0.28 ± 0.05	0.33 ± 0.05	0.37 ± 0.06	$0.000^{* * *}$
age	$77.07(64.44,81.8)$	$85.45(77.81,88.81)$	$75.27(67.08,82.06)$	$0.000^{* * *}$
ewave	$1.02(0.9,1.2)$	$0.9(0.77,1)$	$0.9(0.7,1)$	$0.000^{* * *}$
gfr	$31(22.75,45)$	$47(38.25,70.75)$	$60(41,84)$	$0.000^{* * *}$
k	$4.45(4.17,4.8)$	$4.2(3.7,4.6)$	$4.4(4.1,4.7)$	0.030^{*}
los	$11(5,21.29)$	$10.5(5,22.18)$	$7(4,20.87)$	0.217
lvef	$57.5(55,60)$	$55.5(52.5,57.5)$	$57.5(55,60)$	0.063
mcv	$87(80.75,92)$	$90(85.25,95)$	$90(86,95.5)$	0.010^{*}
na	$138(134.75,141)$	$139(137,142)$	$139(137,141)$	0.107
ntprobnp	$2745(1622,7647.25)$	$2432(1269.75,5920.5)$	$1417(714.5,3601.5)$	$0.001^{* *}$
plts	$244.5(170,307.25)$	$212(164,247)$	$215(162,286.5)$	0.393
wbc	$7.65(5.37,10.35)$	$7.15(5.72,10.7)$	$8.1(6.45,10.3)$	0.270
Total number of significant baseline char:				53
Continuous:			8	
Categorical:		45		

A.3. Descriptive statistics

Table A.6: Baseline characteristics of K-Means clustering HFpEF based on post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	120.22 ± 19.61	107.37 ± 15.78	89.62 ± 15.25	$0.000^{* * *}$
pcv	0.37 ± 0.06	0.33 ± 0.05	0.28 ± 0.05	$0.000^{* * *}$
age	$75.27(67.08,82.06)$	$85.45(77.81,88.81)$	$77.07(64.44,81.8)$	$0.000^{* * *}$
ewave	$0.9(0.7,1)$	$0.9(0.77,1)$	$1.02(0.9,1.2)$	$0.000^{* * *}$
gfr	$60(41,84)$	$47(38.25,70.75)$	$31(22.75,45)$	$0.000^{* * *}$
k	$4.4(4.1,4.7)$	$4.2(3.7,4.6)$	$4.45(4.17,4.8)$	0.030^{*}
los	$7(4,20.87)$	$10.5(5,22.18)$	$11(5,21.29)$	0.217
lvef	$57.5(55,60)$	$55.5(52.5,57.5)$	$57.5(55,60)$	0.063
mcv	$90(86,95.5)$	$90(85.25,95)$	$87(80.75,92)$	0.010^{*}
na	$139(137,141)$	$139(137,142)$	$138(134.75,141)$	0.107
ntprobnp	$1417(714.5,3601.5)$	$2432(1269.75,5920.5)$	$2745(1622,7647.25)$	$0.001^{* *}$
plts	$215(162,286.5)$	$212(164,247)$	$244.5(170,307.25)$	0.393
wbc	$8.1(6.45,10.3)$	$7.15(5.72,10.7)$	$7.65(5.37,10.35)$	0.270
Total number of significant baseline char:	49			
Continuous:		8		
Categorical:		41		

Table A.7: Baseline characteristics of EM clustering HFpEF based on postdiagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	105.98 ± 17.53	89.37 ± 14.55	118.61 ± 19.42	$0.000^{* * *}$
pcv	0.33 ± 0.05	0.28 ± 0.04	0.37 ± 0.06	$0.000^{* * *}$
age	$85.45(77.81,88.65)$	$75(63.26,80.41)$	$77.03(68.05,82.11)$	$0.000^{* * *}$
ewave	$0.9(0.79,1)$	$1.1(0.9,1.2)$	$0.9(0.7,1)$	$0.000^{* * *}$
gfr	$45.5(38,67.75)$	$31(21.25,45)$	$60(40,84)$	$0.000^{* * *}$
k	$4.2(3.7,4.6)$	$4.4(4.13,4.8)$	$4.5(4.1,4.7)$	0.012^{*}
los	$11(5,22.18)$	$11.5(4.25,21.76)$	$8(4,20.14)$	0.269
lvef	$56.75(52.5,57.5)$	$57.5(55,60)$	$57.5(55,60)$	0.194
mcv	$89.5(85.25,94)$	$87(80.25,92)$	$90(86,97)$	$0.008^{* *}$
na	$139.5(137,142)$	$138(135,141)$	$139(136,141)$	0.102
ntprobnp	$2755(1451.5,6684.25)$	$2745(1566,7993.75)$	$1525(727,3590)$	$0.000^{* * *}$
plts	$212(164,247)$	$235.5(170,309.75)$	$219(163,284)$	0.402
wbc	$7.15(5.8,10.77)$	$7.55(5.42,10.17)$	$7.9(6.4,10.3)$	0.506
Total number of significant baseline char:	56			
Continuous:		8		
Categorical:		48		

Table A.8: Baseline characteristics of Hierarchical clustering HFmrEF based on post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	91.01 ± 14.72	109.11 ± 16.81	123.79 ± 12.89	$0.000^{* * *}$
k	4.58 ± 0.66	4.51 ± 0.58	4.18 ± 0.48	$0.000^{* * *}$
pcv	0.28 ± 0.04	0.34 ± 0.05	0.38 ± 0.04	$0.000^{* * *}$
age	$71.53(65.87,82.74)$	$77.15(70.09,82.04)$	$79.19(68.12,82.9)$	0.455
ewave	$0.8(0.7,1)$	$0.96(0.8,1.14)$	$0.83(0.67,0.96)$	$0.003^{* *}$
gfr	$49.98(22,77)$	$43(30,55)$	$62(44.5,77.25)$	$0.000^{* * *}$
los	$17(10,36)$	$12(4,21.48)$	$7(3,14.25)$	$0.000^{* * *}$
lvef	$45(42,47.5)$	$45(42,47.5)$	$42.75(42.5,45)$	0.344
mcv	$91(87,96)$	$90(85,95)$	$93(88,97)$	0.159
na	$138(135,141)$	$139(135,141)$	$139(137.02,142)$	0.049^{*}
ntprobnp	$6598(2857,27818)$	$4953(1861,10914)$	$2898.5(1587.75,5163.5)$	$0.005^{* *}$
plts	$210(147,285)$	$204(153,250)$	$174.74(149.5,215.75)$	0.107
wbc	$8.2(6.3,9.6)$	$8.3(6.9,9.8)$	$7.31(5.7,8.6)$	0.025
Total number of significant baseline char:	53			
Continuous:		8		
Categorical:		45		

Table A.9: Baseline characteristics of K-Means clustering HFmrEF based on post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	91.01 ± 14.72	109.11 ± 16.81	123.79 ± 12.89	$0.000^{* * *}$
k	4.58 ± 0.66	4.51 ± 0.58	4.18 ± 0.48	$0.000^{* * *}$
pcv	0.28 ± 0.04	0.34 ± 0.05	0.38 ± 0.04	$0.000^{* * *}$
age	$71.53(65.87,82.74)$	$77.15(70.09,82.04)$	$79.19(68.12,82.9)$	0.455
ewave	$0.8(0.7,1)$	$0.96(0.8,1.14)$	$0.83(0.67,0.96)$	$0.003^{* *}$
gfr	$49.98(22,77)$	$43(30,55)$	$62(44.5,77.25)$	$0.000^{* * *}$
los	$17(10,36)$	$12(4,21.48)$	$7(3,14.25)$	$0.000^{* * *}$
lvef	$45(42,47.5)$	$45(42,47.5)$	$42.75(42.5,45)$	0.344
mcv	$91(87,96)$	$90(85,95)$	$93(88,97)$	0.159
na	$138(135,141)$	$139(135,141)$	$139(137.02,142)$	0.049^{*}
ntprobnp	$6598(2857,27818)$	$4953(1861,10914)$	$2898.5(1587.75,5163.5)$	$0.005^{* *}$
plts	$210(147,285)$	$204(153,250)$	$174.74(149.5,215.75)$	0.107
wbc	$8.2(6.3,9.6)$	$8.3(6.9,9.8)$	$7.31(5.7,8.6)$	0.025
Total number of significant baseline char:		53		
Continuous:			8	
Categorical:		45		

A.3. Descriptive statistics

Table A.10: Baseline characteristics of EM clustering HFmrEF based on post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	83.17 ± 14.19	105.83 ± 17.56	120.8 ± 14.91	$0.000^{* * *}$
k	4.65 ± 0.84	4.53 ± 0.57	4.22 ± 0.51	$0.001^{* *}$
pcv	0.26 ± 0.04	0.33 ± 0.05	0.37 ± 0.04	$0.000^{* * *}$
age	$68.63(41.33,74.15)$	$76.91(69.62,82.01)$	$80.97(68.7,83.32)$	0.031
ewave	$0.88(0.7,1.01)$	$0.94(0.79,1.12)$	$0.82(0.67,0.95)$	$0.009^{* *}$
gfr	$27(13.75,82.25)$	$42.5(27.5,58)$	$61(45.75,76.25)$	$0.000^{* * *}$
los	$27.5(13.75,62)$	$12.5(5,21)$	$8(3,16.5)$	$0.006^{* *}$
lvef	$45(42,45.62)$	$45(42,47.5)$	$43(42.5,45)$	0.517
mcv	$91.5(86,96)$	$89.94(85.06,94)$	$93(89,97)$	0.027^{*}
na	$136.5(133.75,141)$	$139(135.25,141)$	$139(137,142)$	0.175
ntprobnp	$19446.5(4178.5,59423.25)$	$5640.5(1953.25,11400.75)$	$2898.5(1636,5163.5)$	$0.001^{* *}$
plts	$155(117,236.25)$	$205.36(157.25,256)$	$177.5(147,224)$	0.081
wbc	$6.55(5.6,7.77)$	$8.4(7.1,10.3)$	$7.25(5.7,8.8)$	$0.001^{* *}$
Total number of significant baseline char:	44			
Continuous:		9		
Categorical:		35		

Table A.11: Baseline characteristics of Hierarchical clustering HFpEF without post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	87.94 ± 13.31	110.91 ± 17.01	117.31 ± 20.34	$0.000^{* * *}$
pcv	0.28 ± 0.04	0.34 ± 0.05	0.37 ± 0.06	$0.000^{* * *}$
age	$75(64.94,81.79)$	$84.31(77.36,88.63)$	$74.08(65.25,82.89)$	$0.000^{* * *}$
ewave	$1.1(0.92,1.27)$	$0.9(0.7,1)$	$0.94(0.7,1.1)$	$0.000^{* * *}$
gfr	$29(20.5,44.25)$	$47(38,68)$	$55.5(40.25,83.75)$	$0.000^{* * *}$
k	$4.44(4.1,4.8)$	$4.2(3.7,4.5)$	$4.45(3.92,4.78)$	$0.008^{* *}$
los	$12(5,22.19)$	$10(4,23.83)$	$8(4,20.76)$	0.246
lvef	$55(52.5,58.12)$	$57.5(55,60)$	$57.5(55,60)$	0.203
mcv	$87(79.25,92)$	$89(85,94)$	$90.5(85.25,96)$	0.039
na	$137.5(134.75,141)$	$140(137,142)$	$139.5(137,141)$	0.024^{*}
ntprobnp	$3852(1879.5,9806.75)$	$1995(934,5573)$	$1653.5(870.25,3760.75)$	$0.000^{* * *}$
plts	$226(162,303.75)$	$210(170,251.5)$	$217(160.25,296.5)$	0.889
wbc	$7.75(5.7,9.92)$	$7.2(5.55,10.55)$	$8.1(6.63,11.13)$	0.121
Total number of significant baseline char:		48		
Continuous:		8		
Categorical:		40		

A.3. Descriptive statistics

Table A.12: Baseline characteristics of K-Means clustering HFpEF without post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	117.31 ± 20.34	87.94 ± 13.31	110.91 ± 17.01	$0.000^{* * *}$
pcv	0.37 ± 0.06	0.28 ± 0.04	0.34 ± 0.05	$0.000^{* * *}$
age	$74.08(65.25,82.89)$	$75(64.94,81.79)$	$84.31(77.36,88.63)$	$0.000^{* * *}$
ewave	$0.94(0.7,1.1)$	$1.1(0.92,1.27)$	$0.9(0.7,1)$	$0.000^{* * *}$
gfr	$55.5(40.25,83.75)$	$29(20.5,44.25)$	$47(38,68)$	$0.000^{* * *}$
k	$4.45(3.92,4.78)$	$4.44(4.1,4.8)$	$4.2(3.7,4.5)$	$0.008^{* *}$
los	$8(4,20.76)$	$12(5,22.19)$	$10(4,23.83)$	0.246
lvef	$57.5(55,60)$	$55(52.5,58.12)$	$57.5(55,60)$	0.203
mcv	$90.5(85.25,96)$	$87(79.25,92)$	$89(85,94)$	0.039
na	$139.5(137,141)$	$137.5(134.75,141)$	$140(137,142)$	0.024^{*}
ntprobnp	$1653.5(870.25,3760.75)$	$3852(1879.5,9806.75)$	$1995(934,5573)$	$0.000^{* * *}$
plts	$217(160.25,296.5)$	$226(162,303.75)$	$210(170,251.5)$	0.889
wbc	$8.1(6.63,11.13)$	$7.75(5.7,9.92)$	$7.2(5.55,10.55)$	0.121
Total number of significant baseline char:	48			
Continuous:			8	
Categorical:		40		

Table A.13: Baseline characteristics of EM clustering HFpEF without postdiagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	106.38 ± 16.53	84.31 ± 14.29	109.8 ± 21.75	$0.000^{* * *}$
pcv	0.33 ± 0.05	0.27 ± 0.04	0.34 ± 0.07	$0.000^{* * *}$
age	$84.69(76.93,88.61)$	$71.3(60.76,82.33)$	$77.79(68.05,84.04)$	$0.001^{* *}$
ewave	$0.9(0.68,1)$	$1.1(0.96,1.2)$	$0.98(0.8,1.1)$	$0.007^{* *}$
gfr	$44(36.5,56.5)$	$26.5(10,38.5)$	$48(31,73)$	$0.000^{* * *}$
k	$4.1(3.7,4.5)$	$4.4(4.17,4.75)$	$4.4(4.1,4.7)$	0.024^{*}
los	$10(4,21.54)$	$8.5(4,16.5)$	$10(5,22.08)$	0.652
lvef	$57.5(54.38,60.62)$	$57.5(54.38,60.62)$	$57.5(52.5,60)$	0.357
mcv	$89(85,93.25)$	$89(83,93.25)$	$89(84,95)$	0.914
na	$140(137,142)$	$137(134,141.25)$	$139(136,141)$	0.233
ntprobnp	$2191.5(1048,5046.25)$	$4114.5(1707,10007.75)$	$2184(976,4895)$	0.098
plts	$206.5(163.75,243.75)$	$206.5(154,296.75)$	$221(163,301)$	0.494
wbc	$7.1(5.5,9.35)$	$7.05(4.75,9.1)$	$8.1(6.4,10.9)$	0.045^{*}
Total number of significant baseline char:	42			
Continuous:			6	
Categorical:		36		

Table A.14: Baseline characteristics of Hierarchical clustering HFmrEF without post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	89.5 ± 14.24	122.31 ± 13.84	113.5 ± 15.95	$0.000^{* * *}$
k	4.55 ± 0.66	4.32 ± 0.49	4.46 ± 0.61	0.114
age	$72.08(67.43,82.83)$	$81.14(74.51,85.01)$	$77.02(67.73,81.93)$	$0.006^{* *}$
ewave	$0.8(0.7,1)$	$0.82(0.62,0.99)$	$0.9(0.8,1.05)$	0.026^{*}
gfr	$41(21.75,76.25)$	$64(47,82.5)$	$44(31,60.86)$	$0.000^{* * *}$
los	$15.5(8.75,34.5)$	$9(4,24)$	$9(3,18)$	$0.003^{* *}$
lvef	$45(41.61,47.5)$	$45(42.5,47.5)$	$42.5(40,47.5)$	$0.001^{* * *}$
mcv	$91(86,96.25)$	$93(88.71,96)$	$90(86.75,94)$	0.136
na	$138(134.75,141)$	$139(136,141)$	$139(136.92,141)$	0.663
ntprobnp	$8937.5(3303.5,26619.5)$	$2898.5(1440.75,5004.5)$	$3817.5(1647.25,10311.75)$	$0.000^{* * *}$
pcv	$0.28(0.26,0.31)$	$0.38(0.35,0.4)$	$0.36(0.33,0.38)$	$0.000^{* * *}$
plts	$210.5(151.5,285.5)$	$193(148.5,231.5)$	$191.27(153.75,226.5)$	0.466
wbc	$8.65(6.25,12.45)$	$7.45(6.07,9.22)$	$8.3(5.87,11.15)$	0.375
Total number of significant baseline char:	51			
Continuous:			8	
Categorical:		43		

Table A.15: Baseline characteristics of K-Means clustering HFmrEF without post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	121.6 ± 14.29	114.24 ± 15.78	90.02 ± 14.5	$0.000^{* * *}$
k	4.32 ± 0.48	4.47 ± 0.62	4.54 ± 0.65	0.106
age	$81.23(75.02,85.37)$	$77.02(67.73,81.84)$	$72.08(66.39,82.08)$	$0.002^{* *}$
ewave	$0.82(0.63,1)$	$0.9(0.8,1.05)$	$0.8(0.71,1)$	0.045^{*}
gfr	$64(46.75,81.5)$	$44(31,59.35)$	$44(22.25,76)$	$0.000^{* * *}$
los	$9(4,24)$	$8.5(3,16.25)$	$16.5(9.25,35.5)$	$0.000^{* * *}$
lvef	$45(42.5,47.5)$	$42.5(40,47.5)$	$45(42,47.5)$	$0.001^{* *}$
mcv	$93(88.9,96)$	$89.88(85.75,94)$	$91(86.25,96)$	0.105
na	$139(136,141)$	$139(136.66,141)$	$138(135,141)$	0.804
ntprobnp	$2898.5(1526.25,4967.5)$	$3817.5(1647.25,10807.75)$	$8656(3176.5,25270.5)$	$0.001^{* *}$
pcv	$0.38(0.34,0.4)$	$0.36(0.33,0.39)$	$0.28(0.26,0.31)$	$0.000^{* * *}$
plts	$193(147,232.5)$	$193.67(153.75,226.5)$	$209(153.25,284.75)$	0.598
wbc	$7.55(6.22,9.32)$	$8.3(5.87,11.35)$	$8.5(6.15,12.18)$	0.451
Total number of significant baseline char:		53		
Continuous:			8	
Categorical:		45		

A.3. Descriptive statistics

Table A.16: Baseline characteristics of EM clustering HFmrEF without post-diagnosis

	Cluster1	Cluster2	Cluster3	p-value
hb	81.25 ± 12.6	117.97 ± 16.32	106.63 ± 16.19	$0.000^{* * *}$
k	4.77 ± 0.69	4.31 ± 0.53	4.59 ± 0.6	$0.001^{* *}$
age	$71.4(59.57,76.83)$	$80.88(72.81,84.45)$	$73.36(60.94,78.65)$	$0.000^{* * *}$
ewave	$0.8(0.7,1)$	$0.9(0.7,1)$	$0.9(0.75,1.06)$	0.192
gfr	$21(9.5,77.5)$	$59(42,76)$	$38(25.5,58)$	$0.000^{* * *}$
los	$16.5(12.75,51)$	$9(5,20.5)$	$11(3,21)$	0.036^{*}
lvef	$45(41.5,45.62)$	$45(42.5,47.5)$	$42.5(40,45)$	$0.006^{* *}$
mcv	$89.5(83,93)$	$93(88.16,96.5)$	$89.34(85,94)$	0.023^{*}
na	$138(134.75,141)$	$139(136,141)$	$139(135.79,141)$	0.840
ntprobnp	$6880(2886.25,40414.75)$	$3405(1760,7809)$	$4396(1515,10597)$	0.177
pcv	$0.26(0.23,0.28)$	$0.37(0.33,0.39)$	$0.34(0.3,0.36)$	$0.000^{* * *}$
plts	$204(145,267)$	$193(153,239)$	$194.8(141,234.4)$	0.923
wbc	$6.55(5.2,8.95)$	$8.2(6.2,10.45)$	$8.2(6.05,10.85)$	0.293
Total number of significant baseline char:		42		
Continuous:		8		
Categorical:		34		

A. 4 Relevant plots

Figure A.1: Missing values in HFpEF data set. Top: the amount of missing values in each variable sorted in ascending order. Bottom: plot of the combinations of missing (red) and non-missing (blue) values in the HFpEF data set.

Figure A.2: Missing values in HFmrEF data set. Top: the amount of missing values in each variable sorted in ascending order. Bottom: plot of the combinations of missing (red) and non-missing (blue) values in the HFmrEF data set.

Figure A.3: Results of Binary clustering problem

A.4. Relevant plots

Figure A.4: Clustering results of HFpEF with Post-Diagnosis

Figure A.5: Clustering results of HFmrEF with Post-Diagnosis

A.4. Relevant plots

Figure A.6: Clustering results of HFpEF without Post-Diagnosis

Figure A.7: Clustering results of HFmrEF without Post-Diagnosis

Appendix B

Source code

The following appendix presents all the relevant R-code used in this thesis. We have organized the chapter in accordance with the various steps in the machine learning procedure adopted in this thesis, see Figure (3.1). We have tried to comment as much of the source code in order to ensure that an eventual re-examination of the results can be as easy as possible. Inquires about the code can be forwarded to the author on request.

B. 1 Packages

```
# - #
# Function for sourcing package info
# - #
source_lines <- function(file, lines){
    source(textConnection(readLines(file, warn = F)[lines]))
}
7
# —
# Extract all package installed in all files
# - #
packages <- c()
files <- c("utilities.R", "desc_stat.R", "pre_process.R",
    "clustering.R", "classification.R",
    "../raw_data/consolidation.R")
for (file in files){
    source_lines(file, 1:10)
    packages <- c(packages, Packages)
```

```
}
# - #
# Extract title, version and author information
# - #
title <- c(); version <- c()
for (package in packages){
    title <- c(title, packageDescription(package)$Title)
    version <- c(version, packageDescription(package)$Version)
}
# —
# Build LaTex table with all the package info
# - #
packagesUsed <- as.data.frame(matrix(c(packages, title,
    version),ncol = 3))
colnames(packagesUsed) <- c("Package", "Title", "Version")
packagesUsed <- unique(packagesUsed [packagesUsed $Package,])
packagesUsed <- packagesUsed [order(packagesUsed$Package),]
rownames(packagesUsed) <- 1:nrow(packagesUsed)
print(xtable(packagesUsed), include.rownames=FALSE)
# #
```


B. 2 Utilities

```
# - #
# Install packages (if not already installed)
# - #
Packages <- c("docstring", "plotrix", "FactoMineR",
    "factoextra", "gridExtra", "NbClust",
    "ggpubr", "mclust", "CBCgrps")
# install.packages(Packages)
# - #
# Load package for docstring
# -
lapply(Packages, library, character.only = TRUE)
# - #
# Helper function used in this thesis
# -
if.not.class <- function(var, class){
    #' Utility function for error messages
    #'
```

```
    #' @description Utility function for error messages given
    #' wrong input class as function argument.
    if (!any(class(var) %in% class)){
        stop(paste("first argument must be of class(es) ",
            class, "!", sep = ""))
    }
}
# - #
make.na <- function(data){
    #' Converts all the NaN in a matrix to NA
    #'
    #' @description This function returns a matrix in which all
    #' the NaN values are replaced with NA values. Note! NaN
    #' ("not a number") is not the R syntax for missing values.
    #' The correct syntax is NA (" not available").
    #'
    #' @param data matrix. Matrix containing NaN values
    data[is.nan(data)] <- NA
    return(data)
# - #
summary.missing <- function(data){
    #' Summary of the missing values in a dataset
    #'
    #' @description This function returns a list with the total
    #' number of na values and the total percentage in the entire
    #' dataset, including the percentage of missing values for
    #' all variables (columns) and the relative percentage of
    #' missing values to the total (both as vectors).
    #'
    #' @param data matrix. Matrix containing missing values
    num.na <- sum(is.na(data))
    tot.pmv <- num.na/prod(dim(data))
    num.na.vec <- apply(data, 2, function(col) sum(is.na(col)))
    pmv.vec <- num.na.vec / prod(dim(data))
    rel.pmv.vec <- num.na.vec / num.na
    rel.pmv.v <- num.na.vec / dim(data)[1]
    outp<- list(num.na, tot.pmv, num.na.vec, pmv.vec,
        rel.pmv.vec, rel.pmv.v)
```

\}
,

```
    names(outp) <- c("num.na", "tot.pmv", "num.na.vec",
                "pmv.vec", "rel.pmv.vec", "rel.pmv.v")
    return(outp)
}
*
#
summary.zeros <- function(data) {
    #' Summary of the zero values in a dataset
    #'
    #' @description The function returns a list with the
    #' percentage of zero values for all variables in a dataset,
    #' including the total number of zero values and the total
    #' percentage and the relative percentage of zero values
    #' to the total.
    #'
    #' @param data matrix. Matrix containing zero values
    num.zeros <- sum(colSums(data == 0, na.rm = T))
    tot.pzv <- num. zeros / prod(dim(data))
    num.zeros.vec <- colSums(data = 0, na.rm = T)
    pzv.vec <- num.zeros.vec / nrow(data)
    rel.pzv.vec <- num.zeros.vec / num.zeros
    outp <- list(num.zeros, tot.pzv, num.zeros.vec, pzv.vec,
                        rel.pzv.vec)
    names(outp) <- c("num.zeros", "tot.pzv", "num.zeros.vec",
                            "pzv.vec", "rel.pzv.vec")
    return(outp)
}
# - #
rm.indicator <- function(data, n.uniq){
    #' Removes indicator variable columns from a dataset based on
    #' predefined number of unique element in that column
    #'
    #' @description This function return a matrix without
    #' indicator variable columns. A indicator variable column is
    #' defined as a column containing less that a predefined
    #' number of unique elements (n.uniq)
    #'
    #' @param data matrix. Matrix containing indicator variables
    #' @param n.uniq integer. Number of unique element in a
    #' column needed for that column to be defined as a indicator
    #' variable column.
```

```
    non.indicator <- data[, apply(data, 2, function(col)
        length(unique(col)) > n.uniq)]
    ind.var.idx <- !(colnames(data) %in% colnames(non.indicator))
    indicator <- data[, ind.var.idx]
    outp <- list(non.indicator, indicator)
    names(outp) <- c("non.indicator", "indicator")
    return(outp)
# -_ #
rm.missing <- function(data, cut.off = 0.8, near.zero.var = T){
    #' Remove variables with near zero variance or more missing
    #' values than a percentage threshold.
    #'
    #' @description This function removes all variables in a
    #' matrix or dataframe with suspected of having near zero
    #' variance or more missing values than a given percentage
    #' threshold.
    #'
    #' @param data matrix. Matrix like object
    #' @param cut.off integer. Percentage threshold for missing
    #' values.
    #' @param near.zero.var logical. Boolean indicating if
    #' criteria for near zero variance is to be used.
    if (near.zero.var){
        near.zero <- nearZeroVar(data)
        if (length(near.zero) != 0){
            data <- data[, -near.zero]
        }
    }
    miss.col <- summary.missing(data)$rel.pmv.v
    miss.cut <- miss.col < cut.off
    data <- data[, miss.cut]
    return(data)
}
# - #
zero.to.na <- function(data, except=NULL){
    #' Convert zero datapoints to na in a dataset.
    #'
#' @description This function converts all the zero datapoints
#' in a dataset into na. One can also supply a vector of
#' columnames (except) corresponding to variables that this
```

\}
147

```
#' function should not be applied on.
#'
#' @param data matrix. Matrix containing zero datapoints
#' @param except character vector. Names of matrix column not
#' to apply function on.
exp.idx <- colnames(data) %in% except
exp.data <- data[, exp.idx]; not.exp.data <- data[, !exp.idx]
not.exp.data[not.exp.data = 0] <- NA
data <- cbind(not.exp.data, exp.data)
return(data)
}
# - #
move.columns <- function(from.mat, to.mat, column.name){
#' Move one column from one matric to another.
#'
#' @description This function moves one column with name
#' column.name from matrix called from.mat to matrix called
#' to.mat.
#'
#' @param from.mat matrix. Matrix to move column from
#' @param to.mat matrix. Matrix to move column to
#' @param column.name character. Name of column to be moved
    to.mat <- cbind(to.mat,from.mat[, colnames(from.mat) =
                                    column.name])
    colnames(to.mat)[ncol(to.mat)]<- column.name
    from.mat <- from.mat[, colnames(from.mat) != column.name]
    outp <- list(from.mat, to.mat)
    names(outp) <- c("from.mat","to.mat")
    return(outp)
}
# - #
sort.column.names <- function(data, id.col = T){
    #' Sorts columns from data
    #'
    #' @description This function sorts the columns names of an
    #' matrix like object.
    #'
    #' @param data matrix. Matrix with columns names
    #' @id.col boolean. Logical indicating if data contains
    #' an id column.
    if(id.col){
```

```
        id <- data[, 1]
        data <- data[, - 1]
        data <- cbind(id, data[, sort(colnames(data))])
        }else{
            data <- data[,sort(colnames(data))]
        }
        return(data)
}
# - #
split.matrix <- function(data){
    #' Split matrix in two parts.
    #'
    #' @description This function splits a matrix into two parts.
    #' Both halfs can be accessed by the user as an output.
    #'
    #' @param data matrix. Matrix like object
    #'
    #' @note The function assumes that the input matrix has more
    #' than one column.
    if (ncol(data)==1){
        stop("data must have more than one column!")
    }
    mid <- trunc(ncol(data)/2); end <- ncol(data)
    first.half <- data[, 1:mid]
    second.half <- data[, (mid+1): end]
    outp <- list(first.half, second.half)
    names(outp) <- c("first.half", "second.half")
    return(outp)
}
# -
data.bounds <- function(data, lower.bound, upper.bound){
    #' Generate an Amelia compatible bound matrix
    #'
    #' @description This function produces a three column matrix
    #' to hold logical bounds on the imputations done in Amelia
    #' Il. Each row of the matrix is of the form c(column.number,
    #' lower.bound,upper.bound).
    #'
    #' @param data matrix. Matrix like object
    #' @param lower.bound numeric.
    #' @param upper.bound numeric.
```

```
    len <- ncol(data); column.number <- seq(1, len)
    lower <- rep(lower.bound, len)
    upper <- rep(upper.bound, len)
    outp <- cbind(column.number, lower, upper)
    return(outp)
}
# -
boot.em.impute <- function(data, bounds, n.boot = 30){
    #' Impute data using a mean collapsing bootstrapped EM
    #' algorithm.
    #'
    #' @description This function imputes a data matrix using the
    #' bootstrapped EM algorihm from the Amalie ll package. The
    #' algorithm creates n.boot number of bootstrapped datasets
    #' after which the datasets are collapsed into one dataset
    #' using the mean of all imputted values as final estimate
    #' of the given missing value.
    #'
    #' @param data matrix. Matrix like object
    #' @param bounds matrix. Three column matrix of the form
    #' c(column.number, lower.bound,upper.bound).
    #' @param n.boot numeric. Number of bootstrapped datasets
    #' to create.
    data.em = list()
    for (i in 1:n.boot){
        print(paste("Bootstrap: ", i, " (", i/n.boot*100," %)",
                sep=" "))
        data.em[[i]] <- amelia(data, m=1, p2s = 0,
                                    bounds = bounds)$imputations$imp1
    }
    return(Reduce("+", data.em) / n.boot)
}
#- #
top.n.missing <- function(data, n, decreasing=T){
    #' Summary of top n missing variables in data set.
    #'
    #' @description This function produces a summary table of the
    #' top n missing variables in an inputed dataset.
    #'
    #' @param data matrix. Matrix like object
    #' @param n integer. Top n highest missing variables
    #' @param decreasing logical. Logical argument indicating
```

```
#' wheater values should be sorted in decreasing order.
missing <- summary.missing(data)
count <- missing$num.na.vec
if (sum(count)=0){
    stop("no missing values!")
}
perc <- missing$pmv.vec
relp <- missing$rel.pmv.vec
relv <- missing$rel.pmv.v
outp <- apply(as.matrix(cbind(count, perc, relp, relv)), 2,
                sort, decreasing)[1:n,]
grand.tot <- c(missing$num.na, missing$tot.pmv, sum(relp),
                NA)
outp <- rbind(grand.tot, outp)
colnames(outp) <- c("#Na", "%N", "%Na", "%V")
return(outp)
# _ #
label.summary <- function(labels, label.col, col.names, digits,
                                    sort.col, ignore.id.col = T,
                                    decr = T){
#' Summary of class labels in data set
#'
#' @description The function returns a table with the number
#' unique labels in a labels matrix and the percentage of
#' all the labels that occure.
#'
#' @param labels matrix. Matrix like object of characters
#' @param label.col integer. Column number of primary labels
#' @param col.names charachter vector. Vector of column
#' names
#' @param digits integer. Integer indicating the number of
#' decimal places to be used.
#' @param sort.col integer. Column number to sort
#' @param ignore.id.col logical. Boolean indicating whether
#' first column of id numbers should be ignored.
#' @param decr logical. Boolean indicating if values in
#' sort.col should be sorted in decreasing order.
uniq <- unique(if(ignore.id.col){
    labels[order(labels[, label.col]), -1]} else{labels})
tabl<- table(labels[, label.col])
perc <- round(tabl/sum(tabl), digits)
```

\}

```
    outp <- cbind(uniq, tabl, perc)
    colnames(outp) <- col.names
    return(outp[order(outp[, sort.col], decreasing = decr),])
}
# -
little.mcar <- function(data){
    #' Little's test to assess for missing completely at
    #' random.
    #'
    #' @description This function uses Little's test (from
    #' BaylorEdPsych package) to assess for missing completely at
    #' random for multivariate data with missing values. It
    #' return the chi.squared test statistics, df and p.value.
    #'
    #' @param data matrix like object. Matrix or data frame with
    #' values that are missing.
    #'
    #' @note This function cannot accept data with more than 50
    #' variables, and may in some cases take long time to
    #' complete.
    | <- LittleMCAR(data[, summary.missing(data)$num.na.vec > 0])
    outp <- c(dim(data)[2],I$missing.patterns, I$chi.square,
                I$df, I$p.value)
    names(outp) <- c("n var","missing.patterns", "chi.square", "
        df",
                        "p.value")
    outp[1:2] <- round(outp[1:2])
    return(outp)
}
#-_ #
pca.var.plot <- function(pca, n.comp=NA, digits=4, title = NA){
    #' Plot the explained and cumulative variance from a
    #' principal component analysis (PCA).
    #'
    #' @description This function produces a plot of the
    #' explained and cumulative variance extracted from a
    #' principal component analysis.
    #'
    #' @param pca princomp object.
    #' @param n.comp integer. Number of components to be plotted
    #' @param digits integer. Integer indicating the number of
    #' decimal places to be used.
```

```
    #' @param title character. Name of title.
    if.not.class(pca, "princomp")
    sd <- pca$sdev
    n<- 1:ifelse(is.na(n.comp), length(sd), n.comp)
    vr<- (sd^2/sum(sd^2))[n]
    cm <- cumsum(vr)
    colfunc <- colorRampPalette(c("lightblue","blue"))
    twoord.plot(n, vr, n, cm, type = c("bar", "s"),
        lcol = colfunc(length(n)), main = title,
        cex.axis = 0.5); grid()
    lines(vr); points(vr, pch = 20)
    leg <- c(paste("Number comp:", length(n)),
        paste("Cum.variance:", round(sum(vr),digits)))
    legend("top", legend = leg, bty = "n")
# -
pca.cluster.plot <- function(pca, ncp, km.clust = 2,
            hc.clust = -1, em.clust = 2,
            digits = 5, ellipse = T,
            actual = NA, fcp=1, scp = 2,
            ellipse.type = "convex",
                        ggtheme = theme_gray(),
            return.clust=F){
    #' Side-by-side cluster plots with Hierarchical Clustering,
    #' kMeans and EM clustering on principal components.
    #'
    #' @description This function runs Hierarchical, kMeans and
    #' EM clustering on a predefined number of principal
    #' components. The results are scatterplots with the
    #' results from the clustering.
    #'
    #' @param pca princomp object.
    #' @param ncp numeric. Number of principal components
    #' @param km.clust numeric. Number of clusters to be used
    #' in the kMeans algorithm.
    #' @param hc.clust numeric. Number of clusters to be used
    #' in the Hierarchical clustering.
    #' @param em.clust numeric. Number of clusters to be used
    #' in the expectation maximization algorithm.
    #' @param digits numeric. Number of decimal places for
    #' cumulative variance in plot title.
    #' @param ellipse logical value. Boolean indicating if
    #' ellipse around clusters should be drawn.
```

\}

```
#' @param ellipse.type. Type of ellipse to be drawn.
#' See ggscatter for more information.
#' @param ggtheme. function, ggplot2 theme name.
#' @param return.clust. logical. Boolean indicating wheather
#' one want to return the cluster partioning.
if.not.class(pca, "princomp")
data <- as.data.frame(pca$scores[,1:ncp])
sdev <- pca$sdev
rdev <- sdev`2 / sum(sdev`2)
cdev <- cumsum(rdev)
subt <- paste("Cum.variance: ",round(cdev[ncp], digits))
hc.title <- labs(title=paste("Hierarchical Clustering"),
    subtitle= subt)
km.title <- labs(title = paste("kMeans (k=", km.clust,
    ") Clustering", sep = ""),subtitle = subt)
em.title <- labs(title = paste("EM Clustering"),
            subtitle = subt)
xlab <- paste("Dim", fcp, "(",
    round((rdev[fcp])*100, 2),
    "%)", sep = "")
ylab <- paste("Dim", scp," (",
    round((rdev[scp])*100, 2),"%)",
    sep = "")
hc.cluster <- HCPC(data, nb.clust = hc.clust,
    graph = F)$data.clust $clust
km.cluster <- as.factor(kmeans(data, km.clust)$cluster)
em.cluster <- as.factor(Mclust(data[,1:ncp],
                                    em.clust)$classification)
if (all(is.na(actual))){
    data <- cbind(data[, fcp:scp], hc.cluster, km.cluster,
    em.cluster)
}else{
    actual <- as.factor(actual)
    data <- cbind(data[, fcp:scp], hc.cluster, km.cluster,
                            em.cluster,
                            actual)
}
hc <- ggscatter(data, paste("Comp.", fcp, sep=""),
    paste("Comp.", scp, sep=""),
    color = "hc.cluster",ylab=ylab, xlab=xlab,
    shape = "hc.cluster", ellipse = ellipse,
    ellipse.type = ellipse.type,
    ggtheme = ggtheme, mean. point = T,
    label = seq(nrow(data))) + hc.title
```

```
    km <- ggscatter(data, paste("Comp.", fcp, sep=""),
    paste("Comp." , scp, sep=""),
    color = "km.cluster", ylab=ylab, xlab=xlab,
    shape = "km.cluster", ellipse = ellipse,
    ellipse.type = ellipse.type,
    ggtheme = ggtheme, mean. point = T,
    label = seq(nrow(data))) + km.title
    em <- ggscatter(data, paste("Comp.", fcp, sep=""),
    paste("Comp.", scp, sep=""),
    color = "em.cluster",ylab=ylab, xlab=xlab,
    shape = "em.cluster", ellipse = ellipse,
    ellipse.type = ellipse.type,
    ggtheme = ggtheme, mean. point = T,
    label = seq(nrow(data))) + em.title
    if (all(is.na(actual))){
        grid.arrange(hc, km, em, nrow = 2)
    }else{
        act <- ggscatter(data, paste("Comp.", fcp, sep=""),
            paste("Comp.", scp, sep=""),
            color = "actual", shape = "actual",
                        ellipse = ellipse,
                        ellipse.type = ellipse.type,
                        ggtheme = ggtheme,
                            label = seq(nrow(data)),ylab=hc$labels$y,
                            xlab = hc$labels$x) +
        labs(title = "Actual Clustering", subtitle ="")
        grid.arrange(act, hc, km, em, nrow = 2)
    }
        if (return.clust){
            clust.list <- list(as.numeric(actual),
                    as.numeric(hc.cluster),
                    as.numeric(km.cluster),
                    as.numeric(em.cluster))
        names(clust.list) <- c("ACT", "HC", "KMC", "EMC")
        return(clust.list)
    }
}
# -
compare.baseline <- function(data, grp, alpha=0.05){
    #' Compare baseline characteristics between two groups.
    #'
    #' @description This function compares the baseline charact-
    #' eristics between two sample groups using an automated
    #' process for determining the distribution of continious
```

```
#' variabels and the appropriate tests. The Wilcoxon rank
#' sum test is applied for categorical variables.
#' @param data matrix like object. Matrix or data frame.
#' @param grp. group variable
#'
#' @references Zhang Z. Univariate description and bivariate
#' statistical inference: the first step delving into data.
#' Ann Transl Med. 2016 Mar;4(5):91.
    if (length(unique(data[, grp]))>2){
        grp.table <- multigrps(data, grp, sim=T)$table
    }else{
        grp.table <- twogrps(data, grp, sim=T)$table
    }
    grp.list <- list(sum(grp.table[, ncol(grp.table)]<alpha),
        grp.table)
    return(grp.list)
534 # #
```

\}
533

B. 3 Descriptive statistics

```
# —
# Install relevant packages (if not already done)
# -
Packages <- c("reporttools", "VIM", "Hmisc", "xtable",
    "tikzDevice")
# install.packages(Packages)
# - #
# Load relevant packages and source helper functions
#-
lapply(Packages, library, character.only = T)
source(" - helper_func.R")
# - #
# Load HFpEF and HFmrEF datafiles
# - #
path <- "data_files/"; r <- ".Rdat"
fileNames <- c("HFpEFdataSet" , "HFmrEFdataSet" ,
    "HFpEFoutcomes" , "HFmrEFoutcomes",
    "HFfullDataSet", "HFfullOutcomes")
```

```
lapply(gsub(" ", "", paste(path, fileNames, r)),
    load,.GlobalEnv)
# - #
# Plot of missing values distribution
# -
pathTolmages <- "../../../doc/thesis/images/"
tikz(file=paste(c(pathTolmages,"HFpEF_miss_dist.tex"),
    collapse = ""))
aggr(HFpEFdataSet, plot = T, sortVars = T,
    bars = F, combined = T, ylabs = "", cex.axis = 0.7)
dev.off()
tikz(file = paste(c(pathTolmages, "HFmrEF_miss_dist.tex"),
        collapse = ""))
aggr(HFmrEFdataSet, plot = T,
    sortVars = T, bars = F, combined = T, ylabs = "",
    cex.axis = 0.7)
dev.off()
# - #
# Summary of variables
# -
# Reorder data matrix by phenotype domains
# -_ #
nameOrder <- c("age", "gender", "white", "asian", "black",
    "breathless", "sbp", "dbp", "admissionwgt",
    "bp", "bmiadmission", "pulse", "afib",
    "copdasthma" , "irondef" , "dm" , "obesity",
    "copdasthma", "ihd", "comorbidities",
    "ecgqrsduration", "ecgqrsother", "ecgrate",
    "ecgrhythmother", "Ivh", "normalecgqrs", "|bbb",
    "rbbb", "sr", "hb", "wbc", "tsat", "plts","pcv",
    "ferritin", "k", "ironlevels", "chol",
    "ntprobnp", "gfr", "mcv", "na", "Ivef", "ewave",
    "pasp", "ee", "mr", "tr", "as", "ai",
    "rvfunction", "af", "timetohfadm",
    "hfhospitalisation", "los")
# - #
# Descriptive statistics
# -
capHFpEF <- "Patient characteristics: HFpEF"
labHFpEF <- "tab:desc_stat_HFpEF"
```

```
tableContinuous(HFpEFdataSet[, nameOrder],
    stats = c("n", "na", "min", "max", "mean",
            "median", "s", "q1", "q3"),
    cap = capHFpEF, lab = labHFpEF)
# —
capHFmrEF<- "Patient characteristics: HFmrEF"
labHFmrEF <- "tab:desc_stat_HFmrEF"
tableContinuous(HFmrEFdataSet[, nameOrder],
    stats = c("n", "na", "min", "max", "mean",
            "median", "s", "q1", "q3"),
    cap = capHFmrEF, lab = labHFmrEF)
# - #
# Outcomes table
# - #
r<- rep("", 5)
tabOutHFfull <- rbind(label.summary(as.matrix(HFfullOutcomes),
            2, cbind("Group", "Mort?" , "Readm?" , "n",
                "%Tot"), 3, 5))
tabOutHFpEF <- rbind(label.summary(as.matrix(HFpEFoutcomes),
            2, c("Group", "Mort?" , "Readm?" , "n",
            "% Tot"), 3, 5), r, r)
tabOutHFmrEF <- label.summary(as.matrix(HFmrEFoutcomes),
            2, c("Group", "Mort?" , "Readm?",
            "n", "% Tot"), 3, 5)
print(xtable(tabOutHFfull), include.rownames = F)
print(xtable(cbind(tabOutHFpEF, tabOutHFmrEF)),
            include.rownames = F)
# T #
# Tables of top 10 missing values variables in both data sets
# -
HFfullMiss <- top.n.missing(HFfullDataSet, 10)
HFpEFmiss <- top.n.missing(HFpEFdataSet, 10)
HFmrEFmiss <- top.n.missing(HFmrEFdataSet, 10)
# _
# Combine missing values table and convert to Latex code
# - #
xtable(HFfullMiss, digits =c(0,0,3,3,3))
```

```
xtable(cbind(round(HFpEFmiss,3), rownames(HFmrEFmiss),
        round(HFmrEFmiss,3)))
114 # - #
```

112

B. 4 Pre-processing

```
# - #
# Install packages (if not already installed)
# - #
Packages <- c("BaylorEdPsych", "Amelia", "mice", "NbClust",
"caret", "rlist", "xtable")
# install.packages(Packages)
# — #
# Load package for docstring
# - #
lapply(Packages, library, character.only = TRUE)
# - #
# Load data set with same variables and source helper functions
# - #
allDataFiles <- c("HFpEFind", "HFmrEFind",
            "HFpEFnolnd", "HFmrEFnolnd",
            "HFfullDataSet", "SyndClass")
lapply(gsub(" ", "", paste("data_files/", allDataFiles,
                                    ".Rdat")), load,.GlobalEnv)
source("utilities.R")
# - #
# Summary of missing variables
# - #
top.n.missing(HFfullDataSet, 10)
top.n.missing(cbind(HFmrEFnolnd, HFmrEFind), 10)
top.n.missing(cbind(HFpEFnolnd, HFpEFind), 10)
# —
# Split variables into indicator and categorical variables
#- #
HFfullRmInd <- rm.indicator(HFfullDataSet, 8)
HFfullInd <- HFfullRmInd$indicator
HFfullNolnd <- HFfullRmInd$non.indicator
#
#
```

```
# Little's test to assess for missing completely at random.
# Remove variables with more than a given cut.off missing
# values and that have near zero variance (not for indicator
# variables).
# - #
# In Full data set
# - #
CutOff <- 0.20 # cut. off percentage
HFfulllnd <- rm.missing(HFfullInd, cut.off = CutOff,
    near.zero.var = F)
HFfullNolnd <- rm.missing(HFfullNolnd, cut.off = CutOff)
HFfullList <- list(HFfulllnd, HFfullNolnd)
HFfullMcar <- do.call(rbind, lapply(HFfullList, little.mcar))
HFfullCarNames <- c("indicator" ,"continuous")
rownames(HFfullMcar) <- HFfullCarNames
# - #
# In HFpEF
# - #
CutOff <- 0.15 # cut. off percentage
HFpEFind <- rm.missing(HFpEFind, cut.off = CutOff,
                near.zero.var = F)
HFpEFnolnd <- rm.missing(HFpEFnolnd, cut.off = CutOff)
HFpEFlist <- list(HFpEFind, HFpEFnolnd)
HFpEFmcar <- do.call(rbind, lapply(HFpEFlist, little.mcar))
HFpEFmcarNames <- c("indicator" "continuous")
rownames(HFpEFmcar) <- HFpEFmcarNames
# - #
# In HFmrEF
#-
CutOff <- 0.25 # cut. off percentage
HFmrEFind <- rm.missing(HFmrEFind, cut.off = CutOff,
                                    near.zero.var = F)
HFmrEFnolnd <- rm.missing(HFmrEFnolnd, cut.off = CutOff)
HFmrEFlist <- list(HFmrEFind, HFmrEFnolnd)
HFmrEFmcar <- do.call(rbind, lapply(HFmrEFlist, little.mcar))
HFmrEFmcarNames <- c("indicator","continuous")
rownames(HFmrEFmcar) <- HFmrEFmcarNames
xtable(rbind(HFfullMcar, HFpEFmcar, HFmrEFmcar),
    digits = c(0,0,0,4,0,5))
# - #
# Report missing data after removing variables
# —
```

```
top.n.missing(cbind(HFfullNolnd, HFfulllnd), n = 10)
top.n.missing(cbind(HFpEFnolnd, HFpEFind), n = 10)
top.n.missing(cbind(HFmrEFnolnd, HFmrEFind), n = 10)
# -
# Impute data using Bootstrap EM and CART
# - #
# In Full data set
# - #
m<- 100 # number of bootstrap samples
bnd <- data.bounds(HFfullNolnd, 0, Inf)
HFfullEm <- boot.em.impute(HFfullNolnd, bnd, n.boot = m)
HFfullCart <- complete(mice(HFfulllnd, method = "cart"))
# - #
# In HFpEF
# - #
HFpEFconImpEmList <- HFmrEFconImpEmList <- Iist ()
HFpEFbound <- data.bounds(HFpEFnolnd, 0, Inf)
HFpEFem <- boot.em.impute(HFpEFnolnd, bounds = HFpEFbound,
    n.boot = m)
HFpEFcart <- complete(mice(HFpEFind, method ="cart"))
# - #
# In HFmrEF
# - #
HFmrEFbound <- data.bounds(HFmrEFnolnd, 0, Inf)
HFmrEFem <- boot.em.impute(HFmrEFnolnd,
                                    bounds = HFmrEFbound,
                                    n.boot =m)
HFmrEFcart <- complete(mice(HFmrEFind, method ="cart"))
# - #
# Combine imputed data sets into one
# - #
HFfulllmp <- cbind(HFfullEm, HFfullCart)
HFpEFimp <- cbind(HFpEFem, HFpEFcart)
HFmrEFimp <- cbind(HFmrEFem, HFmrEFcart)
# - #
# Sort columns
# -
HFfulllmp <- sort.column.names(HFfulllmp, id.col = T)
HFpEFimp <- sort.column.names(HFpEFimp, id.col = T)
HFmrEFimp <- sort.column.names(HFmrEFimp, id.col = T)
```

```
28
129# # Consolidate naming of columns for HFpEF
HFpEFimp <- HFpEFimp[, colnames(HFfullImp)]
# - #
# Save full data set
# - #
path <- "data_files/"; r <- ".Rdat"
fileNames <- c("HFfulllmp", "HFpEFimp", "HFmrEFimp")
for (name in fileNames){
    save(list = (name), file = paste(path, name, r, sep = ""))
}
# _ #
# Principal component analysis
# -
HFfullpca <- princomp(HFfulllmp, cor = T)
HFpEFpca <- princomp(HFpEFimp, cor = T)
HFmrEFpca <- princomp(HFmrEFimp, cor = T)
# - #
# Explained variance
#-a,var.plot(HFfullpca, 31, (#)
pca.var.plot(HFfullpca, 31, title = "HF same variables")
pca.var.plot(HFpEFpca, 34, title = "HFpEF")
pca.var.plot(HFmrEFpca, 31, title = "HFmrEF")
# —
# Save pca objects
# - #
path <- "data_files/"; r <- ".Rdat"
objects <- c("HFfullpca", "HFpEFpca", "HFmrEFpca")
for (object in objects){
    save(list = (object), file = paste(path, object, r, sep = "")
        )
}
1 6 7
168 # - #
```


B.4.1 Consolidation

```
# - #
# Install packages (if not already installed)
# - #
Packages <- c("R.matlab", "data.table","stringr")
# install.packages(Packages)
# —
# Load relevant packages
# - #
lapply(Packages, library, character.only = TRUE)
source("../source/utilities.R")
# - #
# Read matlab files into R
# -
dataSetHFpEF <- readMat('data_use_HFpEF.mat')
dataSetHFmrEF <- readMat('data_use_HFmrEF.mat')
# - #
# Extract the data matrix from matlab files
# -
HFpEFmat <- dataSetHFpEF$All.data
HFmrEFmat <- dataSetHFmrEF$All.data
# - #
# Add all column names
# _
colnames(HFpEFmat) <- c(as.vector(unlist(
        dataSetHFpEF$Varnames)))
colnames(HFmrEFmat) <- c(as.vector(unlist(
                        dataSetHFmrEF$Varnames)))
# —
# Consolidate naming conventions for some variables
# - #
# In the HFpEF matrix
# -
setnames(as.data.frame(HFpEFmat),
    old = c("E_e","LVfunction", "ECGRhythm_other",
            "ECGQRS_other", "Other_ethnicity", "PIt",
            "COPD"),
        new = c("Ee", "LVEF", "ECGRhythmother", "ECGQRSother",
            "Otherethnicity" , "Plts" , "COPDasthma"))
# #
```

```
# In the HFmrEF matrix
# -
setnames(as.data.frame(HFmrEFmat),
    old=c("Admissionweight" ,"BMI" ,"Numberofcomorbidities",
        "Afrocaribbean", "Caucasian" ,"Pulse" ,"NtproBNP",
            "E", "ECGRhythm_other" , "LVHand_orLAE",
            "ECGQRS_other", "iron", "Timetoadmission"),
    new = c("admissionwgt","Bmladmission","comorbidities",
                " Black","White" ," pulse" ,"NTproBNP" , "Ewave",
                "ECGRhythmother" , "LVHandorLAE",
                "ECGQRSother", "Ironlevels", "TimetoHFadm"))
# - #
# Lowercase letters for all the colnames
# -
colnames(HFpEFmat) <- tolower(colnames(HFpEFmat))
colnames(HFmrEFmat) <- tolower(colnames(HFmrEFmat))
# _
# Rename dupblicate names in variables af and ar
# -
if(all(colnames(HFmrEFmat)[c(2,4)] =c("af", "ar"))){
    colnames(HFmrEFmat) [c(2,4)]<-c("afib", "ai")
}
# - #
if(all(colnames(HFpEFmat)[c(3,7)]==c("af","ar"))){
    colnames(HFpEFmat)[c(3,7)]<-c("afib", "ai")
}
74
# - #
# Address error in HFmrEF - Ivef data point nr. 1
# -
HFmrEFmat[1, "Ivef"] <- 40.45
# #
# Replace NaN values with NA using the make_na function
# -
HFpEFmat <- make.na(HFpEFmat)
HFmrEFmat <- make.na(HFmrEFmat)
# _
# Create one file with all the common variables in both
# HFpEF and HFmrEF data sets.
# - #
# Find common columns in both data sets
```

```
# - #
HFpEFcol <- colnames(HFpEFmat) %in% colnames(HFmrEFmat)
HFmrEFcol <- colnames(HFmrEFmat) %in% colnames(HFpEFmat)
# -
# Test that all columns are equal
# - #
all(sort(colnames(HFpEFmat)[HFpEFcol]) =
    sort(colnames(HFmrEFmat)[HFmrEFcol]))
# - #
# Get and sort the column names
# - #
HFpEFcol <- sort(colnames(HFpEFmat)[HFpEFcol])
HFmrEFcol <- sort(colnames(HFmrEFmat)[HFmrEFcol])
HFpEFsame <- HFpEFmat[, HFpEFcol]
HFmrEFsame <- HFmrEFmat[, HFmrEFcol]
# - #
# Create syndrome class matrix
# -
syndrome <- rep(c(1, 2),
        times = c(nrow(HFpEFmat), nrow(HFmrEFmat)))
SyndName <- rep(c("HFpEF", "HFmrEF"),
    times = c(nrow(HFpEFmat), nrow(HFmrEFmat)))
# - #
# Add patient id, create full data set and syndrome classes
# - #
HFfullDataSet <- rbind(HFpEFsame, HFmrEFsame)
id <- seq(1, nrow(HFfullDataSet))
HFfullDataSet <- as.data.frame(cbind(id, HFfullDataSet))
SyndClass <- as.data.frame(cbind(id, syndrome, SyndName))
# - #
# Store indicator and non-indicator variables using the
# rm_indicator function
# - #
HFfullrmInd <- rm.indicator(HFfullDataSet, n.uniq = 8)
# - #
# Store the non-indicator and in variables for later
#-
HFfulllnd <- HFfullrmInd$indicator
HFfullNolnd <- HFfullrmInd$non.indicator
```

```
136
37 # Convert zeros to missings the following variables are not to
# Convert zeros to missings, the following variables are not to
# be converted
# - #
notZeros <- c("comorbidities" , "timetohfadm")
HFfullNolnd <- zero.to.na(HFfullNolnd, notZeros)
# _
# Concatinate indicator and non-indicator variables to one
# data set and sort column names.
# # #
HFfullDataSet <- cbind(HFfullNolnd[, -1], HFfulllnd)
HFfullDataSet < - HFfullDataSet[, sort(colnames(HFfullDataSet))]
HFfullDataSet <- cbind(id, HFfullDataSet)
# - #
# Split data according to syndroms
# - #
# Full data set
# -
HFpEFrow <- SyndClass[,3] = "HFpEF"
HFmrEFrow <- SyndClass[,3] = "HFmrEF"
# -
HFpEFdataSet <- HFfullDataSet[HFpEFrow,]
HFmrEFdataSet <- HFfullDataSet[HFmrEFrow,]
# - #
# Non-indicator variables
# -
HFpEFnolnd <- HFfullNolnd[HFpEFrow, ]
HFmrEFnolnd <- HFfullNolnd [HFmrEFrow, ]
# #
# Indicator variables
# -
HFpEFind <- HFfullInd[HFpEFrow, ]
HFmrEFind <- HFfullInd[HFmrEFrow, ]
174
175 # - #
176 # Re-code patient group labels
77 # - #
78 # Get patient groups
# -
patientGroupsHFpEF <- as.matrix(unlist(
```

```
    dataSetHFpEF$Patient.group))
patientGroupsHFmrEF <- as.matrix(unlist(
                        dataSetHFmrEF$Patient.group))
# - #
# Labels of clinical outcomes
# - #
deceased <- c("IN" , "Z", "Y", "X")
reAdmission <- c("V", "U")
# - #
# Split labels
# -_ #
HFpEFsplit <- str_split_fixed(patientGroupsHFpEF,", ", n = 2)
HFmrEFsplit <- str_split_fixed(patientGroupsHFmrEF,", ",n=2)
# - #
# Re-coding mortality labels
# -
isDeceasedHFpEF <- HFpEFsplit[,1] %in% deceased
isDeceasedHFmrEF <- HFmrEFsplit[,1] %in% deceased
deceasedHFpEF <- ifelse(isDeceasedHFpEF, "yes" , "no")
deceasedHFmrEF <- ifelse(isDeceasedHFmrEF, "yes", "no")
# - #
# Re-coding re-admission labels
# -
isReAdmittedHFpEF <- HFpEFsplit[,1] %in% reAdmission |
    HFpEFsplit[,2] %in% reAdmission
isReAdmittedHFmrEF <- HFmrEFsplit[,1] %in% reAdmission |
                    HFmrEFsplit[,2] %in% reAdmission
reAdmissionHFpEF <- ifelse(isReAdmittedHFpEF," yes","no")
reAdmissionHFmrEF <- ifelse(isReAdmittedHFmrEF ,"yes"," no")
# — #
# Add outcomes to matrix
# -
HFpEFoutcomes <- cbind(id[HFpEFrow], patientGroupsHFpEF,
    deceasedHFpEF, reAdmissionHFpEF)
HFmrEFoutcomes <- cbind(id [HFmrEFrow], patientGroupsHFmrEF,
                        deceasedHFmrEF, reAdmissionHFmrEF)
# - #
# Add colnames to matrices
# - #
```

```
colnames(HFpEFoutcomes) <- colnames(HFmrEFoutcomes) <-
    c("id", "patientgroup", "deceased" , "readmitted")
# - #
# Create outcomes data frames
# -
HFfullOutcomes <- as.data.frame(rbind(HFpEFoutcomes,
    HFmrEFoutcomes))
rownames(HFfullOutcomes) <- HFfullOutcomes[,1]
# -_ #
HFpEFoutcomes <- HFfullOutcomes[HFpEFrow,]
HFmrEFoutcomes <- HFfullOutcomes[HFmrEFrow,]
# \
# Save all data frames (13 df in all)
# -
path <- "../source/data_files/"; r <- ".Rdat"
fileNames <- c("HFfullDataSet", "HFfullNolnd", "HFfulllnd",
    "HFpEFdataSet" , "HFpEFnolnd" , "HFpEFind" ,
    "HFmrEFdataSet" , "HFmrEFnolnd" , "HFmrEFind",
    "HFfullOutcomes" , "HFpEFoutcomes",
    "HFmrEFoutcomes", "SyndClass")
for (name in fileNames){
    save(list = (name), file = paste(path, name, r, sep = ""))
}
252# - #
```

251

B. 5 Clustering

```
# —
# Install relevant packages (if not already done)
# - #
Packages <- c("NbClust", "xtable")
# install.packages(Packages)
# — #
# Load relevant packages
# - #
lapply(Packages, library, character.only = TRUE)
source("utilities.R")
# -
# Load pca objects and data files
```


B.5. Clustering

```
# - #
allDataFiles <- c("HFfullpca", "HFpEFpca", "HFmrEFpca",
            "HFfulllmp","HFpEFimp" , "HFmrEFimp",
            "SyndClass")
lapply(gsub(" ", "", paste("data_files/", allDataFiles,
            ".Rdat")), load,. GlobalEnv)
# -_ #
# Determine optimal number of clusters
# -
NbClust(HFpEFpca$scores[,1:2], min.nc = 2, max.nc = 4,
    method = "kmeans")
NbClust(HFmrEFpca$scores[,1:2], min.nc = 2, max.nc = 4,
    method = "kmeans")
# - #
# PCA cluster plot for all data sets
# -
path_to_images <- "../../../doc/thesis/images/"
pdf(file = paste(path_to_images, "ClustFull.pdf"), width = 8,
    height = 8)
clustFull <- pca.cluster.plot(HFfullpca, 4, km.clust = 2,
                    hc.clust = 2, em.clust = 2,
                        actual = SyndClass[,2],
                        return.clust = T, ellipse = F)
dev.off()
# _ #
# Extract cluster configuration and add to data frame
# -
ACTfull <- clustFull $ACT
HCfull <- clustFull$HC
KMfull <- clustFull$KM
EMfull <- clustFull $EM
# - #
# Compare baseline characteristics
#-
act_full <- compare.baseline(cbind(HFfulllmp, ACTfull),
            "ACTfull")
act_hc<- compare.baseline(cbind(HFfulllmp, HCfull),
    "HCfull")
act_km <- compare.baseline(cbind(HFfulllmp, KMfull),
                        "KMfull")
act_em <- compare.baseline(cbind(HFfulllmp, EMfull),
```

```
            "EMfull")
xtable(act_full[[2]][1:15,])
xtable(act_hc[[2]][1:15,])
xtable(act_km[[2]][1:15,])
xtable(act_em[[2]][1:15,])
# -
# Assuming clustering by physicians is correct
# -
pdf(file = paste(path_to_images, "ClustpPhy.pdf"), width = 9,
    height = 8)
clustPefFull <- pca.cluster.plot(HFpEFpca, 2, km.clust = 3,
                                    hc.clust = 3, em.clust = 3,
                                    return.clust = T, ellipse = F)
dev.off()
pdf(file = paste(path_to_images, "ClustmrPhy.pdf"), width = 9,
    height = 8)
clustMrFull <- pca.cluster.plot(HFmrEFpca, 2, km.clust = 3,
                                    hc.clust = 3, em.clust = 3,
                                    return.clust = T, ellipse = F)
dev.off()
# Compare baseline characteristics HFpEF
# - #
HCpEFphy <- clustPefFull$HC
KMpEFphy <- clustPefFull $KM
EMpEFphy <- clustPefFull$EM
post_HC_p <- compare.baseline(cbind(HFpEFimp, HCpEFphy),
                            "HCpEFphy")
post_KM_p <- compare.baseline(cbind(HFpEFimp, KMpEFphy),
                    "KMpEFphy")
post_EM_p <- compare.baseline(cbind(HFpEFimp, EMpEFphy),
                    "EMpEFphy")
xtable(post_HC_p[[2]][1:15, -1])
xtable(post_KM_p[[2]][1:15, -1])
xtable(post_EM_p[[2]][1:15,-1])
#
# Compare baseline characteristics HFmrEF
# - #
```


B.5. Clustering

```
HCmrEFphy <- clustMrFull$HC
KMmrEFphy <- clustMrFull $KM
EMmrEFphy <- clustMrFulI $EM
post_HC_mr <- compare. baseline(cbind(HFmrEFimp, HCmrEFphy),
    "HCmrEFphy")
post_KM_mr <- compare.baseline(cbind(HFmrEFimp, KMmrEFphy),
    "KMmrEFphy")
post_EM_mr <- compare.baseline(cbind(HFmrEFimp, EMmrEFphy),
    " EMmrEFphy")
xtable(post_HC_mr[[2]][1:15, - 1])
xtable(post_KM_mr[[2]][1:15, -1])
xtable(post_EM_mr[[2]][1:15,-1])
# -
# Assumin clustering by physicians is incorrect
# -
hiKmeansClust <- clustFull$HC
HFpEFhiKmeans <- HFfulllmp[hiKmeansClust==1,]
HFmrEFhiKmeans <- HFfulllmp[hiKmeansClust==2,]
# - #
# Re-calculate principal components
# - #
HFpEFNewpca <- princomp(HFpEFhiKmeans, cor = T)
HFmrEFNewpca <- princomp(HFmrEFhiKmeans, cor = T)
# - #
# Plot clusters
# -
pdf(file = paste(path_to_images, "ClustpNoPhy.pdf"), width = 9,
    height = 8)
clustNewPef <- pca.cluster.plot(HFpEFNewpca, 2, km.clust = 3,
                    hc.clust = 3, em.clust = 3,
                        return.clust = T, ellipse = F)
dev.off()
pdf(file = paste(path_to_images, "ClustmrNoPhy.pdf"), width=9,
    height = 8)
clustNewMr <- pca.cluster.plot(HFmrEFNewpca, 2, km.clust = 3,
                    hc.clust = 3, em.clust = 3,
                        return.clust = T, ellipse = F)
dev.off()
```

```
# —
# Compare baseline characteristics HFpEF
# -
HCpEFnoPhy <- clustNewPef$HC
KMpEFnoPhy <- clustNewPef$KM
EMpEFnoPhy <- clustNewPef$EM
noPost_HC_p <-compare. baseline(cbind(HFpEFhiKmeans,
                                    HCpEFnoPhy),"HCpEFnoPhy")
noPost_KM_p <-compare. baseline(cbind(HFpEFhiKmeans,
                            KMpEFnoPhy) ,"KMpEFnoPhy")
noPost_EM_p <-compare.baseline(cbind(HFpEFhiKmeans,
                                    EMpEFnoPhy),"EMpEFnoPhy")
xtable(noPost_HC_p[[2]][1:15, - 1])
xtable(noPost_KM_p[[2]][1:15, - 1])
xtable(noPost_EM_p[[2]][1:15, -1])
# -
# Compare baseline characteristics HFmrEF
HCmrEFnoPhy <- clustNewMr$HC
KMmrEFnoPhy <- clustNewMr$KM
EMmrEFnoPhy <- clustNewMr$EM
noPost_HC_mr<- compare. baseline(cbind(HFmrEFhiKmeans,
                                    HCmrEFnoPhy),
                            "HCmrEFnoPhy")
noPost_KM_mr<- compare. baseline (cbind(HFmrEFhiKmeans,
                                    KMmrEFnoPhy) ,
                            "KMmrEFnoPhy")
noPost_EM_mr<- compare. baseline(cbind(HFmrEFhiKmeans,
                                    EMmrEFnoPhy),
                                    "EMmrEFnoPhy")
xtable(noPost_HC_mr[[2]][1:15, - 1])
xtable(noPost KM_mr[[2]][1:15,-1])
xtable(noPost_EM_mr[[2]][1:15,-1])
# _
# Result of all the significant baseline characteristics
# - #
results_post <- c(post_HC_p[[1]], post_KM_p[[1]],
    post_EM_p[[1]], post_HC_mr[[1]],
    post_KM_mr[[1]], post_EM_mr[[1]])
```

```
results_no_post <- c(noPost_HC_p[[1]], noPost_KM_p[[1]],
    noPost_EM_p[[1]], noPost_HC_mr[[1]],
    noPost_KM_mr[[1]], noPost_EM_mr[[1]])
results <- cbind(matrix(results _post, 3),
    matrix(results_no_post, 3))
colnames(results) <- rep(c("HFpEF", "HFmrEF"), 2)
rownames(results) <- c("Hierarchical", "K-Means", "EM")
xtable(results)
207 # — #
```

206

B. 6 Classification

```
# - #
# Install relevant packages (if not already done)
# -
Packages <- c("mlbench", "caret", "elasticnet", "klaR",
        "xtable", "tikzDevice")
# install.packages(Packages)
7
# - #
# Load relevant packages
# - #
lapply(Packages, library, character.only = TRUE)
source("utilities.R")
# #
# Load data files
# - #
allDataFiles <- c("HFfulllmp", "HFfullOutcomes")
lapply(gsub(" ", "", paste("data_files/", allDataFiles,
                                    ".Rdat")), load,.GlobalEnv)
# —
# Add cross validation configuration
# - #
kfold <- trainControl(method = "cv", number = 10)
seed <- 0123456789
metric <- "Accuracy"
preProcess <- "pca"
#
#
```

```
# Train and evaluate the classification algorithms with kfold
# - #
dataset <- HFfulllmp[, - 1]
mortality <- HFfullOutcomes[,3]
readmission <- HFfullOutcomes[,4]
# - #
# Mortality
# - #
# kfold CV evaluation of classifiers
# - #
set.seed(seed)
fitKnnKfoldMort <- train(dataset, mortality, method="knn",
    metric=metric, trControl=kfold,
    preProcess = preProcess)
set.seed(seed)
fitLLKfoldMort <- train(dataset, mortality, method = "glm",
    metric=metric, trControl = kfold,
    preProcess = preProcess)
set.seed(seed)
fitLDAKfoldMort <- train(dataset, mortality, method = "Ida",
    metric = metric, trControl = kfold,
    preProcess = preProcess)
set.seed(seed)
fitNbKfoldMort <- train(dataset, mortality, method = "nb",
    metric = metric, trControl = kfold,
    preProcess = preProcess)
set.seed(seed)
fitSvmKfoldMort <- train(dataset, mortality,method="svmRadial",
    metric=metric, trControl=kfold,
    preProcess = preProcess)
set.seed(seed)
fitRfKfoldMort <- train(dataset, mortality, method="rf",
    metric = metric, trControl = kfold,
    preProcess = preProcess)
# - #
# Produce summary statistics and plots
# - #
# Kfold CV
```

```
# - #
resultsMortalityKfold <- resamples(list(knn = fitKnnKfoldMort,
        logr = fitLLKfoldMort,
        Ida = fitLDAKfoldMort,
        nb = fitNbKfoldMort,
        svm = fitSvmKfoldMort,
        rf = fitRfKfoldMort))
xtable(summary(resultsMortalityKfold)$statistics $Accuracy,
    digits = 3)
xtable(summary(resultsMortalityKfold)$statistics $Kappa,
    digits = 3)
pathTolmages <- "../../../doc/thesis/images/"
tikz(file=paste(pathTolmages," classificationMortality.tex",
    sep = ""), height = 5.5, standAlone = F)
dotplot(resultsMortalityKfold, main = "Mortality")
dev.off()
# - #
# Readmission
# - #
# kfold CV evaluation of classifiers
# - #
set.seed (seed)
fitKnnKfoldReadm <- train(dataset, readmission, method="knn",
    metric=metric, trControl=kfold,
    preProcess = preProcess)
set.seed(seed)
fitLLKfoldReadm <- train(dataset, readmission, method = "glm",
                    metric=metric, trControl = kfold,
                        preProcess = preProcess)
set.seed (seed)
fitLDAKfoldReadm <- train(dataset, readmission,
    method = "lda", metric = metric ,
    trControl = kfold,
    preProcess = preProcess)
set.seed(seed)
fitNbKfoldReadm <- train(dataset, readmission, method = "nb",
                                    metric = metric, trControl = kfold,
                                    preProcess = preProcess)
```

```
set.seed(seed)
fitSvmKfoldReadm <- train(dataset, readmission,
        method="svmRadial" , metric=metric,
        trControl=kfold,
        preProcess = preProcess)
set.seed(seed)
fitRfKfoldReadm <- train(dataset, readmission, method="rf",
        metric = metric, trControl = kfold,
        preProcess = preProcess)
# M
# Produce summary statistics and plots
# - #
# Kfold CV
# -
resultsReadmKfold <- resamples(list(knn = fitKnnKfoldReadm ,
            Ida = fitLDAKfoldReadm,
            nb = fitNbKfoldReadm,
            logr = fitLLKfoldReadm,
            svm = fitSvmKfoldReadm,
            rf = fitRfKfoldReadm))
xtable(summary(resultsReadmKfold)$statistics$Accuracy,
    digits = 3)
xtable(summary(resultsReadmKfold)$statistics $Kappa,
    digits = 3)
pathTolmages <- "../../../doc/thesis/images/"
tikz(file=paste(pathTolmages,"classificationReadmission.tex",
    sep = ""), height = 5.5, standAlone = F)
dotplot(resultsReadmKfold, main = "Re-admission")
dev.off()
# #
```


Bibliography

Acharya, U. R., Fujita, H., Sudarshan, V. K., Oh, S. L., Muhammad, A., Koh, J. E., Tan, J. H., Chua, C. K., Chua, K. P., and San Tan, R. (2017). Application of empirical mode decomposition (emd) for automated identification of congestive heart failure using heart rate signals. Neural Computing and Applications, 28(10):3073-3094. Springer.

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms. Machine learning, 6(1):37-66. Springer.

Ahmad, T., Desai, N., Wilson, F., Schulte, P., Dunning, A., Jacoby, D., Allen, L., Fiuzat, M., Rogers, J., Felker, G. M., et al. (2016). Clinical implications of cluster analysis-based classification of acute decompensated heart failure and correlation with bedside hemodynamic profiles. PloS one, 11(2):e0145881. Public Library of Science.

Ahmad, T., Pencina, M. J., Schulte, P. J., O’Brien, E., Whellan, D. J., Piña, I. L., Kitzman, D. W., Lee, K. L., O'Connor, C. M., and Felker, G. M. (2014). Clinical implications of chronic heart failure phenotypes defined by cluster analysis. Journal of the American College of Cardiology, 64(17):17651774. Elsevier.

Allison, P. D. (1999). Missing data. Sage Publications, Inc. Thousand Oaks, California.

Alonso-Betanzos, A., Bolón-Canedo, V., Heyndrickx, G. R., and Kerkhof, P. L. (2015). Exploring guidelines for classification of major heart failure subtypes by using machine learning. Clinical Medicine Insights: Cardiology, 9:CMC-S18746. SAGE Publications Sage UK: London, England.

Ashby, D. (1991). Practical statistics for medical research. douglas g. altman, chapman and hall, london, 1991. no. of pages: 611. price: $£ 32.00$. Statistics in medicine, 10(10):1635-1636.

Aune, E., Baekkevar, M., Roislien, J., Rodevand, O., and Otterstad, J. E. (2009). Normal reference ranges for left and right atrial volume indexes and ejection fractions obtained with real-time three-dimensional echocardiography. European Journal of Echocardiography, 10(6):738-744. Oxford University Press.

Austin, P. C., Lee, D. S., Steyerberg, E. W., and Tu, J. V. (2012). Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods? Biometrical journal, 54(5):657-673. Wiley Online Library.

Austin, P. C., Tu, J. V., Ho, J. E., Levy, D., and Lee, D. S. (2013). Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. Journal of clinical epidemiology, 66(4):398-407. Elsevier.

Awan, S. E., Sohel, F., Sanfilippo, F. M., Bennamoun, M., and Dwivedi, G. (2018). Machine learning in heart failure: ready for prime time. Current opinion in cardiology, 33(2):190-195. LWW.

Beaujean, A. A. (2012). BaylorEdPsych: R Package for Baylor University Educational Psychology Quantitative Courses. https://CRAN.R-project. org/package=BaylorEdPsych.

Beringer, J. Y. and Kerkhof, P. L. (1998). A unifying representation of ventricular volumetric indexes. IEEE transactions on biomedical engineering, 45(3):365-371. IEEE.

Braunwald, E. (2015). The war against heart failure: the lancet lecture. The Lancet, 385(9970):812-824. Elsevier.

Burgette, L. F. and Reiter, J. P. (2010). Multiple imputation for missing data via sequential regression trees. American journal of epidemiology, 172(9):1070-1076.

Buuren, S. v. and Groothuis-Oudshoorn, K. (2010). mice: Multivariate imputation by chained equations in r. Journal of statistical software, pages 1-68.

Carlson, K. J., Lee, D. C.-S., Goroll, A. H., Leahy, M., and Johnson, R. A. (1985). An analysis of physicians' reasons for prescribing long-term digitalis therapy in outpatients. Journal of chronic diseases, 38(9):733-739. Elsevier.

Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6):1-36.

Cheng, R. K., Cox, M., Neely, M. L., Heidenreich, P. A., Bhatt, D. L., Eapen, Z. J., Hernandez, A. F., Butler, J., Yancy, C. W., and Fonarow, G. C. (2014). Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the medicare population. American heart journal, 168(5):721-730. Elsevier.

Cikes, M. and Solomon, S. D. (2015). Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. European heart journal, 37(21):1642-1650. Oxford University Press.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1):37-46.

Cowie, M. R., Struthers, A. D., Wood, D. A., Coats, A. J., Thompson, S. G., Poole-Wilson, P. A., and Sutton, G. C. (1997). Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. The Lancet, 350(9088):1349-1353. Elsevier.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2):87-22.

Crespo-Leiro, M. G., Anker, S. D., Maggioni, A. P., Coats, A. J., Filippatos, G., Ruschitzka, F., Ferrari, R., Piepoli, M. F., Delgado Jimenez, J. F., Metra, M., et al. (2016). European society of cardiology heart failure long-term registry (esc-hf-lt): 1-year follow-up outcomes and differences across regions. European journal of heart failure, 18(6):613-625. Wiley Online Library.

Defays, D. (1977). An efficient algorithm for a complete link method. The Computer Journal, 20(4):364-366.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society. Series B (methodological), pages 1-38. JSTOR.

Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20):19201930. Am Heart Assoc.

Dunderdale, K., Thompson, D. R., Miles, J. N., Beer, S. F., and Furze, G. (2005). Quality-of-life measurement in chronic heart failure: do we take account of the patient perspective? European journal of heart failure, 7(4):572-582. Wiley Online Library.

Eekhout, I., de Boer, M. R., Twisk, J. W., de Vet, H. C., and Heymans, M. W. (2012). Brief report: Missing data: A systematic review of how they are reported and handled. Epidemiology, pages 729-732. JSTOR.

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages 569-593. Springer.

Enders, C. K. (2010). Applied missing data analysis. Guilford press.
Eriksson, H., Caidaul, K., Larsson, B., Ohlson, L.-O., Welin, L., Wilhelmsen, L., and Svärdsudd, K. (1987). Cardiac and pulmonary causes of dysp-noea-validation of a scoring test for clinical-epidemiological use: the study of men born in 1913. European heart journal, 8(9):1007-1014. Oxford University Press.

Ernst, G. (2016). Heart rate variability. Springer.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96(96):226-231.

Fix, E. and Hodges Jr, J. L. (1951). Discriminatory analysis-nonparametric discrimination: consistency properties. Technical report, California Univ Berkeley.

Fleg, J. L., Piña, I. L., Balady, G. J., Chaitman, B. R., Fletcher, B., Lavie, C., Limacher, M. C., Stein, R. A., Williams, M., and Bazzarre, T. (2000). Assessment of functional capacity in clinical and research applications: An advisory from the committee on exercise, rehabilitation, and prevention, council on clinical cardiology, american heart association. Circulation, 102(13):1591-1597. Am Heart Assoc.

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. biometrics, 21:768-769.

Friedman, J., Hastie, T., and Tibshirani, R. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer series in statistics New York.

Fuat, A., Murphy, J. J., Hungin, A. P. S., Curry, J., Mehrzad, A. A., Hetherington, A., Johnston, J. I., Smellie, W. S. A., Duffy, V., and Cawley, P. (2006). The diagnostic accuracy and utility of a b-type natriuretic peptide test in a community population of patients with suspected heart failure. Br J Gen Pract, 56(526):327-333. British Journal of General Practice.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American statistical Association, 70(350):320-328.

Gharehcho-pogh, F. S. and Khalifelu, Z. A. (2011). Neural network application in diagnosis of patient: a case study. In Computer Networks and Information Technology (ICCNIT), 2011 International Conference on, pages 245-249. IEEE.

Grossman, W. (1990). Diastolic dysfunction and congestive heart failure. Circulation, 81(2 Suppl):III1-7.

Hay, S. et al. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016. The Lancet, 390(10100):1211 - 1259. Elsevier.

Henein, M. Y. (2010). Heart failure in clinical practice. Springer.
Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics-Theory and Methods, 19(10):3595-3617.

Ho, Т. K. (1995). Random decision forests. In Document analysis and recognition, 1995., proceedings of the third international conference on, volume 1, pages 278-282. IEEE.

Honaker, J., King, G., Blackwell, M., et al. (2011). Amelia ii: A program for missing data. Journal of statistical software.

Hsu, J. J., Ziaeian, B., and Fonarow, G. C. (2017). Heart failure with midrange (borderline) ejection fraction: Clinical implications and future directions. JACC: Heart Failure. Elsevier.

Hunt, S. A., Baker, D. W., Chin, M. H., Cinquegrani, M. P., Feldmanmd, A. M., Francis, G. S., Ganiats, T. G., Goldstein, S., Gregoratos, G., Jessup, M. L., et al. (2001). Acc/aha guidelines for the evaluation and management of chronic heart failure in the adult: executive summary a report of the american college of cardiology/american heart association task force on practice guidelines (committee to revise the 1995 guidelines for the evaluation and management of heart failure). Circulation, 104(24):2996-3007. Am Heart Assoc.

Ibrahim, J. G., Chu, H., and Chen, M.-H. (2012). Missing data in clinical studies: issues and methods. Journal of clinical oncology, 30(26):3297. American Society of Clinical Oncology.

Inamdar, A. A. and Inamdar, A. C. (2016). Heart failure: diagnosis, management and utilization. Journal of clinical medicine, 5(7):62. Multidisciplinary Digital Publishing Institute.

Isler, Y. (2016). Discrimination of systolic and diastolic dysfunctions using multi-layer perceptron in heart rate variability analysis. Computers in biology and medicine, 76:113-119. Elsevier.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning, volume 112. Springer.

Kao, D. P., Lewsey, J. D., Anand, I. S., Massie, B. M., Zile, M. R., Carson, P. E., McKelvie, R. S., Komajda, M., McMurray, J. J., and Lindenfeld, J. (2015). Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. European journal of heart failure, 17(9):925-935. Wiley Online Library.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282):457-481. Taylor \& Francis.

Katz, D. H., Deo, R. C., Aguilar, F. G., Selvaraj, S., Martinez, E. E., BeussinkNelson, L., Kim, K.-Y. A., Peng, J., Irvin, M. R., Tiwari, H., et al. (2017). Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. Journal of cardiovascular translational research, 10(3):275-284. Springer.

Kaushal, S. (2014). Missing data in clinical trials: Pitfalls and remedies. International journal of applied \mathcal{E} basic medical research, 4(Suppl 1):S6-7. Medknow Publications.

Kelly, J. P., Mentz, R. J., Mebazaa, A., Voors, A. A., Butler, J., Roessig, L., Fiuzat, M., Zannad, F., Pitt, B., O'Connor, C. M., et al. (2015). Patient selection in heart failure with preserved ejection fraction clinical trials. Journal of the American College of Cardiology, 65(16):1668-1682. Elsevier.

Ketchum, E. S. and Levy, W. C. (2011). Multivariate risk scores and patient outcomes in advanced heart failure. Congestive Heart Failure, 17(5):205212. Wiley Online Library.

Koulaouz-idis, G., Iakovidis, D., and Clark, A. (2016). Telemonitoring predicts in advance heart failure admissions. International journal of cardiology, 216:78-84. Elsevier.

Krishnaswamy, P., Lubien, E., Clopton, P., Koon, J., Kazanegra, R., Wanner, E., Gardetto, N., Garcia, A., DeMaria, A., and Maisel, A. S. (2001). Utility of b-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. The American journal of medicine, 111(4):274-279. Elsevier.

Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260):583621.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt, T. (2018). caret: Classification and Regression Training. R package version 6.0-79.

Lam, C. S. and Solomon, S. D. (2014). The middle child in heart failure: heart failure with mid-range ejection fraction (40-50\%). European journal of heart failure, 16(10):1049-1055. Wiley Online Library.

Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: A package for multivariate analysis. Journal of Statistical Software, 25(1):1-18.

Lee, D. S., Austin, P. C., Rouleau, J. L., Liu, P. P., Naimark, D., and Tu, J. V. (2003). Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. Jama, 290(19):2581-2587. American Medical Association.

Leung, K. M. (2007). Naive bayesian classifier. New York University Tandon School of Engineering.

Levy, W. C., Mozaffarian, D., Linker, D. T., Sutradhar, S. C., Anker, S. D., Cropp, A. B., Anand, I., Maggioni, A., Burton, P., Sullivan, M. D., et al. (2006). The seattle heart failure model: prediction of survival in heart failure. Circulation, 113(11):1424-1433. Am Heart Assoc.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3):18-22.

Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404):1198-1202. Taylor \& Francis.

Liu, G., Wang, L., Wang, Q., Zhou, G., Wang, Y., and Jiang, Q. (2014). A new approach to detect congestive heart failure using short-term heart rate variability measures. PloS one, 9(4):e93399. Public Library of Science.

Maisel, A., Mueller, C., Adams, K., Anker, S. D., Aspromonte, N., Cleland, J. G., Cohen-Solal, A., Dahlstrom, U., DeMaria, A., Di Somma, S., et al. (2008). State of the art: using natriuretic peptide levels in clinical practice. European journal of heart failure, 10(9):824-839. Wiley Online Library.

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):519-530.

Martin, E. A. (2015). Concise medical dictionary. Oxford University Press, USA.

Masetic, Z. and Subasi, A. (2016). Congestive heart failure detection using random forest classifier. Computer methods and programs in biomedicine, 130:54-64. Elsevier.

McKee, P. A., Castelli, W. P., McNamara, P. M., and Kannel, W. B. (1971). The natural history of congestive heart failure: the framingham study. New England Journal of Medicine, 285(26):1441-1446. Mass Medical Soc.

McMurray, J. J., Adamopoulos, S., Anker, S. D., Auricchio, A., Böhm, M., Dickstein, K., Falk, V., Filippatos, G., Fonseca, C., et al. (2012). Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. developed in collaboration with the heart failure association (hfa) of the esc. European heart journal, 33(14):1787-1847. Oxford University Press.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2018). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-0.

Moons, K. G., Donders, R. A., Stijnen, T., and Harrell, F. E. (2006). Using the outcome for imputation of missing predictor values was preferred. Journal of clinical epidemiology, 59(10):1092-1101. Elsevier.

Murphy, K. P. (2012). Machine learning, a probabilistic perspective. The MIT press.

Myers, W. R. (2000). Handling missing data in clinical trials: an overview. Drug Information Journal, 34(2):525-533. SAGE Publications Sage CA: Los Angeles, CA.

Nagueh, S. F., Appleton, C. P., Gillebert, T. C., Marino, P. N., Oh, J. K., Smiseth, O. A., Waggoner, A. D., Flachskampf, F. A., Pellikka, P. A., and Evangelista, A. (2009). Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Journal of the American Society of Echocardiography, 22(2):107-133. Elsevier.

Narin, A., Isler, Y., and Ozer, M. (2014). Investigating the performance improvement of hrv indices in chf using feature selection methods based on backward elimination and statistical significance. Computers in biology and medicine, 45:72-79. Elsevier.

NYHA (1994). The criteria committee of the new york heart association nomenclature and criteria for diagnosis of diseases of the heart and great vessels. Little, Brown Medical Division, 7:253-256. Boston, Mass.

Panahiazar, M., Taslimitehrani, V., Pereira, N., and Pathak, J. (2015). Using ehrs and machine learning for heart failure survival analysis. Studies in health technology and informatics, 216:40.

Pandit, K., Mukhopadhyay, P., Ghosh, S., and Chowdhury, S. (2011). Natriuretic peptides: Diagnostic and therapeutic use. Indian journal of endocrinology and metabolism, 15(Suppl4):S345.

Peterson, P. N., Rumsfeld, J. S., Liang, L., Albert, N. M., Hernandez, A. F., Peterson, E. D., Fonarow, G. C., Masoudi, F. A., et al. (2010). A validated risk score for in-hospital mortality in patients with heart failure from the american heart association get with the guidelines program. Circulation: Cardiovascular Quality and Outcomes, 3(1):25-32. Am Heart Assoc.

Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J., Falk, V., González-Juanatey, J. R., Harjola, V.-P., Jankowska, E. A., et al. (2016). 2016 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc) developed with the special contribution of the heart failure association (hfa) of the esc. European heart journal, 37(27):21292200. Oxford University Press.

R Core Team (2018a). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www. R-project.org/.

R Core Team (2018b). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Roger, V. L. (2010). The heart failure epidemic. International journal of environmental research and public health, 7(4):1807-1830.

Rohlf, F. J. (1982). 12 single-link clustering algorithms. Handbook of statistics, 2:267-284.

Royston, J. (1982). An extension of shapiro and wilk's w test for normality to large samples. Applied Statistics, pages 115-124.

RStudio Team (2018). RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581-592. Oxford University Press.

Savarese, G. and Lund, L. H. (2017). Global public health burden of heart failure. Cardiac failure review, 3(1):7. Radcliffe Cardiology.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman and Hall/CRC.

Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological methods, 7(2):147. American Psychological Association.

Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate behavioral research, 33(4):545-571.

Scheffer, J. (2002). Dealing with missing data. Massey University.
Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2017). mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1):205-233.

Shah, S. J., Katz, D. H., Selvaraj, S., Burke, M. A., Yancy, C. W., Gheorghiade, M., Bonow, R. O., Huang, C.-C., and Deo, R. C. (2014). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, pages CIRCULATIONAHA-114. Am Heart Assoc.

Sibson, R. (1973). Slink: an optimally efficient algorithm for the single-link cluster method. The computer journal, 16(1):30-34.

Son, C.-S., Kim, Y.-N., Kim, H.-S., Park, H.-S., and Kim, M.-S. (2012). Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. Journal of biomedical informatics, 45(5):999-1008. Elsevier.

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M., and Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Bmj, 338:b2393. British Medical Journal Publishing Group.

Swedberg, K., Cleland, J., Dargie, H., Drexler, H., Follath, F., Komajda, M., Tavazzi, L., Smiseth, O. A., Gavazzi, A., Haverich, A., et al. (2005). Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005) the task force for the diagnosis and treatment of chronic heart failure of the european society of cardiology. European heart journal, 26(11):1115-1140. Oxford University Press.

Tan, P.-N. et al. (2007). Introduction to data mining. Pearson Education India.
Tharwat, A., Gaber, T., Ibrahim, A., and Hassanien, A. E. (2017). Linear discriminant analysis: A detailed tutorial. AI communications, 30(2):169190.

Tripoliti, E. E., Papadopoulos, T. G., Karanasiou, G. S., Naka, K. K., and Fotiadis, D. I. (2017). Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Computational and structural biotechnology journal, 15:26-47. Elsevier.
van Ravenswaaij-Arts, C. M., Kollee, L. A., Hopman, J. C., Stoelinga, G. B., and van Geijn, H. P. (1993). Heart rate variability. Annals of internal medicine, 118(6):436-447. Am Coll Physicians.

Vapnik, V. (1963). Pattern recognition using generalized portrait method. Automation and remote control, 24:774-780.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York, fourth edition. ISBN 0-387-95457-0.

Wang, T. J., Larson, M. G., Levy, D., Benjamin, E. J., Leip, E. P., Omland, T., Wolf, P. A., and Vasan, R. S. (2004). Plasma natriuretic peptide levels and the risk of cardiovascular events and death. New England Journal of Medicine, 350(7):655-663. Mass Medical Soc.

Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science \& Business Media.

Yamamoto, K., Burnett, J. C., Bermudez, E. A., Jougasaki, M., Bailey, K. R., and Redfield, M. M. (2000). Clinical criteria and biochemical markers for the detection of systolic dysfunction. Journal of cardiac failure, 6(3):194-200. Elsevier.

Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Drazner, M. H., Fonarow, G. C., Geraci, S. A., Horwich, T., Januzzi, J. L., et al. (2013). $2013 \mathrm{accf} /$ aha guideline for the management of heart failure: a report of the american college of cardiology foundation/american heart association task force on practice guidelines. Journal of the American College of Cardiology, 62(16):e147-e239. Journal of the American College of Cardiology.

Yang, G., Ren, Y., Pan, Q., Ning, G., Gong, S., Cai, G., Zhang, Z., Li, L., and Yan, J. (2010). A heart failure diagnosis model based on support vector machine. In Biomedical Engineering and Informatics (BMEI), 2010 $3 r d$ International Conference on, volume 3, pages 1105-1108. IEEE.

Zaphiriou, A., Robb, S., Murray-Thomas, T., Mendez, G., Fox, K., McDonagh, T., Hardman, S., Dargie, H. J., and Cowie, M. R. (2005). The diagnostic accuracy of plasma bnp and ntprobnp in patients referred from primary care with suspected heart failure: results of the uk natriuretic peptide study. European journal of heart failure, 7(4):537-541. Wiley Online Library.

Zhang, Z., hospital, S. R.-R. S., and university school of medicine, Z. (2018). CBCgrps: Compare Baseline Characteristics Between Groups. R package version 2.3.

Zolfaghar, K., Meadem, N., Teredesai, A., Roy, S. B., Chin, S.-C., and Muckian, B. (2013). Big data solutions for predicting risk-of-readmission for congestive heart failure patients. In Big Data, 2013 IEEE International Conference on, pages 64-71. IEEE.

Norges miljø- og biovitenskapelige universitet
Noregs milj \varnothing - og biovitskapelege universitet
Norwegian University of Life Sciences

[^0]: ${ }^{1}$ Fraction of blood ejected from the left ventricle of the heart with each contraction. Calculated as the left ventricle stroke volume (LVSV) divided by the left ventricle enddiastolic volume (LVEDV), i.e. $L V E F=L V S V / L V E D S$ (Cikes and Solomon, 2015)

[^1]: ${ }^{2}$ The American College of Cardiology Foundation/American Heart Association (ACCF/AHA) were the first to define HF with borderline ejection fraction as being patients with LVEF values between 41% to 49% (Yancy et al., 2013).

[^2]: ${ }^{1}$ We highly recommend reading Tripoliti et al. (2017) for a broader overview of the literature on the state-of-the-art ML techniques applied for the assessment of heart failure.

[^3]: ${ }^{2}$ A hormone, mainly secreted from the heart, that has important natriuretic and kaliuretic properties (excretion of sodium and potassium in the urine) (Pandit et al., 2011). In clinical practice it is found that brain NP (also called BNP) levels can be used to predict the risk of death and cardiovascular events (Wang et al., 2004).
 ${ }^{3}$ The recommended threshold levels are BNP levels $\geq 35 \mathrm{pg} / \mathrm{mL}$ or NTproBNP levels $\geq 125 \mathrm{pg} / \mathrm{mL}$, see e.g. Cowie et al. (1997), Yamamoto et al. (2000), Krishnaswamy et al. (2001), Zaphiriou et al. (2005), Fuat et al. (2006) and Maisel et al. (2008).
 ${ }^{4}$ Normal ventricular and atrial volumes and function (Aune et al., 2009).

[^4]: ${ }^{5} \mathrm{HRV}$ is the amount of heart rate fluctuations around the mean heart rate (van Ravenswaaij-Arts et al., 1993). The HRV can be assessed using R-waves produced by an EKG and reduced HRV is typically an established sign of HF (Ernst, 2016).

[^5]: ${ }^{7}$ Left ventricular hypertrophy (LVH): Thickening of the heart muscle of the left ventricle of the heart and/or Left atrial enlargement (LAE): Enlargement of the left atrium (LA) of the heart (Nagueh et al., 2009)
 ${ }^{8}$ Increased resistance to diastolic filling of one or both cardiac ventricles. In addition to structural abnormalities, physiological derangement of myocardial inactivation and relaxation (Grossman, 1990).

[^6]: ${ }^{9}$ We need to emphasize that the methods can also be called statistical learning methods/algorithms as they are often done so in the literature.
 ${ }^{10}$ The categories are also referred to as the two main types of ML, see e.g. Murphy (2012)

[^7]: ${ }^{11}$ A graph of ESV versus EDV, which has the clear advantage of yielding (nearly perfect) linear relationships (Beringer and Kerkhof, 1998).

[^8]: ${ }^{12}$ Information or data gathered at the beginning of a period about the patients from which possible succeeding variations are compared (Martin, 2015).
 ${ }^{13}$ Patients who participated for the whole duration of the research trial (Martin, 2015)

[^9]: ${ }^{\mathrm{i}}$ Note: n - number of observations, \#Na - number of missing data, Min - minimal, Max - maximal, \bar{x} - arithmetic mean, \widetilde{x} - median, s - standard deviation, q_{1} - first quartile and q_{3} - third quartile.

