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Abstract

In this thesis, we attempt to investigate how well various clustering algo-
rithms (hierarchical clustering, k-means and expectation–maximization)
perform in producing phenotypically distinct clinical patient groups (i.e.
phenomapping) with heart failure with preserved ejection fraction (HFpEF)
and mid-range ejection fraction (HFmrEF). Furthermore, we evaluate the
performance of various classification algorithms (k-nearest neighbours, lo-
gistic regression, naive Bayes, linear discriminant analysis, support vector
machines and random forest) in predicting patient mortality and readmis-
sion. All the algorithms were applied on a data set consisting of 375 patients
with symptomatic heart failure (HF) identified at a tertiary hospital in the
United Kingdom.

In the cluster analysis, we found that the hierarchical and k-means algo-
rithms show signs of clustering more mutually exclusive patient groups
with HF compared to the physicians. By examining the important attributes
of the participants enrolled at the start of the study, i.e. the baseline charac-
teristics. We found that the patient groups produced by these algorithms
had 62 significantly different baseline characteristics compared to 59 pro-
duced by the physicians.

In the classification of mortality and readmission, we found that linear
discriminant analysis (LDA) and logistic regression show promising po-
tential. That is, the level of accuracy for which the algorithms predicted
mortality and readmission rank high compared to the other algorithms
evaluated. LDA predicted mortality with approximately 69.9% accuracy
and readmission with 99.7%. Logistic regression had similar results with
approximately 69.6% accuracy for mortality and 98.7% for readmission.
Similar results are reported in the literature. Our findings lend support to
the idea that the application of such algorithms may help in better under-
standing the complex nature of a clinical syndrome such as heart failure.
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Ås, November 19, 2018

iii





Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 HF detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Subtype estimation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Supervised learning . . . . . . . . . . . . . . . . . . . 11
2.2.2 Unsupervised learning . . . . . . . . . . . . . . . . . . 14

2.3 Prediction of clinical outcomes . . . . . . . . . . . . . . . . . 17

3 Methodology 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Missing data . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Little’s test for MCAR . . . . . . . . . . . . . . . . . . 30
3.2.3 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Dimensional reduction . . . . . . . . . . . . . . . . . . 38

3.3 Clustering patient groups . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 k-means . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Expectation-maximization . . . . . . . . . . . . . . . . 43

3.4 Classifying clinical outcomes . . . . . . . . . . . . . . . . . . 44
3.4.1 k-nearest neighbours . . . . . . . . . . . . . . . . . . . 45
3.4.2 Logistic regression . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Linear discriminant analysis . . . . . . . . . . . . . . 48
3.4.5 Support vector machines . . . . . . . . . . . . . . . . 49

v



vi Contents

3.4.6 Random forest . . . . . . . . . . . . . . . . . . . . . . 50
3.5 k-fold cross-validation . . . . . . . . . . . . . . . . . . . . . . 51

4 Experiments 54
4.1 Cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 The binary clustering HF problem . . . . . . . . . . . 55
4.1.2 Analysis of post-diagnosis . . . . . . . . . . . . . . . . 58

4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Mortality classifier . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Readmission classifier . . . . . . . . . . . . . . . . . . 64

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion 69

A Data Description 71
A.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 R-packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Relevant plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Source code 97
B.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . 110
B.4 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.4.1 Consolidation . . . . . . . . . . . . . . . . . . . . . . . 116
B.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 143



List of Figures

2.1 ESC diagnostic algorithm of heart failure . . . . . . . . . . . 6
2.2 Comparison of HF serverity systems . . . . . . . . . . . . . . 19

3.1 Machine learning procedure adopted in the thesis . . . . . . 25
3.2 BEM procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Process flow clustering of patient groups . . . . . . . . . . . 56
4.2 Process flow classification of clinical outcomes . . . . . . . . 61
4.3 Binary classification results: mortality . . . . . . . . . . . . . 62
4.4 Binary classification results: readmission . . . . . . . . . . . 66

A.1 Missing values in HFpEF data set . . . . . . . . . . . . . . . . 90
A.2 Missing values in HFmrEF data set . . . . . . . . . . . . . . . 91
A.3 Binary clustering problem . . . . . . . . . . . . . . . . . . . . 92
A.4 HFpEF with Post-Diagnosis . . . . . . . . . . . . . . . . . . . 93
A.5 HFmrEF with Post-Diagnosis . . . . . . . . . . . . . . . . . . 94
A.6 HFpEF without Post-Diagnosis . . . . . . . . . . . . . . . . . 95
A.7 HFmrEF without Post-Diagnosis . . . . . . . . . . . . . . . . 96

vii



List of Tables

2.1 Literature review of HF detection . . . . . . . . . . . . . . . . 7
2.2 HF subtypes based on LVEF . . . . . . . . . . . . . . . . . . . 10
2.3 Literature review of HF subtype classification . . . . . . . . . 12
2.4 Literature review of HF subtype clustering . . . . . . . . . . 15
2.5 Literature review of prediction of HF outcomes . . . . . . . . 20

3.1 Clinical outcome classes . . . . . . . . . . . . . . . . . . . . . 27
3.2 Summary of missing values . . . . . . . . . . . . . . . . . . . 29
3.3 Little’s MCAR test . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Baseline characteristics of actual clustering . . . . . . . . . . 55
4.2 Baseline characteristics of Hierarchical and K-Means clustering 57
4.3 Baseline characteristics of EM clustering . . . . . . . . . . . . 58
4.4 Number of significant baseline characteristics . . . . . . . . . 59
4.5 Summary statistics for the mortality classification . . . . . . 63
4.6 Summary statistics for the readmission classification . . . . . 64

A.1 Phenotype domains used for clinical metrics . . . . . . . . . 71
A.2 Packages used in thesis . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Patient characteristics: HFpEF . . . . . . . . . . . . . . . . . . 74
A.4 Patient characteristics: HFmrEF . . . . . . . . . . . . . . . . . 75
A.5 Hierarchical clustering HFpEF based on post-diagnosis . . . 78
A.6 K-Means clustering HFpEF based on post-diagnosis . . . . . 79
A.7 EM clustering HFpEF based on post-diagnosis . . . . . . . . 80
A.8 Hierarchical clustering HFmrEF based on post-diagnosis . . 81
A.9 K-Means clustering HFmrEF based on post-diagnosis . . . . 82
A.10 EM clustering HFmrEF based on post-diagnosis . . . . . . . 83
A.11 Hierarchical clustering HFpEF without post-diagnosis . . . . 84

viii



List of Tables ix

A.12 K-Means clustering HFpEF without post-diagnosis . . . . . 85
A.13 EM clustering HFpEF without post-diagnosis . . . . . . . . . 86
A.14 Hierarchical clustering HFmrEF without post-diagnosis . . . 87
A.15 K-Means clustering HFmrEF without post-diagnosis . . . . . 88
A.16 EM clustering HFmrEF without post-diagnosis . . . . . . . . 89



Chapter 1

Introduction

Heart failure (HF) is a clinical syndrome typically associated with high
prevalence, high mortality, frequent hospitalization and overall reduced
quality of life (QoL). Approximately 65 million people are effected by HF
globally (Hay et al., 2017). With an aging population, it is expected that
the prevalence of HF is to increase. In developed countries, about 3-5%
of hospital admissions are linked with HF, accounting for about 2% of
the total health cost (Tripoliti et al., 2017). It is not unusual for HF to be
characterized as a global pandemic with prognosis being worse than that
of most cancers, see e.g. Braunwald (2015) and Savarese and Lund (2017).

In terms of clinical classification, there is no single ”universally agreed
upon” system for classifying the causes of HF. Typically HF manifests it
self as at least two major subtypes (Alonso-Betanzos et al., 2015). All being
commonly distinguished based on measures of the left ventricle ejection
fraction (LVEF)1. The first subtype encompasses patients with LVEF values
larger than or equal to 50%. These patients are characterized as having
HF with preserved ejection fraction (HEpEF). The second subtype includes
patients with LVEF values less than 40%, and are characterized as having
HF with reduced ejection fraction (HErEF). However, the European Society
of Cardiology (ESC) recently defined a third subtype with patients belong
to the ”gray zone” or the ”the middle child”, namely when the LVEF values

1Fraction of blood ejected from the left ventricle of the heart with each contraction.
Calculated as the left ventricle stroke volume (LVSV) divided by the left ventricle end-
diastolic volume (LVEDV), i.e. LVEF = LVSV/LVEDS (Cikes and Solomon, 2015)

1



2 Chapter 1. Introduction

lies between 40% and 49%2. These patients are defined as having HF with
mid-range ejection fraction (HFmrEF), see e.g. Lam and Solomon (2014)
and Ponikowski et al. (2016). Clinically clustering patients according to
HF subtypes and identifying HF patients most at risk of mortality and
readmission is something that remains challenging. Especially considering
that the 1-year mortality rates for acute HF across different regions in
Europa ranges from 21.6% to 36.5% (35.1% - 37.5% in the US), see e.g.
Cheng et al. (2014), Inamdar and Inamdar (2016) and Crespo-Leiro et al.
(2016). Patients with HFmrEF have also a clinical profile and prognosis
that is close to those of HFpEF who have LVEF values considered to be
normal. Current therapies have also shown to be unable to reduce both
morbidity and mortality in patients with HFmrEF and HFpEF, see e.g.
Ponikowski et al. (2016) and Hsu et al. (2017). All of which makes the
overall job of identifying and distinguishing these patients challenging. It
is also unknown if improving phenotypic classification is clinically useful
or even possible (Shah et al., 2014).

Nonetheless, the rapid increase in available medical data on patients
has led to machine learning (ML) techniques gaining widespread attention
by researchers. The application of such techniques is one that may offer
an opportunity to build better management strategies, as well as early
detection and better prediction of adverse effects associated with HF. Of
the ML techniques gaining most attention, one typically finds clustering
and classification methods being intensely studied. Accordingly, the use of
these ML techniques to identify distinct patient groups with post-diagnosed
HFmrEF and HFpEF most at risk of mortality and readmission, is one we
will try to examine to its full potential.

1.1 Problem statement

In this thesis, we investigate how well various clustering algorithms (hierar-
chical clustering, k-means and expectation–maximization) perform in pro-
ducing phenotypically distinct clinical patient groups (i.e. phenomapping)
with HFpEF and HFmrEF. Furthermore, we evaluate the performance of
various classification algorithms (k-nearest neighbours, logistic regression,

2The American College of Cardiology Foundation/American Heart Association (AC-
CF/AHA) were the first to define HF with borderline ejection fraction as being patients
with LVEF values between 41% to 49% (Yancy et al., 2013).



1.2. Thesis structure 3

naive Bayes, linear discriminant analysis, support vector machines and ran-
dom forest) in predicting the clinical outcomes mortality and readmission
among the patients studied. When evaluating the results, we compare the
clusters according to their level of homogeneity, i.e. the number of signif-
icantly different baseline characteristics between each patient group and
rank methods accordingly. For the classification of the clinical outcomes, we
evaluate the estimations based on the classification accuracy and Cohen’s
Kappa. The algorithms are validated with 10-fold cross-validation in order
to rank methods accordingly. All the models and techniques are applied on
a data set consisting of 375 patients with symptomatic HF identified at a
tertiary hospital in the United Kingdom.

1.2 Thesis structure

The thesis is divided into five chapters and proceeds as follows: The next
chapter (2) reviews the literature related to the application of ML tech-
niques for the assessment of heart failure. This is done to put the proposed
research in a relevant context. Chapter (3) details the methodology, includ-
ing presenting the data and the quality of the data. Preliminary analysis
of the data will also be dealt with in this chapter. This includes evaluating
and treating the data set based on methods of imputation and dimensional
reduction. Next, chapter (4) presents the results of the clustering compar-
isons and the prediction accuracy of the clinical outcomes classification,
with conclusive remarks found in chapter (5). The source code and relevant
statistical output can be found in the appendix.



Chapter 2

Background

The following chapter presents a thorough treatment of the literature on the
application of ML techniques for the assessment of heart failure1. Important
topics such as HF detection, subtype estimation and prediction of clinical
outcomes in the context of ML will be presented and explained.

2.1 HF detection

The ESC defines HF as a clinical syndrome caused by structural and/or
functional cardiac abnormality, resulting in a reduced cardiac output (CO)
and/or elevated intracardiac pressures at rest or during stress. It is typically
characterized by symptoms, such as breathlessness, ankle swelling and
fatigue that may be accompanied by signs, such as elevated jugular venous
pressure (JVP), pulmonary crackles and peripheral oedema (swelling in
lower limbs) (Ponikowski et al., 2016). HF prevents the heart from fulfilling
the circulatory demands from the body, due to its impairing abilities on the
ventricles to maintain the bodies hemodynamics (blood flow). As there is
no broad definitive industry accepted diagnostic test for HF, one finds in
clinical practice that medical diagnosis is done with a combination of care-
ful examinations (physical and historical) with assisting tests, such as blood
tests, chest radiography (chest X-ray, CXR), electrocardiography (EKG) and
echocardiography (cardiac echo), see e.g Henein (2010) and Son et al. (2012).
As a result of this, several criteria for determining the presence of HF have

1We highly recommend reading Tripoliti et al. (2017) for a broader overview of the
literature on the state-of-the-art ML techniques applied for the assessment of heart failure.

4



2.1. HF detection 5

been proposed, including the Framingham criteria (McKee et al., 1971),
the Boston criteria (Carlson et al., 1985), the Gothenburg criteria (Eriksson
et al., 1987) and the ESC criteria (Swedberg et al., 2005) (Roger, 2010). All
of which are widely used in clinical practise.

In a non-acute onset, the ESC has also defined an algorithm for diag-
nosing HF (Ponikowski et al., 2016). The algorithm is structured in the
following way: First, the probability of HF (p̂HF) is evaluated along three
dimensions:

(i) Prior clinical history: History of coronary artery disease (CAD) or
arterial hypertension, exposition to cardiotoxic drugs/ radiation, di-
uretic use (any substance that promotes the production of urine) or
orthopnea (shortness of breath when lying down)

(ii) Physical examination: Crackles/rales, bilateral ankle oedema (swelling
in both ankles), abnormal heart sounds/murmur, jugular venous di-
latation, laterally displaced/broadened apical beat (pulse felt at the
point of maximum impulse (PMI))

(iii) Abnormalities in electrocardiography (EKG)

If all elements along the three dimensions are normal/absent, p̂HF is es-
timated to be highly unlikely. If at least one element is abnormal, then
plasma Natriuretic Peptides (NP)2 should be measured in order to identify
patients who need echocardiography. Specifically, if the NP values are
above the exclusion threshold3 or should the assessment of NPs not be
routinely done in clinical practice then patients need to be forwarded for an
echocardiography. With the help of the cardiac echo, specialists can detect
abnormalities in the heart rhythm. Should the results of the plasma NP
or the echocardiography be normal4, then HF is also considered unlikely.
Should the results of the echo yield any abnormal results, appropriate
HF treatment should be initiated. The structure of the ESC algorithm is

2A hormone, mainly secreted from the heart, that has important natriuretic and kali-
uretic properties (excretion of sodium and potassium in the urine) (Pandit et al., 2011). In
clinical practice it is found that brain NP (also called BNP) levels can be used to predict
the risk of death and cardiovascular events (Wang et al., 2004).

3The recommended threshold levels are BNP levels ≥ 35pg/mL or NTproBNP levels
≥ 125pg/mL, see e.g. Cowie et al. (1997), Yamamoto et al. (2000), Krishnaswamy et al.
(2001), Zaphiriou et al. (2005), Fuat et al. (2006) and Maisel et al. (2008).

4Normal ventricular and atrial volumes and function (Aune et al., 2009).
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Echocardiography

HF unlikely :
Consider other
diagnosis

True False

True

False

Assessment of HF probability ( p̂HF)

True

False

1. Clinical History?
2. Physical Exam?
3. Abnormal EKG?

≥ 1 present =⇒ True 0 present =⇒ False

Assessment of
NP done in
clinical practice?

NTproBNP ≥ 125 pg
mL

BNP ≥ 35 pg
mL

If HF confirmed (based on all available data) :
determine aetiology and start appropriate treatment

Normal Echo?

Patient with suspected HF
(non− acute onset)

Figure 2.1: ESC diagnostic algorithm for the diagnosis of heart failure of non-acute
onset (Ponikowski et al., 2016, page. 2141).
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illustrated in the flow chart in Figure (2.1). Being that the ESC algorithm
is much used in clinical practice throughout the world, there is research
that suggest that the medical and economic benefits of applying ML in
the detection of HF should not be ignored. In the context of diagnosing
patients with HF, the benefits typically include: (i) less time consumption,
(ii) more support (large global community of ML practitioners in business
and academia) and (iii) same level of accuracy as conventional tools when
applied on available data. Many ML methods used to detect HF as a statis-
tical learning problem, fall in the category of supervised statistical learning
(see section 2.2.1). The relevant ones include expressing the detection of HF
as a two class classification problem, where the presence of HF is the output
of the classifiers. Methods including logistic regression, linear discriminant
analysis (LDA), Bayesian classifier, k-nearest neighbours (k-NN), random
forests (RF), boosting, support vector machines (SVM) and neural networks
(NN) are all very popular. As the response variable of the classification
problem is categorical, most ML studies tend to use measures of heart rate
variability (HRV)5 as the main predictors for distinguishing patients as nor-
mal or with HF (Tripoliti et al., 2017). Other predictors include parameters
from clinical tests (i.e. blood test, echo, EKG, chest radiography), clinical
variables (e.g. gender, age, blood pressure, smoking habit) and other lab-

Table 2.1: Literature review of HF detection

Author HRV? Method Data Features Evaluation

Masetic
and Subasi
(2016)

False SVM,
k-NN, NN,
RF

N = 28 (13
normal and
15 HF)

Response:
Normal &
HF.
Predictor:
Features
extracted
by EKG.

SVM:
Accuracy: 99.53%
k-NN:
Accuracy: 99.93%
NN:
Accuracy: 99.20%
RF:
Accuracy: 100.00%

Validation: 10-fold
cross validation

5HRV is the amount of heart rate fluctuations around the mean heart rate (van
Ravenswaaij-Arts et al., 1993). The HRV can be assessed using R-waves produced by an
EKG and reduced HRV is typically an established sign of HF (Ernst, 2016).
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Table 2.1: Literature review of HF detection (continued)

Author HRV? Method Data Features Evaluation

Liu et al.
(2014)

True SVM,
k-NN

N = 47 (30
normal and
17 HF)

Response:
Normal &
HF.
Predictor:
Short term
HRV
measure
(ST-HRV)

SVM:
Accuracy: 100.00%

Validation: Cross-
validation

Narin et al.
(2014)

True SVM,
k-NN,
LDA, NN

N = 83 (54
normal and
29 HF)

Response:
Normal &
HF.
Predictor:
ST-HRV

SVM:
Accuracy: 91.56%
k-NN:
Accuracy: 85.54%
LDA:
Accuracy: 85.54%
NN:
Accuracy: 89.15%

Validation: Leave-
one-ut cross valid-
ation.

Gharehcho-
pogh and
Khalifelu
(2011)

False NN N = 40 (26
normal and
14 HF)

Response:
Normal &
HF.
Predictor:
Gender,
age, blood
pressure,
smoking
habits.

NN:
Accuracy: 95.00%

Validation: Testing
set.

Yang et al.
(2010)

False Naive-
Bayes,
SVM, NNC

N = 153
(58 Nor-
mal, 30
HF-prone,
65 HF)

Response:
Non-HF
group
(Health or
HF-prone)
& HF.
Predictor:
clinical test
results

SVM:
Accuracy: 74.40%

Validation: Test set
of N = 90 subjects
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oratory findings. Relevant articles where one applies ML techniques to
address the statistical learning problem of detecting patients with HF is
shown in table (2.1). Some common evaluation measures used in such
research include: sensitivity (true positive rate), specificity (true negative
rate), accuracy6 and Cohen’s Kappa κ (Cohen, 1960). The accuracy is the
only evaluation measure reported in Table (2.1). We also need to emphasize
that as this particular statistical learning problem (i.e. detection of HF) is
outside of the scope of the problem statement mentioned in chapter (1), we
will not be pursuing a further literature review of this problem. However,
we highly recommend reading the likes of Tripoliti et al. (2017), Acharya
et al. (2017) or Awan et al. (2018), for a more up-to-date overview of the
literature on ML used for HF detection.

2.2 Subtype estimation

According to the ESC algorithm (Figure 2.1), once HF is confirmed and the
probability of HF is assessed and estimated to be likely, the next step is to
estimate the causes (aetiology) and the subtype of HF. The main definition
of HF subtypes is based on historical research. Most of the research done
after the 1990s emphasize estimating the subtype of HF patients based on
the measure of the left ventricle ejection fraction (LVEF). The two usual
ways of obtaining the LVEF values are through an echocardiography or
cardiac magnetic resonance imaging (CMR or cardiac MR) (Ponikowski
et al., 2016). In prior guidelines presented by the ESC, HFrEF and HFpEF
were the two main subtypes of HF (McMurray et al., 2012). The ESC did
however acknowledge that a gray zone existed between the two. As a
result of this a new subtype was introduced, namely HFmrEF. The ESC
did so in hopes of stimulating research into the underlying characteristics,
pathophysiology and treatment of this group of patients (Ponikowski et al.,
2016). Details about the criteria for the various HF subtypes are shown in
Table (2.2). The differences between HFmrEF and HFpEF are difficult to
distinguish. As mentioned, these two groups were previously classified as
HFpEF. Diagnosing HFpEF is a very complex process with the diagnosis of
chronic HEpEF being especially cumbersome in elderly patients with one
or more additional diseases (comorbidity). With the exception of the LVEF

6The fraction/proportion of true positives (sensitivity) or true negatives (specificity)
correctly identified (James et al., 2013).
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Table 2.2: HF subtypes based on LVEF (Ponikowski et al., 2016, page. 2137)

Criteria HFrEF HFmrEF HFpEF

1 Symptoms ± Signs Symptoms ± Signs Symptoms ± Signs

2 LVEF < 40% 40 ≤ LVEF < 50 50 ≤ LVEF

3 – 1. Elevated NP
levels (fig 2.1)

1. Elevated NP
levels (fig 2.1)

2. At least one
additional criteria:

2. At least one
additional criteria:

a) Relevant
structural heart
disease7

a) Relevant
structural heart
disease

b) Diastolic
dysfunction8

b) Diastolic
dysfunction

values, signs and symptoms between HFmrEF and HFpEF are often non-
specific and do not discriminate well between other clinical conditions.
LVEF ≥ 50% is also considered to be normal. The ECS has also underlined
the difficulties with an emphasis on the LVEF as the main discriminant
between HFmrEF and HFpEF. The cut-off at 50% is set arbitrary and in
clinical trials patients with LVEF between 40% and 49% are often classified
as HFpEF, see e.g. Kelly et al. (2015) and Ponikowski et al. (2016). The ESC
places an emphasis on additional objective measures of cardiac dysfunc-
tion in order to sufficiently discriminate the two subtypes, but currently
no gold standard exists. The hope of stimulating more research into the
characteristics of the patient group HFmrEF has fuelled much research into
the application of ML, to further advance the literature. The appeal from
the ESC into further research has also served as a motivation for much of
the research done. We have organized the literature review of the ”state-of-
the-art” research into two parts and have structured the literature based on
the statistical learning problem category, i.e. supervised or unsupervised.

7Left ventricular hypertrophy (LVH): Thickening of the heart muscle of the left ventricle
of the heart and/or Left atrial enlargement (LAE): Enlargement of the left atrium (LA) of the
heart (Nagueh et al., 2009)

8Increased resistance to diastolic filling of one or both cardiac ventricles. In addition
to structural abnormalities, physiological derangement of myocardial inactivation and
relaxation (Grossman, 1990).
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2.2.1 Supervised learning

In this thesis we use the terms machine learning (ML) and statistical learning
(SL) interchangeably. Even though the two are very closely linked, they
do differ in terms of emphasis and terminology. ML is defined as ”a set of
methods that can automatically detect patterns in data, and then use the uncovered
patterns to predict future data, or to perform other kinds of decision making under
uncertainty” (Murphy, 2012). SL on the other hand is often considered to be
the statistical framework of ML, and emphasize the importance of building
probabilistic models for the analysis and prediction of data in order to draw
inference, see e.g. Friedman et al. (2009), Murphy (2012), James et al. (2013)
and Wasserman (2013). Individuals of both camps (i.e. computer scientists
and statisticians) often use different language for the same thing. In this
thesis we refer to the underlying learning problem to be solved by a given
algorithm as a statistical learning problem. The actual algorithms used to
solve the SL problem are referred to as ML methods/algorithms9. This is
done in an effort to reduce confusion among the readers.

Most SL problems fall into one of two main categories, i.e. supervised
and unsupervised learning, see e.g. Friedman et al. (2009) and James et al.
(2013)10. The example of detecting HF we discussed in section (2.1) is typi-
cally a learning problem that falls into the supervised learning domain. For
each predictor(s) (input(s) or independent variable(s)) xi, i = 1, . . . , n there
is an associated response (output or dependent variable), yi. The objective
of supervised learning is to fit a model that relates the response (yi) to the
predictors (xi) (James et al., 2013). Supervised learning is the most common
category of SL problem in practice. Of the ML methods most used to solve
supervised SL problems, one typically mentions classification. The goal of
classification is to learn a mapping from the predictors (xi) to the response
(yi), where y ∈ {1, . . . , C}, with C being the number of classes. We can
formalize classification as a SL problem by referring to it as a functional
approximation problem. We assume that a functional form y = f (x) exists
for some unknown function f , and the goal of the learning process is to
estimate f given a training set with labeled and known values. We can
then use the estimated function ŷ = f̂ (x) to make predictions on a testing /
validation set (Murphy, 2012).

9We need to emphasize that the methods can also be called statistical learning method-
s/algorithms as they are often done so in the literature.

10The categories are also referred to as the two main types of ML, see e.g. Murphy (2012)
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The application of classification to estimate HF subtypes is a relatively
new approach. HF subtype estimation using ML in earlier research have
similarities with HF detection. Both subjects reduce the classification prob-
lem to a two class classification problem with the assumption that the
predicted responses are mutually exclusive. As C = 2, one often calls
this a binary classification problem. In which case one often assumes that
y ∈ {0, 1} (Murphy, 2012). Prior to the ESC introduction of HFmrEF as a
third subtype of HF, most ML research focused on classifying HF patients
according to the two common subtypes, i.e. HFrEF and HFpEF. A list of
some relevant literature can be found in Table (2.3). Most predictors are fea-
tures including measures of demographic characteristics, HRV, signs and
symptoms, vital signs, results of laboratory investigations and previous
medical history. Methods include bagging, boosting, random forest, supp-

Table 2.3: Literature review of HF subtype classification

Author Method Data Features Evaluation

Austin et al.
(2013)

Bagging,
Boost-
ing,
RF,
SVM

N = 8212 (3697
for training,
4515 for testing)

Response:
HFrEF & HFpEF.
Predictor:
Demographics,
vital signs,
symptoms, lab
investigation
and prev.
history.

Bagging:
Sensitivity: 45.1%
Specificity: 84.9%
Boosting:
Sensitivity: 87.6%
Specificity: 45.3%
Random Forest:
Sensitivity: 37.8%
Specificity: 89.7%
SVM:
Sensitivity: 40.1%
Specificity: 88.7%

Validation: Testing
set of 8339 subjects
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Table 2.3: Literature review of HF subtype classification (continued)

Author Method Data Features Evaluation

Alonso-
Betanzos et al.
(2015)

Naive-
Bayes,
SVM,
NNC

N = 111 (48 for
training, 63
Monte Carlo
simulated
instances for
testing)

Response:
HFrEF & HFpEF.
Predictor:
End-systolic
Volume Index.

Naive-Bayes:
Train error: 4.14%
Test error: 9.52%
SVM:
Train error: 2.08%
Test error: 4.76%
NNC (ib1, see Aha
et al. (1991)):
Train error: 2.08%
Test error: 4.76%

Validation: Testing
set of 63 instances.
10-fold cross valida-
tion.

Isler (2016) k-NN,
NN

N = 30 (18 with
HFrEF & 12
with HFpEF)

Response:
HFrEF & HFpEF.
Predictor: Short
term HRV
measures

k-NN:
Sensitivity: 87.5%
Specificity: 91.07%
Accuracy: 89.29%
NN:
Sensitivity: 93.75%
Specificity: 100.00%
Accuracy: 96.43%

Validation: Leave-
one-out cross-valid-
ation.

ort vector machines (SVM), naive-Bayes, nearest neighbour classifiers
(NNC), k-nearest neighbours (k-NN) and neural networks (NN). As classi-
fication methods are much used in the literature for HF subtype estimation,
we reserve the use of these methods to a later section dealing with the
prediction of clinical outcomes (see section 2.3). Supervised learning meth-
ods also assume a priori that there exists a response yi with a predefined
number of classes (C). Because of this we feel that such an application to
the problem of HF subtype estimation would fall outside the scope of the
problem statement mentioned in chapter (1). One of the main motivations
of this thesis is to investigate how well it is possible to produce pheno-
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typically distinct clinical patient groups using dense phentoypic data (i.e.
phenomapping). Given the motivation, we seek to better understand the
possible relationship between patient groups by placing an assumption of
no response variable to supervise our analysis. To answer this question, we
turn to the second main category of SL problems, namely unsupervised
learning.

2.2.2 Unsupervised learning

The main goal of unsupervised learning is to discover hidden structures in
the data that are not predefined. Sometimes it’s also refereed to as knowl-
edge discovery and is widely used, as it is arguably more typical for animal
and human learning. The formalization of unsupervised learning is often
done in the setting of unconditional density estimation, i.e. we want to build
models of the form p(xi|θ). Instead of a conditional setting as done with su-
pervised learning, i.e. p(yi|xi, θ), the use of unsupervised learning is often
considered to be more ”convenient” than supervised learning, as it does not
require an expert to manually label all the data (Murphy, 2012). This con-
venience is often stated as a major reason for the relevance of unsupervised
learning done for distinguishing phenotypical characteristics between HF
patient groups. Not to mention that there is no agreed-upon measure of
what distinguishes HF subtypes (see section 2.2). Furthermore, because
of the complex nature and high degree of heterogeneity of HF subtypes
such as HFpEF, the sole use of genetic information for helping to precisely
classify HF subtypes has often been seen as unlikely. Uncertain behavior by
weak genetic factors is very probable in eliciting disease phenotypes (Deo,
2015). This additional complexity is avoided by framing the SL problem in
the setting of unsupervised learning.

A lot of research has been conducted using unsupervised learning to
group HF patients into subtypes with phenotypically distinct character-
istics. Of the ML methods most used here, one typically finds clustering
methods. These methods are designed to find subgroups or clusters within
a data set. The goal of clustering is to partition the data set into distinct
groups with high degree of homogeneity and arranging the clusters into a
natural hierarchy (Friedman et al., 2009). A list of the newest literature on
the application of clustering methods for phenomapping of HF patients is
shown in Table (2.4). Of the clustering methods found here, one can men-
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Table 2.4: Literature review of HF subtype clustering

Author Method Data Features Results

Shah et al.
(2014)

Hierarchical,
model-based
clustering

N = 397 with
HFpEF

67 continuous
clinical
variables

The analysis
revealed 3 distinct
pheno-groups.

Ahmad et al.
(2014)

Hierarchical
clustering
(Ward’s
minimum
variance
method)

N = 2331
(1619 incl.,
712 excl.)

45 baseline
clinical
variables

Four clusters were
identified whose
patients varied
considerably along
measures of age,
sex, race, symp-
toms, comor-
bidities, HF
etiology, socio-
economic status,
quality of life,
cardiopulmonary
exercise testing
parameters, and
biomarker levels.

Alonso-
Betanzos et al.
(2015)

k-Means
clustering,
EM, SIBA.

3 Data sets:
D1: N = 48
(13 HFrEF, 35
HFpEF)

D2: n = 63
(29 HFrEF, 34
HFpEF)

D3: N = 403
(137 HFrEF,
150 HFpEF)

End-systolic
Volume
Index,
End-diastolic
volume index

Algorithms
generated dividing
patterns

Kao et al.
(2015)

Latent class
analysis
(LCA)

N = 4113
with HFpEF

11 prospect-
ively selected
clinical
features

Identified 6
subgroups of
HFpEF patients
with significant
differences in
event-free survival.
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Table 2.4: Literature review of HF subtype classification (continued)

Author Method Data Features Results

Ahmad et al.
(2016)

Hierarchical
clustering
(Ward’s
minimum
variance
method)

N = 433 (172
incl.)

29 baseline
clinical
variables

Four advanced HF
clusters were
identified.

The analysis was
done on patients
diagnosed with
acute decompen-
sated heart failure
(ADHF).

Katz et al.
(2017)

Hierarchical
clustering,
model-based
clustering

N = 1273 47 continuous
clinical
variables

Identified 2 distinct
groups that
differed markedly
in clinical
characteristics,
cardiac structure
/function, and
indices of cardiac
mechanics.

tion hierarchical, k-means and model-based clustering, such as expectation
maximization (EM), sequential information bottleneck algorithm (SIBA)
and latent class analysis (LCA). Addressing phenomapping within an un-
supervised setting started with Ahmad et al. (2014) and Shah et al. (2014).
The latter employed the use of hierarchical and penalizing model-based
clustering to distinguish HFpEF patients. The analysis was done on 67 con-
tinuous variables including clinical, laboratory, electrocardiographic and
echocardiographic features. The results suggest that HFpEF patients can
be clustered into three distinct pheno-groups with meaningful, clinically
relevant categories.

Ahmad et al. (2014) did a similar analysis using 45 baseline clinical vari-
ables on a much larger data set consisting of 1619 patients with chronic HF
(i.e. both HFrEF and HFpEF). The study identified four clusters of patients
which varied considerably along measures of demographics, symptoms
and comorbidities. The study underscored the high degree of disease
heterogeneity that exists within chronic HF patients and the need for im-
proved phenotyping of the syndrome. Alonso-Betanzos et al. (2015) used a
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somewhat different approach for phenomapping HF patient groups. Their
objective was to use ML techniques to discriminate between patients with
preserved EF and those with reduced EF using the concept of the Volume
Regulation Graph (VRG)11. The authors evaluated three clustering meth-
ods (i.e. k-means, EM and SIBA) and found that the algorithms generated
dividing patterns. Kao et al. (2015) used latent class analysis (LCA) on a
data set of 4113 HFpEF patients along 11 prospectively selected clinical
features. The use of LCA is in many ways different from other clustering
algorithms as it does not require continuous variables. It is optimized for
analyzing categorical variables and identifies clusters based on several
traits rather than a single trait. With the use of LCA the authors identified
6 subgroups of HFpEF patients with significant differences in event-free
survival. Other authors like Katz et al. (2017) and Ahmad et al. (2016)
have organized their research along different phenomapping objectives.
The latter addressed phenomapping on patients diagnosed with acute de-
compensated heart failure (ADHF), and Katz et al. (2017) on the systemic
hypertensive patients with myocardial substrate (i.e. abnormal cardiac
mechanics). As the two studies have a different phenomapping objective
from the ones mentioned earlier, they still managed to identify four and
two respective patient groups with acute ADHF and systemic hypertension
with myocardial substrate, respectively.

The number of studies done on phenomapping HF patients is significant
and as evident from Table (2.4), the results vary considerably with respect
to the optimal number of clusters. This is something that this thesis will try
to address by re-evaluating a number of the clustering methods used in the
literature, but along a single phenomapping objective. Before that time, we
move on to reviewing the literature associated with the second objective of
the problem statement, namely predicting clinical outcomes due to HF.

2.3 Prediction of clinical outcomes

As we mentioned in chapter (1), HF is a syndrome that globally effects
approximately 65 million people (Hay et al., 2017). In addition to the high
prevalence and overall reduced quality of life (QoL), one cannot but men-
tion the many serious clinical outcomes. This includes, but is not limited

11A graph of ESV versus EDV, which has the clear advantage of yielding (nearly perfect)
linear relationships (Beringer and Kerkhof, 1998).
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to mortality, morbidity, destabilization and readmission. These outcomes
effect not only the patients and their families, but also the society. The
patients and their families are effected by the many constraints that HF
places on family life and an overall reduction in QoL. With the emotional
dimensions often being more important than the physical dimensions
(Dunderdale et al., 2005), the society is effected by the many economic
consequences, such as an increase in the burden and cost of national health
care expenditures. The main economic driver of costs related to HF being
that of hospitalization, where about 60-70% of HF costs are related to in-
patient care and almost 20% to primary care (Braunwald, 2015). The use
of prognostics can assist in the monitoring and treatment of HF patients,
with the goal of improving the quality of care and the outcomes of patients
hospitalized with HF (Tripoliti et al., 2017).

Conducting good prognostics is often conditional on estimating the
severity of HF for a given patient. Accordingly, the two most used classifi-
cation systems for the severity estimation, is the New York Heart Associ-
ation (NYHA) Functional Classification (NYHA, 1994) and the American
College of Cardiology/American Heart Association (ACC/AHA) stages of
HF (Hunt et al., 2001). The NYHA system places the patients in one of four
categories based on how much they are limited during physical activity and
is based on symptoms as well as physical activity. The ACC/AHA system
on the other hand structures HF stages based on structural changes to the
heart and symptoms. Both systems provide complementary information
about the presence and severity of HF. The various stages and classes of the
two systems are shown in Figure (2.2). Being that the NYHA classification
system is based on subjective evaluation, it has been criticized because of
a lack of taking into account the variability that can occur within patient
groups. Furthermore, with the ACC/AHA system there is no moving
backwards to prior stages, i.e. ones a patient is assigned a HF stage. The
patient can never again achieve a different prior stage. With the NYHA
it’s different as patients can move between classes relatively quickly, as
these are all based on symptoms alone, see Fleg et al. (2000) and Yancy
et al. (2013). Most studies address HF severity estimation by expressing the
statistical learning problem as a two or three class classification problem.
The use of ML to address this particular SL problem will not be pursued, as
the focus will be on the second objective of the problem statement, namely
the prediction of clinical outcomes. However, the use of severity estimation
is very important as it serves as complementary information for medical
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ACC/AHA :

STAGE A

At high risk for HF
but without structu−

ral heartdisease or
symptoms of HF

STAGE B

Structural heart
disease but without
signs or symptoms

STAGE C

Structural heart
disease with prior

or current symptoms

STAGE D

Refractory HF
requiring specialized

interventions

NYHA :

CLASS I

No limitation of phy−
sical activity. Ord−
inary physical acti−
vity does not cause

symptoms of HF.

CLASS II

Slight limitation of
physical activity.

Comfortable at rest,
but ordinary

physical activity
results in symptoms.

CLASS III

Marked limitation of
physical activity.

Comfortable at rest,
but less than ordinary
activity causes symp−

toms of HF.

CLASS IV

Unable to carry
on any physical
activity without
symptoms of HF,
or symptoms of

HF at rest.

Figure 2.2: Comparison of ACCF/AHA Stages of HF and NYHA Functional
Classifications (Yancy et al., 2013, page. 1502).

practitioners to give objective prognostics about HF patients. A lot of
studies have been conducted on the use ML to estimate HF severity, and
again we recommend reading Tripoliti et al. (2017) for a further overview
of the literature. As for the prediction of clinical outcomes it’s especially
readmission and mortality that has gained a lot of interest by researchers.
Readmission is important because of the negative impact on healtcare sys-
tems’ budgets. Mortality is obviously important as HF is one of the leading
causes of death worldwide. The use of prediction models for mortality can
benefit both physicians and patients. The literature is full of models taking
into account various factors in producing statistics that have the objective
of predicting mortality. Some of the most used statistical methods include
the Kaplan-Meier estimator (Kaplan and Meier, 1958) and multiple variable
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Cox proportional hazard models (Cox, 1972). All of which have lead to
the formation of multiple scores that estimate the risk of mortality that are
much used in clinical practice. Examples include: The enhanced feedback
for effective cardiac treatment (EFFECT) score (Lee et al., 2003), the Seattle
heart failure model (Levy et al., 2006), the get with the guidelines (GWTG)
score (Peterson et al., 2010) and the heart failure survival score (Ketchum
and Levy, 2011). A small list of the relevant literature related to the applica-

Table 2.5: Literature review of prediction of HF outcomes

Author Outcome Method Data Features Evaluation

Austin
et al.
(2012)

Mortality Logistic
regression
Logistic,
Bagged
and
Boosted
trees.
Random
Forrest

Baseline:
N = 9945
(8240 incl.)
Followup:
N = 8339
(7608
incl.)

Response:
Whether
30-day
death in
hospital
Predictors:
34 clinical
variables

Logistic regression:
(Splines)
AUC: 0.786
R2: 0.203
Brier’s score: 0.119
Boosted regression:
(depth four)
AUC: 0.777
R2: 0.180
Brier’s score: 0.107

Validation:
Follow-up sample
used as validation.

Zolfaghar
et al.
(2013)

Re-hosp-
italization

Logistic
regression
Random
Forrest

No. of
data:
1681562.

Response:
30-day
risk of re-
admission.
Yes or No
Predictor:
more than
100 featur-
es

Logistic regression:
Accuracy: 78.03%
Random Forest:
Accuracy: 87.12%

Validation:
70% training
30% testing

Shah et al.
(2014)

Mortality
& Re-hos-
pitaliza-
tion

SVM N = 397
with
HFpEF

Response:
mortality
and re-
admission:
Yes or No.
Predictor:
67 features

Mortality:
Precision: 60.90%
Re-hospitalization:
Precision: 63.60%
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Table 2.5: Literature review of prediction of HF outcomes (continued)

Author Outcome Method Data Features Evaluation

Panahiazar
et al.
(2015)

Mortality Logistic
Regres-
sion
Random
Forest

N = 5044 Response:
1, 2 and 5
yr survival
Predictor:
45 clinical
variables

1-year:
Log Regression:
AUC: 81.00%
Random Forest:
AUC: 80.00%
2-year:
Log Regression:
AUC: 74.00%
Random Forrest:
AUC: 72.00%
5-year:
Log Regression:
AUC: 73.00%
Random Forrest:
AUC:72.00%

Validation: Testing
set of 3484 patients.

Koulaouz-
idis et al.
(2016)

Re-hosp-
italization

Naive
Bayes
classifier

N = 308 Response:
High or
Low Risk
of HF
hospital-
ization
Predictor:
25 clinical
variables

Naive Bayes
classifier:
AUC: 82.00%

Validation:10-fold-
cross-validation

tion of ML for predicting readmission and mortality is shown in Table
(2.5). One of the first to use ML methods for this particular SL problem
was Austin et al. (2012). They investigated predicting the 30-day mortality
using a binary variable to denote whether a patient died within 30 days of
hospital admission. Methods used include: Logistic regression, boosted
regression and Random forest. The researchers used the methods on a
total of 8240 baseline patients12 and 7608 follow-ups13. The results seem to

12Information or data gathered at the beginning of a period about the patients from
which possible succeeding variations are compared (Martin, 2015).

13Patients who participated for the whole duration of the research trial (Martin, 2015)



22 Chapter 2. Background

suggest that logistic regression and boosted regression trees are the most
accurate with an area under the curve (AUC) of 0.786 and 0.777 respectively.
Zolfaghar et al. (2013) applied logistic regression and random forest to
predict 30 day risk of readmission. This was done on a data set consisting
of 1 681 562 patients. The predictors of the analysis contained more than
100 features. The accuracy was 78.03% and 87.12%, with 70% of the data set
being reserved for training and 30% for testing. Shah et al. (2014) analyzed
the prediction of both readmission and mortality on 397 patients and 67
clinical variables using support vector machines (SVM). The precision of
mortality and readmission were 60.90% and 63.60%. As is evident from
Table (2.5), the accuracy and precision of the prediction models using ML
methods varies throughout the various studies. Along with the variability
in the number of optimal clusters mentioned in section (2.2.2), we’ll also try
to address this point by again re-evaluating the performance of a number
of classification algorithm related to the SL problem of predicting clinical
outcomes.



Chapter 3

Methodology

In this chapter, we present the methodology and research structure used
in this thesis. Some pre-processing of data, including imputation and di-
mensional reduction, will also be presented and explained. A high level
description of the implementation details of the ML algorithms that pro-
duces the results are also presented in this chapter.

3.1 Overview

As stated in chapter (1), the aim of the thesis is split into two parts. The
first part is seeing how well various clustering methods perform in pro-
ducing phenotypically distinct clinical patient groups with HFpEF and
HFmrEF. We frame the SL problem in the setting of unsupervised learning
and accordingly use the following clustering methods: hierarchical clus-
tering, k-means and expectation-maximization to evaluate which produce
the most mutually exclusive patient groups. The use of these clustering
methods are common in the literature (see section 2.2.2) and serves as the
main motivation for including them in our analysis. The second part of
the problem statement looks at evaluating the accuracy of various classifi-
cation algorithms in predicting the mortality and readmission of patients
with post-diagnosed HF. In accordance with the literature as presented in
section (2.3), we reduce the SL problem of predicting the mortality and
readmission into a two class classification problem where both classes of
outcomes are whether or not mortality/readmission occurred. The classifi-
cation algorithms that will be evaluated are k-nearest neighbours (k-NN),

23



24 Chapter 3. Methodology

logistic regression, naive-bayes, support vector machines (SVM), linear
discriminant analysis (LDA) and random forest (RF). All the algorithms are
much used in the literature. The motivation behind the use of the chosen
algorithms, has always been to confirm the practices done in the literature.
We do, however, need to emphasize that many additional algorithms exist
that can be used to further broaden the analysis done in this thesis. We
have not done this due to time limitations.

The machine learning procedure adopted in this thesis is illustrated in
Figure (3.1). The procedure starts by pre-processing the data. This pre-
processing step consists of three sub processes: consolidation, imputation
and dimension reduction. The consolidation process merges the HFpEF
and HFmrEF datasets into one data set with the same types of variables.
In addition to having one data set with all the observations, the process
also leaves the data separate (but with equal variables), so that an analysis
on each separate data set can be done. Furthermore, the clinical outcomes
of the patients in the data set are extracted by this process and stored for
later use in the classification part of the thesis. The imputation process
imputes missing data to ensure that the data is balanced, and the dimen-
sional reduction process (principal component analysis (PCA)) addresses
eventual problems with higher dimensional multi-correlated variables. The
pre-processing step is explained in further detail later in this chapter (see
section 3.2). After the pre-processing is done, the procedure continues
by first addressing the cluster analysis. We use the principal components
derived from the dimension reduction process as input into the clustering
algorithms evaluated. The cluster analysis runs the produced components
through the three cluster algorithms (hierarchical clustering, k-means and
expectation maximization). After the procedure is done, three sets of clus-
ters are produced. The next step is to evaluate the clusters by assessing
their level of homogeneity. This is done by comparing the number of sig-
nificantly different baseline characteristics.

The supervised classification track is structured in a somewhat different
way. The imputed data is run through the six classification algorithms
(k-NN, LR, NB, LDA, SVM and RF). The data is trained with principal
component analysis and validated with 10-fold cross-validation to produce
approximately unbiased estimates of the test errors/accuracy. The accu-
racy are also adjusted by means of the Cohens’ Kappa κ. After the data is
run thought the classification process and the accuracy is calculated, the
algorithms are ranked and evaluated accordingly. The outputs of the whole
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Figure 3.1: Machine learning procedure adopted in the thesis
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ML procedure are i) clinical clusters that may have distinct phenotypical
properties and ii) the accuracy of the various classification algorithms in
predicting readmission and mortality in the data sets. All the processes
mentioned in the ML procedure in Figure (3.1) are developed using the
R statistical programming language (version 3.4.4 - Someone to Lean On)
(R Core Team, 2018a) with RStudio as the integrated development envi-
ronment (IDE), version 1.1.423 (RStudio Team, 2018). We use a number of
external libraries and self-made algorithms in order to make the whole re-
search process more efficient. Data description with variable explanations,
descriptive statistics and some relevant plots can be found in appendix
(A). The source code used to produce all the results in this thesis, can also
be found in appendix (B). As we now have given an overview of the ML
procedure used in this thesis, we move on to presenting the data.

3.2 Data

The data used is comprised of two data sets (data use HFpEF.mat, dim:
193× 92 and data use HFmrEF.mat, dim: 182× 87). Since both data sets
have different types of clinical variables, we consolidated the data into
three main data sets with the same number and types of variables:

(i) Full sample (HFfullDataSet.Rdat, dim: 374× 55)

(ii) HFpEF sample (HFpEFdataSet .Rdat, dim: 193× 55)

(iii) HFmrEF sample (HFmrEFdataSet.Rdat, dim: 182× 55)

The data was collected by the medical staff at a tertiary hospital in the
United Kingdom. At this particular hospital NT-proBNP led heart failure
service were run on all patients with suspected heart failure. All patients
with suspected HF based on an assessment of the HF probability and raised
NT-proBNP/BNP levels (see Figure 2.1) were included and forwarded for
an echocardiography. An expert HF physician reviewed all the patients
after the echocardiography was performed. The patients were diagnosed
with HF according to the 2016 ESC guidelines (Ponikowski et al., 2016). Ac-
cordingly, signs and symptoms of HF, raised NP values, echocardiographic
results including left ventricular ejection fraction (LVEF) and evidence of
structural or functional heart abnormalities were the primary basis for the
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assessment done by the hospitals cardiac physicians. After the diagnosis,
patients were categorized based on LVEF following the ESC guidelines,
i.e. patients with LVEF > 50% were classified as HFpEF and those with
40 ≤ LVEF < 50 as HFmrEF. The patients with LVEF < 40%, greater than
moderate valvular heart disease and prior cardiac transplantation were
excluded. The data was collected over a one-year period from October
10th 2014 to October 9th 2015. In total 375 patients were analyzed over this
one-year period with data from almost 100 clinical features being recorded.
The outcomes were evaluated through the hospital databases and mortality
was confirmed with the Office for National Statistics. All the data was
collected as part of the hospitals approved Clinical Audit. As mentioned in
the previous section, we reduced the SL problem in the supervised learning
part of the ML procedure to a two-class classification problem. The way
this was done was with respect to the various patient groups in the data.
The patients were grouped based on various outcomes. In total six outcome
categories were defined in the data sets. The outcome categories are as
follows: IN - inhospital mortality, Z mortality within 30 days, Y - mortal-
ity within 1 year, X - mortality by Fluorouracil (medication), V - cardiac
readmission within 30 days, U - readmission and R - the rest. The various
combinations of the outcome classes found in the data sets, and the way in
which they were classified, are listed in Table (3.1). From this table, we can

Table 3.1: Clinical outcome classes

PANEL I: Full Sample (HFfullDataSet.Rdat)

Group Mort? Readm? n % Tot

R no no 186 0.496
U no yes 59 0.157
X, R yes no 29 0.077
Y yes no 16 0.043
IN yes no 15 0.040
V no yes 15 0.040
Y, U yes yes 13 0.035
X, U yes yes 11 0.029
Y, V yes yes 11 0.029
X yes no 9 0.024
Z yes no 7 0.019
X, V yes yes 3 0.008
Z, V yes yes 1 0.003
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PANEL II: Outcome Classes by Clinical Syndrome

HFpEF (HFpEFdataSet.Rdat) HFmrEF (HFmrEFdataSet.Rdat)

Group Mort? Readm? n % Tot Group Mort? Readm? n % Tot

R no no 85 0.440 R no no 101 0.555
U no yes 40 0.207 U no yes 19 0.104
X, R yes no 29 0.150 Y yes no 15 0.082
V no yes 10 0.052 IN yes no 8 0.044
IN yes no 7 0.036 X yes no 8 0.044
Y, U yes yes 7 0.036 Z yes no 7 0.038
Y, V yes yes 7 0.036 Y, U yes yes 6 0.033
X, U yes yes 6 0.031 V no yes 5 0.027
X yes no 1 0.005 X, U yes yes 5 0.027
Y yes no 1 0.005 Y, V yes yes 4 0.022

X, V yes yes 3 0.016
Z, V yes yes 1 0.005

see that approximately 36.8% of all the patients in the HFpEF data set were
readmitted in some form, i.e either within 30 days or more. In the HFmrEF
data set, this number was somewhat smaller being approximately 23.4%. In
the full sample, approximately 29.1% of the patients were readmitted. The
number also differed with respect to whether the patients were confirmed
deceased or not. In the HFpEF data set, approximately 29.9% of the patients
had confirmed mortality and in the HFmrEF data set this number was
31.1%. For the full sample, the number is approximately 30.7%. Further
descriptive statistics on the data can be found in appendix (A.3). The source
code for the two-class outcome classification shown in Table (3.1), can be
found in appendix (B.3). As the data used in this thesis is cross-sectional,
we need to emphasize that it is not ideal. Limitations to the data sets are
many and one of the most relevant one is that of missing data.

3.2.1 Missing data

Missing values in data is a very important concept in data management
and a highly prevalent problem in any data analysis. If one does not handle
missing values properly, this may lead to inaccurate or invalid inference
being drawn from the data. Results where improper treatment of missing
data is present may differ significantly from those where missing data is
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Table 3.2: Summary of missing values

PANEL I: Full Sample (HFfullDataSet.Rdat)

Variable (V) #Na %n %Na %V

grand.tot 3081 0.149 1.000

irondef 254 0.012 0.082 0.677
ferritin 250 0.012 0.081 0.667
bmiadmission 223 0.011 0.072 0.595
ironlevels 210 0.010 0.068 0.560
tsat 210 0.010 0.068 0.560
timetohfadm 184 0.009 0.060 0.491
pasp 181 0.009 0.059 0.483
admissionwgt 164 0.008 0.053 0.437
ecgqrsduration 141 0.007 0.046 0.376
obesity 137 0.007 0.044 0.365

HFpEF (HFpEFdataSet.Rdat) HFmrEF (HFmrEFdataSet.Rdat)

Variable (V) #Na %n %Na %V Variable (V) #Na %n %Na %V

grand.tot 973 0.092 1 grand.tot 2108 0.211 1

irondef 124 0.012 0.127 0.642 bmiadmission 178 0.018 0.084 0.978
timetohfadm 124 0.012 0.127 0.642 admissionwgt 131 0.013 0.062 0.720
ferritin 122 0.011 0.125 0.632 irondef 130 0.013 0.062 0.714
tsat 99 0.009 0.102 0.513 obesity 129 0.013 0.061 0.709
ironlevels 98 0.009 0.101 0.508 ferritin 128 0.013 0.061 0.703
pasp 71 0.007 0.073 0.368 breathless 127 0.013 0.060 0.698
bmiadmission 45 0.004 0.046 0.233 ironlevels 112 0.011 0.053 0.615
ee 41 0.004 0.042 0.212 tsat 111 0.011 0.053 0.610
ecgqrsdura-
tion

36 0.003 0.037 0.187 pasp 110 0.011 0.052 0.604

ecgrate 34 0.003 0.035 0.176 ecgqrsduration 105 0.010 0.050 0.577

not present. In medical research, it is not uncommon for patient data to be
missing. Missing data from patients clinical variables are typically defined
as the values that are not directly observed (Ibrahim et al., 2012). Data can
be missing due to a number of reasons. In clinical research some reasons
may include: poor communication with study subject, difficulties assessing
the clinical outcomes, lack of consolidation from test, duration of trial
etc. The latter is often a reason for missing data, as longer trials tend to
produce more risk of missing data. Especially considering that patients
often run the risk of being dropped from the studies before completion
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(Myers, 2000). In our data sets, the problem with missing values is very
much present. In the full data set, a total of 3081 observations are missing
accounting for about 14.9% of the total data set. The main non-indicator
variables accounting for the highest amount of this number is the lack of
registering ferritin levels (ferritin, 8.1% of missing), BMI at admission
(bmiadmission, 7.2%), ironlevels (ironlevels, 6.8%), transferrin saturation
(tsat, 6.8%), time of HF admission (timetohfadm, 6%), pulmonary artery
systolic pressure (pasp, 5.9%), weight at admission (admissionwgt, 5.3%)
and ECQ QRS duration (ecgqrsduration, 4.6%). We can also look at the
missing values in both sub data sets. In the HFpEF data set a total of 973
observations, i.e. approximately 9.2% of the data set is missing. Of the
non-indicator variables, the largest contributors can be attributed to the
failure of registering time to HF admission (timetohfadm, 12.7% of missing),
ferritin levels (ferritin, 12.5%), transferrin saturation (tsat, 10.2%), iron
levels (ironlevels, 10.1%), pulmonary artery systolic pressure (pasp, 7.3%),
registering body-mass-index (BMI) at admission (bmiadmission, 4.6%), E/e’
ratio (ee, 4.2%), ECQ QRS duration (ecgqrsduration, 3.7%) and ECG rate
(ecgrate, 3.5%). These variables contribute to approximately 68.8% of the
missing values in the HFpEF data. In the HFmrEF data set, the picture is
very much different. In general, we can say that this data set has a much
larger presence of missing values even though the clinical variables used in
both sets are the same. In total 2108 observations, i.e. approximately 21.1%
of the data is missing. The largest non-indicator contributors are: inability
to record the body mass index (BMI) at admission (bmiadmission, 8.4%),
the weight of patients at admission (admissionwgt, 6.2%), ferritin levels
(ferritin, 6.1%), iron levels (ironlevels, 5.3%), transferrin saturation
(tsat, 5.3%), pulmonary artery systolic pressure (pasp, 5.2%) and ECQ QRS
duration (ecgqrsduration, 5%). These variables account for 41.1% of the
missing values in the HFmrEF data. An overview of the variables with the
most missing values in each data set can be found in Table (3.2).

3.2.2 Little’s test for MCAR

The presence of missing values has to be addressed by any individual
conducting data analysis. Missing values may make the data corrupted
and introduce statistical bias that may lead to invalid results and inferences.
This is vital for us as many of the statistical methods used later in this thesis
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cannot be conducted in the presence of missing values. When talking about
missing values one typically mention three distinct types of missing values,
see e.g. Sterne et al. (2009) and Kaushal (2014) for further explanation.
These are as follows:

(i) Missing completely at random (MCAR): This type assumes that there
is no systematic difference between the missing values and the ob-
served values. An example can be if blood pressure values are missing
due to breakdown in automatic sphygmomanometer, or if blood sugar
values are missing due to a non working glucometer.

(ii) Missing at random (MAR): The second type of missing values as-
sumes that any difference between the missing values and the ob-
served values can be explained by differences in the observed values.
Again, an example can be that missing blood pressure values or blood
sugar values may be lower than the measured values, but only be-
cause younger people may be more likely to have missing blood
pressure and blood sugar as missing.

(iii) Missing not at random (MNAR): The last and final type assumes that
even after the observer data are taken into account, the systematic
differences between the observed and missing values are still present.
An example can be that people with high values of blood pressure
or blood sugar may be less likely to attend an appointment due to
headache.

MNAR can only be speculated and thus never determined, see e.g. Rubin
(1976), Schafer and Graham (2002) and Moons et al. (2006). In our data, we
assume that the missing data is at least missing at random (MAR). This
is an assumption that many in the literature place on their data without
any attempt at supplying some arguments to support such an assumption.
To this we have carried out Little’s MCAR test (Little, 1988) on our data
(separately on indicator and continuous variables). The test is structured
with the following three steps :

(i) The test starts by using the expectation-maximization (EM) algorithm
(Dempster et al., 1977) to estimate the maximum likelihood of the
population mean µ̃obs,j and variance-covariance matrix Σ̃obs,j. Here
one enters the Y : N × p matrix of data into the EM algorithm.
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(ii) Next step is to create a set of matrices Sj for j = 1, . . . , J where each
matrix of the data set consists of all cases that are identified with
particular missing patterns (0 = not-missing and 1 = missing). Define
mj to be the number of cases that belong to a given missing response
pattern in Sj. From these J − 1 cases, calculate the observed vector of
means ŷobs,j for each random response pattern.

(iii) The final step comprises of calculating the difference between the
observed means in step 2 with the estimated EM-means from step 1
weighted by mj and the inverse variance-covariance matrix to obtain
the following test statistics:

d2 =
J∑

j=1
mj
Ä
ŷobs,j − µ̃obs,j

ä
Σ̃−1

obs,j

Ä
ŷobs,j − µ̃obs,j

äT (3.1)

Little (1988) showed that d2 is asymptotically χ2-distributed with f =∑J
j=1 pj − p degrees of freedom, where pj is the number of observed vari-

ables for cases in Sj. Thus, with the use of d2, a large-sample test of the
MCAR assumption compares d2 with a chi-squared distribution with f
df can be done, and rejecting the null hypothesis when d2 is large. Fol-
lowing this procedure, we have carried out Little’s MCAR test and the
results are presented in Table (3.3). The results were produced using the
function LittleMCAR() in the r package BaylorEdPsych (Beaujean, 2012).
We removed the variables that had more than 15% missing values from the

Table 3.3: Little’s MCAR test

num col missing.patterns Chi.squared (χ2) df p-value

Panel I: Full Sample

indicator 24 27 273.7770 242 0.07844
continuous 14 15 96.3276 96 0.47141

Panel II: HFpEF

indicator.1 26 16 103.7992 109 0.62273
continuous.1 17 14 101.7398 103 0.51661

Panel III: HFmrEF

indicator.2 24 19 141.8979 135 0.32518
continuous.2 14 11 53.9340 51 0.36284
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HFpEF data set, 25% from the HFmrEF data set and 20% from the full data
set (see table 3.2 for top 10 missing variables). Next, we split the variables
into two data sets, one for the continuous variables and one for the indicator
variables. We also removed the variables that had near zero variance using
the nearZeroVar() function in the caret package (Kuhn et al., 2018). As
remarked by Beaujean (2012), the LittleMCAR() function can be very time
inefficient for data sets with more than 50 variables. This time inefficiency is
why we split the data sets into the two subsets, i.e. continuous and indicator
and thus conducted separate tests on both subsets. The test assumes that
the data is MCAR, and this is accordingly the null-hypothesis. From Table
(3.3), we can see that all the p-values are insignificant at 5% significance
level. This suggests that we cannot reject the null hypothesis of the missing
data being MCAR. However, as argued by Allison (1999), just because the
data passes this test, does not mean that the MCAR assumption is satisfied.
The assumptions for MCAR are strong, and a simple test such as the one
suggested by Little (1988) does not in and of itself satisfy those assumptions.
It merely lends evidence in its support, and given the test results presented
in Table (3.3), we consider this assumption to be intact. When it comes to
the question regarding missing values, there exists many ways of dealing
with this problem. Each of these ways have different advantages as well
as disadvantages. One of the most common way of dealing with missing
values is through the use of imputation techniques. This is something we
will present in the next section.

3.2.3 Imputation

There exists a wide variety of methods that fall under the class of impu-
tation. In general, all methods that attempt to replace each missing value
in a data set with an estimate or a guess, are typically classified as being
an imputation method (Allison, 1999). A very popular and conventional
method of imputing missing values is through the use of mean imputa-
tion. This method implies swapping each missing value with the mean
of the observed values in the given variable column. The method is very
easy to use and maintains the sample size, but it has a problem with un-
derestimating both the variance and standard deviation estimates. This
implies that the estimates that produce the imputed values are unbiased
see e.g. Scheffer (2002), Enders (2010) and Eekhout et al. (2012). Another
class of imputation method that have proven to handle missing values in
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a wide variety of cases, is the maximum likelihood methods. The use of
set methods requires that the assumption of MCAR is intact and if this is
done, can produce estimates that have the desirable properties normally
associated with maximum likelihood. These properties are consistency
(estimates will be approximately unbiased in large samples), asymptotic
efficiency (estimates are close to being fully efficient i.e., having minimal
standard errors) and asymptotic normality (allows the use of normal ap-
proximation to calculate confidence intervals and p-values). Additionally,
the use of maximum likelihood methods can produce standard errors that
fully account for the fact that some data is missing (Allison, 1999). It is
exactly based on these qualities that we have chosen maximum likelihood
based imputation as one of the strategies to address the problem with the
missing values in our data set presented in subsection (3.2.1). We have also
shown that this is relevant as the assumption of MCAR is assumed intact,
see subsection (3.2.2).

A maximum likelihood method typically starts out by expressing a
likelihood function. This function expresses the probability of the data as
a function of the unknown parameters. Assuming two discrete random
variables: X and Z with a joint probability function defined by p(x, z|θ),
where θ is a vector of parameters. The joint probability function gives us
the probability that X = x and Z = z. If we assume no missing values
and that the observations are independent, i.e. cov(X, Z) = 0, then the
likelihood function is defined by:

L(θ) =
n∏

i=1
p(xi, zi|θ) (3.2)

To find an estimate of the maximum likelihood, we need to find the value
for θ that maximizes the likelihood function (eq. 3.2). This can be done
using the log-likelihood function (L(θ) = log L(θ)) and should give us an
estimate defined by:

θ̂ ∈
arg max

θ∈Θ

n∑
i=1

log p(xi, zi|θ)
 (3.3)

If we assume that the data is MAR on Z for the first r cases, and MAR on
X for the next s cases, we can then split the likelihood function into parts
that correspond to each missing value pattern and accordingly factor these
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parts. This is in order to get a likelihood function that takes into account
the missing data patterns. The likelihood function becomes as follows:

L(θ) =
r∏

i=1
g(xi|θ)

r+s∏
i=r+1

h(zi|θ)
n∏

i=r+s+1
p(xi, zi|θ) (3.4)

where g(x|θ) and h(z|θ) are the marginal distributions of X and Z, so that:

r∏
i=1

g(xi|θ)
r+s∏

i=r+1
h(zi|θ) =

r+s∏
i=1

p(xi, zi|θ) (3.5)

For each missing data pattern, the likelihood is found by summing the
joint distribution over all possible values of the variables with missing data.
The estimated maximum likelihood parameters in this particular example
should therefore be defined by:

θ̂ ∈
arg max

θ∈Θ

Ñ
r+s∑
i=1

log p(xi, zi|θ) +
n∑

i=r+s+1
log p(xi, zi|θ)

é (3.6)

We assumed the variables were discrete in the begin, and as such if the
variables were continuous, the summations would be replaced by integrals.
The extension to multiple variables is also relatively straightforward (Alli-
son, 1999). In order to implement a maximum likelihood method on data
that contains missing values, it is important to have a model for the joint
distribution for all variables in the data set, and accordingly have a numeri-
cal method for maximizing the likelihood of this distribution. Determining
this model can vary with the type of data that one is dealing with.

In our data set, we have both continuous and indicator variables. When
the data is continuous it is common to assume a multivariate-normal model,
i.e. that all the variables are independently identically normally distributed
(iid) and can be expressed as a linear function of all other variables (or
subsets). There is also an assumption that the errors are homoscedastic, i.e.
constant and have a mean of 0. In the case of the indicator variables, it is
difficult to assume that these variables are normally distributed. However,
according to Schafer (1997), Schafer and Olsen (1998) and Allison (1999)
simulation evidence and practical experience have shown that maximum
likelihood methods can do a good job in imputing missing values, even
if the variables in question are indicator variables. Still, we opted to use
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a different imputation method for each of the types of data, i.e. we use
a bootstrapped expectation-maximization (EM) imputation method for
the variables that are continuous and a classification- and regression tree
(CART) based imputation method for the indicator variables.

As we mentioned, one needs to have a numerical method for maximiz-
ing the likelihood of the joint probability distribution. One of the most
common numerical methods is the expectation-maximization (EM) algo-
rithm (Dempster et al., 1977). We mentioned it slightly in subsection (3.2.2),
but it is an iterative algorithm that is used to maximize the likelihood func-
tion (eq. 3.2) of a number of missing data models. It is comprised of two
steps; the expectation step (often called the E step) and the maximization
step (called the M step). In the expectation step, the expected values of the
log-likelihood is taken over the variables with missing values using the
current estimated parameters (Allison, 1999). Afterwards the maximization
step involves maximizing the expected log-likelihood in order to get new
estimates of the parameters. These two steps are continued until conver-
gence is achieved, i.e. until the estimated parameters of the joint probability
distribution doesn’t change from one iteration to the next. Most standard
software packages using an EM implementation have as a principal output
a set of maximum likelihood parameters related to the joint probability
distribution. The imputed values are often included in addition, but are
not recommended for further analysis. The reason for this is that these
imputed values are not designed for that purpose and as such will produce
biased estimates of many parameters if used in further analysis (Allison,
1999).

A way to get around this problem is using multiple-imputation. Honaker
et al. (2011) introduced a bootstrapped EM algorithm that combines the
nice properties of the EM algorithm, i.e. consistency, asymptotic efficiency
etc. with the accuracy property of the bootstrap re-sampling method, see
Efron (1992) and James et al. (2013). Honaker et al. (2011) also argue that
the EMB algorithm they developed is much faster and more reliable than
alternative algorithms, in addition to making valid and much more accu-
rate imputations for cross-sectional data. The algorithm is implemented
in the Amalie II package in r. The assumptions of the algorithm are as
follows: if we assume that the data set can be expressed as a matrix D
consisting of dimensions (n× k). Let the matrix D be comprised of two
parts, i.e. Dmis the missing part and Dobs the observer part. The matrix D
is assumed to follow a multivariate distribution with mean vector µ and
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covariance matrix Σ. This assumption can be stated as D ∼ N (µ, Σ). In
addition to the multivariate normality assumption, the algorithm assumes
that the data is MAR. The latter have we already shown to be intact, but
the first assumption is somewhat difficult. As the data is by definition
incomplete due to the missing data, we assume that this assumption is
intact. Typically one would test if this assumption is intact by using a
multivariate normality test similar to the ones mentioned by Mardia (1970),
Henze and Zirkler (1990) or Royston (1982). Most of these tests assume that
the data is complete, and should the data be incomplete then it is common
to remove the missing observations and conduct the tests on the remaining
data. The challenge for our part is that approximately 15% of our data set
is missing which may cast doubt on the statistical power that these tests
may have. As a result of this, we have chosen to assume that the normality
assumption is intact. The schematic approach of this algorithm and the way
it used in this thesis is described in Figure (3.2). The procedure starts by
producing n bootstrapped data sets for which the EM algorithm is run on
each bootstrapped data sets. For all the data sets in the thesis, i.e. the full
data (HFfullDataSet.Rdat), HFmrEF (HFmrEFdataSet.Rdat) and HFpEF
HFpEFdataSet.Rdat we let the algorithm produce n = 100 bootstrapped
data sets. After the imputed data sets are produced they are collapsed by
averaging all the imputed values produced by the EM algorithm. All the
data from the incomplete data set that the procedure started with should
be the same, with the exception of the missing values, i.e. these have been
replaced by the average of the imputed values.

For the indicator variables, the imputation technique is defined by a
classification- and regression tree (CART) algorithm. This algorithm is
implemented in the mice package in r (Buuren and Groothuis-Oudshoorn,
2010). The implementation proceeds as follows: for each variable k in the
matrix D, the algorithm fits a classification or regression three by recursive
partitioning. Then for each missing value in k, the algorithm finds the
terminal nodes, i.e. the nodes the missing value can end up in according
to the fitted tree. Lastly, the algorithm makes a random draw among the
members in the nodes, and takes the observed value from that draw as the
imputation. Rather than collapsing the multiple imputed data sets as with
the BEM algorithm, we simply use the first imputed data sets for further
analysis. Further description of the procedure of the algorithm can be
found in Burgette and Reiter (2010). Our implementation of the algorithms
with the source code can be found in appendix (B.2). This concludes
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Figure 3.2: Bootstrapped Expectation Maximization (BEM) procedure

our treatment of the challenge with missing data in this thesis. Next, we
present our treatment of the challenge with the higher dimensional data in
the thesis.

3.2.4 Dimensional reduction

As we can see from Figure (3.1), the number of features in each HF data
sets are 92 and 87. After the consolidation process, we reduce the number
of features to 39 in each data sets. The problem with higher dimensional
data is that some of these features may be noise features that are not truly
associated with a given response. This may lead to a deterioration in a
fitted model, and thus increase the uncertainty. Noise features may also
exacerbate the risk of overfitting, i.e. having a statistical model that contains
more parameters than can be justified by the data (Friedman et al., 2009),
(James et al., 2013). One can also run the risk of drawing invalid inference,
as many of the features may be correlated with each other and thus one
may face the case of multicollinearity, i.e. risking inflated standard errors.

We have chosen to address this problem with the use of Principal Com-
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ponent Analysis (PCA). The purpose of PCA is to express the information
in the data set D by a lower number of variables Z, called principal com-
ponents. These principal components act as a lower dimensional repre-
sentation of the data that contains as much as possible of the variation
in the original dataset. Each of the principal components are computed
as linear combinations of the p features, and are orthogonal and linearly
uncorrelated. This property is ideal for addressing the challenge with mul-
ticollinearity.

For a given n× p data set D, we assume that each of the variables has
been centered to have mean zero. We then want the linear combination
of the sample feature values of the form zi1 = θ11xi1 + θ21xi2 + . . . + θp1xip

that has the largest sample variance, subject to the constraint
∑p

j=1 θ2
j1 = 1.

The optimization problem becomes (James et al., 2013):

max
θ11,...,θp1

1
n

n∑
i=1

Ñ
p∑

j=1
θj1xij

é2
 subject to

p∑
j=1

θ2
j1 = 1 (3.7)

In the optimization problem above, we want to maximize the sample vari-
ance of the n values of zi1. The elements z11, . . . , zn1 are referred to as the
scores of the first component, and solving the optimization problem can be
done using an eigen value decomposition. One can compute these princi-
pal components by using the estimated correlation or co-variance matrix
of D. We have chosen to use the correlation matrix and the implementa-
tion of this is done using the princomp() function in the stats-package
in r, (R Core Team, 2018b). We run the imputed data sets produced in
subsection (3.2.3) through the PCA function and select the first principal
components that explain most of the variance in the data set for further
analysis. The number of components used for the full sample data set is
4, which explains approximately 27% of the variation in the original data
set. For the other data sets, i.e. the HFpEF and HFmrEF datasets, we use
the first two principal components. These explain approximately 15% of
the variation in the orginal data set. In the succeeding analysis, we use
these principal components as input to the cluster analysis. Much of the
literature on the topic applies the same procedure to address the challenge
of higher dimensional data, see e.g. Shah et al. (2014), Ahmad et al. (2014)
and Katz et al. (2017).
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3.3 Clustering patient groups

In this section, we present the unsupervised clustering algorithms used in
this thesis. The clustering algorithms used are as mentioned: hierarchical,
k-means and expectation-maximization (EM) clustering. As there exists
many clustering algorithm, we follow the strategy defined in section (3.1)
and try to keep to the ones most used in the literature. An overview of the
implementation and the source code can be found in appendix (B.5).

3.3.1 Hierarchical

The first clustering algorithm evaluated in the cluster analysis process is the
hierarchical clustering algorithm, Sibson (1973), Defays (1977) and (Rohlf,
1982). This algorithm uses a simple algorithm that takes into account the
dissimilarity between clusters and accordingly produces a graphical rep-
resentation in the form of a dendrogram. The algorithm starts by calculating

Algorithm 1: Hierarchical clustering
1 initialization;
2 n observations
3 Distance measure
4 Treat every observation n as its own cluster
5 for i = n, n− 1, . . . , 2 do
6 Examine and fuse the most similar clusters
7 Compute the pairwise inter-cluster dissimilarities
8 among the i− 1 remaining clusters
9 end

10 Cut dendrogram based on max relative loss of inertia criteria
11 return Clusters

the dissimilarity between each pairs of observations, i.e. the patients. A
common measure of the dissimilarity is the euclidean distance between
pairs of observations. For all clustering algorithms where the distance is
required, we have assumed that the euclidean distance measure is the most
optimal. However, there exists many other distance measures, e.g. squared,
polynomial, Manhattan, maximum and Mahalanobis distance that may
be equally optimal. After calculating the distance, the algorithm starts at
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the bottom of the dendrogram, i.e. where the observations are the most
similar, and treats each of the n observations as its own clusters. Next, the
algorithm fuses the two clusters that are most similar and this continued
iteratively for the remaining n− 1 clusters. When the algorithm is finished
and the dendrogram is complete, all the clusters are now part of the same
cluster. It is then up to the user to choose where to cut the dendrogram.
In our implementation, we cut the dendrogram based on the criteria of
maximizing the relative loss of inertia. The pseudocode for this algorithm
is presented above.

The advantage of the hierarchical clustering algorithm, is that one does
not need to define the number of clusters a priori, and thus a user can cut
the dendrogram at any given height based on a given index or heuristic.
There are many implementations of this algorithm, but since we use the
principal components as input to this and all the other clustering algo-
rithms, we have chosen to use the Hierarchical Clustering on Principal
Components function HCPC() in the FactoMineR-package in r (Lê et al.,
2008). We have also created our own function (pca.var.plot()) that visu-
ally presents the clustering results from all the clustering algorithms chosen
for evaluation in this thesis. This function is very useful as it can supply the
user with a visual illustration of the clustering results for each clustering
algorithm. The evaluation criteria used to evaluate the clustering methods
is something that we will be addressing in later sections. The hierarchical
clustering algorithm is, however, just one of the algorithms that we use and
accordingly, we now move on to explaining the k-means algorithm.

3.3.2 k-means

The k-means clustering algorithm (Forgy, 1965) is a prototype-based tech-
nique for partitioning data into a pre-defined number of clusters (K). The
clusters are represented by the centroids (means) of the clusters (Tan et al.,
2007). The algorithm assumes that each observation xi belongs to at least
one of the K clusters and that the clusters are non-overlapping, i.e. that
no observations belong to more than one cluster. The idea behind the k-
means clustering algorithm is that a good clustering is one that minimizes
the within-cluster variation, i.e. a measure of how much the amount of
observations within a cluster varies W(Ck), where Ck is the set containing
the indices of the observations in cluster K. Similar to the hierarchical
clustering algorithm, this measure is often the euclidean distance between
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each pair of observations. Accordingly, the algorithm seeks to solve the
following optimization problem (James et al., 2013):

min
Ci,··· ,Ck


K∑

k=1

1
|Ck|

∑
i,i?∈Ck

P∑
j=1

Ä
xij − xi? j

ä2 where i 6= i? (3.8)

The solution to this optimization problem is very difficult as there exists Kn

possible ways of partitioning n observations into K clusters. The k-means
algorithm solves this problem with the following steps represented with
the following pseudocode:

Algorithm 2: k-means clustering
1 initialization;
2 n observations
3 Distance measure
4 The number of clusters K to be produced
5 for i = 1, . . . , n do
6 Randomly assign a number in {1, K} to i
7 end
8 while Cluster assignment continuous to change do
9 for Each cluster Ck do

10 Compute cluster centroid
11 for Each observation in Ck do
12 Assign each observation to the cluster
13 whose centroid is closest
14 end
15 end
16 end
17 return Clusters

The algorithm takes as input n observations, the defined distance measure
and the number of clusters K to be produced. Then all the observations
n are assigned a number in the set of the number corresponding to the
clusters. This assignment is done at random and serves as the initial cluster
assignment for the observations. Then the algorithm iterates until there is
no change in cluster assignment between cluster assignment at and at−1.
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The cluster assignments is done by computing the cluster centroid and
assigning each observation in the cluster C to the cluster C1, . . . , Ck whose
centroid is closest, i.e. given the distance measure.

The disadvantage of the k-means algorithm is that it requires a user to
define the number of clusters a priori, which in some cases may be seen as
defeating the purpose of the cluster analysis, i.e. the results may vary with
the number of clusters chosen. We have tried to address this problem by
using the r function NbClust() (Charrad et al., 2014) that uses almost 25
indices for determining the number of clusters and proposes to the user the
”optimal” number of clusters by the use of a majority-rule of all the indices.
As for the actual implementation of the k-means clustering algorithm, we
use the kmeans() function in the stats-package (R Core Team, 2018b). The
implementation of this algorithm is wrapped in the pca.cluster.plot()

function we mentioned in the preceding section.

3.3.3 Expectation-maximization

The k-means algorithm is closely related to the EM algorithm (Dempster
et al., 1977) for estimating certain Gaussian mixture model(s). As we
mentioned in section (3.2.3), the EM algorithm consists of estimating the
maximum likelihood parameters of the given Gaussian(s) in question. This
is done in the E-step of the algorithm and as such this is responsible for
assigning the ”responsibilities” for each data points based on its relative
density under each mixture components. Whilst the M-step is responsible
for recomputing the component density parameters based on the current
responsibilities (Friedman et al., 2009). The aim of the EM clustering al-
gorithm is to assign the data into K clusters according to the observations
probability of belonging to each of the clusters. It is often stated that the
EM algorithm is a ”soft” version of the k-means algorithm, as the points
are assigned based on a probabilistic (rather than a deterministic) approach
(James et al., 2013). The pseudocode for the EM algorithm is given below.
Accordingly, the algorithm starts by having the user input the data ma-
trix D, a parametric model fθ, an initial distribution π0 and a randomly
selected parameter vector θ. The algorithm then computes the expected
responsibilities of each observations and updates the parameters θ with the
maximum likelihood estimates θmax. This is done iteratively until conver-
gence. Being that the EM algorithm is similar to the k-means algorithm, it
has also the same disadvantages, i.e. the user needs to define the number of
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clusters to be produced a priori. In addition, it can sometimes be very time
consuming or even impossible for the algorithm to achieve convergence,
i.e. no changes in cluster assignment between iterations. In theory, as the
exit criteria of the EM algorithm may be defined by convergence, this could
mean that the algorithm may never stop as convergence is not guaranteed
in all cases. One could however define an exit criteria as a set number of
iterations imax to terminate the algorithm, but this is something we have
not done and accordingly the algorithm stops once convergence is reached.
As for the implementation, we use the Mclust() function in the mclust

package in r (Scrucca et al., 2017). All the default setting are used in the
implementation and as with the previous clustering algorithms, the EM
algorithm is also wrapped in the pca.var.plot() function.

Algorithm 3: EM clustering
1 initialization;
2 Data set D = {X1, . . . , Xn}
3 Parametric model fθ

4 Choose an initial distribution π0 and pick
5 a parameter vector θ at random.
6 while No convergence do
7 E step:
8 Compute expected responsibilities on each observation
9 M step:

10 Update the parameters in θ with the likelihood
11 maximization parameters θmax.
12 end
13 return Clusters produced by EM process

3.4 Classifying clinical outcomes

In this section, we present the supervised classification algorithms used in
this thesis. As we mention in section (3.1), the classification algorithms that
will be evaluated are: k-nearest neighbours, logistic regression, naive Bayes,
linear discriminant analysis, support vector machines and random forest.
We will also mention the way in which we evaluate the algorithms with the
K-fold cross validation. All the source code can be found in appendix (B).
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3.4.1 k-nearest neighbours

The first algorithm we will be presenting is the k-nearest neighbours (k-
NN) algorithm. The k-NN algorithm (Fix and Hodges Jr, 1951) is a widely
used algorithm, and often for good reason. It is very intuitive and simple
to understand. In addition, the algorithm performs very well in many
cases. This classifier is a memory-based algorithm that classifies a given
observation based on the k nearest neighbours of that observation in the
feature space. Mathematically, given a query point x0, the k-NN algorithm
tries to find the k training points x(r), r = 1, . . . , k closest in distance to
x0, and thus classify the point x0 according to the majority rule of the k
closest points to x0, see (Friedman et al., 2009) and (James et al., 2013). The
pseudocode for the algorithm is given below. Based on the pseudocode, we
can see that the k-NN algorithm starts out by taking as input the training
data X which is a subset of the full dataset X ⊆ D, the class labels Y of X
and the distance measure to be used d. The distance measure between two
data points are typically assumed to be a Minkowski distance:

d[i, j] =

Ñ
n∑

i=1
|Xi,k − Xj,k|p

é1/q

(3.9)

where if p = 1 or 2, the distance d will correspond to the Manhattan or
the Euclidean distance. As q approaches infinity, the distance measure d
convergence to the maximum distance, i.e. the largest coordinate difference
between data points. After computing the distance between data points,
the algorithm classifies the labels of the unknown sample x based on the
mapping learned by the training data done with the majority rule.

The observant reader will probably wonder how the unknown sam-
ple x is determined. This is something we will address in a later section
dealing with cross-validation. However, what we can say is that the im-
plementation of the k-NN algorithm used in this thesis is that of the knn()

function from the stats package in r (R Core Team, 2018b). We also need
to emphasize that the k-NN algorithm is not without disadvantages. That
is, the k-NN algorithm is slow when one has many observations, since it
does not generalize over data in advance. It scans all the data each time a
prediction is needed. It also has disadvantages with higher dimensional
data as even normalizing the data makes the distances ”blurred”. This is
because the distance to all neighbors becomes more or less the same in
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higher dimensional space. Another critique of the k-NN algorithm is that
it in many ways classifies observations based on heuristics, i.e. it lacks
probabilistic intuition and rational similar to other classification algorithms.
Still, it is very popular and one that we will attempt to examine in this thesis.

Algorithm 4: k-NN classification algorithm
1 initialization;
2 X: training data
3 Y: class labels of X
4 x: unknown sample
5 Distance measure d
6 for i = 1, . . . , n do
7 Compute distance d(Xi, x)
8 end
9 Compute set I containing indices for the k smallest

10 distances d(Xi, x).
11 return Majority label for {Yi where i ∈ I}

3.4.2 Logistic regression

Logistic regression is a very popular classification algorithm in medical
research. The algorithm uses a logistic function to model the dependent dis-
crete class labels corresponding to a given observation. In our example, the
algorithm tries to model the probability that a given patient ”belongs” to a
particular clinical outcome (mortality or readmission) using a probabilistic
approach. In the case of modeling this probability using multiple predic-
tors, the algorithm tries to estimate the probability using the following
generalized logistic function (Friedman et al., 2009):

P(X) =
exp

¶
β0 +

∑p
i=1 βiXi

©
1 + exp

¶
β0 +

∑p
i=1 βiXi

© (3.10)

Where X =
Ä
X1, . . . , Xp

ä
are the independent variables. The slope parame-

ters β0, . . . , βp are estimated using the maximum likelihood, i.e. each slope
parameter βi is estimated so that the following holds:
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β̂ ∈
arg max

β∈Θ

p∑
i=1

log p(xi, β)

 (3.11)

Unlike linear regression, logistic regression uses the logistic function (3.10)
to map the patient to a given clinical outcome. The mapping is done by
selecting a threshold p? and if the calculated probability is above this thresh-
old, we assign the given patient to that particular clinical outcome. In our
case, we use p? = 0.50 as this is the default value in the implementation. Lo-
gistic regression works well for categorical outcomes, but has a significant
disadvantage in working with response variables of continuous scale. The
algorithm also requires that each data point be independent of all other data
points. Should this not be the case, then the model may tend to overweight
the significance of those observations, Friedman et al. (2009) and James
et al. (2013). Still, logistic regression is one of the most used algorithms in
medical statistics. It is a relatively ”simple” algorithm that perform very
well in classification, see e.g. Austin et al. (2013) and Zolfaghar et al. (2013).
The implementation of this algorithm is done using the glm() function
from the stats-package in r (R Core Team, 2018b). All default arguments
are used with the exception of family = binomial(link=’logit’) which
guarantees that the link function is the logistic function (eq. 3.10).

3.4.3 Naive Bayes

The naive Bayes algorithm (also called ”simple” Bayes) is a popular proba-
bilistic classifier used to classify data based on the probability that a given
observation belongs to a particular class. It is in many ways very similar
to logistic regression, but the classifier is based on the Bayes theorem and
assumes that the effect of an attribute value on a given class is independent
of the value of the other attributes. For a given classification problem, we
want to determine P(H|X), i.e. the probability that the hypothesis H holds
given the ”evidence” (i.e. the observed data sample X). The probability
P(H|X) is also known as the posteriori probability and is according to
Bayes’ theorem calculated by the following:

p(H|X) =
p(X|H)p(H)

p(X)
(3.12)
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The probabilities p(X|H), p(X) and p(H) can all be estimated from the
given data sample. The procedure for which the algorithm classifies a given
observation into a discrete categorical outcome is given by the following
(Leung, 2007). Given a sample X, the naive Bayes’ classifier will predict that
X belongs to the class having the highest posteriori probability, conditioned
on X. That is X is predicted to belong to the class Ci if and only if P(Ci|X) >
P(Cj|X) for 1 ≤ j ≤ n, j 6= i. Rather than using a threshold value p? as
with logistic regression, one seeks to maximize the posteriori probability
and accordingly assign labels to observations. For large sample data sets
the naive Bayes’ classifier is especially appropriate as it can outperform
many sophisticated algorithms. However, the assumption of independence
among the variables is often very unrealistic and although it simplifies the
estimation, the risk of high bias is very much present with the algorithm.
In this thesis we will be implementing the Naive Bayes algorithm using the
nb() function in the caret package (Kuhn et al., 2018).

3.4.4 Linear discriminant analysis

The LDA algorithm is very similar to principal component analysis (PCA).
Both try to look for linear combinations that best explain the data. However,
LDA, tries explicitly to model the difference between the classes of data.
This is done by modeling the distribution of the predictors X separately
in each of the response classes. The objective of LDA is to perform di-
mension reduction (similar to PCA), while preserving as much of the class
discrimination information as possible. Assuming we have a p dimensional
random variable X, where X follows a multivariate normal distribution,
i.e. X ∼ N(µ, Σ). This distribution is formally given by the following, see
Friedman et al. (2009) and James et al. (2013):

f (x) =
1

(2π)p/2|Σ|1/2 exp
®
−1

2
(x− µ)TΣ−1(x− µ)

´
(3.13)

In the case where we have p > 1 independent variables, the LDA classifier
assumes that the observation in the kth class is drawn from a multivariate
normal distribution N(µk, Σ). Plugging eq. (3.13) into the formula for the
posterior probability and solving for the Bayes classifier yields:

δk(x) = xTΣ−1µk −
1
2

µT
k Σ−1µk + log πk (3.14)
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Where πk is the prior probability that an observation belongs to the kth
class. The LDA algorithm assigns a new observation X = x by plugging
the estimates of µ1, . . . , µK, π1, . . . , πK and Σ into (3.14) and classifying X
to the class for which δ̂K(x) is the largest. The LDA is considered to be
an approximation of the Bayes’ classifier similar to the naive Bayes. The
major difference being that the LDA is more flexible. It does not rely
on the assumption of independence between predictors (Friedman et al.,
2009). For large samples and many variables, the LDA is also preferred
to other discriminant classifiers due to its dimensional reduction nature.
The same can be said in the opposite direction. LDA suffers from two main
problems: the small sample size and the linearity problem (Tharwat et al.,
2017). The linearity problem is present if the underlying structure in the
data is non-linear. Should this be the case (which is very common in many
domains), then the LDA cannot find a LDA space where the discriminatory
information exists in the mean, since it exists in the variance. In a two class
situation with a non-linear structure in the data, this means that the means
are equal. Either way, the LDA is one of the most popular classification
algorithms used in the literature related to HF. The implementation of this
algorithm is done using the lda() function from the MASS-package in r

(Venables and Ripley, 2002).

3.4.5 Support vector machines

The next classification algorithm is the support vector machines (SVM)
(Vapnik, 1963). This classifier is based on the concept of a separating hyper-
plane, i.e. a flat affine subspace of dimension p− 1. A major drawback to
the LDA and other linear classifiers is the fact that they fail to address the
underlying non-linear nature of data. This is where the SVM has a clear
advantage. The support vector machine algorithm can be generalized to
classify clinical outcomes with non-linear decision boundaries. By choosing
a radial kernel (function that quantifies the similarities between two obser-
vations), we can create a classifier that takes into account the non-linear
nature that is often assumed on higher dimensional data. This radial kernel
is defined by the generalized inner product function:

K(xi, x′i) = exp

−γ
p∑

j=1

Ä
xij − xi′ j

ä2 (3.15)
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Where γ is a positive constant and is often described as a hyperparam-
eter that controls the tradeoff between errors due to bias and variance
in our model. The kernel function works by having training observa-
tions that are far away from the test observation x? playing essentially
no role in the predicted class label for x?. If the euclidean distance be-
tween the test observation and training observation is large, then the radial
kernel exp {−γ

∑p
j=1(xij − xi′ j)

2} becomes very small, because the term∑p
j=1(xij − xi′ j)

2 is large. This means that the radial kernel has very local
behaviour, i.e. that only nearby training observations will have an effect on
the class label of a test observation, see (Friedman et al., 2009) and (James
et al., 2013). The advantage of classifying using a SVM with a kernel like
the radial one described above, is that computationally one only needs to
compute K(xi, x′i) for all (n

2) distinct pairs of i and i′. However, the classifi-
cation results are very sensitive to the chosen γ parameter. The algorithm
is also very complex and requires extensive memory for large scale tasks.
This is not relevant in our thesis as our datasets are relatively small. The
implementation of the svm algorithm with the radial kernel is done with
the help of the svm() function in the e1071 package (Meyer et al., 2018).

3.4.6 Random forest

The random forest algorithm (Ho, 1995) is a decision tree based ensemble
learning classifier that is used for both classification and regression tasks.
The random forest algorithm uses a multitude of decision trees to classify
the outcome/class of a classification problem. The decision trees are built
using the bootstrap re-sampling algorithm, and each time a split in the de-
cision tree is considered, a random sample of m predictors are chosen from
the full sample of p predictors. At each split, a fresh sample of m predictors
are chosen, where the number m is typically defined as

√
p. By doing this,

the random forest algorithm overcomes the problem of small reductions in
variance due to correlated decision trees as is often the case for algorithms
like the bootstrapped aggregating algorithms such as bagging. The use
of the bootstrapped technique and random selecion of features guaranties
that the decision trees are uncorrelated. The pseudocode for the random
forest algorithm is shown below. The random forest algorithm can be used
for both classification and regression, but we present only the pseudocode
for the classification case. This is true for all classification algorithms used,
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see (Friedman et al., 2009) and (James et al., 2013).
Advantages of the random forest algorithm are, as mentioned, that one

reduces the risk of overfitting since the algorithm averages over all the
decision trees generated. It also reduces the overall variance since it splits
the variables at random each time it builds a decision tree from the given
bootstrapped data set. The disadvantages are that it is often difficult to
interpret how the algorithm works. The results may also vary significantly
with the number of trees that are to be produced. Regardless, the random
forest algorithm is one of the most popular algorithms for doing classifica-
tion and accordingly has good performance on many problems including
non-linear ones. The actual implementation of this algorithm in this thesis
is done using the randomforest() function in the randomForest-package
in r (Liaw and Wiener, 2002).

Algorithm 5: Random forest
1 initialization;
2 X: training data
3 x: unknown sample
4 Number of Bootstrap samples B
5 for i = 1, . . . , B do
6 Draw a bootstrap sample Z? of size N from the training data X
7 Grow a random forest Tb by the following:
8 (i). Select m variables at random from the p variables.
9 (ii). Pick the best variable/split-point among the m.

10 (iii). Split the node into two daughter nodes.
11 end
12 Output the assembled trees {Tb}B

1 .

13 return ĈB
r f (x) = majority vote

¶
Ĉb(x)

©B
i .

3.5 k-fold cross-validation

When talking about evaluating a given classification algorithm, one typ-
ically mentions the test error rate, i.e. the average prediction error that
results from using a statistical learning algorithm. The most common way
of estimating the average prediction error is through the way of cross-
validation (CV). This is a direct method of estimating the expected extra-
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sample error Err = E
î
L
Ä
Y, f̂ (X)

ä
,
ó
, i.e. the average generalization error

when the method f̂ (X) is applied to an independent test sample from the
joint distribution of X and Y, see (Friedman et al., 2009) and (James et al.,
2013). In the K-fold cross-validation method (Geisser, 1975) one typically
splits the data into K roughly equal-sized parts (also called folds) and for
a kth part, we fit the model on the remaining K− 1 parts of the data and
test/predict the classes in the kth part. This is done for k = 1, . . . , K and
after this is done we are left with K estimates of the prediction error. This
prediction error is typically defined as the mean square error (MSE), but
could be any evaluation parameter, e.g. the accuracy, absolute mean square
error etc. Assuming that the evaluation parameter was the MSE, then after
calculating it for the k = 1, . . . , K folds, we average the MSEs to produce
the k-fold cross-validation estimate. The formula is given by the following:

CVk =
1

nk

k∑
i=1

n∑
j=1

Ä
Yij − Ŷij

ä2
(3.16)

The K-fold cross-validation estimate is one of many criteria used to evaluate
the performance of various classifiers. One clear advantage of using a K-
fold cross-validation estimate is computational, i.e. the runtime properties

Algorithm 6: K-fold cross validation
1 initialization;
2 X: training data
3 Set of evaluation parameters Θ
4 Learning algorithm A
5 Number of folds K
6 Partition X into X1, . . . , Xk
7 for each θ ∈ Θ do
8 for i = 1, . . . , K do
9 hi,θ = A (Xi, θ)

10 end
11 error(θ) = 1

k
∑k

i=1 LXi(hi, θ)
12 end
13 return θ? ∈ Θ?
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of the K-fold cross-validation algorithm is good as one limits the number
of splits of the data to K-folds. This can also lower the variance of the
prediction error since there is a higher chance that all the K-folds are less
similar compared to a choice of K = N (also called leave-one-out cross
validation), see (Friedman et al., 2009). In the setting of this thesis, we
will evaluate the classification algorithm mentioned earlier using only the
K-fold cross validation algorithm. The psedo-code for the K-fold algorithm
is illustrated above. The implementation of the algorithm is done using
the trainControl() function in the caret package in r (Kuhn et al., 2018).
We have chosen to use K = 10 folds for all algorithms to be evaluated.
This is a very common choice in the literature, see e.g. Liu et al. (2014),
Alonso-Betanzos et al. (2015), Masetic and Subasi (2016) and Koulaouz-idis
et al. (2016).



Chapter 4

Experiments

In this chapter, we present the results of the experiments done in this thesis.
The results are split into two sections. The first section presents the results
from the cluster analysis and the second section that of the classification of
clinical outcomes. For each of the sections we present an overview of the
statistical learning problems that the algorithms are to solve. In this, we
also present the assumptions and the evaluation criteria that are used to
rank the algorithms and the final results.

4.1 Cluster analysis

In the cluster analysis, we try to see how well the various clustering algo-
rithms perform in producing phenotypically distinct clinical patient groups
with HFpEF and HFmrEF. We organize this section in the following way:
we start out by looking at the full sample data set, i.e. HFfullDataSet.Rdat.
After the pre-processing, we will run the principal components thought the
clustering algorithms. The idea is to see how well the clustering algorithms
perform in producing patient groups that are more homogeneous com-
pared to the physicians evaluation. Our measure of success is the number
of unique baseline characteristics that are statistically significant using the
Person χ2 test for categorical variables, ANOVA for normally distributed
variables and Kruskal–Wallis test for non-normally distributed variables
(Kruskal and Wallis, 1952). All the tests are run using conventional levels
of significance. The implementation is done using the multigrps-function
from the CBCgrps-package in r (Zhang et al., 2018). The algorithms are

54
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performed on the binary clustering HF problem, i.e. to see how unique the
patient groups produced are given that the only HF subtypes in the dataset
is HFmrEF and HFpEF. This means that we assume a priori that there
are only two clusters in the data set. After this we will see how well the
algorithms perform in producing ”new clusters” within the already defined
patient groups from the first round. We will do the same analysis on both
the groups that have been defined by the physicians and the ”best” first
round clustering algorithm. The full process flow for the cluster analysis is
illustrated in Figure (4.1).

4.1.1 The binary clustering HF problem

The current clustering problem assumes that the dataset is only comprised
of two clusters, i.e. HFmrEF and HFpEF. Accordingly, we allow the algo-
rithms to determine the patients that best correspond to each cluster. We
have plotted the results of the binary clustering problem in Figure (A.3).
This plot can in many ways seem very misguiding as it only displays the
results along the first two principal components. Still, the figure illustrates
that even if we only cluster based on the first four principal components
(27.32% of variance explained), we can produce more distinct patient

Table 4.1: Baseline characteristics of actual clustering

Total Cluster1 Cluster2 p-value

hb 109.34±20.29 107.85±21.22 110.93±19.18 0.141
pcv 0.34±0.06 0.33±0.06 0.34±0.06 0.159
age 78.64(69.22,84.17) 78.9(69.46,85.37) 78.08(68.73,82.74) 0.141
ewave 0.9(0.74,1.05) 0.92(0.8,1.1) 0.9(0.7,1.01) 0.056
gfr 48(32.5,70) 47(32,72) 51.96(33,67.77) 0.968
k 4.4(4,4.7) 4.4(4.1,4.7) 4.4(4,4.78) 0.664
los 10(4,22) 10(4,22) 10.5(4,21) 0.880
lvef 50(45,57.5) 57.5(55,60) 45(42,47.5) 0.000***
mcv 90.55(85.5,95) 89(85,94) 91.33(87,96) 0.011*
na 139(136,141) 139(136,141) 139(136,141) 0.650
ntprobnp 2848(1230.5,7374) 2217(997,5305) 4063.5(1886.5,9968.25) 0.000***
plts 204(156,268) 217(163,284) 190.87(148.5,241) 0.003**
wbc 7.8(5.9,10.5) 7.6(6,10.5) 8.1(5.9,10.4) 0.727

Total number of significant baseline char: 59
Continuous: 4
Categorical: 55
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Figure 4.1: Process flow clustering of patient groups
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Table 4.2: Baseline characteristics of Hierarchical and K-Means clustering

Total Cluster1 Cluster2 p-value

hb 109.34±20.29 106.79±21.29 111.73±19.06 0.019*
pcv 0.34±0.06 0.33±0.07 0.35±0.06 0.035*
age 78.64(69.22,84.17) 78.9(68.94,85.36) 78.26(69.73,82.8) 0.416
ewave 0.9(0.74,1.05) 0.97(0.8,1.1) 0.9(0.7,1) 0.002**
gfr 48(32.5,70) 46(31,70) 54.44(34,71) 0.205
k 4.4(4,4.7) 4.4(4,4.7) 4.4(4,4.8) 0.219
los 10(4,22) 10(4,22) 11(4.25,21) 0.889
lvef 50(45,57.5) 57.5(52.5,60) 45(42.5,47.5) 0.000***
mcv 90.55(85.5,95) 89(84,94) 91.14(87,96) 0.002**
na 139(136,141) 139(136,141) 139(136,141) 0.321
ntprobnp 2848(1230.5,7374) 2327(1007,5695) 3723.5(1731.5,9557.75) 0.000***
plts 204(156,268) 215(163,287) 194(151,241) 0.007**
wbc 7.8(5.9,10.5) 7.7(5.9,10.5) 8.05(5.92,10.47) 0.731

Total number of significant baseline char: 62
Continuous: 7
Categorical: 55

groups than the physicians. As we can see from Table (4.2), the hierarchical
and k-means clustering algorithms both give the highest number of sig-
nificant baseline characteristics (7 continuous and 55 categorical variables)
compared with the actual clustering done by the physicians (4 continuous
and 55 categorical variables, see Table 4.1). The EM algorithm produces
overall the lowest number of significant baseline characteristics (5 con-
tinuous and 49 categorical variables). Both the hierarchical and k-means
algorithm produce the same clustering configurations. The baseline charac-
teristics in the clustering of the patients using the hierarchical and k-means
clustering show that for the HFpEF cluster the LVEF is on average 57.5%
and for the second cluster (HFmrEF) the LVEF is on average 45%. These are
very similar values to what the physicians produced. We can also see that
for other baseline characteristics such as ntprobnp the average is at 2327
ng/L for the HFpEF group which is significantly different than that of the
HFmrEF group 3723.5 ng/L. This is also very similar to what the physicians
concluded with. For characteristics that are significantly different in the
clustering with hierarchical and k-means, but not found in the clustering
done by the physicians one can include the following continuous variables:
hemoglobin (hb), packed cell volume (pcv) and the ewave (ewave). This
may suggest that both the hierarchical and k-means clustering algorithms
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Table 4.3: Baseline characteristics of EM clustering

Total Cluster1 Cluster2 p-value

hb 109.34±20.29 111.2±19.07 107.48±21.34 0.075
pcv 0.34±0.06 0.34±0.06 0.33±0.06 0.115
age 78.64(69.22,84.17) 77.81(69.22,82.76) 78.9(69.22,85.36) 0.199
ewave 0.9(0.74,1.05) 0.9(0.71,1.01) 0.93(0.8,1.1) 0.040*
gfr 48(32.5,70) 51.96(33,68.25) 47(32,72) 0.956
k 4.4(4,4.7) 4.4(4,4.8) 4.4(4,4.7) 0.363
los 10(4,22) 11(4,21) 10(4,22) 0.906
lvef 50(45,57.5) 45(42,47.5) 57.5(53.75,60) 0.000***
mcv 90.55(85.5,95) 91.14(87,96) 89(84.5,94) 0.007**
na 139(136,141) 139(136,141) 139(136,141) 0.330
ntprobnp 2848(1230.5,7374) 3985(1849.5,10038.25) 2226(990,5500) 0.000***
plts 204(156,268) 192.64(149.5,241.5) 217(163.5,286) 0.002**
wbc 7.8(5.9,10.5) 8.1(5.97,10.63) 7.6(5.9,10.35) 0.561

Total number of significant baseline char: 54
Continuous: 5
Categorical: 49

can be used as appropriate tools for physicians. The results from the EM
algorithm (Table 4.3) show that many of the similar baseline characteristics
are not statistically significant. The LVEF (lvef) and NTproBNP (ntprobnp)
are very similar to both the hierarchical and k-means clustering, but other
characteristics such as hemoglobin (hb) and the packed cell volume (pcv)
are not. Throughout the analysis we have found that the EM algorithm
does not perform as well in clustering patient groups as the hierarchical
and k-means clustering algorithms. This could be because the assumption
of multivariate normal distribution does not hold for this data set or the
fact that there is a high presence of categorical variables in the data set.

4.1.2 Analysis of post-diagnosis

In this section we will investigate the clustering results discussed previously.
We have placed an assumption of whether the physicians diagnosis is
representative given an objective of producing the most unique patient
groups. The clustering problem in this section assumes that the diagnosis
done by the physicians is sufficient in regards to this objective, i.e. the
clustering based on the post-diagnosis done by the physicians produces the
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Table 4.4: Number of significant baseline characteristics

With Post-Diagnosis Without Post-Diagnosis
C = 3 HFpEF HFmrEF HFpEF HFmrEF Mean

Hierarchical 53 (tab. A.5) 53 (tab. A.8) 48 (tab. A.11) 51 (tab. A.14) 51.25
K-Means 49 (tab. A.6) 53 (tab. A.9) 48 (tab. A.12) 53 (tab. A.15) 50.75
EM 56 (tab. A.7) 44 (tab. A.10) 42 (tab. A.13) 42 (tab. A.16) 46.00

Mean 52.67 50.00 46.00 48.67

most unique patient groups. We compare these results to a clustering with-
out an assumption of post-diagnosis done by the physicians and see if
there are any substantial differences in results. We will only use the first
two principal components (14.64% of variance explained) to cluster the
patients. The evaluation criteria are the same as in the previous section.
The number of clusters for the k-means and EM algorithm recommended
by the NbClust() (Charrad et al., 2014) function in r was three, i.e. 13 of
the 23 indices in the procedure recommended using C = 3 as the optimal
number of clusters for both the HFmrEF and HFpEF data sets. We can see
from Table (4.4) that the hierarchical and k-means clustering algorithms
produces the same number of significant baseline characteristics in half of
the cases examined. We can also see from Table (4.4) that all algorithms
analyzed produce on average more statistically significant baseline char-
acteristics with the post-diagnosis assumption compared to without. The
EM algorithm produces overall the lowest number of significant baseline
characteristics (in three cases). An exception is when the EM algorithm is
clustering HFpEF with post-diagnosis.

Beginning with the subtype HFpEF given the assumption of post-
diagnosis, we can see from tables (A.5) and (A.6) that cluster 2 (hierarchical
& k-means) seems to contain patients that have a higher average age (85.45)
with a packed cell volume (pcv) that is on average 0.33 ± 0.05. This cluster
is very similar to cluster 1 produced by the EM algorithm. The ntprobnp
(ntprobnp) of cluster 3 (hierarchical & k-means) is the lowest at 1417 ng/L
which is also statistically significant. The average number of red blood
cells, i.e. the mean corpusular volume (mcv) is at its lowest for cluster 1
(hierarchical & k-means) with an average of 87 femtolitres. The number of
significant baseline characteristics produced by the hierarchical clustering
is 53 (8 cont. and 48 categorical) and for the k-means its 49 (8 cont. and
41 categorical). The EM algorithm produces almost similar results for the
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subgroup HFpEF as the hierarchical and k-means algorithm (table A.7).
The second cluster produced by the EM algorithm is very similar to the
third cluster produced by the hierarchical and the k-means algorithm. The
ntprobnp (ntprobnp) for cluster one and two produced by the EM are very
similar. Both are approximately 2750 ng/L. The third cluster produced by
the EM algorithm has the lowest values for the ntprobnp (1525 nl/L). The
total number of significant baseline characteristics for the EM algorithm is
56 (8 cont. and 48 categorical).

When looking at the HFmrEF clustering based on post-diagnosis (tables
A.8, A.9 and A.10), we can see somewhat different results, i.e. there are
on average less significantly different baseline characteristics in all clus-
ters produced by the algorithms regardless of whether the assumption
of post-diagnosis is intact. For cluster 3 (hierarchical and k-means), we
find the lowest ntprobnp (ntprobnp) at 2898.5 ng/L with a packed cell
volume of 0.38 ± 0.04. This cluster also contains the patients with the
lowest length of stay (7 days). The length of stay (LOS) is also a uniquely
statistically significant baseline characteristic that is only significant in the
HFmrEF subgroup of patients for all algorithms studied. Cluster 3 also
has the highest hemoglobin (hb) at 123.79 ± 12.89 g/100mL. The clustering
results without the post-diagnosis assumption show very different results.
In general, Figure (A.6) and (A.7) show that the assignment of clustering
have with very few similarities, i.e. the cluster numbering as well as the
baseline characteristics vary more when the assumption of post-diagnosis
is removed. Comparing the number of significant baseline characteristics
between the HFmrEF groups both with and without the post-diagnosis
assumption shows that the latter has on average fewer baseline character-
istics, see Table (4.4). The same goes for the HFpEF group, i.e. we have
reasons to believe that assuming the physicians diagnosis is representa-
tive, one can get additional clustered patient groups with higher degree
of homogeneity compared to when this assumption is not intact. We have
also demonstrated that the ML algorithms can be very useful in producing
patient groups that are more phenotypically unique given that the objective
is to challenge the diagnosis of the physicians, see section (4.1.1). Now that
we have presented the results of the clustering analysis, we move on to
the results of the classification of the clinical outcomes. The source code,
relevant plots and tables can be found in the appendix (A).
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Report Results

Figure 4.2: Process flow classification of clinical outcomes

4.2 Classification

In this section we will present the results of the classification analysis. As
mentioned in the ML procedure (Figure 3.1), we train the algorithms using
the imputed data sets with all the principal components and accordingly
run cross validation in order to estimate the accuracy of the various algo-
rithms. The accuracy along with Cohen’s kappa are the two evaluation
criteria we use to rank the algorithms in this section. The process flow for
the mentioned classification section is illustrated in Figure (4.2).

4.2.1 Mortality classifier

The statistical learning problem in this section is a two-class classification
problem where mortality is the clinical outcome in question. Our objective
is to see how well the algorithms mentioned in Figure (3.1) perform in pre-
dicting the probability of mortality. We will train the algorithms using PCA
and 10-fold cross validation and evaluate the results using the accuracy, i.e.
the proportion of true results and Cohen’s kappa defined by:
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κ ≡ p0 − pe

1− pe
(4.1)

where p0 is the accuracy given by ACC = (TP + TN)/(P + N), and pe =
1/N2 ∑

k nk1nk2, where k is the number of categories / classes, N the number
of items and nk1 the number of times rater i predicted category k. pe is also
referred to as the expected accuracy, i.e. what the accuracy that any random
classifier would be expected to achieve. Accordingly, Cohen’s kappa is also
regarded as the inter-rater agreement for qualitative (categorical) items, i.e.
it is similar to the classification accuracy, except that it is normalized at the
baseline of random chance on a dataset. A possible interpretation of this

Mortality
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Accuracy Kappa
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svm

logr
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Figure 4.3: Binary classification results: mortality
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statistics is given by the following (Ashby, 1991): less than 0.20 = Poor
agreement, 0.20 to 0.40 = Fair agreement, 0.40 to 0.60 = Moderate agreement,
0.60 to 0.80 = Good agreement and 0.80 to 1 = Very good agreement. As
mentioned earlier, the statistical learning problem is a binary classification
problem given by whether readmission / mortality occurred (TRUE) or not
(FALSE), i.e. the expected accuracy is pe = 0.50. We use principal component
analysis to address the problem of higher dimensional multi-correlated
variables. Accordingly, in the process of training the algorithms we use all
principal components from the training in the classification of the clinical
outcomes. The total number of patients with post-confirmed mortality in
this data set is 115 (approx 36% of the total number of patients, see Table 3.1).
The results of the mortality classification is illustrated in Figure (4.3) and
Table (4.5). In the table we notice that there are three algorithms that overall
yield very decent results given the accuracy and the kappa. These are in
order of importance: linear discriminant analysis (lda), logistic regression
(logr) and naive Bayes (nb). As we can see the LDA (lda) produces the best
overall accuracy and kappa. The mean accuracy of the LDA classifier is
estimated at 69.9% with a kappa at 0.19. The next classifier which compared
to LDA also yields decent results is the logistic regression (logr) with a

Table 4.5: Summary statistics for the mortality classification

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

PANEL I: Accuracy

knn 0.605 0.632 0.649 0.659 0.696 0.730 0.000
logr 0.649 0.676 0.684 0.696 0.725 0.757 0.000
lda 0.632 0.658 0.703 0.699 0.730 0.784 0.000
nb 0.568 0.618 0.676 0.664 0.684 0.757 0.000
svm 0.684 0.684 0.693 0.693 0.703 0.703 0.000
rf 0.632 0.662 0.684 0.688 0.709 0.757 0.000

PANEL II: Kappa

knn -0.101 -0.073 -0.029 -0.001 0.056 0.161 0.000
logr 0.032 0.114 0.176 0.189 0.259 0.417 0.000
lda -0.030 0.086 0.204 0.190 0.255 0.417 0.000
nb -0.145 -0.002 0.130 0.098 0.193 0.238 0.000
svm 0.000 0.000 0.000 0.000 0.000 0.000 0.000
rf -0.101 -0.052 0.000 0.017 0.083 0.238 0.000
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mean accuracy of 69.6% and a kappa of 12. The last algorithm is the naive
Bayes (nb). With the naive Bayes the estimated mean prediction accuracy of
mortality is 66.4% with a kappa of 0.098. We need to emphasize that even
though one gets a somewhat high accuracy, the kappa is often considered
to be a more robust evaluation criterion compared to the accuracy. This
is because it takes into account that the agreement between estimated
classification and actual classification can occur by chance. As the kappa
is very low for all the classifiers mentioned in table (4.5), we cannot say
with certainty that the classification algorithms can systematically predict
mortality. However, we have reasons to believe that the three algorithms
(linear discriminant analysis, logistic regression and naive Bayes) all show
signs of being fair algorithms when it comes to predicting mortality in HF
patients. Similar results are reported in the literature, see e.g. Shah et al.
(2014) and Panahiazar et al. (2015).

4.2.2 Readmission classifier

In this section, we examine the classification problem related to readmission.
We have defined the readmission outcome as whether a given patient was
re-admitted in some form during the one-year follow-up period. As we
mentioned in section (3.2) this could be either within 30 days (patient group
V) or any other way (patient groups U). The results of the readmission
classification is illustrated in Figure (4.4) and Table (4.6). The results are very
different from what we found with the mortality classification. Surprisingly,
three algorithms seem to distinguish themselves from the others, namely
the linear discriminant analysis (lda), support vector machines (svm) and

Table 4.6: Summary statistics for the readmission classification

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

PANEL I: Accuracy

knn 0.789 0.868 0.892 0.878 0.894 0.919 0.000
lda 0.974 1.000 1.000 0.997 1.000 1.000 0.000
nb 0.868 0.919 0.933 0.936 0.967 1.000 0.000
logr 0.973 0.973 0.987 0.987 1.000 1.000 0.000
svm 0.974 1.000 1.000 0.995 1.000 1.000 0.000
rf 0.842 0.892 0.919 0.909 0.941 0.947 0.000
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Table 4.6: Summary statistics for the readmission classification (continued)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

PANEL II: Kappa

knn 0.437 0.657 0.719 0.680 0.731 0.811 0.000
lda 0.934 1.000 1.000 0.993 1.000 1.000 0.000
nb 0.630 0.789 0.834 0.835 0.918 1.000 0.000
logr 0.934 0.937 0.969 0.968 1.000 1.000 0.000
svm 0.934 1.000 1.000 0.987 1.000 1.000 0.000
rf 0.542 0.727 0.790 0.763 0.855 0.878 0.000

logistic regression (logr). Interestingly, all three of these algorithm score
very high both in terms of accuracy and kappa. The algorithm with the most
promising results is the linear discriminant analysis. It has an estimated
mean prediction accuracy of 99.7% with a kappa of 0.993. The LDA is
found to be the most superior classification algorithm in both predicting
mortality and readmission. The next algorithm that show potential in
predicting readmission is the support vector machines (svm) algorithm.
It has an estimated mean accuracy of 99.5% with a kappa of 0.987. We
consider this to be interesting as in the previous section we found that
the SVM was one of the lowest performing algorithms when it comes
to predicting mortality. This might suggest that modelling readmission
with a non-linear structure is more realistic than doing so with mortality.
The last algorithm that show potential is that of the logistic regression
(logr). The estimated mean accuracy for this algorithm was 98.7% with a
kappa of 0.968. In addition to having a very good accuracy and kappa, its
worth mentioning that given its level of simplicity, one can argue that the
logistic regression algorithm is preferable to more advanced classification
algorithms. This is not uncommon as in the literature there are many
studies that report of logistic regression being a very effective algorithm
for classifying clinical outcomes, see e.g. Austin et al. (2013) and Zolfaghar
et al. (2013). In both the cases that we have examined, we have found
that the linear discriminant analysis and the logistic regression algorithms
perform decently. These algorithms are very different in terms of their
level of complexity. They are also very much used in the literature and
often favourites among practitioners of medical statistical analysis, see
e.g. Austin et al. (2013), Zolfaghar et al. (2013), Shah et al. (2014) and
Panahiazar et al. (2015). Accordingly, we have reasons to believe that
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the linear discriminant analysis and the logistic regression are the two
algorithms that show the most potential in predicting both the mortality
and readmission of HF patients.
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Figure 4.4: Binary classification results: readmission

4.3 Discussion

The objective of this thesis was two fold: (i) we attempted to give a though
analysis of how well various clustering algorithms (hierarchical, k-means
and expectation-maximization) perform in producing phenotypically dis-
tinct clinical patient groups (i.e. phenomapping) with HFpEF and HFmrEF.
Our strategy for answering this research question has been to compare
the level of dissimilarity between patient groups that are produced at two
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levels. Firstly, we looked at the binary clustering problem where we com-
pared the patient groups produced by the algorithms with those produced
by the physicians. We found that if one defines the optimal clustering
as that which has the highest number of significantly different baseline
characteristics, then we have reasons to believe that the hierarchical and
k-means clustering algorithms show signs of being better at clustering
patients with HF compared to the physicians. Overall these algorithms
produce 62 significantly different baseline characteristics compared to 59
produced by the physicians. Secondly, we looked at how well the clus-
tering algorithms performed in producing ”new” patient groups within
both subtypes of HF. We analyzed this by attempting to re-cluster patient
groups from both subtypes (HFmrEF and HFpEF) produced by the physi-
cians and the ”best” ML algorithms. Re-clustering within the subtypes
generated by the physicians (also called the ’post-diagnosis’ assumption)
seem to show the greatest potential as the average number of significantly
different baseline characteristics is the highest for this clustering compared
to when the assumption is removed. On average all algorithms produce
approximately 53 (HFpEF) and 50 (HFmrEF) significantly different baseline
characteristics when the post-diagnosis assumption is present compared to
when its removed (46, HFpEF and 49, HFmrEF). However, if the objective
is to use the results to find additional ”new clusters”, we cannot say with
certainty that the choice of clustering algorithms or the clustering data used
(whether it is with or without post-diagnosis) will systematically enhance
the ”uniqueness” of the patient groups. We need to emphasize that the
results need to be treated with great caution as they are very sensitive to
the number of principal components used, the imputation method and
the sample size. Nevertheless, the hierarchical and k-means algorithms
seems to have the potential to be used as tools by physicians to cross-check
their assumptions and rational in order to further improve the diagnosis of
patients with the preserved and mid-range subtypes of HF. Similar findings
are also reported in the literature, see e.g. Shah et al. (2014), Ahmad et al.
(2014), Alonso-Betanzos et al. (2015), Kao et al. (2015), Ahmad et al. (2016)
and Katz et al. (2017).

In the second (ii) part of the thesis we attempted to evaluate the perfor-
mance of various classification algorithms (k-nearest neighbour, logistic
regression, linear discriminant analysis, support vector machines and ran-
dom forest) in predicting mortality and readmission. The results suggest
that linear discriminant analysis and logistic regression are good candi-
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dates for doing that. They both rank very high compared to the other
algorithms evaluated. The LDA algorithm has an estimated accuracy of
approximately 69.9% for mortality and 99.7% for readmission. The logistic
regression had similar results with approximately 69.6% accuracy for mor-
tality and 98.7% for readmission. The results seem promising, but we need
to emphasize that these results also need to be treated with great causation.
As we mentioned in section (3.2), the data set used in this thesis had 15%
missing values. This is an aspect about our study that should not be ne-
glected. We addressed the problem of missing values by imputation with a
bootstrapped EM algorithm (Honaker et al., 2011). Maximum likelihood
methods such as this one are praised by many in the literature for its ability
to impute missing values, even if the variables in question are mixed, see
Schafer (1997), Schafer and Olsen (1998) and Allison (1999). However, we
cannot with certainty say that this is the most optimal method of treat-
ing the missing values in the data set. Similarly to the clustering results,
we need to emphasize that the results of the classification are sensitive
to a number of factors, such as the imputation method and sample size.
Nevertheless, our findings seem to confirm the findings reported in the
literature, see e.g. Austin et al. (2012), Zolfaghar et al. (2013), Shah et al.
(2014), Panahiazar et al. (2015) and Koulaouz-idis et al. (2016).

For future analysis, we recommend broadening this study by evaluating
more algorithms. This is especially the case for the clustering analysis. All
the algorithms that we analyzed have assumed that all the patients belong
to a cluster. This is a somewhat strong assumption as it could be the case
that some patients lay in an area that is ”too uncertain” to assign to either
subtypes. It could be interesting to see how density-based algorithms such
as DBSCAN (Ester et al., 1996) would perform in producing phenotypically
distinct patient groups. It could also be interesting to see how the classifica-
tion results vary with the subtype of HF, i.e. is it reasonable to assume that
some algorithm predicts mortality and readmission more accurately if one
limits the data to one subtype of HF? These are all suggestions for future
analysis that can broaden our understanding of the complex syndrome of
heart failure.
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Conclusion

In this thesis, we attempted to investigate how well various clustering al-
gorithms (hierarchical clustering, k-means and expectation–maximization)
perform in producing phenotypically distinct clinical patient groups (i.e.
phenomapping) with heart failure with preserved ejection fraction (HFpEF)
and mid-range ejection fraction (HFmrEF). Furthermore, we evaluate the
performance of various classification algorithms (k-nearest neighbours, lo-
gistic regression, naive Bayes, linear discriminant analysis, support vector
machines and random forest) in predicting patient mortality and readmis-
sion. All the algorithms were applied on a data set consisting of 375 patients
with symptomatic heart failure (HF) identified at a tertiary hospital in the
United Kingdom.

In the clustering of the patients based on the subtypes HFmrEF and
HFpEF, we found that the hierarchical and k-means clustering algorithms
show signs of being better at clustering patients with HF compared to the
physicians. Overall these algorithms produced 62 significantly different
baseline characteristics compared to 59 produced by the physicians. How-
ever, if the objective is to use the results to find additional ”new clusters”,
then we cannot say with certainty that the choice of clustering algorithms
or the clustering data used (whether it’s with or without post-diagnosis)
will systematically enhance the ”uniqueness” of the patient groups.

In the classification of mortality and readmission, we found that linear
discriminant analysis (LDA) and logistic regression show promising po-
tential. That is, the level of accuracy for which the algorithms predicted
mortality and readmission rank high compared to the other algorithms
evaluated. The LDA algorithm predicted mortality with approximately

69
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69.9% accuracy and readmission with 99.7%. The logistic regression had
similar results with approximately 69.6% accuracy for mortality and 98.7%
for readmission. Similar results are reported in the literature. Our findings
lend support to the idea that the application of such algorithms may help
in better understanding the complex nature of a clinical syndrome such as
heart failure.



Appendix A

Data Description

In this appendix we present a descriptive overview of the data used in this
thesis. This includes: an overview and explanation of the variables used
(A.1), the R-packages (A.2) used and some relevant plots (A.4) to support
the finding in the thesis. The source code used to produce the relevant plots
can be found in appendix (B).

A.1 Variables

Table A.1: Phenotype domains used for clinical metrics

Phenotype
domain

Clinical Variables

Demographics Age (age), gender (gender), ethnicity (white, asian,
black).

Admission
symptoms

Breathless (breathless)

Admission
signs

Admission systolic blood pressure (sbp), admission
diastolic blood pressure (dbp), admission weight
(admissionwgt), admssion blood presure (bp), ad-
mission body mass index (bmiadmission), admission
pulse (pulse).

71
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Table A.1 Continued: Phenotype domains used for clinical metrics

Phenotype
domain

Clinical Variables

Risk factors Atrial fibrillation (a-fib), chronic obstructive pul-
monary disease (copdasthma), diabetes (dm), history
of ischaemic heart disease (ihd), iron deficiency
(irondef), obesity (obesity).

Comorbidities Number of comorbidities (comorbidities)

12 lead elec-
trocardiogram
(ECG)

Rhythm (ecgrhythmother), rate (ecgrate), QRS du-
ration (ecgqrsduration), other QRS abnormalities
(ecgqrsother), normal QRS (normalecgqrs), evi-
dence of left ventricular hypertrophy (lvh), left bun-
dle branch block (lbbb), right bundle branch block
(rbbb), abnormalities in Sinus rythm (sr).

Laboratory tests Hemoglobin (hb), mean cell volume (mcv), packed cell
volume (pcv), white blood cells (wbc), platelets (plts),
sodium (na), potassium (k), glomerular filtration rate
(gfr), albumin, HbA1C, glucose, iron levels, transfer-
rin saturations (tsat), ferritin (ferritin), NTproBNP
(ntprobnp), high blood cholesterol levels (chol), iron
levels (ironlevels).

Echocardiography Left ventricular ejection fraction (lvef), E wave
(ewave), E/e’ (ee), pulmonary artery systolic pressure
(pasp), right ventrical function (rvfunction), mitral
regurgitation (mr), tricuspid regurgitation (tr), aortic
stenosis (as), aortic insufficiency (ai), atrial flutter
(af).

Outcome Length of stay (los), time to heart failure hospital-
ization (timetohfadm), heart failure hospitalization
(hfhospitalization).
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A.2 R-packages

Table A.2: Packages used in thesis

Package Title Version

Amelia A Program for Missing Data 1.7.5
BaylorEdPsych R Package for Baylor University Educational

Psychology Quantitative Courses
0.5

caret Classification and Regression Training 6.0-80
CBCgrps Compare Baseline Characteristics Between Groups 2.3
docstring Provides Docstring Capabilities to R Functions 1.0.0
factoextra Extract and Visualize the Results of Multivariate

Data Analyses
1.0.5

FactoMineR Multivariate Exploratory Data Analysis and Data
Mining

1.41

ggpubr ’ggplot2’ Based Publication Ready Plots 0.1.8
gridExtra Miscellaneous Functions for ”Grid” Graphics 2.3
Hmisc Harrell Miscellaneous 4.1-1
mclust Gaussian Mixture Modelling for Model-Based

Clustering, Classification, and Density Estimation
5.4.1

mice Multivariate Imputation by Chained Equations 3.3.0
mlbench Machine Learning Benchmark Problems 2.1-1
NbClust Determining the Best Number of Clusters in a

Data Set
3.0

plotrix Various Plotting Functions 3.7-4
reporttools Generate LaTeX Tables of Descriptive Statistics 1.1.2
rlist A Toolbox for Non-Tabular Data Manipulation 0.4.6.1
tikzDevice R Graphics Output in LaTeX Format 0.11
VIM Visualization and Imputation of Missing Values 4.7.0
xtable Export Tables to LaTeX or HTML 1.8-2
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A.3 Descriptive statistics

Table A.3: Patient characteristics: HFpEF

Variable n #Na Min Max x̄ x̃ s q1 q3

PANEL II: Demographics

age 193 0 29.0 100.8 76.3 78.9 12.1 69.5 85.4
gender 193 0 0.0 1.0 0.6 1.0 0.5 0.0 1.0
white 193 0 0.0 1.0 0.7 1.0 0.5 0.0 1.0
asian 193 0 0.0 1.0 0.1 0.0 0.2 0.0 0.0
black 193 0 0.0 1.0 0.3 0.0 0.4 0.0 1.0

PANEL III: Admission symptoms

breathless 185 8 0.0 1.0 0.8 1.0 0.4 1.0 1.0

PANEL IV: Admission signs

sbp 182 11 55.0 242.0 146.9 145.0 31.7 125.0 167.0
dbp 183 10 25.0 195.0 80.5 80.0 22.1 67.0 89.0
admissionwgt 160 33 41.5 158.0 78.9 76.7 23.3 60.1 93.9
bp 192 1 0.0 1.0 0.8 1.0 0.4 1.0 1.0
bmiadmission 148 45 16.8 107.1 30.7 29.3 10.5 23.6 35.4
pulse 182 11 44.0 211.0 84.7 83.0 22.1 70.0 95.0

PANEL V: Risk factors

a-fib 189 4 0.0 1.0 0.5 0.0 0.5 0.0 1.0
copdasthma 190 3 0.0 1.0 0.4 0.0 0.5 0.0 1.0
irondef 69 124 0.0 1.0 0.6 1.0 0.5 0.0 1.0
dm 188 5 0.0 1.0 0.5 1.0 0.5 0.0 1.0
obesity 185 8 0.0 1.0 0.5 1.0 0.5 0.0 1.0
ihd 186 7 0.0 1.0 0.4 0.0 0.5 0.0 1.0

PANEL VI: Comorbidities

comorbidities 193 0 0.0 9.0 4.2 4.0 1.8 3.0 5.0

PANEL VII: Electrocardiography

ecgqrsduration 157 36 55.0 177.0 101.3 98.0 20.8 88.0 112.0
ecgqrsother 193 0 0.0 1.0 0.0 0.0 0.2 0.0 0.0
ecgrate 159 34 41.0 191.0 83.0 80.0 23.1 70.0 92.0
ecgrhythmother 193 0 0.0 1.0 0.1 0.0 0.2 0.0 0.0
lvh 169 24 0.0 1.0 0.1 0.0 0.3 0.0 0.0
normalecgqrs 193 0 0.0 1.0 0.6 1.0 0.5 0.0 1.0
lbbb 193 0 0.0 1.0 0.0 0.0 0.2 0.0 0.0
rbbb 193 0 0.0 1.0 0.1 0.0 0.3 0.0 0.0
sr 193 0 0.0 1.0 0.6 1.0 0.5 0.0 1.0

PANEL VIII: Laboratory tests

hb 192 1 47.0 185.0 107.6 107.5 21.1 91.8 123.0
wbc 192 1 2.9 209.4 10.2 7.6 15.8 6.0 10.5
tsat 94 99 4.0 92.0 20.4 18.0 13.8 11.0 24.8
plts 192 1 51.0 497.0 229.4 217.0 89.5 163.0 284.2
pcv 193 0 0.2 0.6 0.3 0.3 0.1 0.3 0.4
ferritin 71 122 9.0 2223.0 378.2 173.0 533.8 61.5 443.5
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Table A.3: Patient characteristics: HFpEF (continued)

Variable n #Na Min Max x̄ x̃ s q1 q3

k 189 4 2.4 8.7 4.4 4.4 0.6 4.1 4.7
ironlevels 95 98 2.0 23.0 8.6 7.0 4.8 5.0 11.0
chol 190 3 0.0 1.0 0.5 1.0 0.5 0.0 1.0
ntprobnp 193 0 81.0 70000.0 5047.3 2217.0 8487.4 997.0 5305.0
gfr 193 0 3.0 221.0 54.1 47.0 31.1 32.0 72.0
mcv 193 0 57.0 117.0 88.8 89.0 8.9 85.0 94.0
na 193 0 110.0 148.0 138.2 139.0 4.9 136.0 141.0

PANEL IX: Echocardiography

lvef 191 2 50.0 72.5 57.1 57.5 4.5 55.0 60.0
ewave 174 19 0.4 1.6 0.9 0.9 0.3 0.7 1.1
pasp 122 71 14.0 85.0 43.5 42.5 14.2 34.0 51.8
ee 152 41 2.0 37.0 13.4 12.5 5.8 9.0 16.0
mr 193 0 0.0 2.0 0.5 0.0 0.7 0.0 1.0
tr 193 0 0.0 3.0 0.9 1.0 0.8 0.0 1.0
as 193 0 0.0 2.0 0.1 0.0 0.3 0.0 0.0
ai 193 0 0.0 2.0 0.2 0.0 0.5 0.0 0.0
rvfunction 192 1 0.0 4.0 0.6 0.0 1.2 0.0 0.2
af 193 0 0.0 1.0 0.2 0.0 0.4 0.0 0.0

PANEL X: Outcomes

timetohfadm 69 124 3.8 718.8 192.5 122.7 197.8 33.0 270.0
hfhospitalisation 193 0 0.0 1.0 0.4 0.0 0.5 0.0 1.0
los 171 22 1.0 372.0 15.8 8.0 31.3 4.0 19.0

Table A.4: Patient characteristics: HFmrEF

Variablei n # Na Min Max x̄ x̃ s q1 q3

PANEL I: Identification

patientid 182 0 1.0 193.0 96.9 97.5 56.6 47.2 146.5

PANEL II: Demographics

gender 182 0 0.0 1.0 0.4 0.0 0.5 0.0 1.0
white 182 0 0.0 1.0 0.7 1.0 0.5 0.0 1.0
asian 182 0 0.0 1.0 0.1 0.0 0.3 0.0 0.0
black 182 0 0.0 1.0 0.2 0.0 0.4 0.0 0.0

PANEL III: Admission symptoms

breathless 55 127 0.0 3.0 2.4 3.0 1.0 2.0 3.0

PANEL IV: Admission signs

sbp 98 84 86.0 242.0 132.6 126.5 27.7 114.2 147.8
dbp 95 87 45.0 591.0 80.2 72.0 55.7 62.0 85.0
admissionwgt 51 131 21.0 134.9 80.6 80.6 21.8 66.7 96.4
bp 182 0 0.0 1.0 0.7 1.0 0.5 0.0 1.0
bmiadmission 4 178 18.7 36.1 26.0 24.7 8.0 20.2 30.5
pulse 98 84 54.0 144.0 88.8 85.0 21.9 71.2 100.0
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Table A.4: Patient characteristics: HFmrEF (continued)

Variable n #Na Min Max x̄ x̃ s q1 q3

PANEL V: Risk factors

a-fib 182 0 0.0 1.0 0.4 0.0 0.5 0.0 1.0
copdasthma 181 1 0.0 1.0 0.3 0.0 0.5 0.0 1.0
irondef 52 130 0.0 1.0 0.4 0.0 0.5 0.0 1.0
dm 180 2 0.0 1.0 0.4 0.0 0.5 0.0 1.0
obesity 53 129 0.0 1.0 0.5 1.0 0.5 0.0 1.0
ihd 181 1 0.0 1.0 0.5 0.0 0.5 0.0 1.0

PANEL VI: Comorbidities

comorbidities 182 0 0.0 7.0 3.2 3.0 1.7 2.0 4.0

PANEL VII: Electrocardiography

ecgqrsduration 77 105 71.0 182.0 104.9 99.0 24.0 88.0 116.0
ecgqrsother 182 0 0.0 1.0 0.1 0.0 0.2 0.0 0.0
ecgrate 88 94 42.0 135.0 86.2 83.5 21.5 72.2 99.2
ecgrhythmother 182 0 0.0 1.0 0.0 0.0 0.1 0.0 0.0
lvh 180 2 0.0 3.0 0.6 0.0 0.8 0.0 1.0
normalecgqrs 182 0 0.0 1.0 0.3 0.0 0.4 0.0 1.0
lbbb 182 0 0.0 1.0 0.0 0.0 0.2 0.0 0.0
rbbb 182 0 0.0 1.0 0.0 0.0 0.2 0.0 0.0
sr 182 0 0.0 1.0 0.0 0.0 0.2 0.0 0.0

PANEL VIII: Laboratory tests

hb 168 14 54.0 153.0 110.7 111.0 19.9 98.0 125.0
wbc 166 16 1.5 39.2 8.3 7.6 4.2 5.9 9.4
tsat 71 111 1.0 65.0 20.4 19.0 12.5 14.0 25.0
plts 166 16 55.0 638.0 203.8 187.0 92.3 143.2 246.5
pcv 166 16 0.2 0.5 0.3 0.3 0.1 0.3 0.4
ferritin 54 128 17.0 3853.0 370.2 225.0 556.3 102.8 448.0
k 165 17 3.0 6.1 4.4 4.4 0.6 4.0 4.8
ironlevels 70 112 2.0 41.0 9.5 8.0 7.1 5.0 11.0
chol 181 1 0.0 1.0 0.4 0.0 0.5 0.0 1.0
ntprobnp 182 0 5.0 70000.0 9604.4 4063.5 14051.2 1886.5 9968.2
gfr 167 15 3.0 400.0 53.5 47.0 39.8 31.0 68.5
mcv 166 16 65.0 112.0 91.0 92.0 8.4 86.0 96.0
na 168 14 4.7 155.0 137.5 139.0 11.5 136.0 141.0

PANEL IX: Echocardiography

lvef 182 0 40.0 50.0 44.0 45.0 2.9 42.0 47.5
ewave 139 43 0.3 5.0 0.9 0.9 0.5 0.7 1.0
pasp 72 110 18.0 251520.0 3856.5 40.0 29625.6 32.0 53.2
ee 88 94 3.0 43.0 14.9 13.5 7.3 9.0 19.2
mr 159 23 0.0 3.0 0.8 1.0 0.8 0.0 1.0
tr 157 25 0.0 3.0 0.9 1.0 0.9 0.0 1.0
as 140 42 0.0 2.0 0.2 0.0 0.5 0.0 0.0
ai 151 31 0.0 3.0 0.3 0.0 0.5 0.0 0.0
rvfunction 146 36 0.0 6.0 1.2 0.0 2.0 0.0 1.0
af 182 0 0.0 1.0 0.2 0.0 0.4 0.0 0.0

PANEL X: Outcomes

timetohfadm 122 60 0.4 575.9 84.5 44.9 109.6 11.9 114.7
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Table A.4: Patient characteristics: HFmrEF (continued)

Variable n #Na Min Max x̄ x̃ s q1 q3

hfhospitalisation 182 0 0.0 1.0 0.2 0.0 0.4 0.0 0.0
los 169 13 1.0 196.0 16.9 9.0 24.2 4.0 19.0

i Note: n - number of observations, #Na - number of missing data, Min - minimal, Max - maximal, x̄ - arithmetic
mean, x̃ - median, s - standard deviation, q1 - first quartile and q3 - third quartile.
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Table A.5: Baseline characteristics of Hierarchical clustering HFpEF based
on post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 89.62±15.25 107.37±15.78 120.22±19.61 0.000***
pcv 0.28±0.05 0.33±0.05 0.37±0.06 0.000***
age 77.07(64.44,81.8) 85.45(77.81,88.81) 75.27(67.08,82.06) 0.000***
ewave 1.02(0.9,1.2) 0.9(0.77,1) 0.9(0.7,1) 0.000***
gfr 31(22.75,45) 47(38.25,70.75) 60(41,84) 0.000***
k 4.45(4.17,4.8) 4.2(3.7,4.6) 4.4(4.1,4.7) 0.030*
los 11(5,21.29) 10.5(5,22.18) 7(4,20.87) 0.217
lvef 57.5(55,60) 55.5(52.5,57.5) 57.5(55,60) 0.063
mcv 87(80.75,92) 90(85.25,95) 90(86,95.5) 0.010*
na 138(134.75,141) 139(137,142) 139(137,141) 0.107
ntprobnp 2745(1622,7647.25) 2432(1269.75,5920.5) 1417(714.5,3601.5) 0.001**
plts 244.5(170,307.25) 212(164,247) 215(162,286.5) 0.393
wbc 7.65(5.37,10.35) 7.15(5.72,10.7) 8.1(6.45,10.3) 0.270

Total number of significant baseline char: 53
Continuous: 8
Categorical: 45
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Table A.6: Baseline characteristics of K-Means clustering HFpEF based on
post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 120.22±19.61 107.37±15.78 89.62±15.25 0.000***
pcv 0.37±0.06 0.33±0.05 0.28±0.05 0.000***
age 75.27(67.08,82.06) 85.45(77.81,88.81) 77.07(64.44,81.8) 0.000***
ewave 0.9(0.7,1) 0.9(0.77,1) 1.02(0.9,1.2) 0.000***
gfr 60(41,84) 47(38.25,70.75) 31(22.75,45) 0.000***
k 4.4(4.1,4.7) 4.2(3.7,4.6) 4.45(4.17,4.8) 0.030*
los 7(4,20.87) 10.5(5,22.18) 11(5,21.29) 0.217
lvef 57.5(55,60) 55.5(52.5,57.5) 57.5(55,60) 0.063
mcv 90(86,95.5) 90(85.25,95) 87(80.75,92) 0.010*
na 139(137,141) 139(137,142) 138(134.75,141) 0.107
ntprobnp 1417(714.5,3601.5) 2432(1269.75,5920.5) 2745(1622,7647.25) 0.001**
plts 215(162,286.5) 212(164,247) 244.5(170,307.25) 0.393
wbc 8.1(6.45,10.3) 7.15(5.72,10.7) 7.65(5.37,10.35) 0.270

Total number of significant baseline char: 49
Continuous: 8
Categorical: 41
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Table A.7: Baseline characteristics of EM clustering HFpEF based on post-
diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 105.98±17.53 89.37±14.55 118.61±19.42 0.000***
pcv 0.33±0.05 0.28±0.04 0.37±0.06 0.000***
age 85.45(77.81,88.65) 75(63.26,80.41) 77.03(68.05,82.11) 0.000***
ewave 0.9(0.79,1) 1.1(0.9,1.2) 0.9(0.7,1) 0.000***
gfr 45.5(38,67.75) 31(21.25,45) 60(40,84) 0.000***
k 4.2(3.7,4.6) 4.4(4.13,4.8) 4.5(4.1,4.7) 0.012*
los 11(5,22.18) 11.5(4.25,21.76) 8(4,20.14) 0.269
lvef 56.75(52.5,57.5) 57.5(55,60) 57.5(55,60) 0.194
mcv 89.5(85.25,94) 87(80.25,92) 90(86,97) 0.008**
na 139.5(137,142) 138(135,141) 139(136,141) 0.102
ntprobnp 2755(1451.5,6684.25) 2745(1566,7993.75) 1525(727,3590) 0.000***
plts 212(164,247) 235.5(170,309.75) 219(163,284) 0.402
wbc 7.15(5.8,10.77) 7.55(5.42,10.17) 7.9(6.4,10.3) 0.506

Total number of significant baseline char: 56
Continuous: 8
Categorical: 48
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Table A.8: Baseline characteristics of Hierarchical clustering HFmrEF based
on post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 91.01±14.72 109.11±16.81 123.79±12.89 0.000***
k 4.58±0.66 4.51±0.58 4.18±0.48 0.000***
pcv 0.28±0.04 0.34±0.05 0.38±0.04 0.000***
age 71.53(65.87,82.74) 77.15(70.09,82.04) 79.19(68.12,82.9) 0.455
ewave 0.8(0.7,1) 0.96(0.8,1.14) 0.83(0.67,0.96) 0.003**
gfr 49.98(22,77) 43(30,55) 62(44.5,77.25) 0.000***
los 17(10,36) 12(4,21.48) 7(3,14.25) 0.000***
lvef 45(42,47.5) 45(42,47.5) 42.75(42.5,45) 0.344
mcv 91(87,96) 90(85,95) 93(88,97) 0.159
na 138(135,141) 139(135,141) 139(137.02,142) 0.049*
ntprobnp 6598(2857,27818) 4953(1861,10914) 2898.5(1587.75,5163.5) 0.005**
plts 210(147,285) 204(153,250) 174.74(149.5,215.75) 0.107
wbc 8.2(6.3,9.6) 8.3(6.9,9.8) 7.31(5.7,8.6) 0.025

Total number of significant baseline char: 53
Continuous: 8
Categorical: 45
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Table A.9: Baseline characteristics of K-Means clustering HFmrEF based
on post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 91.01±14.72 109.11±16.81 123.79±12.89 0.000***
k 4.58±0.66 4.51±0.58 4.18±0.48 0.000***
pcv 0.28±0.04 0.34±0.05 0.38±0.04 0.000***
age 71.53(65.87,82.74) 77.15(70.09,82.04) 79.19(68.12,82.9) 0.455
ewave 0.8(0.7,1) 0.96(0.8,1.14) 0.83(0.67,0.96) 0.003**
gfr 49.98(22,77) 43(30,55) 62(44.5,77.25) 0.000***
los 17(10,36) 12(4,21.48) 7(3,14.25) 0.000***
lvef 45(42,47.5) 45(42,47.5) 42.75(42.5,45) 0.344
mcv 91(87,96) 90(85,95) 93(88,97) 0.159
na 138(135,141) 139(135,141) 139(137.02,142) 0.049*
ntprobnp 6598(2857,27818) 4953(1861,10914) 2898.5(1587.75,5163.5) 0.005**
plts 210(147,285) 204(153,250) 174.74(149.5,215.75) 0.107
wbc 8.2(6.3,9.6) 8.3(6.9,9.8) 7.31(5.7,8.6) 0.025

Total number of significant baseline char: 53
Continuous: 8
Categorical: 45
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Table A.10: Baseline characteristics of EM clustering HFmrEF based on
post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 83.17±14.19 105.83±17.56 120.8±14.91 0.000***
k 4.65±0.84 4.53±0.57 4.22±0.51 0.001**
pcv 0.26±0.04 0.33±0.05 0.37±0.04 0.000***
age 68.63(41.33,74.15) 76.91(69.62,82.01) 80.97(68.7,83.32) 0.031
ewave 0.88(0.7,1.01) 0.94(0.79,1.12) 0.82(0.67,0.95) 0.009**
gfr 27(13.75,82.25) 42.5(27.5,58) 61(45.75,76.25) 0.000***
los 27.5(13.75,62) 12.5(5,21) 8(3,16.5) 0.006**
lvef 45(42,45.62) 45(42,47.5) 43(42.5,45) 0.517
mcv 91.5(86,96) 89.94(85.06,94) 93(89,97) 0.027*
na 136.5(133.75,141) 139(135.25,141) 139(137,142) 0.175
ntprobnp 19446.5(4178.5,59423.25) 5640.5(1953.25,11400.75) 2898.5(1636,5163.5) 0.001**
plts 155(117,236.25) 205.36(157.25,256) 177.5(147,224) 0.081
wbc 6.55(5.6,7.77) 8.4(7.1,10.3) 7.25(5.7,8.8) 0.001**

Total number of significant baseline char: 44
Continuous: 9
Categorical: 35
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Table A.11: Baseline characteristics of Hierarchical clustering HFpEF with-
out post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 87.94±13.31 110.91±17.01 117.31±20.34 0.000***
pcv 0.28±0.04 0.34±0.05 0.37±0.06 0.000***
age 75(64.94,81.79) 84.31(77.36,88.63) 74.08(65.25,82.89) 0.000***
ewave 1.1(0.92,1.27) 0.9(0.7,1) 0.94(0.7,1.1) 0.000***
gfr 29(20.5,44.25) 47(38,68) 55.5(40.25,83.75) 0.000***
k 4.44(4.1,4.8) 4.2(3.7,4.5) 4.45(3.92,4.78) 0.008**
los 12(5,22.19) 10(4,23.83) 8(4,20.76) 0.246
lvef 55(52.5,58.12) 57.5(55,60) 57.5(55,60) 0.203
mcv 87(79.25,92) 89(85,94) 90.5(85.25,96) 0.039
na 137.5(134.75,141) 140(137,142) 139.5(137,141) 0.024*
ntprobnp 3852(1879.5,9806.75) 1995(934,5573) 1653.5(870.25,3760.75) 0.000***
plts 226(162,303.75) 210(170,251.5) 217(160.25,296.5) 0.889
wbc 7.75(5.7,9.92) 7.2(5.55,10.55) 8.1(6.63,11.13) 0.121

Total number of significant baseline char: 48
Continuous: 8
Categorical: 40
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Table A.12: Baseline characteristics of K-Means clustering HFpEF without
post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 117.31±20.34 87.94±13.31 110.91±17.01 0.000***
pcv 0.37±0.06 0.28±0.04 0.34±0.05 0.000***
age 74.08(65.25,82.89) 75(64.94,81.79) 84.31(77.36,88.63) 0.000***
ewave 0.94(0.7,1.1) 1.1(0.92,1.27) 0.9(0.7,1) 0.000***
gfr 55.5(40.25,83.75) 29(20.5,44.25) 47(38,68) 0.000***
k 4.45(3.92,4.78) 4.44(4.1,4.8) 4.2(3.7,4.5) 0.008**
los 8(4,20.76) 12(5,22.19) 10(4,23.83) 0.246
lvef 57.5(55,60) 55(52.5,58.12) 57.5(55,60) 0.203
mcv 90.5(85.25,96) 87(79.25,92) 89(85,94) 0.039
na 139.5(137,141) 137.5(134.75,141) 140(137,142) 0.024*
ntprobnp 1653.5(870.25,3760.75) 3852(1879.5,9806.75) 1995(934,5573) 0.000***
plts 217(160.25,296.5) 226(162,303.75) 210(170,251.5) 0.889
wbc 8.1(6.63,11.13) 7.75(5.7,9.92) 7.2(5.55,10.55) 0.121

Total number of significant baseline char: 48
Continuous: 8
Categorical: 40
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Table A.13: Baseline characteristics of EM clustering HFpEF without post-
diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 106.38±16.53 84.31±14.29 109.8±21.75 0.000***
pcv 0.33±0.05 0.27±0.04 0.34±0.07 0.000***
age 84.69(76.93,88.61) 71.3(60.76,82.33) 77.79(68.05,84.04) 0.001**
ewave 0.9(0.68,1) 1.1(0.96,1.2) 0.98(0.8,1.1) 0.007**
gfr 44(36.5,56.5) 26.5(10,38.5) 48(31,73) 0.000***
k 4.1(3.7,4.5) 4.4(4.17,4.75) 4.4(4.1,4.7) 0.024*
los 10(4,21.54) 8.5(4,16.5) 10(5,22.08) 0.652
lvef 57.5(54.38,60.62) 57.5(54.38,60.62) 57.5(52.5,60) 0.357
mcv 89(85,93.25) 89(83,93.25) 89(84,95) 0.914
na 140(137,142) 137(134,141.25) 139(136,141) 0.233
ntprobnp 2191.5(1048,5046.25) 4114.5(1707,10007.75) 2184(976,4895) 0.098
plts 206.5(163.75,243.75) 206.5(154,296.75) 221(163,301) 0.494
wbc 7.1(5.5,9.35) 7.05(4.75,9.1) 8.1(6.4,10.9) 0.045*

Total number of significant baseline char: 42
Continuous: 6
Categorical: 36
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Table A.14: Baseline characteristics of Hierarchical clustering HFmrEF
without post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 89.5±14.24 122.31±13.84 113.5±15.95 0.000***
k 4.55±0.66 4.32±0.49 4.46±0.61 0.114
age 72.08(67.43,82.83) 81.14(74.51,85.01) 77.02(67.73,81.93) 0.006**
ewave 0.8(0.7,1) 0.82(0.62,0.99) 0.9(0.8,1.05) 0.026*
gfr 41(21.75,76.25) 64(47,82.5) 44(31,60.86) 0.000***
los 15.5(8.75,34.5) 9(4,24) 9(3,18) 0.003**
lvef 45(41.61,47.5) 45(42.5,47.5) 42.5(40,47.5) 0.001***
mcv 91(86,96.25) 93(88.71,96) 90(86.75,94) 0.136
na 138(134.75,141) 139(136,141) 139(136.92,141) 0.663
ntprobnp 8937.5(3303.5,26619.5) 2898.5(1440.75,5004.5) 3817.5(1647.25,10311.75) 0.000***
pcv 0.28(0.26,0.31) 0.38(0.35,0.4) 0.36(0.33,0.38) 0.000***
plts 210.5(151.5,285.5) 193(148.5,231.5) 191.27(153.75,226.5) 0.466
wbc 8.65(6.25,12.45) 7.45(6.07,9.22) 8.3(5.87,11.15) 0.375

Total number of significant baseline char: 51
Continuous: 8
Categorical: 43
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Table A.15: Baseline characteristics of K-Means clustering HFmrEF without
post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 121.6±14.29 114.24±15.78 90.02±14.5 0.000***
k 4.32±0.48 4.47±0.62 4.54±0.65 0.106
age 81.23(75.02,85.37) 77.02(67.73,81.84) 72.08(66.39,82.08) 0.002**
ewave 0.82(0.63,1) 0.9(0.8,1.05) 0.8(0.71,1) 0.045*
gfr 64(46.75,81.5) 44(31,59.35) 44(22.25,76) 0.000***
los 9(4,24) 8.5(3,16.25) 16.5(9.25,35.5) 0.000***
lvef 45(42.5,47.5) 42.5(40,47.5) 45(42,47.5) 0.001**
mcv 93(88.9,96) 89.88(85.75,94) 91(86.25,96) 0.105
na 139(136,141) 139(136.66,141) 138(135,141) 0.804
ntprobnp 2898.5(1526.25,4967.5) 3817.5(1647.25,10807.75) 8656(3176.5,25270.5) 0.001**
pcv 0.38(0.34,0.4) 0.36(0.33,0.39) 0.28(0.26,0.31) 0.000***
plts 193(147,232.5) 193.67(153.75,226.5) 209(153.25,284.75) 0.598
wbc 7.55(6.22,9.32) 8.3(5.87,11.35) 8.5(6.15,12.18) 0.451

Total number of significant baseline char: 53
Continuous: 8
Categorical: 45
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Table A.16: Baseline characteristics of EM clustering HFmrEF without
post-diagnosis

Cluster1 Cluster2 Cluster3 p-value

hb 81.25±12.6 117.97±16.32 106.63±16.19 0.000***
k 4.77±0.69 4.31±0.53 4.59±0.6 0.001**
age 71.4(59.57,76.83) 80.88(72.81,84.45) 73.36(60.94,78.65) 0.000***
ewave 0.8(0.7,1) 0.9(0.7,1) 0.9(0.75,1.06) 0.192
gfr 21(9.5,77.5) 59(42,76) 38(25.5,58) 0.000***
los 16.5(12.75,51) 9(5,20.5) 11(3,21) 0.036*
lvef 45(41.5,45.62) 45(42.5,47.5) 42.5(40,45) 0.006**
mcv 89.5(83,93) 93(88.16,96.5) 89.34(85,94) 0.023*
na 138(134.75,141) 139(136,141) 139(135.79,141) 0.840
ntprobnp 6880(2886.25,40414.75) 3405(1760,7809) 4396(1515,10597) 0.177
pcv 0.26(0.23,0.28) 0.37(0.33,0.39) 0.34(0.3,0.36) 0.000***
plts 204(145,267) 193(153,239) 194.8(141,234.4) 0.923
wbc 6.55(5.2,8.95) 8.2(6.2,10.45) 8.2(6.05,10.85) 0.293

Total number of significant baseline char: 42
Continuous: 8
Categorical: 34
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A.4 Relevant plots
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Figure A.1: Missing values in HFpEF data set. Top: the amount of missing
values in each variable sorted in ascending order. Bottom: plot of the combinations
of missing (red) and non-missing (blue) values in the HFpEF data set.
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Figure A.2: Missing values in HFmrEF data set. Top: the amount of missing
values in each variable sorted in ascending order. Bottom: plot of the combinations
of missing (red) and non-missing (blue) values in the HFmrEF data set.
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Figure A.4: Clustering results of HFpEF with Post-Diagnosis
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Figure A.5: Clustering results of HFmrEF with Post-Diagnosis
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Figure A.6: Clustering results of HFpEF without Post-Diagnosis
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Figure A.7: Clustering results of HFmrEF without Post-Diagnosis



Appendix B

Source code

The following appendix presents all the relevant R-code used in this thesis.
We have organized the chapter in accordance with the various steps in the
machine learning procedure adopted in this thesis, see Figure (3.1). We
have tried to comment as much of the source code in order to ensure that an
eventual re-examination of the results can be as easy as possible. Inquires
about the code can be forwarded to the author on request.

B.1 Packages

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # Funct i on f o r s o u r c i n g package i n f o
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 s ou r c e l i n e s <− f u n c t i o n ( f i l e , l i n e s ) {
5 s ou r c e ( t e x tConne c t i on ( r e a dL i n e s ( f i l e , warn = F) [ l i n e s ] ) )
6 }
7

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
9 # Ex t r a c t a l l package i n s t a l l e d i n a l l f i l e s

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
11 packages <− c ( )
12 f i l e s <− c ( ” u t i l i t i e s .R” , ” desc s t a t .R” , ” p re p r o c e s s .R” ,
13 ” c l u s t e r i n g .R” , ” c l a s s i f i c a t i o n .R” ,
14 ” . . / raw data / c o n s o l i d a t i o n .R” )
15

16 f o r ( f i l e i n f i l e s ) {
17 s ou r c e l i n e s ( f i l e , 1 : 1 0 )
18 packages <− c ( packages , Packages )

97
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19 }
20

21 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
22 # Ex t r a c t t i t l e , v e r s i o n and autho r i n f o rma t i o n
23 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
24 t i t l e <− c ( ) ; v e r s i o n <− c ( )
25 f o r ( package i n packages ) {
26 t i t l e <− c ( t i t l e , p a c k ag eDe s c r i p t i o n ( package ) $ T i t l e )
27 v e r s i o n <− c ( v e r s i o n , p a c k ag eDe s c r i p t i o n ( package ) $Ve r s i on )
28 }
29

30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
31 # Bu i l d LaTex t a b l e w i th a l l the package i n f o
32 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
33 packagesUsed <− as . data . f rame ( mat r i x ( c ( packages , t i t l e ,
34 v e r s i o n ) , n co l = 3) )
35 co lnames ( packagesUsed ) <− c ( ”Package” , ” T i t l e ” , ” Ve r s i on ” )
36 packagesUsed <− un ique ( packagesUsed [ packagesUsed $Package , ] )
37 packagesUsed <− packagesUsed [ o r d e r ( packagesUsed $Package ) , ]
38 rownames ( packagesUsed ) <− 1 : nrow ( packagesUsed )
39 p r i n t ( x t a b l e ( packagesUsed ) , i n c l u d e . rownames=FALSE)
40

41 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.2 Utilities

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l packages ( i f not a l r e a d y i n s t a l l e d )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ” d o c s t r i n g ” , ” p l o t r i x ” , ”FactoMineR” ,
5 ” f a c t o e x t r a ” , ” g r i d E x t r a ” , ”NbClust ” ,
6 ” ggpubr ” , ”mc lus t ” , ”CBCgrps” )
7 # i n s t a l l . packages ( Packages )
8

9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
10 # Load package f o r d o c s t r i n g
11 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
12 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = TRUE)
13

14 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
15 # He lpe r f u n c t i o n used i n t h i s t h e s i s
16 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
17 i f . not . c l a s s <− f u n c t i o n ( var , c l a s s ) {
18 #’ U t i l i t y f u n c t i o n f o r e r r o r messages
19 #’
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20 #’ @d e s c r i p t i o n U t i l i t y f u n c t i o n f o r e r r o r messages g i v en
21 #’ wrong i npu t c l a s s as f u n c t i o n argument .
22

23 i f ( ! any ( c l a s s ( va r ) %i n% c l a s s ) ) {
24 s top ( pa s t e ( ” f i r s t argument must be o f c l a s s ( e s ) ” ,
25 c l a s s , ” ! ” , sep = ”” ) )
26 }
27 }
28

29 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
30 make . na <− f u n c t i o n ( data ) {
31 #’ Conve r t s a l l the NaN i n a mat r i x to NA
32 #’
33 #’ @d e s c r i p t i o n Thi s f u n c t i o n r e t u r n s a mat r i x i n which a l l
34 #’ the NaN va l u e s a r e r e p l a c e d wi th NA va l u e s . Note ! NaN
35 #’ (” not a number ”) i s not the R syn tax f o r m i s s i n g v a l u e s .
36 #’ The c o r r e c t s yn tax i s NA (” not a v a i l a b l e ”) .
37 #’
38 #’ @param data mat r i x . Mat r i x c o n t a i n i n g NaN va l u e s
39

40 data [ i s . nan ( data ) ] <− NA
41 r e t u r n ( data )
42 }
43

44 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
45 summary . m i s s i n g <− f u n c t i o n ( data ) {
46 #’ Summary o f the m i s s i n g v a l u e s i n a d a t a s e t
47 #’
48 #’ @d e s c r i p t i o n Thi s f u n c t i o n r e t u r n s a l i s t w i th the t o t a l
49 #’ number o f na v a l u e s and the t o t a l p e r c en t age i n the e n t i r e
50 #’ data s e t , i n c l u d i n g the pe r c en t age o f m i s s i n g v a l u e s f o r
51 #’ a l l v a r i a b l e s ( columns ) and the r e l a t i v e p e r c en t age o f
52 #’ m i s s i n g v a l u e s to the t o t a l ( both as v e c t o r s ) .
53 #’
54 #’ @param data mat r i x . Mat r i x c o n t a i n i n g m i s s i n g v a l u e s
55

56 num . na <− sum( i s . na ( data ) )
57 t o t . pmv <− num . na/ prod ( dim ( data ) )
58 num . na . vec <− app l y ( data , 2 , f u n c t i o n ( c o l ) sum( i s . na ( c o l ) ) )
59 pmv . vec <− num . na . vec / prod ( dim ( data ) )
60 r e l . pmv . vec <− num . na . vec / num . na
61 r e l . pmv . v <− num . na . vec / dim ( data ) [ 1 ]
62

63 outp <− l i s t (num . na , t o t . pmv , num . na . vec , pmv . vec ,
64 r e l . pmv . vec , r e l . pmv . v )
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65 names ( outp ) <− c ( ”num . na” , ” t o t . pmv” , ”num . na . vec ” ,
66 ”pmv . vec ” , ” r e l . pmv . vec ” , ” r e l . pmv . v” )
67 r e t u r n ( outp )
68 }
69

70 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
71 summary . z e r o s <− f u n c t i o n ( data ) {
72 #’ Summary o f the z e r o v a l u e s i n a d a t a s e t
73 #’
74 #’ @d e s c r i p t i o n The f u n c t i o n r e t u r n s a l i s t w i th the
75 #’ pe r c en t age o f z e r o v a l u e s f o r a l l v a r i a b l e s i n a da ta s e t ,
76 #’ i n c l u d i n g the t o t a l number o f z e r o v a l u e s and the t o t a l
77 #’ pe r c en t age and the r e l a t i v e p e r c en t age o f z e r o v a l u e s
78 #’ to the t o t a l .
79 #’
80 #’ @param data mat r i x . Mat r i x c o n t a i n i n g z e r o v a l u e s
81

82 num . z e r o s <− sum( colSums ( data == 0 , na . rm = T) )
83 t o t . pzv <− num . z e r o s / prod ( dim ( data ) )
84 num . z e r o s . vec <− colSums ( data == 0 , na . rm = T)
85 pzv . vec <− num . z e r o s . vec / nrow ( data )
86 r e l . pzv . vec <− num . z e r o s . vec / num . z e r o s
87

88 outp <− l i s t (num . ze ro s , t o t . pzv , num . z e r o s . vec , pzv . vec ,
89 r e l . pzv . vec )
90 names ( outp ) <− c ( ”num . z e r o s ” , ” t o t . pzv ” , ”num . z e r o s . vec ” ,
91 ”pzv . vec ” , ” r e l . pzv . vec ” )
92 r e t u r n ( outp )
93 }
94

95 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
96 rm . i n d i c a t o r <− f u n c t i o n ( data , n . un iq ) {
97 #’ Removes i n d i c a t o r v a r i a b l e columns from a da t a s e t based on
98 #’ p r e d e f i n e d number o f un ique e l ement i n tha t column
99 #’

100 #’ @d e s c r i p t i o n Thi s f u n c t i o n r e t u r n a mat r i x w i thout
101 #’ i n d i c a t o r v a r i a b l e columns . A i n d i c a t o r v a r i a b l e column i s
102 #’ d e f i n e d as a column c o n t a i n i n g l e s s t ha t a p r e d e f i n e d
103 #’ number o f un ique e l ement s ( n . un iq )
104 #’
105 #’ @param data mat r i x . Mat r i x c o n t a i n i n g i n d i c a t o r v a r i a b l e s
106 #’ @param n . un iq i n t e g e r . Number o f un ique e l ement i n a
107 #’ column needed f o r t ha t column to be d e f i n e d as a i n d i c a t o r
108 #’ v a r i a b l e column .
109
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110 non . i n d i c a t o r <− data [ , app l y ( data , 2 , f u n c t i o n ( c o l )
111 l e n g t h ( un ique ( c o l ) ) > n . un iq ) ]
112 i nd . va r . i d x <− ! ( co lnames ( data ) %i n% colnames ( non . i n d i c a t o r ) )
113 i n d i c a t o r <− data [ , i nd . va r . i d x ]
114

115 outp <− l i s t ( non . i n d i c a t o r , i n d i c a t o r )
116 names ( outp ) <− c ( ”non . i n d i c a t o r ” , ” i n d i c a t o r ” )
117 r e t u r n ( outp )
118 }
119

120 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
121 rm . m i s s i n g <− f u n c t i o n ( data , cut . o f f = 0 . 8 , nea r . z e r o . va r = T) {
122 #’ Remove v a r i a b l e s w i th nea r z e r o v a r i a n c e or more m i s s i n g
123 #’ v a l u e s than a pe r c en t age t h r e s h o l d .
124 #’
125 #’ @d e s c r i p t i o n Thi s f u n c t i o n removes a l l v a r i a b l e s i n a
126 #’ mat r i x o r data f rame wi th su sp e c t ed o f hav ing nea r z e r o
127 #’ v a r i a n c e or more m i s s i n g v a l u e s than a g i v en pe r c en t age
128 #’ t h r e s h o l d .
129 #’
130 #’ @param data mat r i x . Mat r i x l i k e o b j e c t
131 #’ @param cut . o f f i n t e g e r . Pe rcentage t h r e s h o l d f o r m i s s i n g
132 #’ v a l u e s .
133 #’ @param near . z e r o . va r l o g i c a l . Boolean i n d i c a t i n g i f
134 #’ c r i t e r i a f o r nea r z e r o v a r i a n c e i s to be used .
135

136 i f ( nea r . z e r o . va r ) {
137 near . z e r o <− nearZeroVar ( data )
138 i f ( l e n g t h ( nea r . z e r o ) != 0) {
139 data <− data [ , −near . z e r o ]
140 }
141 }
142 miss . c o l <− summary . m i s s i n g ( data ) $ r e l . pmv . v
143 miss . cut <− miss . c o l < cut . o f f
144 data <− data [ , m i s s . cut ]
145 r e t u r n ( data )
146 }
147

148 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
149 z e r o . to . na <− f u n c t i o n ( data , e x c ep t=NULL) {
150 #’ Conver t z e r o d a t a p o i n t s to na i n a d a t a s e t .
151 #’
152 #’ @d e s c r i p t i o n Thi s f u n c t i o n c o n v e r t s a l l the z e r o d a t a p o i n t s
153 #’ i n a da t a s e t i n t o na . One can a l s o supp l y a v e c t o r o f
154 #’ columnames ( excep t ) c o r r e s p ond i n g to v a r i a b l e s t ha t t h i s
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155 #’ f u n c t i o n shou l d not be a p p l i e d on .
156 #’
157 #’ @param data mat r i x . Mat r i x c o n t a i n i n g z e r o d a t a p o i n t s
158 #’ @param excep t c h a r a c t e r v e c t o r . Names o f mat r i x column not
159 #’ to app l y f u n c t i o n on .
160

161 exp . i d x <− co lnames ( data ) %i n% excep t
162 exp . data <− data [ , exp . i d x ] ; not . exp . data <− data [ , ! exp . i d x ]
163 not . exp . data [ not . exp . data == 0 ] <− NA
164 data <− cb ind ( not . exp . data , exp . data )
165 r e t u r n ( data )
166 }
167

168 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
169 move . columns <− f u n c t i o n ( from . mat , to . mat , column . name) {
170 #’ Move one column from one mat r i c to ano the r .
171 #’
172 #’ @d e s c r i p t i o n Thi s f u n c t i o n moves one column wi th name
173 #’ column . name from mat r i x c a l l e d from . mat to mat r i x c a l l e d
174 #’ to . mat .
175 #’
176 #’ @param from . mat mat r i x . Mat r i x to move column from
177 #’ @param to . mat mat r i x . Mat r i x to move column to
178 #’ @param column . name c h a r a c t e r . Name o f column to be moved
179

180 to . mat <− cb ind ( to . mat , from . mat [ , co lnames ( from . mat ) ==
181 column . name ] )
182 co lnames ( to . mat ) [ n co l ( to . mat ) ] <− column . name
183 from . mat <− from . mat [ , co lnames ( from . mat ) != column . name ]
184 outp <− l i s t ( from . mat , to . mat )
185 names ( outp ) <− c ( ” from . mat” , ” to . mat” )
186 r e t u r n ( outp )
187 }
188 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
189 s o r t . column . names <− f u n c t i o n ( data , i d . c o l = T) {
190 #’ So r t s columns from data
191 #’
192 #’ @d e s c r i p t i o n Thi s f u n c t i o n s o r t s the columns names o f an
193 #’ mat r i x l i k e o b j e c t .
194 #’
195 #’ @param data mat r i x . Mat r i x w i th columns names
196 #’ @id . c o l boo l ean . L o g i c a l i n d i c a t i n g i f data c o n t a i n s
197 #’ an i d column .
198

199 i f ( i d . c o l ) {
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200 i d <− data [ , 1 ]
201 data <− data [ ,−1]
202 data <− cb ind ( id , data [ , s o r t ( co lnames ( data ) ) ] )
203 } e l s e {
204 data <− data [ , s o r t ( co lnames ( data ) ) ]
205 }
206 r e t u r n ( data )
207 }
208

209 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
210 s p l i t . mat r i x <− f u n c t i o n ( data ) {
211 #’ S p l i t mat r i x i n two p a r t s .
212 #’
213 #’ @d e s c r i p t i o n Thi s f u n c t i o n s p l i t s a mat r i x i n t o two p a r t s .
214 #’ Both h a l f s can be a c c e s s ed by the u s e r as an output .
215 #’
216 #’ @param data mat r i x . Mat r i x l i k e o b j e c t
217 #’
218 #’ @note The f u n c t i o n assumes tha t the i npu t mat r i x has more
219 #’ than one column .
220

221 i f ( n co l ( data )==1){
222 s top ( ” data must have more than one column ! ” )
223 }
224 mid <− t r unc ( n co l ( data ) / 2) ; end <− nco l ( data )
225 f i r s t . h a l f <− data [ , 1 : mid ]
226 second . h a l f <− data [ , (mid+1) : end ]
227 outp <− l i s t ( f i r s t . h a l f , second . h a l f )
228 names ( outp ) <− c ( ” f i r s t . h a l f ” , ” second . h a l f ” )
229 r e t u r n ( outp )
230 }
231

232 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
233 data . bounds <− f u n c t i o n ( data , l owe r . bound , upper . bound ) {
234 #’ Genera te an Amel ia compat i b l e bound mat r i x
235 #’
236 #’ @d e s c r i p t i o n Thi s f u n c t i o n p roduce s a t h r e e column mat r i x
237 #’ to ho ld l o g i c a l bounds on the impu t a t i o n s done i n Amel ia
238 #’ I I . Each row o f the mat r i x i s o f the form c ( column . number ,
239 #’ lowe r . bound , upper . bound ) .
240 #’
241 #’ @param data mat r i x . Mat r i x l i k e o b j e c t
242 #’ @param lowe r . bound numer ic .
243 #’ @param upper . bound numer ic .
244
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245 l e n <− nco l ( data ) ; column . number <− seq (1 , l e n )
246 l owe r <− r ep ( l owe r . bound , l e n )
247 upper <− r ep ( upper . bound , l e n )
248 outp <− cb ind ( column . number , lower , upper )
249 r e t u r n ( outp )
250 }
251

252 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
253 boot . em . impute <− f u n c t i o n ( data , bounds , n . boot = 30) {
254 #’ Impute data u s i n g a mean c o l l a p s i n g boo t s t r apped EM
255 #’ a l g o r i t hm .
256 #’
257 #’ @d e s c r i p t i o n Thi s f u n c t i o n imputes a data mat r i x u s i n g the
258 #’ boo t s t r apped EM a lgo r i hm from the Amal ie I I package . The
259 #’ a l g o r i t hm c r e a t e s n . boot number o f boo t s t r apped d a t a s e t s
260 #’ a f t e r which the d a t a s e t s a r e c o l l a p s e d i n t o one d a t a s e t
261 #’ u s i n g the mean o f a l l imputted v a l u e s as f i n a l e s t ima t e
262 #’ o f the g i v en m i s s i n g v a l u e .
263 #’
264 #’ @param data mat r i x . Mat r i x l i k e o b j e c t
265 #’ @param bounds mat r i x . Three column mat r i x o f the form
266 #’ c ( column . number , l owe r . bound , upper . bound ) .
267 #’ @param n . boot numer ic . Number o f boo t s t r apped d a t a s e t s
268 #’ to c r e a t e .
269

270 data . em = l i s t ( )
271 f o r ( i i n 1 : n . boot ) {
272 p r i n t ( pa s t e ( ” Boot s t r ap : ” , i , ” ( ” , i /n . boot ∗ 100 , ” %)” ,
273 sep=”” ) )
274 data . em [ [ i ] ] <− ame l i a ( data , m = 1 , p2s = 0 ,
275 bounds = bounds ) $ impu t a t i o n s $ imp1
276 }
277 r e t u r n ( Reduce ( ”+” , data . em) / n . boot )
278 }
279

280 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
281 top . n . m i s s i n g <− f u n c t i o n ( data , n , d e c r e a s i n g=T) {
282 #’ Summary o f top n m i s s i n g v a r i a b l e s i n data s e t .
283 #’
284 #’ @d e s c r i p t i o n Thi s f u n c t i o n p roduce s a summary t a b l e o f the
285 #’ top n m i s s i n g v a r i a b l e s i n an i npu t ed d a t a s e t .
286 #’
287 #’ @param data mat r i x . Mat r i x l i k e o b j e c t
288 #’ @param n i n t e g e r . Top n h i g h e s t m i s s i n g v a r i a b l e s
289 #’ @param d e c r e a s i n g l o g i c a l . L o g i c a l argument i n d i c a t i n g



B.2. Utilities 105

290 #’ wheater v a l u e s shou l d be s o r t e d i n d e c r e a s i n g o r d e r .
291

292 mi s s i n g <− summary . m i s s i n g ( data )
293 count <− mi s s i n g $num . na . vec
294 i f ( sum( count ) == 0) {
295 s top ( ”no m i s s i n g v a l u e s ! ” )
296 }
297 pe r c <− mi s s i n g $pmv . vec
298 r e l p <− mi s s i n g $ r e l . pmv . vec
299 r e l v <− mi s s i n g $ r e l . pmv . v
300 outp <− app l y ( as . mat r i x ( cb ind ( count , perc , r e l p , r e l v ) ) , 2 ,
301 s o r t , d e c r e a s i n g ) [ 1 : n , ]
302 grand . t o t <− c ( m i s s i n g $num . na , m i s s i n g $ t o t . pmv , sum( r e l p ) ,
303 NA)
304 outp <− r b i n d ( grand . tot , outp )
305 co lnames ( outp ) <− c ( ”#Na” , ”%N” , ”%Na” , ”%V” )
306 r e t u r n ( outp )
307 }
308

309 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
310 l a b e l . summary <− f u n c t i o n ( l a b e l s , l a b e l . co l , c o l . names , d i g i t s ,
311 s o r t . co l , i g n o r e . i d . c o l = T,
312 dec r = T) {
313 #’ Summary o f c l a s s l a b e l s i n data s e t
314 #’
315 #’ @d e s c r i p t i o n The f u n c t i o n r e t u r n s a t a b l e w i th the number
316 #’ un ique l a b e l s i n a l a b e l s mat r i x and the pe r c en t age o f
317 #’ a l l the l a b e l s t ha t occu r e .
318 #’
319 #’ @param l a b e l s mat r i x . Mat r i x l i k e o b j e c t o f c h a r a c t e r s
320 #’ @param l a b e l . c o l i n t e g e r . Column number o f p r imary l a b e l s
321 #’ @param co l . names c h a r a c h t e r v e c t o r . Vecto r o f column
322 #’ names
323 #’ @param d i g i t s i n t e g e r . I n t e g e r i n d i c a t i n g the number o f
324 #’ dec ima l p l a c e s to be used .
325 #’ @param s o r t . c o l i n t e g e r . Column number to s o r t
326 #’ @param i g n o r e . i d . c o l l o g i c a l . Boolean i n d i c a t i n g whether
327 #’ f i r s t column o f i d numbers shou ld be i g no r e d .
328 #’ @param dec r l o g i c a l . Boolean i n d i c a t i n g i f v a l u e s i n
329 #’ s o r t . c o l s hou l d be s o r t e d i n d e c r e a s i n g o r d e r .
330

331 un iq <− un ique ( i f ( i g n o r e . i d . c o l ) {
332 l a b e l s [ o r d e r ( l a b e l s [ , l a b e l . c o l ] ) ,−1]} e l s e { l a b e l s })
333 t a b l <− t a b l e ( l a b e l s [ , l a b e l . c o l ] )
334 pe r c <− round ( t a b l /sum( t a b l ) , d i g i t s )



106 Appendix B. Source code

335 outp <− cb ind ( uniq , t ab l , p e r c )
336 co lnames ( outp ) <− c o l . names
337 r e t u r n ( outp [ o r d e r ( outp [ , s o r t . c o l ] , d e c r e a s i n g = dec r ) , ] )
338 }
339

340 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
341 l i t t l e . mcar <− f u n c t i o n ( data ) {
342 #’ L i t t l e ’ s t e s t to a s s e s s f o r m i s s i n g comp l e t e l y at
343 #’ random .
344 #’
345 #’ @d e s c r i p t i o n Thi s f u n c t i o n u s e s L i t t l e ’ s t e s t ( from
346 #’ BaylorEdPsych package ) to a s s e s s f o r m i s s i n g comp l e t e l y a t
347 #’ random f o r m u l t i v a r i a t e data wi th m i s s i n g v a l u e s . I t
348 #’ r e t u r n the c h i . squa red t e s t s t a t i s t i c s , d f and p . v a l u e .
349 #’
350 #’ @param data mat r i x l i k e o b j e c t . Mat r i x o r data frame wi th
351 #’ v a l u e s t ha t a r e m i s s i n g .
352 #’
353 #’ @note Thi s f u n c t i o n cannot accep t data wi th more than 50
354 #’ v a r i a b l e s , and may i n some ca s e s take l ong t ime to
355 #’ complete .
356

357 l <− LittleMCAR ( data [ , summary . m i s s i n g ( data ) $num . na . vec > 0 ] )
358 outp <− c ( dim ( data ) [ 2 ] , l $mi s s i n g . p a t t e r n s , l $ c h i . square ,
359 l $df , l $p . v a l u e )
360 names ( outp ) <− c ( ”n va r ” , ” m i s s i n g . p a t t e r n s ” , ” c h i . s qua r e ” , ”

d f ” ,
361 ”p . v a l u e ” )
362 outp [ 1 : 2 ] <− round ( outp [ 1 : 2 ] )
363 r e t u r n ( outp )
364 }
365

366 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
367 pca . va r . p l o t <− f u n c t i o n ( pca , n . comp=NA, d i g i t s =4, t i t l e = NA) {
368 #’ P lo t the e x p l a i n e d and cumu l a t i v e v a r i a n c e from a
369 #’ p r i n c i p a l component a n a l y s i s (PCA) .
370 #’
371 #’ @d e s c r i p t i o n Thi s f u n c t i o n p roduce s a p l o t o f the
372 #’ e x p l a i n e d and cumu l a t i v e v a r i a n c e e x t r a c t e d from a
373 #’ p r i n c i p a l component a n a l y s i s .
374 #’
375 #’ @param pca pr incomp ob j e c t .
376 #’ @param n . comp i n t e g e r . Number o f components to be p l o t t e d
377 #’ @param d i g i t s i n t e g e r . I n t e g e r i n d i c a t i n g the number o f
378 #’ dec ima l p l a c e s to be used .
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379 #’ @param t i t l e c h a r a c t e r . Name o f t i t l e .
380

381 i f . not . c l a s s ( pca , ” pr incomp” )
382 sd <− pca$ sdev
383 n <− 1 : i f e l s e ( i s . na ( n . comp) , l e n g t h ( sd ) , n . comp)
384 v r <− ( sd ˆ2/sum( sd ˆ2) ) [ n ]
385 cm <− cumsum( v r )
386 c o l f u n c <− co lo rRampPa l e t t e ( c ( ” l i g h t b l u e ” , ” b l u e ” ) )
387 twoord . p l o t (n , vr , n , cm , type = c ( ” bar ” , ” s ” ) ,
388 l c o l = c o l f u n c ( l e n g t h ( n ) ) , main = t i t l e ,
389 cex . a x i s = 0 . 5 ) ; g r i d ( )
390 l i n e s ( v r ) ; p o i n t s ( vr , pch = 20)
391 l e g <− c ( pa s t e ( ”Number comp : ” , l e n g t h ( n ) ) ,
392 pa s t e ( ”Cum. v a r i a n c e : ” , round ( sum( v r ) , d i g i t s ) ) )
393 l e g end ( ” top ” , l e g end = leg , bty = ”n” )
394 }
395

396 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
397 pca . c l u s t e r . p l o t <− f u n c t i o n ( pca , ncp , km. c l u s t = 2 ,
398 hc . c l u s t = −1, em . c l u s t = 2 ,
399 d i g i t s = 5 , e l l i p s e = T,
400 a c t u a l = NA, f cp=1, scp = 2 ,
401 e l l i p s e . t ype = ” convex ” ,
402 ggtheme = theme gray ( ) ,
403 r e t u r n . c l u s t=F) {
404 #’ Side−by−s i d e c l u s t e r p l o t s w i th H i e r a r c h i c a l C l u s t e r i n g ,
405 #’ kMeans and EM c l u s t e r i n g on p r i n c i p a l components .
406 #’
407 #’ @d e s c r i p t i o n Thi s f u n c t i o n runs H i e r a r c h i c a l , kMeans and
408 #’ EM c l u s t e r i n g on a p r e d e f i n e d number o f p r i n c i p a l
409 #’ components . The r e s u l t s a r e s c a t t e r p l o t s w i th the
410 #’ r e s u l t s from the c l u s t e r i n g .
411 #’
412 #’ @param pca pr incomp ob j e c t .
413 #’ @param ncp numer ic . Number o f p r i n c i p a l components
414 #’ @param km. c l u s t numer ic . Number o f c l u s t e r s to be used
415 #’ i n the kMeans a l g o r i t hm .
416 #’ @param hc . c l u s t numer ic . Number o f c l u s t e r s to be used
417 #’ i n the H i e r a r c h i c a l c l u s t e r i n g .
418 #’ @param em . c l u s t numer ic . Number o f c l u s t e r s to be used
419 #’ i n the e x p e c t a t i o n max im i za t i on a l g o r i t hm .
420 #’ @param d i g i t s numer ic . Number o f dec ima l p l a c e s f o r
421 #’ cumu l a t i v e v a r i a n c e i n p l o t t i t l e .
422 #’ @param e l l i p s e l o g i c a l v a l u e . Boolean i n d i c a t i n g i f
423 #’ e l l i p s e around c l u s t e r s shou ld be drawn .
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424 #’ @param e l l i p s e . t ype . Type o f e l l i p s e to be drawn .
425 #’ See g g s c a t t e r f o r more i n f o rma t i o n .
426 #’ @param ggtheme . f un c t i o n , ggp l o t 2 theme name .
427 #’ @param r e t u r n . c l u s t . l o g i c a l . Boolean i n d i c a t i n g wheather
428 #’ one want to r e t u r n the c l u s t e r p a r t i o n i n g .
429

430 i f . not . c l a s s ( pca , ” pr incomp” )
431 data <− as . data . f rame ( pca$ s c o r e s [ , 1 : ncp ] )
432 sdev <− pca$ sdev
433 rdev <− sdev ˆ2 / sum( sdev ˆ2)
434 cdev <− cumsum( rdev )
435 subt <− pa s t e ( ”Cum. v a r i a n c e : ” , round ( cdev [ ncp ] , d i g i t s ) )
436 hc . t i t l e <− l a b s ( t i t l e=pa s t e ( ” H i e r a r c h i c a l C l u s t e r i n g ” ) ,
437 s u b t i t l e= subt )
438 km. t i t l e <− l a b s ( t i t l e = pa s t e ( ”kMeans ( k = ” , km. c l u s t ,
439 ” ) C l u s t e r i n g ” , sep = ”” ) , s u b t i t l e = subt )
440 em . t i t l e <− l a b s ( t i t l e = pa s t e ( ”EM C l u s t e r i n g ” ) ,
441 s u b t i t l e = subt )
442 x l a b <− pa s t e ( ”Dim” , fcp , ” ( ” ,
443 round ( ( rdev [ f cp ] ) ∗ 100 , 2) ,
444 ”%)” , sep = ”” )
445 y l a b <− pa s t e ( ”Dim” , scp , ” ( ” ,
446 round ( ( rdev [ scp ] ) ∗ 100 , 2) , ”%)” ,
447 sep = ”” )
448 hc . c l u s t e r <− HCPC( data , nb . c l u s t = hc . c l u s t ,
449 graph = F) $ data . c l u s t $ c l u s t
450 km. c l u s t e r <− as . f a c t o r ( kmeans ( data , km. c l u s t ) $ c l u s t e r )
451 em . c l u s t e r <− as . f a c t o r ( Mclust ( data [ , 1 : ncp ] ,
452 em . c l u s t ) $ c l a s s i f i c a t i o n )
453 i f ( a l l ( i s . na ( a c t u a l ) ) ) {
454 data <− cb ind ( data [ , f cp : scp ] , hc . c l u s t e r , km . c l u s t e r ,
455 em . c l u s t e r )
456 } e l s e {
457 a c t u a l <− as . f a c t o r ( a c t u a l )
458 data <− cb ind ( data [ , f cp : scp ] , hc . c l u s t e r , km . c l u s t e r ,
459 em . c l u s t e r ,
460 a c t u a l )
461 }
462 hc <− g g s c a t t e r ( data , pa s t e ( ”Comp . ” , fcp , sep=”” ) ,
463 pa s t e ( ”Comp . ” , scp , sep=”” ) ,
464 c o l o r = ”hc . c l u s t e r ” , y l a b=y lab , x l a b=x lab ,
465 shape = ”hc . c l u s t e r ” , e l l i p s e = e l l i p s e ,
466 e l l i p s e . t ype = e l l i p s e . type ,
467 ggtheme = ggtheme , mean . p o i n t = T,
468 l a b e l = seq ( nrow ( data ) ) ) + hc . t i t l e
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469 km <− g g s c a t t e r ( data , pa s t e ( ”Comp . ” , fcp , sep=”” ) ,
470 pa s t e ( ”Comp . ” , scp , sep=”” ) ,
471 c o l o r = ”km. c l u s t e r ” , y l a b=y lab , x l a b=x lab ,
472 shape = ”km. c l u s t e r ” , e l l i p s e = e l l i p s e ,
473 e l l i p s e . t ype = e l l i p s e . type ,
474 ggtheme = ggtheme , mean . p o i n t = T,
475 l a b e l = seq ( nrow ( data ) ) ) + km. t i t l e
476 em <− g g s c a t t e r ( data , pa s t e ( ”Comp . ” , fcp , sep=”” ) ,
477 pa s t e ( ”Comp . ” , scp , sep=”” ) ,
478 c o l o r = ”em . c l u s t e r ” , y l a b=y lab , x l a b=x lab ,
479 shape = ”em . c l u s t e r ” , e l l i p s e = e l l i p s e ,
480 e l l i p s e . t ype = e l l i p s e . type ,
481 ggtheme = ggtheme , mean . p o i n t = T,
482 l a b e l = seq ( nrow ( data ) ) ) + em . t i t l e
483 i f ( a l l ( i s . na ( a c t u a l ) ) ) {
484 g r i d . a r r ange ( hc , km, em , nrow = 2)
485 } e l s e {
486 ac t <− g g s c a t t e r ( data , pa s t e ( ”Comp . ” , fcp , sep=”” ) ,
487 pa s t e ( ”Comp . ” , scp , sep=”” ) ,
488 c o l o r = ” a c t u a l ” , shape = ” a c t u a l ” ,
489 e l l i p s e = e l l i p s e ,
490 e l l i p s e . t ype = e l l i p s e . type ,
491 ggtheme = ggtheme ,
492 l a b e l = seq ( nrow ( data ) ) , y l a b=hc$ l a b e l s $y ,
493 x l a b = hc$ l a b e l s $x ) +
494 l a b s ( t i t l e = ”Actua l C l u s t e r i n g ” , s u b t i t l e = ”” )
495 g r i d . a r r ange ( act , hc , km, em , nrow = 2)
496 }
497 i f ( r e t u r n . c l u s t ) {
498 c l u s t . l i s t <− l i s t ( as . numer ic ( a c t u a l ) ,
499 as . numer ic ( hc . c l u s t e r ) ,
500 as . numer ic (km. c l u s t e r ) ,
501 as . numer ic (em . c l u s t e r ) )
502 names ( c l u s t . l i s t ) <− c ( ”ACT” , ”HC” , ”KMC” , ”EMC” )
503 r e t u r n ( c l u s t . l i s t )
504 }
505 }
506

507 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
508 compare . b a s e l i n e <− f u n c t i o n ( data , grp , a l pha =0.05){
509 #’ Compare b a s e l i n e c h a r a c t e r i s t i c s between two groups .
510 #’
511 #’ @d e s c r i p t i o n Thi s f u n c t i o n compares the b a s e l i n e cha rac t−
512 #’ e r i s t i c s between two sample g roups u s i n g an automated
513 #’ p r o c e s s f o r d e t e rm i n i ng the d i s t r i b u t i o n o f c o n t i n i o u s



110 Appendix B. Source code

514 #’ v a r i a b e l s and the a p p r o p r i a t e t e s t s . The Wilcoxon rank
515 #’ sum t e s t i s a p p l i e d f o r c a t e g o r i c a l v a r i a b l e s .
516 #’
517 #’ @param data mat r i x l i k e o b j e c t . Mat r i x o r data frame .
518 #’ @param grp . group v a r i a b l e
519 #’
520 #’ @ r e f e r e n c e s Zhang Z . Un i v a r i a t e d e s c r i p t i o n and b i v a r i a t e
521 #’ s t a t i s t i c a l i n f e r e n c e : the f i r s t s t ep d e l v i n g i n t o data .
522 #’ Ann Tran s l Med . 2016 Mar ; 4 ( 5 ) : 9 1 .
523

524 i f ( l e n g t h ( un ique ( data [ , grp ] ) )>2){
525 grp . t a b l e <− mu l t i g r p s ( data , grp , s im=T) $ t a b l e
526 } e l s e {
527 grp . t a b l e <− twogrps ( data , grp , s im=T) $ t a b l e
528 }
529 grp . l i s t <− l i s t ( sum( grp . t a b l e [ , n c o l ( grp . t a b l e ) ]< a lpha ) ,
530 grp . t a b l e )
531 r e t u r n ( grp . l i s t )
532 }
533

534 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.3 Descriptive statistics

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l r e l e v a n t packages ( i f not a l r e a d y done )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ” r e p o r t t o o l s ” , ”VIM” , ”Hmisc” , ” x t a b l e ” ,
5 ” t i k zD e v i c e ” )
6 # i n s t a l l . packages ( Packages )
7

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
9 # Load r e l e v a n t packages and sou r c e h e l p e r f u n c t i o n s

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
11 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = T)
12 s ou r c e ( ” h e l p e r func .R” )
13

14 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
15 # Load HFpEF and HFmrEF d a t a f i l e s
16 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
17 path <− ” data f i l e s /” ; r <− ” . Rdat”
18 f i l eNames <− c ( ”HFpEFdataSet” , ”HFmrEFdataSet” ,
19 ”HFpEFoutcomes” , ”HFmrEFoutcomes” ,
20 ”HFfu l lDa taSe t ” , ”HFfu l lOutcomes ” )
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21 l a p p l y ( gsub ( ” ” , ”” , pa s t e ( path , f i l eNames , r ) ) ,
22 l oad , . G loba lEnv )
23

24 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
25 # Plo t o f m i s s i n g v a l u e s d i s t r i b u t i o n
26 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
27 pathToImages <− ” . . / . . / . . /doc/ t h e s i s / images /”
28

29 t i k z ( f i l e=pa s t e ( c ( pathToImages , ”HFpEF miss d i s t . t e x ” ) ,
30 c o l l a p s e = ”” ) )
31 aggr ( HFpEFdataSet , p l o t = T, s o r tVa r s = T,
32 ba r s = F , combined = T, y l a b s = ”” , cex . a x i s = 0 . 7 )
33 dev . o f f ( )
34

35 t i k z ( f i l e = pa s t e ( c ( pathToImages , ”HFmrEF miss d i s t . t e x ” ) ,
36 c o l l a p s e = ”” ) )
37 aggr ( HFmrEFdataSet , p l o t = T,
38 s o r tVa r s = T, ba r s = F , combined = T, y l a b s = ”” ,
39 cex . a x i s = 0 . 7 )
40 dev . o f f ( )
41

42 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
43 # Summary o f v a r i a b l e s
44 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
45 # Reorde r data mat r i x by phenotype domains
46 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
47 nameOrder <− c ( ” age” , ” gender ” , ” wh i t e ” , ” a s i a n ” , ” b l a c k ” ,
48 ” b r e a t h l e s s ” , ” sbp” , ”dbp” , ” admis s i onwgt ” ,
49 ”bp” , ” bmiadmis s ion ” , ” p u l s e ” , ” a f i b ” ,
50 ”copdasthma” , ” i r o n d e f ” , ”dm” , ” o b e s i t y ” ,
51 ”copdasthma” , ” i hd ” , ” c omo r b i d i t i e s ” ,
52 ” e c g q r s d u r a t i o n ” , ” e c g q r s o t h e r ” , ” e c g r a t e ” ,
53 ” ecg rhy thmothe r ” , ” l v h ” , ” no rma l e cgq r s ” , ” lbbb ” ,
54 ” rbbb ” , ” s r ” , ”hb” , ”wbc” , ” t s a t ” , ” p l t s ” , ” pcv ” ,
55 ” f e r r i t i n ” , ”k” , ” i r o n l e v e l s ” , ” cho l ” ,
56 ” ntprobnp ” , ” g f r ” , ”mcv” , ”na” , ” l v e f ” , ” ewave” ,
57 ”pasp ” , ” ee ” , ”mr” , ” t r ” , ” as ” , ” a i ” ,
58 ” r v f u n c t i o n ” , ” a f ” , ” t imetohfadm” ,
59 ” h f h o s p i t a l i s a t i o n ” , ” l o s ” )
60

61 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
62 # De s c r i p t i v e s t a t i s t i c s
63 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
64 capHFpEF <− ” Pa t i e n t c h a r a c t e r i s t i c s : HFpEF”
65 labHFpEF <− ” tab : desc s t a t HFpEF”
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66 t a b l eCon t i n uou s ( HFpEFdataSet [ , nameOrder ] ,
67 s t a t s = c ( ”n” , ”na” , ”min” , ”max” , ”mean” ,
68 ”median” , ” s ” , ”q1” , ”q3” ) ,
69 cap = capHFpEF , l a b = labHFpEF )
70

71 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
72 capHFmrEF <− ” Pa t i e n t c h a r a c t e r i s t i c s : HFmrEF”
73 labHFmrEF <− ” tab : desc s t a t HFmrEF”
74 t a b l eCon t i n uou s ( HFmrEFdataSet [ , nameOrder ] ,
75 s t a t s = c ( ”n” , ”na” , ”min” , ”max” , ”mean” ,
76 ”median” , ” s ” , ”q1” , ”q3” ) ,
77 cap = capHFmrEF , l a b = labHFmrEF )
78

79 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
80 # Outcomes t a b l e
81 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
82 r <− r ep ( ”” , 5)
83

84 t abOutHFfu l l <− r b i n d ( l a b e l . summary ( as . mat r i x ( HFfu l lOutcomes ) ,
85 2 , cb ind ( ”Group” , ”Mort?” , ”Readm?” , ”n” ,
86 ”%Tot” ) , 3 , 5) )
87

88 tabOutHFpEF <− r b i n d ( l a b e l . summary ( as . mat r i x ( HFpEFoutcomes ) ,
89 2 , c ( ”Group” , ”Mort?” , ”Readm?” , ”n” ,
90 ”% Tot” ) , 3 , 5) , r , r )
91

92 tabOutHFmrEF <− l a b e l . summary ( as . mat r i x (HFmrEFoutcomes ) ,
93 2 , c ( ”Group” , ”Mort?” , ”Readm?” ,
94 ”n” , ”% Tot” ) , 3 , 5)
95

96 p r i n t ( x t a b l e ( tabOutHFfu l l ) , i n c l u d e . rownames = F)
97 p r i n t ( x t a b l e ( cb ind ( tabOutHFpEF , tabOutHFmrEF ) ) ,
98 i n c l u d e . rownames = F)
99

100 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
101 # Tab le s o f top 10 m i s s i n g v a l u e s v a r i a b l e s i n both data s e t s
102 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
103 HFfu l lM i s s <− top . n . m i s s i n g ( HFfu l lDataSet , 10)
104 HFpEFmiss <− top . n . m i s s i n g ( HFpEFdataSet , 10)
105 HFmrEFmiss <− top . n . m i s s i n g ( HFmrEFdataSet , 10)
106

107 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
108 # Combine m i s s i n g v a l u e s t a b l e and conv e r t to Latex code
109 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
110 x t a b l e ( HFfu l lM i s s , d i g i t s = c (0 , 0 , 3 , 3 , 3 ) )
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111 x t a b l e ( cb ind ( round (HFpEFmiss , 3 ) , rownames (HFmrEFmiss ) ,
112 round (HFmrEFmiss , 3 ) ) )
113

114 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.4 Pre-processing

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l packages ( i f not a l r e a d y i n s t a l l e d )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ”Bay lorEdPsych ” , ”Amel ia ” , ”mice ” , ”NbClust ” ,
5 ” c a r e t ” , ” r l i s t ” , ” x t a b l e ” )
6 # i n s t a l l . packages ( Packages )
7

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
9 # Load package f o r d o c s t r i n g

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
11 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = TRUE)
12

13 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
14 # Load data s e t w i th same v a r i a b l e s and sou r c e h e l p e r f u n c t i o n s
15 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
16 a l l D a t a F i l e s <− c ( ”HFpEFind” , ”HFmrEFind” ,
17 ”HFpEFnoInd” , ”HFmrEFnoInd” ,
18 ”HFfu l lDa taSe t ” , ” SyndC las s ” )
19 l a p p l y ( gsub ( ” ” , ”” , pa s t e ( ” data f i l e s /” , a l l D a t a F i l e s ,
20 ” . Rdat” ) ) , load , . G loba lEnv )
21 s ou r c e ( ” u t i l i t i e s .R” )
22

23 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
24 # Summary o f m i s s i n g v a r i a b l e s
25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
26 top . n . m i s s i n g ( HFfu l lDataSet , 10)
27 top . n . m i s s i n g ( cb ind (HFmrEFnoInd , HFmrEFind ) , 10)
28 top . n . m i s s i n g ( cb ind (HFpEFnoInd , HFpEFind ) , 10)
29

30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
31 # Sp l i t v a r i a b l e s i n t o i n d i c a t o r and c a t e g o r i c a l v a r i a b l e s
32 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
33 HFful lRmInd <− rm . i n d i c a t o r ( HFfu l lDataSet , 8)
34 HF f u l l I n d <− HFful lRmInd $ i n d i c a t o r
35 HFfu l lNo Ind <− HFful lRmInd $non . i n d i c a t o r
36

37 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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38 # L i t t l e ’ s t e s t to a s s e s s f o r m i s s i n g comp l e t e l y at random .
39 # Remove v a r i a b l e s w i th more than a g i v en cut . o f f m i s s i n g
40 # va l u e s and tha t have nea r z e r o v a r i a n c e ( not f o r i n d i c a t o r
41 # v a r i a b l e s ) .
42 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
43 # In F u l l data s e t
44 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
45 CutOff <− 0 .20 # cut . o f f p e r c en t age
46 HF f u l l I n d <− rm . m i s s i n g ( HF fu l l I nd , cut . o f f = CutOff ,
47 near . z e r o . va r = F)
48 HFfu l lNo Ind <− rm . m i s s i n g ( HFfu l lNoInd , cut . o f f = CutOff )
49 HF f u l l L i s t <− l i s t ( HF fu l l I n d , HFfu l lNo Ind )
50 HFfu l lMcar <− do . c a l l ( rb ind , l a p p l y ( HF f u l l L i s t , l i t t l e . mcar ) )
51 HFful lCarNames <− c ( ” i n d i c a t o r ” , ” con t i nuou s ” )
52 rownames ( HFfu l lMcar ) <− HFful lCarNames
53

54 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
55 # In HFpEF
56 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
57 CutOff <− 0 .15 # cut . o f f p e r c en t age
58 HFpEFind <− rm . m i s s i n g (HFpEFind , cut . o f f = CutOff ,
59 near . z e r o . va r = F)
60 HFpEFnoInd <− rm . m i s s i n g (HFpEFnoInd , cut . o f f = CutOff )
61 HFpEFl i s t <− l i s t ( HFpEFind , HFpEFnoInd )
62 HFpEFmcar <− do . c a l l ( rb ind , l a p p l y ( HFpEFl i s t , l i t t l e . mcar ) )
63 HFpEFmcarNames <− c ( ” i n d i c a t o r ” , ” con t i nuou s ” )
64 rownames (HFpEFmcar ) <− HFpEFmcarNames
65

66 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
67 # In HFmrEF
68 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
69 CutOff <− 0 .25 # cut . o f f p e r c en t age
70 HFmrEFind <− rm . m i s s i n g (HFmrEFind , cut . o f f = CutOff ,
71 near . z e r o . va r = F)
72 HFmrEFnoInd <− rm . m i s s i n g (HFmrEFnoInd , cut . o f f = CutOff )
73 HFmrEFl i s t <− l i s t (HFmrEFind , HFmrEFnoInd )
74 HFmrEFmcar <− do . c a l l ( rb ind , l a p p l y ( HFmrEFl ist , l i t t l e . mcar ) )
75 HFmrEFmcarNames <− c ( ” i n d i c a t o r ” , ” con t i nuou s ” )
76 rownames (HFmrEFmcar ) <− HFmrEFmcarNames
77 x t a b l e ( r b i n d ( HFful lMcar , HFpEFmcar , HFmrEFmcar ) ,
78 d i g i t s = c (0 , 0 , 0 , 4 , 0 , 5 ) )
79

80 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
81 # Report m i s s i n g data a f t e r remov ing v a r i a b l e s
82 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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83 top . n . m i s s i n g ( cb ind ( HFfu l lNoInd , HF f u l l I n d ) , n = 10)
84 top . n . m i s s i n g ( cb ind (HFpEFnoInd , HFpEFind ) , n = 10)
85 top . n . m i s s i n g ( cb ind (HFmrEFnoInd , HFmrEFind ) , n = 10)
86

87 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
88 # Impute data u s i n g Boot s t r ap EM and CART
89 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
90 # In F u l l data s e t
91 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
92 m <− 100 # number o f b oo t s t r a p samples
93 bnd <− data . bounds ( HFfu l lNoInd , 0 , I n f )
94 HFful lEm <− boot . em . impute ( HFfu l lNoInd , bnd , n . boot = m)
95 HF fu l l C a r t <− complete ( mice ( HF fu l l I nd , method = ” c a r t ” ) )
96

97 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
98 # In HFpEF
99 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

100 HFpEFconImpEmList <− HFmrEFconImpEmList <− l i s t ( )
101 HFpEFbound <− data . bounds (HFpEFnoInd , 0 , I n f )
102 HFpEFem <− boot . em . impute (HFpEFnoInd , bounds = HFpEFbound ,
103 n . boot = m)
104 HFpEFcart <− complete ( mice (HFpEFind , method =” c a r t ” ) )
105

106 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
107 # In HFmrEF
108 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
109 HFmrEFbound <− data . bounds (HFmrEFnoInd , 0 , I n f )
110 HFmrEFem <− boot . em . impute (HFmrEFnoInd ,
111 bounds = HFmrEFbound ,
112 n . boot = m)
113 HFmrEFcart <− complete ( mice (HFmrEFind , method =” c a r t ” ) )
114

115 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
116 # Combine imputed data s e t s i n t o one
117 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
118 HFfu l l Imp <− cb ind ( HFfullEm , HF f u l l C a r t )
119 HFpEFimp <− cb ind (HFpEFem , HFpEFcart )
120 HFmrEFimp <− cb ind (HFmrEFem , HFmrEFcart )
121

122 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
123 # Sor t columns
124 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
125 HFfu l l Imp <− s o r t . column . names ( HFfu l l Imp , i d . c o l = T)
126 HFpEFimp <− s o r t . column . names (HFpEFimp , i d . c o l = T)
127 HFmrEFimp <− s o r t . column . names (HFmrEFimp , i d . c o l = T)
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128

129 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
130 # Con s o l i d a t e naming o f columns f o r HFpEF
131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
132 HFpEFimp <− HFpEFimp [ , co lnames ( HFfu l l Imp ) ]
133

134 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
135 # Save f u l l data s e t
136 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
137 path <− ” data f i l e s /” ; r <− ” . Rdat”
138 f i l eNames <− c ( ”HFfu l l Imp ” , ”HFpEFimp” , ”HFmrEFimp” )
139

140 f o r ( name i n f i l eNames ) {
141 save ( l i s t = (name) , f i l e = pa s t e ( path , name , r , sep = ”” ) )
142 }
143

144 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
145 # P r i n c i p a l component a n a l y s i s
146 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
147 HFfu l l p c a <− pr incomp ( HFfu l l Imp , co r = T)
148 HFpEFpca <− pr incomp (HFpEFimp , co r = T)
149 HFmrEFpca <− pr incomp (HFmrEFimp , co r = T)
150

151 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
152 # Exp l a i n ed v a r i a n c e
153 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
154 pca . va r . p l o t ( HFfu l l pca , 31 , t i t l e = ”HF same v a r i a b l e s ” )
155 pca . va r . p l o t (HFpEFpca , 34 , t i t l e = ”HFpEF” )
156 pca . va r . p l o t (HFmrEFpca , 31 , t i t l e = ”HFmrEF” )
157

158 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
159 # Save pca o b j e c t s
160 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
161 path <− ” data f i l e s /” ; r <− ” . Rdat”
162 o b j e c t s <− c ( ” HF fu l l p c a ” , ”HFpEFpca” , ”HFmrEFpca” )
163

164 f o r ( o b j e c t i n o b j e c t s ) {
165 save ( l i s t = ( o b j e c t ) , f i l e = pa s t e ( path , ob j e c t , r , sep = ”” )

)
166 }
167

168 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.4.1 Consolidation
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1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l packages ( i f not a l r e a d y i n s t a l l e d )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ”R . mat lab ” , ” data . t a b l e ” , ” s t r i n g r ” )
5 # i n s t a l l . packages ( Packages )
6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
8 # Load r e l e v a n t packages
9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

10 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = TRUE)
11 s ou r c e ( ” . . / s ou r c e / u t i l i t i e s .R” )
12

13 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
14 # Read matlab f i l e s i n t o R
15 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
16 dataSetHFpEF <− readMat ( ’ data use HFpEF . mat ’ )
17 dataSetHFmrEF <− readMat ( ’ data use HFmrEF . mat ’ )
18

19 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
20 # Ex t r a c t the data mat r i x from matlab f i l e s
21 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
22 HFpEFmat <− dataSetHFpEF$ A l l . data
23 HFmrEFmat <− dataSetHFmrEF$ A l l . data
24

25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
26 # Add a l l column names
27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
28 co lnames (HFpEFmat) <− c ( as . v e c t o r ( u n l i s t (
29 dataSetHFpEF$Varnames ) ) )
30 co lnames (HFmrEFmat) <− c ( as . v e c t o r ( u n l i s t (
31 dataSetHFmrEF$Varnames ) ) )
32

33 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
34 # Con s o l i d a t e naming conv en t i o n s f o r some v a r i a b l e s
35 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
36 # In the HFpEF mat r i x
37 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
38 setnames ( as . data . f rame (HFpEFmat) ,
39 o l d = c ( ”E e” , ” LVfunc t i on ” , ”ECGRhythm othe r ” ,
40 ”ECGQRS o the r ” , ”Other e t h n i c i t y ” , ” P l t ” ,
41 ”COPD” ) ,
42 new = c ( ”Ee” , ”LVEF” , ”ECGRhythmother” , ”ECGQRSother” ,
43 ” O t h e r e t h n i c i t y ” , ” P l t s ” , ”COPDasthma” ) )
44

45 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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46 # In the HFmrEF mat r i x
47 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
48 setnames ( as . data . f rame (HFmrEFmat) ,
49 o l d=c ( ” Admi s s i onwe igh t ” , ”BMI” , ” Numbe ro f comorb i d i t i e s ” ,
50 ” A f r o c a r i b b e an ” , ” Caucas ian ” , ” Pu l s e ” , ”NtproBNP” ,
51 ”E” , ”ECGRhythm othe r ” , ”LVHand orLAE” ,
52 ”ECGQRS o the r ” , ” i r o n ” , ” T imetoadmis s ion ” ) ,
53 new = c ( ” admis s i onwgt ” , ”BmIadmiss ion ” , ” c omo r b i d i t i e s ” ,
54 ”Black ” , ”White” , ” p u l s e ” , ”NTproBNP” , ”Ewave” ,
55 ”ECGRhythmother” , ”LVHandorLAE” ,
56 ”ECGQRSother” , ” I r o n l e v e l s ” , ”TimetoHFadm” ) )
57

58 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
59 # Lowercase l e t t e r s f o r a l l the co lnames
60 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
61 co lnames (HFpEFmat) <− t o l owe r ( co lnames (HFpEFmat) )
62 co lnames (HFmrEFmat) <− t o l owe r ( co lnames (HFmrEFmat) )
63

64 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
65 # Rename du p b l i c a t e names i n v a r i a b l e s a f and a r
66 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
67 i f ( a l l ( co lnames (HFmrEFmat) [ c ( 2 , 4 ) ] == c ( ” a f ” , ” a r ” ) ) ) {
68 co lnames (HFmrEFmat) [ c ( 2 , 4 ) ] <− c ( ” a f i b ” , ” a i ” )
69 }
70 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
71 i f ( a l l ( co lnames (HFpEFmat) [ c ( 3 , 7 ) ] == c ( ” a f ” , ” a r ” ) ) ) {
72 co lnames (HFpEFmat) [ c ( 3 , 7 ) ] <− c ( ” a f i b ” , ” a i ” )
73 }
74

75 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
76 # Address e r r o r i n HFmrEF − l v e f data po i n t nr . 1
77 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
78 HFmrEFmat [ 1 , ” l v e f ” ] <− 40 .45
79

80 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
81 # Rep lace NaN va l u e s w i th NA us i n g the make na f u n c t i o n
82 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
83 HFpEFmat <− make . na (HFpEFmat)
84 HFmrEFmat <− make . na (HFmrEFmat)
85

86 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
87 # Create one f i l e w i th a l l the common v a r i a b l e s i n both
88 # HFpEF and HFmrEF data s e t s .
89 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
90 # Find common columns i n both data s e t s
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91 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
92 HFpEFcol <− co lnames (HFpEFmat) %i n% colnames (HFmrEFmat)
93 HFmrEFcol <− co lnames (HFmrEFmat) %i n% colnames (HFpEFmat)
94

95 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
96 # Test tha t a l l columns a r e equa l
97 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
98 a l l ( s o r t ( co lnames (HFpEFmat) [ HFpEFcol ] ) ==
99 s o r t ( co lnames (HFmrEFmat) [ HFmrEFcol ] ) )

100

101 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
102 # Get and s o r t the column names
103 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
104 HFpEFcol <− s o r t ( co lnames (HFpEFmat) [ HFpEFcol ] )
105 HFmrEFcol <− s o r t ( co lnames (HFmrEFmat) [ HFmrEFcol ] )
106 HFpEFsame <− HFpEFmat [ , HFpEFcol ]
107 HFmrEFsame <− HFmrEFmat [ , HFmrEFcol ]
108

109 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
110 # Create syndrome c l a s s mat r i x
111 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
112 syndrome <− r ep ( c (1 , 2) ,
113 t imes = c ( nrow (HFpEFmat) , nrow (HFmrEFmat) ) )
114 SyndName <− r ep ( c ( ”HFpEF” , ”HFmrEF” ) ,
115 t imes = c ( nrow (HFpEFmat) , nrow (HFmrEFmat) ) )
116

117 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
118 # Add p a t i e n t id , c r e a t e f u l l data s e t and syndrome c l a s s e s
119 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
120 HFfu l lDa taSe t <− r b i n d (HFpEFsame , HFmrEFsame)
121 i d <− seq (1 , nrow ( HFfu l lDa taSe t ) )
122 HFfu l lDa taSe t <− as . data . f rame ( cb ind ( id , HF fu l lDa taSe t ) )
123 SyndClas s <− as . data . f rame ( cb ind ( id , syndrome , SyndName) )
124

125 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
126 # Sto r e i n d i c a t o r and non−i n d i c a t o r v a r i a b l e s u s i n g the
127 # rm i n d i c a t o r f u n c t i o n
128 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
129 HFfu l l rm Ind <− rm . i n d i c a t o r ( HFfu l lDataSet , n . un iq = 8)
130

131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
132 # Sto r e the non−i n d i c a t o r and i n v a r i a b l e s f o r l a t e r
133 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
134 HF f u l l I n d <− HFfu l l rm Ind $ i n d i c a t o r
135 HFfu l lNo Ind <− HFfu l l rm Ind $non . i n d i c a t o r



120 Appendix B. Source code

136

137 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
138 # Conver t z e r o s to m i s s i ng s , the f o l l o w i n g v a r i a b l e s a r e not to
139 # be conve r t ed .
140 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
141 notZe ro s <− c ( ” c omo r b i d i t i e s ” , ” t imetohfadm” )
142 HFfu l lNo Ind <− z e r o . to . na ( HFfu l lNoInd , no tZe ro s )
143

144 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
145 # Conca t i na t e i n d i c a t o r and non−i n d i c a t o r v a r i a b l e s to one
146 # data s e t and s o r t column names .
147 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
148 HFfu l lDa taSe t <− cb ind ( HFfu l lNo Ind [ , −1] , HF f u l l I n d )
149 HFfu l lDa taSe t <− HFfu l lDa taSe t [ , s o r t ( co lnames ( HFfu l lDa taSe t ) ) ]
150 HFfu l lDa taSe t <− cb ind ( id , HF fu l lDa taSe t )
151

152 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
153 # Sp l i t data a c co r d i n g to syndroms
154 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
155 # Fu l l data s e t
156 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
157 HFpEFrow <− SyndClas s [ , 3 ] == ”HFpEF”
158 HFmrEFrow <− SyndClas s [ , 3 ] == ”HFmrEF”
159 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
160 HFpEFdataSet <− HFfu l lDa taSe t [ HFpEFrow , ]
161 HFmrEFdataSet <− HFfu l lDa taSe t [ HFmrEFrow , ]
162

163 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
164 # Non−i n d i c a t o r v a r i a b l e s
165 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
166 HFpEFnoInd <− HFfu l lNo Ind [ HFpEFrow , ]
167 HFmrEFnoInd <− HFfu l lNo Ind [ HFmrEFrow , ]
168

169 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
170 # I n d i c a t o r v a r i a b l e s
171 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
172 HFpEFind <− HF f u l l I n d [ HFpEFrow , ]
173 HFmrEFind <− HF f u l l I n d [ HFmrEFrow , ]
174

175 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
176 # Re−code p a t i e n t group l a b e l s
177 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
178 # Get p a t i e n t g roups
179 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
180 pat ientGroupsHFpEF <− as . mat r i x ( u n l i s t (
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181 dataSetHFpEF$ Pa t i e n t . group ) )
182 patientGroupsHFmrEF <− as . mat r i x ( u n l i s t (
183 dataSetHFmrEF$ Pa t i e n t . group ) )
184

185 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
186 # Labe l s o f c l i n i c a l outcomes
187 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
188 deceased <− c ( ” IN” , ”Z” , ”Y” , ”X” )
189 r eAdmi s s i on <− c ( ”V” , ”U” )
190

191 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
192 # Sp l i t l a b e l s
193 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
194 HFpEFsp l i t <− s t r s p l i t f i x e d ( pat ientGroupsHFpEF , ” , ” , n = 2)
195 HFmrEFspl i t <− s t r s p l i t f i x e d ( patientGroupsHFmrEF , ” , ” , n = 2)
196

197 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
198 # Re−cod ing mo r t a l i t y l a b e l s
199 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
200 i sDeceasedHFpEF <− HFpEFsp l i t [ , 1 ] %i n% deceased
201 isDeceasedHFmrEF <− HFmrEFspl i t [ , 1 ] %i n% deceased
202 deceasedHFpEF <− i f e l s e ( isDeceasedHFpEF , ” ye s ” , ”no” )
203 deceasedHFmrEF <− i f e l s e ( isDeceasedHFmrEF , ” ye s ” , ”no” )
204

205 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
206 # Re−cod ing re−adm i s s i on l a b e l s
207 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
208 isReAdmittedHFpEF <− HFpEFsp l i t [ , 1 ] %i n% reAdmi s s i on |
209 HFpEFsp l i t [ , 2 ] %i n% reAdmi s s i on
210 isReAdmittedHFmrEF <− HFmrEFspl i t [ , 1 ] %i n% reAdmi s s i on |
211 HFmrEFspl i t [ , 2 ] %i n% reAdmi s s i on
212 reAdmissionHFpEF <− i f e l s e ( isReAdmittedHFpEF , ” ye s ” , ”no” )
213 reAdmissionHFmrEF <− i f e l s e ( isReAdmittedHFmrEF , ” ye s ” , ”no” )
214

215 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
216 # Add outcomes to mat r i x
217 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
218 HFpEFoutcomes <− cb ind ( i d [ HFpEFrow ] , pat ientGroupsHFpEF ,
219 deceasedHFpEF , reAdmissionHFpEF )
220 HFmrEFoutcomes <− cb ind ( i d [ HFmrEFrow ] , patientGroupsHFmrEF ,
221 deceasedHFmrEF , reAdmissionHFmrEF )
222

223 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
224 # Add colnames to ma t r i c e s
225 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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226 co lnames ( HFpEFoutcomes ) <− co lnames (HFmrEFoutcomes ) <−
227 c ( ” i d ” , ” p a t i e n t g r o up ” , ” deceased ” , ” r e adm i t t ed ” )
228

229 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
230 # Create outcomes data f rames
231 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
232 HFful lOutcomes <− as . data . f rame ( r b i n d (HFpEFoutcomes ,
233 HFmrEFoutcomes ) )
234 rownames ( HFfu l lOutcomes ) <− HFful lOutcomes [ , 1 ]
235 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
236 HFpEFoutcomes <− HFful lOutcomes [ HFpEFrow , ]
237 HFmrEFoutcomes <− HFful lOutcomes [ HFmrEFrow , ]
238

239 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
240 # Save a l l data f rames (13 d f i n a l l )
241 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
242 path <− ” . . / s ou r c e / data f i l e s /” ; r <− ” . Rdat”
243 f i l eNames <− c ( ” HFfu l lDa taSe t ” , ” HFfu l lNo Ind ” , ” HF f u l l I n d ” ,
244 ”HFpEFdataSet” , ”HFpEFnoInd” , ”HFpEFind” ,
245 ”HFmrEFdataSet” , ”HFmrEFnoInd” , ”HFmrEFind” ,
246 ”HFfu l lOutcomes ” , ”HFpEFoutcomes” ,
247 ”HFmrEFoutcomes” , ” SyndC las s ” )
248 f o r ( name i n f i l eNames ) {
249 save ( l i s t = (name) , f i l e = pa s t e ( path , name , r , sep = ”” ) )
250 }
251

252 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.5 Clustering

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l r e l e v a n t packages ( i f not a l r e a d y done )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ”NbClust ” , ” x t a b l e ” )
5 # i n s t a l l . packages ( Packages )
6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
8 # Load r e l e v a n t packages
9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

10 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = TRUE)
11 s ou r c e ( ” u t i l i t i e s .R” )
12

13 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
14 # Load pca o b j e c t s and data f i l e s
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15 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
16 a l l D a t a F i l e s <− c ( ” HF fu l l p c a ” , ”HFpEFpca” , ”HFmrEFpca” ,
17 ”HFfu l l Imp ” , ”HFpEFimp” , ”HFmrEFimp” ,
18 ” SyndC las s ” )
19 l a p p l y ( gsub ( ” ” , ”” , pa s t e ( ” data f i l e s /” , a l l D a t a F i l e s ,
20 ” . Rdat” ) ) , load , . G loba lEnv )
21

22 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
23 # Determine op t ima l number o f c l u s t e r s
24 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
25 NbClust (HFpEFpca$ s c o r e s [ , 1 : 2 ] , min . nc = 2 , max . nc = 4 ,
26 method = ”kmeans” )
27 NbClust (HFmrEFpca$ s c o r e s [ , 1 : 2 ] , min . nc = 2 , max . nc = 4 ,
28 method = ”kmeans” )
29

30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
31 # PCA c l u s t e r p l o t f o r a l l data s e t s
32 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
33 path to images <− ” . . / . . / . . /doc/ t h e s i s / images /”
34 pdf ( f i l e = pa s t e ( path to images , ” C l u s t F u l l . pd f ” ) , w idth = 8 ,
35 h e i g h t = 8)
36 c l u s t F u l l <− pca . c l u s t e r . p l o t ( HFfu l l pca , 4 , km . c l u s t = 2 ,
37 hc . c l u s t = 2 , em . c l u s t = 2 ,
38 a c t u a l = SyndC las s [ , 2 ] ,
39 r e t u r n . c l u s t = T, e l l i p s e = F)
40 dev . o f f ( )
41

42 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
43 # Ex t r a c t c l u s t e r c o n f i g u r a t i o n and add to data frame
44 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
45 ACTfu l l <− c l u s t F u l l $ACT
46 HCfu l l <− c l u s t F u l l $HC
47 KMful l <− c l u s t F u l l $KM
48 EMfu l l <− c l u s t F u l l $EM
49

50 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
51 # Compare b a s e l i n e c h a r a c t e r i s t i c s
52 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
53 ac t f u l l <− compare . b a s e l i n e ( cb ind ( HFfu l l Imp , ACTfu l l ) ,
54 ”ACTfu l l ” )
55 ac t hc <− compare . b a s e l i n e ( cb ind ( HFfu l l Imp , HC fu l l ) ,
56 ” HCfu l l ” )
57 ac t km <− compare . b a s e l i n e ( cb ind ( HFfu l l Imp , KMful l ) ,
58 ”KMful l ” )
59 ac t em <− compare . b a s e l i n e ( cb ind ( HFfu l l Imp , EMfu l l ) ,
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60 ” EMfu l l ” )
61

62 x t a b l e ( ac t f u l l [ [ 2 ] ] [ 1 : 1 5 , ] )
63 x t a b l e ( ac t hc [ [ 2 ] ] [ 1 : 1 5 , ] )
64 x t a b l e ( ac t km [ [ 2 ] ] [ 1 : 1 5 , ] )
65 x t a b l e ( ac t em [ [ 2 ] ] [ 1 : 1 5 , ] )
66

67 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
68 # Assuming c l u s t e r i n g by p h y s i c i a n s i s c o r r e c t
69 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
70 pdf ( f i l e = pa s t e ( path to images , ” ClustpPhy . pdf ” ) , w idth = 9 ,
71 h e i g h t = 8)
72 c l u s t P e f F u l l <− pca . c l u s t e r . p l o t (HFpEFpca , 2 , km . c l u s t = 3 ,
73 hc . c l u s t = 3 , em . c l u s t = 3 ,
74 r e t u r n . c l u s t = T, e l l i p s e = F)
75 dev . o f f ( )
76

77 pdf ( f i l e = pa s t e ( path to images , ”ClustmrPhy . pdf ” ) , w idth = 9 ,
78 h e i g h t = 8)
79 c l u s tM rFu l l <− pca . c l u s t e r . p l o t (HFmrEFpca , 2 , km. c l u s t = 3 ,
80 hc . c l u s t = 3 , em . c l u s t = 3 ,
81 r e t u r n . c l u s t = T, e l l i p s e = F)
82 dev . o f f ( )
83

84 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
85 # Compare b a s e l i n e c h a r a c t e r i s t i c s HFpEF
86 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
87 HCpEFphy <− c l u s t P e f F u l l $HC
88 KMpEFphy <− c l u s t P e f F u l l $KM
89 EMpEFphy <− c l u s t P e f F u l l $EM
90

91 pos t HC p <− compare . b a s e l i n e ( cb ind (HFpEFimp , HCpEFphy ) ,
92 ”HCpEFphy” )
93 pos t KM p <− compare . b a s e l i n e ( cb ind (HFpEFimp , KMpEFphy) ,
94 ”KMpEFphy” )
95 pos t EM p <− compare . b a s e l i n e ( cb ind (HFpEFimp , EMpEFphy) ,
96 ”EMpEFphy” )
97

98 x t a b l e ( pos t HC p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
99 x t a b l e ( pos t KM p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )

100 x t a b l e ( pos t EM p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
101

102 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
103 # Compare b a s e l i n e c h a r a c t e r i s t i c s HFmrEF
104 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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105 HCmrEFphy <− c l u s tM rFu l l $HC
106 KMmrEFphy <− c l u s tM rFu l l $KM
107 EMmrEFphy <− c l u s tM rFu l l $EM
108

109 pos t HC mr <− compare . b a s e l i n e ( cb ind (HFmrEFimp , HCmrEFphy) ,
110 ”HCmrEFphy” )
111 pos t KM mr <− compare . b a s e l i n e ( cb ind (HFmrEFimp , KMmrEFphy) ,
112 ”KMmrEFphy” )
113 pos t EM mr <− compare . b a s e l i n e ( cb ind (HFmrEFimp , EMmrEFphy) ,
114 ”EMmrEFphy” )
115

116 x t a b l e ( pos t HC mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
117 x t a b l e ( pos t KM mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
118 x t a b l e ( pos t EM mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
119

120 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
121 # Assumin c l u s t e r i n g by p h y s i c i a n s i s i n c o r r e c t
122 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
123 h iKmeansClust <− c l u s t F u l l $HC
124 HFpEFhiKmeans <− HFfu l l Imp [ h iKmeansClust==1,]
125 HFmrEFhiKmeans <− HFfu l l Imp [ h iKmeansClust==2,]
126

127 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
128 # Re−c a l c u l a t e p r i n c i p a l components
129 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
130 HFpEFNewpca <− pr incomp (HFpEFhiKmeans , co r = T)
131 HFmrEFNewpca <− pr incomp (HFmrEFhiKmeans , co r = T)
132

133 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
134 # Plo t c l u s t e r s
135 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
136 pdf ( f i l e = pa s t e ( path to images , ”ClustpNoPhy . pdf ” ) , w idth = 9 ,
137 h e i g h t = 8)
138 c lus tNewPef <− pca . c l u s t e r . p l o t (HFpEFNewpca , 2 , km . c l u s t = 3 ,
139 hc . c l u s t = 3 , em . c l u s t = 3 ,
140 r e t u r n . c l u s t = T, e l l i p s e = F)
141 dev . o f f ( )
142

143 pdf ( f i l e = pa s t e ( path to images , ”ClustmrNoPhy . pdf ” ) , w idth=9,
144 h e i g h t = 8)
145 clustNewMr <− pca . c l u s t e r . p l o t (HFmrEFNewpca , 2 , km. c l u s t = 3 ,
146 hc . c l u s t = 3 , em . c l u s t = 3 ,
147 r e t u r n . c l u s t = T, e l l i p s e = F)
148 dev . o f f ( )
149
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150 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
151 # Compare b a s e l i n e c h a r a c t e r i s t i c s HFpEF
152 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
153 HCpEFnoPhy <− c lus tNewPef $HC
154 KMpEFnoPhy <− c lus tNewPef $KM
155 EMpEFnoPhy <− c lus tNewPef $EM
156

157 noPost HC p <−compare . b a s e l i n e ( cb ind (HFpEFhiKmeans ,
158 HCpEFnoPhy ) , ”HCpEFnoPhy” )
159 noPost KM p <−compare . b a s e l i n e ( cb ind (HFpEFhiKmeans ,
160 KMpEFnoPhy) , ”KMpEFnoPhy” )
161 noPost EM p <−compare . b a s e l i n e ( cb ind (HFpEFhiKmeans ,
162 EMpEFnoPhy) , ”EMpEFnoPhy” )
163

164 x t a b l e ( noPost HC p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
165 x t a b l e ( noPost KM p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
166 x t a b l e ( noPost EM p [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
167

168 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
169 # Compare b a s e l i n e c h a r a c t e r i s t i c s HFmrEF
170 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
171 HCmrEFnoPhy <− clustNewMr$HC
172 KMmrEFnoPhy <− clustNewMr$KM
173 EMmrEFnoPhy <− clustNewMr$EM
174

175 noPost HC mr<− compare . b a s e l i n e ( cb ind (HFmrEFhiKmeans ,
176 HCmrEFnoPhy) ,
177 ”HCmrEFnoPhy” )
178 noPost KM mr<− compare . b a s e l i n e ( cb ind (HFmrEFhiKmeans ,
179 KMmrEFnoPhy) ,
180 ”KMmrEFnoPhy” )
181 noPost EM mr<− compare . b a s e l i n e ( cb ind (HFmrEFhiKmeans ,
182 EMmrEFnoPhy) ,
183 ”EMmrEFnoPhy” )
184

185 x t a b l e ( noPost HC mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
186 x t a b l e ( noPost KM mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
187 x t a b l e ( noPost EM mr [ [ 2 ] ] [ 1 : 1 5 , − 1 ] )
188

189 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
190 # Resu l t o f a l l the s i g n i f i c a n t b a s e l i n e c h a r a c t e r i s t i c s
191 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
192 r e s u l t s pos t <− c ( pos t HC p [ [ 1 ] ] , po s t KM p [ [ 1 ] ] ,
193 pos t EM p [ [ 1 ] ] , po s t HC mr [ [ 1 ] ] ,
194 pos t KM mr [ [ 1 ] ] , po s t EM mr [ [ 1 ] ] )
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195 r e s u l t s no pos t <− c ( noPost HC p [ [ 1 ] ] , noPost KM p [ [ 1 ] ] ,
196 noPost EM p [ [ 1 ] ] , noPost HC mr [ [ 1 ] ] ,
197 noPost KM mr [ [ 1 ] ] , noPost EM mr [ [ 1 ] ] )
198

199 r e s u l t s <− cb ind ( mat r i x ( r e s u l t s post , 3) ,
200 mat r i x ( r e s u l t s no post , 3) )
201

202 co lnames ( r e s u l t s ) <− r ep ( c ( ”HFpEF” , ”HFmrEF” ) , 2)
203 rownames ( r e s u l t s ) <− c ( ” H i e r a r c h i c a l ” , ”K−Means” , ”EM” )
204

205 x t a b l e ( r e s u l t s )
206

207 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #

B.6 Classification

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
2 # I n s t a l l r e l e v a n t packages ( i f not a l r e a d y done )
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
4 Packages <− c ( ”mlbench” , ” c a r e t ” , ” e l a s t i c n e t ” , ” k laR ” ,
5 ” x t a b l e ” , ” t i k zD e v i c e ” )
6 # i n s t a l l . packages ( Packages )
7

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
9 # Load r e l e v a n t packages

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
11 l a p p l y ( Packages , l i b r a r y , c h a r a c t e r . on l y = TRUE)
12 s ou r c e ( ” u t i l i t i e s .R” )
13

14 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
15 # Load data f i l e s
16 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
17 a l l D a t a F i l e s <− c ( ”HFfu l l Imp ” , ”HFfu l lOutcomes ” )
18 l a p p l y ( gsub ( ” ” , ”” , pa s t e ( ” data f i l e s /” , a l l D a t a F i l e s ,
19 ” . Rdat” ) ) , load , . G loba lEnv )
20

21 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
22 # Add c r o s s v a l i d a t i o n c o n f i g u r a t i o n
23 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
24 k f o l d <− t r a i n C o n t r o l (method = ”cv ” , number = 10)
25 seed <− 0123456789
26 met r i c <− ”Accuracy ”
27 p r eP r o c e s s <− ”pca”
28

29 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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30 # Tra in and e v a l u a t e the c l a s s i f i c a t i o n a l g o r i t hm s wi th k f o l d
31 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
32 da t a s e t <− HFfu l l Imp [ ,−1]
33 mo r t a l i t y <− HFful lOutcomes [ , 3 ]
34 r e a dm i s s i o n <− HFful lOutcomes [ , 4 ]
35

36 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
37 # Mo r t a l i t y
38 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
39 # k f o l d CV e v a l u a t i o n o f c l a s s i f i e r s
40 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
41 s e t . s eed ( seed )
42 f i tKnnKfo ldMor t <− t r a i n ( da ta s e t , mo r t a l i t y , method=”knn” ,
43 met r i c=met r i c , t r C o n t r o l=k fo l d ,
44 p r eP r o c e s s = p r eP r o c e s s )
45

46 s e t . s eed ( seed )
47 f i t LLK fo l dMo r t <− t r a i n ( da ta s e t , mo r t a l i t y , method = ”glm” ,
48 met r i c=met r i c , t r C o n t r o l = k fo l d ,
49 p r eP r o c e s s = p r eP r o c e s s )
50

51 s e t . s eed ( seed )
52 f i tLDAKfo ldMort <− t r a i n ( da ta s e t , mo r t a l i t y , method = ” l da ” ,
53 met r i c = met r i c , t r C o n t r o l = k fo l d ,
54 p r eP r o c e s s = p r eP r o c e s s )
55

56 s e t . s eed ( seed )
57 f i tNbKfo ldMor t <− t r a i n ( da ta s e t , mo r t a l i t y , method = ”nb” ,
58 met r i c = met r i c , t r C o n t r o l = k fo l d ,
59 p r eP r o c e s s = p r eP r o c e s s )
60

61 s e t . s eed ( seed )
62 f i tSvmKfo ldMort <− t r a i n ( da ta s e t , mo r t a l i t y , method=” svmRadia l ” ,
63 met r i c=met r i c , t r C o n t r o l=k fo l d ,
64 p r eP r o c e s s = p r eP r o c e s s )
65

66 s e t . s eed ( seed )
67 f i t R fK f o l dMo r t <− t r a i n ( da ta s e t , mo r t a l i t y , method=” r f ” ,
68 met r i c = met r i c , t r C o n t r o l = k fo l d ,
69 p r eP r o c e s s = p r eP r o c e s s )
70

71 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
72 # Produce summary s t a t i s t i c s and p l o t s
73 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
74 # Kfo ld CV
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75 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
76 r e s u l t sM o r t a l i t y K f o l d <− r e s amp l e s ( l i s t ( knn = f i tKnnKfo ldMort ,
77 l o g r = f i tLLKfo ldMor t ,
78 l d a = f i tLDAKfoldMort ,
79 nb = f i tNbKfo ldMort ,
80 svm = f i tSvmKfo ldMort ,
81 r f = f i tR fK f o l dMo r t ) )
82

83 x t a b l e ( summary ( r e s u l t sM o r t a l i t y K f o l d ) $ s t a t i s t i c s $Accuracy ,
84 d i g i t s = 3)
85 x t a b l e ( summary ( r e s u l t sM o r t a l i t y K f o l d ) $ s t a t i s t i c s $Kappa ,
86 d i g i t s = 3)
87

88 pathToImages <− ” . . / . . / . . /doc/ t h e s i s / images /”
89 t i k z ( f i l e=pa s t e ( pathToImages , ” c l a s s i f i c a t i o nM o r t a l i t y . t e x ” ,
90 sep = ”” ) , h e i g h t = 5 . 5 , s tandA lone = F)
91 do t p l o t ( r e s u l t sMo r t a l i t y K f o l d , main = ”Mo r t a l i t y ” )
92 dev . o f f ( )
93

94 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
95 # Readmis s ion
96 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
97 # k f o l d CV e v a l u a t i o n o f c l a s s i f i e r s
98 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
99 s e t . s eed ( seed )

100 f i tKnnKfoldReadm <− t r a i n ( da ta s e t , r e adm i s s i on , method=”knn” ,
101 met r i c=met r i c , t r C o n t r o l=k fo l d ,
102 p r eP r o c e s s = p r eP r o c e s s )
103

104 s e t . s eed ( seed )
105 f i tLLKfo ldReadm <− t r a i n ( da ta s e t , r e adm i s s i on , method = ”glm” ,
106 met r i c=met r i c , t r C o n t r o l = k fo l d ,
107 p r eP r o c e s s = p r eP r o c e s s )
108

109 s e t . s eed ( seed )
110 f itLDAKfoldReadm <− t r a i n ( da ta s e t , r e adm i s s i on ,
111 method = ” l da ” , me t r i c = met r i c ,
112 t r C o n t r o l = k fo l d ,
113 p r eP r o c e s s = p r eP r o c e s s )
114

115 s e t . s eed ( seed )
116 f i tNbKfo ldReadm <− t r a i n ( da ta s e t , r e adm i s s i on , method = ”nb” ,
117 met r i c = met r i c , t r C o n t r o l = k fo l d ,
118 p r eP r o c e s s = p r eP r o c e s s )
119
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120 s e t . s eed ( seed )
121 f i tSvmKfoldReadm <− t r a i n ( da ta s e t , r e adm i s s i on ,
122 method=” svmRadia l ” , me t r i c=met r i c ,
123 t r C o n t r o l=k fo l d ,
124 p r eP r o c e s s = p r eP r o c e s s )
125

126 s e t . s eed ( seed )
127 f i tR fKfo ldReadm <− t r a i n ( da ta s e t , r e adm i s s i on , method=” r f ” ,
128 met r i c = met r i c , t r C o n t r o l = k fo l d ,
129 p r eP r o c e s s = p r eP r o c e s s )
130

131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
132 # Produce summary s t a t i s t i c s and p l o t s
133 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
134 # Kfo ld CV
135 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
136 r e su l t sReadmKfo l d <− r e s amp l e s ( l i s t ( knn = fitKnnKfoldReadm ,
137 l d a = fitLDAKfoldReadm ,
138 nb = fitNbKfoldReadm ,
139 l o g r = f i tLLKfo ldReadm ,
140 svm = fitSvmKfoldReadm ,
141 r f = f i tR fKfo ldReadm ) )
142

143 x t a b l e ( summary ( r e su l t sReadmKfo l d ) $ s t a t i s t i c s $Accuracy ,
144 d i g i t s = 3)
145 x t a b l e ( summary ( r e su l t sReadmKfo l d ) $ s t a t i s t i c s $Kappa ,
146 d i g i t s = 3)
147

148 pathToImages <− ” . . / . . / . . /doc/ t h e s i s / images /”
149 t i k z ( f i l e=pa s t e ( pathToImages , ” c l a s s i f i c a t i o n R e a dm i s s i o n . t e x ” ,
150 sep = ”” ) , h e i g h t = 5 . 5 , s tandA lone = F)
151 do t p l o t ( r e su l t sReadmKfo ld , main = ”Re−adm i s s i on ” )
152 dev . o f f ( )
153

154 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #
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