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Abstract

Forest inventories based on field sample surveys, supported by auxiliary remotely sensed data, 

have the potential to provide transparent and confident estimates of forest carbon stocks 

required in climate change mitigation schemes such as the REDD+ mechanism. Three-

dimensional (3D) information about the density and height of the vegetation, obtained from 

remotely sensed data, is particularly useful for providing accurate estimates of forest biomass. 

Most of the research on biomass estimation supported by 3D remotely sensed data has been 

carried out in boreal and sub-boreal coniferous forests with relatively low biomass quantities 

and open forest structure. The studies comprising the present thesis were conducted in a dense 

tropical forest with challenging topography.  

 In the present thesis two different techniques of collecting remotely sensed 3D data were 

used: airborne laser scanner (ALS) and spaceborne interferometric synthetic aperture radio 

detection and ranging (InSAR). While the main focus was on the use of ALS, the high quality 

digital terrain model (DTM) derived from the ALS data also facilitated the comparison of 

InSAR data as auxiliary information in biomass estimation.  

 The analyses and results presented in Paper I of modelling aboveground biomass using 

ALS data resulted in root mean square errors (RMSE) of about 33% of a mean value of 

462 Mg·ha–1. Use of texture variables derived from a canopy surface model constructed from 

ALS data did not result in improved models. Analyses showed that (1) variables derived from 

ALS-echoes in the lower parts of the canopy and (2) canopy density variables explained more 

of the aboveground biomass density than variables representing the height of the canopy.  

 Paper II investigated the potential of using cheaper, low-pulse density ALS data. Effects 

of reduced pulse density on (1) the digital terrain model (DTM), and (2) explanatory variables 

derived from ALS data were assessed. Random variation in DTMs and ALS variables increased 

with reduced pulse density. A reliability ratio, quantifying replication effects in the ALS-

variables, indicated that most of the common ALS variables assessed were reliable at pulse 

densities >0.5 pulses·m–2, and at a plot size of 0.07 ha. The plot size of 0.07 ha corresponds to 

the plot size used in the national forest inventory of Tanzania.  

The field plot size is of importance for the precision of carbon stock estimates, and better 

information of the relationship between plot size and precision can be useful in designing future 

inventories. The effect of plot size on the precision of biomass estimates assisted by remotely 

sensed data was therefore assessed in Paper III. Precision estimates of forest biomass estimates 

developed from 30 concentric field plots with sizes of 700, 900,…, 1900 m2, were assessed in 
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a model-based inference framework. Findings indicated that larger field plots were relatively 

more efficient for inventories supported by ALS and InSAR data compared to a pure field-

based survey. Further, a simulation showed that a pure field-based survey would have to 

comprise 3.5–6.0 times as many observations for the plot sizes of 700–1900 m2 to achieve the 

same precision as an inventory supported by ALS data.   
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Sammendrag

Fjernmålte data brukt sammen med feltobservasjoner, kan potensielt gi grunnlag for troverdige 

estimat av karbonet som er lagret i skogens biomasse. Informasjon om lagret biomasse er 

nødvendig for arbeidet med å motvirke klimaendringer. REDD+ er system hvor denne 

kunnskapen er avgjørende. Fjernmålt 3D-informasjon om skogens høyde og tetthet er særlig 

nyttig fordi den gir nøyaktige estimat på skogens biomasse. Tidligere forskning på bruk av 

fjernmålt 3D-data til biomasseestimering har hovedsakelig blitt gjort i boreal og sub-boreal 

barskog med relativt lav biomasse og åpen skogstruktur. Studiene i denne avhandlingen ble 

utført i tett tropisk skog med utfordrende terrengforhold.  

 To ulike metoder for fjernmåling av 3D-data ble benyttet: flybåren laserskanning (ALS) 

og satellittbåren interferometrisk syntetisk apertur-radar (InSAR). Hovedfokuset for 

avhandlingen var på bruk av ALS. I tillegg ga en digital terrengmodell av høy kvalitet, produsert 

med ALS-dataene, muligheter for en sammenligning med bruk av InSAR-data til 

biomasseestimering. Analysene beskrevet i Paper I viste at modellering av biomasse over 

bakkenivå ved hjelp av ALS-data ga en standardfeil (RMSE) på ca. 33 % av et gjennomsnitt på 

462 Mg·ha–1. Bruk av teksturvariabler utledet fra en modell av vegetasjonens overflate 

konstruert fra ALS-data ga ikke forbedret resultat. Analysene viste videre at (1) variabler utledet 

fra laser-ekko i lavere deler av vegetasjonen og (2) tetthetsvariabler fra vegetasjonen forklarte 

biomassetettheten bedre enn variabler som beskrev vegetasjonens høyde.  

 I Paper II ble muligheten for bruk av billigere ALS-data med lav pulstetthet undersøkt. 

Effekten av lav pulstetthet på (1) den digitale terrengmodellen, og (2) variabler utledet fra ALS-

data ble analysert. Tilfeldig variasjon i digitale terrengmodeller og ALS-variabler økte med 

redusert pulstetthet. En ratio for pålitelighet, som kvantifiserer replikasjonseffekter i ALS-

variablene, viste at mesteparten av de undersøkte variablene var pålitelige ved pulstettheter >0.5 

pulser·m–2, ved bruk av en feltmålte flater på 0,07 ha. Denne størrelsen på feltflatene tilsvarer 

den som brukes i Tanzanias nasjonale landsskogtaksering.  

 Størrelsen på feltflatene er viktig for presisjonen i biomasseestimater. Bedre 

informasjon om forholdet mellom størrelse på feltflatene og presisjon er nyttig i planleggingen 

av framtidige skogtakseringer. Presisjonsestimater av skogens estimerte biomasse ble derfor 

beregnet for 30 konsentriske feltflater med størrelse på 700, 900,…, 1900 m2. Disse estimatene 

ble analysert i en modell-basert statistisk metode. Resultatene indikerte at større feltflater 

relativt sett var mer effektive for taksering understøttet av ALS- og InSAR-data, sammenlignet 

med en ren feltflatetakst. Videre ble det i en simulering vist at en ren feltflatetakst ville måtte 
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inneholde 3,5–6,0 ganger så mange observasjoner for henholdsvis flatestørrelser fra 700–

1900 m2 for å oppnå samme presisjon som en takst understøttet av ALS-data.  
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1 Introduction

The climate is changing! The report from the fifth assessment of the Intergovernmental Panel 

on Climate Change (IPCC) is conclusive. We are experiencing increased global temperatures 

because of our emissions of greenhouse gases (IPCC, 2014). With the rise in temperatures we 

observe changes in habitats for all forms of life on earth that have not been seen in millennia. 

The extent of Arctic sea-ice is decreasing, glaciers are retracting, and the great ice sheets of 

Greenland and Antarctica are losing mass. Rainfall patterns are changing across the globe, 

leaving some areas wetter and some drier than normal. Extreme weather events are more 

frequent and intense. The salinity of the oceans is changing, some becoming saltier and some 

less salty. Furthermore, the oceans are becoming more acidic. All of these changes have severe 

implications for life forms adapted to specific climatic and environmental conditions.  

1.1 Global reduction of greenhouse gases

Reduction of greenhouse gases has been a focus area in international environmental work since 

the late 1980s with the establishment of the IPCC in 1988 and the United Nations Framework 

Convention on Climate Change (UNFCCC) treaty in 1992. Since then IPCC have compiled 

scientific evidence about climate change, and specific treaties (called “protocols”), which set 

limits on greenhouse gas emissions, have been agreed upon by signatories of the UNFCCC 

treaty.  

 The main greenhouse gas in terms of emissions and global temperature change is carbon 

dioxide (CO2), and CO2 has contributed to more than 80% of the total temperature increase due 

to greenhouse gases in the last 15 years (Myhre et al., 2013). Further, a near-linear relationship 

has been found between total emissions of CO2 and global temperature change (Matthews et 

al., 2009). Yearly emissions of CO2 have increased rapidly since the beginning of the industrial 

revolution and are estimated to a total of 555 ± 85 petagrammes of carbon (PgC) in the period 

of 1750–2011 (Ciais et al., 2013). For 2013 Friedlingstein et al. (2014) reported a global 

estimated total of 10.75 ± 0.71 PgC, with a projected increase of 2.3% in 2014.  
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1.2 The role of forests in the global carbon cycle

Vegetation, especially trees, removes carbon from the atmosphere and stores it as biomass. If 

the forest is cleared, or becomes degraded, the carbon is released back to the atmosphere. 

Human- induced deforestation and forest degradation is often referred to as land use change 

and the total estimated emissions from land use change in the period 1750–2011 is estimated to 

180 ± 80 PgC (Ciais et al., 2013). Although the proportion of emissions stemming from land 

use change has decreasing trend (Ciais et al., 2013), land use change is still a significant source 

of carbon emissions with an estimated total of 0.87 ± 0.49 PgC for 2013 (Friedlingstein et al., 

2014).  

 Tropical forests, found on land between latitudes of 23.44°N and 23.44°S, cover around 

18 million km2 (FAO, 2011) and are estimated to store 271 ± 16 PgC (Grace et al., 2014). These 

forests are under great pressure for conversion to agricultural land (Houghton, 2012) and Grace 

et al. (2014) report a total carbon loss of 2.01 ± 1.1 PgC yr–1 from deforestation, harvesting and 

peat fires. However, the growth in forests and woodlands is reported to sequester 

1.85 ± 0.09 PgC yr–1 resulting in a net loss of 0.16 ± 1.1 PgC yr–1 from tropical forests. Thus, 

these forests represent a substantial potential carbon sink, approaching 2 PgC yr–1 or up to 20% 

of the global carbon emissions.  

 With the prospect of a quick and cheap solution for mitigating carbon emissions, tropical 

forests have received a lot of attention and have resulted in the policy and economic incentive 

mechanism known as the REDD+ mechanism. REDD+ (reducing emissions from deforestation 

and forest degradation, conservation and enhancement of forest carbon stocks and sustainable 

management of forests in developing countries), described in the 16th session of the Conference 

of Parties to the United Nations Framework Convention on Climate Change, gives developing 

countries the opportunity to monetize from the reduction of emissions from deforestation and 

forest degradation, and enhancement of forest carbon stocks (UNFCCC, 2011).  

 Accessing carbon finances through REDD+ will require, among other factors, 

measurement of carbon stock changes in forests (UNFCCC, 2010). Furthermore, a mechanism 

for commercial trading of forest carbon credits earned through enhancement of forest carbon 

stocks, conservation of forests or sustainable forest management require trustworthy systems 

for verification of carbon offsets. In addition, application of the principle of conservatism, 

which takes into account the uncertainty of estimates to minimize the risk of overestimating 

emission reductions (UNFCCC, 2006; Grassi et al., 2008), and lack of accurate biomass 

estimates may result in loss of carbon credits for the project developer (Gibbs et al., 2007). 
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Establishing a robust and transparent system for measuring, reporting and verification (MRV) 

of biomass is therefore a requirement for the successful implementation of a REDD+ regime 

(Plugge et al., 2011).  

1.3 Forest inventories supported by remotely sensed data

Forest inventories have the potential to provide transparent and confident estimates of 

aboveground biomass, hereafter simply referred to as biomass. Forest inventories are usually 

designed as sample surveys, with observations on the ground collected from field plots, 

supported by one or several sources of remotely sensed data. Remotely sensed data, in the form 

of aerial images, has been an important forest inventory tool since the 1940s (FAO, 1948), and 

the availability of optical satellite images in the 1970s has resulted in global forest cover 

statistics (Boyd & Danson, 2005). While high cost has prevented the use of aerial images, the 

use of low-cost optical satellite images has been hampered by low spatial resolution and 

persistent cloud cover in tropical areas. Furthermore, both aerial and satellite optical images 

have traditionally only provided two-dimensional information, although recent developments 

have resulted in three-dimensional (3D) data from aerial and satellite images with the use of 

digital photogrammetry and image matching (e.g. Næsset, 2002; Bohlin et al., 2012; Persson et 

al., 2013; Gobakken et al., 2014).  

 The use of LiDAR (light detection and ranging) sensors, most commonly mounted on a 

small aircraft and with a scanning capability, known as airborne laser scanning (ALS), has 

proved to be both effective and accurate for determining biomass in different forest types 

(Zolkos et al., 2013; Fassnacht et al., 2014). There has been a strong focus on research of ALS 

during the past two decades, and ALS is now used as an integral part of operational forest 

management inventories in several countries (McRoberts et al., 2010; Næsset, 2014). Most of 

the published studies on ALS to estimate biomass have been carried out in boreal and sub-

boreal coniferous forests with relatively low biomass and open forest structure. However, in the 

last five years, use of ALS for biomass estimation has been demonstrated in tropical forests in 

South America (Asner et al., 2010; Clark et al., 2011; Vincent et al., 2012; Andersen et al., 

2013; Asner et al., 2014), Asia (Hou et al., 2011; Jubanski et al., 2012; Ioki et al., 2014) and 

Africa (Asner et al., 2012; Laurin et al., 2014). The maximum biomass densities in these studies 

were about 500 metric tonnes of biomass per hectare (Mg·ha–1), while biomass densities in 

tropical rainforests can reach levels beyond 500 Mg·ha–1 (Keith et al., 2009).  
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1.4 Sources of three dimensional remotely sensed data

Satellite-mounted optical sensors have been used for estimation of global forest cover since the 

launch of the first Landsat satellite in 1972. More importantly, with data spanning over three 

decades, these optical sensors provide estimates of global forest cover change (Hansen et al., 

2013). For biomass estimation however, the usefulness of the two-dimensional information 

from satellite images is limited because it lacks information about vegetation height, has limited 

resolution, and is often obstructed by cloud cover.  

 ALS systems solve these challenges by emitting a short pulse of laser light and 

measuring the time between the emission and the reflectance (echoes) detected by the LiDAR 

sensor. By emitting thousands of pulses per second and recording several echoes per pulse in a 

scanning motion, the ALS system effectively creates a 3D cloud of echoes. By recording the 

position and orientation of the sensor at the time of emitting each pulse, using a GPS (global 

positioning system) receiver and an inertial navigation system unit, each echo is positioned in 

the 3D space (x, y, and z positions). To derive information about the vegetation, a digital terrain 

model (DTM) is constructed by classifying echoes as ground echoes. Following the 

construction of the DTM, the elevation of all echoes in relation to the DTM is computed. Echoes 

above a certain threshold above the DTM are regarded as vegetation echoes.  

 Although the best results for biomass estimation have been obtained using ALS, its cost 

is high compared to using satellite-based sensors. While satellite based optical imagery is 

frequently obstructed by persistent cloud cover in the tropics, use of active synthetic aperture 

radio detection and ranging (SAR) sensors penetrate clouds and produce backscatter images 

that can be used for the prediction of forest biomass. In high biomass conditions however, radar 

backscatter data has so far not been able to provide data for reliable estimation and has been 

shown to saturate at biomass levels of between 200–250 Mg·ha–1 (Mitchard et al., 2009; Le 

Toan et al., 2011). Promising results have nevertheless been published for biomass values up 

to 450 Mg·ha–1 (Minh et al., 2014). At present, SAR technologies exist that can produce 3D 

data using four different techniques: clinometry, stereoscopy, interferometry and polarimetry 

(Toutin & Gray, 2000). In addition, optical satellite images can produce 3D data by repeat-pass-

acquisition and image matching techniques. New applications are being developed 

continuously and a thorough overview is beyond the scope of this thesis. A shared property of 

these techniques is that, in order to provide information at a level similar to that of ALS, they 

require a high quality DTM. At present, the only technology able to provide this DTM quality 

is ALS, and it is therefore a prerequisite for the other sensors and techniques.  



Synopsis 

5 

1.5 The area based method for forest inventories using remotely sensed data

The most common method for utilizing remotely sensed auxiliary information for forest 

inventory purposes is known as the area-based method. This method, first outlined in Næsset 

(1997a; 1997b), is based on modelling the relationship between attributes of interest that have 

been measured or calculated from measurements on field plots, with explanatory variables 

derived from remotely sensed data from the corresponding field plot area. To apply the model 

on the area of interest, the remotely sensed data are tessellated into units, usually of the same 

size as the size of the field plots, and the explanatory variables are derived for each unit. The 

model is then applied to predict the response variable on each unit.  

 The alternative method to the area-based one is known as the individual-tree-crown 

method. As the name suggests, it is based on modelling the attributes of interest on a single tree 

basis. Identification of individual trees is affected by stand density and spatial pattern, which 

causes problems related to interlaced tree crowns and trees below the dominant canopy 

(Vauhkonen et al., 2014). In the tropical rainforest where tree crowns overlap, forming a closed 

canopy-cover, the separation of individual tree crowns is regarded as a difficult task with 

presently available technologies.  

1.6 Improving the accuracy of biomass estimates

As described in section 1.2 accurate biomass estimates are a requirement for the REDD+ 

mechanism to function. Increased accuracy would also potentially lead to added carbon credits 

for the project developer (Gibbs et al., 2007). Accuracy is defined as the sum of trueness and 

precision (ISO, 2012). Accuracy of an estimation is often expressed by the mean square error 

(Gregoire & Valentine, 2008, p. 28), or the root mean square error (RMSE), (Equation 4) of the 

mean estimate as used in this thesis. Thus, accuracy incorporates both trueness, expressed 

herein by the mean difference (MD), and precision, expressed as standard error of estimation 

(SE), i.e., the square root of the estimation variance, or standard deviation of a sample (SD). 

Trueness can only be calculated when the true value is actually known. The simplest way of 

increasing the precision of biomass estimates is by increasing the sample size. In a design-based 

framework (see section 3.3.3), the variance of the estimation under simple random sampling is 

proportional to the square root of the sample size minus the number of explanatory variables 

minus one (Stoltzenberg, 2009, p. 181). Thus, all else being equal, doubling the number of 

observations would halve the variance of the estimation. Another option is to use remotely 

sensed auxiliary information related to the observed biomass. Depending on the correlation 
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between the biomass and explanatory variables derived from the remotely sensed data, the 

precision is improved using the auxiliary information from the data.  

In boreal forests, where the correlation between ALS-derived variables and forest 

parameters is high, use of ALS data has been found to reduce the need for field observations by 

a factor of 3–9 (Næsset et al., 2011; Ene et al., 2013), without reducing the estimated precision. 

In high-cost countries, such as Norway, use of ALS in forest inventories thus becomes cost-

efficient. In Tanzania, where the cost of field labour is low, using additional field plots would 

probably be the most cost-efficient way of increasing the precision of the estimated biomass. 

However, the remote and inaccessible nature of forest areas in tropical developing countries 

means that remotely sensed data can nevertheless be invaluable in providing precise biomass 

estimates (McRoberts et al., 2013b; McRoberts et al., 2014b).  

1.7 Effects of field plot size on the accuracy of biomass estimates

The size of the field plot is a property of great importance for accuracy when estimating biomass 

by means of remotely sensed data. Studies of modelling the relationship between forest biomass 

and ALS-derived variables in tropical areas have utilized field plots sizes in the range of 0.1–

1.0 ha. Larger plots inevitably increase the accuracy of the biomass estimates due to spatial 

averaging (Zolkos et al., 2013), as larger field plot sizes reduce the between-plot variance (cf. 

Gobakken & Næsset, 2009; Mascaro et al., 2011; Magnussen et al., 2012). In addition, larger 

plots have smaller ratios of the border zone to total plot area than do smaller plots, a zone which 

is subject to boundary effects (Mascaro et al., 2011; McRoberts et al., 2014a). This implies that 

the relative influences of the boundary effects are smaller for larger plots, regardless of plot 

shape. Negative consequences of GPS positioning errors are also smaller for large plots 

(Gobakken & Næsset, 2009). Likewise, the boundary effects will be more pronounced in forests 

with large tree crowns and on rectangular or quadratic plots, compared to circular plots with 

the smallest possible circumference-to-area ratio. Even though larger field plots, e.g. plots 

larger than 0.25 ha, result in models with better performance, their practical application is 

limited due to the difficulty of establishing them. This is especially challenging in rugged and 

steep terrain, and in areas with very dense vegetation. Reducing the field plot size to a more 

practical and manageable size will, however, reduce the precision of biomass estimates.  
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1.8 Research objectives

The overall objective of this thesis was to investigate the potential of using ALS as an auxiliary 

data-source in sample surveys of biomass in a tropical forest with a wide range in biomass 

densities in rugged and steep terrain. During initial work on the first study it became clear that 

negative boundary effects were strongly influencing the results. This led to a focus on 

examining the effects of plot size on the precision of biomass estimates in subsequent studies. 

Because the ALS data provided a high quality DTM, a comparison of ALS to interferometric 

SAR, in terms of sampling error, was performed. Specific objectives for the studies were: 

I. To model biomass using conventional height and density variables derived from ALS 

data, and to explore the use of texture variables derived form an ALS canopy surface 

model.  

II. To assess the effects of reduced pulse density on the derived DTM, and on the ALS-

derived explanatory variables at spatial units ranging from 0.07 to 0.28 ha in size. 

III. To assess, in a model-based inference framework, the impact of plot size on the relative 

efficiency of ALS and interferometric SAR data compared to models with terrain 

elevation as the only explanatory variable. 
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2 Materials

2.1 Study area

The study area, Amani nature reserve (ANR , Figures 1–3, S 5°08’, E 38°37’, 200–1200 m 

above sea level), covers around 85 km2 of tropical sub-montane rainforest and is located in the 

East Usambara mountains in eastern Tanzania, part of the Eastern Arc mountains. The Eastern 

Arc mountains region is a global biodiversity hotspot area (Myers et al., 2000) and its unique 

forest ecosystem, stretching from Udzungwa in Tanzania in the south to Taita Hills in Kenya 

in the north, contains many endemic species of both animals and plants. Within this mountain 

system, the East Usambara mountains have been identified as one of three top priority areas for 

forest conservation (Burgess et al., 2007). Rain falls throughout the year, with two wet seasons, 

April–May and October–November, and the forest in ANR receives around 2000 mm rainfall 

per year. Daily mean temperatures vary from about 16 to 25 °C. ANR was gazetted in 1997, 

comprising of six former forest reserves, Amani-East, Amani-West, Amani-Sigi, Kwamsambia, 

Kwamkoro and Mnyusi Scarp. In addition, forest land from the neighbouring tea estate, sisal 

estate and local village was included in the ANR. The area also includes the Amani botanical 

gardens, established in 1902 under German colonial rule, which has contained over 500 

indigenous and non-native tree species (Dawson et al., 2008). Very few of the non-native 

species have spread successfully from the area in which they were planted, but one species in 

particular, Maesopsis eminii, is found throughout the entire ANR and is the most common 

species in the reserve. M. eminii originated from the lake region in eastern Congo and is a 

typical light-demanding, pioneer species. It thrives in disturbed areas, but is not able to 

germinate under thick canopy (Newmark, 2002) and is thus not found in the less disturbed areas 

of the ANR. In an inventory carried out in 1986/87, about half of the ANR was classified as 

either logged or covered with M. eminii as a result of logging (Hamilton & Bensted-Smith, 

1989). Logging was stopped in the late 1980s and most of the ANR is now covered by closed 

forest.  

2.2 Field data

Two different sets of field data were used in the studies. The first field data set (FD1), used in 

Papers I and II, was originally established by a non-governmental conservation and 

development organization, Frontier Tanzania, during 1999–2000 (Frontier Tanzania, 2001). 

Rectangular shaped plots of 50 × 20 m were established on a 450 × 900 m grid covering the 

ANR (Figure 2). The horizontal area of the plots varies from 0.0639–0.1239 ha because the 
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plots were laid out along the terrain slope, without any slope correction. All trees with 10 cm 

diameter at breast height (DBH) were callipered, marked and species identified. During two 

campaigns in 2008 and 2009/2010, 143 of these plots were revisited and all trees re-measured 

(Mpanda et al., 2011; Mgumia, 2014). Trees that had grown larger than 10 cm in DBH since 

the first survey were included, and dead or missing trees excluded. All of the initial 173 plot 

locations were visited again between August 2011 and April 2012 and plots that were not re-

measured during the 2008–2010 period were re-measured at this time. All plots were identified 

in the field by local personnel who had performed their establishment and previous re-

measurement. Plots which were not positively identified in the field were re-established and all 

the trees with a DBH 10 cm registered. This was also done for plots with an apparent change 

in structure (due to landslide or human activity), or trees were added or removed in cases where 

there was a clear error in the earlier records. Of the 173 plots, 15 plots had one or more corners 

with missing coordinates after completion of the field work, due to reception of too few 

satellites during data recording from positioning satellites. One plot was also discarded because 

one of the processed corner coordinates had a reported error of >10 m (See 2.2.3 for further 

details about the positioning of the field plots). Furthermore, four plots were found to be outside 

the study area. The DBH data from the remaining 153 plots contained measurements from four 

different years; 2008 (19 plots), 2009/2010 (91 plots) and 2011/2012 (43 plots).  

 In FD1, ten trees per plot were selected for height measurement. The trees were 

systematically selected by choosing the closest tree to each corner; one tree in the middle of 

each short end of the plot; and two trees along the sides, 15 m from each corner. Tree height 

(H) was measured using a Vertex IV hypsometer (Figure 5) and trees with damage were noted. 

For plots with low stocking, in which the same tree could be selected more than once, less than 

ten heights were measured. A total of 1497 trees were measured during the fieldwork in 2011 

and 2012.  

The second field data set (FD2, Figure 3), used in Paper III, consisted of data from 30 

circular field plots collected during November 2011 in pre-determined locations with the aim 

of capturing as much variation in biomass as possible by distributing them in different 

altitudinal zones. All trees with 5 cm diameter at breast height (DBH) were callipered, marked 

and species identified. The horizontal distance from the plot centre to the front of each tree was 

measured using a Vertex IV hypsometer. Since the distance was measured to the front of the 

trees, half of the tree DBH was added during data processing to get the total horizontal distance 

of the trees from the plot centre. The plot size was determined by the reach of the Vertex, and 

under the most challenging conditions in ANR, distance measurement started to fail at 25 m. 
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Thus, in order to contain 30 observations, the maximum plot size was 0.19 ha. The heights of 

three trees per plot (largest, medium and smallest) were measured using the Vertex hypsometer.  

The representativeness of the plots in FD2 was evaluated in Mauya et al. (2015) by 

comparing the properties of FD2 to FD1. Based on this evaluation Mauya et al. (2015) 

concluded that, although being sampled in an opportunistic manner, the distribution in different 

altitudinal zones resulted in a sample which closely resembled properties of the systematic 

sample.  

 

Figure 1. Study area (star) 

situated in the Eastern Arc 

Mountains (dark grey areas). 

Figure 2. Plot locations for 

FD1 in Amani nature reserve.  

Figure 3. Plot locations for 

FD2 in Amani nature reserve. 

 

2.2.1 Height diameter models

Single tree predictions of biomass with both DBH and H as independent variables in the 

allometric models, give more reliable and lower biomass levels than those without height 

information (Henry et al., 2010; Marshall et al., 2012). Non-linear height-diameter (H-D) 

models were developed for both FD1 and FD2, with plot as a random effect. Using the trees 

measured for height, H-D models were fitted using the “fithd” function in the package “lmfor” 

(Mehtatalo, 2012) in R software (R Development Core Team, 2013) again with plot as random 

effect. The “lmfor” package contains 20 two- and three parameter model forms, and the most 

suited forms for our data were selected based on the Akaike information criterion. The selected 

model forms (Equations 1 and 2) described by Prodan (1968) and Winsor (1932) respectively, 
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were then re-fitted using the “nlme” function (Pinheiro et al., 2014) in R for FD1 and FD2. The 

selected models can be expressed as the mean (expected value) functions: 

, (1)

. (2)

 This method of calibrating the H-D model is described by Lappi and Bailey (1988) and 

is able to include local effects. The H-D development of trees can for instance be affected by 

local soil conditions or by surrounding trees. To capture the local effects, field plot was 

specified as random effect and all three parameters of the model were allowed to describe the 

random effects. 

2.2.2 Aboveground biomass

Aboveground biomass for individual trees ( ) was predicted using a locally developed 

allometric model (Equation 3) (Masota et al., 2015). The model is developed from 60 trees from 

34 different species in the ANR and has a pseudo coefficient of determination of 0.84. The trees 

were felled and the green weights of stem, branches, twigs and leaves were recorded in the 

field, along with DBH. Wood samples from each of the three components were collected and 

the green-to-dry weight ratio calculated after oven drying of the wood samples. The tree 

biomass was then calculated by first multiplying the green weight with the green-to-dry weight 

ratio of each of the tree components and then summing these up for each tree. The applied 

model was: 

, (3)

where  is the predicted aboveground biomass in Mg for individual tree number t,  is 

the tree diameter at breast height in cm for tree number t, and  is the tree height in m for tree 

number t. For DF1 the  was then summed at field plot level and converted to per-hectare 

units of biomass (Table 1). For FD2 each tree was allocated to each of the concentric plot size 

based on the distance from the plot centre to the centre of the stem, computing per-hectare 

biomass values for all plots of 700, 900, …, 1900 m2 (Table 2). Although this biomass is 

referred to as “observed biomass”, the computed values are subject to errors related to the 

applied allometric model, and the subsampling and measurement of tree DBH and height.  

Table 1. Characteristics of the 153 field plots in FD1.  

Characteristic Range Mean SD 
Area (ha) 0.0639–0.1239 0.0914 0.011 
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Na (ha–1) 85.4–1085.7 471.5 161.5 
DBHb (cm) 10.0–270.0 27.5 22.9 
BAc (m2·ha–1) 5.4–144.9 47.3 22.2 
Biomass (Mg·ha–1) 43.2–1147.1 461.9 214.7 
Hd (m) 8.3–51.3 19.2 8.9 

 a number of trees, b diameter at breast height (1.3 m), c basal area, d predicted tree height. 

 

Table 2. Mean biomass and standard deviation (SD) in FD2 at plot sizes of 700, 900,…, 1900 m2. 

Plot size (m2) 
Mean biomass (Mg·ha–

1) 
SD (Mg·ha–

1) 
700 371.8 221.5 
900 366.1 216.3 
1100 365.6 203.0 
1300 361.0 190.5 
1500 354.2 180.4 
1700 355.0 170.2 
1900 351.1 159.6 

 

 

2.2.3 Positioning of the field plots

During the fieldwork in August 2011–April 2012, the plot corners of the rectangular plots in 

FD1 and the centre point of the circular plots in FD2 were georeferenced by means of 

differential global navigation satellite system (dGNSS). A 40-channel dual frequency survey 

grade receiver (Topcon Legacy-E+) was used as a field unit (Figure 4) and a second receiver, 

functioning as a base station, was placed on the roof of a house at the ANR headquarters with 

a distance of <14 km from the plots. Before the georeferencing started, the coordinates of the 

base station antenna were determined with precise point positioning with GPS and global 

navigation satellite system data collected continuously for 24 hours according to Kouba (2009). 

The field unit was placed at each point on a 2.9 m rod for a minimum of 30 minutes, and a one 

second logging rate was used. Horizontal errors of the georeferenced points were estimated to 

an average of 0.57 m based on random errors reported from the post-processing using Pinnacle 

software (Anon., 1999) and empirical experience of the relationship between reported error and 

the true error documented by Næsset (2001). Mean precision in the vertical direction after post-

processing in Pinnacle (Anon., 1999) was reported to 0.39 m.  
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Figure 4. Field unit of the differential global 

navigation satellite system (dGNSS) used for 

positioning of field plots. 

Figure 5. Measuring tree height using a Vertex IV 

hypsometer. 

 

2.2.4 Remotely sensed data

The ALS data used in all three papers was collected as complete coverage using a Leica ALS70 

sensor mounted on a Cessna 404 twin engine, fixed wing aircraft. The acquisition was carried 

out in the period 19–25 January 2012 with additional flights in the period 2–18 February 2012 

to fill minor gaps in the data. Average flight speed was 70 m s–1 at a mean altitude of 800 m 

above ground level and with a laser pulse repetition frequency of 339 kHz. From each pulse the 

sensor registered up to five echoes. A maximum scan angle of ±16° from nadir yielded an 

average swath width of 460 m. The beam divergence was 0.28 mrad, which produced an 

average footprint size on the ground of about 22 cm.  

 In Paper III, interferometric synthetic aperture radio detection and ranging (InSAR) was 

assessed as an alternative source of remotely sensed data. The InSAR data were acquired by 

the Tandem-X satellite mission on 6th August 2011. The incidence angle was 46°, and the 

polarization was horizontal transmit and horizontal receive. The normal baseline was 210 m, 

which corresponded to a 2  height of ambiguity of 38 m. 
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3 Methods

The basis for the analyses in all three papers was the conventional method for biomass 

modelling and estimation known as the “area-based method” described section 1.5. The method 

is based on modelling the relationship between attributes of interest that have been measured 

or calculated from measurements on field plots, and explanatory variables derived from the 

remotely sensed data. It is vital that the remotely sensed data is extracted from the horizontal 

area matching the field plot. Discrepancy in this matching is often referred to as co-registration 

errors, and has been identified as an important source of error in the “area-based method” 

(Gobakken & Næsset, 2009). To apply the model on the area of interest, the remotely sensed 

data are tessellated into units, usually of the same size as the size of the field plots, and the 

explanatory variables are derived for each unit. The model is then applied to predict the 

response variable on each population unit.  

3.1 Construction of digital terrain models

A prerequisite for the retrieval of useful remotely sensed 3D information for biomass estimation 

is a high quality DTM. In Papers I and III the DTM was derived from the ALS data by the 

supplier of the ALS data, Terratec AS, Norway. ALS echoes reflected from the ground were 

identified and classified using the progressive triangulated irregular network (TIN) 

densification algorithm (Axelsson, 2000) in the TerraScan software (Anon., 2012). The DTM 

was derived from the ALS as a TIN from the planimetric coordinates and corresponding heights 

of the ALS echoes classified as ground echoes. In Paper II a similar classification and 

construction of a DTM was performed using the “GroundFilter” program in the FUSION toolkit 

(McGaughey, 2013). The study involved repeated reduction of the ALS pulse density, and 

DTMs were constructed from pulse densities of 8, 4, 2, 1, 0.5, and 0.25 pulses·m–2. The 

algorithm presented by Kraus and Pfeifer (1998) and implemented in the “GroundFilter” 

program initially makes an average surface based on all ALS echoes. Further, weights are given 

to all echoes based on their vertical distance to the initial surface. Low weight is given to echoes 

above the surface, and high weight to echoes below. The weights are then used in re-fitting the 

surface. Two parameters in the algorithm can be adjusted to determine which echoes are 

weighted. Echoes located below the surface with a distance larger than parameter g are assigned 

the maximum weight value of 1.0, while echoes located above the surface with a distance larger 

than the parameter w plus the parameter g are assigned weights of 0.0 (McGaughey, 2013). To 

adjust for the different pulse densities the two parameters were controlled while leaving the 
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other parameters at the program default setting. The g and w parameter settings at different 

pulse densities are given in Table 4. Visual inspection of initial classifications of ground echoes 

showed large outliers and a smoothing filter of 3 m was applied to remove these outliers. From 

the echoes classified as ground, a 1 m gridded surface was created using the 

“TINSurfaceCreate” program in FUSION (McGaughey, 2013).  

3.2 Explanatory variables derived from remotely sensed data

After creation of a DTM the elevation of the DTM was subtracted from the elevation of all ALS 

echoes resulting in an elevation above the ground for each echo. From the five echoes per pulse 

registered by the ALS sensor, each echo was classified into one of three categories: “single”, 

“first of many” or “last of many”. The “single” and “first of many” were merged into one 

dataset, denoted as “first echoes” while the “single” and “last of many” were merged into 

another dataset and denoted as “last echoes”. The two classes of ALS echoes formed the basis 

for derivation of conventional explanatory variables from the echoes. These variables comprise 

two main types of variables, canopy height variables and canopy density variables, and were 

computed separately from the “first echoes” and “last echoes”. Both variable types describe the 

vertical distribution of ALS echoes. Canopy height variables including maximum and mean 

values (E.max, E.mean), standard deviation (E.sd), coefficients of variation (E.cv), kurtosis 

(E.kurt), skewness (E.skewness) and percentiles at 10% intervals (E.10, E.20,…, E.90) were 

derived from the laser echoes above a threshold of 2 m (Paper III) or 4 m (Papers I and II) above 

ground. Canopy density variables were derived by dividing the height between a 95% percentile 

height and the threshold into 10 equally spaced vertical layers and calculating the proportion of 

echoes above each layer to the total number of echoes of each echo category (“first echoes”, 

“last echoes”), including echoes below the threshold (D.0, D.1,…, D.9). To denote whether the 

variables were derived from the first or last echo category, a subscript L or F was used as 

notation, e.g. E.mean.F. This computation of ALS variables follows the procedure presented in 

Næsset and Gobakken (2008) and is frequently implemented in practical forest inventories 

(Næsset, 2014). In Paper I, additional variables describing horizontal distribution of the echoes 

from an ALS-derived canopy surface model were computed. Firstly, a rasterized canopy surface 

model with 1 m resolution was computed from the top-of-canopy ALS echoes. The raster was 

then converted into grey level images from the field plots, and variables originally presented by 

Haralick et al. (1973) were calculated using the “glcm” package (Zvoleff, 2014) in R. The 

texture variables were calculated using a 3 × 3 m window size and averaged in all directions (0, 

45, 90 and 135°). Shifts of 3, 6, 9, 12, and 15 m were tested and variables included mean (MN), 
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homogeneity (HG), variance (VAR), contrast (CONT), dissimilarity (DS), entropy (ENT), 

angular second moment (SM) and correlation (COR) for each of the shifts. The subscript 3, 6, 

9, 12, or 15 was used as notation for the shifts. These variables, originating from image analysis, 

were proposed as additional information to the conventional height and density variables. 

 As part of the analysis in Paper II ALS variables from four concentric circular plot sizes 

of 0.07, 0.14, 0.21, and 0.28 ha were derived. These concentric plots were centred in the centre 

of the 153 rectangular field plots. A set of ALS variables was derived for each concentric plot 

using the “CloudMetrics” program in FUSION (McGaughey, 2013). Frequently used variables 

were selected for analysis. These included E.mean, E.max, E.10, E.90, D.0, D.5, and the 

variance of the elevation above ground (E.var). The first and last echo categories were not used 

in the variables in Paper II. 

 In Paper III, the results from ALS-assisted estimation were compared to use of remotely 

sensed data from satellite radar imagery. Only one explanatory variable, the mean height, was 

derived from the InSAR data. SAR image pairs were processed, using a kind of stereo imaging 

known as interferometry, resulting in a digital surface model (DSM). Further, removal of phase 

noise and offset and ramp errors was performed using a Goldstein filter (Goldstein & Werner, 

1998) and ground control points, respectively. Phase unwrapping was carried out using the 

minimum cost flow method, and the DSM was geocoded to a ground resolution of 10 × 10 m. 

Following the construction of the DSM, the DTM derived from the ALS TIN was subtracted 

from the DSM, resulting in obtained InSAR heights, i.e. heights of the centre of the radar echo 

above ground. Mean InSAR height was then derived for each field plot by weighting the height 

of each 10 × 10 m units of the normalized InSAR DSM by the area of the unit intersected by 

the field plot.  

3.3 Statistical analyses

3.3.1 Modelling the relationship between biomass and remotely sensed variables

Linear least-square multiple regression analysis was used for developing biomass models in 

Papers I and III. To account for heteroscedasticity and non-linear relationships between the 

response and explanatory variables, a transformation of the response is often used. Natural-log 

transformations of both response and explanatory variables were performed in Papers I and III. 

In addition, square-root transformation of the response was tested in Paper I. These 

transformations introduce a bias when back-transformed to arithmetic scale and procedures for 

bias-adjustment, described by Goldberger (1968), Gregoire et al. (2008), and Snowdon (1991), 

were therefore applied. In Paper I the selection of explanatory variables to be included in the 
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models was performed using a best-subset regression procedure implemented in the “leaps” 

package (Lumley & Miller, 2009) in R. To avoid multicollinearity, variance inflation factors 

were controlled and models were selected based on the Bayesian information criterion (BIC). 

The aptness for prediction of the selected models was validated by 10-fold cross-validation. 

The accuracy of the models was assessed by the RMSE:  

, (4)

where  is number of plots,  is the observed value for plot ,  is the predicted value for plot 

. Precision was assessed by the MD:  

. (5)

 The relative RMSE (RMSE%) and relative MD (MD%) were calculated as percentages 

by dividing the absolute RMSE and MD values, respectively, by the observed means.  

In a study utilising FD2, Mauya et al. (2015) found that E.60.F and D.1.L were the most 

frequently selected variables in modelling biomass using plot sizes from 700 to 1900 m2. E.60.F 

and D.1.L were therefor selected a priori for the biomass models in paper III.  

To explore the relative importance of the explanatory variables, an analysis was 

performed in Paper I by fitting a separate simple linear model for a random sample of 1/3 of 

the plots. The single explanatory variable which resulted in the lowest BIC value was included 

in the model. Random sampling of observations, performed without replacement and model-

fitting, was repeated 1000 times. The frequency with which each variable appeared in the model 

was used as a measure of importance for each individual variable.  

3.3.2 Effects of pulse density on DTM and canopy variables

The cost of acquiring ALS data is largely governed by the flight time. By flying higher and/or 

faster the costs can be reduced, resulting in cheaper but lower pulse density data. The effects of 

reduced pulse density on the ALS-derived DTM and canopy variables were investigated in 

Paper II. A random thinning procedure was incorporated in a Monte Carlo simulation, in which 

the thinning and the subsequent analysis were repeated 50 times per pulse density level, to 

quantify the effects of the reduced pulse density. To study the effects of reduced pulse densities 

on the DTMs, the elevation  in the DTMs from reduced pulse densities ( ) were subtracted 

from the elevation of each point ( ) measured with dGNSS ( ) to obtain the difference 

for each point ( , Equation 6):  

. (6)
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The mean difference ( ) and standard deviation ( ) of the differences ( ) were calculated. 

To compare the  at each pulse density level a t-test was performed using the Holm-Bonferroni 

procedure (Holm, 1979) for correction of p-values for multiple comparisons.  

 Conventional measures of accuracy,  and , assumes no outliers and a normal 

distribution of errors. As pointed out by e.g. Zandbergen (2008), errors in DTMs are not 

normally distributed. Q-Q plots were therefore produced and checked for non-normality. In 

addition, robust measures of accuracy suited for characterisation of non-normal distributions 

suggested by Höhle and Höhle (2009) were produced. The 50% sample quantile of the errors 

( , i.e., the median value) is a robust estimator for a systematic shift of the DTM (Höhle & 

Höhle, 2009). The 95% quantile of the absolute value of the errors ( ) and the normalized 

median absolute deviation ( , Equation (7)), a robust estimator for , are estimators 

resilient to outliers (Höhle & Höhle, 2009). 

. (7)

The mean value ( ) and standard deviation of each canopy variable ( ) on plot level 

were calculated from the Monte Carlo simulations across the 50 repetitions. Even though the 

canopy variables derived from ALS have been shown to be relatively unaffected by the density 

of echoes (Lim et al., 2008), reduced pulse density increase the . As explained by Magnussen 

et al. (2010), random factors affecting the canopy variables suggests that the variables should 

be considered as random variables instead of fixed, as is commonly the case. These random 

factors can be referred to as replication effects. Replication effects weaken the fit of the biomass 

models with a factor termed as the reliability ratio (Fuller, 1987, p. 3). By calculating the 

replication variance in the variables, estimates of the reliability ratios for the variables were 

calculated. The method was used by Magnussen et al. (2010), in which the reliability ratio was 

calculated as the ratio of the variance of each variable among sample plots, to the total variance 

of the corresponding variable (Equation (8)): 

, (8)

where  is the estimated among-plot variance of the variable and  is the estimated average 

within-plot variance. High within-plot variance in a variable compared to the variance among 

plots for the same variable results in a low reliability ratio, indicating that the variable is less 

reliable as an explanatory variable.  

 To assess the effect of plot size on the reliability ratio of the variables derived from 

concentric circles of 0.07, 0.14, 0.21, and 0.28 ha were computed. 
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Figure 6. Illustration of thinned ALS echo cloud for plot number 49 with a plot size of 1400 m2. 

 

3.3.3 Variance estimation

As described in section 1.5, application of an estimated biomass model using the area-based 

method yields a biomass prediction for each population unit. The biomass predictions for the 

population elements are subsequently used to derive an estimate for the population, either as a 

mean or total biomass estimate. Accompanying the estimate, a variance estimate is calculated 

to state the precision of the estimate. Two main approaches to variance estimation have been 

used in forest inventories: design-based and model-based variance estimation. In the design-

based approach the population, from which samples are taken, is regarded as fixed. The only 

source of variance is the random selection of elements included in the sample. Thus, the 

estimated variance is derived from the inventory sample and the probability of each population 

element to be included in the sample, referred to as the inclusion probability. This inclusion 

probability is assumed to be positive and known for all population elements. Such samples are 

often referred to as probability samples.  

It is often the case, however, that the sample has been acquired in a non-probabilistic 

manner (Clark & Kellner, 2012), resulting in zero- or unknown inclusion probabilities. The 
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zero- or unknown inclusion probability can be the result of opportunistic sampling, i.e. sampling 

close to roads for economic and/or practical reasons. Similarly, purposive sampling, established 

to investigate a specific subject, often result in samples acquired in a non-probabilistic manner. 

Furthermore, the inclusion probability can be affected by the accessibility of the area (Köhl et 

al., 2006, p. 76). In the case where the sample data does not meet the requirements for a design-

based approach to variance estimation, a model-based approach may be a viable alternative. 

Model-based inference does not, as opposed to design-based inference, rely on a probabilistic 

sample that represents the population. Instead the statistical inference relies on the model itself 

as a valid model of the distribution of possible observations for each population element. The 

population is not viewed as fixed, but rather as a result of a random process, referred to as a 

“superpopulation” model. This “superpopulation” model cannot be observed, but the 

parameters of the model can be estimated from the survey sample. The surveyed population is 

viewed as only one random realisation of this “superpopulation”.  

Because the field plots in FD2 were distributed in order to cover the height gradient in 

the ANR, the inclusion probabilities of the plots were unknown, and a model-based approach 

to estimation and inference was used in Paper III.  

 The approach followed the notation in Ståhl et al. (2011), where an element of the 

“superpopulation” was expressed as: 

, (9)

where  is a vector of the observed plot biomass on plot ,  is a vector of variables derived 

from the auxiliary data,  is a vector of model parameters and  is a vector of errors, and  is a 

function describing the “superpopulation”. It is assumed that the errors are independent, 

normally distributed, with a constant variance, and without spatial auto-correlation. The 

parameters  were estimated with  using least square regression, and used to estimate the 

population mean by: 

, (10)

where i indexes the population elements and N is the number of elements, i.e., i = 1, 2, …, N.  

Assuming that the estimated  is accurate, the  function was linearized in the neighbourhood 

of the true function using first order Taylor series expansion: 

 

… , 
(11)
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where  , j indexes the parameters and  is the number of parameters, 

i.e.,  

j = 1, 2, …, k, …, p. The variance of the population mean was then estimated by:  

, (12)

where  and  are the estimated mean values of the first order derivatives of the  function 

for parameters j and k, respectively (cf. Ståhl et al., 2011). 

Unlike design-based estimators, which often are unbiased or nearly unbiased, the 

unbiasedness of model-based estimators depends on the model being correctly specified. It was 

therefore paramount to assess how well the model fitted the field plot observations. Assessment 

of the fit of the models followed the approach used by McRoberts et al. (2013a). Scatterplots 

of observed vs. predicted biomass were produced for each plot size. Correctly specified models 

should result in points falling closely along a 1:1 line with intercept 0 and slope 1. Further, pairs 

of observations and predictions were ordered with respect to the predicted values and grouped 

into three classes of 10 pairs. The mean of the observed vs. predicted biomass was plotted for 

each group. A correctly specified model should again result in points falling along a 1:1 line.  

3.3.4 Relative efficiency

To assess the gain in precision of using remotely sensed data to enhance the estimates, relative 

efficiency was calculated for both ALS (RETE:ALS) and InSAR (RETE:InSAR). Simple log-log 

models with the terrain elevation from the DTM as explanatory variable were developed for 

each plot size of 700, 900, …, 1900 m2. These models were denoted as TE models. The relative 

efficiencies were calculated as ratios of the estimated variance for the mean biomass estimate 

( ) for each plot size using the TE models divided by the variance estimates for each plot size 

using the ALS models: 

, (13)

where s is an indicator of the plot sizes 700, 900, …, 1900 m2. Similarly, relative efficiency for 

InSAR was computed as: 

. (14)

Efficiency of ALS was also calculated relative to InSAR (REInSAR:ALS) in the same way by 

dividing the variance estimates for each plot size using the InSAR models by the variance 

estimates for each plot size using the ALS models:  
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 (15)

In a design-based framework, applying simple random sampling (SRS), the relative 

efficiency can be used directly to calculate the additional number of field observations needed 

to compensate for the contribution of the remotely sensed data, which is a fundamental quantity 

in cost comparisons. This is because the SE of the mean estimate under SRS is proportional to 

the square root of the sample size minus the number of explanatory variables minus one 

(Stoltzenberg, 2009, p. 181). In practice, a relative efficiency of two would mean that the gain 

of the remotely sensed data could be compensated by twice as many field plots, assuming that 

the sample variance remain constant.  

In the model-based framework used in Paper III the SE of the mean estimate is also 

assumed to reduce with increased number of observations. However, the number of 

observations needed to reach the same SE for the different models cannot be deduced by 

analytical means. Instead a basic Pólya-urn resampling scheme was applied as described in 

Köhl et al. (2006, pp. 195–196) to simulate the variance of the TE models. The Pólya-urn 

resampling scheme generates a design-consistent posterior predictive distribution of the 

property in interest, given that the sample is reasonably large and representative of the 

population (Ghosh & Meeden, 1997, p. 44–46). The field sample of u = 30 observations were 

considered as representative of the population, and the Pólya-urn resampling generated 

posterior predictive distributions of biomass for U = 60, 120, and 180 observations based on 

the sample. From a virtual urn, containing the 30 observations, one observation was randomly 

drawn, duplicated, and returned to the urn together with the duplicate. The urn thus contained 

u + 1 = 31 observations. The selection scheme was repeated until the desired number U of 

observations in the urn was reached. The simulations were repeated 200 times and the mean 

variance of observed biomass reported.  
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4 Results and discussion

Results presented in the papers constituting this thesis cover different aspects of using remotely 

sensed data in support of forest surveys in a dense tropical rainforest in Tanzania. With regards 

to the main objective in this thesis, the assessment of ALS as an auxiliary source of data, all 

three papers contributed to an increased knowledge in the use of ALS in dense tropical forests.  

 As pointed out in section 2.2.2, the observed biomass in the present thesis is subject to 

uncertainty not accounted for related to the allometric models and field measurements of DBH 

and tree height. Thus, errors related to the biomass observations are not accounted for. 

Overlooking these errors lead to overoptimistic precision of the variance estimates. In a study 

conducted in a tropical forest in Ghana, and with a plot size of 1600 m2, Chen et al. (2015) 

found that the impact of allometric error contributed about 11% to the total relative prediction 

error. With similar forest conditions and plot sizes, it is reasonable to assume errors of similar 

influence in the present thesis.  

4.1.1 Modelling aboveground biomass using ALS data

Paper I documented the relationship between ALS-derived variables and biomass calculated 

from measurements on field plots. In terms of accuracy and precision (Table 3), the results were 

similar to those of other recent studies in similar forests and with similar field plot sizes (Clark 

et al., 2011; Ioki et al., 2014; Laurin et al., 2014).  

The study that was reported in Paper I also identified some modelling challenges when 

using the field observations in FD1. Firstly, the size of the field plots, together with their 

rectangular shape, possibly resulted in large negative boundary effects. These effects are due to 

a discrepancy between trees included in the field inventory and parts of their crown being 

outside the vertical boundary of the plot, and vice versa. Secondly, in a natural forest that has 

reached a climax state, old and aging trees will have reduced or even negative height and crown 

development. Because of the asymptotic relationship between height and diameter, canopy 

height variables are less suitable for discriminating between tall trees with various diameters. It 

is generally the large trees in a tropical forest that show this asymptotic H-D development 

(Poorter et al., 2006; Iida et al., 2011). Since the largest trees have great influence on the 

biomass in the observed biomass, this could explain the underestimation on field plots with a 

high biomass value, as observed in Paper I. Similar observations were made by Skowronski et 

al. (2007) in a temperate forest with a weak relationship between tree height and tree diameter. 

An analysis of the relative importance of ALS variables was therefore performed in Paper I. 

This analysis showed that most of the information for explaining biomass was found in 
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variables describing the vertical density of the full vegetation layer, and in variables from the 

last return echoes (Figure 8). Variables describing the height of the vegetation, which have been 

found to be important in boreal studies (Næsset & Gobakken, 2008), were found to be less 

useful in explaining the forest biomass. Similar results with regards to variable importance as 

those in Paper I, have also been presented by Laurin et al. (2014) for a tropical forest in Sierra 

Leone, West Africa.  

 

Table 3. Summary of regression models for biomass using ALS variables.  

Model 
Response 
variable Predictive modela 

 Model fit  10-fold cross-validationb 

 R2 BIC  RMSE RMSE% MD MD%

A ln biomass 3.815 + 
1.755·D.2.L+ 
1.498·D.9.L + 
0.016·E.90.F 

 0.70 98.8  149.18 32.3 2.40 0.5 

B ln biomass 3.984 + 
3.222·MN.3 

 0.52 160.6  173.84 37.6 8.57 1.9 

C ln biomass 3.665 + 
1.530·D.2.L + 
1.231·D.9.L + 
0.013·E.90.F + 
0.737·MN.15 

 0.71 98.7  158.02 34.4 2.85 0.6 

D sqrt(biomass) 3.796 + 
11.294·D.2.L + 
13.321·D.9.L+ 
0.249·E.mean.L 

 0.62 814.4  154.44 33.4 6.12 1.3 

E sqrt(biomass) 7.563 + 
0.054·MN.3  

 0.072·CONT.3 

 0.48 857.0  169.77 36.8 8.17 1.8 

F sqrt(biomass) 3.796 + 
11.294·D.2.L + 
13.321·D.9.L + 
0.249·E.mean.L 

 0.62 814.4  156.59 33.9 5.57 1.2 

a Explanatory variables presented in section 3.2; b Values after back-transformation to arithmetic 

scale. 

 



Synopsis 

25 

 
 
Figure 7. Scatter plots of observed vs. predicted biomass using logarithmic (A–C) or square root 

transformations of the response (D–F) in combination with vertical variables (A, D), texture variables 

(B, E) and both vertical and texture variables (C, F). 
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Figure 8. Dot charts of the relative frequency of the nine most frequently selected explanatory variables 

in a simple linear model fitting procedure with logarithmic (A–C) and square root transformation of the 

response (D–F) in combination with vertical variables (A, D), texture variables (B, E) and both vertical 

and texture variables (C, F). Variables are explained in Section 3.2. 

  

4.1.2 Effects of pulse density on DTM quality and ALS variables

Effects of reduced pulse density on the DTMs and canopy variables derived from ALS data 

were assessed in Paper II. Reduced pulse density, assessed by Monte Carlo simulation, resulted 

in a  between the elevation of 612 point measurements recorded by the dGNSS and the 

elevation of the same points in the ALS-derived DTM of 1.81 m for a pulse density of 8 

pulses·m–2 (Table 4). Thus, the elevation recorded by the dGNSS was higher than the ALS-

derived DTM. Reduction of pulse density from 8 to 0.25 pulses·m–2 gave no significant effect 

on the .  

Q-Q plot of the distribution of errors (Figure 9) showed non-normality and justified the 

presentation of robust measures of accuracy. A loss of precision was observed when the pulse 

density was reduced from 8 to 0.25 pulses·m–2. This loss of precision was expressed both by 

the conventional measure of precision, , and the more robust measure  (Table 4).  
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Table 4. Summary of the difference in elevation between the dGNSS measurements and the DTM 

elevation for different pulse densities. 

       Parameter settings1 

Pulses·m–2  (m)  (m)  (m)  (m)  (m)  g (m) w (m) 

0.25 1.77 3.20 0.90 7.72 2.15  -1.0 1.5 

0.5 1.77 3.02 0.92 7.50 1.97  -1.5 2.0 

1 1.79 2.93 0.94 7.34 1.85  -2.0 2.5 

2 1.81 2.90 0.96 7.28 1.80  -2.5 3.0 

4 1.81 2.88 0.95 7.20 1.75  -3.0 3.5 

8 1.81 2.89 0.95 7.35 1.81  -3.5 4.0 

Mean difference ( ), standard deviation ( ), 50% quantile of the difference ( ), 95% quantile of 

the absolute value of the difference ( ) and the normalized median absolute deviation ( ).  
1 Settings of the g and w parameters in the applied ground classification algorithm.  

 

 
Figure 9. Normal Q-Q-plot for the distribution of the difference in elevation between the elevation 

recorded by the dGNSS and the elevation of the corresponding ALS-derived DTM at pulse densities of 

0.25, 0.5, 1, 2, 4, and 8 pulses·m–2. 

 

Mean values from repeated simulations showed that most of the explanatory variables 

were unaffected by a reduced pulse density (Table 5). E.max, however, decreased with reduced 

pulse density, and showed a significant difference of 0.58 m at 1 pulse·m–2 compared to the 

value at 8 pulses·m–2 at a plot size of 0.07 ha. This effect was reduced with increased plot size, 

but was still significant for 1 pulse·m–2 at a plot size of 0.28 ha.  

Reduced pulse density resulted in increased variance in the canopy variables on plot 

level (Figure 10). The standard deviations for the explanatory variables ( ) showed that the 

variable describing the canopy elevation in the middle of the canopy (E.mean) was more stable 

than the elevation of the top and bottom of the canopy (E.max, E.10, E.90). Reduction of the 
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pulse density from 8 to 0.25 pulses·m–2 increased the  for E.mean from 0.09 to 0.90 m on a 

0.07 ha plot size (Figure 10). The  of E.max increased from 0.16 to 1.03 m at a plots size of 

0.07 ha.  

Further, reduced pulse density resulted in decreased reliability ratio, the ratio of the 

estimated among-plot variance to the estimated total variance (Figure 11). At pulse densities 2 

pulses·m–2, and a plot size of 0.07 ha, the reliability ratio was >0.95 for all explanatory 

variables. At a pulse density of 0.5 pulses·m–2, and a plot size of 0.07 ha, the reliability ratios 

of E.var and D.0 were reduced down to 0.60 and 0.90, respectively. At a pulse density of 0.25 

pulses·m–2, and a plot size of 0.07 ha, E.var, E.10, and D.0 had an estimated reliability ratio of 

<0.9, while the rest of the variables had a reliability ratio of >0.9.  

 

 
Figure 10. Box and whisker plots of standard deviations ( ) (whiskers at 5th and 95th percentile) of 

ALS-derived explanatory variables for plot size of 0.07 ha and pulse densities of 0.25, 0.5, 1, 2, 4, and 

8 pulses·m–2. E.mean (mean elevation above ground), E.max (maximum elevation above ground), E.var 

(variance of the elevation above ground), E.10 and E.90 (10th and 90th height percentile of canopy 

points), D.0 and D.5 (the proportion of points above the ground and above the mean canopy height).  
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Table 5. Mean values ( ) of explanatory variables for plot sizes of 0.07, 0.14, 0.21, and 0.28 ha and 

pulse densities of 0.25, 0.5, 1, 2, 4, and 8 pulses·m–2. 

   

Plot size (ha) Pulses·m–2 E.mean E.max E.var E.10 E.90 D.0 D.5 

0.07 0.25 24.59 41.42 107.59 10.06 36.15 89.99 55.18 

0.07 0.5 24.49 41.75 108.79 9.79 36.18 90.01 55.25 

0.07 1 24.47 41.98 108.93 9.72 36.16 90.09 55.39 

0.07 2 24.49 42.22 109.17 9.70 36.19 90.17 55.47 

0.07 4 24.59 42.36 108.72 9.82 36.21 90.29 55.68 

0.07 8 24.69 42.56 108.17 9.93 36.26 90.33 55.73 
    

0.14  0.25 24.59 43.44 112.27 9.48 36.64 90.07 54.67 

0.14 0.5 24.47 43.70 113.24 9.28 36.60 90.07 54.74 

0.14 1 24.45 43.92 113.60 9.21 36.60 90.15 54.80 

0.14 2 24.49 44.11 113.67 9.24 36.63 90.23 54.89 

0.14 4 24.60 44.23 113.15 9.40 36.68 90.38 55.05 

0.14 8 24.70 44.39 112.60 9.52 36.74 90.44 55.14 
    

0.21  0.25 24.60 44.38 114.04 9.33 36.93 90.16 54.35 

0.21 0.5 24.47 44.61 114.91 9.12 36.86 90.14 54.42 

0.21 1 24.43 44.81 115.22 9.04 36.84 90.18 54.50 

0.21 2 24.49 45.03 115.35 9.07 36.88 90.28 54.59 

0.21 4 24.59 45.17 114.83 9.22 36.93 90.40 54.72 

0.21 8 24.70 45.33 114.22 9.35 37.00 90.48 54.82 
    

0.28  0.25 24.59 45.01 115.87 9.13 37.05 90.01 54.31 

0.28 0.5 24.45 45.23 116.54 8.93 36.97 89.97 54.36 

0.28 1 24.44 45.47 116.95 8.87 36.98 90.04 54.45 

0.28 2 24.48 45.68 116.93 8.91 37.00 90.12 54.52 

0.28 4 24.59 45.85 116.40 9.05 37.05 90.24 54.66 

0.28 8 24.69 45.98 115.84 9.18 37.12 90.33 54.75 

Mean elevation above ground (E.mean), maximum elevation above ground (E.max), variance of the 

elevation above ground (E.var), 10th and 90th percentile of elevation (E.10 and E.90), and the proportion 

of points above the ground (D.0) and above the mean canopy height (D.5). 

 

The statistics for the canopy variables, resulting from the Monte Carlo simulations, 

showed that the variances of the variables were reduced with plot size for all variables and at 

all pulse densities (Figure 11). Increasing the plot size means that the probability of including 

larger trees increase. As a result, the maximum elevation (E.max) and the elevation of the top 
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of the canopy (E.90) were found to increase in value with increased plot size (Table 5). 

Increasing the plot size also means that more of the variability in the elevation of ALS-echoes 

is captured by the plot, resulting in increased E.var. Variables describing the elevation of the 

lowest part of the canopy (E.10) and the proportion of points above the mean canopy height 

(D.5), however, decreased in value with increasing plot size. E.mean and D.0 did not show any 

trend with increased plot size. The reliability ratio increased for all variables with increasing 

plot size.  

Dense vegetation obstructs the ALS pulses and results in fewer pulses reaching the 

ground and being available for DTM construction. The effect of vegetation on ALS-derived 

DTMs has been studied in different conditions and has resulted in both an over-prediction of 

terrain elevation (Bowen & Waltermire, 2002; Reutebuch et al., 2003; Töyrä et al., 2003) and 

under-prediction of terrain elevation (Hodgson et al., 2005; Tinkham et al., 2011). Hodgson et 

al. (2005) found that ALS-derived elevation was significantly under-predicted in all studied 

land cover classes. The under-prediction was largest in pine forest areas, by up to 0.24 m. 

Tinkham et al. (2011) also found an under-prediction of 0.9–0.16 m in coniferous areas, when 

comparing two different ground classification algorithms. In their discussion of observed under-

predicted terrain elevation in heavily vegetated areas, Hodgson et al. (2005) suggested that the 

error was a result of echo density, and/or the accuracy of correct classification of echoes as 

ground.  

The analysis in Paper II showed that the mean DTM elevation was unaffected by the 

reduction in pulse density from 8 to 0.25 pulses·m–2. This was in contradiction with results from 

other studies on reducing ALS data density (Hyyppä et al., 2005; Anderson et al., 2006; Leitold 

et al., 2015). In a tropical forest with similar conditions as in the present study, Leitold et al. 

(2015) found an increased DTM elevation of 3.02 m at 1 pulse·m–2, compared to a DTM from 

20 pulses·m–2. Leitold et al. (2015) attributed the increased elevation to the morphological filter 

algorithm (Zhang et al., 2003) used to classify ground points. Hyyppä et al. (2005), who used 

data collected in three separate flights, attributed an increased DTM elevation to the beam size 

and sensitivity of the laser.  

From the analysis of the DTMs in Paper II and the results in several different studies 

related to construction of DTMs in different conditions, it seems clear that systematic effects of 

pulse thinning could be the result of the algorithm used to classify ground echoes or the 

parameter settings in the algorithm. Thus, great care is needed when using ALS data from 

different sensors and flying conditions, in diverse vegetation, and with different sensor-settings 

in terms of correctly classifying the ground echoes.  
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Figure 11. Plots of reliability ratios for ALS-derived variables at a plot size of 0.07 ha and pulse densities 

of 0.25, 0.5, 1, 2, 4, and 8 pulses·m–2. E.mean (mean elevation above ground), E.max (maximum 

elevation above ground), E.var (variance of the elevation above ground), E.10 and E.90 (10th and 90th 

height percentile of canopy points), D.0 and D.5 (the proportion of points above the ground and above 

the mean canopy height). 

 

 Valbuena et al. (2012) assessed the vertical accuracy of a dGNSS receiver (Topcon 

Hiperpro), similar to the receiver used in the present thesis, under pine canopies in Spain. By 

using true coordinates obtained in a total station traverse, they found the accuracy to be 1.18 m 

with a standard deviation of 1.55 m. It is therefore expected that recordings under dense 

rainforest canopies with the reception of fewer satellite signals and more problems with 

multipath signals, result in lower accuracy. 

Recent studies of biomass in tropical forests using ALS have been conducted using 

different pulse densities and plot sizes. Pulse densities from 25 pulses·m–2 (d'Oliveira et al., 

2012) down to about 1.5 pulses·m–2 (Asner & Mascaro, 2014) have been used. The results from 

these studies are similar in terms of biomass prediction performance and show that high pulse 

density is not a requisite for estimation of forest biomass. In biomass studies where the key 

information is the vegetation height relative to the terrain elevation derived from the same ALS 

data, a systematic shift in the modelled surface is not a problem in itself. Of greater concern is 

the random error of the modelled terrain elevation. As expected, the standard deviation of  

( ) increased with reduced pulse density.  increased from 2.9 m to 3.2 m when pulse density 

was reduced from 8 and 0.25 pulses·m–2, respectively. This variation will directly translate into 

variation in the ALS-derived canopy variables.  

Analysis of commonly applied canopy variables showed that the variables were affected 

differently by pulse density. As previously documented by Gobakken and Næsset (2008), 

E.max, which characterizes the maximum elevation of the canopy, decreases with decreasing 

pulse density. Mean values of the other variables assessed in the present study were found to 
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be stable. Reduced pulse density increased the variation in canopy variables and will result in 

models with increased residual variance. The estimated reliability of the explanatory variables, 

expressed by the reliability ratio, showed that all variables were reliable (reliability ratio >0.9) 

at pulse densities of down to 2 pulses·m–2. Further reduction of pulse density resulted in some 

canopy variables becoming less reliable although most variables retain a reliability ratio of >0.9 

at 0.5 pulses·m–2. In low pulse density conditions (<1·m–2), and with use of explanatory 

variables with a reliability ratio <0.9 Magnussen et al. (2010) proposed the use of a model 

calibration procedure.  

Increasing the field plot size reduces the variation in ALS-derived variables and could 

counter the effects in low pulse density missions, concurring with the results of Gobakken and 

Næsset (2008). However, larger field plots are costly and finding the optimal balance between 

costs and desired accuracy has for decades been an issue of interest in designing forest 

inventories. Zeide (1980) presented how to optimize the plot size for systematic sampling. The 

optimal plot size is a function of the coefficient of variation between plots, plot measurement 

time, and travelling time between plots, under budgetary restraints or for a desired accuracy.  

Although the study in Paper II aimed to simulate the effects caused by various flight 

elevations and speeds on the DTM and canopy variables derived from ALS data, effects such 

as increased footprint size and reduced pulse energy were not simulated and studied. Studies of 

the effects of footprint size on derived tree heights have shown that increased footprint size 

reduces the derived tree height estimates (Andersen et al., 2006). Andersen et al. (2006) found 

that this effect was stronger for trees with narrow crowns, and thus, we can expect that the effect 

is small in a tropical forest with wide tree crowns. Larger footprint sizes will, however, also 

have less energy per area unit and be less able to penetrate through the canopy (Hyyppä et al., 

2005; Goodwin et al., 2006), resulting in a lower proportion of ground points. The influence of 

footprint size and pulse energy is likely to be of importance and should be investigated in future 

studies.  

4.1.3 Effects of plot size on relative efficiency of ALS and InSAR data

In Paper III the main objective was to assess the effect of plot size on the relative efficiency of 

using auxiliary data from ALS and InSAR in estimation of biomass. Using FD2, separate log-

log models were constructed for plot sizes of 700, 900, …, 1900 m2 with auxiliary data from 

(1) the terrain elevation from a DTM (TE), (2) ALS, and (3) InSAR. TE models showed a 

positive correlation between biomass and elevation, and the explanatory variable was 

increasingly significant from p = 0.044 at 700 m2 to p = 0.002 at 1900 m2. Biomass was also 
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positively correlated to the two explanatory variables in the ALS models and the InSAR-height 

used in the InSAR models. All variables were significant at a 95% level except one of the ALS 

variables (D.1.L) at plot sizes of 1100–1700 m2.  

Inspection of the scatterplots of observed vs. predicted biomass (Figures 12–14) showed 

that the models had a lack of fit resulting in over-prediction of biomass in areas of low biomass 

and under-prediction in areas of high biomass. Similar lack of fit has been reported in studies 

from areas with high forest density (e.g. Nord-Larsen & Schumacher, 2012; Vincent et al., 

2012). The plots of the grouped means of observations vs. predictions (Figures 15–17), 

however, showed small differences.  

Increasing the plot size from 700 to 1900 m2 reduced the SE of the mean estimates from 

15.3 to 10.6% using TE, from 10.1 to 5.1% using ALS, and from 11.3 to 6.4% using InSAR 

(Figure 18). Both ALS and InSAR performed well compared to TE in terms of SE. ALS and 

InSAR estimates had an SE of about 5 and 4 percentage points lower than TE, respectively. 

Further, InSAR performed well compared to the ALS with only 0.4–1.3 percentage points 

higher SE depending on plot size. The differences in SE translated into relative efficiencies of 

3.6–6.7 using ALS and 2.6–4.0 using InSAR, compared to TE (Figure 19). The relative 

efficiency of the ALS data also increased with increased plot size relative also to the InSAR 

data (Figure 19). At a plot size of 1900 m2 the ALS was 6.7 times as efficient as using TE and 

1.7 times as efficient as InSAR. The fact that the relative efficiency of ALS and InSAR 

increased with increased plot size may partly be due to reduced relative influence of boundary 

effects and co-registration errors. The slight increase in relative efficiency of ALS compared to 

InSAR may also indicate that the relative influence of boundary effects and co-registration 

errors is stronger for ALS than for InSAR. The relative efficiency of ALS compared to InSAR 

is modest compared to studies in Norway that have found the relative efficiency of ALS to be 

about twice to that of InSAR (Næsset et al., 2011; Rahlf et al., 2014).  

As stated by Gregoire et al. (2015), information about the approach to statistical 

inference, design- or model-based, is essential in assessing the estimated variance. Taking the 

design-based approach to variance estimation d'Oliveira et al. (2012) reported a relative 

efficiency of 3.4 in a study utilising 50 plots of 0.25 ha in the Brazilian Amazon. A relative 

efficiency of 2.1 can similarly by computed from the variance estimates in Paper I. Large 

negative boundary effects in the ALS variables would contribute to a lower relative efficiency 

for smaller plots like the plots of 0.1 ha used in Paper I.  

The relative efficiencies computed in Paper III in the model-based framework cannot 

be used as a factor for calculating the contribution of the remotely sensed data in terms of added 
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observations (see section 3.3.4). Instead a Pólya-urn resampling scheme was used to simulate 

the effect of additional field observations on the TE models. To reach similar levels of variance 

as for the ALS models with the TE models, the number of field plots would have to be increased 

by a factor of 3.5–6 depending on plot size (Figure 20).  

The DTM used directly to derive the TE variable in the TE-models, and to derive the 

InSAR elevation above the terrain, was derived from the ALS data. DTMs constructed from 

ALS data have generally high accuracy (Meng et al., 2010). In the absence of an ALS-derived 

DTM, a DTM derived from other sources would have influenced the results. A DTM derived 

from sources like P-band SAR (e.g. Neeff et al., 2005) or the topographic map series of 

Tanzania, would most likely have resulted in substantially increased SE of the InSAR and TE 

estimates. In a study using InSAR height to estimate forest biomass in Norway Næsset et al. 

(2011) it was found that relative RMSE was approximately seven percentage points higher 

using a DTM from topographic maps with a contour interval of 20 m, compared to using an 

ALS-derived DTM. P-band SAR, used with good results in Neeff et al. (2005), is currently only 

available from airborne platforms, and was not collected in ANR.  
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Figure 12. Observed vs. predicted biomass values using ALS for plot sizes of 700, 900,…, 1900 m2. 

 

 

 
Figure 13. Observed vs. predicted biomass values using InSAR for plot sizes of 700, 900,…, 1900 m2. 
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Figure 14. Observed vs. predicted biomass values using TE for plot sizes of 700, 900,…, 1900 m2. 

 

 
Figure 15. Grouped means of observed vs. predicted biomass values using ALS for plot sizes of 700, 

900,…, 1900 m2. 
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Figure 16. Grouped means of observed vs. predicted biomass values using InSAR for plot sizes of 700, 

900,…, 1900 m2. 

 
Figure 17. Grouped means of observed vs. predicted biomass values using TE for plot sizes of 700, 

900,…, 1900 m2. 
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Figure 18. Relative standard error of biomass 

estimates (SE%) using models with auxiliary data 

of terrain elevation (TE) derived from a digital 

terrain model (dotted line), InSAR (dashed line), 

and ALS (solid line). 

  

Figure 19. Relative efficiency of using InSAR 

(RETE:InSAR, dashed line) and ALS (RETE:ALS, solid 

line) relative to TE for biomass estimation, and 

ALS relative to InSAR (REInSAR:ALS, dotted line). 

  

Figure 20. Standard error of biomass estimates 

(SE) using models with auxiliary data of InSAR 

(dashed line), ALS (solid line), and TE. TE model 

SE is derived from 60 (dotted grey line), 120 

(dashed grey line), and 180 (solid grey line) 

simulated observations. 
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5 Final comments and future prospects

The analyses undertaken in the three papers which constitute this thesis have increased the 

understanding and basis for forest sample surveys in high-biomass tropical rainforests 

supported by remotely sensed auxiliary ALS- and InSAR-data. The studies shed light on 

important aspects of the relationship between biomass observed in the field and the remotely 

sensed data. A particular focus was directed at how the size of field plots affects this 

relationship.  

 Initially, Paper I established that aboveground biomass could be estimated using ALS 

and field plots of ca. 0.1 ha, at an accuracy of approximately 33% RMSE. Furthermore, the 

analyses in Paper II demonstrated that similar accuracies could be achieved using potentially 

cheaper ALS data, with lower pulse densities. Lastly, comparisons of estimated precision in 

estimation of biomass using both ALS and InSAR data documented that ALS gave the highest 

precision. The study reported in Paper III further documented that larger plots were relatively 

more efficient in improving the precision of estimates supported by remotely sensed data, 

compared to estimates from field observations supported by terrain elevation.  

 Although the use of ALS data as auxiliary information can reduce the number of field 

observations needed to obtain a desired accuracy level, the cost of field labour in Tanzania is 

low. With a cost of establishing an additional inventory plot of only 100–150 USD per plot (E. 

Mauya 2015, pers. comm. 19 Jan.) increasing the number of field observations is the cheapest 

way of increasing the accuracy of biomass estimates. However, there are still good reasons for 

investing in ALS as an auxiliary source of data. Firstly, the ALS DTM can be utilized with 

other, cheaper sources of remotely sensed data, such as SAR or optical satellite images. 

Secondly, stability in measurement of InSAR height over time as documented in Solberg et al. 

(2015) presents a potential of repeatedly estimating biomass without the need of repeated field 

surveys. This would permit biomass stock estimates at short intervals, annually or bi-annual for 

instance. Finally, the ALS-assisted inventory can, in addition to the total biomass estimate, 

provide a map of desired forest parameters. Maps of other forest traits, such as structure, are 

increasingly being used for improving our understanding of a range of ecological subjects 

(Maltamo et al., 2014; Pettorelli et al., 2014; Potts et al., 2014).  

 Collection of remotely sensed data using aircraft is inevitably relatively expensive. With 

an increasing demand for cheaper and more available information about forest ecosystems, 

satellite based sensors such as the ICESat-2 and Global Ecosystem Dynamics Investigation 

(GEDI) LiDARs of National Aeronautics and Space Administration and the P-band SAR 
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BIOMASS mission of the European Space Agency, are planned for launching in 2017, 2018 

and 2020 respectively. In addition, new ALS missions are continuously being carried out and 

calls have been made for greater coverage of ALS (Mascaro et al., 2014) financed under a 

REDD+ framework. This gives us great possibilities of understanding further aspects of these 

important ecosystems.  

 Knowledge of how the remote sensing technologies are related to ground observations 

at different scales can be utilized to optimize both plot- and sampling design, in order to 

minimize the total inventory cost whilst still reaching the required level of precision.  
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Abstract: Successful implementation of projects under the REDD+ mechanism, securing 
payment for storing forest carbon as an ecosystem service, requires quantification of 
biomass. Airborne laser scanning (ALS) is a relevant technology to enhance estimates of 
biomass in tropical forests. We present the analysis and results of modeling aboveground 
biomass (AGB) in a Tanzanian rainforest utilizing data from a small-footprint ALS system 
and 153 field plots with an area of 0.06–0.12 ha located on a systematic grid. The study 
area is dominated by steep terrain, a heterogeneous forest structure and large variation in 
AGB densities with values ranging from 43 to 1147 Mg·ha 1, which goes beyond the range 
that has been reported in existing literature on biomass modeling with ALS data in the 
tropics. Root mean square errors from a 10-fold cross-validation of estimated values were 
about 33% of a mean value of 462 Mg·ha 1. Texture variables derived from a canopy 
surface model did not result in improved models. Analyses showed that (1) variables 
derived from echoes in the lower parts of the canopy and (2) canopy density variables 
explained more of the AGB density than variables representing the height of the canopy. 
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1. Introduction 

Moist and wet tropical forests have the potential to store large amounts of carbon as biomass. 
Quantification of biomass and knowledge about its spatial distribution provides important information 
about the forest that is useful for ecological and environmental applications as well as forest resource 
management. A detailed description of forest structure will help to understand the ecological 
functionality of these forests [1] and how structure is governed by edaphic and climatic factors. This 
knowledge can be used in the development of models for local natural resource management, such as 
water management [2,3], or in modeling of the response of forests to climate change [4]. In some 
countries, timber and wood products from tropical forest are important export commodities [5] and 
inventories assisted by remote sensing data can provide valuable information for decision making. 
Even in areas in which forest products and ecosystem services are not part of a market system, forest 
resource information might be useful, for example for fuel wood management [6]. The carbon 
sequestration potential of tropical forests has received a lot of attention and has resulted in the policy 
and economic incentive mechanism known as REDD+. The aim of REDD+, described in the 16th 
session of the Conference of Parties to the United Nations Framework Convention on Climate Change, 
is to encourage reduction of emissions from deforestation and forest degradation, conservation  
and enhancement of forest carbon stocks and sustainable management of forests in developing 
countries [7]. Reporting of emissions from loss of forest carbon at the national level will be  
required [8], but many countries are likely to benefit from more local monitoring programs within the 
countries as well, assessing the effects of national policies and local financial mechanisms aimed at 
reaching goals for emission control for the nation as a whole.  

Accessing carbon finances through REDD+ requires, among other factors, measurement of carbon 
stock changes in forests [9]. Furthermore, a mechanism for commercial trading of forest carbon credits 
earned through enhancement of forest carbon stocks, conservation of forests or sustainable forest 
management require trustworthy systems for verification of carbon offsets. In addition, application of 
the conservativeness principle, which takes into account the uncertainty of estimates to minimize the 
risk of overestimating emission reductions [10,11], and lack of accurate biomass estimates may result 
in loss of carbon credits for the project developer [12]. Establishing a robust and transparent system for 
measuring, reporting and verification (MRV) is therefore a requirement for successful implementation 
of a REDD+ regime [13]. A central part of such an MRV system would be the use of remote sensing 
data for monitoring both forest area changes and changes within forested areas [14] because remote 
sensing data can greatly improve the precision of estimates and change estimates of areas as well as of 
biomass and carbon stocks—and especially so if the remote sensing data are strongly correlated with 
the parameter of interest.  

A variety of remote sensing technologies for determination of forest biomass exists, whereof 
LiDAR (light detection and ranging) sensors have been found to produce the best results in terms of 
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precision [15,16]. The use of LiDAR, which is most commonly mounted on a small aircraft and with a 
scanning capability—known as airborne laser scanning (ALS)—has proven to be both effective and 
accurate for determining biomass in different forest types [15–17]. ALS is also used as an integral part 
of operational forest management inventories in several countries [18]. Most of the published studies 
on ALS to estimate AGB have been carried out in boreal and sub-boreal coniferous forests with 
relatively low biomass and open forest structure. However, in the last five years use of ALS for AGB 
estimation has been demonstrated in tropical forests in South America [19–23], Asia [24] and  
Africa [25]. The maximum biomass densities in these studies were about 500 Mg·ha 1, while biomass 
densities in tropical rainforests can go far beyond 500 Mg·ha 1. 

Due to the fact that ALS does not measure biomass directly, there is a need for field data for 
modeling the relationship between remotely sensed observables and biomass from ground 
observations. The models are subsequently used for estimation of forest biomass. Taking the  
area-based approach [26], commonly used for ALS-based forest inventory, attributes of interest are 
measured or calculated from measurements on field plots and a relationship between the ALS echoes 
and ground attribute is determined using statistical methods such as regression analysis, nearest 
neighbors, neural-networks or ensemble learning. The size of field plots varies, but has usually been in 
the range of 0.1–1.0 ha in tropical ALS studies.  

Different types of variables are often derived from the ALS echoes and are tested to describe the 
relationship between the remotely sensed information and biomass. The most commonly used types of 
ALS-derived variables are percentiles of the height above ground above a certain threshold (canopy 
height variables), and fractions of echoes in the canopy to total number of echoes, including ground 
echoes (canopy density variables). Estimated models often include a canopy height variable describing 
the canopy height close to the top of the canopy or mean canopy height, in combination with a canopy 
density variable derived from the lower parts of the canopy, e.g., [26,27]. Alternative approaches have 
been to use the total canopy volume [28] or canopy height profile and canopy cover [29] calculated from 
the ALS echoes. The latter approach has been widely applied in tropical areas by Asner et al. [30] 
utilizing only one variable, namely the mean canopy profile height. Studies have documented positive 
relationships between AGB and forest structure diversity [31] and tree species diversity [32]. Textural 
information that capture structural information is commonly used in image analysis, and has been shown 
to be successful in modeling AGB using high-resolution satellite images [33]. Bohlin et al. [34] 
successfully used textural information from a canopy surface model in combination with ALS-derived 
height and density variables to model stem volume and basal area in Sweden. Based on these findings, 
we reasoned that texture variables might be able to capture information about the spatial distribution of 
trees and forest structure which could improve the model performance even in tropical rainforests. 

When applying regression analysis, a transformation of the response and/or predictor variables is 
usually performed to account for non-normality and non-constant variance in the response  
variable. Logarithmic transformations of both response and predictor variables have been applied in 
several studies, e.g., [26,35]. Other strategies have been to transform the response only, and both 
logarithmic [24,36] and square root [19,37,38] transformations are commonly used. 

In natural forests that have reached a climax state another challenge occurs when utilizing canopy 
height derived variables for biomass modeling. Tree height growth decreases with age, and because the 
decrease is stronger and starts earlier compared to a decrease in diameter growth [39], trees with 
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similar crown height may have very different diameters, and thus biomass. There might even be a 
negative change in canopy height as trees approaches mortality and the tree crown starts to die off. 
Tree diameter, however, does not decrease. Thus, ALS-derived variables describing tree heights might 
be less correlated with AGB.  

The overall objective of this study was to model AGB in a tropical forest with a wide range in AGB 
densities in rugged and steep terrain using ALS-derived variables. We explored the use of texture 
variables derived from a canopy surface model. To improve our understanding of the relationship 
between AGB and canopy height and density, we assessed the relative importance of different  
ALS-derived prediction variables. 

2. Material and Methods 

2.1. Study Area  

The study area, Amani Nature Reserve (Figure 1) (S5°08', E38°37', 200–1200 m above sea level), 
covers around 8360 ha of tropical submontane rainforest and is located in the East Usambara 
Mountains in eastern Tanzania, which is a part of the Eastern Arc Mountains. The Eastern Arc 
Mountains is a global biodiversity hotspot area [40] and the forest, stretching from Udzungwa in 
Tanzania in the south to Taita Hills in Kenya in the north, contains many endemic species of both 
animals and plants. Within this mountain system, the East Usambara Mountains have been identified 
as one of three top priority areas for forest conservation [41]. In this forest ecosystem, rain falls 
throughout the year with two wet seasons, April to May and October to November, and the area 
receives around 2000 mm rainfall per year. Daily mean temperatures vary from about 16–25 °C. 
Amani Nature Reserve was gazetted in 1997 comprising of six former forest reserves, Amani-East, 
Amani-West, Amani-Sigi, Kwamsambia, Kwamkoro and Mnyusi Scarp. In addition, forest land from 
the neighboring tea estate, sisal estate and local village was included in the nature reserve. The area 
also includes the Amani Botanical Gardens, established in 1902 under German colonial rule and have 
contained over 500 indigenous and non-native tree species [42]. Very few of the non-native species 
have successfully spread from the area in which they were planted, but one species in particular, 
Maesopsis eminii, is found over the whole nature reserve and is the most common species in the 
reserve. The M. eminii originate from the lake region in eastern Congo and is a typical light 
demanding, pioneer species. It thrives in disturbed areas, but is not able to germinate under thick 
canopy [43] and is not found in the less disturbed areas of the reserve. In an inventory carried out in 
1986/87, about half of the nature reserve was classified as logged or covered with M. eminii as a result 
of logging [44]. Logging was stopped in the late 1980s and most of the nature reserve is now covered 
by a closed forest cover.  
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Figure 1. Left: study area (marked by star) situated in the Eastern Arc Mountains (dark 
grey areas). Right: field plot locations (marked by dots) inside the Amani Nature Reserve. 

2.2. Field Data  

During 1999–2000, a non-governmental conservation and development organization, Frontier 
Tanzania, established a grid of east/west and north/south transects for surveying flora and fauna in the 
reserve [45] as part of a larger biodiversity survey covering several of the tropical forest areas in 
Tanzania. At each crossing in the 450 by 900 m grid, a rectangular plot measuring 50 m west and 20 m 
north from the transect crossing, was established (Figure 1). The horizontal area of the plots varies 
from 0.0639–0.1239 ha because the plots were laid out along the terrain slope, without any slope 
correction. All trees with 10 cm diameter at breast height (DBH) were callipered, marked and species 
identified. During two campaigns in 2008 and 2009/2010, 143 of these plots were revisited and all 
trees re-measured [46,47]. Trees that had grown larger than 10 cm in DBH since the first survey were 
included, and dead or missing trees excluded. All of the initial 173 plot locations were again visited 
during August 2011–April 2012 and plots that were not re-measured during the 2008–2010 period 
were re-measured this time. All plots were identified in the field by local personnel that had been 
doing the establishment and the previous re-measurement. Plots which were not positively identified in 
the field were re-established and all the trees with a DBH 10 cm registered. This was also done for 
plots with an apparent change in the structure (due to landslide or human activity), or trees where 
added or removed where there was a clear error in the earlier records. Of the 173 plots, 15 plots had 
one or more corners with missing coordinates after completion of the field work due to reception of too 
few satellites during data recording from positioning satellites, see details below. One plot was also 
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discarded because one of the processed corner coordinates had a reported error of >10 m. Furthermore, 
four plots were found to be outside the forest. The DBH data from the remaining 153 plots contain 
measurements from four different years; 2008 (19 plots), 2009/2010 (91 plots) and 2011/2012  
(43 plots). 

Ten trees per plot were selected for height measurement. The trees were systematically selected by 
choosing the closest tree to each corner; one tree in the middle of each short end of the plot; and two 
trees along the sides, 15 m from each corner, respectively. Tree height (H) was measured using a 
Vertex IV hypsometer and trees with damage were noted. For plots with low stocking in which the 
same tree could be selected more than once, less than 10 heights were measured. A total of 1497 trees 
were measured during the fieldwork in 2011 and 2012. A summary of the field plot characteristics is 
presented in Table 1.  

Table 1. Characteristics of 153 field plots.  

Characteristic Range Mean SD 
Area (ha) 0.0639–0.1239 0.0914 0.011 
N a (ha 1) 85.4–1085.7 471.5 161.5 

DBH b (cm) 10.0–270.0 27.5 22.9 
BA c (m2·ha 1) 5.4–144.9 47.3 22.2 

AGB d (Mg·ha 1) 43.2–1147.1 461.9 214.7 
H e (m) 8.3–51.3 19.2 8.9 

a number of trees; b diameter at breast height (1.3 m); c basal area; d aboveground biomass; e predicted  
tree height. 

2.2.1. Height-Diameter Models 

Single tree predictions of AGB with both DBH and H as independent variables in the allometric 
models give more reliable and lower biomass levels than without height information [48,49]. From the 
trees measured for height, a nonlinear mixed effects height-diameter (H-D) model was developed with 
plot as random effect. Initially, five trees with H/DBH ratio of <2 m/cm were left out of the modeling. 
Thereafter, 20 two- and three-parameter H-D models were fit using the “fithd” function in the package 
“lmfor” [50] in the R software [51], and the best model form selected based on the Akaike Information 
Criterion (AIC). The selected model form (Equation (1)) described by Prodan [52] was then fit using 
the “nlme” function [53] in R, specifying a, b and c as random parameters because this resulted in the 
lowest AIC value. The selected model can be expressed as the mean (expected value) function 

 (1)

This method of calibrating the H-D model is described by Lappi and Bailey [54] and is able to 
include local effects. The H-D development of trees can for instance be affected by local soil 
conditions or by surrounding trees. The mixed effects H-D model developed from 1492 trees had a 
correlation between observed and predicted height (pseudo coefficient of determination (pR2)) of 0.75 
(Table 2). To capture the local effects, field plot was specified as random effect and all three 
parameters of the model were allowed to describe the random effects.  
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Table 2. Estimated parameters, standard deviation (SD), pseudo coefficient of 
determination (pR2, correlation coefficient between observed and predicted values) and 
root mean square error (RMSE) for applied height-diameter model.  

Variable Parameter estimate SD 
a 0.3376 (0.9032) 
b 0.9834 (0.0855) 
c 0.0172 (0.0012) 

 4.9221  
 0.5905  
 0.0024  
 0.3485  

pR2 0.75  
RMSE 5.38  

2.2.2. Aboveground Biomass 

Aboveground biomass for individual trees ( ) was predicted using a locally developed 
allometric model (Equation (2)) [55]. The model is developed from 60 trees from 34 different species 
in the Amani Nature Reserve and has a pR2 of 0.84. The trees were felled and green weight of stem, 
branches, twigs, and leaves were recorded in the field along with DBH. Wood samples from each of 
the three components were collected and the green-to-dry weight ratio calculated after oven drying of 
the wood samples. The tree biomass was then calculated by multiplying the green weight with the 
green-to-dry weight ratio of each of the tree components and summed up for each tree. The applied 
model was 

 (2)

where  is the predicted aboveground biomass in Mg for individual tree number t, DBH is the tree 
diameter at breast height in cm and H is the tree height in m. The  was then summed on field plot 
level and weighted to per hectare unit by the plot area (Table 1). 

2.2.3. Positioning of the Field Plots 

During the revisit of the field plots in the period August 2011–April 2012, the plot corners were 
georeferenced by means of differential global positioning system (GPS) and global navigation satellite 
system (GLONASS) using a 40-channel dual frequency survey grade receiver as field unit. A second 
receiver, acting as a base station, was placed on the roof of a house at the Amani Nature Reserve 
headquarters with a distance of <14 km from the plots. Before the positioning of the plots started, the 
coordinates of the base station antenna was determined with Precise Point Positioning with GPS and 
GLONASS data collected continuously for 24 h according to Kouba [56]. The field unit was placed at 
each corner of each plot on a 2.9 m rod for a minimum of 30 min, and a one second logging rate was 
used. Planimetric errors of the plot corner coordinates were estimated to an average of 57 cm based on 
random errors reported from the post-processing using Pinnacle software [57] and empirical 
experience of the relationship between reported error and the true error documented by Næsset [58].  
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2.3. ALS Data  

Airborne laser scanning with complete coverage was performed using a Leica ALS70 sensor 
mounted on a Cessna 404 twin engine, fixed wing aircraft. The acquisition was carried out in the 
period 19–25 January 2012 with additional flights in the period 2–18 February 2012 to fill minor gaps 
in the data. Average flight speed was 70 m·s 1 at a mean flying altitude of 800 m above ground level 
and with a laser pulse repetition frequency of 339 kHz. From each pulse, the sensor registered up to 
five echoes. A maximum scan angle of ±16° from nadir yielded an average swath width of 460 m.  
The beam divergence was 0.28 mrad which produced an average footprint size on the ground of about 
22 cm. Following the acquisition, a post processing was performed by the contractor (Terratec AS, 
Norway). Echoes reflected from the ground were identified and classified using the progressive 
triangulated irregular network (TIN) densification algorithm [59] of TerraScan software [60]. An ALS 
terrain model was created as a TIN from the planimetric coordinates and corresponding heights of the 
ALS echoes classified as ground echoes. The TIN model was then used to calculate the height relative 
to the ground for all echoes by subtracting the TIN model height from the height of the echoes. ALS 
echoes classified according to Anon. [61] as “overlapping”, “low”, and “error” were omitted, resulting 
in an average pulse density of 10 echoes·m 2. From the five echoes registered per pulse, we used only 
echoes of the three categories “single”, “first of many”, and “last of many”. Single and first of many 
were merged into one dataset and denoted as “first echoes” while single and last of many were merged 
into another dataset and denoted as “last echoes”. 

ALS data for the canopy layer were extracted for each field plot, and a number of variables 
describing the vertical distribution of ALS echoes (vertical variables) were derived from the height 
distribution of echoes for each of the two echo categories (first, last). Vertical variables were further 
divided into variables describing the height (canopy height variables) and density (canopy density 
variables) of the forest canopy. Canopy height variables including maximum- and mean values (Hmax, 
Hmean), standard deviation (Hsd), coefficients of variation (Hcv), kurtosis (Hkurt), skewness 
(Hskewness) and percentiles at 10% intervals (H10, H20,…, H90) were derived from the laser echoes 
above a threshold of 4 m above ground. It has been common in boreal forests to use a threshold of 2 m 
to distinguish between the tree layer and below-canopy vegetation [26,62], however, the minimum 
DBH of 10 cm and the overall size of the trees sampled justify the higher threshold of 4 m. In addition 
to the canopy height variables, canopy density variables were derived by dividing the height between a 
95% percentile height and the 4 m threshold into 10 equally tall vertical layers and calculating the 
proportion of echoes above each layer to the total number of echoes of each echo category (first, last), 
including echoes below the 4 m threshold (D0, D1,…, D9). To denote if the variables were derived 
from the first or last echo category, a subscript L or F was used as notation, e.g., Hmean.F. 

Variables describing horizontal distribution of the ALS canopy echoes, texture variables, were also 
computed. Firstly, a rasterized canopy surface model of 1 m resolution was computed from the  
top-of-canopy echoes. The raster was then converted into grey level images and variables originally 
presented by Haralick et al. [63] were calculated using the “glcm” package [64] in R. The texture 
variables were calculated using a 3 m window size and averaged in all directions (0, 45, 90 and 135°). 
The window size of 3 m was chosen because a 3 pixel window was the smallest available in the 
“glmc” package, and we considered that larger window sizes would provide less detailed metrics. 
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Shifts of 3, 6, 9, 12 and 15 m were tested and variables included mean (MN), homogeneity (HG), 
variance (VAR), contrast (CONT), dissimilarity (DS), entropy (ENT), angular second moment (SM) 
and correlation (COR) for each of the shifts. As an example MN.15 is the average of the height of the 
3 m windows with a distance of 15 m between each window in all directions.  

2.4. Multiple Regression Analysis 

Different linear least-square multiple regression models for AGB were developed using vertical 
variables, texture variables and a combination of both vertical and texture variables (Table 3). Two 
alternative transformations of the response variable, logarithmic and square root were also performed 
for each set of predictor variable type (Table 3). For models A–C for which logarithmic 
transformations were applied, the transformation of the response variable introduced a bias when  
back-transformed to arithmetic scale. The models were therefore adjusted for logarithmic bias 
according to Goldberger [65] by adding half of the model mean square error to the constant term 
before transformation to arithmetic scale. For models D–F, with square root transformed response, the 
models were back-transformed according to Gregoire et al. [66] by squaring the prediction and adding 
the model mean square error.  

Predictor variable selection was performed using a best subset regression procedure implemented in 
the “leaps” package [67] in R. The models were selected based on the Bayesian information criterion 
(BIC), allowing up to five predictor variables. To avoid multicollinearity the variance inflation  
factors (VIF) were controlled. For the selected model, a 10-fold cross-validation was performed, and 
assessment of accuracy was done by estimating the RMSE (Equation (3)) and mean difference ( ) 
(Equation (4)): 

 (3)

(4)

where  is number of plots,  is the observed value for plot ,  is the predicted value for plot .  
The relative RMSE (RMSE%) and relative  ( %) were calculated as a percentage by dividing the 
absolute RMSE and , respectively, by the observed mean. 

Table 3. Summary of tested model forms and predictor variables. 

Model Transformation Predictor variables 
A Logarithmic Vertical 
B Logarithmic Texture 
C Logarithmic Vertical + Texture 
D Square root Vertical 
E Square root Texture 
F Square root Vertical + Texture 
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2.5. Analysis of ALS Variables  

In a natural forest that has reached a climax state, and where the height growth of some of the trees 
has stopped, the asymptotical H-D relationship will introduce problems when using ALS variables 
derived from canopy height for predicting AGB. The canopy height information is likely to be less 
correlated with the response variable of interest so that variables capturing other features—for example 
canopy density—could be better suited as predictor variables. The diversity in forest structure 
expressed by texture variables could also provide important information for AGB prediction.  

To explore the relative importance of the predictor variables, an analysis was performed by fitting a 
separate simple linear model for a random sample of 1/3 of the plots. The single predictor variable 
resulting in the lowest BIC value was included in the model. Random sampling of observations, 
performed without replacement and model-fitting was repeated 1000 times. The rate of how often each 
variable appeared in the model was used as a measure of importance for each individual variable.  

3. Results  

Results for the six different models are presented in Table 4. Models with logarithmic and square 
root transformations of the response perform equally well, with an RMSE of estimated values of 
around 33% of a mean value of 462 Mg·ha 1 for both transformations. Multicollinearity was controlled 
by checking the VIF of the models. All models had a VIF value below 3. Models developed using 
vertical variables only (A and D) included three variables and variables describing the height and 
density of the forest canopy. Use of texture variables only did not perform as well as the standard 
vertical variables. The modeling procedure selected only one and two texture variables for models B 
and E, respectively.  

In combination with the vertical variables, only MN.15 was selected together with vertical variables 
in model C. The cross-validation procedure generally resulted in overestimated AGB values of 
observation in the range of 200–500 Mg·ha 1 and underestimation of observation of above  
500 Mg·ha 1 (Figure 2).  

Table 4. Summary of regression models for aboveground biomass (AGB) using ALS variables.  

Model 
Response 
Variable 

Predictive Model a 
 Model Fit  10-Fold Cross-Validation b 

 R2 BIC  RMSE RMSE%  % 

A ln AGB 
3.815 + 1.755 D2.L+ 1.498·D9.L 

+ 0.016 H90.F  
 0.70 98.8  149.18 32.3 2.40 0.5 

B ln AGB 3.984 + 3.222 MN.3  0.52 160.6  173.84 37.6 8.57 1.9 

C ln AGB 
3.665 + 1.530 D2.L + 1.231·D9.L 

+ 0.013 H90.F+ 0.737 MN.15 
 0.71 98.7  158.02 34.4 2.85 0.6 

D sqrt(AGB) 
3.796 + 11.294 D2.L + 

13.321·D9.L+ 0.249 Hmean.L 
 0.62 814.4  154.44 33.4 6.12 1.3 
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Table 4. Cont. 

Model 
Response 
Variable 

Predictive Model a 
 Model Fit  10-Fold Cross-Validation b 

 R2 BIC  RMSE RMSE%  % 

E sqrt(AGB) 
7.563 + 0.054 MN.3  

 0.072·CONT.3  
 0.48 857.0  169.77 36.8 8.17 1.8 

F sqrt(AGB) 
3.796 + 11.294 D2.L + 

13.321·D9.L + 0.249 Hmean.L 
 0.62 814.4  156.59 33.9 5.57 1.2 

Notes: a Variables explained in Section 2.3.; b Values after back transformation to arithmetic scale. 

 

Figure 2. Scatter plots of observed versus predicted aboveground biomass (AGB) using 
logarithmic (A–C) or square root transformations of the response (D–F) in combination 
with vertical variables (A, D), texture variables (B, E) and both vertical and texture 
variables (C, F). 

The analysis of the relative importance (Section 2.5) of the variables used to estimate AGB 
generally showed that density variables from the lower parts of the forest canopy and from the last 
echo category were frequently selected. For logarithmic transformation with both vertical and texture 
variables, D1.L, D2.L and D3.L were the most frequently selected variables and they were selected in 
52% of the models. D1.F, D2.F and D3.F were selected in 22% of the models. Canopy height variables 
are less frequently selected and only Hmean.L and H30.L feature among the 10 most selected variables 
with a frequency of 9% and 4%, respectively. The most frequently selected texture variable was MN.3, 
which also is an expression of the mean canopy height and was selected in 2% of the models. The nine 
most frequently selected variables for each model strategy are presented in Figure 3. 
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Figure 3. Dotchart of the relative frequency of the nine most frequently selected predictor 
variables in a simple linear model fitting procedure with logarithmic (A–C) and square root 
transformation of the response (D–F) in combination with vertical variables (A, D), texture 
variables (B, E) and both vertical and texture variables (C, F). Variables are explained in 
Section 2.3. 

4. Discussion  

From a REDD+ perspective, it is important to establish a robust and transparent system for 
estimating carbon stocks in all types of forest. The dataset used in this study is from a unique 
submontane tropical rainforest with a wide range in biomass densities and very high maximum levels 
of biomass. Regression models for AGB were developed with ALS-derived variables as predictors. 
The size of each plot (0.0639–0.1239 ha, Table 1) corresponds well with sizes that have been used 
frequently in forest sample surveys in tropical countries [68,69]. The plot size is smaller than what has 
been common practice in more ecologically oriented studies [70], and the wide range in AGB is a 
direct consequence of the limited plot size. Marshall et al. [48] reported a maximum AGB of about  
600 Mg·ha 1 on 1-ha plots from the same forest area in Tanzania as in our study. In temperate areas the 
use of LiDAR has been shown to aid successful estimation of biomass up to 1200 Mg·ha 1 [29,71], 
and even though the mentioned studies applied large footprint full waveform LiDAR systems and the 
forest structure was very different (coniferous forest dominated by Douglas fir (Pseudotsuga 
menziesii)), this has set a standard for what could be achieved with the technology. In comparison to 
other studies, our results in terms of RMSE for estimated AGB are within in the ranges of what has 
been found in tropical forest areas. Clark et al. [19] reported an RMSE of 33% using small-footprint 
ALS and a field plot size of 0.09 ha in old-growth and managed tropical forest in Costa Rica. In the 
study by Asner et al. [30] findings in terms of RMSE% from Hawaii, Peru, Panama and Madagascar 
were 32%, 24%, 18% and 35%, respectively. Some caution should be exercised though, when 
comparing with other studies, especially with the one reported by Asner et al. [30], because the latter 
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study covered a smaller AGB range than our data and the reference plot size was larger, ranging from 
0.1–0.36 ha. Studies based on large field plots will report lower RMSE due to spatial averaging as 
larger field plot sizes will decrease between-plot variance (cf. [72,73]). That means that all field 
observations will be more similar, covering a smaller range, and closer to the average value.  
In addition, larger plots have smaller ratios of the border zone to total plot area than smaller plots—a 
zone which is subject to edge effects [73,74]. This implies that the relative influences of edge effects 
are smaller for larger plots, regardless of plot shape. Negative consequences of GPS positioning errors 
are also smaller for large plots [72]. Likewise, edge effects will be more pronounced in forests with 
large tree crowns and for rectangular or quadratic plots than circular plots with a smallest possible 
circumference-to-area ratio.  

Even though larger field plots result in models with better performance [16,73], the practical 
application is limited due to the difficulty of establishing larger field plots, i.e., plots larger than, say, 
0.25 ha. This is especially challenging in rugged and steep terrain, and in areas with very dense 
vegetation. Reducing the field plot size to a more practical and manageable size like in our case will 
however introduce more edge effects and reduced accuracy of model predictions, as indicated above. 
Circular plots—as opposed to rectangular plots that were used in this study—will have a smaller 
circumference-to-area ratio and thus reduce the edge effects and improve the results. It is clear though, 
that inventory applications, assuming support of ALS data in the estimation, will profit from larger 
plots than what traditionally have been used in pure field-based sample surveys in the tropics.  

Measuring the height of trees is increasingly difficult as tree height increases because (1) an offset 
in the registered angle results in larger errors in absolute values and (2) the domed shapes and wide 
tree crowns, common for large and emergent trees, also increase the difficulty of determining the true 
top of the tree. Because of the dense vegetation in many tropical forests one is forced to stand 
relatively close to the tree when measuring the tree height. This increases the effect of both (1) and (2). 
Our H-D model accuracy is in line with the results reported by others, both in Tanzania [75] and other 
tropical areas [39]. However, the error in the H-D model will propagate and introduce errors in the 
field estimated AGB, reducing the fit of the AGB models.  

Co-registration errors, i.e., the mismatch between the positioning of the field plots and the ALS 
data, will also add to the total error of the AGB LiDAR models. Although the reported precision of the 
plot corner coordinates was 57 cm, the true accuracy is unknown, but probably lower (cf. [76]). 

The time lag between the field inventory and the ALS survey will also introduce errors in the 
models. Most of the trees will increase in AGB, and some might die. We tried to correct for some of 
the most extreme changes (like tree mortality) during the field inventory. There are however most 
likely still errors in the data caused by the time lag that were not accounted for. 

Forest canopy height and density are correlated with AGB, and ALS-derived variables describing 
the canopy height and density are useful for modeling forest AGB. In addition, forest structural 
diversity is positively correlated with AGB [31], and use of ALS-derived horizontal information has 
been explored for estimation of forest variables [34,77] and silvicultural treatment needs [78].  
Bohlin et al. [34] found a small but significant improvement with inclusion of textural information in 
modeling forest volume and basal area in a coniferous forest in Sweden. Li et al. [77] tested a new 
ALS-derived horizontal variable in a Chinese spruce forest for biomass estimation and found it to 
improve the models at tree level. However, area-based estimates did not improve. It should be noted 
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that the previous studies were conducted in coniferous forests with relatively low structural diversity. 
We proposed that by adding textural variables, describing horizontal distribution of forest canopy,  
we would capture information about the spatial distribution of trees and of the forest structure which 
could improve the model performance. The result of including textural variables derived from an ALS 
surface model was; however, negative. None of the textural variables were selected in the multiple 
regression variable selection routine.  

In a natural forest that has reached a climax state and in which some of the largest trees have 
reached their maximum height, the canopy height information from the ALS echoes will provide less 
information about the AGB. Because of the asymptotic relationship between height and diameter, 
canopy height variables are less suitable to discriminate between tall trees with various diameters. It is 
generally the large trees in a tropical forest that show this asymptotic H-D development [79,80] and 
since these trees have great influence on the AGB in our field plots, this effect could also explain the 
underestimation for the plots with the higher AGB values. Similar observations were made by 
Skowronski et al. [81] in a temperate forest with asymptotic relationship between height and diameter. 
Our analysis of the relative importance of the ALS variables showed that most of the information for 
explaining AGB is found in the variables describing the vertical density of the full vegetation layer, 
and in variables from the last return echoes. The height of the trees and the density of the vegetation in 
higher levels of the vegetation provide less explanatory power supporting the notion that the height 
information is less informative than the density of the forest in a high-biomass tropical forest in which 
the largest trees have reached their maximum height.  

5. Conclusions  

In this study, we modeled AGB in a dense tropical rainforests using ground observations from  
153 relatively small field plots of 0.0639–0.1239 ha, and ALS-derived variables. The RMSE of the 
models was approximately 33% of the mean value of 462 Mg·ha 1. This result is similar to earlier 
studies in tropical rainforest areas. The AGB range however is larger than reported in previous studies. 
We explored the use of texture information derived from a canopy surface model and anticipated that 
these variables would capture information about the forest structure useful for modeling forest AGB. 
However, none of the texture variables were selected in models in which all predictor variables were 
available. The single most important variable available among the texture variables was MN.3, 
describing the mean canopy height on a 3 m spatial scale, which expresses much the same information 
as a mean canopy profile height. Nevertheless, this variable did not add new information to the models. 
Furthermore, analyses of the ALS variables showed that the most important variables were derived 
from the last echo category, from the lower parts of the canopy, and that they were variables describing 
the density of the forest canopy. This finding indicates that ALS-derived variables are less able to pick 
up on information about AGB in a natural forest in which a proportion of the trees has a reduced or 
even negative height and crown development.  

The findings in the present study demonstrate the power of utilizing ALS data even in extreme 
conditions in dense tropical forests. However, the results also identified some challenges related to 
field plot size, plot edge effects and tree height–biomass relationship that warrant further research in 
this valuable biome. 
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Abstract: Airborne laser scanning (ALS) is increasingly being used to enhance the 
accuracy of biomass estimates in tropical forests. Although the technological development 
of ALS instruments has resulted in ever higher pulse densities, studies in boreal and sub-
boreal forests have shown consistent results even at relatively low pulse densities. The 
objective of the present study was to assess the effects of reduced pulse density on (1) the 
digital terrain model (DTM), and (2) canopy metrics derived from ALS data collected in a 
tropical rainforest in Tanzania. We utilized a total of 612 points measured with a 
differential dual frequency Global Navigation Satellite System receiver to analyse the 
effects on DTMs at pulse densities of 8, 4, 2, 1, 0.5, and 0.025 pulses·m-2. Furthermore, 
canopy metrics derived for each pulse density and from four different field plot sizes (0.07, 
0.14, 0.21, and 0.28 ha) were analysed. Random variation in DTMs and canopy metrics 
increased with reduced pulse density. Increased plot size similarly reduced variation in 
canopy metrics. A reliability ratio, quantifying replication effects in the canopy metrics, 
indicated that most of the common metrics assessed were reliable at pulse densities >0.5 
pulses·m-2 at a plot size of 0.07 ha.  

Keywords: ALS; airborne laser scanning; digital terrain model; DTM; LiDAR; reliability 
ratio; tropical rainforest 
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1. Introduction 

Tropical forests store large amounts of carbon as biomass and regrowth of tropical forests sequester 
1.85 ± 0.09 Pg of carbon annually [1]. However, the annual loss of forest carbon due to deforestation 
and forest degradation in tropical areas is estimated to 2.01 ± 1.1 Pg [1]. In response to the important 
role of forests both as a source of carbon emissions and as a potential sink source, the UNFCCC 
negotiations has resulted in a policy and economic incentive mechanism for creating economic 
incentives for reducing loss of forest biomass and increasing the net sink of carbon in forests [2]. A 
key component in the proposed mechanism is monitoring that ensures reliable measurement, reporting, 
and verification of the reduced loss, or net increase of forest biomass. In order to provide precise 
estimates of forest biomass the use of airborne laser scanning (ALS) has become increasingly popular 
as several studies have demonstrated its good performance in tropical areas [3-10].  

Modern ALS instruments are able to emit pulses at a rate of up to around 800 kHz and are usually 
flown over the area of interest mounted on a small airplane. From each pulse the instrument is 
normally set to record up to 5–9 echoes from each pulse, herein referred to as points. Acquisition of 
ALS data is costly compared to for instance optical satellite images or radar data. This cost is largely 
governed by the flight time which can be reduced by flying higher and/or faster resulting in cheaper, 
but lower pulse density data. To study how lower pulse densities affect the quality of the biomass 
estimates, reduction of ALS density by controlled thinning of the data has been used to assess the 
effect on model prediction accuracy [11-22]. Findings from such controlled experiments have resulted 
in reduced pulse density and lowered cost for ALS acquisitions for operational forest inventory 
purposes, making the technology more widely applied while providing biomass estimates at acceptable 
precision levels. Lowered costs and well documented precision levels have resulted in low density 
ALS missions covering large areas and even entire countries [23], providing valuable data for decision 
making in forestry. Most studies of pulse density have been conducted in boreal coniferous forests [11-
14, 16-17] with examples also from temperate mixed-conifer forest [18, 20] and subtropical pine 
plantation [15]. The main conclusions from the studies in coniferous forests have been that reducing 
pulse density down to, say, 0.1 pulses·m-2 has hardly any effect on the accuracy of timber  
volume prediction.  

To our knowledge, the recent study by Leitold et al. [21], is the only study assessing effects of pulse 
density in tropical broadleaved forests. The study, conducted in the Brazilian Atlantic forest, reported a 
systematic effect of pulse density in the construction of the digital terrain model (DTM). Leitold et al. 
[21] concluded that this systematic error in the DTM was propagated to the canopy metrics, resulting 
in underestimation of forest biomass with reduced pulse density.  

A prerequisite for successful application of ALS data for biomass modelling is a good quality 
terrain model, as information about vegetation height is derived relative to the modelled terrain 
surface. The quality of the terrain model is determined by the number of pulses that successfully reach 
the ground and is naturally affected by the density of the vegetation [e.g. 24, 25]. In a recent study by 
the Norwegian Mapping Authority the percentage of ground points in dense spruce forest was in the 
range of 4–14% and for dense broadleaved forest in leaf-on conditions 3–9% [26]. In addition to the 
number of pulses that reach the ground, the quality of the terrain model is dependent on a correct 
classification of these points as ground. There are several algorithms for classifying individual points 
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as ground and they differ in performance under different terrain and vegetation conditions [27-28]. 
Algorithm parameter settings also affect the proportion of points classified as ground. Comparison of 
five vendors applying the same classification software on the same ALS data showed a difference in 
the proportion of ground points of 17 percentage points [29]. This difference is most likely due to the 
parameter settings in the applied algorithm. Part of the result, however, may also be attributed to 
differences in data analysis routines not documented in the ALS data processing reports [29]. With 
high biomass and dense broadleaved canopies, the proportion of points classified as ground is expected 
to be small in tropical rainforests. Furthermore, a low ground point density, due to dense canopy, has 
been shown to result in increased error in the constructed DTM [25, 30]. 

When applying ALS data for biomass estimation following the commonly used area-based 
approach [31], a relationship between biomass measured on field plots on the ground and canopy 
metrics derived from ALS data from the corresponding area is modelled using statistical methods such 
as regression analysis, nearest neighbour classification, neural networks or ensemble learning [32-34]. 
It is possible to derive a large number of canopy metrics from the ALS data to be used in the 
modelling. However, since these metrics are highly correlated, only a few are usually selected in the 
final models. Common metrics for biomass estimation in tropical forests have been found to be 
different expressions of the canopy mean elevation above ground [35-37] and canopy maximum 
elevation above ground [3, 38]. Other metrics used include percentiles and variance of the canopy 
elevation above ground [7, 35]. In the present study, we therefore chose to assess canopy metrics 
similar to those used in the aforementioned studies. Because these metrics describe the vertical 
distribution of ALS points, they remain relatively unaffected by point density [39].  

In addition to pulse density, performance of ALS based biomass estimation is also affected by the 
field plot size [15, 40-41]. Combined effects of pulse density and plot size was assessed by Watt et al. 
[15] who concluded that reduced pulse density and plot size had little effect on model fit for pulse 
densities >0.1 pulses·m-2 and plot sizes of >0.03 ha. Gobakken and Næsset [11] documented that 
canopy metrics have lower variation on larger plots and that increasing plot size could compensate for 
low pulse density. The size of field plots applied in studies of biomass in tropical forests utilizing ALS 
data usually range between 0.1 and 1.0 ha [42]. To assess the effect of plot size on the mean values and 
variation of ALS-derived canopy metrics we computed and analysed metrics derived from plot sizes of 
0.07, 0.14, 0.21, and 0.28 ha. The smallest plot size of 0.07 ha was chosen because it corresponds to 
the plot size used in the Tanzanian national forest inventory [43].  

The objectives of the present study were to assess the effects of reduced ALS pulse densities on (1) 
the DTMs and (2) the canopy metrics derived from the ALS data used for biomass estimation in a 
dense tropical rainforest in East Africa. We reduced the pulse density from an initial density of about 
13 pulses·m-2, to 8, 4, 2, 1, 0.5, and 0.25 pulses·m-2. Following the pulse density reduction, we 
assessed the differences between the DTMs derived from ALS data and the elevation obtained from 
612 ground points measured using a survey-grade differential Global Navigation Satellite System 
(dGNSS) receiver. Furthermore, we produced standard canopy metrics commonly used for forest 
biomass modelling and compared the effect of reduced pulse densities on four different field plot sizes 
(0.07, 0.14, 0.21, and 0.28 ha).  
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2. Materials and Methods 

2.1. Study Area  

The study area is located in eastern Tanzania in the Amani Nature Reserve (S 5°08’, E 38°37’, 200–
1200 m above sea level) and covers around 8360 ha of tropical submontane rainforest. Most of the 
annual precipitation of around 2000 mm is received in two main rain seasons. Daily mean 
temperatures vary from about 16 to 25 °C. In an inventory carried out in 1986/87, about half of the 
nature reserve was classified as logged or covered with an non-indigenous tree species Maesopsis 
eminii as a result of logging [44]. The logging was stopped in the late 1980s and most of the nature 
reserve is now covered by closed forest.  

2.2. Field Data 

A total of 612 point measurements (x, y, and z positions) were collected in the corners of 153 
rectangular field plots positioned in the period August 2011–April 2012. On plot level, the distance 
between each point was approximately 20 m in the north-south direction and 50 m in the east-west 
direction. The distance between plots was approximately 900 m in the north-south direction 450 m in 
the east-west direction. The points were measured by means of dGNSS using two 40-channel survey-
grade receivers (Topcon Legacy-E+). One receiver was placed at each plot corner ( ) on a 2.9 m 
carbon rod for a minimum of 30 minutes, and a one second logging rate was used. A second receiver, 
acting as a base station, was placed on the roof of a house at the Amani Nature Reserve headquarters 
with a distance of <14 km from the plots. Prior to measuring the points, the position of the base station 
antenna was determined with Precise Point Positioning with Global Positioning System and Global 
Navigation Satellite System data collected continuously for 24 hours according to Kouba [45]. Due to 
the sloped terrain and dense biomass conditions the elevation measured at each point with the dGNSS 
( ) had a mean precision (standard deviation) of 0.39 m reported from the post-processing using 
Pinnacle software [46]. Further details about the field data can be found in  
Hansen et al. [47].  

2.3. ALS Data 

Complete coverage ALS data were collected in January and February 2012 using a Leica ALS70 
(Leica Geosystems AG, Switzerland) sensor mounted on a fixed wing aircraft. Average altitude and 
speed were 800 m above ground level and 70 m·s-1, respectively. The sensor was operated using a laser 
pulse repetition frequency of 339 kHz and up to five echoes were recorded for each emitted pulse. 
Planned pulse density at acquisition was set to 10 pulses·m-2, but due to overlap between adjacent 
strips the average pulse density in the area of the field plots was 13 pulses·m-2.  

2.4. Monte Carlo Simulation 

In order to study the effects of reduced pulse densities, a thinning procedure was employed by 
which individual pulses were randomly discarded (section 2.5). The random thinning procedure was 
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incorporated in a Monte Carlo simulation by which we repeated the thinning and the subsequent 
analysis on the thinned data 50 times to quantify the effects of the data reduction (sections 2.5–2.7).  

2.5. Reduction of Laser Pulse Density 

The thinning of ALS data was executed on pulse level using the “ThinData” program in the 
FUSION toolkit [48]. ALS data were thinned from an initial density of about 13 pulses·m-2 to pulse 
densities of 8, 4, 2, 1, 0.5, and 0.25 pulses·m-2. To mimic and maintain the fairly regular spatial 
distribution of ALS pulses inherent in the initial data, the thinning was performed on a grid size of 0.1, 
0.2, 0.5, 1, 2, 10, and 20 m, for pulse densities of 8, 4, 2, 1, 0.5, and 0.25·m-2, respectively. Following 
the thinning, a classification of ground points was conducted using the “GroundFilter” program in 
FUSION. The interpolating algorithm [49] implemented in “GroundFilter” initially makes an average 
surface based on all ALS points. Further, weights are given to all points based on their vertical distance 
to the initial surface. Low weight is given to points above the surface, and high weight to points below. 
The weights are then used in re-fitting the surface. Two parameters in the algorithm can be adjusted to 
determine which points are given weights. Points located below the surface with a distance larger than 
parameter g are assigned the maximum weight value of 1.0, while points located above the surface 
with a distance larger than the parameter w + the parameter g are assigned weights of 0.0 [48]. To 
adjust for the different pulse densities we controlled the two parameters while leaving the other 
parameters at the program default setting. The g and w parameter settings at different pulse densities 
are given in Table 1. Visual inspection of initial classifications of ground points showed large outliers 
and a smoothing filter of 3 m was applied to remove these outliers. From the points classified as 
ground, a 1 m gridded surface was created using the “TINSurfaceCreate” program in FUSION.  

2.6. Assessing Effects of Pulse Density on DTM Quality 

Reduction of the pulse density will affect the quality of the DTM since less ground points are 
available for constructing the DTM surface. To study the effects of reduced pulse densities on the 
DTMs we subtracted the elevation in the DTMs resulting from the reduced pulse densities ( ), 
from the elevation of each plot corner ( ) measured with dGNSS ( ) to get the difference for 
each point ( , Equation (1)):  

. (1)  

The mean difference ( ) and standard deviation ( ) of the differences ( ) were calculated. To 
compare the  at each pulse density level a t-test was performed using the Holm-Bonferroni procedure 
[50] for correction of p-values for multiple comparisons.  

The conventional measures of accuracy,  and , assumes no outliers and a normal distribution of 
errors. As pointed out by e.g. Zandbergen [51], errors in DTMs are often not normally distributed. We 
therefore checked for non-normality by inspecting a Q-Q plot and calculated robust accuracy measures 
suited for characterisation of non-normal distributions suggested by Höhle and Höhle [52]. The 50% 
sample quantile of the errors ( , i.e., the median value) is a robust estimator for a systematic shift 
of the DTM [52]. The 95% quantile of the absolute value of the errors ( ) and the normalized 
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median absolute deviation ( , Equation (2)), a robust estimator for , are estimators resilient to 
outliers [52].  

. (2)  

2.7. Assessing Effects of Pulse Density on Canopy Metrics 

After creating a gridded DTM, the elevation of the DTM was subtracted from the elevation for all 
ALS points resulting in an elevation above the ground for each individual point. Together these points 
form a “cloud” of points, referred to as the point cloud. At the centre of each of the 153 rectangular 
field plots we extracted the point clouds from four concentric circles of 0.07, 0.14, 0.21, and 0.28 ha. 
For each plot centre, and for each plot size, a set of canopy metrics was computed using the 
“CloudMetrics” program in FUSION. Frequently used canopy metrics for biomass estimation in 
tropical forests include mean elevation above ground (E.mean) and maximum elevation above ground 
(E.max). Other commonly used metrics also includes variance of the elevation above ground (E.var), 
percentiles of elevation and canopy density. The canopy density metrics are commonly derived by 
dividing the canopy into 10 vertical parts of equal height and calculating the proportion of points 
above each vertical part. We selected the 10th and 90th percentile of elevation (E.10, E.90), the 
proportion of points above the ground (D.0) and above the mean canopy height (D.5), along with 
E.mean, E.max, and E.var for analysis.  

From the simulations described in section 2.4, we calculated the mean ( ) and standard deviation of 
each canopy metric ( ) on plot level across the 50 Monte Carlo repetitions. Even though the canopy 
metrics are relatively unaffected by point density [39], reduced pulse density will increase . As 
explained by Magnussen et al. [19], random factors affecting the canopy metrics suggests that the 
metrics should be considered as random variables instead of fixed, as is commonly the case. These 
random factors can be referred to as replication effects. Replication effects will weaken the fit of the 
biomass models with a factor termed as the reliability ratio [53, p. 3]. By calculating the replication 
variance in the metrics, estimates of the reliability ratios for the metrics were calculated. The method 
was used by Magnussen et al. [19], in which the reliability ratio was calculated as the ratio of the 
variance of each metric among sample plots, to the total variance of the corresponding  
metric (Equation (3)): 

, (3)  

where  is the estimated among-plot variance of the metric and  is the estimated average within-
plot variance. High within-plot variance in a metric compared to the variance among plots for the same 
metric results in a low reliability ratio, indicating that the metric is less reliable as a predictor.  
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3. Results  

3.1. Effects of Pulse Density on DTM Quality 

Effects of reduced pulse density, assessed by Monte Carlo simulation, resulted in a  between the 
elevation of the 612 point measurements recorded by the dGNSS and the elevation of the same points 
in the ALS-derived DTM of 1.81 m for a pulse density of 8 pulses·m-2 (Table 1). Thus, the elevation 
recorded by the dGNSS was higher than the ALS-derived DTM. Reduction of pulse density from 8 to 
0.25 pulses·m-2 gave no significant effect on the .  

The Q-Q plot of the distribution of errors (Figure 1) showed non-normality and justified the 
presentation of robust measures of accuracy. We observed loss of precision when reducing the pulse 
density from 8 to 0.25 pulses·m-2, expressed by both the conventional measure of precision ( ) and 
the more robust measure  (Table 1).  

 

Figure 1. Normal Q-Q-plot for the distribution of the difference in elevation between the 
elevation recorded by the dGNSS and the elevation of the corresponding ALS-derived 
DTM at pulse densities of 0.25, 0.5, 1, 2, 4, and 8 pulses·m-2. 
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Table 1. Summary of the difference in elevation between the dGNSS measurements and the DTM 
elevation for different pulse densities. 

      Parameter settings1 
Pulses·m-2  (m)  (m)  (m)  (m)  (m) g (m) w (m) 
0.25 1.77 3.20 0.90 7.72 2.15 -1.0 1.5 
0.5 1.77 3.02 0.92 7.50 1.97 -1.5 2.0 
1 1.79 2.93 0.94 7.34 1.85 -2.0 2.5 
2 1.81 2.90 0.96 7.28 1.80 -2.5 3.0 
4 1.81 2.88 0.95 7.20 1.75 -3.0 3.5 
8 1.81 2.89 0.95 7.35 1.81 -3.5 4.0 

Mean difference ( ), standard deviation ( ), 50% quantile of the difference ( ), 95% quantile of 
the absolute value of the difference ( ) and the normalized median absolute deviation ( ).  

1 Settings of the g and w parameters in the applied ground classification algorithm.  

3.2. Effects of Pulse Density on Canopy Metrics 

Canopy metrics were derived from the ALS data from field plot sizes of 0.07, 0.14, 0.21, and 0.28 
ha. Mean values from the repeated simulations showed that most of the assessed metrics were 
unaffected by the reduced pulse density (Table 2). E.max, however, decreased with reduced pulse 
density, and showed a significant difference (p = 0.00072) of 0.58 m at 1 pulse·m-2 compared to the 
value at 8 pulses·m-2, at a plot size of 0.07 ha. This effect was reduced with increased plot size, but 
was still significant (p = 0.00298) for 1 pulse·m-2 at the plot size of 0.28 ha.  

Reduced pulse density resulted in an increased variation in the canopy metrics on plot level (Figure 
2). The standard deviation for the canopy metrics ( ) showed that the metric describing the canopy 
elevation in the middle of the canopy (E.mean) was more stable than the elevation of the top and 
bottom of the canopy (E.max, E.10, E.90). Reduction of the pulse density from 8 to 0.25 pulses·m-2 
increased the  for E.mean from 0.09 to 0.90 m on a 0.07 ha plot size. The effect for E.max, on the 
0.07 ha plot size, was an increase of  from 0.16 to 1.03 m (Figure 2).  

Further, reduced pulse density resulted in decreased reliability ratio, the ratio of the estimated 
among-plot variance to the estimated total variance (Figure 3). At pulse densities 2 pulses·m-2 and a 
plot size of 0.07 ha, the reliability ratio was >0.95 for all canopy metrics. At a pulse density of 0.5 
pulses·m-2 and a plot size of 0.07 ha, the reliability ratios of E.var and D.0 were reduced down to 0.60 
and 0.90, respectively. At a pulse density of 0.25 pulses·m-2 and a plot size of 0.07 ha, E.var, E.10, and 
D.0 had an estimated reliability ratio of <0.9, while the rest of the metrics had a reliability ratio  
of >0.9.  

  



Remote Sens. 2015, 7  
 

 

Table 2. Mean values ( ) of canopy metrics for plot sizes of 0.07, 0.14, 0.21, and 0.28 ha and pulse 
densities of 0.25, 0.5, 1, 2, 4, and 8 pulses·m-2. 

  
Plot size (ha) Pulse density E.mean E.max E.var E.10 E.90 D.0 D.5 
0.07 0.25 24.59 41.42 107.59 10.06 36.15 89.99 55.18
0.07 0.5 24.49 41.75 108.79 9.79 36.18 90.01 55.25
0.07 1 24.47 41.98 108.93 9.72 36.16 90.09 55.39
0.07 2 24.49 42.22 109.17 9.70 36.19 90.17 55.47
0.07 4 24.59 42.36 108.72 9.82 36.21 90.29 55.68
0.07 8 24.69 42.56 108.17 9.93 36.26 90.33 55.73
         

0.14  0.25 24.59 43.44 112.27 9.48 36.64 90.07 54.67
0.14 0.5 24.47 43.70 113.24 9.28 36.60 90.07 54.74
0.14 1 24.45 43.92 113.60 9.21 36.60 90.15 54.80
0.14 2 24.49 44.11 113.67 9.24 36.63 90.23 54.89
0.14 4 24.60 44.23 113.15 9.40 36.68 90.38 55.05
0.14 8 24.70 44.39 112.60 9.52 36.74 90.44 55.14
         

0.21  0.25 24.60 44.38 114.04 9.33 36.93 90.16 54.35
0.21 0.5 24.47 44.61 114.91 9.12 36.86 90.14 54.42
0.21 1 24.43 44.81 115.22 9.04 36.84 90.18 54.50
0.21 2 24.49 45.03 115.35 9.07 36.88 90.28 54.59
0.21 4 24.59 45.17 114.83 9.22 36.93 90.40 54.72
0.21 8 24.70 45.33 114.22 9.35 37.00 90.48 54.82
         

0.28  0.25 24.59 45.01 115.87 9.13 37.05 90.01 54.31
0.28 0.5 24.45 45.23 116.54 8.93 36.97 89.97 54.36
0.28 1 24.44 45.47 116.95 8.87 36.98 90.04 54.45
0.28 2 24.48 45.68 116.93 8.91 37.00 90.12 54.52
0.28 4 24.59 45.85 116.40 9.05 37.05 90.24 54.66
0.28 8 24.69 45.98 115.84 9.18 37.12 90.33 54.75

Mean elevation above ground (E.mean), maximum elevation above ground (E.max), variance of the 
elevation above ground (E.var), 10th and 90th percentile of elevation (E.10 and E.90), and the 

proportion of points above the ground (D.0) and above the mean canopy height (D.5). 
  



Remote Sens. 2015, 7  
 

 

 
Figure 2. Box and whisker plots of standard deviations ( ) (whiskers at 5th and 95th percentile) of 
canopy metrics for plot sizes of 0.07, 0.14, 0.21, and 0.28 ha and pulse densities of 0.25, 0.5, 1, 2, 4, 
and 8 pulses·m-2. E.mean (mean elevation above ground), E.max (maximum elevation above ground), 
E.var (variance of the elevation above ground), E.10 and E.90 (10th and 90th height percentile of 
canopy points), D.0 and D.5 (the proportion of points above the ground and above the mean canopy 
height).   
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Figure 3. Plots of reliability ratios for canopy metrics at a plot size of 0.07, 0.14, 0.21, and 0.28 ha and 
pulse densities of 0.25, 0.5, 1, 2, 4, and 8 pulses·m-2. E.mean (mean elevation above ground), E.max 
(maximum elevation above ground), E.var (variance of the elevation above ground), E.10 and E.90 
(10th and 90th height percentile of canopy points), D.0 and D.5 (the proportion of points above the 
ground and above the mean canopy height). 
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3.3. Effects of Plot Size on Canopy Metrics 

The statistics for the canopy metrics resulting from the Monte Carlo simulations showed that the 
variation in the metrics was reduced with plot size for all metrics and at all pulse densities (Figure 2). 
Increasing the plot size means that the probability of including larger trees increase. As a result, we 
found that the maximum elevation (E.max) and the elevation of the top of the canopy (E.90) increased 
in value with increased plot size (Table 2). Increasing the plot size also means that the more of the 
variability in elevation is captured by the plot and that this will result in an increased E.var. Metrics 
describing the elevation of the lowest part of the canopy (E.10) and the proportion of points above the 
mean canopy height (D.5), however, decreased in value with increasing plot size. E.mean and D.0 did 
not show any trend with increased plot size. The reliability ratio increased for all metrics with 
increasing plot size (Figure 3).  

4. Discussion  

The present study examined the effects of reduced ALS pulse density on the quality of the derived 
DTM and selected canopy metrics through Monte Carlo simulation. Pulse density was reduced from 13 
pulses·m-2 to densities of 8, 4, 2, 1, 0.5, and 0.25 pulses·m-2. Because the accuracy of the dGNSS 
measurements is unknown (see discussion below), we compared the relative change in elevation of the 
dGNSS points between pulse densities.  

Dense vegetation obstructs the ALS pulses and results in fewer pulses reaching the ground and 
being available for DTM construction. The effect of vegetation on ALS-derived DTMs has been 
studied in different conditions and has resulted in both an over-prediction of terrain elevation [54-56] 
and under-prediction of terrain elevation [24, 28]. Hodgson et al. [24] found that ALS-derived 
elevation was significantly under-predicted in all studied land cover classes. The under-prediction was 
largest in pine forest areas, by up to 0.24 m. Tinkham et al. [28] also found an under-prediction of 0.9–
0.16 m in coniferous areas, when comparing two different ground classification algorithms. In their 
discussion of observed under-predicted terrain elevation in heavily vegetated areas, Hodgson et al. [24] 
suggested that the error was a result of point density, and/or the accuracy of correct classification of 
points as ground.  

Our analysis showed that the mean DTM elevation was unaffected by the reduction in pulse density 
from 8 to 0.25 pulses·m-2. This was in contradiction with results from other studies on reducing ALS 
data density [21, 57-58]. In a tropical forest with similar conditions as in the present study, Leitold et 
al. [21] found an increased DTM elevation of 3.02 m at 1 pulse·m-2, compared to a DTM from 20 
pulses·m-2. Leitold et al. [21] attributed the increased elevation to the morphological filter algorithm 
[59] used to classify ground points. Hyyppä et al. [58], who used data collected in three separate 
flights, attributed an increased DTM elevation to the beam size and sensitivity of the laser.  

Valbuena et al. [60] assessed the vertical accuracy of a dGNSS receiver (Topcon Hiperpro), similar 
to the receiver used in the present study, under pine canopies in Spain. By using true coordinates 
obtained in a total station traverse, they found the accuracy to be 1.18 m with a standard deviation of 
1.55 m. It is therefore expected that our recordings under dense rainforest canopies with the reception 
of fewer satellite signals and more problems with multipath signals, result in lower accuracy. Thus, the 
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 of 1.8 m in the present study can be explained by the fact that, although the vertical precision of the 
dGNSS positions was reported to be 0.39 m (section 2.2), the accuracy remains unknown [60]. 

Recent studies of biomass in tropical forests using ALS have been conducted using different pulse 
densities and plot sizes. Pulse densities from 25 pulses·m-2 [35] down to about 1.5 pulses·m-2 [3] have 
been used. The results from these studies are similar in terms of biomass prediction performance and 
show that high pulse density is not a requisite for estimation of forest biomass. In biomass studies 
where the key information is the vegetation height relative to the terrain elevation derived from the 
same ALS data, a systematic shift in the modelled surface is not a problem in itself. Of greater concern 
is the random error of the modelled terrain elevation. As expected, the standard deviation of  ( ) 
increased with reduced pulse density.  increased from 2.9 m to 3.2 m when pulse density was 
reduced from 8 and 0.25 pulses·m-2, respectively. This variation will directly translate into variation in 
the ALS-derived canopy metrics.  

Analysis of commonly applied canopy metrics showed that the metrics were affected differently by 
pulse density. As previously documented by Gobakken and Næsset [11], E.max, which characterizes 
the maximum elevation of the canopy, decreases with decreasing pulse density. Mean values of the 
other metrics assessed in the present study were found to be stable. Reduced pulse density increased 
the variation in canopy metrics and will result in models with increased residual variance. The 
estimated reliability of the metrics as predictors, expressed by the reliability ratio, showed that all 
metrics were reliable (reliability ratio >0.9) at pulse densities of down to 2 pulses·m-2. Further 
reduction of pulse density resulted in some canopy metrics becoming less reliable although most 
metrics retain a reliability ratio of >0.9 at 0.5 pulses·m-2. In low pulse density conditions (<1·m-2), and 
with use of predictors with a reliability ratio <0.9 Magnussen et al. [19] proposed the use of a model 
calibration procedure.  

Prediction of forest biomass over large areas using ALS often relies on data collected using 
different sensors and flying altitudes. Thus, different areas will consequently differ in pulse density. 
Varying pulse densities within a single ALS mission will also be inevitable as a result of flight line 
overlap, where the pulse density will be roughly double the density in the rest of the area. In addition, 
flights covering rugged terrain and steep slopes will result in varying pulse densities depending on the 
scan angle and distance to the ground. Estimates for parts of the forest area could therefore be over or 
under-predicted, due to different pulse densities than those in areas used for model development. To 
prevent such effects, suitable strategies could be to reduce the pulse density down to the smallest 
density in the project area, to remove points from overlapping flight lines, to weight ALS points by the 
surrounding number of points [61] or to include pulse density as a predictor in the model [4]. Another 
strategy could be to let pulse densities be reflected in the sampling design of the field survey, for 
example by using stratified sampling. That would require access to the ALS data in the design phase of 
the field survey.  

Increasing the field plot size reduces the variation in ALS-derived metrics and could counter the 
effects in low pulse density missions, concurring with the results of Gobakken and Næsset [11]. 
However, larger field plots are costly and finding the optimal balance between costs and desired 
accuracy has for decades been an issue of interest in designing forest inventories. Zeide [62] presented 
how to optimize the plot size for systematic sampling. The optimal plot size is a function of the 
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coefficient of variation between plots, plot measurement time, and travelling time between plots, under 
budgetary restraints or for a desired accuracy.  

The present study aimed to simulate the effects caused by various flight elevations and speeds on 
the DTM and canopy metrics derived from ALS data. Some effects, however, were not simulated and 
studied. Increased flight elevation will result in increased footprint size. Studies of the effects of 
footprint size on derived tree heights have shown that increased footprint size reduces the derived tree 
height estimates [63]. This effect was stronger for trees with a narrow crown and in a tropical forest the 
effect is likely to be small for the derived canopy metrics. Larger footprint sizes will however also 
have less energy per area unit and be less able to penetrate through the canopy [58, 64], resulting in a 
lower proportion of ground points. The influence of footprint size and pulse energy is likely to be of 
importance and should be investigated in future studies.  

4. Conclusions  

The present study showed that canopy metrics derived from low pulse density ALS data can be used 
for biomass estimation in a tropical rainforest. Reducing the pulse density from eight to 0.25  
pulses·m-2 increased the variation in the DTMs and canopy metrics. However, the replication effects, 
expressed by the reliability ratio, were not important (reliability ratio >0.9) at pulse densities of >0.5 
pulses·m-2. Increased plot size increased the reliability ratio of canopy metrics, and could be used to 
counter effects of variation in canopy metrics obtained for low pulse densities.  
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Abstract: Forest inventories based on field sample surveys, supported by auxiliary 
remotely sensed data, have the potential to provide transparent and confident estimates of 
forest carbon stocks required in climate change mitigation schemes such as the REDD+ 
mechanism. The field plot size is of importance for the precision of carbon stock estimates, 
and better information of the relationship between plot size and precision can be useful in 
designing future inventories. Precision estimates of forest biomass estimates developed 
from 30 concentric field plots with sizes of 700, 900,…, 1900 m2, sampled in a Tanzanian 
rainforest, were assessed in a model-based inference framework. Remotely sensed data 
from airborne laser scanning (ALS) and interferometric synthetic aperture radio detection 
and ranging (InSAR) were used as auxiliary information. The findings indicate that larger 
field plots are relatively more efficient for inventories supported by remotely sensed ALS 
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and InSAR data. A simulation showed that a pure field-based inventory would have to 
comprise 3.5–6.0 times as many observations for plot sizes of 700–1900 m2 to achieve the 
same precision as an inventory supported by ALS data.  

Keywords: ALS; airborne laser scanning; LiDAR; relative efficiency; tropical rainforest 
 

1. Introduction 

Forest inventories provide information for management of forest resources on national, district, and 
local levels. Precise information about the quantity and quality of forest resources provides a solid 
basis for forest planning, management, and policies. Over the past decade the role of forests has shifted 
from a source of timber and non-timber products, to a source of a wide array of ecosystem services. 
One such service is the forests’ role in global climate change mitigation, and the development of a 
marked-based mechanism to value this service has resulted in what is known as the REDD+ 
mechanism. REDD+ (reducing emissions from deforestation and forest degradation, conservation and 
enhancement of forest carbon stocks, and sustainable management of forests in developing countries), 
described in the 16th session of the Conference of Parties to the United Nations Framework 
Convention on Climate Change [1], gives developing countries the opportunity to monetize the service 
of sequestering carbon provided to the global climate. Future payments for performance-based 
benefits, such as enhanced forest carbon stocks, will require trustworthy systems for measuring, 
reporting, and verifying (MRV) the carbon stock changes in forests [2]. Forest inventories have the 
potential to provide transparent and confident estimates of forest carbon stocks needed in such 
systems.  

Forest inventories are usually based on a field sample survey supported by one or several types of 
remotely sensed data. Information derived from remotely sensed data, in the form of aerial images, has 
been an important tool in forest inventory since the 1940s [3], and the availability of optical satellite 
images since the 1970s has resulted in global forest cover statistics [4]. While high costs have 
prevented the use of aerial images, the use of low-cost optical satellite images have been hampered by 
low spatial resolution and persistent cloud cover in tropical areas. Furthermore, both technologies have 
traditionally only provided two-dimensional information, although recent developments have resulted 
in three-dimensional data from aerial and satellite images with the use of digital photogrammetry and 
image matching [e.g. 5, 6-8]. Modelling of biomass using image matching requires a high quality 
digital terrain model (DTM) as reference surface, usually derived from airborne laser scanning (ALS). 
ALS is itself a remote sensing technology that provides three-dimensional data of the forest vegetation 
and has been used successfully for biomass estimation, even in tropical areas [9-10]. Another 
technology that provides three-dimensional data is synthetic aperture radio detection and ranging 
(SAR). Using a kind of stereo imaging known as interferometry, three-dimensional surface 
information about the vegetation can be produced from SAR image pairs. Both ALS and SAR sensors 
are active sensors, emitting pulses of electromagnetic radiation. Being airborne, ALS has the 
advantage of providing high resolution data and heights of both the terrain and the canopy surface. 
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Satellite-based SAR has, in comparison, lower spatial resolution, and it can only provide heights of the 
canopy surface. It has, however, a higher areal capacity and lower costs.  

With the ability of providing vegetation height information, data from ALS and SAR sensors have 
been used as auxiliary information for biomass estimation in all major forest ecosystems [11]. 
Literature reviews have attempted to assess the impact of different sensors, statistical modelling 
methods, inventory sample sizes, and inventory plot sizes in different forest types [9, 11]. Results from 
these studies seem to be conclusive on two issues: 1) Use of ALS-sensors gives the best results 
compared to all other sensors for modelling biomass in terms of root mean square error (RMSE), and 
2) that RMSE, as an expression of model precision, varies with forest type. A discussion on the impact 
of the size of inventory plots is included in both aforementioned studies but does not draw conclusions 
on the impact of plot size on model precision, or give practical advice on plot size. Larger plots will 
inevitably increase the estimated precision of biomass models in sample surveys due to the fact that 
variance between plots is reduced for larger plot sizes since more of the total variance is captured by 
the plots, an effect referred to as spatial averaging [9]. In sample surveys, supported by remotely 
sensed information, additional sources of error have been investigated. Firstly, a mismatch between the 
remotely sensed data and the field measurements introduce noise into the models [12]. This effect, 
often referred to as co-registration error, is reduced with increased plot size. Secondly, a discrepancy 
of measuring trees based on the location of the stem, and the remotely sensed data which are confined 
by the vertical extent of the field plot boundaries, is a source of model noise [13-14]. This latter source 
of errors is referred to as boundary effects. Both co-registration errors and boundary effects are 
reduced with reducing the ratio of field plot periphery to plot area. Accordingly, several studies on 
modelling of forest biomass using remotely sensed data have documented that increased plot size 
increased the model precision [13-16].  

A common approach to estimation of forest parameters using ALS is known as the area-based 
approach and was first outlined in Næsset (1997a, 1997b). Following this approach, a relationship 
between biomass calculated from field measurements on inventory plots and remotely sensed data is 
modelled using statistical methods such as regression analysis, nearest neighbours, neural-networks or 
ensemble learning [e.g. 11, 19-20]. The models are subsequently used to predict biomass for 
population elements of the same size as the inventory plots. Biomass predictions are performed for all 
population elements covering the study area, given that remotely sensed data are available. The 
biomass predictions for the population elements are subsequently used to derive an estimate for the 
population, either as a mean or total biomass estimate. Accompanying the estimate, a variance estimate 
is calculated to state the precision of the estimate. Two main approaches to variance estimation have 
been used in forest inventories: design-based and model-based variance estimation. In the design-based 
approach the population, from which samples are taken, is regarded as fixed. The only source of 
sampling error is the random selection of elements included in the sample. Thus, the estimated sample 
error is derived from the inventory sample and the probability of each population element to be 
included in the sample, referred to as the inclusion probability. This inclusion probability is assumed to 
be positive and known for all population elements. Such samples are often referred to as probability 
samples.  

It is often the case, however, that the sample has been acquired in a non-probabilistic manner [21], 
resulting in zero- or unknown inclusion probabilities. The zero- or unknown inclusion probability can 
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be the result of opportunistic sampling, i.e. sampling close to roads for economic and/or practical 
reasons. Similarly, purposive sampling, established to investigate a specific subject, often result in 
samples acquired in a non-probabilistic manner. Furthermore, the inclusion probability can be affected 
by the accessibility of the area [22, p. 76]. In the case where the sample data does not meet the 
requirements for a design-based approach to variance estimation, a model-based approach may be a 
viable alternative. Model-based inference does not, as opposed to design-based inference, rely on a 
probabilistic sample that represents the population. Instead the statistical inference relies on the model 
itself as a valid model of the distribution of possible observations for each population element. The 
population is not viewed as fixed, but rather as a result of a random process, referred to as a 
“superpopulation” model. This superpopulation model cannot be observed, but the parameters of the 
model can be estimated from the inventory sample. The inventoried population is viewed as only one 
random realisation of this superpopulation. An extensive review of design-based and model-based 
inference for forest survey is given by Gregoire [23].  

To examine the effects of co-registration- and boundary-effects on the precision of ALS-supported 
biomass estimates, Mauya et al. [16] compared the variance of field-based biomass estimates to the 
corresponding variance of the biomass estimates supported by ALS at different plot sizes. This ratio of 
variance estimates is referred to as relative efficiency, and has been used to compare different sample 
designs, estimators, and inferential frameworks, e.g. Payandeh [24], Ene et al. [25]. The objective of 
calculating the relative efficiencies in Mauya et al. [16] was to assess the effect of plot size on the 
precision of ALS-derived biomass models. For this purpose the variance was estimated in a design-
based framework. Mauya et al. [16] concluded that reduced model noise from co-registration errors 
and boundary effects meant that larger plot size was preferable for ALS-supported biomass estimates.  

In order to plan for cost-effective inventories of forest biomass using sample surveys supported by 
remotely sensed data, there is a need for better information on how the field plot size impacts the 
precision of the subsequent biomass estimates [26]. On this basis, the objectives of the present study 
were to (1) assess the impact of plot size on the relative efficiency of biomass estimation in a 
Tanzanian rainforest using two different sources of remotely sensed data, and (2) quantify the number 
of additional field plots needed to compensate, in terms of sampling error, for a lack of remotely 
sensed data. We made use of a field data set consisting of 30 concentric circular plots of 700 m2 up to 
1900 m2, and data from ALS and interferometric synthetic aperture radio detection and ranging 
(InSAR) sensors. Because the field inventory observations had unknown inclusion probabilities a 
model-based approach to estimation and inference was used.  

2. Materials and Methods 

2.1. Study Area 

The present study was conducted in the Amani Nature Reserve (ANR) (S 5°08’, E 38°37’, 200–
1200 m above sea level). The study area covers around 88 km2 of tropical submontane rainforest and 
is located in north-eastern Tanzania and is part of the East Usambara Mountains. The area receives 
around 2000 mm rainfall per year, and most of the rain falls in the two wet seasons, April–May and 
October–November. Daily mean temperatures vary from about 16 to 25 °C. Before the establishment 
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of the ANR in 1997, the area was comprised of six forest reserves and about half of the area was 
classified as logged or covered with non-native species [27]. After the logging was stopped in the late 
1980s most of the logged area recovered and is now secondary forest. Due to inaccessibility the other 
half of the area had a limited human impact and is considered primary forest.  

2.2. Field Data  

In the present study we utilized field data from a sample survey consisting of 30 circular plots 
collected during November 2011 in pre-determined locations. The plot locations were chosen to 
capture the variation in biomass by distributing them in different altitudinal zones [16]. To evaluate the 
representativeness of the 30 circular plots Mauya et al. [16] compared the properties of the sample to a 
second sample of 153 systematically distributed plots covering the study area. Based on this evaluation 
Mauya et al. [16] concluded that, although being sampled in an opportunistic manner, the distribution 
in different altitudinal zones resulted in a sample which closely resembled properties of the systematic 
sample.  

The centre coordinates of the plots were established by means of differential global positioning 
system (GPS) and global navigation satellite system (GLONASS) using survey-grade receivers. All 
trees with diameter at breast height (DBH) 5 cm were callipered, marked, and species identified. The 
horizontal distance from the plot centre to the front of each tree was measured using a Vertex IV 
hypsometer [28]. Because the distance was measured to the front of the trees, half of the tree DBH was 
added during data processing to get the total horizontal distance to the trees from the plot centre. The 
heights of three trees per plot (the largest, medium, and smallest tree in terms of DBH) were measured 
using the hypsometer.  

Concentric circular plots of 700, 900, …, 1900 m2 were constructed for each of the 30 field plots 
centred on the positions determined in field. The plot size of 700 m2 was chosen because it correspond 
to the plot size used in the recently established national forest inventory of Tanzania [29]. The 
maximum plot size on each location was determined by the reach of the hypsometer, and under the 
most challenging conditions, distance measurement started to fail at 25 m. Thus, the maximum plot 
size used in the current study was 1900 m2.  

Based on the distance from the plot centre to the centre of the stem, each tree was allocated to their 
respective concentric plot. Biomass of each tree was computed using an allometric model [30] and a 
diameter to height model developed from the diameters and the corresponding tree heights, see Mauya 
et al. [16] for further details. The biomass of each tree was then summed at plot level and aggregated 
biomass was scaled to per-hectare values (Table 1). Although this biomass is referred to as “observed 
biomass”, the computed values are subject to errors related to the applied allometric model, and the 
subsampling and measurement of tree DBH and height.  

2.3. ALS Data 

Collection of ALS data with wall-to-wall coverage was carried out from 19 January to 18 February 
2012 using a Leica ALS70 sensor mounted on a fixed wing aircraft. The acquisition parameters are 
summarized in Table 2. Post flight processing of the ALS data was performed by the contractor 
(Terratec AS, Norway) using TerraScan software [31]. A terrain model was created by classifying 
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ALS echoes as ground echoes using a progressive triangulated irregular network (TIN) densification 
algorithm [32]. The TIN model was used to calculate the elevation above the ground for all echoes. 
From the TIN model a raster-based digital terrain model (DTM) with a 10 m × 10 m cell size was 
created for the entire study area.  

2.4. InSAR Data 

InSAR data were acquired by the Tandem-X satellite mission on 6th August 2011. The incidence 
angle was 46°, and the polarization was horizontal transmit and horizontal receive. The normal 
baseline was 210 m, which corresponded to a 2  height of ambiguity of 38 m. 

2.5. ALS-derived Explanatory Variables 

ALS echoes were extracted for the concentric circular plots of 700, 900, …, 1900 m2 for each of the 
30 locations. From a maximum of five echoes registered per ALS pulse, echoes were categorised as 
“single”, “first of many”, and “last of many”. “Single” and “first of many” were merged into one 
dataset and denoted as “first” while “single” and “last of many” were merged into another dataset and 
denoted as “last”. From the ALS echoes in each of the two categories (“first”, “last”), variables 
describing the height and density of the vegetation were derived. The variables were used to construct 
linear least-square models (section 2.9) for each of the concentric plot sizes. In order to get comparable 
results between models from different plot sizes we chose to use the same ALS variables in all models. 
Studies have shown that a model consisting of one canopy height variable and one canopy density 
variable is often sufficient for modelling forest biomass [33-34]. In a previous study using the same 
field and ALS data, Mauya et al. [16] found that the 60th percentile height from the “first” echo 
category (H60.F) and the proportion of echoes above a second of ten equally large vertical layers to the 
total number of echoes from the “last” echo category (D1.L) were the most frequently selected 
variables in modelling biomass using plot sizes from 700 to 1900 m2. We therefore a priori selected 
H60.F and D1.L for construction of biomass models.  

2.6. InSAR-derived Explanatory Variable 

The Sarscape module of the ENVI 5.0 software was used to process Tandem-X image pairs 
resulting in a digital surface model (DSM). An interferogram was generated from each image pair, and 
this was further processed into a differential interferogram by using the ALS DTM as input. Phase 
noise was removed from the interferogram with a Goldstein filter. Phase offset and phase ramp errors 
were also removed using 30 ground control points, placed in non-vegetated locations, spread over the 
study area. Phase unwrapping was carried out using the minimum cost flow method, and the DSM was 
geocoded to a ground resolution of 10 m × 10 m. Following the construction of the DSM, the DTM 
derived from the ALS TIN was subtracted from the DSM, resulting in obtained InSAR heights, i.e. 
heights of the centre of the radar echo above ground. Mean InSAR height was then derived for each 
field plot by weighting the height of each 10 m × 10 m cell of the normalised InSAR DSM by the area 
of the cells intersecting the area of the field plot. This mean InSAR height was derived for each 
concentric field plot area.  
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2.7. DTM-derived Explanatory Variable 

The DTM derived from the ALS TIN was used to calculate the mean terrain elevation (TE) for each 
concentric plot size, 700, 900, …, 1900 m2, by weighting the value of each 10 m × 10 m cell of the 
DTM by the cell area intersected by the plot. The mean TE was subsequently used as an auxiliary 
variable (See section 2.8).  

2.8. Tessellating the Study Area and the Remotely Sensed Data 

The study area was tessellated into regular grids with hexagonal tiles of 700, 900, …, 1900 m2 
corresponding to the different plot sizes. To avoid splitting the tiles along the boundary of the study 
area only tiles with the centroid falling inside of the study area were retained. Remotely sensed 
variables from ALS and InSAR, along with the TE information were calculated for all hexagonal tiles 
in the study area.  

2.9. Model Construction 

For each plot size, separate linear least-square models were constructed with the biomass estimated 
on the ground plots as response variable and the corresponding remotely sensed variables, from either 
ALS or InSAR, as explanatory variables. In a study of forest biomass in two mountain locations in 
Tanzania, including ANR, Marshall et al. [35] found TE to be positively related to biomass. Therefore, 
to compare variance estimates obtained using ALS and InSAR, a model with TE as explanatory 
variable was also constructed for each plot size. This resulted in a model for each of the three sources 
of auxiliary data: 1) ALS, 2) InSAR, and 3) TE for each plot size. To improve the linear relationship 
between the explanatory variables and the response, a natural-log transformation of both response and 
explanatory variable was performed for all models. Such log-log models have been found to be 
suitable for estimating forest properties using remotely sensed data [33, 36-38]. This transformation 
will introduce a bias by back-transformed to arithmetic scale, and a ratio of the mean observed biomass 
to the mean of the back-transformed estimated biomass proposed by Snowdon [39] was therefore used 
as a correction factor for the model predictions.  

Unlike design-based estimators, which often are unbiased or nearly unbiased, the unbiasedness of 
model-based estimators depends on the model being correctly specified. It was therefore paramount to 
assess how well the model fitted the field plot observations. Assessment of the fit of the models 
followed the approach used by McRoberts et al. [40]. Scatterplots of observed vs. predicted biomass 
were produced for each plot size. Correctly specified models should result in points falling closely 
along a 1:1 line with intercept 0 and slope 1. Further, pairs of observations and predictions were 
ordered with respect to the predicted values and grouped into three classes of 10 pairs. The mean of the 
observed versus predicted biomass was plotted for each group. A correctly specified model should 
again result in points falling along a 1:1 line.  

2.10. Model-based Inference 

Model-based inference does not, as opposed to design-based inference, rely on a probabilistic 
sample that represents the population. Instead, as stated above, the inference relies on the model itself 
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as a valid model of a superpopulation. Following the notation in Ståhl et al. [41] an element of the 
superpopulation was expressed as  

, (1)  

where  is a vector of the observed plot biomass on plot ,  is a vector of variables derived from the 
auxiliary data,  is a vector of model parameters and  is a vector of errors, and  is a function 
describing the superpopulation. It is assumed that the errors are independent, normally distributed, 
with a constant variance, and without spatial auto-correlation. The parameters  were estimated with  
using least square regression, and used to estimate the population mean by 

, (2)  

where i indexes the population elements and N is the number of elements, i.e., i=1, 2, …, N. 
Assuming that the estimated  is accurate, the  function was linearized in the neighbourhood of the 
true function using first order Taylor series expansion: 

…
, (3)  

where  , j indexes the parameters and  is the number of parameters, i.e., 
j=1, 2, …, k, …, p. The variance of the population mean was then estimated by 

, (4)  

where  and  are the estimated mean values of the first order derivatives of the  function for 

parameters j and k, respectively [cf. 41]. 
Standard errors (SE) of the mean estimates, i.e., the square root of the variance estimate, were 

reported along with SE relative to the mean estimates.  

2.11. Relative Efficiency 

To assess the gain in precision of using remotely sensed data to enhance the estimates, relative 
efficiency was calculated for both ALS (RETE:ALS) and InSAR (RETE:InSAR). The relative efficiencies 
were calculated as ratios of the estimated variance for the mean biomass estimate ( ) for each plot size 
using the TE models divided by the variance estimates for each plot size using the ALS models: 

, (5)  

where s is an indicator of the plot sizes 700, 900, …, 1900 m2. Similarly, relative efficiency for 
InSAR was computed as:  

. (6)  

Efficiency of ALS was also calculated relative to InSAR (REInSAR:ALS) in the same way by dividing 
the variance estimates for each plot size using the InSAR models by the variance estimates for each 
plot size using the ALS models:  

 (7)  
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Together with information about inventory costs and the costs of the auxiliary data, the relative 
efficiency can be used to compare costs of attaining a certain level of precision of the estimation. In a 
design-based framework, applying simple random sampling (SRS), the relative efficiency can be used 
directly to calculate the additional number of field observations needed to compensate for the 
contribution of the remotely sensed data, which is a fundamental quantity in cost comparisons. This is 
because the SE of the mean estimate under SRS is proportional to the square root of the sample size 
minus the number of explanatory variables minus one [42, p. 181]. In practice, a relative efficiency of 
two would mean that the gain of the remotely sensed data could be compensated by twice as many 
field plots, assuming that the sample variance remain constant. In the model-based framework we also 
assume that the SE of the mean estimate is reduced with increased number of observations. However, 
we are not able to derive the number of observations needed to reach the same SE for the different 
models by analytical means. Instead we applied a basic Pólya-urn resampling scheme described in 
Köhl et al. [22, pp. 195–196] to simulate the variance of the TE models. The Pólya-urn resampling 
scheme generates a design-consistent posterior predictive distribution of the property in interest, given 
that the sample is reasonably large and representative of the population [43, p. 44–46]. We consider 
our field sample of u=30 observations as representative of the population, and the Pólya-urn 
resampling generated posterior predictive distributions of biomass for U=60, 120, and 180 
observations based on the sample. From a virtual urn, containing the 30 observations, one observation 
was randomly drawn, duplicated, and returned to the urn together with the duplicate. The urn thus 
contained u+1=31 observations. The selection scheme was repeated until the desired number U of 
observations in the urn was reached. The simulations were repeated 200 times and the mean variance 
of observed biomass reported.  

2. Results and Discussion 

Use of remotely sensed data to support field-based sample surveys will be part of any REDD+ 
MRV system. Better information on how the relative efficiency of using remotely sensed data is 
affected by plot size would benefit future MRV designs. The findings in the present study demonstrate 
the impact of the size of the field plots on the precision of biomass estimates using two types of three 
dimensional remotely sensed data.  

Separate log-log models were constructed for each plot size of 700, 900, …, 1900 m2 using 
auxiliary data from 1) ALS, 2) InSAR, and 3) TE. TE models showed a positive correlation between 
biomass and elevation, and the explanatory variable was increasingly significant from p = 0.044 at 700 
m2 to p = 0.002 at 1900 m2. Biomass was also positively correlated to the two explanatory variables in 
the ALS models and the variable in the InSAR models. All variables were significant at a 95% level 
except one of the ALS variables (D1.L) at plot sizes of 1100-1700 m2.  

Inspection of the scatterplots of observed versus predicted biomass (Figures 1–3) showed that the 
models had a lack of fit resulting in over-prediction of biomass in areas of low biomass and under-
prediction in areas of high biomass. Similar lack of fit has been reported in studies from areas with 
high forest density [e.g. 44, 45]. The plots of the grouped means of observations versus predictions 
(Figures 4–6), however, showed small differences.  
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Figure 1. Observed versus predicted biomass values using ALS for plot sizes of 700, 
900,…, 1900 m2. 

 

 

Figure 2. Observed versus predicted biomass values using InSAR for plot sizes of 700, 
900,…, 1900 m2. 
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Figure 3. Observed versus predicted biomass values using TE for plot sizes of 700, 
900,…, 1900 m2. 

 

 

Figure 4. Grouped means of observed versus predicted biomass values using ALS for plot 
sizes of 700, 900,…, 1900 m2. 
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Figure 5. Grouped means of observed versus predicted biomass values using InSAR for 
plot sizes of 700, 900,…, 1900 m2. 

 

 

Figure 6. Grouped means of observed versus predicted biomass values using TE for plot 
sizes of 700, 900,…, 1900 m2. 
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As pointed out in section 2.2, the observed biomass is subject to uncertainty not accounted for in the 
present study, related to the allometric models and field measurements of DBH and tree height. Thus, 
errors related to the biomass observations are not accounted for. Overlooking these errors lead to 
overoptimistic precision of the variance estimates. In a study conducted in a tropical forest in Ghana, 
in which the forest conditions and the plot size of 1600 m2 resembled the conditions in the present 
study, Chen et al. [46] found that the impact of allometric error contributed about 11% to the total 
relative prediction error.  

Mean biomass estimates of the ANR from both ALS and InSAR were lower than the mean estimate 
from the model with TE (Table 3). The differences were however not statistically significant at the 5% 
level.  

Increasing the plot size from 700 to 1900 m2 reduced the SE of the mean estimates from 15.3 to 
10.6% using TE, from 10.1 to 5.1% using ALS, and from 11.3 to 6.4% using InSAR (Figure 7). Both 
ALS and InSAR performed well compared to TE in terms of SE. ALS and InSAR estimates had an SE 
of about 5 and 4 percentage points lower than TE, respectively. Further, InSAR performed well 
compared to the ALS with only 0.4–1.3 percentage points higher SE depending on plot size. The 
differences in SE translated into relative efficiencies of 3.6–6.7 using ALS and 2.6–4.0 using InSAR, 
compared to TE (Figure 8). The relative efficiency of the ALS data also increased with increased plot 
size relative also to the InSAR data (Figure 8). At a plot size of 1900 m2 the ALS was 6.7 times as 
efficient as using TE and 1.7 times as efficient as InSAR. The fact that the relative efficiency of ALS 
and InSAR increased with increased plot size may partly be due to reduced relative influence of 
boundary effects and co-registration errors. The slight increase in relative efficiency of ALS compared 
to InSAR may also indicate that the relative influence of boundary effects and co-registration errors is 
stronger for ALS than for InSAR. The relative efficiency of ALS compared to InSAR is modest 
compared to studies in Norway that have found the relative efficiency of ALS to be about twice to that 
of InSAR [34, 47].  

 

 

Figure 7. Relative standard error of biomass estimates (SE%) using models with auxiliary 
data of terrain elevation (TE) derived from a digital terrain model (dotted line), InSAR 
(dashed line), and ALS (solid line). 
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Figure 8. Relative efficiency of using InSAR (RETE:InSAR, dashed line) and ALS (RETE:ALS, 
solid line) relative to TE for biomass estimation, and ALS relative to InSAR (REInSAR:ALS, 
dotted line). 

 
As stated by Gregoire et al. [48], information about the approach to statistical inference, design- or 

model-based, is essential in assessing the estimated variance. Taking the design-based approach to 
variance estimation d'Oliveira et al. [49], reported a relative efficiency of 3.4 in a study utilising 50 
plots of 0.25 ha in the Brazilian Amazon. We can similarly compute the relative efficiency from the 
variance estimates reported by Hansen et al. [10]. For a plot size of 0.1 ha the relative efficiency was 
2.1. The latter study discusses large negative boundary-effects in the ALS-derived variables, which 
would contribute to a low relative efficiency.  

The DTM used directly to derive the TE variable in the TE-models, and to derive the InSAR 
elevation above the terrain, was derived from the ALS data. DTMs constructed from ALS data have 
generally high accuracy [50]. In the absence of an ALS-derived DTM, a DTM derived from other 
sources would have influenced the results. A DTM derived from sources like P-band SAR [e.g. 51] or 
the topographic map series of Tanzania, would most likely have resulted in substantially increased SE 
of the InSAR and TE estimates. In a study using InSAR height to estimate forest biomass in Norway 
Næsset et al. [34] it was found that relative RMSE was approximately seven percentage points higher 
using a DTM from topographic maps with a contour interval of 20 m, compared to using an ALS-
derived DTM. P-band SAR, used with good results in Neeff et al. [51], is currently only available from 
airborne platforms, and was not collected in ANR.  

The analysis in the present study showed that use of remotely sensed data from ALS and InSAR 
was able to increase the precision of the estimates. However, ALS data are expensive compared to the 
cost of establishing additional inventory plots (100–150 USD per plot, E. Mauya 2015, pers. comm. 19 
Jan.). The effect of increased number of field plots on the sampling error of the TE models was 
simulated using a Pólya-urn resampling scheme. To reach similar levels of sampling error as for the 
ALS models, the number of field plots would have to be increased by a factor of 3.5–6 depending on 
plot size (Figure 9).  
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With the relatively low cost of increasing the intensity of the field inventory (180 plots × a cost of 
125 USD = 22 500 USD), the increased precision of using ALS is not solely enough to defend the 
investment of about 100 000 USD for the ALS mission. However, ALS does provide a good quality 
DTM which can be used for future surveys supported by other sources of remotely sensed data 
requiring such a DTM. The cost of ALS is largely governed by the flight time. By flying higher, 
covering a larger area with a single flight strip, the cost of acquiring ALS can be reduced. Findings 
from studies of reduced pulse density either by means of simulations [e.g. 52], or acquisitions from 
different altitudes [e.g. 53], have shown that satisfactory results can be attained at lower pulse 
densities. A simulation study conducted in ANR [54], confirmed that explanatory variables derived 
from low pulse density is reliable down to about 0.5 pulses m-2, even in dense tropical forests.  

 

 

Figure 9. Standard error of biomass estimates (SE) using models with auxiliary data of 
InSAR (dashed line), ALS (solid line), and TE. TE model SE is derived from 60 (dotted 
grey line), 120 (dashed grey line), and 180 (solid grey line) simulated observations. 
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4. Conclusions  

The results from the present study showed that the relative efficiency of using remotely sensed data 
from both ALS and InSAR sensors increased with increased field plot size. Thus, biomass estimation 
assisted by remotely sensed data from ALS and InSAR will profit relatively more in terms of increased 
precision by increasing plot size than estimation without ALS and InSAR data. To compensate for a 
lack of ALS data a pure field-based inventory would have to contain 3.5–6.0 times as many 
observations for plot sizes of 700–1900 m2 to achieve the same precision as an inventory supported by 
ALS data.  
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