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ABSTRACT 18 

In pig breeding, the final product is a crossbred (CB) animal, while selection is performed at 19 

the purebred (PB) level using mainly PB data. However, incorporating CB data in genetic 20 

evaluations is expected to result in greater genetic progress at the CB level. Currently, there is 21 

no optimal way to include CB genotypes into the genomic relationship matrix. This is 22 

because, in single-step genomic BLUP, which is the most commonly used method, genomic 23 

and pedigree relationships must refer to the same base. This may not be the case when several 24 

breeds and CB are included. An alternative to overcome this issue may be to use a genomic 25 

relationship matrix (G matrix) that accounts for both linkage disequilibrium (LD) and linkage 26 

analysis (LA), called GLDLA. The objectives of this study were to further develop the GLDLA 27 

matrix approach to utilize both PB and CB genotypes simultaneously, to investigate its 28 

performance, and the general added value of including CB genotypes in genomic evaluations. 29 

Data was available on Dutch Landrace, Large White, and the F1 cross of those breeds. In 30 

total, 7 different G matrix compositions (PB alone, PB together, each PB with the CB, all 31 

genotypes across breeds, and GLDLA) were tested on 3 maternal traits: total number born 32 

(TNB), live born (LB), and gestation length (GL). Results show that GLDLA gave the greatest 33 

prediction accuracy of all the relationship matrices tested, and that including CB genotypes in 34 

general also increased prediction accuracy. However, in some cases, these increases in 35 

prediction accuracy were not significant (at P < 0.05). To conclude, CB genotypes increased 36 

prediction accuracy for some of the traits and breeds, but not for all. The GLDLA matrix had 37 

significantly greater prediction accuracy than the other G matrix with both PB and CB 38 

genotypes, except in one case. However, computation time was high for GLDLA, and research 39 

will be needed to reduce its computational costs to make it feasible for use in routine 40 

evaluations. 41 
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INTRODUCTION 46 

In pig breeding, the final product is the crossbreds (CB) animal. However, selection is 47 

performed at the purebred (PB) level using mainly PB data, which may result in a reduced 48 

genetic progress at the CB level (Dekkers, 2007; Toosi et al., 2010; Bloemhof et al., 2012; 49 

Bijma and Bastiaansen, 2014; Esfandyari et al., 2015). Hence, the inclusion of CB data in the 50 

breeding value estimation of PB is expected to improve genetic progress of CB animals. 51 

Currently, there is no optimal way to include CB genotypes in the genomic relationship 52 

matrix (Misztal et al., 2014) or in single-step GBLUP (ssGBLUP) (Christensen et al., 2014). 53 

In ssGBLUP, an H matrix (combination of pedigree-based and genomic-based relationships) 54 

is used, assuming that both relationships refer to the same base (Legarra et al., 2015). 55 

However, this assumption does not hold when several breeds and CB are included. Using 56 

breed-specific allele frequencies from genomic information may alleviate this problem, but 57 

this is not possible in ssGBLUP (Lourenco et al., 2016). An alternative option is to use the 58 

GLDLA relationship matrix, which utilizes both linkage disequilibrium (LD) and linkage 59 

analysis (LA), making use of genotypes, genotype probabilities and pedigree relationships 60 

(Meuwissen et al., 2015). Genetic groups can be accounted for so that the base animals of 61 

different breeds can be entered as alternative genetic groups, and thus use allele frequencies 62 

according to breed rather than across all animals. This would accommodate CB because they 63 

are linked to the PB through the pedigree. The GLDLA matrix has shown promising results 64 

analyzing PB data (Meuwissen et al., 2015), but has not yet been applied to CB data. 65 

Therefore, the aim of this study was to further develop the GLDLA matrix approach to 66 

combine PB and CB genotypes simultaneously, to investigate its performance, and the 67 

general added value of including CB genotypes in genomic evaluations.  68 

 69 
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MATERIALS AND METHODS 70 

Care and Use of Animals 71 

Data recording and sample collection were conducted strictly in line with the laws given by 72 

Dutch animal research authorities on the protection of animals (Gezondheids- en welzijnswet 73 

voor dieren). The data was obtained as part of routine data recording in commercial breeding 74 

programs. Samples collected for DNA extraction were only used for the routine diagnostic 75 

purpose of the breeding program.  76 

Animals and Data 77 

Data was available on 2 PB populations (Dutch Landrace and Large White) and their F1 78 

cross, hereafter referred to as A, B, and X, respectively. The traits evaluated in this study 79 

were total number born (TNB, sum of alive and dead piglets), live born (LB, number of 80 

piglets born alive) and gestation length (GL, number of days between insemination and 81 

farrowing). Phenotypic observations were available on 11,491 sows, and genotypes were 82 

available on 8,350 animals. Both males and females were genotyped in the PB, but in the F1 83 

population, only females were genotyped. All animals were genotyped using the Illumina 84 

Porcine SNP60 Beadchip (Illumina Inc., San Diego, CA). Quality control consisted of 85 

excluding SNP with GenCall < 0.15, call rate < 0.95, minor allele frequency < 0.01, and 86 

strong deviations from Hardy-Weinberg equilibrium (χ² > 600). The SNP located on sex 87 

chromosomes and unmapped SNP were also excluded. Positions of the SNP were based on 88 

the Sscrofa10.2 assembly of the reference genome (Groenen et al., 2012). All genotyped 89 

animals had a frequency of missing genotypes above the threshold of 0.05 for excluding 90 

poorly-genotyped animals. After quality control, SNP not segregating in all breeds were 91 

excluded, leaving 36,778 SNP common to all breeds for further analysis. An overview of 92 

phenotypic and genotypic data can be found in Table 1 and 2. 93 
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Statistical Analysis 94 

The Linkage Disequilibrium Multilocus Iterative Peeling (LDMIP) program (Meuwissen and 95 

Goddard, 2010) was used to get genotype probabilities for the genotyped animals and their 96 

ungenotyped ancestors. It is a method for imputation of phase and missing genotypes, and 97 

sets up the linkage analysis part of the identity by descent (IBD) matrix (Meuwissen and 98 

Goddard, 2010). There is an option in LDMIP to run both with (genetic) groups and without 99 

groups. Here the base animals of the two PB were entered into different genetic groups 100 

according to breed. With this, LDMIP accounts for differences in allele frequencies according 101 

to which breed(s) the animals originate from (Meuwissen et al., 2015). This will also apply to 102 

CB because they are linked to the PB through the pedigree. The option to run without genetic 103 

groups was also used to determine the importance of including genetic groups when having a 104 

multi-breed dataset. Information from neighboring loci was not used when running LDMIP 105 

because Meuwissen et al. (2015) found better accuracies of genomic selection when not using 106 

information from neighboring loci.  107 

This estimation of genotype probabilities was followed by setting up the GLDLA matrix. The 108 

genotype probabilities from LDMIP were used to set up the gametic relationship matrix:  109 

G = WW’/ ∑jpj(1 - pj), 110 

where G was a (2n x 2n) matrix of gametic relationships (n = number of animals); and W 111 

was a (2n x m) matrix of standardized genotypes (m = number of markers). Element Wij is 112 

obtained by taking the probability of a ‘1’ allele of gamete i at marker j and subtracting the 113 

appropriate allele frequency, pj (Meuwissen et al., 2015). The expectation is that the diagonal 114 

of G is 1, because the relationship of a gamete with itself is 1. Off-diagonals represent 115 

inbreeding because; non-zero off-diagonals indicate that the maternal and paternal gamete is 116 

related. However, the diagonal of G may deviate from 1, either due to sampling or because 117 
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genotype probabilities have lower variance than actual genotypes (Meuwissen et al., 2015). 118 

This may lead to underestimated relationships, and G was adjusted for this through the 119 

following formula: 120 

GLDLA = [S(DGD + ∆Ã∆)S’]/2, 121 

where D was a diagonal matrix with elements √(1/𝐺𝑖𝑖) when Gii is greater than 1, or 1 122 

elsewhere, ∆ was a diagonal matrix with elements √(1 − 𝐺𝑖𝑖) when Gii was less than 1, or 0 123 

elsewhere, Ã was the pedigree-based gametic relationship matrix, and S was the design 124 

matrix that indicated which gametes belong to which animals, which reduces the size of the 125 

gametic relationship matrix to number of animals squared. For further details, and an 126 

example, see Meuwissen et al. (2015). Ungenotyped descendants of the genotyped animals 127 

were added to the relationship matrix according to Henderson’s rules.  128 

In addition to the GLDLA matrix, 7 other relationship matrices were built for comparison. 129 

These were; the pedigree-based A matrix (PED), G matrix for breed A (GA, i.e. a G matrix 130 

with breed A genotypes), breed B (GB), breed A and B together (including marker-based 131 

relationships between breeds, GAB), each of the PB with the CB (GAX and GBX), and a G 132 

matrix including all of the genotypes across breeds (GABX). The G matrices (except GLDLA) 133 

were built with the Gmatrix program (Su and Madsen, 2014) that is part of the DMU 134 

package. After building the different G matrices, ssGBLUP was used as implemented in 135 

DMU (Madsen and Jensen, 2008) for analyzing the full dataset for all of the matrices using a 136 

multitrait model. The G-ADJUST option in DMU (adjusts genomic relationships so that they 137 

correspond to average relationships in the A matrix (Gao et al., 2012)) was used for all G 138 

matrices except GLDLA when building the H matrix used in ssGBLUP. The full pedigree 139 

(including all breeds) was used for building the A matrix in all analyses. 140 
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The focus was on maternal traits, and the majority of the sows had more than one observation 141 

per trait. Consequently, a repeatability model was used to account for the effect of permanent 142 

maternal environment. The model was: 143 

y = Xb + Zu + Wm + Vv + e,  144 

where y was a vector of observations (TNB, LB, and GL), X, Z, W, and V, known incidence 145 

matrices, b a vector of fixed effects, u a vector of random additive genetic effects, with u ~ 146 

N(0, Aσu
2 or Gσu

2), where σu
2 was the additive genetic variance, m a vector of permanent 147 

maternal environmental effects, with m ~ N(0, Imσm
2), where σm

2 was the non-genetic 148 

maternal environmental variance, v a vector of herd-year-season effects, with v ~ N(0, Ivσv
2), 149 

where σv
2 was the variance of herd-year-season effects, and e a vector of residuals with e ~ 150 

N(0, Ieσe
2), where σe

2 was the residual variance. Im, Iv, and Ie were identity matrices of the 151 

appropriate dimensions, A was a matrix of pedigree-based, additive genetic relationships 152 

(PED) and G a matrix of genomic relationships between all individuals. Here, G represents 153 

the aforementioned G matrices (GA, GB, GAB, GAX, GBX, GABX, or GLDLA). Variance 154 

components (σu
2, σm

2, σv
2, σe

2) were estimated by DMU from the data. Fixed effects were 155 

breed, parity, farm, and farrowing quarter for TNB and LB, and breed, farm, and farrowing 156 

quarter for GL. Random effects were genetic effects of animal, permanent environmental 157 

effect (non-genetic maternal effects), and herd-year-season effects. The same model was used 158 

with all of the relationship matrices.  159 

The analysis was performed using the entire dataset, and the solutions for fixed and random 160 

effects were extracted from this analysis for each of the relationship matrices. The dataset 161 

was then modified to mask phenotypes for the validation animals (1000 animals) and their 162 

offspring (both PB and CB offspring if applicable), for either breed A or breed B. Thus, 163 

validation was either in the A or B animals, not in both at the same time. Two validation sets 164 
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were used for each breed (2 x 1000 animals), where validation animals were different 165 

between the validation sets. The training set was the remaining animals after validation 166 

animals had been removed. Validation was done in PB animals, and not in CB, because 167 

selection is in PB animals. Thus, the aim is to produce the best CB animals by selecting the 168 

PB animals best suited to produce commercial CB. Therefore, PB animals need accurate 169 

EBV for CB performance. To create the validation sets, the first (oldest) 1000 animals in the 170 

list of genotyped animals in each breed were chosen, and then the next 1000 animals in the 171 

next validation set for that breed. Thus, there were 2 validation sets with 1000 animals each 172 

for each breed (A or B) (~4790 observations per validation dataset). The youngest animals 173 

with genotypes did not have sufficient phenotypes to make a large enough validation set, and 174 

were not used for validation. Only animals that had both genotypes and phenotypes were 175 

included in the validation set. Matrices GA and GAX were only used in the validation of breed 176 

A animals, and likewise matrices GB and GBX were only used in the validation of breed B 177 

animals. After analyzing with the reduced dataset, fixed and non-genetic random effects from 178 

the full analysis (for each matrix) were included before predicting phenotypes of validation 179 

animals to avoid altering the precision of estimates of fixed and non-genetic random effects 180 

by using a smaller dataset. The prediction accuracy of the cross-validation was estimated by 181 

the following formula: r = 
𝒄𝒐𝒓𝒓(𝑬𝑩𝑽,𝑨𝒅𝒋𝑷𝒉𝒆𝒏𝒐)

√𝒉𝟐
, where EBV was estimated breeding value, 182 

AdjPheno was phenotype (of validation animal) adjusted for fixed and (non-genetic) random 183 

effects, and h2 was the heritability of the trait. Regression coefficients between EBV and 184 

adjusted phenotypes were estimated by fitting a linear model with adjusted phenotype as 185 

response variable and EBV as the explanatory variable. Standard deviations of estimated 186 

breeding values were also estimated. Except when the pedigree-based relationship matrix 187 

(PED) was used, EBV were genomic EBV (GEBV). 188 
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In addition, accuracy was also estimated when using fixed and random effects from the 189 

analysis using the full dataset with the PED matrix. Thus, AdjPheno was adjusted for fixed 190 

and random effects from PED, and not from each matrix. This reduces the accuracy for each 191 

method, but makes methods comparable when testing for significant differences. This does 192 

not however, change the EBV from the methods. 193 

Bootstrapping was used to test whether accuracies of the different genomic prediction 194 

methods were significantly different from each other. This was done on the results from using 195 

the fixed and random effects from PED. The EBV from two methods at a time were 196 

compared against each other (pair-wise comparison), to see which was best to predict the 197 

adjusted phenotypes (of the validation animals) from the PED evaluation. The Bootstrap 198 

procedure randomly samples with replacement data point triplets: the adjusted phenotype and 199 

their predictions (EBV) using two methods. It estimates which of the methods yields a greater 200 

correlation with the adjusted phenotype in each Bootstrap sample. A total of 10,000 201 

Bootstrap samples were constructed. If one of the methods had a greater correlation in at least 202 

97.5% of Bootstrap samples, the two methods (matrices) were considered to be significantly 203 

different (at a P-value of 5% due to the two-sided nature of the test).  204 

The relationships that were common to both GLDLA and GABX were plotted against each other 205 

to see if these would differ between the two matrices. The average relationship within and 206 

across breeds were estimated for GLDLA and GABX. 207 

 208 

RESULTS 209 
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Trait means, standard deviations, number of observations and other trait statistics are 210 

presented in Table 3. Heritability estimates are across all breeds. The mean number of parities 211 

for sows with observations was 5.85. 212 

In terms of prediction accuracy (Table 4), the GLDLA matrix had the greatest accuracy for all 213 

traits and breeds, followed by GABX. Mean gain (in accuracy) from using GLDLA over GABX 214 

was 1.0 and 1.1 percentage points across traits for A and B, respectively. Including CB in the 215 

genomic relationship matrix (GAX, GBX, GABX, GLDLA) always gave a greater accuracy than 216 

not including CB genotypes (GA, GB, GAB). Including both PB in the same genomic 217 

relationship matrix (GAB) increased accuracy compared to not including both PB in the same 218 

matrix. The increase in accuracy was larger for Dutch Landrace (A) than for Large White 219 

(B). Overall, breed A benefitted more from including more animals in the genomic 220 

relationship matrix than breed B. In terms of individual traits, GL had the lowest increase in 221 

accuracy by including more animals in the genomic relationship matrix, but had the largest 222 

initial and overall accuracy.  223 

When using fixed and random effects from PED for all matrices, the accuracies reduced with 224 

3.8 to 15.4 percentage points. In terms of differences in accuracies between matrices, not all 225 

of these were significant (Table 5). For breed A, GLDLA had a significantly greater accuracy 226 

than all other matrices for traits TNB and GL. For TNB, also GABX had a significantly greater 227 

accuracy than the other matrices, except GLDLA. For LB, GLDLA was not significantly more 228 

accurate than GABX and GAB. Nor was GABX’s accuracy significantly different from that of 229 

GA. For breed B, GLDLA had a significantly greater accuracy than all other matrices except 230 

GBX for TNB and GL. For LB, GLDLA only had a significantly greater accuracy than GAB and 231 

GABX. All pairwise comparisons are found in Table 5.  232 



 

12 

 

Regression coefficients between EBV and adjusted phenotypes were close to 1 and similar 233 

across methods and no relationship matrix was clearly better than the others (Table 6).  234 

Within trait, GLDLA always had the greatest standard deviation of estimated breeding values 235 

(for validation animals) (Table 7). This was followed by including genotypes from all breeds 236 

(GABX), and for TNB and LB, by including CB with the PB (GAX and GBX). For GL, 237 

including CB had the third greatest standard deviation for B (GBX), but for A, GAB produced 238 

the third greatest standard deviation. 239 

There was very little difference in terms of accuracy (<0.01 percentage points) and regression 240 

coefficients (0.01 increase for GLDLA for TNB), and no difference for standard deviations of 241 

EBV in analyzing without genetic groups compared to with groups, and therefore these 242 

results are not presented here.  243 

The correlation between allele frequencies of A and B was 0.25. The correlations between 244 

allele frequencies of PB and CB were 0.77 and 0.76 for A and B, respectively.  245 

When plotting relationships common to GLDLA and GABX against each other, there was some 246 

discordance between the matrices (Fig. 1). This was especially true for low relationships 247 

(<0.4). Some animals were seemingly unrelated in one of the matrices, but had relationships 248 

as strong as 0.6 in the other. This type of discordance went both ways. This led to the 249 

discovery of some pedigree errors, although not all could be corrected because not all of the 250 

animals in the pedigree had genotypes. Self-relationships were generally larger in GLDLA than 251 

in GABX. Note: this was before GABX was adjusted for pedigree relationships with G-252 

ADJUST, while GLDLA is already adjusted for pedigree relationships (as this is part of the 253 

method).  254 
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Average relationships within and across breeds for GLDLA and GABX are shown in Table 8 255 

and 9, respectively. In general, mean relationships were greater in GLDLA than in GABX, 256 

except between A and B. The greatest relationship between individuals within A was between 257 

two inbred full-sibs, whose parents were also full-sibs. The greatest relationship within B is a 258 

sire-offspring relationship. The greatest relationship between A and B seems unreasonable, 259 

and is likely due to some animals being assigned the wrong breed and therefore seeming 260 

unrelated in the pedigree even though that is not the case.   261 

The computation time for building the G matrices was not the same between matrices. 262 

Computation time for LDMIP (pre-program for GLDLA) was from 11.5 h to 14.0 h (18 parallel 263 

jobs on the Abel computer cluster, dual Intel E5-2570 based, 2.6 GHz per node, (UiO, 2017)) 264 

and for building GLDLA from 11.5 h to 12.5 h (on the Abel computer cluster). In comparison, 265 

computation time for building the other G matrices was a couple of minutes (on a 46 bit 266 

physical Intel Core i7, 3.40 GHz core processor running Linux). Computation time for 267 

DMU5 (on a 46 bit physical Intel Core i7, 3.40 GHz core processor running Linux) increased 268 

with the size of the G matrix, thus GLDLA was the slowest, with a computation time of about 1 269 

h, and GABX second slowest with approximately 40 min. 270 

 271 

DISCUSSION 272 

Including CB genotypes in the genomic relationship matrix, whether based on markers only 273 

(GAX, GBX, GABX) or through using GLDLA, increased prediction accuracy for PB. However, 274 

not all of these increases were significantly different from not including CB. Depending on 275 

trait and breed, prediction accuracy increased with between 0.9 and 11.6 percentage points 276 

compared to using a PB G matrix (GA or GB). This also led to a larger standard deviation of 277 

estimated breeding values (increase of 0.005 to 0.244). The increase in accuracy from 278 
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including CB genotypes was larger for total number born (TNB) (4.0 to 11.6 percentage 279 

points) and live born (LB) (5.1 to 10.0 percentage points) than for gestation length (GL) (0.9 280 

to 4.7 percentage points). The increase was also greater for Dutch Landrace (A) than for 281 

Large White (B), except for the trait GL. 282 

Accuracy 283 

The greater prediction accuracy with GLDLA could be a result of this matrix utilizing more 284 

information than the other matrices. The increase in accuracy compared to using only one 285 

breed or both PB is probably mainly due to the utilization of across breed information. 286 

However, when comparing GLDLA to the G matrix that also utilizes all the genotypes across 287 

all breeds (GABX), GLDLA still has a significantly greater accuracy. An exception exists for the 288 

trait LB for breed A, although the difference is small. This might suggest that GLDLA is a 289 

more appropriate relationship matrix when dealing with crosses between breeds. Often, 290 

marker and QTL linkage phases will be different between different breeds (Zhou et al., 291 

2014), which supports this notion. In theory, it should not be possible to include CB in 292 

ssGBLUP, because pedigree and genomic relationships will not refer to the same base and 293 

due to differences in allele frequencies between breeds (Legarra et al., 2015; Lourenco et al., 294 

2016). However, in practice, GABX yields quite accurate predictions (at least in the current 295 

dataset). Nonetheless, GABX is not significantly better than only including the PB (GA, GB, or 296 

GAB), except for GL in breed B and TNB in breed A. An explanation for this could be that 297 

the genotyped animals make up 52.4% of the animals in the pedigree and 56.6% of the 298 

animals with phenotypes, i.e. the proportion of genotyped animals was rather large. It is 299 

therefore likely, that if a smaller proportion of the animals were genotyped, the relative 300 

difference between GLDLA and GABX might increase.  301 
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It is expected that using population-specific allele frequencies (as in GLDLA for example) can 302 

accurately predict breeding values across populations (Wientjes et al., 2015). If the allele 303 

frequencies between the two PB were highly correlated (correlation close to 1), there would 304 

be little difference between these matrices, but this was not the case here. In addition, the 305 

GLDLA matrix also uses identity by descent (IBD) information, whereas the other G matrices 306 

use only identity by state (IBS) information. However, as seen here, this might be 307 

problematic if there is discordance between the pedigree and the genotypes. Pedigree errors 308 

led to some strange relationships between individuals for GLDLA that were not in agreement 309 

with the genotypes. On the other hand, this approach may be a useful tool to detect pedigree 310 

errors that are not detected by comparison of genotypes of parents and their offspring. For 311 

example, it could detect errors in the relationships between genotyped and un-genotyped 312 

individuals that cannot be detected by comparing genotypes. Possibly, the GLDLA approach is 313 

more sensitive to pedigree errors, and it may be expected that without pedigree errors, GLDLA 314 

will yield greater accuracies relative to GABX than the results shown here.  315 

Combining genotypes from the two PB in the G matrix (GAB) seemed to increase prediction 316 

accuracy over using single-breed matrices, although this increase was not statistically 317 

significant. This increase is in agreement with findings by Esfandyari et al. (2016), who did 318 

not test for its significance. However, Hidalgo et al. (2015), found that including two PB in 319 

the G matrix reduced accuracies for all four traits under study. Relationships between the 320 

breeds will contribute to this increase in accuracy, even though the breeds are assumed 321 

unrelated. The mean relationship between animals of these breeds would indicate 322 

unrelatedness, but there were some notable relationships that could have influenced the 323 

results. It is also possible that this increase would be insignificant with larger population sizes 324 

for the PB as these are relatively small in the current study.  325 

Regression Coefficients 326 
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Regression coefficients did not really differ between the different relationship matrices and 327 

no particular matrix was clearly best. These results are in agreement with Xiang et al. (2016), 328 

who did not find differences in regression coefficients between different scenarios either. 329 

This indicates that all models are unbiased and that the heritability estimates are reasonable. 330 

Traits 331 

There were differences between traits in terms of accuracy and standard deviations, although 332 

the overall trend was that GLDLA and GABX performed the best across traits. More was gained 333 

in TNB and LB than in GL in terms of accuracy by adding CB genotypes to the relationship 334 

matrix. This could be because the proportion of CB animals with phenotypes for GL was 335 

lower than for the other two traits. In addition, GL had a greater initial accuracy, which could 336 

be due to greater heritability for GL than for TNB and LB. It is also possible that the 337 

purebred-crossbred correlation (rpc) for GL is greater than for TNB and LB, and thus adding 338 

CB data does not really add more information than just adding more animals in general (i.e. if 339 

rpc = 1, CB data equals PB data). A rpc of 0.70 to 0.78 has been reported for TNB in Landrace 340 

and 0.57 to 0.68 for Yorkshire (Xiang et al., 2016), and Lopes et al. (2016) found an rpc of 341 

0.90 for both TNB and GL. Thus, adding the CB genotypes would not be much different than 342 

adding more animals in general when PB and CB performance is considered as the same trait, 343 

and it is difficult to conclude whether the increase is due to adding CB specifically or just 344 

adding more information. If rpc is low, PB and CB performance should be considered as 345 

different traits, and it would be more important to use CB data to predict CB-GEBV for PB 346 

animals. 347 

Whether to consider PB and CB performance as the same or different traits depends on 348 

several factors. However, in most cases, it is the genetic correlation between PB and CB 349 

performance (rpc) that is taken into consideration, both in terms of whether to include CB data 350 
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at all, but also in terms of whether to consider PB and CB performance as different, but 351 

genetically correlated traits. The exact size of rpc at which CB data is beneficial is debated, 352 

but most studies recommend inclusion of CB data when rpc is below 0.7 or 0.8 (Dekkers, 353 

2007; Bloemhof et al., 2012; Hidalgo et al., 2015; Tusell et al., 2016). Differences in rpc is 354 

affected by several factors such as non-additive effects (dominance, heterosis etc.), genotype 355 

by environment interactions, breed of origin effects, differences in allele frequencies between 356 

breeds, etc. (Dekkers and Chakraborty, 2004; Christensen et al., 2014; Van Grevenhof and 357 

Van der Werf, 2015; Lopes et al., 2016). If the rpc is low, it would make sense to consider PB 358 

and CB performance as different traits. This makes it possible to select for animals that have 359 

a better breeding value for CB performance. The traits could also be weighed differently in 360 

the breeding goal, ensuring genetic progress in both PB and CB performance. A limitation to 361 

viewing PB and CB performance as different traits might be data availability. If there are few 362 

observations on either PB or CB, it might not be enough data available for analysis. 363 

Considering PB and CB performance as the same trait would result in more available data, 364 

but if rpc is low, this would result in poor prediction. A benefit of considering PB and CB 365 

performance as the same trait is that one can have observations on both parents and offspring, 366 

or other close relationships such as half-sib PB and CB, increasing prediction accuracy. In the 367 

current study, PB and CB performance was analyzed as the same trait. This is mainly because 368 

other studies have found reasonably high rpc for the traits in this study (0.68-0.90) (Lopes et 369 

al., 2016; Xiang et al., 2016).  370 

Breeds 371 

Dutch Landrace (breed A) gained more in accuracy by using CB genotypes, or even just by 372 

adding genotypes from the other PB, than Large White (breed B). One reason might be that 373 

breed A had lower accuracy to start with, thus more to gain in general. Esfandyari et al. 374 

(2016) also found greater prediction accuracies in one breed (Yorkshire) over another 375 
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(Landrace). They suggested that this may be due to a larger variance in genomic relationships 376 

for the Yorkshire animals (Esfandyari et al., 2016), but this does not agree with the results in 377 

the current study, where larger variation in relationships was found in breed A. It is possible 378 

that the correlation between PB and CB performance is greater for some breeds than others, 379 

and may need to be assessed in each case to find the best approach for evaluation of animals. 380 

An increase in accuracy when including more than one breed could be explained by relatively 381 

close relationships between the breeds (Zhou et al., 2014), but this was not the case in the 382 

current study, although there were some high relationships between the breeds. The average 383 

relationship between individuals of A and B was -0.15 and -0.14 for GLDLA and GABX, 384 

respectively. According to Lourenco et al. (2016), using breed-specific allele frequencies will 385 

pull across-breed relationships closer to zero, but no such effect was seen when using GLDLA 386 

compared to GABX in the current study. When the correlation between allele frequencies of 387 

two breeds is low, this may lead to negative relationships between breeds (Lourenco et al., 388 

2016), which is in agreement with the findings of the current study.  389 

Computation Time 390 

The computation time for GLDLA was considerable longer than for the other G matrices. In 391 

part this is because computations for GLDLA have not been optimized as is the case for DMU 392 

routines, but still the calculation of genotype probabilities for all animals in the pedigree and 393 

all SNP on the chip implies substantial computational costs. Possibly, in the future the 394 

calculation of genotype probabilities for ungenotyped animals may become an integral part of 395 

the genotype imputation algorithms, which are routinely used to impute missing genotypes. 396 

In any case, more research is needed to reduce the computational costs of the GLDLA 397 

approach, especially when applied to larger data sets than the current one.  398 

Grouping 399 
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The GLDLA matrix only outperforms GABX by a small amount across traits (1.0 to 1.1 400 

percentage points), but unlike GABX, it keeps track of which breed each animal comes from, 401 

or at least which genetic group it belongs to. Thus, for estimation of genetic trends or levels 402 

of genetic groups, it might be more accurate, although this was not attempted in this study. It 403 

is possible that to get a marked difference between grouping strategies, groups may need to 404 

be more detailed than simply using breeds as genetic groups. It is likely that a year-effect 405 

within-breed may more accurately reflect the genetic differences, because not all animals 406 

with unknown parents will be base animals, and will thus have different genetic levels to start 407 

with.  408 

Breed Composition 409 

Crossbred (CB) data make up a relatively large part of the genotypes (almost 16.5%) and 410 

phenotypes (11.4%) in this study, which may not be the case in routine evaluations where PB 411 

data dominate. For most breeding organizations, most the available data is on PB, although 412 

this is likely to change in the future. Thus, it is possible that the gain from including CB 413 

genotypes would be less in routine situations than in the current study, but the genotyping and 414 

phenotyping of CB individuals will improve this situation. The proportion of CB phenotypes 415 

for GL (7.0%) was less than for TNB and LB, and may be one of the reasons that the gain in 416 

accuracy by adding CB is less for GL.  417 

Conclusions 418 

Including CB genotypes is beneficial for prediction accuracies of PB animals when these are 419 

parents of the CB for some traits, but not for all. Prediction accuracies increase with 0.9 to 420 

11.6 percentage points by including CB genotypes. The GLDLA matrix gave a significantly 421 

greater accuracy than GABX in all but one scenario (LB for breed A), although the gain in 422 

accuracy was less than 2 percentage points. Computation time for GLDLA was much longer 423 
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than for the other relationship matrices. Thus, research on how to reduce computational costs 424 

will be needed to make the GLDLA approach feasible in large scale routine evaluations.  425 
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Tables and Figures 511 

Table 1. Number of genotyped animals, individuals in pedigree and, phenotypic observations 512 

Breeds Nr. of genotyped animals Nr. of animals in pedigree 

Dutch Landrace (A) 3,238 6,620 

Large White (B) 3,735 7,240 

F1 crosses (X) 1,377 1,377 

Total 8,350 15,9321 

   

Traits Nr. of observations Nr. of phenotyped animals 

Total number born (TNB) 67,063 11,491 

Live born (LB) 66,958 11,491 

Gestation length (GL) 61,015 10,768 

Total  11,491 
1Includes pseudoparents for animals with one missing parent. 513 
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Table 2. Number of animals with phenotypes per breed, and number of animals for each 514 

breed with both genotype and phenotype information 515 

 Phenotypes1 Genotype and 

phenotype2 Breed TNB and LB GL 

Dutch Landrace (A) 4,802 4,792 2,377 

Large White (B) 5,377 5,217 2,859 

F1 crosses (X) 1,312 759 1,312 

1Phenotypes: TNB = total number born, LB = live born, GL = gestation length. 516 

2Number of genotyped animals with at least one phenotype. 517 
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Table 3. Descriptive statistics 518 

Traits1 Mean SD Minimum Maximum h2 

TNB  15.34 3.46 1 32 0.10 

LB  14.02 3.23 1 28 0.07 

GL, d 115.48 1.65 105 124 0.34 

1TNB = Total number born, LB = Live born, GL = Gestation length in days. 519 
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Table 4. Accuracy estimates of the relationship matrices (mean accuracy between 2 520 

validation sets of 1000 animals each per breed). Bold numbers indicate the largest accuracy 521 

within each column  522 

 Total number born Live born Gestation length 

Matrix1  Breed A2 Breed B2 Breed A Breed B Breed A Breed B 

PED 0.446 0.434 0.411 0.425 0.562 0.587 

GA 0.521 - 0.508 - 0.706 - 

GB - 0.575 - 0.569 - 0.713 

GAB 0.567 0.593 0.552 0.593 0.712 0.716 

GAX 0.596 - 0.559 - 0.715 - 

GBX - 0.615 - 0.619 - 0.750 

GABX 0.632 0.626 0.599 0.633 0.726 0.755 

GLDLA 0.637 0.640 0.608 0.647 0.743 0.760 

1PED = pedigree-based relationship matrix, GA = genomic relationship matrix for breed A, 523 

GB = genomic relationship matrix for breed B, GAB = genomic relationship matrix for breed A 524 

and B combined, GAX = genomic relationship matrix for breed A and crossbreds (X), GBX = 525 

genomic relationship matrix for breed B and crossbreds (X), GABX = genomic relationship 526 

matrix for both purebreds and crossbreds combined, GLDLA = genomic relationship matrix for 527 

both purebreds and crossbreds utilizing linkage disequilibrium and linkage analysis. 528 

2A = Dutch Landrace, B = Large White. 529 

 530 
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Table 5. Accuracies (mean accuracy between 2 validation sets of 1000 animals each per 531 

breed) of the different relationship matrices when using fixed and random effects from PED 532 

to create adjusted phenotype 533 

 Total number born Live born Gestation length 

Matrix1  Breed A2 Breed B2 Breed A Breed B Breed A Breed B 

PED 0.446a,b 0.434a 0.411a 0.425ab 0.562a 0.587a 

GA 0.455a - 0.451a,b,c - 0.668b - 

GB - 0.466a - 0.460a,b - 0.645b 

GAB 0.480a,b 0.472a 0.473b,d 0.460a 0.656b 0.639b 

GAX 0.486b - 0.462a,b - 0.668b - 

GBX - 0.482a,b - 0.474a,b - 0.672c,d 

GABX 0.511c 0.488a 0.489c,d 0.479a 0.663b 0.671c 

GLDLA 0.524d 0.506b 0.496d 0.498b 0.684c 0.684d 

1PED = pedigree-based relationship matrix, GA = genomic relationship matrix for breed A, 534 

GB = genomic relationship matrix for breed B, GAB = genomic relationship matrix for breed A 535 

and B combined, GAX = genomic relationship matrix for breed A and crossbreds (X), GBX = 536 

genomic relationship matrix for breed B and crossbreds (X), GABX = genomic relationship 537 

matrix for both purebreds and crossbreds combined, GLDLA = genomic relationship matrix for 538 

both purebreds and crossbreds utilizing linkage disequilibrium and linkage analysis. 539 

2A = Dutch Landrace, B = Large White. 540 

a-dAccuracies within column with different superscript letters are significantly different (P < 541 

0.05). 542 
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Table 6. Regression coefficients between estimated breeding values and adjusted phenotypes, 543 

across traits and breeds (i.e. mean across traits and breeds), for the different relationship 544 

matrices 545 

Matrix1 Mean Minimum Maximum 

PED 0.99 0.95 1.02 

GA
2 1.00 0.97 1.02 

GB
2 0.92 0.91 0.94 

GAB 0.98 0.91 1.05 

GAX
2 1.00 1.00 1.01 

GBX
2 0.96 0.93 0.99 

GABX 0.99 0.92 1.05 

GLDLA 0.97 0.92 1.00 

1PED = pedigree-based relationship matrix, GA = genomic relationship matrix for breed A, 546 

GB = genomic relationship matrix for breed B, GAB = genomic relationship matrix for breed A 547 

and B combined, GAX = genomic relationship matrix for breed A and crossbreds (X), GBX = 548 

genomic relationship matrix for breed B and crossbreds (X), GABX = genomic relationship 549 

matrix for both purebreds and crossbreds combined, GLDLA = genomic relationship matrix for 550 

both purebreds and crossbreds utilizing linkage disequilibrium and linkage analysis. 551 

2Based on fewer validation sets due to validating in only one breed. 552 
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Table 7. Standard deviations of breeding values for the different relationship matrices (mean 553 

over 2 validation sets of 1000 animals each per breed). Bold numbers indicate the largest 554 

standard deviation within each column 555 

 Total number born Live born Gestation length 

Matrix1  Breed A2 Breed B2 Breed A Breed B Breed A Breed B 

PED 0.454 0.406 0.333 0.321 0.472 0.448 

GA 0.524 - 0.390 - 0.561 - 

GB - 0.607 - 0.480 - 0.611 

GAB 0.544 0.600 0.412 0.484 0.571 0.613 

GAX 0.582 - 0.434 - 0.566 - 

GBX - 0.614 - 0.499 - 0.626 

GABX 0.608 0.621 0.608 0.510 0.582 0.635 

GLDLA 0.634 0.636 0.634 0.527 0.598 0.644 

1PED = pedigree-based relationship matrix, GA = genomic relationship matrix for breed A, 556 

GB = genomic relationship matrix for breed B, GAB = genomic relationship matrix for breed A 557 

and B combined, GAX = genomic relationship matrix for breed A and crossbreds (X), GBX = 558 

genomic relationship matrix for breed B and crossbreds (X), GABX = genomic relationship 559 

matrix for both purebreds and crossbreds combined, GLDLA = genomic relationship matrix for 560 

both purebreds and crossbreds utilizing linkage disequilibrium and linkage analysis. 561 

2A = Dutch Landrace, B = Large White. 562 

 563 
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Table 8. Off-diagonal relationship coefficients within and across breeds for GLDLA 564 

Relationship1 Mean Minimum Maximum Median Variance 

Within A  0.183 -0.227 1.229  0.178 0.012 

Within B  0.164 -0.062 0.977  0.155 0.004 

Within X  0.019 -0.136 0.819  0.015 0.003 

Between A-B -0.155 -0.281 0.595 -0.156 0.001 

Between A-X  0.014 -0.167 0.676  0.009 0.004 

Between B-X -0.002 -0.208 0.680 -0.003 0.001 

1A = Dutch Landrace, B = Large White, X = F1 Crossbreds. 565 

 566 
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Table 9. Off-diagonal relationship coefficients within and across breeds for GABX 567 

Relationship1 Mean Minimum Maximum Median Variance 

Within A  0.162 -0.215 1.149  0.157 0.010 

Within B  0.129 -0.210 0.833  0.123 0.003 

Within X  0.010 -0.133 0.660  0.006 0.002 

Between A-B -0.144 -0.259 0.603 -0.146 0.001 

Between A-X  0.009 -0.188 0.760  0.004 0.003 

Between B-X -0.012 -0.226 0.544 -0.014 0.001 

1A = Dutch Landrace, B = Large White, X = F1 Crossbreds. 568 

 569 
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Figures  570 

 571 

Figure 1. 572 
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Figure captions 573 

Figure 1. Common matrix elements of GABX and GLDLA plotted against each other. Matrix 574 

GABX is the genomic relationship matrix for both purebreds and crossbreds combined, and 575 

matrix GLDLA is the genomic relationship matrix for both purebreds and crossbreds utilizing 576 

linkage disequilibrium and linkage analysis. 577 
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