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Abstract

We investigate existence and stability of rotationally symmetric bump so-
lutions to a homogenized two-dimensional Amari neural field model with
periodic micro-variations built in the connectivity strength and by approxi-
mating the firing rate function with unit step function. The effect of these
variations is parameterized by means of one single parameter, called the de-
gree of heterogeneity. The bumps solutions are assumed to be independent
of the micro-variable. We develop a framework for study existence of bumps
as a function of the degree of heterogeneity as well as a stability method for
the bumps. The former problem is based on the pinning function technique
while the latter one uses spectral theory for Hilbert–Schmidt integral oper-
ators. We demonstrate numerically these procedures for the case when the
connectivity kernel is modeled by means of a Mexican hat function. In this
case the generic picture consists of one narrow and one broad bump. The
radius of the narrow bumps increases with the heterogeneity. For the broad
bumps the radius increases for small and moderate values of the activation
threshold while it decreases for large values of this threshold. The stabil-
ity analysis reveals that the narrow bumps remain unstable while the broad
bumps are destabilized when the degree of heterogeneity exceeds a certain
critical value.
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1. Introduction.

Cortical networks are often investigated in the framework of firing rate
neural field models. The most well-known and simplest model describing the
coarse grained dynamics of such a network is the Amari model [1]

∂tu(t, x) = −u(t, x) +

∫
R

ω(x− x′)f(u(t, x′))dx′

t ≥ 0, x ∈ R,
(1)

where the function u(t, x) denotes the activity of a neural element at time t
and position x. The connectivity function (spatial convolution kernel) ω(x)
determines the coupling between the elements and the non-negative function
f(u) gives the firing rate of a neuron with activity u. Neurons at a position
x and time t are said to be active if f(u(t, x)) > 0. Particular attention is
usually given to the localized stationary, i.e. time-independent, solutions to
(1) (so-called ”bumps”), as they are expected to correspond to normal brain
functioning. Existence and stability of these solutions have been investigated
in numerous papers (see e.g. [1], [2], [3], [4]).

Most works on bumps are restricted to one spatial dimension, however. A
more realistic modeling framework of the coarse grained activity in cortical
tissue makes use of neural field models in two spatial dimensions. Yet, these
models have been only occasionally studied in the literature. For example,
rotationally symmetric bump solutions to the two-dimensional Amari model

∂tu(t, x) = −u(t, x) +

∫
R2

ω(x− x′)f(u(t, x′))dx′

t ≥ 0, x ∈ R2,

(2)

were first examined in [5], [6]. Rigorous analysis of these solutions involving
conditions for their existence and stability was given in [7] and [8] for the case
when the connectivity function ω is expressed as a sum of modified Bessel
functions.

The modeling framework (1) and its extensions are proposed to capture
the features of the brain activity on the macroscopic level. However, they do
not take into account the heterogeneity in the cortical structure. The first
step in that direction has been taken by Coombes et al [9]. In that paper
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the heterogeneous nonlocal framework

∂tuε(t, x) = −uε(t, x) +

∫
R

ωε(x− x′)f(uε(t, x
′))dx′,

t > 0, x ∈ R,
(3)

in one spatial dimension was chosen as a starting point, where the connectiv-
ity kernel ωε(x) = ω(x, x/ε) by assumption is periodic in the second variable.
The powerful two-scale convergence method (see e.g. [10]) has been applied
by Svanstedt et al [11] to the neural field models with spatial microstructure.
It allows one to reduce (as ε → 0) the integro-differential equation (3) with
the heterogeneous connectivity kernel to

∂tu(t, x, y) = −u(t, x, y) +

∫
R

∫
[0,1)

ω(x− x′, y − y′)f(u(t, x′, y′))dy′dx′,

t > 0, x ∈ R,
(4)

where y is the periodic fine-scale variable. This limit procedure is known
as the homogenization procedure and the corresponding equation (4) is usu-
ally referred to as the homogenized Amari equation. Later on, this approach
was applied in Svanstedt et al [12] and Malyutina et al [13] to the investiga-
tion of existence and stability of the single-bump and symmetric two-bump
solutions, respectively, to the model (3).

This serves as a background and motivation for the present work. We
consider the two-dimensional homogenized Amari model analogue of (4). We
first develop a framework for studying the existence of the rotationally sym-
metric single-bump stationary solutions of this model. In the construction
procedure we proceed in a way analogous to the method outlined in [12] and
[13]: It is assumed that the firing rate function is approximated by means of
the unit step function and that the solutions are independent of periodic mi-
crovariable. Next, we develop a stability method for the bumps based on the
spectral properties of the Hilbert–Schmidt integral operators, also by follow-
ing ideas of Svanstedt et al [12] and Malyutina et al [13]. The whole stability
assessment then boils down to a study of maximal growth rate of the per-
turbations imposed on the bumps state, corresponding to the operator norm
of the Hilbert–Schmidt operator. We demonstrate the bumps construction
procedure and the stability assessment in detail when the connectivity kernel
is modeled by means of Mexican hat function. The main challenge in this
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study was the complexity of the numerical simulations caused both by the
problem of dimensionality and the fact that we were not able to use analyt-
ical expressions for the Hankel transform of the connectivity kernel (due to
its heterogeneity) and, consequently, of its integrals, as it was done in Folias
et al [14] and Owen et al [8].

This paper is organized in the following way. In Section 2 we develop
the framework for construction of the rotationally symmetric single bumps
solutions to the two-dimensional homogenized model with the unit step firing
rate function and outline the stability method for such structures. In Section
3 we illustrate the theory developed with the concrete example of the Amari
equation where the connectivity is modeled by the Mexican hat function.
Concluding remarks and outlook are given in Section 4.

2. General theory.

2.1. Existence of single bumps.

The heterogeneous Amari neural field model

∂tuε(t, x) = −uε(t, x) +

∫
R2

ωε(x− x′)f(uε(t, x
′))dx′,

t > 0, x ∈ R2,

(5)

in 2D serves as a starting point for our study. Here uε(t, x) is the electrical
activity at the time t and the point x of the neural field, f is the firing rate
function, ωε(x) = ω(x, x/ε) is the connectivity kernel which by assumption
is continuous, vanishing at infinity with respect to the first argument and
Y -periodic even function of the second argument y = x/ε (Y = [0, 1)2).
Proceeding in the way analogous to Svanstedt et al [12], we get the following
homogenized equation

∂tu(t, x, y, γ)=−u(t, x, y, γ)+
∫
R2

∫
[0,1)2

ω(x−x′, y−y′, γ)f(u(t, x′, y′, γ))dy′dx′,

t > 0, x ∈ R2,
(6)

in the limit ε → 0 where y is the fine-scale variable. The heterogeneity is
parameterized by γ ∈ Γ. Here Γ is some admissible parameter set. Let us
introduce polar coordinates (r, α) i.e. x = (x1, x2) = (r cos(α), r sin(α)). We
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are interested in existence and stability of solutions U of (6) that are radially
symmetric, independent of the fine - scale variable y and time - independent.
In polar coordinates this type of solution satisfies the following equation

U(r, γ) =

∞∫
0

2π∫
0

∫
[0,1)2

ω(x−x′, y′, γ)f(U(r, γ))dy′dα′dr′,

r ∈ [0,∞), γ ∈ Γ, x′ = (r′ cos(α′), r′ sin(α′)).

In addition, we assume that the firing rate function is given by the unit step
Heaviside function with the activation threshold h i.e. f(u) = H(u − h).
Moreover, we study stationary solutions U for which U(r, γ) > h for r < a
and U(r, γ) < h for r > a, where the bump radius a is determined by the
equality U(a, γ) = h. These solutions are referred to as single bump solutions.
The formal expression for these solutions is given by

U(r, γ) =

a∫
0

2π∫
0

〈ω〉(x− x′, γ)r′dα′dr′, (7)

where 〈ω〉 is the mean value

〈ω〉(x, γ) =

∫
[0,1)2

ω(x, y, γ)dy

is the mean value of the connectivity kernel over the period of the second
variable y. We calculate the double integral in (7) using the two-dimensional
Fourier transform of the radially symmetric function 〈ω〉(r, γ), expressed in
polar coordinates,

〈ω〉(r, γ) =

∞∫
0

〈ω̃〉(ρ, γ)ρJ0(rρ)dρ,

where Jν is the Bessel function of the first kind of order ν and 〈ω̃〉 denotes
the Hankel transform of 〈ω〉. See Bochner et al [15] for details. Following
the procedure implemented in Folias et al [14], we finally get the formal
expression

U(r, γ) = 2πa

a∫
0

〈ω̃〉(r′, γ)J0(rr
′)J1(ar

′)dr′ (8)
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for the bump solution. The bump radius a is determined by the threshold
intersection condition

U(a, γ) = h (9)

where

U(a, γ) = 2πa

a∫
0

〈ω̃〉(r′, γ)J0(ar
′)J1(ar

′)dr′ (10)

The function U(a, γ) given by the expression (10) is called the pinning func-
tion while the equation (9) is referred to as the pinning equation. Hence, for
a given threshold value of h, the equation (10) defines a level curve in the
a, γ - plane, showing the variation of the γ - dependent bumps radius a. For
each γ, one inserts the corresponding bumps radius a into the expression (8)
for the bump. In Section 3 we investigate this construction procedure when
the connectivity function ω is expressed in terms of Mexican hat function.

2.2. Stability of single bumps.

We study stability of the stationary bump state (8) in the standard way,
i.e. by perturbing the stationary solution

u(t, x, y, γ) = U(r, γ) + Φ(t, x, y, γ),

where Φ(t, x, y, γ) = ϕ(x, y, γ)eλt (see e.g. [8], [13]). Expanding to first order
in ϕ, we obtain

ϕ(x, y, γ) =
a

(λ+1)
∣∣∂rU(r, γ)|r=a

∣∣
2π∫
0

∫
[0,1)2

ω(|x−a|, y−y′, γ)ϕ(a, y′, γ)dy′dθ,

a = (a, θ).

By inserting r = a in the above expression and introducing

µ = (λ+ 1)
∣∣∂rU(r, γ)|r=a

∣∣,
we get the following operator equation

µϕ = H(a, γ)ϕ, (11)
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where

ϕ = ϕ((a, α), y, γ),
H(a, γ)ϕ((a, α), y) =

a

2π∫
0

∫
[0,1)2

ω(
√

2a2 − 2a2 cos(α− θ), y − y′, γ)ϕ((a, θ), y′)dy′dθ.

For each a ∈ (0,∞), γ ∈ Γ, the operator H(a, γ) is self-adjoint on the space
L2([0, 2π]× [0, 1)2) with the norm

‖ψ‖L2 =
√
〈ψ, ψ〉,

〈ψ, φ〉 =

2π∫
0

∫
[0,1)2

ψ((a, α), y)φ((a, α), y)dydα.

Indeed, for each a ∈ (0,∞), γ ∈ Γ, and any φ, ψ ∈ L2([0, 2π]× [0, 1)2), using
the properties of the connectivity function together with an interchange of
the integration order, we have

〈H(a, γ)φ, ψ〉 =

2π∫
0

∫
[0,1)2

a

2π∫
0

∫
[0,1)2

ω(
√

2a2 − 2a2 cos(α− α′), y − y′, γ)×

φ(α′, y′)ψ(α, y)dy′dα′dydα =

=

2π∫
0

∫
[0,1)2

a

2π∫
0

∫
[0,1)2

ω(
√

2a2 − 2a2 cos(α′ − α), y′ − y, γ)×

ψ(α, y)φ(α′, y′)dydαdy′dα′ = 〈φ,H(a, γ)ψ〉.

In addition, for any a ∈ (0,∞), γ ∈ Γ, the operator H(a, γ) is compact as
the integral operator having bounded continuous kernel. Thus, as it follows
from Hilbert–Schmidt’s theorem (see e.g. [16]), we have the following ex-
pressions for the eigenvalues µn and the corresponding growth/decay rates,
respectively:

µn = a

2π∫
0

∫
[0,1)2

ω(
√

2a2 − 2a2 cos(α− θ), y − y′, γ)dy′cos(2nθ)dθ,

7



max
∀n

{µn} = ‖H(a, γ)‖L2 ,

max
∀n

{λn} = λmax =
‖H(a, γ)‖L2∣∣∂rU(r, γ)|r=a

∣∣ − 1. (12)

The stability of the single bumps (8) - (10) can thus be assessed by means
of the operator norm ‖H(a, γ)‖L2 : When λmax < 0(> 0), then the bump is
stable (unstable).

3. Example: Mexican hat connectivity function.

In this section we illustrate the theory developed in the previous section
by letting the connectivity kernel be given as

ω(x, y, γ) =
1

σ(y, γ)
χ
( x

σ(y, γ)

)
.

with

σ(y, γ) = 1 + γ cos(2πy1) cos(2πy2), y = (y1, y2), γ ∈ Γ = [0, 1).

and

χ(x) =
1

2π

(exp(−|x|)
2

− exp(−|x|/2)

4

)
. (13)

This connectivity kernel is referred to as the Mexican hat function. The bump
radius a is then found by solving the pinning equation (10) numerically. In
Fig. 1 the graph of the pinning function is shown for selected values of
the heterogeneity parameter γ i.e. γ = 0, 0.2, 0.5, 0.9. The intersection
between the fixed threshold value h and the graph of the pinning function
yields the bumps radius. In the figure we have put h = 0.1. From this
plot we infer the following result: The generic picture consists of one narrow
and one broad bumps for each admissible activation threshold value, in a
way analogous to single bumps in the 1D case. Moreover, we also observe
that the bumps radius of both the narrow and the broad bump increases
with the degree of heterogeneity for the selected value of the threshold value.
We finally notice that for the translationally invariant case (γ = 0), our
plot resembles the results obtained in Owen et al [8]. In order to study
the variation of the bumps radius with the degree of heterogeneity in some
detail, we conveniently make use of the level curve description (9) - (10).
The result of this investigation is summarized in Fig. 2 and Fig. 3. Fig. 2
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Figure 1: The graph of the pinning function (10) in the case of the Mexican hat connectivity
function (13) for different values of the degree of heterogeneity γ. The activation threshold
is kept constant and within the range of admissible values.

and Fig. 3 support the conclusion that bumps radius a of the narrow bump
increases with the degree of heterogeneity γ. The bump radius for broad
bump increases for small and moderate values of the activation threshold h,
while it decreases with γ for larger values of h. Variation of the broad and
the narrow bump shapes with the degree of heterogeneity parameter is shown
in Fig. 4 and Fig. 5, respectively.

In order to investigate stability of the stationary solutions to (6) with the
connectivity given by (13), we study the maximal growth rate (12) as function
of the threshold value h for different values of the degree of heterogeneity.
In order to do that, we need to estimate numerically the operator norm
‖H(a, γ)‖L2 in (12). The result of this investigation is summarized in Fig. 6.
One readily observes that the narrow bumps remain unstable for all values
of the degree of heterogeneity. For the broad bumps an increase in the
degree of heterogeneity decreases the interval of activation threshold h for
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Figure 2: Level curves (9) - (10) in the case of the Mexican hat connectivity function (13)
for different values of the activation threshold values. The curves are labeled with these
values.

which the bumps are stable. When the degree of heterogeneity exceeds a
certain threshold value, the bumps will be unstable for all values of h. The
destabilization process is further detailed in Fig. 7. Notice that Fig. 6
(namely, the case γ = 0) reproduces qualitatively the same results as in
Owen et al [8].

4. Conclusions and outlook

We have investigated the existence and stability of bump solutions in 2D
of the homogenized Amari model. The starting point of this study is the
homogenized Amari neural field equation. This model has previously been
obtained as the limit of the parameterized heterogeneous neural field models
by using the two-scale convergence technique.

The bumps solutions are assumed to be independent of the periodic mi-
crovariable and the firing rate function is modeled by the Heaviside function.
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Figure 3: Magnification of the level curve description in Fig. 2 where the broad and the
narrow bumps merge together. The curves are labeled with activation threshold values.

We use the pinning function technique to study the existence of the bumps
while the stability method is based on spectral theory for Hilbert–Schmidt in-
tegral operators. The stability can be inferred from the maximal growth rate
which in turn depends on the operator norm of the actual integral operator.

We apply these procedures to the case when the connectivity kernel is
modeled by means of a Mexican hat function. The outcome of this analysis
can be summarized as follows: The generic picture consists of one narrow
and one broad bump for the set of admissible threshold values. The bumps
radius of the narrow bump increases with the degree of heterogeneity γ. In
the case of broad bumps the bumps radius increases for small and moderate
values of the activation threshold h, while it decreases with γ for larger values
of h. Numerical analysis in this example indicates that increase of the degree
of heterogeneity acts to destabilize the broad bumps while the narrow bumps
always remain unstable.
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Figure 4: The variation of the broad bump shape with the heterogeneity parameter γ.

In future works we aim at proving existence and continuous dependence
of the stationary bump solutions under transition from the Heaviside to Lip-
schitz continuous firing rate functions. The transition to piecewise-linear
firing rate functions is of particular importance for the theory of neural fields
possessing microstructure. The aforementioned continuous dependence re-
sults link the neural field homogenization theory developed in Svanstedt et
al [11] for the case of convex firing rate functions to the numerical results
obtained for the Heaviside firing rate in e.g. [12], [13], and also in the present
study.
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