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Summary

The Atlantic salmon (Salmo salar) is an iconic fish species with a widespread historic
abundance, but recent decades have witnessed a dramatic decline in wild stocks due to a
variety of anthropogenic factors, especially overfishing and loss of habitat. To mitigate the
impacts of these anthropogenic effects, millions of hatchery-reared Atlantic salmon are
released yearly into rivers through stocking programs, which aim to augment the productivity
of wild populations. However, these stocked fish are reared under uniform and stimulus-poor
hatchery conditions and consequently, they are behaviourally naive at time of release. For
example, hatchery-reared salmonids often show impaired foraging and antipredator behaviour
compared to wild conspecifics, which contributes to the observed high post-release mortality
rates in stocked fish. Although the effects of the hatchery environment on fish behaviour are
relatively well described, the brain, which is the key organ that translates environmental
stimuli into appropriate behavioural responses, remains gravely understudied. The few studies
which have investigated the impact of the hatchery environment on the fish central nervous
system have mostly mapped the expression of neuroplasticity and neurogenesis genes in the
entire brain, or large brain structures, such as the whole telencephalon. However, the brain is
a complex organ, composed of a plethora of neural subpopulations, each with distinct
functionalities and characteristics. When quantifying whole-brain levels of neuroplasticity
markers, one studies a conglomerate of many different neural subregions, and regional
differences can therefore not be detected. The aim of this thesis is to gain a better insight into
the neural differences between wild and hatchery-reared fish, specifically within neural
subpopulations of the telencephalon, and how innovative hatchery protocols can improve the
neurobiology, behaviour and post-release survival of hatchery-reared salmon.

First, we made a detailed characterisation of the neurobiology of juvenile wild and
hatchery-reared Atlantic salmon parr. This was achieved by quantifying the expression of the
neuroplasticity marker brain-derived neurotrophic factor (bdnf) and the neural activity
marker cfos in five neural populations within the telencephalon of wild and hatchery-reared
juvenile salmon under both basal and acute-stress conditions (Paper I). We found that
expression of bdnf and cfos varied greatly between the studied telencephalic subregions,
confirming that these subregions have a distinct responsiveness to environmental stimuli.
Compared to wild fish, hatchery-reared fish of the same genetic origin showed higher post-
stress neural activation in the ventral area of the dorsolateral pallium (Dlv), which is an

important brain region associated with relational memory and spatial orientation.



Furthermore, wild fish displayed stress-induced upregulation of bdnf in the dorsomedial
pallium (Dm), which regulates emotional learning and stress reactivity, while this was not the
case for hatchery-reared individuals. This study showed that targeting telencephalic
subregions can reveal expression patterns that escape detection when studying the entire
telencephalon as a whole. Moreover, we demonstrated that the hatchery environment affects
neuroplasticity and neural activation in brain regions which are important for learning
processes and stress reactivity, providing a neuronal foundation for the behavioural
differences observed between wild and hatchery-reared fish.

After we had characterised neural differences in telencephalic subregions between wild
and hatchery-reared salmon, we assessed whether structural environmental enrichment (EE)
of the rearing environment could increase region-specific neural plasticity and stocking
success in hatchery-reared salmon (Paper II). After seven weeks of treatment, EE-reared parr
showed higher post-release freshwater survival rates compared to control individuals, which
were reared in standard uniform hatchery tanks. This improved stocking performance did not,
however, appear to be linked to significant changes in the expression of telencephalic
plasticity markers.

Although structural EE has shown some, albeit inconsistent, beneficial effects on fish
stocking success across studies, hatchery managers are reluctant to implement this measure
in their hatcheries because of hygienic and operational limitations. Therefore, it is important
to develop alternative rearing methods which can enhance fish neural development and are
more practical to implement in the hatchery. One of these alternative rearing methods is
swimming exercise, which has previously been linked to increased post-release survival in
salmonids. As running exercise is associated with increased neural plasticity in mammals, we
investigated in Paper III whether swimming exercise could serve as an alternative rearing
strategy to promote Atlantic salmon neural plasticity and cognition. After eight weeks of
sustained swimming, we found increased expression of neuroplasticity-related transcripts in
the telencephalon transcriptome of exercised salmon. However, we did not find any evidence
for increased cognition in exercised fish, in terms of their ability to solve a spatial orientation
task in a maze test. While previous studies have reported positive physiological effects of
swimming exercise, such as improved growth efficiency and stress reduction, this is the first
time that exercise-enhanced neural plasticity has been reported in salmonids, building a case
for exploring further the potential of implementing swimming exercise to improve the

stocking success of reared salmonids.



In summary, the results presented in this thesis advance the field of applied fish
neurobiology in a stocking context by characterising telencephalic neural plasticity markers
in Atlantic salmon on a more detailed level than previously studied. We demonstrate that EE
can improve juvenile salmon survival during freshwater residency, but that the effects of EE
on neural plasticity are limited in the studied telencephalic regions. We identify swimming
exercise as a promising novel tool to improve neural plasticity in salmon, and we remark that
exercise has additional physiological benefits and is relatively easy to implement in
hatcheries. We therefore suggest that future work should aim at validating the potential use
of exercise in the optimisation of hatchery conditions for stocking programs, and that further
research is needed to increase our understanding on the link between the rearing environment,

the brain and behaviour.



Sammendrag

Laks (Salmo salar) er en ikonisk fiskeart som historisk sett har funnes i overflod, men

som de siste tidr har opplevd en dramatisk nedgang i villpopulasjonen. Denne nedgangen
skyldes hovedsakelig antropogene faktorer som overfisking og habitatinnskrenkning.
Som en motkraft til den minkende populasjon blir det gjennom kultiveringsprogrammer satt
ut millioner av fisk fra klekkerier og ut i elvene arlig. Disse fiskene er imidlertid vokst opp
under uniforme og stimuluslave omgivelser, noe som gjor dem atferdsmessig naive i mote
med elven. For eksempel viser utsatt laks nedsatt forings- og antipredatorevne sammenlignet
med villaks, noe som bidrar til heyere dedelighet hos denne gruppen. Selv om
klekkerimiljoets effekter pa atferd er relativt godt beskrevet, sa er hjernen, selve hovedorganet
som omsetter omgivelsenes stimuli til en passende atferd, fremdeles underbeskrevet. De fa
studiene som har underseokt pavirkningen fra klekkerimiljoet pa fiskens sentrale nervesystem
har stort sett kartlagt uttrykket av gener involvert i nevroplastisitet og nevrogenese i enten
hele hjernen eller storre hjernestrukturer, som telencephalon. Hjernen er imidlertid et
komplekst organ, sammensatt av et utall nevrale subpopulasjoner, hver med distinkte
funksjonaliteter og karakteristikker som driver ulike atferder. Nar man kvantifiserer markerer
for nevroplastisitet pa helhjerne-niva, sa studerer man et konglomerat av ulike nevrale
regioner pad samme tid og kan dermed ikke detektere eventuelle regionale forskjeller.
Hensikten bak denne avhandlingen var dels & bedre forstielsen av potensielle nevrale
forskjeller mellom klekkeri- og villfisk, og dels & undersske om innovative
klekkeriprotokoller kan forbedre nevrobiologien, atferden og overlevelsen til kultivert laks
etter elveutsettelsen.

Arbeidet startet med en detaljert karakterisering av nevrobiologien til kultivert og vill parr
(juvenil laks). Dette ble oppnddd ved & kvantifisere genuttrykket av en
nevroplastisitetsmarker, brain-derived neurotrophic factor (bdnf), og en nevral
aktivitetsmarker, cfos, i fem ulike nevrale populasjoner innad i telencephalon til parr av
klekkeri- og villaks under bade basale- og akutte stress-tilstander (Artikkel I). Her fant vi at
genuttrykket av bdnf og cfos varier sterkt mellom de ulike delene av telencephalon, noe som
bekrefter at disse delene har distinkte responser til omgivelsene. Sammenlignet med villfisk
har klekkerifisk, med det samme genetiske opphav som villfisken, heyere nevral aktivering
etter stress i den ventrale delen av det dorsolaterale pallium (Dlv), et viktig omrade av hjernen
assosiert med deklarativ hukommelse og romlig orientering. Videre hadde villfisken en

stressindusert oppregulering av bdnf i det dorsomediale pallium (Dm), et omrade som
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regulerer emosjonell laering og stressreaktivitet, mens dette ikke var tilfelle for klekkerifisken.
Dette studiet illustrerte at & underseke delregioner av telencephalon kan avslere menstre som
blir maskert ved & underseke telencephalon som en enhet. I tillegg ble det vist at
klekkerimiljoet pavirker nevroplastisiteten og den nevrale aktiviteten i hjerneomrader viktige
for laereprosesser og stressreaktivitet, noe som gir et nevralt fundament for de atferdsmessige
forskjeller som blir observert mellom vill og kultivert fisk.

Etter karakteriseringen av de nevrale forskjellene i telencephalons delregioner mellom vill
og kultivert laks, undersekte vi videre om strukturell berikelse av oppvekstmiljoet (EE) kunne
bedre den regionspesifikke nevrale plastisiteten og kultiveringssuksessen av klekkerilaksen
(Artikkel II). Etter syv ukers behandling viste EE-oppfostret parr heoyere overlevelse etter
utsetting i ferskvann enn kontrollindivider oppfostret i standard uniforme klekkeritanker. Den
forbedrede kultiveringen ble imidlertid ikke gjenspeilet i signifikante endringer i
telencephalons genuttrykk av plastisitetsmarkarer.

Selv om strukturell EE har demonstrert & gi noen, dog inkonsekvente, fordelaktige effekter
pa kultivering i flere studier, er klekkeriledere motvillige til & implementere dette grunnet de
hygieniske og operasjonelle begrensinger de kan fore med seg. Det er derfor viktig & utvikle
alternative oppfostringsmetoder som kan bedre fiskens nevrale utvikling og samtidig vaere
mer praktisk 4 innfore i produksjonen. Ett slikt alternativ er svemmetrening, noe som tidligere
har blitt knyttet til okt overlevelse hos laksefisk etter utsetting. Ettersom loping er assosiert
med okt nevroplastisitet i pattedyr, undersekte vi i Artikkel III om svemming kunne virke
som en alternativ strategi for & bedre laksens nevroplastisitet og kognisjon. Etter atte uker
med vedvarende svemming fant vi ekt uttrykk av nevroplastisitet-relaterte gentranskripter i
telencephalons transkriptom hos de trente laksene. Vi testet deres evne til romlig orientering
i en labyrinttest, men fant ingen bevis for ekt kognisjon hos den trente fisken. Til tross for at
tidligere studier har rapportert positive fysiologiske effekter av svemmetrening, slik som okt
vekst eller stressreduksjon, sé er dette forste gang at trenings-stimulert nevroplastisitet har
blitt rapportert i laksefisk, noe som indikerer at svemmetrening ber utforskes som en
potensiell mate & ake utsettingssuksessen av klekkerilaks.

Oppsummert bidrar resultatene i denne avhandlingen til en avansering av den anvendte
fiskenevrobiologien i kultiveringssammenheng gjennom & karakterisere telencephalons
nevroplastisitetsmarkeorer i laks pa et mer detaljert niva enn tidligere beskrevet. Vi viser at EE
kan forbedre overlevelsen til parr i ferskvann, men at effektene av EE pa nevroplastisitet er
avmalte i de omrader av telencephalon som ble studert her. Videre demonstrerer vi

svemmetrening som et lovende nytt verktoy for forbedring av nevroplastisiteten i laks,
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samtidig som vi understreker at trening har ytterligere fysiologiske fortrinn og er relativt lett
a fd implementert i klekkeriene. Vi foreslar derfor at fremtidige arbeid har som mal & validere
den potensielle nytten av trening i optimaliseringen av klekkeribetingelsene for kultivering
og at fremtidige undersgkelser sgker & forstd sammenhengen mellom oppvekstmiljoet,

hjernen og atferd.
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Samenvatting

De Atlantische zalm (Salmo salar) is een iconische vissoort die oorspronkelijk in
overvloed voorkwam, maar door menselijk handelen zijn de wereldwijde aantallen in de
afgelopen decennia sterk gedaald, met name door overbevissing en verlies van leefgebied.
Om afnemende wilde zalmpopulaties te ondersteunen worden jaarlijks miljoenen Atlantische
zalmen gekweekt en vervolgens in rivieren vrijgelaten via uitzettingsprogramma’s. De
omstandigheden in de kwekerijen zijn echter zeer uniform en prikkelarm, wat tot gevolg heeft
dat de vis zich naief gedraagt na vrijlating in de natuur. Vaak vertonen gekweekte zalmen
bijvoorbeeld minder efficient foerageergedrag en vallen ze snel ten prooi aan predators, en
mede daardoor hebben ze een lage overlevingskans in het wild. De effecten van het kweken
op het gedrag van vissen zijn redelijk goed beschreven, maar de effecten op de hersenen — het
orgaan dat omgevingsprikkels vertaalt in geschikt gedrag — zijn tot nu toe sterk onderbelicht
gebleven. De weinige studies die de impact van de kwekerijomgeving op het centraal
zenuwstelsel van vissen hebben bestudeerd, hebben met name de expressie van
neuroplasticitiets- en neurogenesegenen in kaart gebracht in de gehele hersenen, of in grote
hersenstructuren zoals de gehele voorhersenen (telencephalon). De hersenen zijn echter een
zeer complex orgaan en bestaan uit een overvloed aan neurale subpopulaties, ieder met
verschillende functionaliteiten en kenmerken die specifieke typen gedrag aansturen. Bij het
kwantificeren van neuroplasticiteitsmarkers in de gehele hersenen bestudeert men een
verzameling van al deze neurale populaties, en nuances tussen hersengebieden kunnen niet
worden gedetecteerd. Het doel van dit proefschrift is om een beter inzicht te krijgen in de
neurale verschillen in subregio’s van het telencephalon tussen wilde zalm en gekweekte zalm,
en hoe innovatieve kweekmethoden verbeteringen kunnen bewerkstelligen in de
neurobiologie, het gedrag en de overleving van gekweekte zalm.

Allereerst hebben we een gedetailleerde karakterisatie gemaakt van de neurobiologie van
juveniele wilde zalm en kweekzalm. Daarvoor hebben we de expressie van de
neuroplasticiteitsmarker bdnf en de neurale activiteitsmarker cfos gekwantificeerd in vijf
neurale subregio’s van het telencephalon in wilde zalm en kweekzalm, zowel voor als na
blootstelling aan een acute stressor (Paper I). We ontdekten dat de expressie van bdnf en cfos
sterk varieerde tussen de bestudeerde subregio’s, hetgeen bevestigt dat deze regio’s ieder
individuele eigenschappen hebben met betrekking tot hun reactie op externe stimuli.
Vergeleken met wilde vis vertoonde de kweekvis van dezelfde genetische oorsprong na

blootstelling aan stress een hogere neurale activering in het ventrale gebied van het
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dorsolaterale pallium (Dl1v), een hersengebied dat belangrijk is voor relationeel geheugen en
ruimtelijke oriéntatie. Gestresste wilde zalm vertoonde een verhoogde expressie van bndf in
het dorsomediale pallium (Dm), dat belangrijk is voor het emotioneel geheugen en de
stressrespons, terwijl dit niet het geval was voor gekweekte zalm. Deze studie toont aan dat
het bestuderen van neurale subregio’s in het telencephalon bepaalde expressiepatronen kan
onthullen die niet gedetecteerd kunnen worden wanneer het telencephalon in zijn geheel
bestudeerd wordt. Verder hebben we aangetoond dat het kweken van invloed is op de
neuroplasticiteit en neurale activatie in hersenregio’s die belangrijk zijn voor leerprocessen
en de stressrespons. Deze resultaten kunnen een mogelijke verklaring geven voor de
gedragsverschillen die worden waargenomen tussen wilde zalm en gekweekte zalm.

Nadat we de neurale verschillen tussen wilde zalm en gekweekte zalm hadden
gekarakteriseerd in de subregio’s van het telencephalon, hebben we in Paper II onderzocht
of de hersenplasticiteit en overlevingskansen van gekweekte zalm kunnen worden verbeterd
door de kwekerij te verrijken met objecten als stenen en planten (‘milieuverrijking”). Na zeven
weken in een verrijkte omgeving hadden gekweekte zalmen een significant hogere
overlevingskans na uitzetting in de rivier, vergeleken met een controlegroep die onder
standaard omstandigheden was gekweekt. De verhoogde overlevingskans leek echter niet
gepaard te gaan te met significante veranderingen in hersenplasticiteit.

Hoewel milieuverrijking een aantal (maar inconsistente) gunstige effecten heeft laten zien
op het succes van uitzettingsprogramma’s, zijn de eigenaren van kwekerijen terughoudend
om milieuverrijking te implementeren vanwege hygiénische en operationele bezwaren. Het is
daarom belangrijk om alternatieve kweekmethoden te ontwikkelen die een gunstig effect
hebben op de neurale ontwikkeling van vissen, zonder praktische nadelen mee te brengen
voor kwekerijen. Een van deze alternatieve kweekmethoden is het implementeren van
zwemtraining, waarvan in eerdere studies al is gebleken dat het de overlevingskans van
uitgezette zalm ten goede kan komen. Daarnaast is bekend dat rennen positieve effecten heeft
op hersenplasticiteit in zoogdieren, maar de neurologische effecten van zwemtraining zijn nog
nooit grondig onderzocht in vis. Daarom hebben we in Paper III onderzocht of zwemtraining
de hersenplasticiteit en cognitie van Atlantische zalm kan bevorderen. Na acht weken
zwemtraining vonden we verhoogde expressie van hersenplasticiteit-gerelateerde genen in
het telencephalon van getrainde zalm. Echter, we hebben geen bewijs gevonden van
verhoogde cognitie in getrainde vissen met betrekking tot het ruimtelijk geheugen bij het
oplossen van een doolhof. Hoewel eerdere studies positieve fysiologische effecten van

zwemtraining in vissen beschrijven, zoals een efficiéntere lichaamsgroei en verminderde
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stress, is dit de eerste keer dat is aangetoond dat zwemtraining ook de hersenplasticiteit van
zalmen kan bevorderen. Daarom lijkt zwemtraining een veelbelovende methode om de
overlevingskansen van uitgezette zalm te bevorderen.

De resultaten die gepresenteerd worden in dit proefschrift leveren een bijdrage op het
terrein van de toegepaste visneurobiologie doordat we de expressie van
hersenplasticiteitsmarkers in het telencephalon van Atlantische zalm op een meer
gedetailleerd niveau hebben gekarakteriseerd dan ooit tevoren. We laten zien dat
milieuverrijking de overlevingskans van jonge zalm in de zoetwaterfase kan verbeteren, maar
dat effecten van milieuverrijking op hersenplasticiteit beperkt zijn in de bestudeerde regio’s
van het telencephalon. We identificeren zwemtraining als een veelbelovende alternatieve
kweekmethode om de hersenplasticiteit in zalm te bevorderen, en merken daarnaast op dat
zwemtraining toegevoegde fysiologische voordelen biedt en relatief eenvoudig te
implementeren is in de kwekerij. Daarom stellen we voor dat toekomstige studies zich richten
op de validatie van zwemtraining als methode om kweekomstandigheden te optimaliseren, en
dat verder onderzoek de samenhang tussen kweekomstandigheden, hersenen en gedrag

nauwkeuriger in kaart brengt.
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1. Introduction

1.1 Salmon stocking

The Anthropocene, defined as the period of time during which human activities have had
a significant impact on the Earth’s climate and environment, is increasingly exerting pressures
on the planet’s natural resources and wildlife (Johnson et al., 2017). Anthropogenic effects,
including habitat destruction, pollution and overexploitation, have led to the decline of many
of the world’s fish stocks, as well as a dramatic decline in fish biodiversity. For example, it
has recently been reported that, in addition to six fish species having become extinct in the
wild, 455 fish species are now listed as critically endangered (IUCN, 2016). Among a large
number of management strategies to mitigate the impact of these anthropogenic effects,
stocking is a commonly used management tool which entails rearing fish in hatcheries and
subsequently releasing them into the wild, with the aim to augment the productivity of wild
populations (Brown and Day, 2002; Araki and Schmid, 2010). There are many aims and
reasons for stocking, and one of the most common aims is to enhance fish production for
commercial and recreational fisheries (Bell et al., 2008). Importantly, fish stocking can also
be used as a conservation tool (Cowx, 1994; Aprahamian et al., 2003) and in this context,
stocking strategies may include:

1. Enhancement: stocking to supplement an existing stock where the production is less

than the water body can sustain.

2. Mitigation: stocking conducted to mitigate lost production due to an activity that

cannot be prevented or removed.

3. Restoration: stocking carried out after the removal or reduction of a factor which has

been limiting or preventing natural production.

Thus, for various reasons, billions of fish, primarily salmonids, are stocked worldwide
every year (e.g. Cowx, 1994; Nakashima and Sasaki, 2014; Klovach et al., 2015; Tompkins
etal., 2015; Vercessi, 2015).

The Atlantic salmon (Sa/mo salar) is an iconic fish species, which historically has been
of major cultural and economic importance throughout its geographical range. It has a
complex and variable life cycle, where most individuals display an anadromous life history
(Fig. 1), which means that they spawn in fresh water and migrate to sea during their lifetime
(Thorstad et al., 2010). In general, anadromous adult Atlantic salmon spawn in freshwater
between late autumn and early winter. Eggs hatch in spring and the newly hatched fish

(alevins) typically spend several weeks in the gravel of the river bed while absorbing nutrients
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from their yolk sacks, before emerging as fry. After spending 1-8 years in the river as parr
(freshwater juveniles), salmon undergo smoltification: an adaptive specialization that
involves morphological, physiological and behavioural changes to prepare them for migration
to seawater and subsequent marine residence (McCormick et al., 1998). After their
downstream migration, the post-smolts typically spend 1-5 years in sea before returning to
their native streams to spawn (Thorstad et al., 2010). In contrast to Pacific salmon (genus
Oncorhynchus), which are all semelparous, Atlantic salmon are iteroparous and can spawn
multiple times during their lifetime. Because Atlantic salmon generally return to their native
stream, every water body hosts a distinct salmon population with unique genetic and

phenotypic adaptations, optimised for local conditions (Garcia de Leaniz et al., 2007).

Alevins

Figure 1. Generalised lifecycle of the Atlantic salmon. Illustration courtesy of the Atlantic

Salmon Trust and Robin Ade.

The migratory lifestyle of Atlantic salmon exposes them to many anthropogenic threats,
such as obstructed migration routes (Johnsen et al., 2010), pollution (Rosseland and Kroglund,

2010), over fishing and impacts from salmon farms, such as increased exposure to salmon
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lice (reviewed by Thorstad et al., 2012). As a result, wild Atlantic salmon populations are
declining throughout most of their geographical range (Parrish et al., 1998; Chaput, 2012).
Even in Norway, historically home to some of the healthiest salmon stocks in the world, the
number of wild salmon has more than halved in the past three decades (Fig. 2) and in a recent
assessment of 148 Norwegian salmon populations, only 29 populations (20%) were assessed
to be of good quality in terms of genetic integrity and population size (Thorstad et al., 2017;
Thorstad and Forseth, 2017). Currently, it has been estimated that less than half a million wild
adults return yearly to the ca. 465 salmon rivers in Norway (Jeranlid, 2017; Thorstad et al.,
2017).
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Figure 2. Estimated annual number of returning Atlantic salmon to the Norwegian coast in
the period 1983-2016. Points show annual median values and vertical bars show the range
between the minimum and maximum estimated number of salmon. The red line indicates the

moving average based on five years. Modified from Thorstad and Forseth (2017).

Worldwide, tens of millions of S. salar are stocked in rivers every year (e.g. Finstad and
Jonsson, 2001; Palmé et al., 2012; Maynard and Trial, 2013). In Norway alone, an estimated
8 million Atlantic salmon were released annually between 2005-2009 (Joranlid, 2017). The

majority of salmon stocking in Norway (approx. 4.5 million fish) involves restoration
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stocking (Jeranlid, 2017). Restoration stocking is conducted after all fish have been eradicated
in a river, for example by rotenone treatment (to combat the parasite Gyrodactylus salaris) or
by liming (to counteract river acidification). Another large contribution to salmon stocking
(approx. 2.2 million fish) comes from mandatory mitigation stocking by hydropower
companies, who are obligated by Norwegian law to stock salmon to compensate for lost
habitat, and restricted migration, due to hydro dam construction (Jeranlid, 2017).
Additionally, more than one million salmon are stocked yearly by voluntary hatcheries,
operated by local anglers or fishery owners.

Despite its historic use and current scale, fish stocking, and particularly mitigation and
enhancement stocking, is a controversial practice. While the release of hatchery-reared fish
can locally and temporarily increase total fish biomass, this is often at the expense of the
existing wild population, as hatchery-reared fish compete with wild fish for limited natural
resources (Amoroso et al., 2017). Further, stocking has been shown to reduce the genetic
diversity and fitness of wild populations, which in the long term can accelerate their decline
and extinction (Cross et al., 2007; Bartley and Bell, 2008). As the ultimate causes for
population declines in managed fisheries are almost exclusively environmental pressures,
often through anthropogenic effects, it is increasingly being argued that habitat restoration,
rather than stocking, should be the main strategy for the conservation of wild diadromous fish
populations (i.e. fish which migrate between the sea and fresh water; Araki et al., 2008; Araki
and Schmid, 2010). However, habitat restoration is a time-consuming and expensive process.
As an increasing number of wild salmonid populations are on the brink of extinction, stocking
can in some cases be justified as an important management tool to ensure the survival of these
threatened wild populations, while environmental pressures are alleviated. It is also important
to acknowledge that, in the case of voluntary hatcheries, stocking activities provide a range
of social and psychological benefits to the volunteers, which perpetuates stocking efforts,
even if the beneficial impact on local stocks is contested by scientific arguments (Harrison et
al., 2018). In summary, although stocking of juvenile fish is a controversial management tool,
it remains a popular conservation measure among several stakeholder groups. When used
properly, stocking can in some cases be a valuable and necessary tool to preserve vulnerable
salmon populations, and will thus continue to be extensively used in the foreseeable future.
However, this practice has to be used with care and many aspects of stocking programs require

optimisation.
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1.2 Adverse effects of hatchery-rearing

Careful planning, rigorous monitoring and sound hatchery practices are of paramount
importance to create successful stocking programs. The work presented in this thesis focuses
primarily on optimization of the rearing environment for juvenile fish in hatcheries. Although
the rearing environment is an important factor in fish stocking practices, it is important to
stress that many other factors need to be taken into consideration as well. For example,
hatchery managers should conduct a careful assessment of the current wild population, define
clear stocking objectives, select adequate broodstock fish and conduct crossing schemes
which maximise genetic variation, ensure that the carrying capacity of the natural system is
not exceeded, and determine the optimal timing for fish release (Cowx, 1994). Regarding the
rearing environment, it is important that hatchery conditions are aimed at the production of
fish that resemble their wild conspecifics as closely as possible in their genetic composition,
morphology, physiology and behaviour, which together will ensure that stocked fish have a
high post-release fitness. However, current hatchery technology resembles aquaculture
practices, which maximises fish growth and production, instead of optimising fish quality
from a stocking perspective (Brown, 2001). The average hatchery environment thus differs
greatly from the wild environment (Fig. 3). Compared to natural conditions, hatchery-reared
fish experience unnaturally high densities (Brockmark et al., 2010), high feeding rates at
predictable times (Noble et al., 2007), relatively little physical exercise (Skilbrei and Holm,
1998; Hoftnagle et al., 2006), and a lack of variation in abiotic factors (Johnsson et al., 2014),
physical structure (Salvanes et al., 2013), foraging opportunities on live prey (Sundstrém and

Johnsson, 2001) and predator encounters (Salvanes, 2017).
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Figure 3. Some key environmental differences between a natural stream (a) and a
conventional hatchery (b). Modified from Johnsson et al. (2014), with permission from John
Wiley and Sons.

Behavioural responses are strongly shaped by earlier experiences (Brown, 2001; Brown
et al., 2006; Ebbesson and Braithwaite, 2012; Vindas et al., 2018). Because hatchery-rearing
conditions are impoverished compared to wild habitats, hatchery-reared fish are relatively
naive and show deviating behavioural responses at time of release, compared to wild
conspecifics (Johnsson et al., 2014). The homogeneous nature of hatchery environments,
together with the high stocking density, high food abundance and lack of predation risk,
favours individual fish which display a proactive (bold) rather than a reactive (shy)
personality or coping style. That is, under intense hatchery conditions, proactive fish often
outperform reactive fish, as their higher levels of aggression allow them access to more feed
(Salvanes, 2017). In nature, however, a more proactive coping style will in some
environments most likely lead to increased predator exposure (reviewed by Olla et al., 1998;
Huntingford, 2004). In this context, selection of proactive individuals in the hatchery
environment, together with a reported tendency for reduced antipredator behaviour displayed
by hatchery-reared fish (Brown, 2001), make juvenile hatchery-reared salmon particularly

prone to predation risks immediately after release into the wild (Henderson and Letcher,
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2003). Furthermore, a lack of experience in handling live prey leads to impaired foraging
behaviour (reviewed by Olla et al., 1998; Huntingford, 2004). That is, stocked salmon have a
more selective dietary preference (Larsson et al., 2011) and show reduced stomach fullness
compared to wild fish in the immediate weeks after release (Johnson et al., 1996), as well as
higher ingestion rates of indigestible particles such as small rocks and plant material
(Munakata et al., 2000). Because of these behavioural deficits, stocked fish show substantially
lower survival rates than their wild counterparts (Jonsson et al., 1991; Johnson et al., 1996;
Kallio-Nyberg et al., 2004; Jonsson and Jonsson, 2009; Thorstad et al., 2011) and it has been
known for over half a century that the low quality of reared fish is directly related to their
poor post-release performance (Burrows, 1969).

As outlined above, traditional hatchery-rearing can have many negative effects on fish
development and behaviour, often resulting in low post-release survival of stocked fish. For
this reason, future stocking practices should incorporate new strategies aimed at increasing
the fitness of hatchery-reared fish. For example, efforts could be made to minimise the time
spent in the hatchery, by releasing stocked fish at a young life stage, preferably as eggs.
However, stocking of eggs or fry is not always possible, for instance when the carrying
capacity of a habitat is (temporarily) greatly reduced in the case of a hydropower dam. Thus,
stocking of parr and smolts is, in many cases, the only suitable management strategy.
However, the current practice of releasing millions of hatchery-reared juvenile salmonids
which are behaviourally naive, and consequently have a high post-release mortality risk,
raises concerns from both a production (financial) and welfare (ethical) perspective. It is
therefore imperative that we strive to optimise hatchery conditions to produce robust fish that
display natural “wild type” behavioural responses, and thus have a higher survival rate

following release into natural waters.

1.3 Innovative rearing methods

To mitigate the adverse effects of hatchery-rearing on fish behaviour, research efforts have
been directed at enriching hatchery practices in order to mimic wild conditions more closely
and thus produce fish which are better adapted for life in the wild (Ndslund and Johnsson,
2014). A simple measure such as reducing fish density in hatcheries has been shown to
mitigate crowding stress, reduce agonistic behaviour and improve growth rates (reviewed by
Maynard et al., 1995; Johnsson et al., 2014). Consequently, several studies have reported

higher post-release survival and adult return rates for salmonids reared at lower densities
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(Martin and Wertheimer, 1989; Brockmark et al., 2010; Brockmark and Johnsson, 2010).
However, the trade-off of rearing fish at lower densities is that the unit cost per smolt increases
significantly. As a compromise, most hatcheries employ intermediate stocking densities for
the production of fish used for stocking, while higher densities are used in traditional
aquaculture production (Maynard et al., 1995).

An alternative production strategy to prepare salmon for life in the wild is to expose
juveniles to “life skills training” during hatchery rearing. Juvenile salmon can be conditioned
to avoid future contact with predators by exposing them to predator pheromones (e.g.
Berejikian et al., 1999) or a plastic model of a predator such as a predatory bird (e.g. Roberts
et al., 2014), preferably in combination with skin extract (alarm pheromones) of conspecifics,
to condition fish to associate predator presence with danger (reviewed by Brown, 2001;
Brown et al., 2011). Alternatively, naive fish may learn antipredator behaviour by social
facilitation, meaning that fish may learn to avoid predators by observing a conspecific
interacting with a predator (Brown, 2001). To improve foraging behaviour in hatchery-reared
individuals, some studies have demonstrated that when fish are exposed to live prey in the
hatchery, this earlier experience can improve future foraging rates on live prey (Sundstrom
and Johnsson, 2001; Brown et al., 2003). Although a wealth of studies have shown that life
skills training can improve the antipredator response and foraging behaviour of salmonids in
the hatchery (e.g. Brown and Smith, 1998; Berejikian et al., 1999; Sundstrém and Johnsson,
2001), only a handful of studies have assessed the efficacy of these conditioning paradigms
after release in the wild. Although some studies report positive effects of life-skills training
on post-release survival (e.g. live prey conditioning; Czerniawski et al., 2011), several studies
did not find increased survival after life-skills training (e.g. antipredator conditioning;
Berejikian et al., 1999; Hawkins et al., 2007). Because the efficacy of life skills trainings thus
appears to be limited, and because conditioning is a relatively labour intensive and thus a
costly procedure, the effectiveness of conditioning training as a strategy to improve post-
release survival of reared salmonids remains debated.

A much studied hatchery practice aimed at increasing fish quality and welfare is structural
environmental enrichment (EE), which can be defined as “a deliberate increase in
environmental complexity with the aim to reduce maladaptive and aberrant traits in fish reared
in otherwise stimuli-deprived environments” (Naslund and Johnsson, 2014). For example, by
adding physical structures (Fig. 4), the rearing environment shows a closer resemblance to
wild conditions, which has implications for fish physiology and behaviour. For instance, in

juvenile Atlantic salmon, EE has been shown to lower basal metabolic rate (Millidine et al.,
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2006) and basal plasma cortisol levels (Néslund et al., 2013), suggesting that the presence of
physical structures can reduce stress. A complex three-dimensional environment provides
shelter opportunities from conspecifics, and EE can reduce conspecific aggression, as
indicated by a lower amount of fin damage in fish reared in enriched tanks (Berejikian, 2005;
Brockmark et al., 2007; Néslund et al., 2013). Structural EE also increases the propensity to
seek shelter in novel environments (Roberts et al., 2011; Néslund et al., 2013). Such behaviour
is likely to be beneficial to the salmon after release, as it may reduce exposure to predators.
Atlantic salmon parr reared in EE also showed increased feeding rates on natural prey
(Rodewald et al., 2011). Further, salmonids reared in EE conditions have an improved spatial
learning capacity in maze tests, compared to fish reared in barren control tanks (Salvanes et
al., 2013; Ahlbeck Bergendahl et al., 2016). Moreover, several studies have assessed the
effects of EE on post-release survival in salmonids, and while some studies report increased
survival in EE-reared fish (Maynard et al., 1995; Hyvérinen et al., 2013; Roberts et al., 2014),
others find no effects (Brockmark et al., 2007; Fast et al., 2008; Tatara et al., 2009). These
inconsistent results may be partly explained by the large variation in experimental variables
between studies. Few studies on teleosts have used an experimental approach to determine
the optimal conditions of EE, but there are indications that the duration of exposure to EE
(Manuel et al., 2015; Ahlbeck Bergendahl et al., 2016), age of the fish (Manuel et al., 2015)
and the type of enrichment (in mice; Lambert et al., 2005) can all affect the efficacy of EE in

altering animal behaviour.
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Figure 4. Example of structural environmental enrichment in an Atlantic salmon hatchery.

Environmental enrichment has thus been shown to have beneficial effects on the
development of appropriate behavioural responses in hatchery-reared salmonids, and these
improvements are, in some cases, translated into increased stocking success. However,
hatchery-managers are reluctant to add structures to their tanks for practical and hygienic
reasons, as structures obscure fish from view and cause waste accumulation, increasing the
risk of reduced water quality and disease occurrence. Therefore, there is a strong need for the
development of alternative hatchery strategies which can increase the behavioural fitness in
reared fish without requiring the addition of structures to the rearing tanks or incurring
increased labour demands. In this respect, swimming exercise seems a promising tool to
investigate further. First, swimming exercise has already been shown to have many beneficial
effects in fish rearing, including increased growth rates (reviewed by Davison and Herbert,
2013), improved feed conversion ratios (Palstra et al., 2015), and stress alleviation (reviewed
by Huntingford and Kadri, 2013). Interestingly, mammalian literature has consistently shown
that running exercise can improve cognitive performance, particularly in spatial orientation

tasks such as maze tests (Vaynman et al., 2004; van Praag, 2008). In fish, the link between
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swimming exercise and cognition has not been much investigated, aside from one study by
Luchiari and Chacon (2013), who report that a 20-day exhaustive swimming regime improved
the associative learning performance in a conditioning test in zebrafish (Danio rerio). In
salmonids, inclusion of some form of exercise regime has improved post-release survival and
adult return rates in some (Burrows, 1969; Cresswell and Williams, 1983; reviewed by
Maynard et al., 1995), but not all studies (Lagasse et al., 1980; Evenson and Ewing, 1993;
Skilbrei and Holm, 1998; Hoffnagle et al., 2006). Maynard et al. (1995) remarked that
increased exercise-induced survival rates are only observed when fish have been exercised at
moderate to high swimming speeds for a duration of at least 2 weeks. Other beneficial effects
of exercise, such as increased growth rates, often occur when fish are exercised at their
optimal metabolic swimming speed, i.e. the swimming speed at which the fish expends the
least amount of energy per distance travelled (Davison and Herbert, 2013). It thus appears
that the selection of an adequate swimming speed is an important parameter that drives the
efficacy of exercise regimes in hatchery practices, both for optimising growth and for
improving post-release survival in stocking programs. The mechanisms behind the positive
effects of exercise on post-release survival in salmonids have traditionally been linked to
increased swimming performance of exercised animals (Maynard et al., 1995). However,
since recent mammalian studies have uncovered a link between physical exercise and

increased cognition, this link should be further investigated in fish.

1.4 Fish neurobiology

The key organ which integrates stimuli from the environment and translates them into
appropriate behavioural responses, is the brain. The fish brain is composed of several
subdivisions which are shared by most vertebrates (Kotrschal et al., 1998), and a schematic
representation of a teleost brain is depicted in Figure 5. At the caudal end of the brain, the
spinal cord merges with the brain stem, which controls all somatosensory functions except
for olfaction and vision, and is thus connected to nerves such as the facial nerves, lateral line
nerves, etc. (Wullimann et al., 1996; Kotrschal et al., 1998). As in mammals, the brain stem
houses the reticular formation, which controls basic maintenance and life support functions
such as respiration, heartbeat frequency and wakefulness (Bernstein, 1970; Kotrschal et al.,
1998). The hypothalamus and pituitary together play an important role in translating sensory
inputs into appropriate neuroendocrine and behavioural responses. The hypothalamus is a

major centre for integration of telencephalic information and is responsible for making the
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decision to respond to both external and internal stimuli (Bernstein, 1970). The pituitary is
attached to the base of the inferior lobe of the hypothalamus and is composed of the
adenohypophysis and neurohypophysis (Kotrschal et al., 1998; Zohar et al., 2010). The
neurohypophysis receives axonal projections from the hypothalamus, and the
adenohypophysis contains hormone-secreting cells and is thus considered the glandular part
of the pituitary, playing an important part in reproductive neuroendocrinology and the stress
response (Wendelaar Bonga, 1997; Zohar et al., 2010). The cerebellum has traditionally been
known to be involved in motor-control (Bernstein, 1970) and also plays a role in
proprioception, eye movement and spatial orientation (Kotrschal et al., 1998). Notably, lesion
studies have shown that fish with a damaged cerebellum show impaired performance in
conditioning, emotional learning and spatial orientation tasks (Rodriguez et al., 2007),
indicating that the cerebellum is also involved in higher-order processes such as perception
and cognition. The optic tectum receives input from the afferent optic nerves and thus plays
an important role in visual perception, as well as sensory processing and motor control via its
efferent neuron projections (Kinoshita et al., 2006). The telencephalon is an important
structure for emotional and relational learning, as well as decision making (Portavella et al.,
2004; Broglio et al., 2005; Salas et al., 2006; Vargas et al., 2009). Finally, the olfactory bulbs,
which are situated at the rostral end of the fish brain, contain olfactory receptors and are thus

important for the perception of olfactory and gustatory stimuli (Bernstein, 1970).

Figure 5. Lateral view of the goldfish brain. Abbreviations: brain stem (BS), cerebellum (C),
hypothalamus (HYP), olfactory bulbs (OB), pituitary (PIT), telencephalon (TE), optic tectum
(TEC). Indicated is the relative position of the transverse section depicted in Fig. 6. Modified
from (Northcutt, 2006), with permission from John Wiley and Sons.
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The fish brain shares numerous characteristics with that of other vertebrates, but is has
classically been considered to be more primitive than the mammalian brain. However, the
classical Aristotelian concept of Scala naturae (Hodos and Campbell, 1969), in which brain
evolution has been described as a linear progression of complexity from “lower” (e.g. fish) to
“higher” (e.g. mammals) animals, is being replaced by a new understanding of brain
evolution, cognition and behaviour in vertebrates (Broglio et al., 2011). For example, even
though the fish brain lacks a 6-layered pallium (i.e. mammalian neocortex, the brain region
which in mammals is involved in higher-order brain functions related to sentience, such as
sensory perception and cognition), fish still display so-called “higher functions” and cortical-
like processes have been described extensively in fishes (Bshary and Brown, 2014). These
higher functions in fish are mostly under telencephalic control. Within the fish telencephalon,
there are several neuronal populations (Fig. 6) which are functionally equivalent to neural
structures in the mammalian limbic system, which supports a variety of functions including
emotion, motivation and memory (Morgane et al., 2005). For example, the fish’s dorsolateral
(DI) pallium has been characterised as a functional equivalent to the mammalian
hippocampus, which is involved in learning and spatial memory (Portavella et al., 2004;
O'Connell and Hofmann, 2011). The dorsomedial (Dm) pallium is functionally equivalent to
the mammalian amygdala, involved with decision-making and emotional reactions
(Portavella et al., 2004; Vargas et al., 2009). Importantly, these proposed functional
equivalences may in fact not be specific enough, since recent studies have suggested that the
Dl and Dm are each composed of dorsal (Dld, Dmd) and ventral (Dlv, Dmv) neuronal
subpopulations, each with distinct topology, connectivity patterns and, most likely,
functionality (Broglio et al., 2015). In the subpallium, the ventral nucleus of the ventral
telencephalon (Vv) has been proposed to be functionally equivalent to the mammalian lateral
septum, which works in conjunction with both the hippocampus and amygdala to regulate
decision-making and emotional learning (O'Connell and Hofmann, 2011; Singewald et al.,
2011; Goodson and Kingsbury, 2013). Thus, the fish telencephalon plays an important role in
cognition and decision making, and as such, it is a key neural structure that drives adaptive

behaviour to environmental stimuli.
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Figure 6. A transverse view of the Atlantic salmon telencephalon with a Toluidine Blue-
stained left lobe and a schematic representation of the right lobe depicting the location of the
dorsal (Dld) and ventral (Dlv) dorsolateral pallium, the dorsal (Dmd) and ventral (Dmv)

dorsomedial pallium and the ventral nucleus of the ventral telencephalon (Vv).

Experiences in the rearing environment can alter fish behaviour by modifying the brain’s
organisation and structure (Ebbesson and Braithwaite, 2012). These modifications within the
nervous system are known as ‘neural plasticity’, which is proposed to be driven by two major
neural mechanisms: structural reorganisation of the neural circuits and biochemical switching
of neural networks (Oliveira, 2009). Structural reorganisation encompasses the addition or
removal of cells to the circuit (neurogenesis or apoptosis), as well as modification of the
connectivity between neurons through axonal growth or modification of dendritic synaptic
connections (Shors et al., 2012; Fischer, 2016). Biochemical switching mechanisms allow for
the modulation of synaptic transmissions within existing fixed circuits through the use of
neuroactive molecules (neuromodulators; Oliveira, 2009). Thus, by modulating circuit
structure and connectivity, neural plasticity plays a pivotal role in the reinforcement of
memory and perception and is critical for mounting appropriate behavioural responses to
external stimuli (Shors et al., 2012). A plethora of molecules are associated with neural
plasticity, and below we summarise several key genes and proteins which are routinely used
as neurobiological markers for neural plasticity, with a particular focus on markers related to
structural reorganisation.

Neurogenesis encompasses the formation of new neurons in the central nervous system.

These newly born cells are incorporated into neural networks and may contribute to the
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formation and establishment of new memories and learning processes (Clelland et al., 2009).
For example, rodents subjected to voluntary running exercise show both increased cell
proliferation rates in the hippocampus, as well as improved performance in spatial orientation
tasks (van Praag, 2008; Voss et al.,, 2013). A commonly used marker to visualise cell
proliferation is proliferating cell nuclear antigen (pcna). Pcna is a nuclear protein associated
with DNA polymerase (Eisch and Mandyam, 2007). Pcna is therefore essential for DNA
replication and Pcna protein levels peak during the S phase of the cell cycle (Eisch and
Mandyam, 2007). Thus, by visualising Pcna protein levels or quantifying its mRNA
abundance, it is possible to quantify the level of cell proliferation in the brain. It is important
to note that Pcna occurs in all replicating cells and is therefore not a neurogenesis exclusive
marker (i.e. Pcna presence may also indicate proliferation in cells other than neurons), but
nonetheless, Pcna is much used as approximate marker for neurogenesis. Another way to
visualise proliferating cells is to inject animals with bromodeoxyuridine (BrdU). BrdU is an
analog of the nucleotide thymine and is thus incorporated into the DNA of replicating cells
(Taupin, 2007). After sacrificing the animal, BrdU labelling can be retrieved through
immunocytochemistry and all cells which have been replicating during the injection period
can be visualised (Taupin, 2007). By increasing the duration of the injection period, this
technique also allows assessment of neurogenesis on a longer temporal scale. Moreover, BrdU
labelling can be used to study apoptosis: by comparing the number of BrdU-labelled cells
between a subset of animals sampled one day post-injection, and a second subset of animals
four weeks post-injection, van Praag et al. (1999b) were able to estimate cell survival rates.
Some of the disadvantages of using BrdU are that it is a toxic and mutagenic substance and
that the marker needs to be administered repeatedly during the experimental period, which
may be stressful for the animals (Taupin, 2007).

In the adult mammalian brain, cell proliferation is limited to just two distinct zones: the
subventricular zone of the lateral ventricles and the dentate gyrus, which is a substructure of
the hippocampus (Barker et al., 2011). Fish, however, display neurogenesis in a multitude of
proliferation zones throughout their entire lives (Fig. 7) and rates of cell proliferation in the
teleost brain are one to two orders of magnitude higher than in the mammalian brain (Zupanc,
2006; Kaslin et al., 2008; Zupanc, 2008; Zupanc and Sirbulescu, 2011). These higher cell
proliferation rates, besides imparting remarkable neural plasticity, also contribute to the fact
that upon neural damage, teleost fish species have an incredible capacity for regeneration of

the central nervous system (Kaslin et al., 2008).
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Figure 7. Sagittal view (cerebellum (C) to the left, olfactory bulb (OB), to the right) of
generalised vertebrate brains, showing locations of proliferating cell populations that produce
neurons in the adult brain (yellow dots). While cell proliferation is restricted to the lateral
ventricles (V) and the hippocampus (Hp) in mammals, teleosts show proliferation in a large
number of brain regions. Adapted from Barker et al. (2011) with permission from John Wiley

and Sons.

Aside from neurogenesis and apoptosis, neural connectivity is another mechanism of
structural reorganisation which plays a major role in learning, and is established through
processes such as axon growth, as well as the growth or modification of dendritic spines
(Ebbesson and Braithwaite, 2012). An extensively studied marker for neural plasticity in
vertebrate research is brain-derived neurotrophic factor (bdnf). Bdnf is a protein from the
neurotrophin family that promotes synaptic plasticity, as well as neurogenesis and cell
survival, and is thus capable of altering the wiring of the brain in response to environmental
cues (Mattson et al., 2004; Pang et al., 2004; Shors et al., 2012; Gray et al., 2013). Another
marker for neural plasticity is the proneuronal gene neurogenic differentiation factor 1
(neurod), which is important for neurogenesis (von Bohlen und Halbach, 2007) and dendritic
spine stability (Gonda et al., 2009), and has been linked to improved cognitive performance
and memory in fish (Salvanes et al., 2013).

Finally, a relevant group of neural markers to mention are the immediate early genes (IEG;
Okuno, 2011). Immediate early genes, such as cfos and activity-regulated cytoskeleton-
associated protein (arc), are not directly involved with structural neural plasticity, but they
are highly expressed after neurons are activated. Therefore, by visualising IEG mRNA or

protein levels in neural tissue, one can obtain a “snapshot” of neuronal activation patterns in
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response to specific stimuli (Hoffman et al., 1993; Okuno, 2011; Pavlidis et al., 2015).
Furthermore, IEGs may play an important role in neural processes such as consolidation of
long-term synaptic plasticity and memory formation, as these cognitive processes are
impaired in IEG-knockout mice (Okuno, 2011). Thus, visualisation of IEGs can provide an
insight into neural circuit activation in response to certain environmental stimuli, and help us

understand how these neural circuits may be linked to behaviour.

1.5 Neural plasticity and the hatchery environment

As outlined in Sections 1.2 and 1.3, the effects of hatchery-rearing on salmonid
behavioural responses have been described to some extent. In contrast, the brain — the key
organ that stores earlier experiences, processes environmental stimuli and subsequently
generates appropriate behavioural responses — remains much understudied. However, there is
some evidence of brain morphology differences between wild and domesticated salmonids.
For example, hatchery-reared juvenile rainbow trout (Oncorhynchus mykiss) have been
reported to have relatively smaller-sized brain structures such as the optic tectum, cerebellum,
olfactory bulbs and telencephalon, compared to wild conspecifics (Marchetti and Nevitt,
2003; Kihslinger et al., 2006; Kihslinger and Nevitt, 2006). In addition, the same pattern was
observed in hatchery-reared Chinook salmon (O. tshawytscha) alevins, which showed smaller
total brain volumes compared to river-reared fish (Kihslinger and Nevitt, 2006). Although
this may appear to be an important difference between hatchery-reared and wild fish, it is
actually not possible to interpret how brain size relates to processing capacity (e.g.
neurogenesis and brain plasticity differences) and, ultimately, behaviour and post-release
survival (Ebbesson and Braithwaite, 2012; Johnsson et al., 2014). A few studies have
compared the neurobiology of wild and hatchery salmonids in more detail and quantified
expression levels of neural plasticity markers in the brain. For example, whole brain
microarray analysis of male wild and hatchery-reared S. salar revealed 72 differentially
expressed genes (Aubin-Horth et al., 2005). In the weakly electric fish Brachyhypopomus
gauderio, BrdU labelling revealed greater rates of cell proliferation in the hindbrain, anterior
midbrain and posterior midbrain in wild fish, compared to hatchery-reared conspecifics
(Dunlap et al., 2011). Thus, the aforementioned studies have quantified cell proliferation
markers on the level of whole brain or large brain structures. However, behavioural

performance (e.g. spatial orientation or social memory) is under control of neural subregions
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on a finer scale (e.g. D1 and Dm, respectively) and to our knowledge, no study to date has
compared the neurobiology of wild and hatchery-reared salmonids on such a detailed scale.

In terms of effects of EE on brain structure, some studies have shown increased cerebellum
size in fish reared under enriched conditions (e.g. Kihslinger and Nevitt, 2006; Nislund et al.,
2012) but as mentioned above, it is difficult to infer functional implications of altered brain
size. Interestingly, Salvanes et al. (2013) found that an 8-week enrichment period in Atlantic
salmon parr increased mRNA expression of the neuroplasticity marker neurod in the whole
telencephalon, and this was associated with increased cognitive performance in a spatial
orientation task. Similarly, a study on zebrafish showed that one-week housing in enriched
tanks increased cell proliferation in the whole telencephalon, evidenced by increased
abundance of Pcna protein (von Krogh et al., 2010). In contrast, Manuel et al. (2015) reported
decreased telencephalic neurod and pcna transcript abundance in zebrafish after six months
of EE rearing. These contradicting results may be partly explained by differences in the
enrichment protocol, but could also be confounded by the fact that all studies quantified gene
expression in the telencephalon as a whole. As mentioned above, the telencephalon is
comprised of a myriad of neuronal populations and networks with specific functionalities. In
response to a stimulus, signalling molecules may be upregulated in one, but downregulated
in another telencephalic region (Summers and Winberg, 2006). Importantly, when
quantifying gene expression in the entire telencephalon, all regional expression patterns are
pooled into one average expression level, which may not be reflected in the individual areas.
With a wealth of knowledge regarding the effects of enrichment on the behaviour of fish, it is
likely that EE should also lead to specific subregional changes in the telencephalon. For
example, as EE can improve spatial memory in S. salar and O. mykiss (Salvanes et al., 2013;
Ahlbeck Bergendahl et al., 2016) it could thus be expected that there would be specific EE-
associated differences in neural plasticity in the D1. However, to the best of our knowledge,
no studies to date have assessed the effects of EE on the expression of neural markers within
telencephalic neuronal populations on a detailed level.

Interestingly, a number of studies have previously investigated the effects of swimming
exercise on post-release survival of salmonids (e.g. Burrows, 1969; Lagasse et al., 1980;
Cresswell and Williams, 1983; Evenson and Ewing, 1993). In these studies, the authors
focused mainly on the role of increased cardiovascular performance and exercise-enhanced
growth on stocking success. Their work predated a wave of mammalian research that
commenced in the late 1990s (e.g. van Praag et al., 1999b), demonstrating that physical

running exercise promotes neurogenesis in the adult rodent brain, particularly in the dentate
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gyrus, a substructure of the hippocampus, which is important for learning and memory
(Vaynman et al., 2004; van Praag, 2008). Since then, a vast body of literature has described
the effects of exercise on mammalian neurogenesis, mediated through growth factors,
neurotransmitters and neurotrophic factors, and how these neural effects can boost cognition
and even prevent cognitive decline (reviewed by Ma et al.,, 2017). Even though the
mammalian and teleostean ancestral lines diverged around 400 million years ago, mammals
and fish share many conserved neurochemical, topological and functional neural
characteristics (Winberg and Nilsson, 1993; O'Connell and Hofmann, 2011; Broglio et al.,
2015). Furthermore, cell proliferation is more widespread in the adult fish brain compared to
the mammalian brain (Barker et al., 2011; Zupanc and Sirbulescu, 2011). Therefore, it has
been hypothesised that exercise-induced stimulation of neurogenesis and cognition should
also occur in fish (Huntingford and Kadri, 2013). However, to date, the link between
swimming exercise and neurogenesis/neural plasticity in fish has received remarkably little
attention. Interestingly, in a recent study, Fiaz et al. (2014) subjected zebrafish larvae to a six-
day intermittent swimming exercise regime and found increased expression of markers which
have been associated with cell differentiation and cell growth in the mammalian hippocampus
(Ma et al., 2009; Chung et al., 2011). Thus these preliminary findings hint towards the
possibility that exercise-induced neurogenesis might also occur in the fish brain. However,
further research is needed to confirm this hypothesis and explore whether swimming exercise
may also promote neural plasticity in fish, and whether this may be linked to increased

cognition.

1.6 Knowledge gaps

In summary, previous studies have established that rearing fish under uniform, stimulus-
poor hatchery conditions has negative effects on fish behaviour and stocking success and that
these negative effects may be partly alleviated by enhancing the rearing environment. Despite
the central role of the brain in driving fish behaviour and, consequently, post-release survival,
little is known about the effects of the rearing environment on fish neurobiology. A few
studies have compared neural plasticity and neurogenesis markers between wild vs. hatchery-
reared fish or between fish reared in conventional vs. enriched environments, but these
comparisons have often been made at either the level of the whole brain or at the level of large
brain structures (e.g. the entire telencephalon, midbrain, hindbrain etc.). However, recent

developments in fish neurobiology provide new insights into the complexity of the fish brain.
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These studies have provided detailed maps of neural topography and functionality (Folgueira
et al., 2004a; Northcutt, 2006; Salas et al., 2006), which can be used to conduct more region-
specific studies on the control of behavioural responses by specific neural networks. In this
context, it is important to bear in mind that studies on large brain structures provide an
oversimplified image of the link between brain and behaviour at best, and there is an increased
need for a better understanding on how the environment affects the fish brain, and
consequently, fish behaviour. Additionally, current methods for hatchery optimisation in
stocking programs encompass strategies that are labour intensive (e.g. antipredator or
foraging conditioning) or that raise practical concerns for daily hatchery management
practices (e.g. environmental enrichment). Thus, there is need for the identification of novel,
practical hatchery techniques that can enhance fitness traits such as behaviour and cognition,

without interfering with hatchery operations.
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2. Aims of the study

The general objective of this thesis is to investigate how improvements to the hatchery
environment may increase the fitness of hatchery-reared Atlantic salmon in stocking
programs. This was done by assessing the effects of hatchery rearing conditions on neural
plasticity, as well as behavioural responses which are of critical importance for post-release

survival. To achieve this objective, three sub aims were identified:

1. Identify the specific telencephalic subregions in which neuroplasticity markers are
differently expressed between juvenile wild vs. hatchery-reared Atlantic salmon

(Paper I).

2. Determine how environmental enrichment may affect neuroplasticity and post-release

survival of hatchery-reared Atlantic salmon parr (Paper II).
3. Assess the potential benefits of sustained swimming exercise as a novel hatchery

strategy to increase neural plasticity and cognitive performance of hatchery-reared

Atlantic salmon (Paper III).
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3. Methodological considerations

3.1 Fish origin

All experiments presented in this thesis were conducted using Atlantic salmon patr from
the river Imsa population. The river Imsa is a 1-km long river located close to the city of
Stavanger in south-western Norway (58°50°N; 5°58°E). The river carries water from Lake
Liavatn (29 meters above sea level) downstream towards the ocean, into the Hogsfjord (Fig.
8). A 2-m high barrier at the upstream limit of the river prevents fish from migrating upstream
into Lake Liavatn. The annual mean water discharge of the river Imsa is 5.1 m® s™!, varying
from 10 m® s”! in autumn and winter to 2 m*® s in summer (Jonsson et al., 1988; Bergesen et
al., 2017), and the water temperature fluctuates between 2°C in winter to 20°C in the summer

(Jonsson et al., 1998).

Figure 8. The location of the river Imsa in south-western (1), the fish trap (2) and Lake

Liavatn (3). Modified from Jonsson et al. (1998) with permission from Wiley and Sons.
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In 1975, a Wolf-type fish trap was constructed at the mouth of the river, approximately
150 m upstream from the estuary (Fig. 8). This fish trap intercepts all upstream and
downstream migrating fish and because of continuous fish monitoring efforts since the 1970s,
the populations of Atlantic salmon, brown trout (Salmo trutta) and European eel (Anguilla
anguilla) in the river Imsa are among the best studied in Norway. In 1978, the Norwegian
government opened a research station (“Forsnkingsstasjon for ferskvannfisk™) near the mouth
of the river Imsa, and in 1988 this research station was acquired by the Norwegian Institute
for Nature Research (NINA), which has, since then, been extensively involved with fish
monitoring and stocking in this river (Bergesen et al., 2017). The salmon population in the
river Imsa is currently at a historic low, and in 2016, aside from 106 adults of stocked origin,
only 15 wild adults returned to the river to spawn (Bergesen et al., 2017). The majority (78%)
of wild Imsa Atlantic salmon smoltify at two years of age, while 14% and 7% smoltify at one
and three years of age, respectively (Jonsson et al., 1998). Downstream smolt migration
typically occurs in mid-May and migration timing is water temperature-dependent (Jonsson
and Ruud-Hansen, 1985). Since the 1980s, the research station and NINA hatchery have been
rearing thousands of first generation (F1) offspring from wild parents every year, as part of
their stocking efforts. Offspring are reared in river water from the Imsa. Because all migrating
fish are intercepted and both wild fish as well as F1 hatchery-reared offspring from wild
parents are available, the river Imsa is a perfect system to perform comparative studies of wild

and hatchery-reared fish, as well as to study the effects and efficacy of stocking.

3.2 Experimental setup

In Paper I, we compared the expression of neuroplasticity markers in telencephalic
subregions between wild and first generation hatchery-reared fish from the Imsa strain, under
basal and acute-stress conditions. Fish were subjected to confinement stress, which is a
commonly used paradigm which exposes fish to a standardised stressor (e.g. Pottinger et al.,
1992), which in our case entailed a 30-min isolated confinement in a 10-L bucket filled with
2 L of river water. Working with wild salmon poses a number of challenges, such as the
limited availability of wild fish and the impact of the capture procedure on their homeostasis
and specifically, their stress response. Our initial approach was to sample wild fish which
were intercepted in the Wolf trap during downstream migration, as we hoped that this capture
method would be less stressful to the fish than capture by net directly from the river. However,

after a pilot study in which we compared the endocrine stress response (basal vs. acute stress
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response) between hatchery fish and wild fish sampled from the Wolf trap (Fig. 9), it was
determined that this method was not appropriate. In short, we found that smolts sampled from
the Wolf trap displayed very high levels of plasma cortisol at basal conditions, indicating that
this capture method had been stressful to the fish. Therefore, in order to minimise capture-
related stress in wild fish, we decided to capture wild fish by electrofishing instead. In
electrofishing, an electric current is passed through the water, which stuns the fish for a few
seconds, while invoking involuntarily movement towards the anode (Bohlin et al., 1989).
Adopting this methodology proved more successful than the pilot study, with wild salmon
parr captured by electrofishing displaying a normal endocrine stress response (i.e. elevated
plasma cortisol levels) when subjected to an acute confinement stress (Paper I). To control

for effects of electrofishing, hatchery-reared fish were also shocked for 2 seconds prior to

sampling.
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Figure 9. Pilot study showing that plasma cortisol levels at basal and post-acute stress
conditions were elevated in wild Atlantic salmon intercepted by the Wolf-type fish trap. Black

bars represent mean = SEM values and grey circles show individual values.

Our aim in Paper II was to assess the effects of EE on neural plasticity and post-release
survival in Atlantic salmon parr. Many different EE paradigms can been used, and
experimental setups often differ in parameters such as the type of objects used, rearing density
and duration of the exposure. For our study, we decided to replicate the experimental setup
(Fig. 10) as described by Salvanes et al. (2013), as they report that their particular
experimental setup increased neuroplasticity (neurod mRNA abundance in the whole

telencephalon) and cognition (increased performance in a spatial orientation task) in Atlantic
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salmon which were of similar age and from a comparable origin as our fish (i.e. F1 offspring

from wild parents from a Norwegian river).
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Figure 10. The experimental setup for Paper II, depicting a control (left) and enriched (right)
tank.

In Paper III, fish were subjected to sustained swimming exercise for eight weeks, after
which their neural plasticity and cognitive capacity in a spatial orientation task were assessed.
To our knowledge, there are no published studies that have assessed the effects of swimming
exercise on brain plasticity and cognition in salmonids. Therefore, we had to refer to
mammalian work and salmonid swimming physiology studies to predict appropriate
experimental conditions for this study. First, we had to select an appropriate swimming speed.
The known beneficial effects of exercise in fish, such as improved growth rates and feed
conversion efficiency (reviewed by Davison and Herbert, 2013), usually occur near optimal
swimming speed (Uqpt), which is the swimming speed at which the fish spends the minimum
amount of energy to cover a certain distance (Tudorache et al., 2013). At swimming speeds
below Uopt, fish may allocate excess energy towards negative behaviours such as aggression
(type 11 allostatic overload; McEwen and Wingfield, 2003), while swimming speeds above
Uopt may lead to stress and anaerobic respiration, which consequently produces an oxygen
debt, leading to chronic fatigue (type I allostatic overload; McEwen and Wingfield, 2003).
Interestingly, Maynard et al. (1995) observed that earlier studies, which determined the effects
of swimming exercise on salmonid post-release survival in stocking programs, only found
positive effects of exercise on post-release survival when animals were exercised at high

swimming speeds, suggesting that the beneficial effects of exercise on stocking efficiency are
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also speed-dependent. The optimal swimming speed varies with fish size (e.g. Palstra et al.,
2015), and from pilot studies we know that Ugp for 200-mm Atlantic salmon parr is 3.8 body
lengths (BL) s (A.P. Palstra, unpublished data). The maximum swimming speed of Atlantic
salmon parr from the Imsa population is known to be between 5.5 — 5.8 BL s”! for individuals
of 140 mm fork length (FL), which is close to the size of fish used in our experiment (123
mm FL). Thus, we had a good indication that a swimming speed close to 3.8 BL s (47 cm s~
! for salmon of 123 mm FL) would represent an exercise regime that would lead to positive
physiological effects, and still be well within the aerobic scope of the animals. As this study
was conducted with a future application in fish stocking practices in mind, we verified that a
flow rate near 47 cm s is also ecologically relevant: preferred water velocities of wild
Atlantic salmon parr in their natural habitat have been reported to be between 20-60 cm s
(reviewed by Symons and Heland, 1978; Heggenes et al., 1999; Armstrong et al., 2003). In
order to ensure that smaller individuals would also be able to sustain the exercise regime, we
selected an exercise speed of 43 cm s! (3.5 BL s! for the average-sized fish).

Salmon were exercised in a 3,600-L Brett-type swim flume (Brett, 1964), which is suitable
for forcing groups of fish to swim at a predetermined speed (e.g. Palstra et al., 2015; Mes et
al., 2016). In this flume, two groups of fish are housed in adjacent 525-L compartments, where
fish in the outer compartment are subjected to a specific flow rate (exercised fish), while this
flow is diverted from the fish housed in the inner compartment, which thus serve as
unexercised controls (Fig. 11). While this swimming flume is an effective experimental setup
to study the effects of swimming exercise on fish physiology and behaviour, it is not suitable
for rearing large numbers of fish. Most salmonid hatcheries use circular rearing tanks for fish
production, and to ensure that our results would be readily applicable to hatchery practices,
we also included a swimming treatment in a standard hatchery tank. In this tank, we were able
to achieve a maximum flow rate of 36 cm s (2.9 BL s!) near the tank wall at the water
surface, because the maximum flow rate was limited by the diameter of the outflow pipe. This
flow rate is slightly lower than that of the Brett-type flume, but as swimming in circular
trajectory incurs slightly higher energetic costs than swimming in a straight line (Domenici et
al., 2000), this difference is likely to be negligible. Inside a circular tank, flow rates will
inevitably be higher near the tank wall compared to the centre, and flow rates generally
decrease with depth. In our experimental tank, measured surface flow rates varied from 10
cm s (0.8 BL s™!) in the centre to 36 cm s™! (2.9 BL s™') along the wall, while flow rates near
the bottom of the experimental tank varied from 5 cm™ (0.4 BL s™!) at the centre to 27 cm™

(2.2 BL s!) along the wall. Thus, by manoeuvring themselves within the tank, fish could
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‘choose’ their preferred swimming speed. For control treatment, a group of fish was housed
in an identical tank with negligible (< 5 cm s') water flow. An additional advantage of
including a volitional swimming speed treatment is that animals often prefer to swim near
Uopt (Tudorache et al., 2011), and a tank with a variable water flow thus allows fish of all
sizes to find the right flow rate that subjects them to their individual Ugp. Furthermore, we
hypothesised that there may be positive welfare effects associated with voluntary exercise, as
fish can decide to reduce their metabolic expenditure which may have stress-alleviating
effects. In summary, this experimental setup allowed us to compare the effects of different
exercise regimes, i.e. a “forced” swimming speed (in the Brett-type flume) and a ‘volitional’

swimming speed (in standard hatchery tanks) on telencephalic neural plasticity.

Figure 11. The experimental setup in Paper III. A side view (A; photo by Yoeri van Es) and
schematic top view (B) of the 3,600 L swim-flume that was used to force fish to swim at a
sustained speed of 3.5 BL s™\. An electric motor (M) propelled an impeller within the flume,
which created a water current which was directed through the outer compartment, forcing fish
to swim at a predetermined speed, while fish in the inside compartment were not subjected to
an increased water flow and thus served as unexercised control animals. Fish exercised at a
volitional swimming speed were housed in cylindrical tanks with high water flow (C), while

their respective controls were housed in identical tanks, without additional flow (D).
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To assess the effects of exercise on cognition, fish were subjected to a maze test after three
and eight weeks of swimming. We used the four-armed maze setup (Fig. 12) and procedures
as described by Salvanes et al. (2013), because they showed robust treatment effects (EE-
rearing vs. control rearing) on spatial memory performance of juvenile F1 offspring of wild
Atlantic salmon. Due to logistic constraints, we were not able to test both forced and volitional
groups in the maze test and thus we had to prioritise one of these groups (and their respective
controls). While in mammals, both forced and volitional exercise regimes have been reported
to enhance spatial learning (Fordyce and Farrar, 1991; Fordyce and Wehner, 1993; van Praag
et al., 1999a; van der Borght et al., 2007), it seems that voluntary exercise is more effective
at inducing hippocampal neurogenesis than forced exercise, as evidenced by the large volume
of mammalian studies which have implemented voluntary exercise regimes (reviewed by van
Praag, 2008). Therefore, we subjected fish from the volitional exercise regime, and their

respective controls, to the maze test at three and eight weeks after the onset of swimming.

Figure 12. Experimental setup of the maze test used in Paper III. Fish were placed in a start
box (A) and after a hatch was remotely opened, fish could explore the arena (B), which was
connected to one open transparent arm (C) and three adjacent closed arms. After exiting the
open arm, fish entered the holding tank (D), where they remained until all fish were tested.

Three conspecifics housed in an aquarium adjacent to the arms (E) served as social stimulus.
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3.3 Neuroplasticity

3.3.1 In situ hybridisation and cell quantification

In situ hybridisation (ISH) is a histological technique which enables visualisation of
specific DNA or mRNA fragments within tissue (Jin and Lloyd, 1997). In this thesis, we used
digoxigenin-labelled complementary RNA probes (‘riboprobes’) to visualise cfos and bdnf-
expressing cells in parallel transverse sections of telencephalon tissue. The ISH protocol was
conducted as described by Ebbesson et al. (2011), and slides from all treatments were stained
simultaneously in the same Coplin jar to avoid differences in colouration due to handling
effects. After staining, all slides were photographed and transcript-expressing cells were
counted in the DId, Dlv, Dmd, Dmv and Vv subregions by a semi-automated approach using
the Fiji platform (Schindelin et al., 2012) in Image]2 (Rueden et al., 2017). To this end,
images were converted into grayscale (8 bit), the neural area of interest was manually selected
(Fig. 13C) and the black and white threshold was adjusted to match the labelled cells in the
original image (Fig. 13D, E). Then, all labelled cells that measured between 15-500 pixels
were automatically counted using the ‘Analyse Particles’ command (Fig. 13F). This
quantification process is binary and cells are either counted as transcript-expressing or non-
expressing, based on the labelling intensity of the digoxigenin riboprobes. Because the
number of available brain sections differed per fish, we corrected for the number of counted

sections by calculating the average number of labelled cells per section of each subregion.
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Figure 13. Semi-automated quantification of transcript-labelled cells. Panel A depicts the
entire telencephalic section and the outlined region (dashed line) is depicted in panel B. To
quantify the number of labelled cells, the area of interest was manually selected (C), the image
converted to greyscale (D), the black and white threshold was adjusted to resemble the
original picture as closely as possible (E), and only cells between 15-500 pixels were
automatically quantified by the software (F). The green arrow indicates a cell which shows
sufficient labelling to be quantified in panel F, while the orange arrow indicates a cell with
insufficient labelling intensity to be quantified. The black arrow shows material which is not
a labelled cell, and which is effectively excluded from the quantification analysis by adjusting

the black and white threshold in panel E.

Many alternative methods exist to quantify the number of cells of interest in histological
sections. For example, the number of counted cells can be expressed relative to the surface
area or volume of the brain region of interest (e.g. von Krogh et al., 2010; Serensen et al.,
2011), or alternatively, the total number of labelled cells in an entire brain area can be
estimated by multiplying the number of labelled cells per section by the distance between the
serial sections (e.g. van Praag et al., 1999b). Both of these methods incorporate a size-
correction factor, which can be useful when aiming to correct for unwanted size differences
between treatment groups. In Paper I, we compared the region-specific telencephalic

expression of cfos and bdnf between wild and hatchery-reared individuals. The aim of
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stocking programs is to produce fish which resemble their wild conspecifics as closely as
possible, but due to favourable rearing conditions, such as a lipid-rich diet, hatchery-reared
individuals are generally significantly larger compared to their wild age-matched counterparts
(Jonsson and Jonsson, 2009). Thus, unequal body size is an inherent and unavoidable
difference between the two experimental groups, and the implementation of size corrections
in the quantification of labelled cells could thus have disproportionate corrective effects when
comparing the two groups. For this reason, we chose to report the average number of stained
cells per telencephalic section, without correcting for area size, to provide an objective

characterization of the expression patterns of these neuroplasticity markers.

3.3.2 Microdissections and qPCR

Quantitative real-time polymerase chain reaction (qQPCR) is a methodology which allows
for quantification of target DNA molecules (Bustin, 2002), and can be used to quantify
expression of specific mRNA fragments extracted from a tissue of interest. To this end, total
RNA is extracted from biological tissue and after a DNase treatment, to ensure all genomic
DNA is removed, cDNA is subsequently synthesised from the RNA isolate by reverse
transcription (Bustin et al., 2009). Primer pairs should be designed to specifically target the
gene of interest, and preferably span exon-exon junctions to avoid the risk of false positive
results from genomic DNA contamination (Bustin, 2000). In qPCR, these gene-specific
primers are used to amplify target cDNA in the tissue of interest through consecutive cycles
(generally approximately 40 cycles) of polymerase chain reaction (PCR), where the
synthesised DNA is labelled by a fluorescent signal. The fluorescence of each sample is
measured after each replication cycle and this measure of fluorescence can be translated into
a quantitative gene expression value by comparing the signal to a standard curve (Bustin,
2000). Gene expression values are expressed relative to the expression of reference genes,
allowing comparison of relative expression levels between samples (Vandesompele et al.,
2002). In this process, it is important to first verify the stability of the reference genes between
samples (e.g. Vandesompele et al., 2002; Andersen et al., 2004; Pfaffl et al., 2004, Silver et
al., 2000).

Several previous studies have used qPCR to assess the effects of EE on the expression of
neuroplasticity markers in the entire telencephalon (e.g. Salvanes et al., 2013; Manuel et al.,
2015), but to date, no study has used qPCR to study the effects of EE of neuroplasticity marker
expression within specific telencephalic subregions. Using microdissections, it is possible to
isolate tissue from distinct neural populations (e.g. Wood et al., 2011; Basic et al., 2013;
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Vindas et al., 2017), which can subsequently be used for gPCR analysis. In Paper II, we used
a modified 23 gauge needle to microdissect regions of interest from frozen 100 um serial

telencephalon sections.

3.3.3 RNA sequencing

RNA sequencing (RNA-seq) is a technique that can detect and quantify transcript
abundance of thousands of genes simultaneously in tissue samples. The field of RNA-seq is
advancing rapidly and many sequencing technologies currently exist, including Roche/454,
Illumina/Solexa, Life/APG and Nanopore sequencing (Metzker, 2009). In Paper 111, we used
Illumina technology to map the transcriptome of exercised and non-exercised Atlantic salmon
parr. Specifically, we used the Illumina HiSeq2500 system to sequence millions of 50 base
pair (bp) single-end reads from the transcriptome per sample. These short reads were then
annotated to the Atlantic salmon reference genome (Lien et al., 2016). After correcting for
gene length, the relative number of reads can be expressed for each individual fish, and
differences in expression patterns can be identified between treatment groups (Robinson et
al., 2010). Additional gene ontology (GO) analysis was used to group transcripts into
categories by common biological properties, thus providing greater insight into the functional
relevance of observed differences in expression patterns (Young et al., 2010). To perform the
GO analysis, we employed the R package GOseq, including correction for transcription length

(Young et al., 2010).

3.3.4 Neuroplasticity — methodological considerations

As outlined in the previous sections, we have used three different methodologies to study
the expression of neuroplasticity markers, all of which visualise or quantify mRNA. Each of
these methodologies has advantages and disadvantages. /n situ hybridisation visualises
transcript abundance of target genes in the entire brain section and thus provides a clear and
comprehensive overview of which neural subpopulations may be of interest. The
disadvantage of using ISH to quantify expression of neurobiological markers is that the
quantification process lacks power in comparison to qPCR and RNA-seq. That is, in our
analysis, the quantification process is binary: cells are either classified as expressing or non-
expressing, while the relative transcript abundance within the cells is not considered.
Furthermore, manual and even semi-automated counting of labelled cells is a time-consuming

process and not suitable for large numbers of samples.
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Compared to ISH, qPCR is a more efficient tool for the quantification of the total gene
expression within tissues. However, when the aim is to assess gene expression within specific
neural subpopulations, it can be a challenge to accurately isolate the tissue of these neural
subpopulations, which we achieved by performing mechanical microdissections. With ISH,
thin (14 pm) sections were made and the entire tissue was stained, making the neural
subpopulations clearly visible. However, with the needle microdissections that we employed
in Paper II, the sections were thicker (100 um), the tissue was frozen and no staining was
applied to outline neural populations, and consequently the subregions were less clearly
defined within the frozen tissue. This can impede accurate identification and collection of the
subregion tissue, and despite careful standardisation and employing a conservative approach
by avoiding inclusion of any dubious areas, it is possible that either the entire area of interest
is not fully dissected out, or that additional tissue is accidentally collected from outside the
regions of interest. A way to overcome this caveat is to use laser-capture microdissection,
where specific cells can be isolated from microscopic slides with great precision (Espina et
al., 2006). We recommend that future studies implement this technique to increase the
accuracy of the tissue isolation.

Finally, RNA-seq is a powerful technique which provides a quantitative insight into the
entire transcriptome of the studied tissue and as such, it has a very broad scope. Once an
efficient pipeline has been established, processing the bioinformatics on large volumes of
samples is generally not very time-consuming, particularly considering how much data can
be generated per sample. One of the disadvantages of RNA-seq is that it is an expensive
technique, often costing several hundred Euros per sample. As such, it was not feasible in
Paper III to conduct RNA-seq for all the telencephalic subregions separately, and we were
forced to perform the analysis on whole telencephalon tissue in a few selected individuals. A
visual representation of some of the advantages and disadvantages of these three

methodologies, as they were employed in this thesis, is provided in Figure 14.
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Figure 14. Schematic representation of the strengths and weaknesses of ISH, qPCR and
RNA-seq, as used in this thesis, to assess expression of neural plasticity markers in the
Atlantic salmon telencephalon. This representation only relates to the techniques as they were

employed in this thesis and does not relate to the full potential of the techniques.

Finally, it is important to remark that all three methodologies used in this thesis visualise
or quantify mRNA, while we did not have the resources to include corresponding protein
analyses. Translation can be affected by many factors, such as secondary RNA structure,
regulatory proteins and ribosome occupancy, and mRNA and protein levels are therefore not
always correlated (Maier et al., 2009). Additionally, it is interesting to note that proteins can
have both active and inactive isoforms, as is the case for the teleostean Bdnf protein, which
occurs as an inactive precursor protein ‘proBdnf’, and as the functional mature protein ‘Bdnf’
(Tognoli et al., 2010). Therefore, it would be interesting to include protein-based analyses of
neuroplasticity markers in future studies. To this end, immunohistochemistry can be used to
identify neural subregions of interest and enzyme-linked immunosorbent assays (ELISA) and
mass spectrometry technologies can be used to quantify (relative) protein abundance (e.g.

Maier et al., 2009; Williams and Undieh, 2009).
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4. Results: Summary of papers

Paper I — Neurobiology of wild and hatchery-reared Atlantic salmon: How

nurture drives neuroplasticity

Life experiences in the rearing environment shape the neural and behavioural plasticity of
animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived
and does not optimally prepare fish for release into the wild. While the behavioural differences
between wild and hatchery-reared fish have been examined to some extent, few studies have
compared neurobiological characteristics between wild and hatchery-reared individuals in
detail. Here, we compare the expression of immediate early gene cfos and neuroplasticity
marker brain derived neurotrophic factor (bdnf) in telencephalic subregions associated with
processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post
(acute) stress conditions. Using in situ hybridization, we found that the expression level of
these markers is highly specific per neuronal region and affected by both the origin of the
fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain
regions and cfos was more highly expressed in the DIlv (functional equivalent to the
mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was
higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional
equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings
demonstrate that the hatchery environment affects neuroplasticity and neural activation in
brain regions that are important for learning processes and stress reactivity, providing a
neuronal foundation for the behavioural differences observed between wild and hatchery-

reared fish.
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Paper II — Effects of environmental enrichment on forebrain neural

plasticity and survival success of stocked Atlantic salmon

In stocking programs, hatchery-reared fish are severely stimulus-deprived compared to
their conspecifics in natural conditions, which leads to reduced behavioural plasticity and,
consequently, low post-release survival rates of stocked fish. Structural environmental
enrichment has been shown to have positive effects on life-skills which are critical to the
survival of hatchery-reared fish, such as predator avoidance and foraging behaviour, but the
neural mechanisms underpinning these behavioural changes are still largely unknown. In this
study, juvenile Atlantic salmon (Salmo salar) were reared in an enriched hatchery
environment for seven weeks, after which neurobiological characteristics and post-release
survival were compared to fish reared under normal hatchery conditions. Using in situ
hybridisation and qPCR, we quantified the expression of four neuroplasticity and
neurogenesis markers in telencephalic subregions associated with relational memory,
emotional learning, stress reactivity and goal-oriented behaviour. Aside from lower
expression of brain-derived neurotrophic factor (bdnf) in the Dlv (a region associated with
relational memory and spatial orientation) of enriched salmon, enrichment had no significant
effects on neural plasticity. In December, following the 7-week treatment, a total of 627 fish,
reared either in enriched or control tanks, were released into the wild, where fish remained
for five months until downstream migration during the following spring. Exposure to an
enriched environment increased post-release survival and subsequent successful downstream
migration by 51%. Further, smolts in the mid-size range (110-170 mm) showed higher
survival rates than both smaller (<110 mm) and larger (>170 mm) smolts. Thus, we
demonstrate that environmental enrichment can improve stocking success of Atlantic salmon
parr, but this does not appear to be associated with increased neural plasticity in the studied

telencephalic subregions.
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Paper III — Brain training: Can swimming exercise promote brain plasticity

and cognition in Atlantic salmon?

It is well established that running exercise can enhance brain plasticity and boost cognitive
performance in mammals, but this relationship has been little studied in fish. The aim of this
study was to determine whether an 8-week sustained swimming exercise regime can enhance
brain plasticity, cognition and foraging behaviour in juvenile Atlantic salmon. Fish were
subjected to either a fixed flow rate of 3.5 BL 5™ (“forced exercise”) or to a variable flow rate
between 0.4 — 2.9 BL s, where fish could choose their swimming speed (“volitional
exercise”). Compared to non-exercised controls, exercised groups showed 27% (volitional)
and 31% (forced) higher growth. To test cognition, volitional exercised and non-exercised
controls were subjected to a repeated maze test. While both groups solved the maze more
quickly over time, indicating a learning process, no significant difference was observed
between exercised and non-exercised fish in the time taken to solve the maze. To study
foraging behaviour, twenty exercised and twenty non-exercised fish were isolated in
individual aquaria and presented with a novel prey (a live cricket) twice per day for five
consecutive days. No differences in time to consumption and number of consumed prey were
found between treatments. Brain plasticity was assessed through mapping the transcriptome
of the telencephalon: the brain area specifically involved with learning, memory and decision
making in teleosts. In the volitional exercise group, 1772 transcripts were differently
expressed compared to unexercised control individuals. Several of these transcripts were
related to molecular pathways and processes which are known to be involved in exercise-
induced neuroplasticity in the mammalian hippocampus, such as synaptic trafficking, signal
transduction and the glutamatergic and GABAergic systems. Gene ontology (GO) analysis
identified 195 and 272 GO categories with a significant overrepresentation of up- or
downregulated transcripts, respectively. A multitude of these GO categories related to
neuronal excitability, neuronal signalling, cell proliferation and neurite outgrowth. In
conclusion, sustained swimming exercise promoted the expression of neuroplasticity- and
neurogenesis-related genes in the telencephalon, but did not have an apparent effect on the
cognitive capacity of the fish in a spatial orientation test. Notably, this is the first time that
swimming exercise has been directly linked to increased telencephalic neural plasticity in a
teleost, and our results pave the way for future studies on exercise-induced neuroplasticity in

fish.
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5. Discussion

The results presented in this thesis describe the effects of the rearing environment on
telencephalic neural plasticity and behavioural responses in juvenile Atlantic salmon, and
discuss potential implications in relation to stocking programs. First, we characterised the
expression of neuroplasticity markers in the telencephalon of wild and hatchery-reared
Atlantic salmon within five neural populations important for cognitive processes — the most
detailed characterisation to date. Second, we assessed how structural environmental
enrichment affects the region-specific expression of these neural plasticity markers, and
whether this may be linked to improved post-release survival. Third, the potential of
swimming exercise as alternative rearing method to promote telencephalic neural plasticity

and cognition in Atlantic salmon was evaluated.

5.1 Neurobiology of wild and hatchery-reared salmon

In order to rear more ‘wild-like” fish under hatchery conditions, it is important that we
first have a thorough understanding of how the neurobiological and behavioural
characteristics of hatchery-reared fish differ from those of their wild conspecifics. However,
these differences have not been thoroughly mapped, particularly regarding neurobiological
characteristics. Specifically, very few studies have directly compared neurological traits
between wild and hatchery-reared salmonids of the same genetic origin, and the few studies
that have done so, have only quantified neuroplasticity markers either at the level of the whole
brain (e.g. Aubin-Horth et al., 2005) or large brain structures such as the hind- and mid-brain
(e.g. Dunlap et al., 2011). However, when studying such macro-brain areas, one studies a
conglomerate of many different neural subregions, and regional nuances cannot be detected.
Therefore, in Paper I, we set out to characterise the expression of cfos and bdnf in
telencephalic subregions at the most detailed scale to date.

The first main finding of this study is that the quantification of neuroplasticity markers,
using a region-specific approach, reveals expression patterns that may escape detection when
studying macro-brain areas such as the entire telencephalon. Indeed, we found that the
expression levels of cfos and bdnf varied greatly between regions, corroborating previous
findings by Vindas et al. (2017). The subregions also showed high variability in their
responsiveness to an acute confinement stress. For example, in the DId of hatchery-reared
individuals, exposure to an acute stressor increased the number of cfos-labelled cells 4-fold,

while in the Vv, a 113-fold increase was observed. Thus, our findings demonstrate that the
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telencephalic subregions are highly heterogeneous regarding their neural activation in
response to stress. Moreover, in some cases, divergent expression patterns were observed
between the ventral and dorsal subregions of the DI and the Dm. For example, cfos showed
origin, treatment and interaction effects in the Dlv, while the DIld showed only treatment
effects. Furthermore, in the Dmd, wild stressed fish showed a significantly higher number of
bdnf-labelled cells compared to fish at basal conditions, while this trend was not observed in
the Dmv. Thus, our findings support the hypothesis that the DI and Dm are both comprised
of a ventral and dorsal subregion, each with a unique responsiveness to stimuli (Broglio et al.,
2015; Broglio, pers. comm.). Our observations also shed more light on some apparently
contradictory findings reported by other authors. For example, three studies which have
assessed the effects of acute stress on the teleostean neural bdnf response report either
increased bdnf expression in whole-brain tissue of stressed zebrafish (Pavlidis et al., 2015) or
no effects on bdnf expression in whole-telencephalon samples of rainbow trout (Johansen et
al., 2012) or in the whole brain of European sea bass Dicentrarchus labrax (Tognoli et al.,
2010). In our study, wild salmon parr showed a significantly increased post-stress bdnf
transcript abundance in the Dm, but not in the DI or Vv, thus demonstrating that the bdnf
response to acute stress is highly region specific. With such a heterogeneous bdnftranscription
stress-response between neural subregions, it is not surprising that generalised whole-brain
expression patterns may yield contradictory results. Thus, recent advancements in teleostean
functional neurobiology have identified several telencephalic subregions which are associated
with behavioural processes which are important for salmon post-stocking performance, and
our findings show that by specifically targeting these neural regions, we can uncover neural
trends that remain undetected in whole-brain studies. Notably, this finding has implications
for EE studies, which to date have only studied neurological effects at the macro-brain scale
(e.g. von Krogh et al., 2010; Salvanes et al., 2013). Therefore, we employ a region-specific
approach in Paper II, where we study the effects of EE-rearing on salmon telencephalic
neural plasticity.

The second main finding of Paper I is that wild and hatchery-reared Atlantic salmon parr
show clear region-specific differences in neural activation and neurotrophin expression. Post-
stress abundance of cfos-labelled cells was increased in all regions, but in the DIv (the
proposed functional equivalent to the mammalian hippocampus) of hatchery-reared
individuals, the number of cfos-labelled cells increased 21-fold in response to stress, while in
wild fish, only a 7-fold increase was observed. In mammals, the hippocampal CFOS response

is important, among other things, in fear memory storage and retrieval (Liu et al., 2012). In
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this light, it would be interesting to assess whether wild and hatchery-reared fish would also
display differences in neural activation in the Dlv in a fear-conditioning test, and how this
may relate to important behavioural paradigms such as antipredator behaviour. Second,
hatchery-reared fish showed higher bdnf expression compared to wild fish in the Dlv, Dmv,
Dmd and Vv, with the highest number of bdnf-labelled cells in the Dm, which is important
for learning under fear and stress, among other things (Portavella et al., 2004; Vargas et al.,
2009; O'Connell and Hofmann, 2011). Under standard hatchery conditions, fish regularly
experience disturbances (e.g. tank cleaning, grading, vaccination, transport etc.) at
unpredictable intervals. It is conceivable that these stressors periodically trigger bdnf
transcription in the Dm of hatchery fish, effectively elevating basal bdnf expression levels in
this subregion. Interestingly, the Dm is reciprocally connected to the Vv, which in turn
connects to the Dlv (Folgueira et al., 2004a; b; Rink and Wullimann, 2004; Northcutt, 2006),
and it is thus possible that the frequent disturbances associated with life in an anthropogenic
environment (i.e. hatchery rearing) increase bdnf expression at basal conditions in the Dm,
which in turn promotes bdnf expression in the DI and Vv through neural circuits involved in
the stress axis. Together with the fact that hatchery-reared fish did not show an increase in
bdnf to stress, and the fact that increased BDNF levels are linked to a higher learning
performance in mammals (Vaynman et al., 2004), our results indicate a potentially reduced
capacity for learning performance in hatchery-reared fish under acute stressful conditions,
which may affect their post-release survival, particularly in risky environments (e.g. under
predator pressure).

In summary, with this initial characterization of telencephalic region-specific neural
plasticity we have demonstrated that a region-specific approach reveals neural trends which
remain undetected in whole-telencephalon studies, and we have characterised several
differences in the expression of neuroplasticity markers between wild and hatchery-reared
fish in neural regions which are important for stress reactivity, associative learning and fear
memory and retrieval. With this study, we thus uncover, for the first time, several neural
differences between wild and hatchery-reared fish, which may contribute to the reported
behavioural differences between these two groups. Importantly, this study establishes a
baseline from which we can investigate further how innovative rearing strategies such as EE
(Paper II) may enhance the neurobiology of hatchery-reared fish, and produce a more “wild-

like” reared salmon.
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5.2 Environmental enrichment

Environmental enrichment is among the most studied forms of hatchery optimization for
stocking programs (e.g. Johnsson et al., 2014; Naslund and Johnsson, 2014). Most studies
have focused on the effects of EE on fish behaviour and stocking success, while effects on
fish neurobiology have been investigated to a lesser extent. The studies which have assessed
the effects of EE on fish neurobiology have focused on expression of markers for
neurogenesis or neural plasticity within the entire telencephalon (e.g. von Krogh et al., 2010;
Salvanes et al., 2013; Manuel et al., 2015), while no studies have ever investigated the effects
of EE on the scale of neural subregions. After we had established in Paper I that a detailed
telencephalic characterisation can uncover trends that may remain undetected in whole-
telencephalon samples, we set out to determine the effects of a 7-week period of EE on
telencephalic region-specific expression of the neural markers cfos, bdnf, neurod and pcna,
as well as the freshwater post-release survival of Atlantic salmon parr in Paper II.

A seven-week exposure to an EE prior to release significantly improved post-release
freshwater survival of stocked Atlantic salmon by 51%. It is a common stocking practice to
release salmon smolts of large size, which have repeatedly been shown to have a higher
survival probability than smaller-sized conspecifics (Kallio-Nyberg et al., 2004; Kallio-
Nyberg et al., 2011; Rosengren et al., 2016). Large salmonids are often (Abbott et al., 1985;
Johansen et al., 2012), though not always (Huntingford et al., 1990) reported to be dominant
over smaller individuals, and dominant individuals may have competitive advantages over
subordinate conspecifics (Metcalfe, 1986; Metcalfe et al., 1989). Furthermore, large salmon
may be less prone to predation pressures (Skilbrei et al., 1994), thereby improving their
survival probability. However, there is a trade-off between these advantages and increased
metabolic demands which come with increased body size (Brett and Glass, 1973). In contrast
to previous studies, we observed reduced freshwater survival rates for the largest size classes
of stocked parr. This reduced freshwater survival of large stocked salmon is possibly linked
to the relatively low food availability in the freshwater environment during the winter period,
which is supported by the observation that only fish of intermediate size increased in body
mass during their river residency. Studies which report increased survival with increasing
body size have mostly monitored salmonid survival in seawater, where food is more abundant
(e.g. Kallio-Nyberg et al., 2004; Kallio-Nyberg et al., 2011) or during a brief freshwater
residency (Rosengren et al., 2016), when limited food availability does not have a large impact

on fish survival, as they can live off their fat deposits. Our findings suggests that during a
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prolonged freshwater residency, increased metabolic demands may hinder large-sized
salmon, and intermediate-sized individuals may consequently have a competitive advantage
over large individuals.

Despite a significant improvement of stocking success, we found few significant effects
of EE on the studied neural markers following seven weeks of treatment. In fact, the only
significant effect was found in the Dlv, where EE-exposed fish showed fewer bdnf-labelled
cells compared to control fish. Interestingly, in Paper I we found that wild-caught salmon
parr show a significantly lower number of bdnf-expressing cells in the Dlv, Dmd, Dmv and
Vv, compared to hatchery-reared parr of the same genetic background. In this respect, the
lower bdnf expression seen in the DIv of enriched fish in the current study resembles the wild
phenotype more closely than control fish. In Paper I, we hypothesised that higher bdnf
expression in the Dlv of hatchery-reared salmon, compared to wild fish, may be linked to
stressors in the hatchery environment. If this is extrapolated to the results obtained in Paper
II, this suggests that a 7-week exposure to EE may have reduced stress in EE-reared fish, as
has been shown in other studies (reviewed by Néslund and Johnsson, 2014). Aside from lower
bdnf abundance in the DIv of EE-reared fish, we found no differences in expression of any of
the other markers in the DId, Dlv, Dmd, Dmv or Vv. Additionally, we quantified the number
of cfos- and bdnf-labelled cells (by ISH) in the dorsal nucleus of the ventral telencephalon
(Vd) and the preoptic area of the hypothalamus (POA; Fig. 15). The Vd has been reported to
share anatomical similarities with the mammalian striatum, and has also been proposed as a
partial homolog to the nucleus accumbens (NAcc; O'Connell and Hofmann, 2011). While the
functionality of the Vd has not yet been fully scrutinised, one of the proposed functions is that
it may be involved in avoidance behaviour (Lau et al., 2011). The POA is located on the
border of the telencephalon and hypothalamus, and in teleosts it has been reported to be
involved in the regulation of different forms of stress, predominantly social stress (Doyon et
al., 2003; Bernier and Craig, 2005; Doyon et al., 2005; O'Connell and Hofmann, 2011). In
both the Vd and POA, we also found no differences in cfos and bdnf expression between EE
and control groups (Fig. 16; unpublished data). In fact, we found no bdnf-labelled cells in the
Vd of both groups, highlighting once again the regional specificity of bdnf expression. Our
observation of the minimal effects of EE on neural plasticity markers in the targeted regions
contrasts with other studies, which describe altered pcna and neurod expression in whole-
telencephalon samples of EE-reared fish (von Krogh et al., 2010; Salvanes et al., 2013;
Manuel et al., 2015). However, as these studies targeted the entire telencephalon, it is possible

that the neural effects of EE might be manifested in subregions which were not included in

59



Paper I1. Alternatively, the apparent lack of neurobiological effects in this study may be due
to the duration of exposure or the time point of sampling. That is, a recent study has suggested
that neural plasticity markers are upregulated in the telencephalon in the immediate weeks
following transfer to an enriched holding tank, but that this expression decreases back to

baseline levels within several weeks (L.O.E. Ebbesson, unpublished data).

Figure 15. Location of the dorsal nucleus of the ventral telencephalon (Vd; B) and the

preoptic area (POA; C).
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Figure 16. In situ hybridisation labelled cfos and bdnf cells in telencephalon subregions
(unpublished data from Paper II). Mean £ SEM number of cfos (A) and bdnf (B) positive
cells in the dorsal nucleus of the ventral telencephalon (Vd) and the preoptic area (POA) in
Atlantic salmon parr after seven weeks in a control (grey bars) or enriched environment (black
bars). For control animals, n = 8 per brain area, while for enriched animals, » = 7 per area.

ND = not detected.

In both Paper I and II we quantified ISH-labelled cfos and bdnf-expressing cells in
telencephalic subregions of hatchery-reared individuals at basal conditions. The fish used in
these two papers were siblings and reared in the same hatchery, and with the absence of
genetic and environmental differences, we can compare the ISH data between these groups,
even though the fish in Paper I were sampled in September and the individuals in Paper IT
were sampled in November and there is thus a slight age difference. The ISH quantification
was performed by two different experimenters between the two studies, but inter-specific
observer bias was reduced as much as possible by adopting a semi-automated quantification
procedure and by corroborating that the two experimenters showed a consistent methodology
regarding area selection and threshold application. Between the two studies, we generally
observed similar cfos and bdnf expression profiles among the telencephalic regions (Fig. 17),
suggesting that the quantification methodology and results are quite robust. Interestingly, both
cfos and bdnf appear to be lower expressed in the DId of fish in Paper II. As outlined above,
the age difference of the fish seems to be the most noticeable difference between fish in the
two studies, which could explain this observation, but as no characterisation has been made
of the telencephalic expression of these markers with age, we cannot conclude on this with

certainty.
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Figure 17. The number (mean + SEM) of cfos (A) and bdnf (B) transcript-labelled cells in
telenceaphalic subregions of hatchery-reared Atlantic salmon parr at basal conditions

quantified in Paper I (grey bars) and Paper II (black bars).

As mentioned in Section 1.3, there are conflicting reports on the efficacy of EE in altering
fish behaviour, neurobiology and post-release survival. These differences may be largely
attributed to a lack of standardization, as the type of enrichment, age of the fish and exposure
duration may all affect the outcome of EE (e.g. Lambert et al., 2005; Manuel et al., 2015;
Ahlbeck Bergendahl et al., 2016). Further empirical testing of optimal EE conditions can shed
light on inconsistencies between published enrichment studies, and contribute to optimisation
of hatchery protocols.

Based on the results presented in Paper II, it appears that a 7-week exposure to EE, and
selection for intermediate-sized individuals, may improve freshwater post-release survival of
hatchery-reared Atlantic salmon, particularly when they are released several months prior to
seawater migration. However, the effectiveness of EE in improving salmon stocking practices
still remains controversial, as while some studies have shown that EE can lead to improved
post-release survival (Maynard et al., 1995; Hyvérinen et al., 2013; Roberts et al., 2014),
others have found no effects (Brockmark et al., 2007; Fast et al., 2008; Tatara et al., 2009;
Brockmark and Johnsson, 2010) or even negative effects (Berejikian et al., 1999; Rosengren
et al., 2016). Importantly, the majority of hatchery managers are reluctant to implement EE
in their hatcheries, because the addition of structures to the tanks leads to waste accumulation
and hinders fish monitoring. Thus, the efficacy of EE in improving stocking success remains
debated, and there are practical concerns regarding the implementation of this procedure in

hatcheries. Therefore, it is important to explore the potential of other innovative hatchery
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protocols which may improve the stocking success of salmon. In Paper III, we assess the

potential of one of these strategies, which is the application of sustained swimming exercise.

5.3 Swimming exercise

Captive animals are often restricted in their movement and consequently, they exercise
less compared to their conspecifics in the wild. In captive mammals, running exercise has
been shown to improve hippocampal neurogenesis, neural plasticity and cognition. Although
preliminary studies suggest that exercise-enhanced neuroplasticity and cognition may also
occur in teleosts (Luchiari and Chacon, 2013; Fiaz et al., 2014), this link has never been
thoroughly studied in fish. Therefore, the aim of Paper III was to assess whether sustained
swimming exercise can promote forebrain neuroplasticity and cognition in Atlantic salmon,
which may open up the possibility of using swimming exercise to improve the fitness of
hatchery-reared fish.

After eight weeks of sustained exercise at a volitional swimming speed (i.e. where
individuals chose their swimming speed), juvenile salmon showed increased telencephalic
neural plasticity compared to unexercised controls. Between the two groups, GO analysis
revealed 195 and 272 GO categories with a significant overrepresentation of up- or
downregulated transcripts, respectively. Several of these GO categories with an
overrepresentation of upregulated genes were related to neural excitability, neuronal
signalling, cell proliferation and neurite outgrowth, while categories with an
overrepresentation of downregulated genes included several apoptosis-related GO categories.
Thus, exercise at a volitional swimming speed affects the transcriptional pathways which
regulate neural plasticity, cell proliferation, and cell survival in fish.

The molecular mechanisms which underlie exercise-enhanced neural plasticity are still
disputed, but mammalian studies are starting to unravel the signalling pathways involved in
exercise-enhanced neurogenesis and synaptogenesis (Molteni et al., 2002; Lista and
Sorrentino, 2010). A schematic representation of this pathway is depicted in Fig. 18. In
summary, physical activity leads to increased abundance of neurotrophins, such as BDNF and
insulin-like growth factor (IGF; Vivar et al., 2013). Subsequently, BDNF can directly promote
neurogenesis, or it may activate signal transduction pathways through signalling molecules
such as calcium/calmodulin-dependent protein kinase II (CAMK-II), mitogen-activated
protein kinase (MAPK), protein kinase C (PKC) and cAMP response element binding
(CREB) protein (Molteni et al., 2002; Farmer et al., 2004), which in turn stimulate
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synaptogenesis, long-term memory (LTM) and LTP (reviewed by Lista and Sorrentino,
2010). Furthermore, synaptogenesis is stimulated by synaptic trafficking molecules such as
synaptotagmin and syntaxin, which are promoted through CAMK-II after activation by BDNF
or IGF (Molteni et al., 2002). Interestingly, in our study, the telencephalic transcriptome of
exercised Atlantic salmon revealed an upregulation of several transcripts involved in this
pathway, such as the growth factor IGF, signal transduction molecules such as CAMK-II,
MAPK, PKC and CREB, as well as the synaptic trafficking molecules synaptotagmin and
syntaxin. These results suggest that the molecular pathways underlying exercise-enhanced
neuroplasticity may be quite conserved between mammals and fish. Surprisingly, while we
observed increased expression of many of these neuroplasticity-related signalling molecules
in exercised fish, we did not observe an increased abundance of bdnf itself. Importantly, we
only assessed the telencephalon transcriptome after eight weeks of swimming exercise, thus
mapping the chronic effects of swimming. It is possible that telencephalic bdnf abundance
increases immediately following the onset of swimming and subsequently decreases to basal
levels again, as has been observed in salmon following transfer to a holding tank enriched
with physical structures (L.O.E. Ebbesson, pers. comm.). To verify this possibility, future
studies should perform a time series and quantify bdnf transcript levels at several hours, days
and weeks after the onset of exercise.

Although different methodologies were used, it appears that eight weeks of sustained
swimming exercise has a more pronounced effect on neural plasticity than seven weeks of
exposure to EE, as reported in Paper II. However, in Paper II we used a region-specific
approach while whole-telencephalon samples were studied in Paper III, and therefore
comparisons between the two studies are hard to make. Using RNA-seq, Paper III has
revealed that swimming exercise leads to an upregulation of several genes involved in (the
molecular mechanisms underlying) neural plasticity, and it would be interesting to explore
how exposure to EE would affect these markers (e.g. synaptic trafficking molecules and
signalling molecules), and whether EE may activate the same neuroplasticity-related

molecular pathways that we observe to be affected by swimming exercise.
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Figure 18. Proposed energy independent mechanisms through which physical activity may
improve learning and memory in mammals. BDNF is a critical modulator of the energy
independent effects of physical activity on neurogenesis and synaptogenesis. BDNF increases
neurogenesis and activates complex presynaptic and postsynaptic molecular cascades that
induce synaptogenesis. In this process, CAMK-II and MAP-K pathways seem to be fairly
important acting on both LTP and LTM, the latter through the regulation of CREB levels.
Physical activity also activates IGF-1 production that may lead to synaptogenesis through a
downstream signaling cascade that at the presynaptic level includes CAMK-II and MAP-K.
In exercised Atlantic salmon in Paper III, we found upregulated transcripts of several
molecules involved in this pathway (bold molecules, marked with asterisk), compared to
unexercised controls. Abbreviations: brain-derived neurotrophic factor (BDNF),
Calcium/calmodulin protein kinase II (CAMK-II), cyclic adenosine monophosphate response
element-binding (CREB), insulin-like growth factor (IGF-1), long-term memory (LTM),
long-term potentiation (LTP), mitogen-activated protein kinase (MAPK), tyrosine kinase

receptor B (TrKB-R). Modified from Lista and Sorrentino (2010).
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In the volitional exercise group, we found 1772 transcripts which were significantly
differently expressed (DE) compared to unexercised controls. Surprisingly, we found no
significantly DE transcripts between the forced exercised group and their respective controls.
It is plausible that this lack of a significant difference in gene expression between the forced
exercise and control groups is a consequence of a smaller amplitude of the effects. In addition,
we had to remove two outlier samples from the statistical analysis, resulting in a transcriptome
comparison between 3 forced exercised and 5 respective control animals. This asymmetrical
removal of outliers may have affected the statistical power in this comparison. Interestingly,
despite the lack of significantly DE genes in the forced exercise and control groups, we
observed a strong correlation trend in gene expression between volitional swimmers and
exercised swimmers. That is, for the vast majority of genes significantly overexpressed in
volitional swimmers, there was a non-significant overexpression in forced swimmers
compared to forced controls. This suggests that both volitional and forced exercise exert a
similar effect on the telencephalic transcriptome, even though the effects seem more
pronounced and consistent in the volitional treatment. It would be interesting to determine
why volitional exercise seems to have stronger beneficial effects compared to forced exercise,
and we hypothesise that two factors may play an important role. First, the swimming speed
in the forced treatment was close to Uogp for the average-sized fish, but fish inevitably varied
in size. Consequently, the set swimming speed was relatively higher for the smallest size
classes of fish, which may lead to differences in treatment effectiveness between fish size
classes. The preferred swimming speed of salmonids tends to be close to their Uqp: (Tudorache
et al., 2011), and in the volitional treatment, fish of all sizes were allowed to position
themselves in a flow rate that would not exceed their metabolic capacity or lead to stress.
Second, fish in the volitional treatment were able to cease swimming occasionally, drifting
down with the current, and this freedom to display an individually preferred behaviour may
have potential positive welfare effects.

As the expression of neural markers can vary greatly between telencephalic subregions
(Papers I-II), we would have ideally liked to perform RNA-seq analysis on the DI, Dm and
Vv separately. However, because RNA-seq is a costly methodology, we were forced to
analyse whole-telencephalon samples in the current study. A disadvantage of this approach is
that we do not have any insight into how exercise affects the individual telencephalic
subregions, and in particular the DI, which is associated with spatial memory and is thus
important for the maze test performance of the fish (discussed below). However, we have

collected additional whole-brain samples at three and eight weeks after the onset of
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swimming, which may be used for future analyses. For example, as was conducted in Paper
11, a targeted approach using microdissections and qPCR can be performed to corroborate the
increased expression of genes which are involved in neuroplasticity pathways in exercised
fish, as well as give more insight into the region-specific responses of the telencephalon to
swimming exercise.

While we observed increased telencephalic expression of neuroplasticity markers in
volitional exercised fish, we did not find any evidence of increased cognition of exercised
individuals, as assessed in the maze test. This particular maze test was modelled after
methodology described by Salvanes et al. (2013), and was selected because Salvanes and
colleagues reported robust differences in maze performance between pre-smolt Atlantic
salmon reared in either an enriched or barren environment, using F1 offspring from wild
parents from a Norwegian river. However, we remark that this specific protocol involves
considerable handling and air exposure of the fish prior to testing, which inadvertently causes
stress and may negatively affect the cognitive performance of the animals. Furthermore,
adverse effects of handling may be particularly pronounced in F1 offspring from wild parents,
compared to highly domesticated fish species such as zebrafish, or even rainbow trout. We
thus suggest that future studies employ cognitive tests which require less handling, or use a
fish model which is more robust to handling stress in order to corroborate the possible
implications of swimming exercise on cognitive capacity.

A final remark regarding the maze test is that we observed substantial personality
differences between individual fish. Personality traits (e.g. coping styles) refer to consistent
individual differences in behavioural responses, such as the shyness-boldness continuum
(Coleman and Wilson, 1998). During the maze test, we scored the time to emergence from
the start box in all individuals, and this measure effectively resembles the emergence test
which is used to quantify boldness in fish (Brown and Braithwaite, 2004; Lee and Berejikian,
2008). We observed that some individuals were consistently quick to emerge (bold
individuals), while others were consistently slow (shy individuals; Fig. 19). As variation in
personality traits may affect behavioural responses, it is important to keep personality in mind

as confounding factor in future cognitive studies.
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Figure 19. Examples of personality differences in the maze test. Depicted is the cumulative
time to enter the maze from the start box after opening the hatch over seven trials, for three
selected volitional exercised salmon. A shy fish (red) used the maximum time allowance of
300 s every trial, while a bold fish (green) entered the maze almost instantly every day, with
the exception of day 1. Some fish showed an intermediate personality (orange), displaying

shy behaviour during the first trials, but behaving more boldly as the trials progressed.

Aside from the maze test, we wanted to perform a cognitive test with a more applied
purpose for stocking practices, i.e. a behavioural test which might be directly relevant for
post-release survival. Therefore, we also subjected fish to a novel prey test, based on
methodology described by Sundstrom and Johnsson (2001). In short, a group of volitional
exercised fish and their respective controls (n = 20 per group) were placed in individual
aquaria, and after a ten-day acclimatization period, fish were fed one live cricket (Acheta
domesticus; body size 5.8 = 7 mm; mean + SD) during ten trials over five days, with two trials
per day. For this experiment, a floating cricket was chosen because Atlantic salmon parr are
known to readily consume surface-drifting prey (e.g. Johnson et al., 1996; Johansen et al.,
2011) and hatchery-reared salmonids have an increased preference for drifting prey compared
to wild conspecifics (e.g. Johnson et al., 1996; Teixeira and Cortes, 2006). For each trial, one
live cricket was placed on the water surface for a maximum duration of 3 min, and if the
cricket was not consumed within this time, the insect was removed from the aquarium. Time
to first bite and the number of consumed prey were recorded. No pronounced differences in

number of crickets consumed or time to first bite were found between exercised and control
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animals (Fig. 20; unpublished data). Surprisingly, despite the fact that fish were not fed any
additional feed during the trials, the highest observed percentage of fish that consumed their
prey during a single trial was only 18% (7 out of 40 fish). These consumption rates are
substantially lower than the consumption rates reported for hatchery-reared fish in the study
by Sundstrom and Johnsson (2001), which ranged between 40-60% after six feeding trials.
Notably, Sundstrém and Johnsson (2001) used brown trout in their study, which are known
to be more resilient to stress compared to Atlantic salmon (@. Qverli, pers. comm.). Transfer
to a new environment and social isolation can induce stress in salmonids and may lead to
stress-induced anorexia in fish, the effects of which seem to be modulated by personality
(Pickering et al., 1982; @verli et al., 1998; Hoglund et al., 2007; Basic et al., 2012). In this
context, we believe that the salmon in the novel prey assay in Paper III were stressed from
the housing conditions and that this affected their performance in the novel prey test. In other
words, the low success rates of food consumption in the novel prey test were due to stress-
induced anorexia and this was not affected by treatment (i.e. swimming exercise).
Interestingly, stress-induced anorexia, related to handling and release procedures, may also
contribute to observed low post-release feed intake in stocked fish, immediately after release
(Munakata et al., 2000). Thus, hatchery techniques which can increase the resilience of
hatchery-reared fish to stress-induced anorexia could have large implications for stocking
programs, but we did not observe any evidence for increased resilience to stress-induced

anorexia as a result of exercise training in this study.
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Figure 20. Volitional exercised fish and their respective controls (n = 20 per group) showed
no clear differences in number of consumed crickets per trial (A) or time to first bite (B).

Error bars depict SEM. Unpublished data from Paper III.
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Aside from an apparent stimulatory effect of exercise on neural plasticity, exercise is also
known to improve several production and welfare aspects in captive fish. For example, it has
been demonstrated that swimming exercise can increase growth rates (reviewed by Davison
and Herbert, 2013), improve feed conversion ratios (Leon, 1986; Davison, 1997; Palstra et
al., 2015), reduce stress and agonistic behaviour (reviewed by Huntingford and Kadri, 2013),
delay (Palstra et al., 2010; Graziano et al., 2018) or promote (Mes et al., 2016) sexual
maturation, increase disease resistance (Castro et al., 2011) and boost swimming performance
(Farrell et al., 1990). Interestingly, several studies have previously investigated the effect of
swimming exercise on post-release survival rates of stocked salmon (Burrows, 1969; Lagasse
etal., 1980; Cresswell and Williams, 1983; Leon, 1986; Evenson and Ewing, 1993; Hoffnagle
et al., 2006) and most studies found a positive effect, provided that the fish were exercised at
a moderate to high flow (reviewed by Maynard et al., 1995). Importantly, many salmon
hatcheries rear fish in cylindrical tanks and thus, simply by manipulating the direction and
volume of the water inflow, hatcheries can easily implement exercise regimes in their rearing
practices. In summary, swimming exercise is relatively simple to implement in existing
hatcheries, brings many physiological benefits and may also promote neuroplasticity in
salmonids. Therefore, exercise appears to be a promising tool to improve stocking success in

salmon.
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6. Conclusions

This thesis contributes to an increased understanding of how the hatchery environment
affects telencephalic neural plasticity of Atlantic salmon reared for stocking programs. It
shows that, compared to wild conspecifics, salmon reared under traditional uniform rearing
conditions display deviating neural activation and neurotrophin expression patterns in
telencephalic subregions which are important for cognitive processes such as associative
learning, stress reactivity and emotional learning. Our results provide the first detailed
characterisation of neurological differences between wild and hatchery-reared Atlantic
salmon, uncovering potential neural foundations to the behavioural differences which are
observed between wild and hatchery-reared fish. Having established in more detail how
hatchery-reared fish differ neurologically from wild conspecifics, our research sets a
benchmark for future studies on hatchery optimisation and its implications on fish
neurobiology and behaviour.

We found that exposure to EE can improve the post-release survival of reared salmon,
although this did not seem to be associated with increased expression of telencephalic neural
plasticity markers in the studied regions. Our findings suggest that when fish are stocked at
the parr stage, freshwater survival and migration success can be improved by a short exposure
to EE prior to release. While it has been reported that post-release survival increases with
body size when salmon are stocked at the smolt stage, we found that when parr are stocked
for a six-month freshwater period prior to spring smoltification, intermediate-sized fish show
higher survival rates than the largest individuals, which has ramifications for parr stocking
practices. We remark that the efficacy of EE in increasing salmonid stocking success is
inconsistent among studies and that there are practical and hygienic concerns regarding
implementation of EE in hatcheries. It is therefore imperative that we identify and evaluate
alternative hatchery strategies which can improve salmon quality in stocking programs.

We propose that voluntary swimming exercise should be considered as alternative rearing
strategy for hatcheries, as we find increased telencephalic expression of neural plasticity
markers in exercised salmon parr. Implementation of swimming exercise does not interfere
with hatchery operations and has been shown to have several additional production and
welfare benefits such as improved growth efficiency and stress mitigation. Furthermore,
exercise has already been shown in several cases to improve the post-release survival of fish,
and we have now demonstrated that increased neural plasticity may be one of the underlying

mechanisms behind this phenomenon. Thus, further validation of our findings can uncover
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numerous potential applications for swimming exercise in neurological research, fish welfare

and fish stocking practices.
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7. Future perspectives

This thesis has identified and discussed several knowledge gaps which should be
addressed in future studies. The main issues which require further investigation concern the
resolution of teleostean neurobiological studies, optimisation and standardisation of
experimental setups, and a more detailed characterisation of the neurological and cognitive
effects of swimming exercise in fish.

First, we have corroborated that there is a large variability between telencephalic
subregions regarding their neural activation and neurotrophic expression levels in response to
environmental stimuli. While nearly all mammalian literature conducts neurological research
on a highly detailed scale, it is still common in fish studies to quantify general measures such
as brain size or whole-brain transcript abundance. To gain greater insight into the functional
implications of teleostean neurobiological research, future studies should emphasise a more
detailed approach focusing on distinct neural populations, which will provide a better
understanding of how neurological characteristics are linked to fish behaviour.

Regarding EE, both the scientific and stocking community could benefit from studies
which determine the optimal conditions of EE to promote fish welfare, development and
fitness. This could firstly be done by reviewing the current literature in order to deduce which
EE characteristics are associated with treatment effects. Second, empirical studies should aim
to elucidate how characteristics such as age of the fish, treatment duration and type of
enrichment affect the neurological and behavioural characteristics of the fish. Moreover, it
should be investigated further whether critical ‘opportunity windows’ exist during early life,
where exposure to EE can have lasting positive effects on fish development, preparing them
for a future life in a natural environment. Such studies can provide researchers and hatchery
managers with a scientific foundation to standardise and optimise their EE protocols, which
will lead to improved stocking efficiency and facilitate the comparison of results between
studies.

Finally, this thesis has provided the first evidence that swimming exercise can promote
telencephalic neural plasticity in Atlantic salmon. Future studies should corroborate our
findings and use a more specific approach, which targets the expression of neurotrophins and
cell-proliferation markers in neural populations which are associated with cognition. As with
EE, it is important to determine the optimal conditions for exercise-induced neural plasticity,
for example by finding the optimal swimming speed and duration for cognitive stimulation.

Additionally, possible critical time windows for exercise-enhanced neural plasticity may be
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identified by establishing a temporal profile of neural plasticity marker expression following
the onset of swimming. An important application of mammalian exercise-induced
neuroplasticity research is its potential to prevent cognitive decline, particularly in the context
of neurodegenerative diseases, such as Alzheimer’s (reviewed by Ma et al., 2017). Compared
to rodents, the use of teleost model species such as zebrafish has many advantages, such as
low housing costs, short generation cycles and fewer ethical concerns (Lieschke and Currie,
2007; Kalueff et al., 2014). Therefore, zebrafish is becoming an increasingly popular model
to study neurodegenerative diseases (Santana et al., 2012; Newman et al., 2014). Our finding
that swim training can increase expression of cell proliferation and neurogenesis markers in
the fish brain, and that the molecular pathways underlying exercised-enhanced neural
plasticity appear to be quite conserved between fish and mammals, suggests that model fish
species such as the zebrafish are a promising new animal model for exercise-induced

neuroplasticity research.
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“Rivers and the inhabitants of the watery element
were made for wise men to contemplate, and fools
to pass by without consideration.”

Izaak Walton (1593-1683)
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Abstract

Life experiences in the rearing environment shape the neural and behavioral plasticity of
animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived
and does not optimally prepare fish for release into the wild. While the behavioral differences
between wild and hatchery-reared fish have been examined to some extent, few studies have
compared neurobiological characteristics between wild and hatchery-reared individuals.
Here, we compare the expression of immediate early gene cfos and neuroplasticity marker
brain derived neurotrophic factor (bdnf) in telencephalic subregions associated with
processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post
(acute) stress conditions. Using in sifu hybridization, we found that the expression level of
these markers is highly specific per neuronal region and affected by both the origin of the
fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain
regions and cfos was more highly expressed in the DIlv (functional equivalent to the
mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was
higher overall in hatchery fish, while acute stress upregulated ddnf in the Dm (functional
equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings
demonstrate that the hatchery environment affects neuroplasticity and neural activation in
brain regions that are important for learning processes and stress reactivity, providing a
neuronal foundation for the behavioral differences observed between wild and hatchery-
reared fish.

Keywords: cfos, bdnf, Atlantic salmon, immediate early gene, fish stocking,
neuroplasticity, in situ hybridization
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1 Introduction

Wild Atlantic salmon (Salmo salar, L.) populations are declining worldwide (Parrish et al.,
1998). Even in Norway — traditionally home to some of the healthiest Atlantic salmon stocks
in the world — the number of wild salmon has more than halved in the last three decades
(Thorstad and Forseth, 2015). Habitat degradation is one of the main reasons for salmon
decline, and habitat restoration should thus be considered first and foremost as conservation
tool (Araki and Schmid, 2010). However, since habitat restoration is a slow and costly
process, more immediate measures to support declining population numbers are frequently
employed, such as the annual release of millions of hatchery-reared salmon into rivers
worldwide through stocking programs (e.g. Palmé et al., 2012; Maynard and Trial, 2013). To
this end, mature local salmon are captured and cross-fertilized, after which their offspring are
reared in captivity and released in the wild at different developmental stages, ranging from
eggs to juveniles but mostly at the smolt stage (Jonsson and Jonsson, 2009; Maynard and
Trial, 2013). The hatchery environment provides optimal conditions for growth, which
consequently leads to higher growth rates and larger body size at time of release for hatchery-
reared fish compared to wild fish of the same age (Jonsson and Jonsson, 2009). However,
cultured fish are generally reared under unnaturally high densities in stimulus-poor
conditions, which leads to diminished behavioral plasticity in critical life skills such as
antipredator and foraging behavior (Olla et al., 1998; Huntingford, 2004; Jonsson and
Jonsson, 2009). For example, after release in the wild, stocked salmon often show reduced
stomach fullness (Johnson et al., 1996) or ingestion of indigestible particles such as small
rocks and plant material (Munakata et al., 2000). Behavioral deficits such as these contribute
to lower post-release survival rates of stocked fish compared to their wild conspecifics
(Johnson et al., 1996; Jonsson and Jonsson, 2009; Thorstad et al., 2011), raising both
financial and ethical concerns for current stocking practices.

To increase the efficacy of stocking programs, research efforts are directed towards
improving behavioral responses to stimuli from the natural environment and, ultimately, the
fitness of hatchery-reared fish, through implementation of hatchery innovations such as
environmental enrichment (rewied by Johnsson et al., 2014), predator conditioning (reviewed
by Brown et al., 2013) or foraging training (reviewed by Olla et al., 1998). In order to rear
more ‘wild-like’ fish under hatchery conditions, it is important to first understand how the
neurobiological, physiological and behavioral characteristics of hatchery-reared fish differ
from those of their wild conspecifics. While behavioral differences between wild and
hatchery-reared fish have been described in several studies (e.g. Olla et al., 1998;
Huntingford, 2004), the brain — the organ that underlies these behavioral differences — has
remained much understudied. Environmental stimuli trigger and reinforce neuronal circuits
through mobilization of neuropeptides such as brain-derived neurotrophic factor (Bdnf),
which promotes neurogenesis, cell survival and synaptic plasticity, thus altering the wiring of
the brain in response to the rearing environment (Mattson et al., 2004; Ebbesson and
Braithwaite, 2012; Shors et al., 2012; Gray et al., 2013). This process of brain modification
due to environmental inputs is known as neuroplasticity, and reinforcement of neuronal
circuits in response to experiences from the rearing environment affects how these neuronal
circuits are activated by future stimuli, thus driving the fish’s behavior (Ebbesson and
Braithwaite, 2012; Shors et al., 2012). Activation of neuronal circuits can be mapped through
visualization of immediate early genes (IEGs) such as cfos, which is highly expressed after a
neuron is activated, enabling us to take a snapshot of neuronal activation patterns in response
to a stimulus such as acute stress (Okuno, 2011; Pavlidis et al., 2015). Thus, cfos and bdnf
transcripts are established markers for neural activity and neuroplasticity, respectively, and
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Hatchery rearing affects salmon neuroplasticity

they are important tools to help understand how the rearing environment affects the
neurobiology of animals.

In vertebrates, cognitive processing is mainly under forebrain control. Therefore, it is
imperative that we obtain a better understanding of how the rearing environment shapes
forebrain functionality in order to improve fish quality in stocking programs. In contrast to
mammals, teleost fish do not possess a cerebral cortex. However, fish telencephalic areas
have been found to be functionally equivalent to mammalian forebrain regions and fish are
capable of displaying complex behaviors including social decision making and associative
learning, which are under forebrain regulation (Vargas et al., 2009; Kalueff et al., 2012;
Stewart and Kalueff, 2012; Bshary and Brown, 2014). Within the telencephalon, the
dorsolateral (Dl) and dorsomedial (Dm) pallium have been identified as functional
equivalents to the mammalian hippocampus and amygdala, respectively (Portavella et al.,
2004; O'Connell and Hofmann, 2011; Broglio et al., 2015). The DI and hippocampus play a
role in relational memory of the environment and experiences, while the Dm and amygdala
are involved in emotional learning and stress reactivity (Portavella et al., 2004; Vargas et al.,
2009; O'Connell and Hofmann, 2011). Importantly, these proposed functional equivalences
may in fact not be specific enough, since recent studies have suggested that the DI and Dm
are each composed of dorsal (Dld, Dmd) and ventral (Dlv, Dmv) neuronal subpopulations,
each with distinct topology, connectivity patterns and, most likely, functionality (Broglio et
al., 2015, Broglio, pers. comm.). The ventral part of the ventral telencephalon (Vv) has been
suggested as the putative functional equivalent to the mammalian lateral septum (LS), which
mediates social behavior and regulates goal-oriented behavior (O'Connell and Hofmann,
2011; Singewald et al., 2011). Together, the DI, Dm and Vv subregions (Fig. 1) of the
telencephalon are thus drivers of cognitive processes that are important for behavioral
adaptation to novel environments.

To date, the few studies that compare the neurobiology of hatchery-reared fish to that of wild
conspecifics have assessed neuroplasticity markers either at the level of the whole brain
(Aubin-Horth et al., 2005) or large brain structures such as the hind- and mid-brain (Dunlap
et al., 2011). While these studies indicated that the hatchery environment affects neuronal cell
proliferation and gene expression patterns, it remains challenging to interpret how these
neurobiological differences may be linked to behavior because, to our knowledge, no study
has ever compared neuroplasticity markers between wild and hatchery-reared fish on the
scale of specific neuronal populations. We sampled wild and hatchery-reared Atlantic salmon
parr (juvenile freshwater fish) under basal and acute stress conditions in order to characterize
their neurobiology in terms of cfos and bdnf transcript abundance in the DId, Dlv, Dmd, Dmv
and Vv subregions of the telencephalon. We hypothesize that the rearing environment affects
the expression of brain plasticity markers in these subregions, which are important for
learning, memory and stress reactivity, and that this may, in part, explain the reported
behavioral differences observed between wild and hatchery-reared salmonids. Here we
present, for the first time, a detailed study that highlights differences in region-specific
telencephalic gene expression between wild and hatchery-reared Atlantic salmon.

2 Material and Methods

2.1 Ethics statement

This experiment was performed under current Norwegian law for experimentation and
procedures on live animals and was approved by the Norwegian Food Safety Authority
(Mattilsynet) through FOTS application ID 10494.

3
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2.2 Animal origin and conditions

Hatchery-reared and wild Atlantic salmon parr were sampled at the Norwegian Institute for
Nature Research (NINA) research station at Ims, Norway, and from the adjacent river Imsa
on September 12-13, 2016. The hatchery-reared fish were first generation offspring from wild
parents from the river Imsa and thus of the same genetic origin as the sampled wild fish.
These wild parents were captured from the river Imsa in November 2015, eggs and milt were
harvested and cross-fertilized and the eggs hatched in late January 2016. Larvae started
feeding mid-March in 4 m? indoor tanks. Fish were transferred to a 50 m® indoor concrete
rearing tank at five months of age in June 2016. Approximately 300 of these parr were
transferred to a 4 m> holding tank one month prior to this experiment, where they were
housed until sampling. Hatchery fish received flow-through natural water from the river
Imsa, mixed with salt water to achieve a final salinity between 1 - 2.5%o. Rearing salmon parr
in very dilute saline water is a standard hatchery procedure due to its known health benefits,
particularly in combatting freshwater fungi (Long et al., 1977). Juvenile fish were fed
commercial feed (Nutra Parr, Skretting, Stavanger, Norway) throughout the day by an
automatic feeder.

2.3 Experimental setup and sampling

Wild and hatchery-reared salmon were collected at either basal or acute post-stress conditions
(n = 7 per group; 28 fish in total). Both juvenile males and females were sampled and
premature males were excluded: sex and premature maturation was verified by dissection
after sampling. The sex ratios (M:F) for each group were as follows: hatchery basal: 5:2,
hatchery stressed: 2:5, wild basal: 3:4, wild stressed: 2:5. Wild parr were sampled on
September 13 from the river Imsa, approximately 500 m upstream from the estuary
(58.901385, 5.957336), by electrofishing (Geomega type FA-4, Terik Technology, Levanger,
Norway; 700 V). Electrofishing at this voltage does not kill the fish but merely stuns them for
a few seconds, allowing enough time for capture. During electrofishing, we worked our way
upstream to reduce the risk of catching fish that had previously been stunned and flushed
downstream by the water current. Because wild fish were captured by electrofishing, we also
subjected all hatchery-reared fish to a similar electric shock to reduce handling differences
between treatments. To this end, prior to being sampled, hatchery-reared fish were
individually collected by net from the 4 m* holding tank and immediately transferred into a
150 L tank where they were stunned for 2 seconds with the same electrofishing equipment.
All hatchery fish were sampled from the same tank on September 12. In order to minimize
stress, repeated netting was avoided and the fish were processed immediately after netting.
We verified that this capture procedure did not cause accumulative stress in the salmon in the
holding tank from the observation that plasma cortisol levels of hatchery-reared fish did not
increase throughout the sampling process, as the day progressed. In order to sample fish (both
wild and hatchery) at basal conditions, individuals were anesthetized immediately after the
electroshock in 0.75%o (v/v) 2-phenoxyethanol (Sigma-Aldrich 77699), which rendered them
unconscious within 30 seconds, at which point fish were quickly processed (see below). In
order to sample fish post-stress, fish were subjected to a confinement stress, which is a
commonly used paradigm which subjects fish to a standardized stressor (e.g. Pottinger et al.,
1992). Individuals were subjected to a 30 min confinement stress by placing them in isolation
in a 10 L bucket filled with 2 L of river water (bottom diameter: 200 mm, water depth: 65
mm). This confinement bucket was covered with a polystyrene lid and air was constantly
supplied by a pump and a submersed aeration stone. The confinement bucket was rinsed
thoroughly after every fish to remove any type of biological products that may have been
excreted by previous fish. After confinement, stressed fish were anesthetized in the same way

4
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as described above for individuals collected at basal conditions and subsequently processed
as described below. Fish at basal and stress conditions were sampled alternatingly to avoid
time-of-day effects. After anesthetization, all fish were processed immediately: body mass
and fork length were recorded and a blood sample was extracted from the caudal vein using
cold heparinized syringes fitted with a 23G needle. Blood samples were kept on ice during
sampling, followed by centrifugation for 5 min at 2,300 x g to collect plasma, which was
subsequently stored at -20°C for two days and then at -80°C until cortisol analysis. Fish were
fixed by vascular perfusion with freshly made ice-cold 2% paraformaldehyde (PFA; Sigma-
Aldrich P6148) in 0.1 M Serensen’s phosphate buffer (PB; 28 mM NaH>PO4, 71 mM
NaHPOy4, pH 7.2). Brains were then dissected out within two min and post-fixed overnight in
2% PFA in PB at 4°C. Brain tissue was washed three times for 20 min in Serensen’s PB at
room temperature and cryopreserved overnight in 25% sucrose (Sigma-Aldrich S9378) in
Serensen’s PB at 4°C. Tissues were then embedded in Tissue-Tek OCT compound (Sakura
Finetek) in custom-made silicon molds, frozen on dry ice, wrapped in parafilm and stored at -
80°C in 50 ml falcon tubes that contained 5 ml of frozen Milli-Q water to prevent
dehydration.

2.4 Cortisol analysis

Plasma cortisol concentrations were determined by radioimmunoassay according to Gorissen
et al. (2012). The primary antibody shows a 100% cross reactivity with cortisol, 0.9% with
11-deoxycortisol, 0.6% with cortiscosterone, and < 0.01% with 11-deoxycorticosterone,
progesterone, 17-hydroxyprogesterone, testosterone and estradiol. All wells except the ‘non-
specifics’ received 100 pl cortisol antibody (cortisol antibody [SM210], monoclonal and IgG
purified; Abcam Cat# ab1949, RRID:AB _302703); 1:2000 and were incubated overnight at
4°C. The following day, the plates were washed three times with 200 ul/well wash buffer.
Subsequently, non-specific sites were blocked by the addition of 100 pl blocking buffer to
each well. Plates were covered and incubated for one h at 37°C. Subsequently, 10 ul of
standard (4 pg — 2048 pg cortisol/10 ul assay buffer or 10 pl of twice-diluted plasma was
added to designated wells. Non-specifics and Bo wells received 10 pl assay buffer. After the
addition of standards and samples, 333 Bq of *H-hydrocortisone (PerkinElmer, USA,
1:10,000 in assay buffer) solution was added to each well. Plates were incubated for four h at
room temperature, or stored overnight at 4°C. The plates were then washed three times with
wash buffer. After the final wash step, all wells received 200 pl of ‘Optiphase hisafe-3
scintillation liquid’ (PerkinElmer, USA) and were covered. Beta-emission was quantified by
a 3 min count per well using a Microbeta Plus (Wallac/PerkinElmer, USA). Inter- and intra-
assay variations were 12.5 and 3.5%, respectively.

2.5 In situ hybridization

In situ hybridization (ISH) for cfos and bdnf transcripts was performed on parallel sections
for 7 fish per treatment. For each fish, the telencephalon was sectioned transversely onto one
Superfrost Ultra Plus slide (Menzel-Gliser) using a cryostat (Leica CM 3050) at -24°C.
Sections were 14 pm thick and spaced 90 pm apart. Slides were dried at 60°C for 10 min and
subsequently stored at -80°C until further analysis. The ISH digoxigenin-labeled probes were
made according to Vindas et al. (2017) and were 906 and 485 nucleotides long for cfos and
bdnf, respectively. Forward ACTCCGCTTTCAACACCGAC and reverse
TGTAGAGAGGCTCCCAGTCC and forward TCACAGACACGTTTGAGCAGGTGA and
reverse ATGCCTCTTGTCTATTCCACGGCA primers were used for cfos and bdnf probes,
respectively. The ISH protocol was conducted according to Ebbesson et al. (2011). Slides
were mounted in 70% glycerol in 10 mM Tris-HCI (pH 7.5), 1 mM EDTA, 150 mM NaCl.

5
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For both cfos and bdnf, all 28 slides were stained simultaneously in the same Coplin staining
jars in random positions to avoid differences in coloration due to handling effects. Alignment
of the probe sequences (Supplementary File 1) in BLAST revealed a 100% similarity with
several predicted Salmo salar bdnf transcripts (XMO014175921.1 and others) and 99%
similarity with the predicted Salmo salar cfos transcript (XM014206157.1). Both sense and
antisense probes were tested to confirm specific labeling of target genes (Supplementary
Figure 1).

2.6 Quantification of labeled cells

After ISH, slides were photographed using an Axio Scan.Z1 slide scanner (Zeiss) at 20%
magnification. Labeled cfos and bdnf cells were quantified using the Fiji platform (Schindelin
et al., 2012, RRID:SCR_002285) in ImageJ2 (Rueden et al., 2017, RRID:SCR003070). Brain
regions were identified using several salmonid stereotaxic atlases (Navas et al., 1995; Carruth
et al., 2000; Northcutt, 2006) and transcript-positive cells were counted in the dorsolateral
(both the dorsal and ventral subregions; DId and Dlv, respectively) and dorsomedial (both the
dorsal and ventral subregions; Dmd and Dmv, respectively) pallium, as well as in the ventral
part of the ventral telencephalon (Vv; see Figure 1 for an overview of the subregions). An
Image J macro script was developed to semi-automate quantification of labeled cells
(Supplementary File 2). In short, images were converted into grayscale (8 bit), the area of
interest was manually selected and the black & white threshold was adjusted within the range
of 145 and 190 to match the labeled cells in the original image. Then, all labeled cells that
measured between 15-500 pixels were counted using the ‘Analyze Particles’ command.
Example images of the semi-automated quantification method are provided in Supplementary
Figure 2. For each section, the total number of transcript-labeled cells was counted in both
the entire DI and Dm, as well as within their respective dorsal and ventral subregions (DId
and DIv, Dmd and Dmv), to elucidate subregion-specific expression patterns and to allow for
comparisons with previous studies (e.g. Vindas et al., 2017). The number of labeled cells was
quantified as described by Vindas et al. (2018) and Moltesen et al. (2016). In short, the
number of transcript-expressing cells was counted within each subregion for both lobes in
each section (in which interest areas were found). Labeled cells were counted in 9.0 + 1.4
(mean + SD) telencephalon sections per fish and because the number of brain sections
differed per fish, we corrected for the number of counted sections by calculating the average
number of labeled cells per section for each subregion. These average numbers of labeled
cells per section in each area were used in the statistical analysis. Samples were quantified in
random order and the experimenter did not know the identity of the samples at time of
quantification.

2.7 Statistical analyses

Two-way analysis of variance (ANOVA) was used to compare fork length, body mass,
plasma cortisol levels and ISH cell counts, with origin (wild vs. hatchery) and treatment
(basal vs. stress) as independent variables. The fish telencephalon consists of two lobes (Fig.
1). To test whether lateralization preferences occurred (i.e. different neural responses in the
left vs. right telencephalic lobe), the labeled cells were quantified in each lobe separately and
for each area of interest, we tested if the left and right cell counts were statistically different
from each other (Spearman’s p). Because we did not find any significant differences in
labeled cell numbers between the two lobes, the cell quantifications of the two lobes were
pooled together for further statistical analysis and the absolute number of transcript-
expressing cells were compared between treatments. Models were assessed by their capacity
to explain the variability, and the interaction effects between treatment and conditions were

6
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accepted or rejected according to total model “lack of fit” probabilities. Upon inspection of
the diagnostic residual plots, all ISH cell counts and cortisol values were '°log transformed
before statistical analysis. Tukey-Kramer honestly significant difference (HSD) post-hoc tests
were conducted for brain areas that showed both a significant origin and treatment effect or a
significant interaction effect, in order to elucidate differences between groups. Individual data
points are shown, as well as the mean + standard error of the mean (SEM).

3 Results

3.1 Body size and plasma control

As expected, wild fish were significantly smaller (fork length: 81 + 2 vs. 112 + 1 mm; p <
0.0001) and weighed less (6.7 £ 0.6 vs. 16.8 £ 0.8 g; p < 0.0001) than hatchery-reared fish.
Fork length (p = 0.68) and body mass (p = 0.94) did not significantly differ between stressed
and basal fish. Basal plasma cortisol levels were approximately 3.6 ng ml™! for both hatchery
and wild parr (Fig. 2). The 30-minute confinement stress significantly elevated plasma
cortisol levels to 24.3 + 4.5 and 20.8 + 2.6 ng ml"! in hatchery and wild fish, respectively
(treatment effect: p < 0.0001). No origin or interaction effect was found (p = 0.76 and p =
0.61, respectively).

3.2 Expression of cfos and bdnf

3.2.1 The dorsolateral pallium and its subregions

In situ hybridization analysis of cfos in the DI as a whole (Fig. 3A) revealed a significant
origin (p = 0.046), treatment (p < 0.0001) and interaction effect (»p = 0.021), with a
significantly higher absolute number of cfos-labeled cells post-stress in both hatchery (p <
0.0001) and wild (p = 0.0027) fish, compared to basal conditions. In addition, post-stress
hatchery fish had a higher number of cfos-labeled cells in the DI compared to post-stress wild
fish (»p = 0.017). In the DId (Fig. 3B), a treatment effect showed overall more cfos-labeled
cells in response to stress compared to basal conditions (p = 0.0071). No effect of origin was
found (p = 0.091). The Dlv (Fig. 3C) showed a similar pattern as the whole DI, with a
significant origin (p = 0.041), treatment (p < 0.0001) and interaction effect (p = 0.0038).
Post-hoc analysis revealed higher cfos expression in response to stress for both hatchery (p <
0.0001) and wild (p < 0.0001) individuals, compared to values at basal conditions.
Furthermore, post-stress hatchery fish had a higher number of cfos-positive cells in the Dlv
compared to post-stress wild individuals (p = 0.0045).

In situ hybridization analysis of bdnf in the DI as a whole (Fig. 3D) and in the DId (Fig. 3E)
revealed no significant origin or treatment effects. Meanwhile, there was a significant origin
effect (p = 0.0074) in the Dlv (Fig. 3F), with hatchery fish showing overall higher numbers of
bdnf-labeled cells compared to wild fish.

3.2.2 The dorsomedial pallium and its subregions

There was a significant treatment effect on cfos expression in the Dm, Dmd and Dmv (p <
0.0001 in all areas; Fig. 4A-C), showing a higher cfos transcript abundance in stressed fish.
No origin effects were found for the Dm, Dmd or the Dlv.

Expression of bdnf showed a significant origin (»p = 0.020, p = 0.014 and p = 0.049) and
treatment (p = 0.0025, p = 0.0091 and p = 0.025) effect for the Dm (Fig. 4D), Dmd (Fig. 4E)
and Dmv (Fig. 4F) respectively, where hatchery fish showed an overall higher bdnf
abundance compared to wild individuals and post-stress bdnf expression was higher

7
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compared to values at basal levels. Tukey-Kramer HSD post hoc tests revealed that in the
Dm, the wild group at basal conditions showed significantly lower bdnf expression compared
to the wild stressed (p = 0.0129) and hatchery stressed (p = 0.0017) groups, but not to the
hatchery basal group (p = 0.053). In the Dmd, the wild basal group had a significantly lower
number of bdnf-labeled cells compared to all three other groups (p = 0.038, p = 0.0032, p =
0.027 for wild basal vs. hatchery basal, hatchery stressed and wild stressed, respectively). In
the Dmv, the wild basal group showed a significantly lower number of bdnf-labeled cells than
the hatchery stressed group (p = 0.0435) and no other significant differences were found
between groups.

3.2.3 The ventral part of the ventral telencephalon

In the Vv, cfos (Fig. 5A) expression was significantly elevated overall in response to stress (p
<0.0001), while no significant effects of origin were observed (p = 0.12).

The number of bdnf-labeled cells (Fig. 5B) in the Vv was overall significantly higher in
hatchery fish (p < 0.0001) compared to wild individuals and no treatment effects were found
(p=0.22).

Figure 6 depicts representative examples of ISH images that were used for the quantification
analysis.

4 Discussion

We found distinct differences in region-specific expression of cfos and brain-derived
neurotrophic factor (bdnf) in the telencephalon of hatchery-reared and wild Atlantic salmon
parr under basal and acute stress conditions. While the stressor resulted in increased cfos
abundance in all fish, hatchery-reared individuals showed a significantly stronger increase in
cfos-positive cells than wild fish in the ventral part of the dorsolateral pallium (Dlv).
Transcript abundance of bdnf increased in response to acute stress in the dorsal part of the
dorsomedial pallium (Dmd) of wild fish, but not in that of hatchery-reared individuals. Thus,
our findings demonstrate that neuronal activity and neural plasticity in Atlantic salmon is
dependent on both origin (i.e. wild or hatchery-reared) and treatment conditions (i.e. basal or
post-acute stress) and that these processes differ in a region-specific manner. To our
knowledge, we are the first to map neuronal differences between wild and hatchery-reared
fish within telencephalic subregions and our results provide novel insights into the
neurological foundation that could underlie the differences in behavior, and stocking success,
between wild and hatchery-reared fish.

Plasma cortisol levels in stressed parr increased approximately 6-fold compared to controls
and the range of average plasma cortisol concentrations found in this study (3-25 ng ml™")
was within the range of those previously reported for non-migratory Atlantic salmon parr
(Carey and McCormick, 1998; McCormick et al., 2000; Madaro et al., 2015; Madaro et al.,
2016). Because hatchery-reared fish are subject to human disturbance more frequently than
wild fish, we had hypothesized that hatchery fish would habituate more easily to stress and
therefore show a mitigated cortisol response to a stressor. However, hatchery-reared and wild
salmon showed no differences in plasma cortisol concentrations at either basal or post-stress
conditions. Similar plasma cortisol levels for wild and hatchery-reared salmonids at 30
minutes post-stress have previously been reported for rainbow trout (Oncorhynchus mykiss)
(Woodward and Strange, 1987), suggesting that the magnitude of the immediate cortisol
response to acute stress is not affected by hatchery rearing. However, several studies report
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higher plasma cortisol concentrations in wild salmonids (rainbow trout, Coho salmon (O.
kisutch) and Chinook salmon (O. tshawytscha)) or salmon reared in semi-natural rearing
environments (O. tshawytscha) compared to hatchery-reared conspecifics at 1-12 hours post-
stress, suggesting that recovery of cortisol to baseline levels is slower in wild individuals
(Woodward and Strange, 1987; Salonius and Iwama, 1993; Madison et al., 2015). These
findings thus suggest that, despite the fact that we observed a similar cortisol response in wild
and hatchery-reared fish at 30 minutes post-stress, it is possible that hatchery individuals
recover from the acute stress more quickly, which would indicate that the hatchery
environment alters the long-term endocrine stress response. Further studies should confirm
this hypothesis by assessing cortisol peak levels, as well as recovery duration, in wild vs.
hatchery Atlantic salmon populations, to determine the effect of hatchery rearing on stress
coping.

The immediate early gene cfos is a robust marker for recent neural activity (Okuno, 2011).
Within specific neuronal populations, the cfos gene is relatively little expressed at basal levels
but when neurons are stimulated, cfos expression is rapidly increased with mRNA levels
typically peaking between 15 and 30 minutes post activation (Hoffman et al., 1993; Pavlidis
et al., 2015). Acute stress can increase neuronal cfos expression in a variety of animals,
including rats (Cullinan et al., 1995; Rosen et al., 1998), zebrafish (Danio rerio, Pavlidis et
al., 2015), gilthead seabream (Sparus aurata, Vindas et al., 2018) and Atlantic salmon
(Vindas et al., 2017). Our findings corroborate that acute stress increases cfos expression in
the DI, Dm and Vv of teleost fish (Vindas et al., 2017; Vindas et al., 2018). Increased cfos
expression post-acute stress has also been reported in mammalian limbic areas, including in
brain regions which are functionally equivalent to the fish DI, Dm and Vv (Cullinan et al.,
1995). Recent studies have suggested that the DIv, not the DId, bears most resemblance to the
mammalian hippocampus (Broglio et al., 2015). Therefore, we quantified cfos expression
separately in the dorsal and ventral subregions of the DI and our observation that cfos shows a
different expression pattern in the DIv (treatment, origin and interaction effect) compared to
the DId (treatment effect only) supports the hypothesis that the DId and Dlv are associated
with the regulation of different processes. Research on mice has shown that a fear
conditioning stimulus increases CFOS expression in hippocampal cells, and when these same
cells are reactivated through optogenetic stimulation the mice display freezing behavior,
demonstrating that hippocampal CFOS expression is involved with neural activity associated
with fear memory storage and retrieval (Liu et al., 2012). We observed that reared fish
showed a greater increase of cfos expression in the DIv in response to acute stress compared
to wild individuals. Reared salmonids often show reduced antipredator performance
compared to wild conspecifics (Huntingford, 2004). As the hippocampus plays an important
role in mammalian fear memory and retrieval, and we observe different responsiveness of the
Dlv to confinement stress between hatchery-reared and wild fish, it would be interesting to
assess whether wild and reared fish would also display differences in neural activation in the
Dlv in a fear-conditioning test, and how this may relate to important behavioural paradigms
such as antipredator behaviour. Finally, the Dlv also plays an important role in spatial
memory. That is, lesions in the DIv result in place-memory deficits in goldfish (Carrasius
auratus, Rodriguez et al., 2002; Broglio et al., 2010) in a similar way that lesions of the
hippocampus reduce the navigating capacity of mammals (Hampton et al., 2004). Therefore,
it is likely that the DIv is important for navigating between natural foraging grounds. In this
context, it would be interesting to examine whether the difference in post-stress activation of
the Dlv that we found between wild and hatchery-reared fish is associated with their ability to
navigate, learn and retrieve memories on foraging patches and prey abundance, particularly in
a risky environment (e.g. under threat from predators).
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Brain-derived neurotrophic factor (Bdnf) is a protein from the neurotrophin family that
promotes synaptic plasticity, long-term potentiation, neurogenesis and cell survival (Mattson
et al., 2004; Pang et al., 2004; Gray et al., 2013). In the whole fish brain, bdnf mRNA is
generally upregulated in response to acute stress (Pavlidis et al., 2015) and downregulated
after chronic stress (Tognoli et al., 2010). Mammalian studies show that changes in BDNF
expression in response to external stimuli are region-specific within the central nervous
system. For example, while both chronic and acute stress result in a significant elevation of
BDNF protein abundance in the mammalian amygdala, stress can decrease BDNF levels in
the hippocampus (Gray et al., 2013). While mammalian studies almost exclusively study
region-specific expression patterns of BDNF, studies on teleosts often target bdnf expression
in the whole brain or macro-brain regions such as the whole telencephalon or whole
cerebellum (Tognoli et al.,, 2010; Johansen et al., 2012; Pavlidis et al., 2015). In these
teleostean studies, acute stress increased bdnf expression in the whole brain of zebrafish
(Pavlidis et al., 2015), while it did not alter bdnf transcript abundance in the whole
telencephalon of rainbow trout (Johansen et al., 2012) nor in the whole brain of European sea
bass, Dicentrarchus labrax (Tognoli et al., 2010). Interestingly, while we did not find a
change in bdnf expression in the DI and Vv in response to stress in any of our study groups,
consistent with the findings of Johansen et al. (2012) and Tognoli et al. (2010), we did find
significantly more bdnf-labeled cells in the whole of the Dm of wild stressed individuals,
supporting the findings by Pavlidis et al. (2015). Furthermore, the increase in post-stress bdnf’
expression in the Dm is in agreement with the finding that BDNF abundance is increased
post-stress in the mammalian amygdala (Gray et al., 2013). This result is interesting to study
further, particularly because this emotional/stress reactivity center may play a significant role
in predator recognition and negative stimuli avoidance conditioning (Portavella et al., 2004).
Additionally, this finding further demonstrates that in salmon, as has been shown earlier
(Vindas et al., 2017), targeting neuronal subregions can reveal expression patterns that escape
detection when studying whole brains or whole macro-brain areas such as the entire
telencephalon. Interestingly, as with cfos expression in the DI, the dorsal (Dmd) and ventral
(Dmv) neural populations of the Dm in wild fish showed different bdnf expression profiles.
That is, while acute stress increased bdnf expression in the Dmd, it did not in the Dmv. This
observation raises the possibility that, similar to what has been proposed for the neural
subpopulations of the DI, the dorsal and ventral subregions of the Dm have different
functionalities also, as suggested by preliminary work by Broglio (pers. comm.). Finally,
even though hatchery-reared fish did not show any increase in bdnf in response to stress, we
observed that this group showed an overall higher expression of bdnf in the Dm, the Vv and
the Dlv, compared to wild individuals, with the highest number of bdnf-labeled cells present
in the Dm, which plays an important role in learning under fear and stress (Portavella et al.,
2004; Vargas et al., 2009; O'Connell and Hofmann, 2011). Under hatchery conditions, fish
regularly experience disturbances (e.g. tank cleaning, grading, vaccination, transport etc.) at
unpredictable intervals. It is conceivable that these stressors periodically trigger bdnf
transcription in the Dm of hatchery fish, effectively elevating basal bdnf expression levels in
this subregion. The Dm shares reciprocal neuronal connections with the Vv, which in turn
connects to the DIv (Folgueira et al., 2004a; b; Northcutt, 2006). Notably, mammalian
research has demonstrated that the amygdala and hippocampus play an important regulatory
role in the hypothalamo-pituitary-adrenal (HPA) axis (McEwen, 2003), and that the lateral
septum and amygdala are both part of a circuit involved with stress-induced anxiety behavior
(Anthony et al., 2014). Extrapolating our results to these mammalian findings, we propose
that the frequent disturbances associated with life in an anthropogenic environment (i.e.
hatchery rearing) increases bdnf expression at basal conditions in the Dm, which in turn
promotes bdnf expression in the DI and Vv through neural circuits that are involved in the
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stress axis. Together with the fact that hatchery-reared fish did not show an increase in bdnf’
to stress, and the fact that increased BDNF levels are linked to a higher learning performance
in mammals (Vaynman et al., 2004), our results may show a potential reduced capacity for
learning performance in hatchery-reared fish under acute stressful conditions, which would
affect their post-release survival, particularly in risky environments (e.g. under predator
pressure). Future studies should examine the learning performance and bdnf transcription of
individuals under stress and non-stress conditions, to elucidate whether our observation that
there are different bdnf expression patterns between wild and hatchery fish in the Dm affects
their emotional learning response.

To our knowledge, no other studies had ever compared neurobiological markers between
wild and hatchery-reared salmonids using a detailed region-specific approach. For this
reason, we selected in situ hybridization as our methodology, since it allows for the
visualization of transcript abundance of target genes in the entire brain, providing a clear
overview of which neural subpopulations can be of interest. The disadvantage of using ISH to
quantify expression of neurobiological markers is that the quantification process in our
analysis is binary: cells are either classified as expressing or non-expressing, while the
relative transcript abundance within the cells is not considered. In order to map gene
expression patterns in a more quantitative manner, future studies should perform
microdissections of the relevant forebrain subregions and subsequently quantify the transcript
abundance by quantitative polymerase chain reaction (qQPCR), as we have previously done
when studying the neurobiological component of coping styles in Atlantic salmon (Vindas et
al., 2017). By using ISH in the current study, we were able to compare region-specific
expression of neurobiological markers between wild and hatchery-reared fish on the most
detailed scale to date. The studied neuronal subpopulations are involved in learning processes
and stress reactivity and thus provide an important insight in how neural plasticity may drive
behavioral differences between wild and hatchery-reared fish.

In conclusion, we demonstrate that the rearing environment is an important driver of neuronal
wiring in the telencephalon of Atlantic salmon parr. We show novel data on expression of
neuroplasticity markers within specific neuronal subregions in wild and hatchery-reared fish
and this approach has unveiled stress-related expression patterns that have previously escaped
detection (i.e. when studying larger brain areas; Johansen et al., 2012; Pavlidis et al., 2015).
The specific brain areas mapped in the current study are associated with cognitive processing
capacity (specifically stress reactivity, associative learning and emotional learning) and may
therefore play an important role in the behavioral differences that are observed between wild
and hatchery-reared teleosts. A better understanding of how the rearing environment affects
the neurological and behavioral plasticity of captive animals will help with the future design
of innovative hatchery technologies that produces well-adapted salmonids that can thrive
after stocking. In addition, these results provide further insight into mechanisms of the central
nervous system associated with behavioral processing and coping in vertebrates and provides
focal areas which should be studied further to elucidate how animals react to, and interact
with, their environment.
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Figure 1. Selected subregions of the telencephalon. A transverse view of the Atlantic
salmon telencephalon with a Toluidine Blue-stained left lobe and a schematic representation
of the right lobe depicting the location of the dorsal (DIld) and ventral (Dlv) dorsolateral
pallium, the dorsal (Dmd) and ventral (Dmv) dorsomedial pallium and the ventral part of the
ventral telencephalon (Vv).
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730  and treatment (basal vs. stress) on mean = SEM plasma cortisol levels of Atlantic salmon
731  parr. Two-way analysis of variance (ANOVA) statistics are displayed in the figure, » = 7 per
732 treatment.
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Figure 3. In situ hybridization labeled cfos and bdnf cells in the DI, DId and Dlv. Effect
of origin (hatchery vs. wild) and treatment (basal vs. stress) on mean £ SEM expression of
cfos (A-C) and brain-derived neurotrophic factor (bdnf; D-F) in the entire (dorsal + ventral)
dorsolateral pallium (DI; A,D), as well as the dorsal only (DId; B,E) and the ventral only
(Dlv; C,F) subregions. Two-way analysis of variance (ANOVA) statistics are displayed in
each panel, n = 7 per treatment. Groups that do not share a similar lowercase letter are
significantly different from one another (Tukey-Kramer HSD post hoc test).
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Figure 4. In situ hybridization labeled cfos and bdnf cells in the Dm, Dmd and Dmv.
Effect of origin (hatchery vs. wild) and treatment (basal vs. stress) on mean + SEM
expression of cfos (A-C) and brain-derived neurotrophic factor (bdnf; D-F) in the entire
(dorsal + ventral) dorsomedial pallium (Dm; A,D), as well as the dorsal only (Dmd; B,E) and
the ventral only (Dmv; C,F) subregions. Two-way analysis of variance (ANOVA) statistics
are displayed in each panel, n = 7 per treatment. Groups that do not share a similar lowercase
letter are significantly different from one another (Tukey-Kramer HSD post hoc test).
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Figure 5. In situ hybridization labeled cfos and bdnf cells in the Vv. Effect of origin
(hatchery vs. wild) and treatment (basal vs. stress) on mean £ SEM expression of cfos (A) and
brain-derived neurotrophic factor (bdnf; B) in the ventral part of the ventral telencephalon
(Vv). Two-way analysis of variance (ANOVA) statistics are displayed in each panel, n = 7
per treatment.
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760  Figure 6. Representative example of in situ hybridization of cfos and bdnf; images used
761  for the quantification analysis. Representative pictures of the expression of cfos
762  (A,B,E,F,L,J) and brain-derived neurotrophic factor (bdnf; C,D,G,H,K,L) transcripts (purple
763  cells) in the dorsomedial pallium (Dm; A-D), dorsolateral pallium (DI; E-H) and ventral part
764  of the ventral telencephalon (Vv; I-L) of wild and hatchery-reared Atlantic salmon parr under
765  basal or after acute stress conditions. WB: wild basal; WS: wild stress; HB: hatchery-reared
766  basal; HS: hatchery-reared stress. Arrows indicate transcript-labeled cells and all scale bars
767  measure 100 um.
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Figure S1. Specificity of the riboprobes was verified by performing the in situ hybridization
protocol using both sense and antisense probes on a subset of brain samples. Depicted are the sense
(A) and antisense (B) probes for bdnf and the sense (C) and antisense (D) probes for cfos.



Figure S2. Illustration of several steps of the semi-automated quantification method of transcript-
positive cells. The area of interest was selected using the selection tool (A), the black & white threshold
was set to match the original image as closely as possible (B), and all cells that measures between 15-
500 pixels were counted by the ImagelJ software (C). Orange arrows indicate the location of a cell which
is labeled too weakly to be quantified by the software after adjusting the black & white threshold in
panel B.



Supplementary File 1. Sequences of the riboprobes of bdnf and cfos used for in situ
hybridization.

bdnf (485 bp)

tgentGCTCgngCGGCCGCcaGTGTGATGGaTATCTGCAGAATTCGGCTTATGCCTCTT
GTCTATTCCACGGCAGCCCTCCTTTGTGTACCCCATAGGGTTACATTTGGTCTCAT
AAAAGTATTGCTTCAGTTGGCCATTGGGGACAGGGACCTTTTCCAGGACGGTAAC
GGTCTGCCCAGACATGTCTATTGCTGTCTTTTTGTCCACAGCTGTCACCCACTGGC
TAATACTATCACACACACTCAGCTCTCCACGCCGCGACGGGTCAGAATGCCGCCG
CACCCTCATGGACATGTTAGCGGCGTCCAGGTAGTTTTTGTATTCCTCCAGGAGA
AAAAGCAGCGGTGGCTCTAAAGGCACTTGGTTGCTGATCATCACCCGCGATGCAT
ACAGGTCGACATCCTTGGTCTCCGTGGTGACCACAGAGGAAGGACCCCCTCCTCC
CTGGCCCTTGTCAGCCCCAGGCCCCAGCTGAGATGCTTCTCCTTCCACCTCCAAG
AGCTCCTCAATCACCTGCTCANACGTGTCTGTGAAAGCCGAATTCCAGCACACTG
GCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCA
TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAG
CCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACAT
TAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCT
GCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGgCGCTCT
TCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGG
TATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGaTAACGC
AGGAAnGAACATGTGAGCAAANGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG
CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAgCATCACAAAAaAT
CGACGCTCAAGTCagaGGTGGCGAAaCCcGaCAGGACTATAAagaTACCAGGCGTTC
CCccTGGAancTCCcTecGTGegecTCTCCTGTTCenaCCeTGCegeTTACcGGatnCCTGTCegC
ct

Primers used for cloning:
bdnf F1 ATGCCTCTTGTCTATTCCACGGCA

bdnf R1 TCACAGACACGTTTGAGCAGGTGA

Compl: TCACCTGCTCAAACGTGTCTGTGA



cfos (906 bp)

NNNNNNNNNTACCCTNNCTAAAGGGACTAGTCCTGCAGGTTTAAACGAATTCGC
CCTTTGTAGAGAGGCTCCCAGTCCTGAGTGTACAGGGAGCTGGCCAGATCAACCT
CGGGCACCGACCGGGCCGTCTCCATCTCAGCCTTGGCGAGGAGAGACAGGGACT
CCAGGCAGGCTGTGTCCAGGTCGGCCATCTTGACGTCGGAGACGGAGATGGAGG
CAGTGGACAGGAAGGGACTGCTGGAGAATATGGAGGCAGAGGCTGAGAGGGTG
GAGGTGGACTGGATGGAAGTAAGGGGAGCGGCAGAGCAGGATACCATGCGCTG
AGGCGGGGACAGCTGGATGGAGACCCCGTGGGAGGGCGAGATGGAAGGGAAAG
TCGTGTCCATATCAGAGCGGATCTTGCAGATGGGCTGGTGGGCTGCCAAGATAA
ACTCTAACTTCTCCTTCTCTTTAAGCAGGTTGGCGATGTCGTTCTGGAGAACAGA
CTTCTCTTCCTCCAGCTCGTCGGTTTCACCCTGCAGAGTGTCGGTGAGTTCCTTTC
GCCTGTTGCGGCATTTAGCTGCTGCCTGCTTGTTCCTCTCTCTACGGACTCGCTTC
TTCTCCTCCTCTTCAGGCGAAAGCTGTTCCATTTTGCCTCTGCGCCCAGAGCTGTG
GCCCTTGTTCCTCATGGCTCTAGTGTAGGTTGGGGGGCTGTCGCTGTAGGGATGG
GCTCTGTGAGAAGGTGCCACAGAGGATAGCGGCTGGACCAACCACTGCAGGTCT
GGGCTGGCAGAGATGGCTGTAACAGTAGGGATGAAGGACGGACCACTGGACACT
GAATTCGGGTCTGTGAAGTCCTGAGATTGGGGTGAACCCATGCTGGAGTAAGAT
CCCTCNNGAGAGTTGAAGTAAACCAGCTTGTCGCNNNATGGAGAAGCTGTACTA
CAGCGAGAAGAANANTCACA GICGCICIIGARAGEGEEAGE A NNNNGAATTCGC
GGCCGCTAAATTCAATTCGCCCTATANTGAGTCGTATTACNATTCACTGGNNGTC
NTTTTACAACGTCNNGACTGGGAAAANNN

Primers used for cloning:

cFosF1: ACTCCGCTTTCAACACCGAC
Compl:

cFosR1: TGTAGAGAGGCTCCCAGTCC



Supplementary File 2. The macro script used for quantification of labeled cells using the Fiji
platform in ImageJ2.

run("Rotate... ");
run("8-bit");
setTool("polygon");
waitForUser
run("Crop");
setBackgroundColor(0, 0, 0);
run("Clear Outside");
run("Threshold...")
waitForUser
run("Convert to Mask");
run("Fill Holes");
run("Watershed");

"non

run("Analyze Particles...", "size=15-1000 pixel show=Outlines clear summarize");
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Fish reared for stocking programs are severely stimulus-deprived compared to their wild conspecifics
raised under natural conditions. This leads to reduced behavioural plasticity and low post-release
survival of stocked fish. Environmental enrichment can have positive effects on important life-skills,
such as predator avoidance and foraging behaviour, but the neural mechanisms underpinning these
behavioural changes are still largely unknown. In this study, juvenile Atlantic salmon (Salmo salar)
were reared in an enriched hatchery environment for seven weeks, after which neurobiological
characteristics and post-release survival were compared to fish reared under normal hatchery
conditions. Using in situ hybridisation and qPCR, we quantified the expression of four neuroplasticity
and neurogenesis markers in telencephalic subregions associated with relational memory, emotional
learning, and stress reactivity. Aside from lower expression of brain-derived neurotrophic factor (bdnf)
in the Dlv (a region associated with relational memory) of enriched salmon, we observed no significant
effects of enrichment on neural plasticity. Exposure to an enriched environment increased post-release
survival during a five-month residence in a natural river by 51%. Thus, we demonstrate that
environmental enrichment can improve stocking success of Atlantic salmon parr, but this does not

appear to be associated with increased neural plasticity in the studied telencephalic subregions.

Introduction

Hatchery and aquaculture rearing environments have a profound impact on fish development and

behavioural responses. Compared to fish in the wild, hatchery-reared fish are kept at unnaturally high
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densities in a uniform environment and are severely stimulus-deprived in terms of feeding variability,
predator exposure and fluctuations in abiotic factors'. As a result, current commercial hatchery
procedures result in the production of fish that deviate from their wild conspecifics in behavioural'-?
and neural® characteristics. This has implications for production and welfare aspects of fish rearing, in
particular within the context of compensatory stocking programs. Millions of hatchery-reared
salmonids, primarily Atlantic salmon (Salmo salar L.), are released into natural waters in Northern
Europe yearly*®. Unfortunately, salmonid stocking is currently characterised by high post-release
mortality rates and reared salmon show lower survival compared to wild conspecifics®®. From both an
ethical and financial perspective, it is imperative to improve survival rates of hatchery-reared fish by
providing rearing conditions that allow for optimal development of neural and behavioural plasticity,

thus producing fish that resemble the “wild type” phenotype more closely.

To improve stocking success, efforts have been directed towards enrichment of the hatchery
environment to create more wild-like rearing conditions. These hatchery modifications typically
encompass structural enrichment such as rocks, plants and shelter’. Structural environmental

10,11

enrichment (EE) has been shown to improve the learning capacity'®!!, exploratory behaviour'?, prey

1314 and, ultimately, post-release survival of hatchery-reared fish in some'>

capture and handling skills
17 but not all studies”'®!?. While the effects of EE on behavioural characteristics of hatchery-reared fish
have thus been mapped to some extent, the brain, which underlies these behaviours, remains much
understudied. Some studies have demonstrated that EE can increase brain size?*?!, but it is difficult to
interpret how a larger brain size relates to neurogenesis and brain plasticity and, ultimately,
behaviour?2, Notably, only a few studies report altered expression of neurogenesis markers in the
whole telencephalon after EE rearing. For example, Salvanes, et al. ' reported that EE-rearing increased
telencephalic neurogenic differentiation factor 1 (neurod) transcript abundance in Atlantic salmon parr
and von Krogh, et al. % observed higher numbers of proliferating cell nuclear antigen (Pcna)-expressing
cells in EE-reared zebrafish (Danio rerio, Hamilton 1822), while Manuel, et al. >* reported lower
telencephalic neurod and pcna expression in zebrafish reared in an enriched environment. Importantly,
the telencephalon consists of a plethora of neuronal subpopulations, each driving distinct behavioural
and cognitive processes. For example, the dorsolateral part (Dl) of the telencephalon is involved in
relational memory and spatial orientation, while the dorsomedial part (Dm) of the telencephalon is
associated with emotional memory and stress reactivity?>-?’. Furthermore, the ventral part of the ventral
telencephalon (Vv) is believed to be involved in the regulation of goal-oriented and social behaviour?®2,
Thus, these regions drive neural processes that may underlie the behaviours which are influenced by
EE, and we hypothesise that exposure to EE alters the expression of neuroplasticity and cell

proliferation markers in these regions. To date, few studies have investigated the effect of EE on

neuroplasticity markers at the level of neuronal subpopulations in fish. Insight in this matter can help
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us understand how the rearing environment helps to shape the fish brain, and how this affects the

behaviour and, ultimately, post-release survival of hatchery-reared salmonids.

We studied the effects of a seven-week period of EE on telencephalic neuroplasticity and post-release
survival success of juvenile Atlantic salmon. Neuroplasticity markers were assessed in the DI, Dm and
Vv subregions of the telencephalon by means of in situ hybridisation of the immediate early gene cfos
and the neurotrophin brain-derived neurotrophic factor (bdnf), as well as by qPCR of cfos, bdnf, pcna
and neurod in microdissected tissue from target regions. Post-release survival was assessed by capturing
downstream migrating salmon, five months post-release, in a natural river. Our study confirms that EE
can increase post-release survival of stocked fish, but we did not find major effects on the expression

of the neuroplasticity markers in the selected telencephalic regions after seven weeks of enrichment.
Materials and Methods

Ethical permit

This experiment was performed in accordance with current Norwegian law for experimentation and
procedures on live animals, and was approved by the Norwegian Food Safety Authority (Mattilsynet)

through FOTS application ID 10034.
Experimental animals

This experiment was conducted at the Norwegian Institute for Nature Research (NINA) salmon
hatchery in Ims, using hatchery-reared Atlantic salmon parr (i.e. juvenile salmon that live in fresh water
before undergoing smoltification: the metamorphosis that prepares them for their migration into the
ocean). The experimental fish which were first generation offspring from wild parents from the river
Imsa, south-western Norway (58°50°N; 5°58°E). Fish were transferred to the experimental tanks at 9
months post-hatching and brain sampling and release into the wild took place at 11 months post-
hatching. All fish were weighed, measured (total length) and implanted with a passive integrated
transponder (PIT) tag prior to the start of the experiment. Early sexually mature (precocious) males

were excluded from the study.

Environmental enrichment

In the first week of October 2016, 780 Atlantic salmon parr (152 + 25 mm total length, 41 + 18 g body
mass; mean = SD) were randomly distributed between three control and three enriched tanks (» = 130
fish per tank) for a duration of seven weeks. Control tanks were square holding tanks measuring
2x2x1.2 m (Ixwxh), filled with approximately 3 m? of flow-through ambient river water and covered
with a fiberglass lid, through which natural light could penetrate. Enriched tanks were identical to the
control tanks, except with the addition of 40 rocks (10 - 20 cm diameter), as well as three artificial
plastic ‘plants’, composed of 8 black fronds (9 cm wide and 100 cm long) each, which were weighted

down with a small rock, following methodology described by Salvanes, et al. '°. Fish appeared to use
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both rocks and plants for shelter and fish in the enriched tanks showed less movement and schooling
behaviour than control fish in reaction to disturbances, although none of these behavioural responses
were quantified. All tanks were manually cleaned every third day by partially draining the water while
scrubbing the bottom of the tank with a broom. The rocks and plants in the enriched tanks were
rearranged weekly using a net and control tanks were disturbed with the same net for an equal amount
of time to control for stress effects. Commercial feed (Nutra Parr, Skretting, Stavanger, Norway) was
provided ad libitum throughout the day by automatic feeders. Water temperature was 11°C at the start
and decreased to 4°C at the end of the experiment. After the enrichment period, all fish were again

measured and weighed, and individual specific growth rates (SGR) were calculated as follows:

100

where BM; is the final body mass in g at the end of the enrichment period, BM; is the initial mass in g

at the start of the experiment, and 7 is the experimental time in days.
Brain sampling

After seven weeks of enrichment, the brains of a subset of fish were sampled, which were processed for
quantification of neuroplasticity markers in subregions of the telencephalon by either in situ
hybridisation (ISH) or qPCR. To this end, fish were randomly collected in pairs from each of the six
holding tanks and anaesthetised in 0.75%o (v/v) 2-phenoxyethanol (Sigma-Aldrich 77699), which
rendered them unconscious within 30 sec, after which total length and body mass were recorded. Brains
were sampled in two ways: 1) to sample brains for ISH, fish were sampled as described by Mes, et al. >.
In short, anaesthetised fish were fixed by vascular perfusion in 2% paraformaldehyde and brains were
then dissected and post-fixed overnight. After three washing steps, brains were cryopreserved overnight
in 25% sucrose and subsequently embedded in Tissue-Tek OCT compound, and stored at -80°C until
further processing; ii) to sample brains for microdissections and subsequent qPCR analysis,
anaesthetised fish were decapitated and the jaw and gills were trimmed away. The tissue was then sealed
in a plastic bag, snap-frozen on dry ice and stored at -80°C until processing. Time from decapitation to

freezing ranged between 1 and 2 min.

Post-release survival

After the enrichment period, enriched (7 = 314) and control (» = 313) PIT-tagged salmon parr were
released into the river Imsa during the first week of December to assess their post-release survival and
subsequent downstream smolt migration the following spring. To this end, salmon were collected from
their tanks, anaesthetised in Benzoak vet (ACD Pharmaceuticals AS; 0.14 %o (v/v) in water) and
subsequently measured, weighed and adipose fin-clipped for identification, following the standard

stocking procedures of the hatchery. Thereafter, fish were allowed to recover for three days in their
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holding tanks, but without structural enrichment. The river Imsa is approximately 1 km long and it
drains Lake Liavatn into the Hogsfjord®. Salmon parr were released at the upstream limit of the river
(58.535608, 5.570166), which is marked by a 2-m high barrier, preventing upstream migration of fish
into Lake Liavatn. Stocked fish migrated downstream towards the sea in April and May 2017,
approximately five months after release. All downstream migrating fish (i.e. both hatchery-reared and
indigenous wild fish) were intercepted by a Wolf-type fish trap®®, located 100 m upstream from the
estuary. The entire body of water from the river Imsa passes through this trap and therefore every
migrating fish is intercepted. The trap was emptied at least twice daily and captured fish were PIT
scanned, weighed and measured, after which they were released downstream of the trap so they could

resume their ocean migration.

In situ hybridisation and quantification of labelled cells

In situ hybridisation for cfos and bdnf transcripts and subsequent quantification of labelled cells was
conducted as described by Mes, et al. 3. The ISH was performed on transverse parallel sections for eight
fish per treatment. Transcript-positive cells were counted in the dorsolateral (both the dorsal and ventral
subregions; DId and Dlv, respectively) and dorsomedial (both the dorsal and ventral subregions; Dmd
and Dmv, respectively) pallium, as well as in the ventral part of the ventral telencephalon (Vv; see Mes,
etal. 3 for an overview of the subregions). Labelled cells were counted in these five subregions (in both
telencephalic lobes) in 11.2 + 2.8 (mean = SD) telencephalon sections per fish. Because the number of
brain sections differed per individual, we corrected for the number of counted sections by calculating
the average number of labelled cells per section for each subregion. These average numbers of labelled

cells per section in each area were used in the statistical analysis.

Microdissections

Frozen trimmed skulls of eight fish per treatment were sectioned (100 pm thick) transversely in a
cryostat (Leica CM 3050) at -22°C. Sections were thaw-mounted onto glass slides (VWR 631-151) and
subsequently stored at -80°C. Microdissections of the DId, Dlv, Dmd, Dmv and Vv were performed on
frozen sections kept on a cooling plate (-14 ‘°C) as described by Vindas, et al. 3!. On average, per
individual, a total of 37, 37, 38, 36 and 13 punches were taken for the DId, Dlv, Dmd, 36 Dmv and Vv,
respectively. Microdissected tissue was injected into RLT buffer (RNeasy Micro Kit, Qiagen 74004)
and immediately frozen at -80°C until RNA extraction, which was conducted within three days after

microdissection.
Relative transcript abundance

Relative transcript abundance of cfos, bdnf, neurod and pcna in microdissected areas was measured
using real-time PCR (qPCR). Microdissected tissue was thawed, vortexed for 30 s, centrifuged at 13,400
x g for 5 min and total RNA was subsequently extracted using the RNeasy Micro Kit (Qiagen, ID

74004), which includes a DNase I treatment, according to the manufacturer’s instructions. RNA

5
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concentrations were measured using a BioTek Epoch microplate spectrophotometer and the quality of
extracted RNA was checked on a subset of samples using a Bioanalyzer RNA 6000 Pico Kit (Agilent
2100): RNA integrity numbers (RIN) were 9.8 + 0.3 (mean = SD) with all RIN values above 8.9.
Reverse transcription was performed using an iScript cDNA Synthesis Kit (Bio-Rad 1708891)
according to the manufacturer’s instructions, using 36 ng of total RNA as template in a total reaction

volume of 20 pl. Subsequently, cDNA was stored at -20°C.

The four target genes, as well as three reference genes (elongation factor 1aa (eflaa), ribosomal protein
820 (S20), and hypoxanthine phosphoribosyltransferase 1 (hprtl)) were selected for qPCR (Table 1).
Previously published primer sequences were available for all genes, except for cfos, for which primers
were designed in this study. The predicted sequence for cfos in Atlantic salmon (accession number:
XM _014206157.1) was retrieved from the National Center for Biotechnology Information (NCBI:
http://ncbi.nlm.nih.gov/nuccore) and primers were designed using the NCBI Primer-BLAST function.
Two cfos primer pairs were designed at exon-exon junctions and the primer pair with the lowest Cq
values and with a single melting peak was selected for further use (Table 1). Calibration curves were
run for all primer pairs (Supplementary Table 1) and qPCR products were sequenced to confirm the
specificity of the primers. The stability of the three reference genes eflaa, S20 and hprtl was evaluated
using the NormFinder®? and geNorm?? methods, after which eflaa and S20 were selected as most stable

reference genes.

Real-time PCR was carried out in duplicate using a Roche Light Cycler 96 (Roche Diagnostics,
Penzberg, Germany) and accompanying software (version 1.1.0.1320). The reaction volume was 10 pl
including 5 pl LightCycler® 480 SYBR®™ Green I Master (04887352001, Roche Diagnostics GmbH,
Mannheim, Germany), 1 pl of each forward and reverse primer (1 nM final concentration for each
primer) and 3 pl of cDNA (diluted 1:5). Cycling conditions were 10 min at 95°C, followed by 40 cycles
of 10 s at 95°C, 10 s at 60°C and 8 s at 72°C, followed by a melting curve analysis. Expression of
neurod in the Vv was very low (Cq values > 35) and this analysis was therefore excluded, while Cq
values of all other genes in all other brain areas were < 35 and thus included in the analysis following
methodology of qPCR analysis by Bustin, et al. 3. A calibrator, made by pooling aliquots of cDNA of
all samples, was included in triplicate in all plates to allow for comparison of Cq values between plates.
Expression values were computed according to Vandesompele, et al. 33, and expression values are

expressed as relative to the expression of the two reference genes (efaa and S20).
Statistical analyses

All data were analysed in JMP Pro 14.0.0 (SAS Institute Inc.) and unless otherwise stated, all values
are given as mean + SEM. A Generalised Linear Model (GLM) with binomial distribution was
employed to compare migration success between control and enriched fish. Body size and treatment, as

well as an interaction between these two variables, were considered as explanatory variables. The most
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parsimonious model (with the lowest corrected Akaike Information Criterion (AICc) score) was a
model with only treatment (i.e. control vs. enriched) as explanatory variable, and this model was

subsequently used to compare migration success between treatments.

For morphometric data, normality and homogeneity of variance were assessed by Shapiro-Wilk’s and
Levene’s tests. Because the data showed a bimodal distribution, Wilcoxon rank-sum tests were used to
compare total length, body mass and SGR between control and enriched groups. To test whether there
were differences in body mass between wild and hatchery-reared fish at time of migration, an analysis
of covariance (ANCOVA) was used, with body mass as dependent variable, fish origin (hatchery
(pooled enriched and control) vs. wild) as independent variable and migration date as a continuous

covariate.

In situ hybridisation cell counts were compared using Student’s #-tests assuming equal variances
(homogeneity of variance was verified using Levene’s tests). Cell counts of one fish from the enriched
treatment were excluded because slides were of insufficient quality. Cell counts in the brain areas of
the left and right telencephalic lobes were pooled after assessing (by means of a Spearman’s correlation
test) that there were no significant lateralisation differences, with the exception of the cell counts of cfos
within the Dlv. The fact that the number of cfos cells in the DIv between the right and left lobe were not
correlated is likely to be due to the low number of expressed cells in this area (0.45 cells per section).
Because the number of labelled cells showed a significant bilateral correlation in all other brain areas
in the current study, as well as for cfos in the Dlv in our previous work®, cfos cell counts in the left and
right lobe of the DIv were also pooled together. To adhere to Gaussian distribution, values were '“log-
transformed for bdnf (only in the DIv). For qPCR data, gene expression levels of cfos, bdnf, neurod and

pcna were compared between control and enriched groups using Wilcoxon rank-sum tests.

Results

Growth during enrichment

At the start of the experiment, control fish measured 150.7 + 1.4 mm total length and weighed 40.4 +
1.0 g. Enriched fish measured 153.6 + 1.2 mm and weighed 41.9 + 0.9 g, which was not significantly
different from control fish (Wilcoxon test: W, = 129997, Z = -1.20, p = 0.23 and W, = 130030, Z = -
1.18, p = 0.24 for length and body mass, respectively). During the experiment, fish increased on average
in body length and decreased in body mass: after seven weeks of enrichment, control fish were 155.0 +
1.4 mm and 38.2 + 0.9 g, compared to 158.5 + 1.2 mm and 39.9 + 0.8 g for enriched fish, with enriched
and control groups not showing any statistically significant differences (W, = 128977, Z=-1.55p =
0.12 and W, = 129173, Z = -1.48, p = 0.14 for length and body mass, respectively). Specific growth
rates in the hatchery were negative, and significantly lower for control fish (-0.089 = 0.007), compared
to enriched fish (-0.081 + 0.006; W, = 128841, Z=-2.02 p = 0.04).
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Post-release growth, survival and timing of downstream migration

A significantly higher number of fish from the enriched environment (50 out of 314 released fish:
15.9%) migrated downstream the following spring compared to control fish (33 out of 313: 10.5%,
binomial GLM, p = 0.04; Fig. 1A). In the same spring (2017), a total of 316 wild smolts also migrated
downstream in the river Imsa. Timing of downstream migration seemed to differ between wild and
hatchery-reared fish (both enriched and control groups), with the wild fish migrating 1.5 weeks later
(Fig. 1B). That is, while 95% of the wild fish had migrated downstream by July 17", 95% of the
hatchery-raised fish had already migrated downstream by July 7%.

Upon downstream interception of hatchery-reared fish, it was noticeable that released parr in the largest
size range (>170 mm length) had lower survival rates compared to the intermediate sized fish (110-169
mm length): large and intermediate sized fish showed migration success rates of 8% (range 6-9%) and
18% (range 16-22%), respectively (Fig. 2A). Because no experimental fish were observed to migrate
downstream in the following year, and three-year smolts are rare in the river Imsa®, we assumed that

the observed migration rates equated to survival of the hatchery-reared fish.

Only intermediate sized fish, measuring between 120-149 mm at time of release, had increased in body
mass at the time of downstream capture following the 5-month period of river residency, compared to
their body mass at time of release. In contrast, both smaller (<119 mm) and larger fish (>150 mm) had
lost weight during their river residency (Fig. 2B). Average specific growth rates of the surviving
hatchery fish in the river were -0.103 + 0.038 and -0.109 + 0.039 for control and enriched fish,
respectively, which were not statistically different from each other (Wilcoxon test, W, = 1392, Z=0.05,
p = 0.96). Body mass at time of downstream migration was significantly affected by both fish origin
(wild vs. hatchery; F'=31(1, 394), p <0.0001) and migration date (¥ = 106(1, 394), p < 0.0001), where
wild fish had a higher body mass than hatchery-reared fish and body mass decreased during the

migration season (Supplementary Figure 1).
In situ hybridisation

Quantification of in situ hybridisation images revealed region-specific expression patterns of cfos and
bdnfin the subregions of the telencephalon (Fig. 3). The number of bdnflabelled cells was significantly
lower in the Dlv of enriched fish compared to controls (Student’s #-test, 1 = -2.08, df = 13, p = 0.0290,
Fig. 3B), while the number of bdnf-labelled cells showed a strong tendency for significant differences
in the DId (¢ = -1.63, df = 13, p = 0.0634) and the DI as a whole (# =-1.77, df = 13, p = 0.0501). No
significant differences in the number of cfos or bdnf-labelled cells between treatment groups were found

in any of the other regions (Supplementary Table 2).

Relative transcript abundance
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No significant differences in relative mRNA abundance were found between control and enriched fish

for cfos, bdnf, neurod or pcna in the DId, Dlv, Dmd, Dmv or Vv (Fig. 4; Supplementary Table 3).
Discussion

In this study, we demonstrate that modifications of the hatchery environment can have profound effects
on fish survival in stocking programs. A seven-week exposure to environmental enrichment increased
post-release survival of hatchery-reared Atlantic salmon parr by 51% compared to fish reared under
standard hatchery conditions. Notably, hatchery-reared stocked fish (both from an enriched
environment and controls) of intermediate size classes (110-170 mm) showed higher survival rates than
both larger and smaller size classes. Interestingly, after seven weeks of enrichment treatment, no major
differences in the expression of the neuroplasticity markers were detected in the selected regions of the
telencephalon, as assessed through both ISH and qPCR. This is contrary to previous enrichment studies,
which report altered expression of cell proliferation and differentiation markers in the entire forebrain.
However, our findings are in agreement with recent studies which propose that telencephalic region-
specific gene expression patterns are not always in agreement with whole-telencephalon gene
expression patterns 3! and demonstrate that further studies are needed to elucidate the role of the brain

in enrichment-induced behavioural plasticity and post-release survival success.

It has been reported that EE can affect a wide range of fish behavioural outputs, including a reduction

3536 37,38

of conspecific aggression®>3¢, an increase of shelter seeking®”3® and exploration behaviour®, as well as

more favourable post-release habitat selection!”, improved spatial memory!'®!"-¥

and increased feeding
efficiency on novel prey'*!”. These behaviours are mostly under control of the telencephalon, which
contains neural subpopulations associated with processes such as relational and emotional memory,
stress coping and goal-oriented behaviour?®?74%4!, Recent studies report that EE affects the expression
of neurogenesis marker pcna and cell differentiation marker neurod in the whole telencephalon'®*2,
which led to our hypothesis that EE alters region-specific expression patterns of neuroplasticity markers
in the salmon forebrain. However, in most of the studied neuroplasticity markers, we found no
differences in expression between treatments, with the exception of a lower number of bdnf-labelled
cells in the Dlv of EE-exposed fish. Even though we cannot exactly pinpoint the specific reason why
we did not find a difference in the regulation of neuroplasticity markers between enrichment and control
groups based on the information that we have obtained in this study, we speculate on several
possibilities that should be investigated further. First, the longevity of the exposure to EE can be an

1>* and behavioural'! effects of EE have been shown to vary with

important factor, as both neura
exposure duration and age of the animals. Second, the telencephalon is comprised of a myriad of
neuronal populations with specific functionalities. In response to a stimulus, signalling molecules may
be upregulated in one, but downregulated in another region*’. Importantly, when quantifying gene

expression in the entire telencephalon, all regional differences are pooled into one average expression
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level, which may not be reflected in the individual areas. It is also possible that differences might occur
in subregions not included in the current study, and therefore these differences have escaped detection.
However, the DI and Dm are important drivers of the behavioural parameters that have been reported

1035

to be affected by EE, such as spatial memory and emotional decision making'®>°, and are thus the most

likely candidate regions to be affected.

Using in situ hybridisation, we were able to reveal distinct expression patterns of cfos and bdnf in the
subregions of the telencephalon. Interestingly, in a previous study we found that wild-caught salmon
parr show a significantly lower number of bdnf-expressing cells in the Dlv, Dmd, Dmv and Vv,
compared to hatchery-reared parr with the same genetic background®. In this respect, the lower bdnf
expression seen in the DIv of enriched fish in the current study resembles the wild phenotype more
closely than control fish. We have previously hypothesised that higher bdnf expression in the Dlv of
hatchery-reared salmon, compared to wild fish, may be linked to stressors in the hatchery environment®.
In this context, it is tempting to speculate that, as EE has been shown to reduce stress®’, the decrease of
bdnf expression in the Dlv of enriched fish may be a direct consequence of the stress-alleviating effects
of EE. Interestingly, this treatment-associated difference in bdnf expression was not corroborated by
the qPCR data in microdissected Dlv tissue. Although a contradictory finding at first sight, it is
important to consider that quantification of ISH-labelled cells is a binary process (i.e. cells are either
counted as expressing or non-expressing and no quantitative measure per cell is included), therefore it
is possible that even though there are fewer ISH-labelled bdnf cells in the Dlv of enriched animals, these
fewer cells could, on average, have a higher abundance of bdnf mRNA, masking the effects seen in the
ISH analyses (quantified on the cell level) in the qPCR analysis (which quantifies whole-tissue
transcript abundance). Alternatively, ISH image analysis allows for precise identification of the entire
subregions, while mechanical microdissections with a needle may not be as precise and thus might fail
to include all relevant cells within the target neural population, which may underlie the discrepancies
found between ISH and qPCR results. To exclude this confounding factor, laser microdissections should

be considered for future studies.

The effect of EE on post-release survival of salmonids is inconsistent among studies: while it is positive

15-17 7,18,19.43

in some studies'>!"’, others find no effects , or even a negative effect®>**. A problem with

comparing enrichment studies is the large variation in methodology, most notably with regards to the
type and duration of the enrichment, age of the fish, release date and duration, recapture methods and

°. Because EE had minor observable effects on

the characteristics of the studied waterway
neuroplasticity in this study, we can only speculate as to what caused increased post-release survival
rates in fish subjected to EE. Environmental enrichment is known to reduce stress responsivity in
captivity’’, and stress is known to have adverse effects on cognitive performance* and post-release
146

survival*, which could imply that a higher allostatic load during hatchery-rearing leads to reduced

fitness of control individuals. Thus, it is possible that environmental enrichment partly alleviates the

10
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allostatic load on the fish and thus produces a more robust animal, which is better equipped to deal with
stressors and changes in the environment. Another interesting observation is that exposure to EE can
improve cryptic colouration (i.e. camouflage pattern) of reared fish'®, which is linked to reduced
predation susceptibility?’. Furthermore, colouration is known to play a role in establishing conspecific
dominance*, allowing fish to occupy more favourable habitats. We did, however, not test for these
parameters in this study, but suggest that future work should include plasma cortisol analyses at basal

and post-handling conditions, as well as a body colouration assessment.

In this study, hatchery fish migrated 1.5 weeks earlier than wild fish, and while enrichment increased
post-release survival, it did not alter the timing of downstream migration. Asynchrony in migration
timing between wild and hatchery salmonids has been reported previously, in some cases with hatchery-
reared fish migrating earlier®, or later’3! than their wild conspecifics. The implications of sub-optimal
migration timing may be particularly severe for long-river populations, where late-migrating fish run
the risk of missing their physiological smolt window upon arrival at the ocean®?, and may therefore not
be able to survive in seawater. Additionally, early marine feeding is an important driver of smolt
survival and sub-optimal smolt migration timing may lead to a mismatch with peak marine prey
abundance™. Interestingly, several studies report increased post-release survival with increased body
size at time of release in hatchery-reared salmon®>**. Although in this study, the smallest released parr
did not survive in the wild, survival rates of the largest parr (>170 mm) were noticeably lower than
those of intermediate sized parr (110-170 mm). A possible explanation for the lower survival rates of
the largest stocked parr could be related to starvation effects, as we observed that fish of larger size
classes were unable to maintain their body mass after release into the wild, indicating insufficient food
acquisition. Although supporting evidence is lacking, it is also possible that larger parr are more
vulnerable to predator-related mortality. It is a common stocking practice to release fish of large size to
increase survival probability: a strategy which seems effective when salmonids are released as smolts
directly before migration'>***, However, when fish will remain in the river for a longer period before
embarking on their migration, our data suggest that stocked fish should be of intermediate size at time
of release. Finally, as we observed that large fish migrate earlier than smaller fish, selection and stocking
of intermediate-sized parr might also reduce the difference in migration timing between wild and

stocked individuals.

Few studies on teleosts use an experimental approach to determine the optimal conditions of EE, but
there are indications that the duration of exposure to EE''"*, age of the fish** and the type of enrichment
(in mice®) can affect the efficacy of EE in altering animal behaviour and neuroplasticity. Further
empirical testing of optimal EE conditions can shed light on inconsistencies between current enrichment
studies and contribute to optimisation of hatchery protocols. As hatchery managers are hesitant to
implement EE because of hygiene and increased labour concerns, it is also important to investigate

alternative innovative hatchery protocols to structural enrichment. For example, reduced rearing density
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has been shown to improve post-release survival of salmonids**%

, while environmental variability and
unpredictability promotes behavioural flexibility in Atlantic cod (Gadus morhua L.)*" and predator
conditioning using visual and/or olfactory cues can improve predator avoidance®®*. Additionally,
swimming exercise could potentially be an effective method to improve the behavioural responses and
post-release performance of fish, as mammalian studies indicate that exercise, not structural
environmental enrichment, is the main driver of environmentally-induced neurogenesis and

60,61

neuroplasticity®”®', and several studies report increased post-release survival for exercised salmonids

compared to sedentary individuals®*63.

In conclusion, we here report increased post-stocking success for EE-reared fish compared to control
fish, while we only find minimal regional changes in forebrain neural plasticity marker expression. We
suggest that future studies should empirically elucidate the optimal conditions of EE and compare its
efficacy to other innovative hatchery protocols. Even though the neural mechanisms have not been
entirely uncovered, our results suggest that future Atlantic salmon hatchery strategies should provide
EE and aim to produce or select intermediate size classes of fish for stocking, to improve the post-

release survival of stocked Atlantic salmon parr in short rivers.
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Figure 1. Migration of hatchery-reared and wild Atlantic salmon. After five months in the wild, a
significant (p = 0.04) higher number of EE-reared hatchery fish (50 out of 314 released individuals)
completed downstream migration compared to control fish (33 out of 313; A). Native wild fish (n =
316) migrated approximately 1.5 week later than both enriched and control hatchery-reared fish (B).
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Figure 2. Intermediate sized stocked fish show highest post-release survival and growth rates.
Stocked hatchery-reared Atlantic salmon (grouped data for control and enriched fish) with a total length
>170 mm show reduced survival compared to intermediate sized fish and fish <110 mm show no
survival during a five-month winter in the wild (A). Only hatchery-reared fish between 120-149 mm
increase in body mass during river residency, while larger and smaller size classes lose weight in the
wild (B). Total number of released fish per size class: <100 mm: »=11; 100-109 mm: »=21; 110-119
mm: 7 = 24; 120-129 mm: » = 18; 130-139 mm: » = 19; 140-149 mm: n =51, 150-159: n = 113; 160-
169 mm: n = 144; 170-179 mm: n = 124, 180-189 mm: » = 69; >190 mm: n = 33.

18



619

620
621
622
623
624
625
626

N
(=]
J
>
N
o
:
w

-
(5]
1
-
a
1

-

number of cfos positive cells
—
(=]
1

number of bdnf positive cells
S

a
I g I
5 s F E_
T+ = iE
0 T T T T T 0 T T T T T
DIid Div Dmd Dmv Vv Did DIv Dmd Dmv Vv
— Control — Enriched

Figure 3. In situ hybridisation labelled cfos and bdnf cells in telencephalon subregions. Mean +
SEM number of cfos (A) and bdnf (B) positive cells in the dorsal (DId) and ventral (Dlv) dorsolateral
telencephalon, the dorsal (Dmd) and ventral (Dmv) dorsomedial telencephalon, and in the ventral part
of the ventral telencephalon (Vv) in Atlantic salmon parr after seven weeks in a control (grey bars) or
enriched environment (black bars). Lowercase letters symbolise significant differences between
treatment groups (Student’s #-test, p = 0.03). For control animals, #» = 8 per brain area, while for enriched
animals, 7 = 7 per area.
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Figure 4. Effect of environmental enrichment on expression of neuroplasticity markers in
telencephalon subregions. Box plots depicting relative transcript abundance of cfos (A), bdnf (B),
neurod (C) and pcna (D) in five microdissected areas of the telencephalon: the dorsal (DId) and ventral
(Dlv) part of the dorsolateral telencephalon, the dorsal (Dmd) and ventral (Dmv) part of the dorsomedial
telencephalon, and in the ventral part of the ventral telencephalon (Vv). Center lines within the box
plots represent the median, boxes reflect quartiles, and whiskers depict minimum and maximum
expression values. In the Vv, neurod was not detected (ND). Transcript abundance is relative to
expression of reference genes ef/aa and S20, n = § per brain area.
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Table 1. Primer sequences for target genes.

Gene Primer Sequence 5> > 3’ Accession no. Reference

efloa Fw CCCCTCCAGGACGTTTACAAA BT059133.1 Ingerslev, et al. ¢
Rev CACACGGCCCACAGGTACA

S$20 Fwd GCAGACCTTATCCGTGGAGCTA NM 001140843.1 Olsvik, et al. ©
Rev TGGTGATGCGCAGAGTCTTG

hprtl Fwd CGTGGCTCTCTGCGTGCTCA BT043501.1 Andreassen, et al. %
Rev TGGAGCGGTCGCTGTTACGG

bdnf Fwd ATGTCTGGGCAGACCGTTAC GU108576.1 Vindas, et al. ¢
Rev GTTGTCCTGCATTGGGAGTT

cfos Fwd AATGGAACAGCTTTCGCCTGA XM 014206157.1 This study
Rev TGTCGGTGAGTTCCTTTCGC

pcna Fwd TGAGCTCGTCGGGTATCTCT BT056931.1 Vindas, et al. ¢’
Rev CTCGAAGACTAGGGCGAGTG

neurod Fwd CAATGGACAGCTCCCACATCT  BT058820.1 Vindas, et al. ¢

Rev CCAGCGCACTTCCGTATGA
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Figure S1. Larger fish migrate earlier than smaller fish. Larger smolts migrated earlier in the season
than smaller smolts (ANCOVA, F'=106(1, 394), p <0.0001) and wild fish (circles) had a higher body
mass than hatchery-reared fish (crosses; ANCOVA; F=31(1,394), p <0.0001)



Table S1. qPCR validation.

520 eflaa bdnf cfos pcna neurod
Slope -3.357 -3.2397 -3.2745 -3.3122 -3.1547 -3.3124
Efficiency  1.99 2.04 2.02 2 2.07 2
Error 0.21 0.13 0.36 0.34 0.2 0.33
R"2 0.99 1 0.99 0.99 0.99 0.98
Y-Intercept 21.58 22.52 24.42 27.61 26.56 27.59

Table S2. In situ hybridisation statistics (Student’s ¢ tests). For all tests, df'=13.

cfos bdnf
Brain region t-statistic p-value t-statistic p-value
DId 0.07 0.53 -1.63 0.063
Dlv 0.32 0.62 -2.08 0.029
Dmd 1.36 0.90 -0.23 0.41
Dmv 0.60 0.72 -0.47 0.33
Vv 0.30 0.62 1.21 0.88
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Abstract

It is well-established that running exercise can enhance brain plasticity and boost cognitive performance
in mammals, but this phenomenon has not received much attention in fish. The aim of this study was to
determine whether an 8-week sustained swimming exercise regime can enhance brain plasticity and
cognition in juvenile Atlantic salmon. Fish were subjected to either a fixed (forced exercise) or variable
(volitional exercise) flow rate and compared to non-exercised controls. To test cognition, volitional
exercised and non-exercised controls were subjected to a repeated maze test. While both groups solved
the maze more quickly over time, indicating a learning process, no differences in learning ability were
observed between groups. Brain plasticity was assessed by mapping the telencephalon transcriptome,
and 1,772 transcripts were differentially expressed between the volitional exercise and control group.
Gene ontology (GO) analysis identified 195 and 272 GO categories with a significant
overrepresentation of up- or downregulated transcripts, respectively. A multitude of these GO
categories were associated with neuronal excitability, neuronal signalling, cell proliferation and neurite
outgrowth (i.e. cognition-related neuronal markers). In conclusion, sustained volitional exercise
promoted the expression of neuroplasticity- and neurogenesis-related genes in the telencephalon, but
was not associated with significant effects on fish performance in a spatial learning task. Notably, this
is the first time that swimming exercise has been directly linked to increased telencephalic neural
plasticity in a teleost, and our results pave the way for future studies on exercise-induced neuroplasticity

in fish.

Keywords: brain plasticity, swimming exercise, neurogenesis, Atlantic salmon, cognition, memory and

learning
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Introduction

Accumulating evidence shows that physical exercise can have positive effects on cognition and neural
plasticity in mammals (reviewed by Cotman and Berchtold, 2002; van Praag, 2008). Specifically, both
forced and voluntary running exercise have been shown to improve the cognitive performance of
rodents in spatial tasks (Fordyce and Farrar, 1991; Fordyce and Wehner, 1993; van Praag et al., 1999a;
Vaynman et al., 2004; van der Borght et al., 2007; Uysal et al., 2015). This effect is strongly associated
with increased neurogenesis and synaptic plasticity in the mammalian hippocampus, particularly in the
dentate gyrus, mediated by an increased abundance of growth factors, neurotransmitters and

neurotrophic factors (reviewed by van Praag, 2008; Vivar et al., 2013; Ma et al., 2017).

Even though the link between exercise, neural plasticity and cognition is well-described in mammals,
this phenomenon has not received much attention in other vertebrates, such as fish. Even though the
mammalian and teleostean ancestral lines diverged around 400 million years ago, mammals and fish
share many conserved neurochemical, topological and functional neural characteristics (Winberg and
Nilsson, 1993; O'Connell and Hofmann, 2011; Broglio et al., 2015). Furthermore, while neurogenesis
in the adult mammalian brain occurs at relatively low rates and only in discrete brain areas, fish display
neurogenesis in a multitude of brain areas throughout their entire lives (Zupanc, 2006; Barker et al.,
2011; Zupanc and Sirbulescu, 2011). Therefore, it has been hypothesised that exercise-induced
stimulation of neurogenesis and cognition should also occur in fish (Huntingford and Kadri, 2013),
although to date, this hypothesis has not been thoroughly tested. Notably, a pilot study conducted by
Luchiari and Chacon (2013) demonstrated that exhaustive swimming exercise in zebrafish (Danio
rerio) improved their learning performance in a conditioning test within several days. Furthermore, a
ten-day swim training regime promoted the expression of the cell proliferation and neurogenesis
markers basic helix-loop-helix family, member e40 (bhlhe40) and growth arrest and DNA-damage
inducible, beta o (gadd45f0) in the brain of zebrafish larvae (Fiaz et al., 2014).

In mammals, higher functions such as cognition, perception and spatial reasoning are mostly under
control of the neocortex (Jerison, 1973). In contrast to mammals, fish lack a six-layered pallium, but
nonetheless, they are able to display a number of higher cognitive functions, which are under
telencephalic control (Grosenick et al., 2007; Ito and Yamamoto, 2009; Bshary and Brown, 2014).
Importantly, the fish telencephalon contains neural populations and networks associated with emotional
and relational memory, learning and stress-reactivity, thus driving processes which show functional
resemblances to processes which are under control of the limbic system in mammals (Broglio et al.,
2005; Rodriguez et al., 2007; Vargas et al., 2009; O'Connell and Hofmann, 2011). Therefore, we
hypothesise that exercised fish will show enhanced telencephalic neural plasticity, and that this will be

associated with improved cognitive function, compared to unexercised control individuals.



68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89

90

91

92
93
94

95

96
97
98
99
100
101
102

Exercise-enhanced cognition in fish may have important applications in stocking, which is a
conservation strategy whereby hatchery-reared fish (generally salmonids) are released into the wild to
supplement local depleted populations (Maynard et al., 1995). However, the hatchery environment is
impoverished compared to wild conditions, and thus, hatchery-reared fish show deviating neurobiology
(Mes et al., 2018) and are behaviourally naive (Olla et al., 1998; Huntingford, 2004) compared to wild
fish, which results in low post-release survival rates of stocked fish (Johnson et al., 1996; Thorstad et
al., 2011). In order to improve salmonid stocking success, hatchery managers are searching for
innovative ways to improve the fitness of hatchery-reared fish through enhanced neural and cognitive
development, and swimming exercise may be a suitable practice to achieve this. Therefore, the aim of
the current study was to assess whether sustained swimming exercise can promote forebrain
neuroplasticity and cognitive performance in Atlantic salmon (Salmo salar, L.) parr (juvenile fish that
reside in freshwater), in order to evaluate whether swimming exercise has the potential to improve
cognition in hatchery-reared salmon in stocking programs. Fish were subjected to an eight-week
sustained swimming exercise regime at either a forced or volitional (where fish can choose their
swimming speed) swimming speed. After training, RNA sequencing (RNA-seq) was used to map the
transcriptome of the telencephalon in order to quantify the expression of neuroplasticity and
neurogenesis markers. In addition, cognitive performance was assessed for the volitional swimmers and
unexercised controls after three and eight weeks of swimming by means of a repeated maze test. We
here report for the first time that swimming exercise leads to upregulation of key neuroplasticity-related
genes in the Atlantic salmon telencephalon, and we highlight several resemblances with mammalian

exercise-induced neural plasticity.

Materials and Methods
Ethics statement

This experiment was performed in accordance with Dutch law for experimentation and procedures on
live animals. The experimental protocol was approved by the Animal Experimental Committee (DEC)

of Wageningen University & Research (case number 2016.D-0039).
Experimental fish

Experimental fish were hatchery-reared Atlantic salmon parr, which were first generation offspring
from wild-caught parents from the river Imsa, in south-western Norway. Eggs hatched in late January
2017 and fish were reared under standard hatchery conditions at the Norwegian Institute for Nature
research (NINA) Research Station at Ims, Norway, in water from the adjacent river Imsa. On August
31° 2017, 450 fish were transported from the Ims hatchery to the aquaculture research facilities at
Wageningen University & Research (WUR), the Netherlands. Fish were transported in groups of 45
individuals in double-layered plastic bags, containing 10 L of system water (10°C) and 40 L of 100%

3
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oxygen. Fish were lightly anaesthetised in Aqui-S (Scan Aqua, Arnes, Norway; 3.3 mg L") prior to
packing and during transport, which has been shown to reduce stress (Iversen and Eliassen, 2009). The
bags were placed in expanded polystyrene-lined cardboard boxes and two frozen cooling elements were
added, in order to keep water temperature and fish respiration rates low. Fish were in transit for a total
time of 12 hours by air and road travel and no transport-related mortality was observed. After 18 days
of acclimatisation at the WUR experimental facilities, fish were tagged intraperitoneally with passive
integrated transponders (PIT) tags (Trovan ID100A/1.4 mini transponders) and the animals were then
left to recover for an additional week before the experiment started. Fish were nine months old at the
start of the experiment and eleven months old at time of final sampling. An overview of experimental

procedures is provided in Fig. 1.
Swimming exercise regime

Fish were exercised for eight weeks at either a forced or a volitional swimming speed. At the start of
the exercise regime, fish measured 123 = 5 mm (fork length; FL) and weighed 20.8 + 3.6 grams (mean
+ SD).

In the forced exercise regime, parr were housed in a 3,600-L Brett-type swimming flume (Brett, 1964)
as described by Palstra et al. (2015). In short, the flume contained two adjacent rectangular 525-L
holding compartments, of which the outer compartment received a water flow at a predetermined speed,
while the inner compartment did not receive a water flow and housed the control (non-exercised) fish
(Fig. 1). During swimming, the top of the flume was sealed with a lid to minimise disturbance and light
was provided in the upstream part of the compartments, with a light intensity of approximately 50 lux
at the water surface. Fish in the forced swimming treatment were exercised at a continuous flow rate of
43 cm s (3.5 body lengths (BL) s™!), while flow in the control compartment was < 5 cm s (< 0.4 BL
sh). A swimming speed of 43 cm s™! falls within the range of flow rates (0-65 cm s') which are preferred
by wild Atlantic salmon parr in natural streams (reviewed by Armstrong et al., 2003). Additionally, a
relative flow rate of 3.5 BL s! is close to the optimal metabolic swimming speed of 3.8 BL s for 200-
mm Atlantic salmon (A.P. Palstra, unpublished data) and is approximately at 60% of the maximum
swimming speed of 5.5 — 5.8 BL s™! reported for size-matched hatchery-reared Atlantic salmon of this
particular Imsa population (Hammenstig et al., 2014). Exercised fish distributed themselves across the
bottom of the compartment and displayed rheotactic (i.e. facing the current) swimming at a constant

speed.

The experimental setup for the volitional exercise regime consisted of two standard cylindrical 800-L
holding tanks, of which the exercise treatment tank received a high water flow adjacent to the tank wall
(Fig. 1). At the bottom of the exercise tank, the flow rate varied from 5 cm™ (0.4 BL s) in the centre
to 27 em™ (2.2 BL s at the outer wall, and flow rates at the water surface were 10 cm s™ (0.8 BL s™')

in the centre and 36 cm s (2.9 BL s™) at the outer wall. Thus, by positioning themselves in the tank,
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fish could ‘choose’ their preferred swimming speed. Water flow in the tank of the controls was <5 cm
s throughout the tank. The selected flow rates were the maximum speeds that could be achieved in the
standard hatchery tanks and were well within the aerobic scope of salmon (Hammenstig et al., 2014),
as well as within the preferred range of flow rates of Atlantic salmon in natural habitats (Armstrong et
al., 2003). Both tanks were covered with mesh and half of the tank was covered with black foil to
provide shelter. Light intensity at the water surface was approximately 45 lux. Exercised fish showed
no sign of fatigue and generally displayed rheotactic swimming while holding their position, while

occasionally drifting down with the current.

For all fish groups, the light cycle was maintained at 12:12 L:D throughout the experiment. Water
temperature was maintained at 14.9 + 0.45 °C and nutrient levels were 0.06 + 0.05 mg NH4 L, 0.08 +
0.04 mg NO, L' and 67.6 + 24 mg NO; L' (mean = SD). The two flume compartments which housed
the forced exercise treatment and their controls housed 65 fish each, while the two cylindrical tanks
which housed the volitional exercised treatment and their respective controls contained 110 fish each,
yielding the same density of 2.6 kg m™ for all groups. Fish were fed commercial pellets (Nutra Parr,
Skretting, Stavanger, Norway) by hand, twice per day until satiation and water flow was stopped during
feeding to provide equal feeding opportunities for both exercised and sedentary fish. All fish were
measured and weighed after the swimming treatment and specific growth rates were calculated as

follows:

SGR = (in(BMy) - In(BM))) X g

Where BM;is the final body mass in g at the end of the exercise period, BM; is the initial body mass in

g at the start of the experiment and 7 is the experimental time in days.
Maze test

To evaluate whether swimming exercise had an effect on cognition, volitional exercised fish and their
respective controls were subjected to a four-armed maze test after both three and eight weeks of
swimming. We did not have the capacity to test all four groups, and as most mammalian studies report
increased cognitive performance in animals subjected to voluntary exercise (e.g. van Praag et al., 1999a;
van der Borght et al., 2007), we decided to test the volitional group and their controls in this study. The
maze setup and procedures were modelled after methodology described by Salvanes et al. (2013). In
short, 15 fish from the voluntary exercise and respective control group were randomly selected and
tested in two separate mazes. The two identical mazes were partly submersed in 800-L rectangular tanks
and consisted of a 38 x 38 cm arena, with a start box on one side and four transparent arms on the
opposite side (Fig. 1). Next to the arms, an aquarium containing three salmon parr served as a social
stimulus for the fish to exit the maze. Prior to the test, fish were acclimatised to the maze for 48 hours

by placing all 15 fish simultaneously in the centre of the arena, while access to the start box was blocked.
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During acclimatisation, all four arms were open so that the animals could exit and explore the maze and
the surrounding holding tank. After acclimatisation, fish were transferred to cylindrical holding tanks
(diameter 65 cm, water depth 65 cm; separate tanks for exercised and non-exercised fish) where
exercised fish were subjected to a flow of approximately 17-21 cm s while control fish received no
measurable flow. The flow rate in these holding tanks was slightly lower than that in the original
treatment tanks because the diameter of the maze holding tanks was smaller than that of the treatment
holding tanks, and swimming in a curved path incurs additional energetic expenditure (Domenici et al.,
2000). Three randomly assigned arms of the maze were then closed, leaving only one arm open, from
which fish could exit the maze. During the following seven days, all fish were tested daily in the maze.
For each test, an individual fish was collected from the holding tank by dip net and subsequently PIT-
scanned and placed in the start box of the maze. After three minutes, the hatch to the arena was remotely
opened and fish were given 5 min to enter the maze. If the fish didn’t enter the maze within 5 min, it
was guided into the maze using transparent plastic paddles. Once within the arena, the fish was given 5
min to find the open arm exit, and if the animal did not succeed within this time, individuals were guided
towards the exit. All tests were conducted by one observer, who could not be seen by the fish while he
could observe the animals through a camera that was mounted approx. 1.5 m above the maze. The
number of errors and time to exit the maze were scored by the observer. This test was conducted twice,
after three and eight weeks of exercise, using different individuals. The exercised and control fish were

tested in the opposite maze at three and eight weeks, to rule out maze-effects.
RNA isolation and sequencing

After eight weeks of swimming, five animals per group (n = 20 total) were randomly collected and
quickly anaesthetised in 2-phenoxyethanol (VWR #26244.290, 1.3 ml L!). Opercular movement ceased
completely within 30 seconds, after which weight and length were recorded. Immediately after, fish
were decapitated and within two minutes, the telencephalon was dissected out and placed overnight in
RNAlater (Invitrogen AM7024) at 4°C. The following day, surplus RNAlater was removed and samples
were stored at -80°C. The telencephalon tissue was then homogenised using a TissueRuptor (Qiagen,
Venlo, The Netherlands) and total RNA was extracted using the miRNeasy mini kit (Qiagen, Venlo,
The Netherlands) according to the manufacturer’s instructions. Integrity and concentration of the RNA
were checked on a Bioanalyzer 2100 total RNA Nano series II chip (Agilent, Amstelveen, The
Netherlands) and the median RIN value was 9.0. [llumina RNA-seq libraries were prepared from 0.5
pg total RNA using the Illumina TruSeq® Stranded mRNA Library Prep kit according to the
manufacturer’s instructions (Illumina, San Diego, USA). All RNA-seq libraries (150-750 bp inserts)
were sequenced on an Illumina HiSeq2500 sequencer as 1x 50 nucleotides single-end reads according

to the manufacturer's protocol. Image analysis and base calling were done using the Illumina pipeline.

Transcript quantification
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The reads were aligned to the latest version of the Atlantic salmon genome reference (ICSASG version
2, NCBI RefSeq GCF_000233375.1; Lien et al., 2016) using TopHat version 2.0.13 (Kim et al., 2013)
at ‘very-sensitive’ default settings. Samtools version 1.2 (Li et al., 2009) was used to remove secondary
alignments, i.e. alignments that meet TopHat’s reporting criteria but are less likely to be correct than
simultaneously reported primary alignments. Alignments to annotated exons were counted and
summarised at the gene level using HTSeq-count version 0.10.0 (Anders et al., 2015) using the

‘intersection-nonempty’ setting.
Differential expression analysis

Raw read counts for 48,436 protein-coding genes were analysed in R version 3.4.4 (R Development
Core Team, 2016) using the edgeR package version 3.20.9 (Robinson et al., 2010). Initially, read counts
were normalised using the TMM method and a multidimensional scaling (MDS) plot was generated to
identify outliers. After outlier removal, the read counts were normalised again, and differential
expression between the four treatment groups was calculated using edgeR’s recommended quasi-
likelihood F-test for generalised linear models. Multidimensional scaling plots and differential
expression were only calculated for genes with at least 10 aligning reads in each sample. For
downstream analyses, reads per kilobase million (RPKM) expression values (normalised between
samples and corrected for transcript length) were exported from edgeR. Transcripts with a false
discovery rate (FDR) < 0.01 were considered to be significantly differentially expressed between
treatments. The TM4 MultiExperiment Viewer version 4.9.0 (www.tm4.org) was used to visualise

expression profiles in heat maps.
Gene Ontology (GO) analysis

Gene Ontology annotations for the ICSASG_v2 assembly were retrieved using the Ssa.RefSeq.db R

package version 1.2 (https://rdrr.io/github/FabianGrammes/Ssa.RefSeq.db/), and overrepresentation of

‘Biological Process’ categories was assessed using the R package GOseq (Young et al., 2010), using

the “Wallenius’ method and including correction for transcript length.
Statistical analyses

Normality and homogeneity of variance of morphometric data were assessed by Shapiro-Wilk and
Levene’s tests, respectively. Body mass and fork length were compared using Wilcoxon rank-sum tests,
while SGRy was compared using two-tailed Student’s t-tests. Only the following useful pairwise
comparisons were made: forced control vs. forced exercised and volitional control vs. volitional

exercised. All morphometric data are presented as mean = SEM

Maze performance was analysed according to the methodology outlined by Salvanes et al. (2013). In
short, we calculated the cumulative number of errors (‘Cumul.Errors’) and cumulative time to find the

exit of the maze (‘Cumul.Exit’) over successive trials for individual fish. To test for differences in the
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cumulative number of errors made, linear mixed-effects models assuming first-order autocorrelation
were used, with fish ID (‘ID”) as random effect factor to account for repeated observations of individual
fish. ‘Treat’ (treatment: control and exercised) and ‘Day’ (experimental day) were specified as fixed
effects. The “Anova” command within the “car” library was used to extract the main results from the
model and the “Ismeans” command within the “Ismeans” package was used as a post-hoc test to
compare the number of errors per trial between exercised and control fish. To test for differences in
time to leave the maze, a polynomial model was employed, as described by Salvanes et al. (2013).

Statistical analyses were done using R version 3.4.4 (R Development Core Team, 2016).

Results
Growth

There were no significant morphometric differences between experimental groups at the start of the
experiment, with the exception that fish in the forced exercise group had a significantly higher fork
length than individuals in the forced control group (W, = 3643, Z = -2.00, p = 0.045), although there
was no significant difference in body mass between these two groups (W, = 3678, Z=-1.84, p = 0.066).
After eight weeks of swimming, exercised fish had gained 27% (volitional) and 31% (forced) more
body mass compared to control fish and the final body mass of exercised fish was significantly higher
than that of control fish for both the volitional (32.1 £ 0.5 vs. 29.3 + 0.6; W, = 4653, Z=-3.33,p =
0.0009) and forced treatment (32.7 = 0.7 vs. 29.0 £ 0.8; W, = 1988, Z = -3.47, p = 0.0005; Fig. 2).
Specific growth rates of exercised animals were significantly higher for both the volitional (0.73 £ 0.02
vs. 0.65 +0.02; =298, df= 149, p=0.0033) and forced treatment groups (0.76 + 0.02 vs. 0.61 £ 0.02;
t=4.58, df=99, p<0.0001), compared to their respective controls. Feed conversion ratios (FCR) were
2.03 and 1.95 for forced control and forced exercised, and 1.28 and 1.34 for volitional control and

volitional exercised groups, respectively.
Maze test

After three weeks of treatment, there was no difference between exercised and control fish in time to
exit the maze (no significant interaction effects between time and treatment (y = 1.85, df =2, p = 0.94)
and no effect of treatment (y = 0.01, df =1, p = 0.92), Fig. 3A). Regarding the number of errors made,
at day 1, there was no difference between treatments (# = -0.46, df = 28, p = 0.65) but over time,
volitional swimmers made significantly fewer mistakes than control fish (interaction effect, y = 22.4, df

=1,p<0.001).

After eight weeks of treatment, there was again no difference between treatments in time to exit the
maze (no significant interaction effects between time and treatment (y = 0.10, df =2, p = 0.95) and no

effect of treatment (y = 0.0003, df= 1, p = 0.99), Fig. 3B). Regarding the number of errors made, at day
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1, there was no difference between treatments (¢ = -0.31, df = 27, p = 0.76) but over time, volitional
swimmers made significantly more mistakes than control fish (interaction effect, y = 19.0, df=1, p <

0.001).
RNA-seq

In order to determine whether exercise affects brain plasticity at the cellular level, we measured gene
expression levels in the telencephalon of five fish per group using Illumina RNA-seq. We obtained
between 10.1 and 39.1 million reads per sample (median 17 million), of which 90.6-95.8% (median
95.4%) aligned to the salmon genome. Of all aligning reads, 63.2-79.1% (median 76.9%) could be

attributed to a protein-coding gene.

As an initial quality control, we examined a MDS plot to identify possible outliers. Four samples did
not cluster with their respective experimental group (see Fig. S1). Upon inspection, these samples were
characterised by high expression of eye-related genes, suggesting a contamination with optical nerve
tissue during dissection. We therefore decided to exclude these samples from all subsequent analyses,
leaving three (forced exercised), four (volitional exercised and volitional control) or five (forced

control) samples per treatment.

A MDS plot of the remaining samples (Fig. 4) shows a clear clustering of each experimental group,
indicating robust gene expression changes correlated with the treatments. We therefore analysed
differential expression of 27,171 genes (which does not include genes below a very low expression
threshold of 10 reads per sample) between volitional swimmers and their respective controls (Fig. 5A)
and between forced swimmers and their respective controls (Fig. SB). The contrast between volitional
and control groups yielded 1,772 genes differentially expressed using a false discovery rate (FDR)
cutoff of 1%, of which 923 had significantly higher expression in swimmers (Table S1), and 849 had
significantly higher expression in control fish (Table S2). A selection of these genes is presented in

Table 1.

By contrast, we found no significant differential expression of genes in the forced swimming group
(Fig. 5B). However, when we examined the direction and magnitude of changes in gene expression for
both contrasts, we observed a clear correlation trend between the changes (Fig. 6), indicating a similar
effect on global gene expression changes in forced and volitional swimmers (Pearson correlation
coefficient 0.60). In other words, for the vast majority of genes significantly overexpressed in volitional
swimmers (red dots on the upper right in Fig. 6), there was a non-significant overexpression in forced
swimmers compared to forced controls. While similar expression profiles are thus found between forced
and volitional swimmers, the magnitude of the gene expression changes does appear to be larger in the

volitional swimmers group (Fig. 6).

Functional overrepresentation
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To summarise which biological processes are over- or underexpressed in the volitional swimmers
group, we performed a Gene Ontology (GO) category overrepresentation test on the sets of significantly
differentially expressed genes between volitional exercised fish and their controls. In total, 194 (Table
S3) and 271 (Table S4) GO categories showed a significant overrepresentation of upregulated and
downregulated genes, respectively (p < 0.05). The GO categories which related to neuroplasticity,
neurogenesis or behavioural pathways involved with cognition were selected and relevant GO
categories with a significant overrepresentation of upregulated genes are presented in Table 2, while
downregulated GO categories are presented in Table 3. The heat map in Fig. 7 provides a visual
overview of the expression of selected neuroplasticity-related genes in all samples, showing a clustering

of expression by treatment.

Discussion

We here report, for the first time in a fish species, that sustained swimming exercise at a volitional
swimming speed increased the expression of neuroplasticity- and cell proliferation-related genes in the
telencephalon transcriptome of juvenile Atlantic salmon. However, we did not find indications that
increased neuroplasticity in exercised individuals led to enhanced cognitive performance in a spatial

orientation task.

Exercised fish in both the volitional and forced regimes showed significantly enhanced growth rates
compared to unexercised controls. Exercise-induced growth is a well-described phenomenon across
several orders of teleosts, particularly in salmonids, provided that the exercise speed is close to the
optimal metabolic swimming speed (Uqp), i.e. the swimming speed at which a fish spends the least
amount of energy per unit distance travelled (reviewed by Davison and Herbert, 2013). At swimming
speeds below Uqy, fish may divert excess energy away from growth and towards agonistic behaviour
(reviewed by Huntingford and Kadri, 2013), while speeds above Ugy may induce stress and chronic
fatigue, with negative consequences for growth (Davison and Herbert, 2013). Thus, supra- and
suboptimal swimming speeds compromise growth in salmonids, and the occurrence of exercise-
enhanced growth in the current experiment, both under volitional and forced exercise regimes, suggests
that our experimental treatment had beneficial effects on the physiology of the fish and did not lead to

chronic stress.

After eight weeks of swimming, 1,772 transcripts in the telencephalon were differentially expressed in
fish exercised at a volitional swimming speed, compared to unexercised controls. Gene ontology
analysis attributed these differences in transcript abundance to processes relating to neural plasticity,
such as dendritic spine development and synaptic plasticity, as well as processes related to cell
proliferation and apoptosis. In mammals, both voluntary and forced exercise training regimes have been

shown to stimulate hippocampal abundance of neurotrophins such as brain-derived neurotrophic factor
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(BDNF), as well as memory and learning processes such as long-term potentiation (LTP; Bliss and
Collingridge, 1993; O’Callaghan et al., 2007; Uysal et al., 2015). Thus, we had expected to also find
significant stimulatory effects of swimming on neural plasticity in fish exercised at a forced speed.
However, in the forced swimming treatments, no transcripts were significantly differentially expressed
between exercised and control animals. It is plausible that the lack of any significant differences in gene
expression between forced exercised and control fish is a consequence of a smaller amplitude of the
effects (Fig. 6). In addition, the statistical power in this contrast may have been reduced by the
(asymmetrical) removal of two outlier samples from the forced swimmers group. Interestingly, gene
expression patterns between forced and volitional swimmers were highly correlated: for the vast
majority of genes significantly overexpressed in volitional swimmers, there was a non-significant
overexpression in forced swimmers compared to forced controls. This is suggestive of a similar
biological effect in both volitional and forced exercised groups, but with more pronounced effects in
the volitional exercise treatment. Mammalian studies have demonstrated that forcing animals to
exercise at too high intensity can cause stress and adverse effects on neural plasticity, evidenced by the
depressed induction of hippocampal BDNF mRNA expression (Soya et al., 2007). However, it seems
unlikely that fish in the forced exercise treatment in the current experiment were exercised at too high
intensity and that this may explain the observed smaller effects on neural plasticity, as forced swimmers

displayed substantial exercise-enhanced growth, similar to fish in the volitional treatment.

Telencephalic gene expression profiles in the volitional exercised fish showed several similarities with
reported upregulated hippocampal genes in exercised mammals. Mammalian studies are starting to
uncover the molecular pathways underlying exercise-induced neurogenesis and synaptic plasticity
(Molteni et al., 2002; Lista and Sorrentino, 2010). In summary, physical activity in mammals first leads
to an increased abundance of neurotrophins, such as BDNF and insulin-like growth factor (IGF;
reviewed by Vivar et al., 2013). Subsequently, BDNF can directly promote neurogenesis, or it may
activate signal transduction pathways through signalling molecules such as calcium/calmodulin-
dependent protein kinase II (CAMK-II), mitogen-activated protein kinase (MAPK), protein kinase C
(PKC) and cAMP response element binding (CREB) protein (Molteni et al., 2002; Farmer et al., 2004),
which in turn stimulate neural processes such as synaptogenesis and LTP (reviewed by Lista and
Sorrentino, 2010). Furthermore, synaptogenesis is enhanced by synaptic trafficking molecules such as
synaptotagmin and syntaxin, which are promoted through CAMK-II after activation by BDNF or IGF
(Molteni et al., 2002). In exercised fish in the current study, we observed an upregulation of several
genes within these pathways, such as synaptotagmin, syntaxin CAMK-II, MAPK, PKC and CREB, as
well as two IGF receptor-related transcripts. Molteni et al. (2002) further report that running exercise
activates the mammalian hippocampal glutamatergic system and suppresses the gamma-aminobutyric
acid (GABA)ergic system. Similarly, exercised fish in our experiment showed increased expression of

several glutamate receptor transcripts and reduced expression of several GABA receptor transcripts,
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although effects on the GABAergic system are somewhat ambivalent, as we observed concurrent
upregulation of several GABA-receptor subunit transcripts in exercised individuals. In summary, there
are several parallels between the teleostean and mammalian neural response to exercise in processes
regarding synaptic trafficking, signal transduction and the glutamatergic and GABAergic systems.
These findings suggest that the molecular pathways which underlie exercise-induced neuroplasticity

are at least partly conserved between mammals and teleost fish.

The neurotrophin BDNF is a well-characterised neural growth factor which is important for synaptic
plasticity and neural survival (Mattson et al., 2004; Shors et al., 2012; Gray et al., 2013; Vivar et al.,
2013). In exercised mammals, BDNF shows a robust upregulation in the dentate gyrus of the
hippocampus (Molteni et al., 2002; Vaynman et al., 2004), as well as in other brain regions such as the
amygdala (Liu et al., 2009). Furthermore, BDNF plays a key role in activating the signal transduction
pathways which drive increased neural plasticity (Molteni et al., 2002; Lista and Sorrentino, 2010).
Surprisingly, while we observed increased expression of many of these neuroplasticity-related
signalling molecules in exercised fish, we did not observe an increased abundance of bdnf itself.
Importantly, we only assessed the telencephalon transcriptome after eight weeks of swimming exercise,
thus mapping the chronic effects of swimming. It is possible that telencephalic bdnfabundance increases
immediately following the onset of swimming and subsequently decreases to basal levels again, as has
been observed in salmon following transfer to a holding tank enriched with physical structures (L.O.E.
Ebbesson, pers. comm.). To verify this possibility, future studies should perform a time series and
quantify bdnftranscript levels at several hours, days and weeks after the onset of exercise. Furthermore,
mammalian studies predominantly observe increased bdnf-abundance specifically in the hippocampus
of exercised animals, while here, we mapped the transcriptome of the entire telencephalon. The fish
telencephalon is comprised of a large number of neural subregions, each with specific functionalities
(Northcutt, 2006; Vargas et al., 2009), and expression profiles of neuroplasticity markers can by highly
region-specific (Mes et al., 2018). Notably, the dorsolateral (DI) part of the fish telencephalon has been
identified as functional equivalent to the mammalian hippocampus (Portavella et al., 2004; Vargas et
al., 2009) and plays an important role in spatial memory in fish (Rodriguez et al., 2007; Broglio et al.,
2010; Broglio et al., 2015). It is thus possible that region-specific trends, such as increased bdnf
expression, might occur in specific neural subregions, such as the DI, but that these trends are not
registered in the whole-tissue sample used for RNA-seq in this study. Future studies should therefore
consider specific mapping of neuroplasticity markers in distinct telencephalic subregions such as the
DI, and prioritise the quantification of established markers for running-induced neuroplasticity in

mammals, such as bdnf.

The transcriptome of voluntary exercised animals revealed a significant overrepresentation of
downregulated genes in several GO categories related to apoptosis. This is an interesting observation,

as mammalian work has uncovered that, aside from promoting neurogenesis, exercise also increases
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cell survival (van Praag et al., 1999b; van Praag et al., 2007) and can inhibit neuronal apoptosis,
particularly in aging animals (Kim et al., 2010b) or individuals with traumatic brain injury (Kim et al.,
2010a; Itoh et al., 2011). Our observation that swimming exercise may also affect neuronal apoptosis
in fish requires further investigation, both in healthy animals and individuals with neural damage, as
fish with neural damage show an incredible capacity for neural regeneration in the central nervous

system (Kaslin et al., 2008).

In rodents, positive effects of exercise on spatial learning have been reported for both forced and
voluntary exercise treatments (e.g. Fordyce and Farrar, 1991; Fordyce and Wehner, 1993; van Praag et
al., 1999a; van der Borght et al., 2007). In our experiment however, despite the observed increased
telencephalic expression of neuroplasticity markers in fish exercised at a volitional swimming speed,
we did not find enhanced spatial memory performance of exercised individuals in the maze test. A lack
of improved spatial memory performance in exercised fish apparently contradicts our finding that
exercised animals show increased telencephalic neural plasticity, but as stated before, teleostean spatial
memory is under control of the dorsolateral pallium (Rodriguez et al., 2002; Broglio et al., 2005), and
we cannot ascertain whether the increased expression of neural plasticity markers in the entire
telencephalon is also manifested in the DI. Another factor to consider is that while in mammalian
models, such as rodents, spatial memory tasks such as the Morris water maze (Morris, 1984) are well-
defined, standardised and widely used (Vorhees and Williams, 2014), this is not the case for most
behavioural tests used in fish research. For example, the current maze protocol, replicated from
methodology described by Salvanes et al. (2013), involves considerable handling and air exposure of
the fish prior to testing, which inadvertently causes stress and may negatively affect the cognitive
performance of the animals. Furthermore, because we are interested in potential applications of
exercise-enhanced cognition in stocking programs, we chose to use first-generation offspring from wild
salmon in the current experiment. A possible negative consequence of working with non-domesticated
animals is that handling stress may have a stronger negative affect on their behaviour, compared to a
more domesticated fish species. Therefore, we suggest that future studies consider subjecting a model
fish species, such as zebrafish, to an established spatial memory task such as the T-maze (Kalueff et al.,
2014) or three-chamber task in order to further elucidate the possible stimulatory effects of exercise on

cognition in fish (Levin, 2011).

A Dbetter understanding of the effects of swimming exercise on neuroplasticity in a model fish species
may have further ramifications for human disease research, as an important application of mammalian
exercise-induced neuroplasticity is its potential to prevent cognitive decline, particularly in the context
of aging and neurodegenerative diseases (reviewed by Ma et al., 2017). The use of small model fish
such as zebrafish has a number of advantages over the traditional rodent models, such as low housing
costs and a short reproductive cycle (Lieschke and Currie, 2007; Kalueft et al., 2014), and as a result

the zebrafish is becoming an increasingly popular model to study neurodegenerative diseases (Santana
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et al., 2012; Newman et al., 2014). Our findings, combined with the observation of Fiaz et al. (2014)
that swim training can increase the expression of cell proliferation and neurogenesis markers in the
zebrafish larval brain, further supports the concept that zebrafish may be a promising new model for

exercise-induced neuroplasticity research.

Our finding that sustained swimming exercise promotes neural plasticity in Atlantic salmon may have
substantial implications for fish stocking practices. Interestingly, a number of studies have previously
investigated the effects of swimming exercise on post-release survival of stocked salmonids (e.g.
Burrows, 1969; Cresswell and Williams, 1983; Evenson and Ewing, 1993; Hoffnagle et al., 2006), with
most of these studies reporting positive effects, provided that fish were exercised at a moderate to high
swimming intensity (reviewed by Maynard et al., 1995). While these studies have mainly focused on
the role of increased cardiovascular performance and exercise-enhanced growth on post-release
survival, our results give a first insight into the potential neural mechanisms behind improved stocking
success in exercised salmonids. Thus, the application of exercise regimes in hatchery rearing conditions

should be considered as a potential methodology to improve salmonid fitness in stocking programs.

In conclusion, we report that eight weeks of swimming exercise at a volitional swimming speed
increased the expression of telencephalic neuroplasticity and cell proliferation genes in Atlantic salmon.
We are among the first to study the effects of exercise on neuroplasticity in fish and our results uncover
several parallels with mammalian studies, such as exercise-induced activation of the glutamatergic
system, upregulation of signal transduction (e.g. CAMK, MAPK, PKC) and synaptic trafficking
markers (e.g. synaptotagmin), and the downregulation of apoptosis. Future studies should perform
additional cognitive tests and target specific neural plasticity markers in distinct telencephalic neural
subpopulations in exercised individuals, to shed more light on the mechanisms behind exercise-induced
neuroplasticity in fish, and to explore its potential application to animal welfare, and as a model for

understanding human neural disease mechanisms.
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696  Table 1. Selection of significantly (false discovery rate (FDR) < 0.01) differentially expressed genes in
697  juvenile Atlantic salmon exercised at a volitional swimming speed, compared to unexercised controls.
698  Expression is given as fold change (FC) difference in exercised:control individuals.

Product Gene name FC
Synaptic trafficking
Synaptotagmin
synaptotagmin-7-like LOC106592751  3.11
synaptotagmin-11-like LOC106569883  2.06
synaptotagmin X VII sytl7 1.97
synaptotagmin-7-like LOC106587514  1.67
synaptotagmin-7-like LOC106562326 1.42
Syntaxin
syntaxin binding protein 5 (tomosyn) stxbp5 1.71
syntaxin-12-like LOC106578562  0.78
Signal transduction
CAM kinases
calcium/calmodulin-dependent protein kinase type II subunit beta-like =~ LOC106570801  2.23
calmodulin-binding transcription activator 2-like LOC106565081  1.97
calcium/calmodulin-dependent protein kinase kinase 1-like LOC106603934  1.94
calcium/calmodulin-dependent protein kinase type 1-like LOC106583531 191
striatin%?2C calmodulin binding protein 4 strn4 1.66
calcium/calmodulin-dependent protein kinase type II subunit beta-like =~ LOC106569240  1.50
calcium/calmodulin-dependent protein kinase kinase 2%2C beta camkk?2 1.37
MAP kinases
mitogen-activated protein kinase 6-like LOC106587736  1.67
mitogen-activated protein kinase kinase kinase 12 map3k12 1.63
mitogen-activated protein kinase kinase kinase kinase 3-like LOC106577155 1.61
mitogen-activated protein kinase-activated protein kinase 5 mapkapk5 1.34
mitogen-activated protein kinase 6-like LOC106594832  1.33
Protein kinase C
protein kinase C-binding protein NELL 1-like LOC106561902  1.66
protein kinase C beta type LOC106594520 1.66
CREB
CREB-regulated transcription coactivator 3-like LOC106562618  1.85
CREB-binding protein-like LOC106589530 1.42
Glutamatergic system
metabotropic glutamate receptor 5-like LOC106563916  3.89
metabotropic glutamate receptor 5-like LOC106581415  2.53
glutamate receptor 2-like LOC106595266  2.38
glutamate receptor ionotropic, NMDA 2B-like LOC106601156  2.05
glutamate receptor ionotropic, AMPA 4 gria4 1.52
glutamate decarboxylase 2 gad2 1.51
glutamate receptor ionotropic, kainate 5-like LOC106576347  1.45
glutamate receptor ionotropic, delta-2-like LOC106580171  1.28
GABAergic system
gamma-aminobutyric acid receptor-associated protein-like 2 LOC106587940  0.68
gamma-aminobutyric acid receptor-associated protein gbrap 0.72
gamma-aminobutyric acid receptor-associated protein-like 1 grll 0.73
gamma-aminobutyric acid receptor-associated protein LOC106602900  0.74
gamma-aminobutyric acid receptor-associated protein-like 1 LOC106576832  0.75
gamma-aminobutyric acid receptor-associated protein-like LOC106577557  0.77
gamma-aminobutyric acid receptor subunit alpha-5-like LOC106563719  0.77
gamma-aminobutyric acid receptor subunit beta-2-like LOC106603846  2.26
gamma-aminobutyric acid type B receptor subunit 1-like LOC106570681  2.24
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gamma-aminobutyric acid receptor subunit gamma-1-like
gamma-aminobutyric acid type B receptor subunit 2-like
gamma-aminobutyric acid receptor subunit beta-1-like
Growth factors
IGF
insulin-like growth factor 1 receptor
insulin-like growth factor 1 receptor
FGF
fibroblast growth factor receptor 2
fibroblast growth factor receptor substrate 2-like

LOC106610931
LOC106570447
LOC106610929

igflr
LOC106592162

fgfr2
LOC106561545

2.04
1.89
1.42

2.38

1.88

1.36
0.68

699
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700
701
702

703

Table 2. Selection of gene ontology (GO) categories with a significant (p < 0.05) overrepresentation of
upregulated genes in fish exercised at a volitional swimming speed, sorted by theme, i.e. np:
neuroplasticity, cp: cell proliferation, beh: behaviour. DE: differentially expressed.

Total
DE in genesin p
Theme GO ID Gene ontology term category category value
np GO0:1990090  cellular response to nerve growth factor 10 131 0.0375
stimulus
np GO:0050775  positive regulation of dendrite 8 80 0.0399
morphogenesis
np GO:0048172  regulation of short-term neuronal synaptic 9 79 0.0212
plasticity
np GO0:0050803  regulation of synapse structure or activity 11 72 0.0010
np GO:1903861  positive regulation of dendrite extension 9 69 0.0330
np GO0:0051963  regulation of synapse assembly 7 54 0.0452
np G0:0060996  dendritic spine development 5 48 0.0239
np G0:0070983  dendrite guidance 9 30 0.0034
np GO:0051387  negative regulation of neurotrophin TRK 4 26 0.0410
receptor signaling pathway
cp GO0:2000648  positive regulation of stem cell proliferation 6 40 0.0089
cp GO0:0010458  exit from mitosis 6 39 0.0122
cp GO:0045927  positive regulation of growth 5 25 0.0037
cp GO0:0070317 negative regulation of GO to G1 transition 4 20 0.0209
cp G0:0097193 intrinsic apoptotic signaling pathway 8 128 0.0225
cp GO:0042771 intrinsic apoptotic signaling pathway in 7 74 0.0467
response to DNA damage by p53 class
mediator
cp GO:0072577  endothelial cell apoptotic process 6 20 0.0008
cp GO:0042981  regulation of apoptotic process 21 245 0.0013
cp GO:0008285 negative regulation of cell proliferation 47 855 0.0325
cp GO0:0007052  mitotic spindle organization 13 181 0.0146
cp GO:0000088  mitotic prophase 9 138 0.0327
cp G0:0090307  mitotic spindle assembly 7 113 0.0479
cp GO0:0051225  spindle assembly 9 78 0.0086
beh GO:0007611  learning or memory 13 138 0.0254
beh G0:0050890  cognition 8 66 0.0374
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704  Table 3. Selection of gene ontology (GO) categories with a significant (p < 0.05) overrepresentation of
705  downregulated genes in fish exercised at volitional swimming speed, sorted by theme, i.e. np:
706  neuroplasticity, cp: cell proliferation. DE: differentially expressed

Total
DE in genes in  p
Theme GO ID Gene ontology term category category value
np GO:0048812 neuron projection morphogenesis 9 162 0.021
np GO0:0061001 regulation of dendritic spine morphogenesis 6 62 0.021
np GO:0008582 regulation of synaptic growth at 4 39 0.000
neuromuscular junction
np GO0:0030182 neuron differentiation 11 152 0.034
np GO:0010976 positive regulation of neuron projection 16 356 0.007
development
cp GO:0006915  apoptotic process 64 913 0.000
cp GO0:0010940 positive regulation of necrotic cell death 5 28 0.001
cp GO:0097193 intrinsic apoptotic signaling pathway 11 128 0.006
cp G0:0070265 necrotic cell death 5 23 0.000
cp GO0:0008625 extrinsic apoptotic signaling pathway via 5 76 0.042
death domain receptors
cp GO0:0042981 regulation of apoptotic process 14 245 0.002
cp GO:1900740 positive regulation of protein insertion into 10 74 0.000
mitochondrial membrane involved in
apoptotic signaling pathway
cp G0O:2001243 negative regulation of intrinsic apoptotic 6 60 0.018
signaling pathway
cp G0:0022008 neurogenesis 25 291 0.002
cp GO:0030307 positive regulation of cell growth 13 225 0.035
cp GO:0048680 positive regulation of axon regeneration 5 23 0.002
cp GO0:0051437  positive regulation of ubiquitin-protein 24 162 0.000
ligase activity involved in regulation of
mitotic cell cycle transition
cp GO:0000090 mitotic anaphase 27 327 0.011
cp GO:0007052 mitotic spindle organization 18 181 0.000
cp GO0:0007346 regulation of mitotic cell cycle 7 132 0.042
cp G0:0090307 mitotic spindle assembly 10 113 0.018
cp GO:0007088 regulation of mitotic nuclear division 7 89 0.009
cp GO:0008156 negative regulation of DNA replication 4 37 0.047

707
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Figure 1. Overview of experimental procedures. Atlantic salmon parr were subjected to either a
volitional exercise regime, where they could position themselves in currents ranging from 0.4 to 2.9 BL
s1(5-36 cm ™), or a forced exercise regime, where they were forced to swim at a sustained speed of
3.6 BL s (42 cm s). Each of the treatments had a respective control group housed under identical
conditions, but without increased water flow. After eight weeks of exercise treatment, the telencephalon
of five fish per group (20 fish total) was sampled for RNA-seq analysis. After three and eight weeks of
treatment, exercised and control fish (» = 15 per group) from the volitional treatment, were subjected
to a maze test. The fish tested at eight weeks were different individuals than the fish tested at three
weeks.
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Figure 2. Exercise boosts growth. After eight weeks of sustained swimming, exercised fish in both the
volitional (W = 4653, Z=-3.33, p = 0.0009) and forced (W, = 1988, Z = -3.47, p = 0.0005) exercise
regimes had a significantly higher body mass than control fish (Wilcoxon rank-sum test), as indicated
by asterisks. Centre lines within the box plots represent the median, boxes reflect quartiles, and whiskers
show minimum and maximum values.

24



week 3 week 8
A B

1400+ 14004
C)
% 1100+ 11004
o
o
£ 8004 800+
)
=
®
S 500- 5004
£ -e- volitional control
3
x- volitional exercised
2004 2004
T T T T T T T T T T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
experimental day experimental day

724

725  Figure 3. Results of the maze test. There was no difference in time to find the exit to a four-arm maze
726  between volitional exercised fish and unexercised controls, after three (A) and eight (B) weeks of
727  exercise. Lines represent model predictions based on individual data and points represent mean values.
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Figure 4. Multi-dimensional scaling (MDS) plot based on the expression of 27171 genes. The first two
dimensions clearly separate samples by treatment contrast (volitional exercised vs. volitional control,
and forced exercised vs. forced control). In addition, considering the complete dataset, the MDS plot
shows an almost complete division between exercised and control samples regardless of exercise
regime, with the exception of sample 14.
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Figure 5. Forebrain gene expression in exercised vs. control salmon, subjected to either an exercise
regime at volitional (A) or forced (B) swimming speeds. Depicted are expression values of 27,171
genes, normalized for between-sample differences in sequencing depth and within-sample transcript
length differences (RPKM, reads per kilobase per million). Genes highlighted in red are significantly
differentially expressed between exercised and control groups.
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Figure 6. Concordant changes in gene expression in volitional and forced exercised salmon. Shown is
the logx fold change (FC) for each of 27,171 genes in either contrast. Genes highlighted in red are
significantly differentially expressed in the volitional contrast. For the vast majority of genes, fold
changes are similar in direction and magnitude between the treatment contrasts (Pearson correlation
coefficient 0.60), but none are significantly differentially expressed in the forced contrast.
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747  Figure 7. Heat map depicting expression of differentially expressed genes within gene ontology (GO)
748  categories related to neuroplasticity. In order to make the absolute expression levels and amplitudes of
749  expression changes comparable between genes, for every gene the original read per kilobase million
750  (RPKM) values were converted to z-scores (i.e. expressed in standard deviations around the mean).
751  Hierarchical clustering based on Pearson correlation was used to arrange genes by similarity in
752 expression pattern. Fish ID numbers correspond to sample numbers in Fig. 4.
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Supplementary code
# Alignment and quantification, for each sample

tophat -o sample01 -i 50 -p 6 --library-type fr-unstranded --b2-very-sensitive --no-coverage-search --
GTF GCF_000233375.1_ICSASG_v2_genomic_noMT.gff GCF_000233375.1_ICSASG_v2_genomic
sampleO1.fastq.gz

samtools sort -n sample01/accepted_hits.bam sample01/accepted_hits_sorted
samtools view -h -o sample01/filtered.sam -F 0x0100 sample01/accepted_hits_sorted.bam
perl -p -i -e 's/\tNH:i:\d+/\tNH:i:1/' sample01/filtered.sam

python -m HTSeq.scripts.count -q -s no -t exon -i gene -m intersection-nonempty
sample01/filtered.sam GCF_000233375.1_ICSASG_v2_genomic_noMT.gff > sample01.tsv

# Raw counts processing in R
library(edgeR)

x <- read.delim("all_data_gene_union_annotated_mrna_09042018.txt", row.names=1)

# Test only genes with a minimum number of reads
minreads <- rowMin(as.matrix(x[,2:21]))

plot(density(logl0(minreads))) # density_min_reads_12042018.pdf  # peaks at 100
reads, discard samples below 10

minreadsfilter <- minreads >=10
summary(minreadsfilter)
# Mode FALSE TRUE NA's

# logical 21265 27171 O

xfilt <- x{[minreadsfilter == TRUE,]

group <- factor(c(1,1,2,2,3,4,4,1,1,1,2,2,2,3,3,3,3,4,4,4))
design <- model.matrix(~group)

y <- DGEList(counts=xfilt[,2:21],group=group)

y <- calcNormFactors(y)

plotMDS(y) # MDS_edgeR_filtered_samples_12042018.pdf

# Discard outliers based on MDS and other data exploration



nooutliers <- xfilt[,1]

nooutliers <- chind(nooutliers, xfilt[,3:6])

nooutliers <- chind(nooutliers, xfilt[,8:11])

nooutliers <- chind(nooutliers, xfilt[,13:20])

group <- factor(c(1,2,2,3,4,1,1,1,2,2,3,3,3,3,4,4))

y <- DGEList(counts=nooutliers[,2:17], group=group)
design <- model.matrix(~0 + group, data = ySsamples)
colnames(design) <- c("vc","vs","fc","fs")

y <- calcNormFactors(y)

ySsamples

# group lib.size norm.factors

# sample02 110785621 0.9863562
# sample03 212870166 0.9954296
# sample04 210260054 1.0002894
# sample05 3 7177903 1.0028636
# sample07 416345730 1.0030503
# sample08 111907883 1.0065248
# sample09 111389639 0.9984381
# samplel0 111779773 0.9931511
# samplel2 210431291 1.0096069
# samplel3 211756880 1.0007416
# samplel4 317282832 1.0038046
# samplel5 310580400 1.0037035
# samplel6 312701795 1.0017340
# samplel7 326983950 0.9978458
# samplel8 410271824 0.9943695
# samplel9 410724008 1.0023328
plotMDS(y) # MDS_edgeR_filtered_nooutliers_samples_12042018.pdf

# Differential expression testing



contrasts <- makeContrasts(vs_vc=vs-vc, fs_fc=fs-fc, fs_vs=fs-vs, fc_vc=fc-vc, levels=design)
y <- estimateDisp(y,design)

fit <- gImQLFit(y, design)

qlf_vs_vc <- glmQLFTest(fit, contrast = contrasts[,"vs_vc"])

qlf_fs_fc <- glmQLFTest(fit, contrast = contrasts|,"fs_fc"])

# Include annotations

library(Ssa.RefSeq.db)

geneid <- unique(get.id(rownames(x)))

genenames <- get.genes(geneidSgene_id, mode = "full", transcripts = "longest")
volitional <- topTags(qlf_vs_vc, n =27171)

forced <- topTags(qlf_fs_fc, n =27171)

cpm <- cpm(y)

alldata <- merge(genenames, cpm, by.x="gene", by.y=0)

alldata <- merge(alldata, volitionalStable, by.x = "gene", by.y = 0)

alldata <- merge(alldata, forcedStable, by.x = "gene", by.y = 0)

write.table(alldata, "all_data_tests_16042018.txt") # update with transcript lengths

# filter out duplicated genes (multiple gene <> gene_id / transcripts)
./select_unique_gene_annot.perl

alldata <- read.delim("D:/DaanMes/all_data_tests_unique_16042018.txt", header=T)

# GO testing

golist <- get.GO(alldata$gene_id, TERM="BP")

library(goseq)

volitional <- alldataSgene_id[alldataSvolitional_FDR<0.01]

volitionalup <- alldataSgene_id[alldataSvolitional_FDR<0.01&alldataSvolitional_logFC>0]
volitionaldown <- alldataSgene_id[alldataSvolitional_FDR<0.01&alldataSvolitional_logFC<0]

#1772,923, 849

upvector <- as.integer(alldataSgene_id%in%volitionalup)



downvector <- as.integer(alldataSgene_id%in%volitionaldown)
genevector <- as.integer(alldataSgene_id%in%volitional)
names(upvector) <- alldataSgene_id

names(downvector) <- alldataSgene_id

names(genevector) <- alldataSgene_id

goall <- nullp(genevector, bias.data = alldataStranscript_length)

goalltest<- goseq(goall, gene2cat = golist, test.cats="GO:BP", method = "Wallenius")
goup <- nullp(upvector, bias.data = alldataStranscript_length)

gouptest<- goseq(goup, gene2cat = golist, test.cats="GO:BP", method = "Wallenius")
godown <- nullp(downvector, bias.data = alldataStranscript_length)

godowntest<- goseq(godown, gene2cat = golist, test.cats="GO:BP", method = "Wallenius")

# Scatterplots
png("volitional_vs_forced_scatterplot_03072018.png", width = 1000, height = 1000)

plot(alldataSvolitional_logFC, alldata$forced_logFC, xlim=c(-1,2), ylim=c(-1,2), pch=20,
col="#0000aal1")

points(alldataSvolitional_logFC[alldataSvolitional_FDR<0.01],
alldataSforced_logFC[alldataSvolitional _FDR<0.01], xlim=c(-1,2), ylim=c(-1,2), pch=20,
col="#ff0000")

dev.off()

# R version information

sessioninfo()

R version 3.4.4 (2018-03-15)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:



[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats

other attached packages:

[1] goseq_1.30.0

[5] BiocGenerics_0.24.0 edgeR_3.20.9

[9] RSQLite_2.1.0

graphics grDevices utils

genelenDataBase_1.14.0 BiasedUrn_1.07

loaded via a namespace (and not attached):

[1] SummarizedExperiment_1.8.1

[5] lattice_0.20-35

[9] GenomicFeatures_1.30.3

[13] BiocParallel_1.12.0
[17] stringr_1.3.0

[21] IRanges_2.12.0
[25] Repp_0.12.16

[29] bit_1.1-12

[33] stringi_1.1.7

[37] bitops_1.0-6

[41] pkgconfig_2.0.1
[45] httr_1.3.1

[49] compiler_3.4.4

progress_1.1.2
stats4_3.4.4
blob_1.1.1
bit64_0.9-7
zlibbioc_1.24.0
biomaRt_2.34.2
DelayedArray_0.4.1
Rsamtools_1.30.0
GenomicRanges_1.30.3
magrittr_1.5
Matrix_1.2-12

R6_2.2.2

limma_3.34.9

datasets methods base

locfit_1.5-9.1
rtracklayer_1.38.3
XML_3.98-1.10
matrixStats_0.53.1
Biostrings_2.46.0
GenomelnfoDb_1.14.0
S4Vectors_0.16.0
RMysQL_0.10.14
grid_3.4.4
RCurl_1.95-4.10

prettyunits_1.0.2

GenomicAlignments_1.14.2

Biobase_2.38.0

Ssa.RefSeq.db_1.2

splines_3.4.4
mgev_1.8-23

DBI_0.8

GenomelnfoDbData_1.0.0

memoise_1.1.0
AnnotationDbi_1.40.0
XVector_0.18.0
digest_0.6.15
tools_3.4.4
GO.db_3.5.0
assertthat_0.2.0

nime_3.1-131.1
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Figure S1. Initial multidimensional scaling (MDS) plot including all 20 samples, based on the
expression of 27171 genes. Four samples (1, 6, 11, 20) did not cluster with their treatments and
upon closer inspection, these samples were characterized by high expression of eye-related genes,
suggesting a contamination with optical nerve tissue during dissection. These samples were

therefore excluded from the analysis.
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