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Summary 

Sugarcane is an importance source of energy and livelihoods worldwide. The production of 

sugarcane is significantly affected by several insects, weeds and pathogens commonly referred 

to as pests. In addition, climate scientists predict that climate change or variability will affect 

sugarcane production and its associated pests. Chemicals called pesticides, beneficial pathogens 

and insects called natural enemies or biological control agents are used to control these pests. 

Little is known about the diversity and richness of both pest and natural enemy species nor the 

properties of the pesticides used against them in Malawi. Few studies indicate that insects such 

as stemborers and aphids, and weeds are the most common pests; and that their control is 

heavily dependence on pesticides. Plant pathogens also infect sugarcane but are controlled 

using cultural methods. However, pesticides are harmful to the environment and improper use 

may lead to human poisoning. Knowing the main pests and using pesticides that are least 

harmful to the environment and natural enemies coupled with good crop management practices 

may contribute to solving this problem.  

 

To document pest composition and how they were controlled, a review of literature, 

questionnaire and farm surveys were conducted in the major sugarcane growing areas of 

Malawi. The questionnaire survey was administered to 55 farmers and 7 representatives of 

1474 farmers. We collected 221 insect samples from 48 sugarcane fields and isolated beneficial 

fungi from 12 soil and 60 plant samples collected from 12 sugarcane fields in southern Malawi, 

respectively. The best way to inoculate sugarcane was also determined in a potted experiment 

conducted using a commercially available formulation of beneficial fungi (Beauveria bassiana 

strain GHA). We identified the fungi and insects samples to genus and/or species level largely 

using morphological characteristics. Molecular characterization based on partial sequencing of 

Bloc gene region of 50 fungal samples and cytochrome oxidase subunit I (COI) gene region in 

65 insect samples, respectively, were conducted to support morphological identifications. 

Separate DNA polymorphism and phylogenetic analyses were performed for the insect and 

fungal samples. Environmental and human health risks associated with pesticides in use were 

determined using the environmental impact quotient (EIQ) and World Health Organization 

(WHO) Classification of Pesticides by hazard. We also explored the likely impact that climate 

change or variability will have on the type and amount of pesticides used in sugarcane production 

using Malawi as a case study.  
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The results indicated that weeds, insect pests and plant pathogens infest sugarcane in Malawi. 

The main insect pests were Lepidopteran stemborers (Chilo partellus and Busseola fusca), soil-

dwelling insects’ pests (Heteronychus licas and H. arator, Anomala sp.), sugarcane thrips 

(Fulmekiola serrata), red spider mites (Tetranychus urticae), aphids (Sipha flava) and the fall 

army worm (Spodoptera frugiperda sp. 1). DNA polymorphism analysis revealed low genetic 

differentiation among C. partellus and B. fusca populations. A total of 16 pesticides were used 

to manage the pests. These are slightly to moderately hazardous to humans, 50% are highly 

toxic to bees and 70% can contaminate the environment. Individuals who sprayed these 

pesticides had minimal protective wear. At least 65% had experienced skin irritation, headache, 

coughing and running nose as a result of being exposed to these pesticides. Climate variability 

will alter the amount and type of pesticides through negative effects of high temperature on the 

efficacy of less toxic pesticides especially cypermethrin, increased pest severity and leaching 

of sorbed pesticides through high rainfall intensity and increased frequency of floods.  

 

Beneficial fungi in three genera namely Beauveria, Metarhizium and Isaria were identified 

from soil and sugarcane samples collected from southern Malawi. More isolates (81.7%) were 

collected from soil than from plants (36.7%). The majority of these isolates (72%) were 

Beauveria species. Molecular identification and phylogenetic analysis identified the Beauveria 

isolates as B. bassiana and were closely related to B. bassiana AFNEO_1 clade isolated from 

the coffee berry borer, Hypothenemus hampei in coffee fields of South America and in Africa. 

However, the Malawian B. bassiana clearly clustered in a separate clade. This is the first report 

of B. bassiana occurring as an endophytes of sugarcane; and B. bassiana, Metarhizium and 

Isaria species occurrence in agricultural fields in Malawi.  

 

Results from the sugarcane inoculation experiment showed that B. bassiana could be 

effectively inoculated in sugarcane using foliar and soil sprays, and stem injections. Stem 

injections were highly effective (75%) compared to foliar sprays (43%) and soil sprays (25%) 

plants inoculated, respectively. The inoculated B. bassiana was recovered in both old and new 

leaves and stem tissue, even though the recovery rate decreased with time. However, plants 

that had got stem injections were much shorter that plants that had foliar and soil inoculation, 

and control plants.   
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The results especially those on natural occurrence of beneficial fungi particularly B. bassiana 

and Metarhizium sp. will be useful in the control of not only of pests in sugarcane but also in 

several crops mainly vegetables.  
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Sammendrag 

Sukkerrør er en viktig kilde til energi og som levebrød over hele verden. Produksjonen av 

sukkerrør er betydelig påvirket av insekter, ugras og plantesykdommer ofte betegnet som 

skadegjørere. I tillegg forutsetter klimaforskere at klimaendringer eller variasjon i klima vil 

påvirke sukkerrørsproduksjonen og tilhørende skadegjørere. Kjemiske  plantevernmidler og 

biologiske kontrollmetoder brukes til å kontrollere disse skadegjørerne. I Malawi kjenner vi 

lite til forekomst og diversitet av skade- og nytteorganismer i sukkerrørproduksjonen eller til 

egenskapene til plantevernmidlene som brukes. Tidligere studier tyder på at ulike 

sommerfugllarver, bladlus og ulike ugrasarter er blant de vanligste skadeorganismene og at 

kontroll er sterkt avhengighet av plantevernmidler. Plantevernmidler kan imidlertid være 

skadelige for helse og miljø. Å kjenne de viktigste skadegjørerne og bruke plantevernmidler 

som er minst mulig skadelige for miljøet og nytteorganismer kombinert med god agronomi, 

kan bidra til å løse dette problemet. 

 

For å dokumentere sammensetningen og kontroll av skadegjørerne, ble litteratur gjennomgått 

og det ble sendt ut spørreskjema til bøndene i hovedområdene for produksjon av sukkerrør i 

Malawi. Spørreundersøkelsen ble sendt ut til 55 bønder og 7 representanter for 1474 bønder. 

Videre samlet vi 221 insektsprøver fra 48 sukkerrørfelt, isolerte nyttesopp fra 12 jordprøver og 

60 planteprøver fra 12 sukkerrørfelt i det sørlige Malawi. Videre ble det utført potteforsøk med 

sukkerrør får å finne den beste måten å inokulere sukkerrør med nyttesoppen (Beauveria 

bassiana stamme GHA). Vi identifiserte nyttesopp- og insektsprøver til slekts- og / eller 

artsnivå primært ved hjelp av morfologiske egenskaper. Molekylær karakterisering basert på 

delvis sekvensering av Bloc-genregionen av 50 nyttesoppprøver og cytokromoksidase-

underenhet I (COI) -genregionen i henholdsvis 65 insektsprøver ble utført for å understøtte 

morfologiske identifikasjoner. Separate DNA-polymorfisme og fylogenetiske analyser ble 

utført for insekt- og nyttesopp prøvene. Miljø og helsefare knyttet til bruk av plantevernmidlene 

ble bestemt ved bruk av miljøindikatoren EIQ (Environmental Impact Quotient) og Verdens 

helseorganisasjon (WHO) sin klassifisering av plantevernmidler og helsefare. Vi undersøkte 

også den mulige innvirkningen av klimaendringer eller variasjon i klima på bruk av 

plantevernmidler i sukkerrørsproduksjon med Malawi som et casestudie. 

 

Resultatene viste at ugras og insekt- og edderkoppdyr er skadegjørere i sukkerrør i Malawi. 

Blant disse hører de viktigste skadedyrene til larver av tre ulike  sommerfuglarter (Chilo 
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partellus, Busseola fusca og Spodoptera frugiperda sp. 1), de jordboende scarabidene 

(Heteronychus licas, H. arator, Anomala sp.), trips (Fulmekiola serrata), midd (Tetranychus 

urticae), bladlus (Sipha flava). DNA-polymorfi analyse viste små genetiske forskjeller mellom 

populasjonene av C. partellus og B. fusca. Tilsammen 16 plantevernmidler ble brukt til å 

bekjempe skadegjørerne. Disse plantevernmidlene er fra svak til moderat giftig for mennesker, 

50% er svært giftige for bier og 70% kan forurense miljøet. De som påførte disse 

plantevernmidlene i sukkerørfeltet brukte minimalt med verneutstyr og minst 65% hadde 

opplevd hudirritasjon, hodepine, hoste og rennende nese som følge av eksponering av disse 

midlene. Klimaendringer og klimavariasjon vil endre behov og bruk i forhold til mengde og 

type plantevernmiddel. Økte temperaturer vil sannsynligvis redusere effektiviteten av mindre 

giftige plantevernmidler, spesielt cypermetrin. Videre vil utlekking av plantevernmidler som 

bindes sterkt til jord øke ved høy nedbørintensitet og økt frekvensen av flom. 

 

Nyttesopp innen slektene Beauveria, Metarhizium og Isaria ble identifisert fra jord- og 

sukkerrørprøver samlet fra sørlige Malawi. Flere isolater (81,7%) ble samlet fra jord enn fra 

planter (36,7%). De fleste av disse isolatene (72%) var Beauveria-arter. Ved hjelp av 

molekylær identifikasjon og fylogenetisk analyse ble Beauveria isolatene identifisert til 

artsnivå og alle viste seg å være B. bassiana. De var nært relatert til B. bassiana AFNEO_1-

clade isolert fra barkebillen Hypothenemus hampei i kaffefelt i Sør-Amerika og i Afrika. B. 

bassiana isolatene fra Malawi var tydelig delt inn (clustered) i ulike grupper (clades). Dette er 

den første rapporten om B. bassiana og Isaria spp. som endofytt i sukkerrør og også første 

rapport om B. bassiana, Metarhizium sp og Isaria sp i sukkerrørfelt i Malawi. 

 

Resultater fra forsøk med inokulering av B. bassiana i ulike deler av sukkerrørplanten viste at 

B. bassiana effektivt kunne inokuleres både ved sprøyting av blader,  vanning av jord/ røtter 

og stammeinjeksjon. Stammeinjeksjon var svært effektiv med henholdsvis (75%) 

sammenlignet med sprøyting av bladvverk (43%) og jord/rotvanning (25%). Etter inokulering 

ble B. bassiana gjenfunnet i både gamle og nye blader og stammevev, selv om grad av 

gjenfinning ble  redusert med tiden. Imidlertid var planter som hadde fått stammeinjeksjon mye 

kortere enn planter som hadde blitt inokulert gjennom blad og jord/ røtter. 

 

Resultatene fra surveys og forsøk med nyttesopp vil være nyttig i forbindelse med kontroll av 

skadedyr i sukkerrør og også i andre kulturer. 
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1. General introduction 

1.1. Importance of sugarcane  

Sugar! Is the most preferred natural sweetener and energy source worldwide! While the healthy 

benefits of sugar is a source of constant debate in the developed countries (Ruxton et al., 2010), 

it is a source of livelihood to millions of people and is integral to the economic development 

program of sugar producing countries (Hess et al., 2016). About 80% of the world’s sugar is 

derived from sugarcane (Saccharum officinarum: Poaceae) while the remaining 20% is from 

sugar beet (Beta vulgaris: Amaranthaceae; FAOSTAT, 2018). In addition to sugar, sugarcane is 

also used to produce ethanol, bagasse, and molasses and press mud (Solomon, 2011). The crop 

sugarcane is cultivated in about 100 countries in the tropics and subtropics (FAOSTAT, 2018). 

In 2016, worldwide sugarcane production was estimated at 1.89 billion tonnes (FAOSTAT, 

2018). The Americas is the largest producer of sugarcane.  African countries contribute 5.9% to 

the global production (FAOSTAT, 2018). Malawi produces approximately 2.1 million tonnes per 

year, representing 14.11% of the total production in southern Africa (ILLOVO, 2017; 

FAOSTAT, 2018).  

 

1.2. Sugarcane production in Malawi 

It grows well where there are long periods of sunlight (12-14 hrs.), temperature range is between 

20°C and 35°C and, humidity is high, 80-85% (DAFF, 2014). The crop requires a minimum of 

1,100mm of rain per year or equivalent water from irrigation during the main growth phase 

(AgriFutures Australia, 2017). However, ripening requires a dry period (DAFF, 2014). Well-

drained, fertile sandy to clay soils with a pH between 6.0 and 7.7 are ideal for sugarcane growing 

(DAFF, 2014; AgriFutures Australia, 2017). 

Sugarcane for milling into table sugar and associated products is grown along the shores of Lake 

Malawi and the Shire River Valley. In the Shire River Valley, mean annual precipitation 

fluctuates between 400 and 700 mm; minimum temperatures are between 14°C in July and 23°C 

in February; mean maximum temperatures are between 27°C and 37°C in June and October; and 

maximum temperatures of 43°C are not unusual in October (Phiri and Saka, 2009). The 

lakeshore districts of Nkhata Bay and Nkhotakota are high altitude areas with average annual 



rainfall of 1490mm, minimum temperatures of 21°C in July and 24°C in January, and mean 

maximum temperature are 32°C in October.  

 

Sugarcane is vegetatively propagated using cane setts. Cane setts are sugarcane stems cut into 

small sections having 3-6 internodes. The recommended seed cane rate is 8-10 ton per hectare.  

Recommended varieties include MN1, N14, N19, N25, NcO 376 and R570. Initial planting of 

rainfed sugarcane is usually done at the beginning of the rainy season i.e. October to January. A 

row spacing for irrigated sugarcane is 1.5m and 1.0m for rain fed cane.  Ridges are made in such 

a way as to conserve water. Cane setts are planted end-to-end in furrow either 1.5 sticks or 

double sticks.  The initial sugarcane planted is referred to as plant cane and subsequent crop 

arising from remnants of harvest of this initial crop is called ratoon cane. Within four days of 

post-planting irrigation, a pre-emergent herbicide is applied. Fields are dried off for 30 days 

before being burned and manually harvested. The crop is harvested yearly for 3-15 years without 

replanting. 

Historically, sugarcane has been grown in commercial estates located at Dwangwa in Nkhota 

Kota and Nchalo in Chikwawa districts with the involvement of smallholder farmers determined 

by Acts of Parliament (Chinsinga, 2017). Since 2010, the Government of Malawi has been 

promoting sugarcane production among smallholder farmers as a means of fighting rural poverty 

(Chinsinga, 2017). This resulted in an increase in area under sugarcane cultivation between 2011 

- 2012 (Fig. 1). These farmers are organized into farmer associations. Depending on background 

of the association - formed either by an African Development Bank or European Union with 

Government of Malawi support, or by a grouping of farmers acting independently; sugarcane 

grown by these farmers is either irrigated or rainfed (Chinsinga, 2017). However, despite the 

increase in hectares, Figure 2 indicate that the amount of sugarcane crushed and sugar produced 

in Malawi has been decreasing since 2014. High pest pressure and greater climate uncertainties 

i.e. changing onset and duration of rainfall season, increased drought risk and reducing available 

water supplies may be contributing factors to this yield decline (Knox et al., 2010; Kusangaya et 

al., 2014). 



 

Figure 1. Trends in area under sugarcane production in Malawi for the period 2006-2016 
(Source: FAOSTAT, 2018).  
 

 
Figure 2. Amount of sugarcane crushed and sugar produced in Malawi for the period 2007-2017 

(Source: ILLOVO Malawi, 2009; 2013; 2017). 



 

1.3. Sugarcane production constraints in Malawi 

1.3.1. Pest of sugarcane in Malawi 
The sugarcane phytobiome includes over a thousand arthropod pests, numerous pathogens and 

weeds (Strong et al., 1977). Worldwide, the orders of insects that contain species that are 

economic pests of sugarcane are Lepidoptera (mainly stemborers), Hemiptera (aphids), 

Orthoptera (grasshoppers, locusts), Coleoptera (larvae of beetles commonly called white grubs), 

and Isoptera (termites), (Meager, undated). However, pest status and composition varies with 

geographical region. In Brazil, the sugarcane pest complex includes the spittlebug, Mahanarva 

fimbriolata; the curculionid Sphenophorus levis and sugarcane borer, Diatraea saccharalis 

(Dinardo-Miranda and Fracasso, 2013). In addition to D. saccharalis; the yellow sugarcane 

aphid (YSA), Sipha flava; the corn wireworm, Melanotus communis; the whitegrub, Tomarus 

subtropicus; and the lesser cornstalk borer (LCB), Elasmopalpus lignosellus are economic pests 

of sugarcane in United States of America (Cherry et al., 2015). In the Indian subcontinent, the 

early shoot borer Chilo infuscatellus, the internode borer Chilo Sacchariphagus and the top borer 

Scirpophaga excerptalis cause significant yield losses (Nrip and Gaikwad, 2017). Much of the 

knowledge on the biology and management of sugarcane pests in Africa is derived from research 

conducted in South Africa. However, the research is focused on pests that are of economic 

importance to South Africa. Differences in pest composition and status, climate and crop 

management practices, may affect pest biology and behaviour in other countries. In South Africa, 

the African stalk borer, Eldana saccharina; white grubs, Schizonycha affinis and Hypopholis 

sommeri and thrips, Fulmekiola serrata are examples of important pest species (Way et al., 

2011a, 2011b; Leslie et al., 2013). In Mozambique, Chilo Sacchariphagus is a pest of concern to 

the sugar industry (SASRI, 2014).  

There is little information on the diversity and richness of pest species in Malawi. This is partly 

due to dependency of the Malawi sugarcane industry on South Africa for research and crop 

management practices. Since the climate of South Africa is different from that of Malawi, some 

aspects of pest biology and ecology may vary from those in agroecological zones of Malawi. It 

only in the recent two decades that independent (not sponsored by government of Malawi 

initiated grants) and outgrowers have been allowed to grow sugarcane for milling. These farmers 



do not have access to South African research outputs. In addition, compared to other cash crops 

such as tea and tobacco, research and extension structures aimed at addressing the needs of these 

farmers are non-existent.  

Previous studies indicated the occurrence of white grubs, (Heteronychus licas and H. arator, 

Anomala sp.); thrips, Fulmekiola serrata; unidentified stemborer species, termites (Macrotermes 

spp), red spider mites (Tetranychus urticae) and aphids, (Sipha flava and Melanaphis sacchari) 

infests sugarcane in Malawi (Agricane, 2013; Conlong and Ganeshanshow, 2016; Koloko, 2014) 

White grubs are soil dwelling larvae of numerous beetle species (Curculionidae) that feed on the 

base of young sugarcane stalk and suck nutrients (Spaull, 2011). Their feeding on the roots 

results in stunted growth and sometimes crop failure (Way et al., 2011b). Thrips, red spider 

mites and aphids suck plant sap and their infestation results in sooty moulds, leaf necrosis, 

interfere with nutrient transport and may vector plant pathogens such as sugarcane mosaic virus. 

(Spaull, 2011; SASRI, 2014; Way et al., 2010a). Stemborers cause ‘dead hearts’ in young 

sugarcane plants while infestation in older plants renders the crop very susceptible to lodging 

(SASRI, 2014; Conlong et al., 2016). Hence, if not properly managed, arthropod pest infestation 

directly contributes to sugarcane yield loss. 

1.3.2. Climate variability 
Climate variability refers to ‘variations in the mean state and other statistics (such as standard 

deviations, statistics of extremes, etc.) of the climate on all temporal and spatial scales beyond 

that of individual weather events’ (IPCC, 2007). Climatic factors particularly precipitation and 

temperature affect both sugarcane and pest growth and development, but also farm operations.  

Generally, frost and drought negatively affect sugarcane growth. Increased severity of pests 

particularly aphids and thrips due a prolonged dry season has been reported in Mozambique, 

Swaziland, Zambia and Southern Malawi (ILLOVO climate change report, 2015; Koloko, 2016). 

Farm operations such as application of pest control measures and harvested are inhibited by 

prolonged flooding. On the other hand, a significant reduction in the amount and poor 

distribution of rainfall because of severe droughts or rising temperature affects availability of 

water for irrigation, resulting in poor crop yields (Emmet et al., 2013). 

 

 



1.4. Management of sugarcane pests  

1.4.1. Cultural control 
Cultural control is based on the principle of creating an unfavourable environment for pest 

species through manipulation of normal agronomic practices. Cultural practices includes tillage, 

planting of pest-free materials and growing healthy plants that can withstand pest infestation. 

Quarantine regulations are in place reduce the risk of exchanging plant pathogens through the 

common practice of plating materials between sugarcane growing countries (Bailey, 2011). It is 

an international standard to subject seedcane to a hot water treatment (at 50°C for 2hours) 

followed by a dip in a fungicide to control seed borne pests (Davis and Bailey 2000). Roguing 

and burning of sugarcane showing signs of pathogen infection is also practiced. In South Africa, 

cultural control is the most viable option for managing the indigenous stemborer, Eldana 

saccharina as biological control using insect parasitoids is ineffective (Spaull, 2011). E. 

saccharina is also controlled through variety, nutrient and habitat management (Keeping and 

Meyer, 2002; Pillay and Ramouthar, 2015; Conlong et al., 2016).  In Mexico and the United 

States of America, the Mexican rice borer, Eoreuma loftini is control by using resistant varieties 

(Showler and Castro 2010). Rotary tillage is used in the management of  white grubs, Dasylepida 

ishigakiensis in Japan while deep ploughing is used in South Africa to manage high incidences 

of Hypopholis sommeri, Schizonycha affinis, Adoretus fusculus,  Astinopholis sp, Anomola sp, 

Heteronychus licas and Maladera sp. (Kijima and Tarora 2010; Spaull, 2011). Varietal 

resistance, early planting during main season and nutrient management i.e. avoiding excessive 

nitrogen fertilization, are used for managing stemborers in Malawi (Koloko, 2014; Conlong et 

al., 2016). 

1.4.2. Biological control 
Biological control is defines as the practice of managing pest populations through the use of the 

pest’s natural enemies and usually involves human intervention (Waage, 2007). It is an 

ecological approach for pest management. Examples of natural enemies are predators (lady 

beetles), parasitoids (numerous wasp species) and pathogens (bacteria, fungi and viruses). When 

large numbers of these natural enemies are released for control of a pest within a short period of 

time, it is called inundative biological control. Inoculative biological control involves periodic or 

season releases of natural enemies with the purpose of enhancing the efficacy of natural enemies 



already present in the field (Hoy, 2008). Several natural enemies targeting various stages of 

insect pests have been identified.  

Cotesia sesamia, Cotesia flavipes and Trichogramma sp. are known to parasitoids of B. fusca, C. 

partellus, Diatraea sp. and Scirpophaga excerptalis (Ashraf and Fatima 1996; Botelho et al., 

1999; Calatayud et al., 2011; Rutherford and Conlong, 2010; Goble et al., 2017). Lydella 

minense, Paratheresia claripalpis and P. claripalpis are also used to control D. saccharalis 

South America (Rossi and Fowler 2003; Willink et al. 1991). Trichogramma Chilonis provides 

effective control of Chilo sacchariphagus on Reunion Island (Goebel et al. 2010). A 

Granulovirus (ChiGV) and a bacterial strain, Bacillus thuringensis subsp. Kurstaki (Btk) are used 

against Chilo infuscatellus in Indian sugarcane (Kesavan et al., 2003; Rachappa et al., 2000). 

Biological control based on entomopathogenic fungi Metarhizium anisopliae, Beauveria 

bassiana and B. brongniartii is used to manage soil-borne pests like white grubs and termites, 

sucking insect pests such as aphids and spittle bugs, some stalkborers infesting sugarcane in 

Australia, Brazil, India, Indonesia, Pakistan, Reunion Island, South Africa, Thailand and United 

States of America (Arthurs and Dara, 2018; Li, 2010; Goble et al., 2017; Sallam, 2009). In 

Malawi, biological control (using egg parasitoids) are used on a very small scale at one estate to 

manage white grubs and stemborers, respectively (Koloko, 2014). 

1.4.3. Chemical control 
Chemical control involves the use of pesticides. World Health Organization (WHO) defines 

pesticides as ‘… chemical compounds that are used to kill pests, including insects, rodents, fungi 

and unwanted plants (weeds).’ Pesticides are inherently toxic (hazardous) to man and the 

environment. The risk from a pesticide to man or environmental depends on the quantity used 

(exposure) and its toxicity. Pesticides risk is higher in developing countries and a large 

proportion of farmworkers suffer from pesticides poisoning (Kishi and Ladou, 2001). Several 

factors including poor regulatory and enforcement mechanisms; use of banned, highly toxic and 

obsolete pesticides; poor pesticides handling and storage, and lack or limited personal protective 

or spraying equipment contribute to higher pesticide risk (Thundiyil et al., 2003).  Pesticides 

poisoning can occur via dermal (skin) contact, ingestion (mouth) and inhalation (Spaull, 2011).  

Pesticides poisoning may be acute (short-term) but also chronic (long-term) while organ failure 

and eventual death results from chronic pesticides exposure (Thundiyil et al., 2003).  Pesticides 



also contaminate soil, surface and underground water; kill beneficial organisms such as 

pollinators, pest’s natural enemies, birds and bees (Aktar et al., 2009). Considering that that 

continuous and repeated use of a synthetic pesticides results in development of insecticide 

resistance and, toxicity of pesticides to humans and the environment, documenting the toxicity of 

and finding alternatives to chemicals currently used in sugarcane production in Malawi is of 

utmost importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. The thesis 

This thesis is on sugarcane production in Malawi and focuses on identification of Lepidopteran 

stemborer, pesticides used for managing sugarcane pests and the potential for biological control 

using beneficial fungi. The thesis is made up of 5 five manuscripts denoted as paper I – V. The 

manuscripts are based on literature and field survey, greenhouse experiment and laboratory 

analysis. A summary of project justification, methods used, main findings and conclusions are 

presented in sections below. Complete information on materials and methods, results, discussion 

are indicated in each respective paper.  

2.1. Project justification 

Insect pests are the most injurious pests and are responsible for about 50% crop losses in Africa 

(CABI, 2018). Management of these pests is currently biased towards insecticides use (Sheahan 

et al., 2017). The sugarcane industry in Malawi is the third largest consumer of pesticides in 

Malawi (GoM, 2013). Although pesticides help in reducing crop losses, the benefits are 

temporary. The continuous use of pesticides put humans and the environment at a greater risk of 

pesticide exposure (Lehtonen and Goebel, 2009; Lobin et al., 2017). Hence, identification of 

pesticides that carry a low risk, adoption of cultural practices that are known to significantly 

suppress pest populations and identification of alternatives to pesticides and integrating them in 

existing pest control programs can greatly contribute to reduction the risks arising from 

pesticides use. It is accepted the world over that this objective can be achieved by developing 

and implementing integrated pest management, IPM, approach (Parsa et al., 2014). 

Implementation of an effective IPM program requires a good foundation (Orr and Ritchie, 2004; 

Parsa et al., 2014). The foundation is based on accurate identification of pest species present in 

the agroecosystem  and availability of viable pest control alternatives (Overholt et al., 2001). 

Accurate pest identification is vital for making informed management decision. Morphological 

markers have long been used to identify organisms. Body length; antenna features; wing 

venation; setae and leg structure and arrangement are some of the morphological characteristics 

used to separate insect species. Analyzing these characters one by one requires a good technical 

training in insect taxonomy, it is time consuming and may not be practical where large numbers 

of insects are involved (Jalali et al., 2015). In addition, some morphologically similar species 

display variations in geographical distribution, behaviour, host preference and response to 



control measures just to mention a few (Aseffa et al., 2006a; 2006b; Sezonlin et al, 2006a; 

2006b). Molecular identification based on small fragments of mitochondrial DNA (mtDNA) or 

chloroplast DNA; isozymes and proteins markers that delimits species as pedigrees overcomes 

most of the problems associated with morphological and other classification systems (Hebert et 

al. 2003; Sreedevi et al., 2015). The maternally inherited mitochondrial gene, cytochrome 

oxidase I (Cox I) is widely used for distinguishing insects (Hebert et al. 2003; Jalali et al., 2015; 

Wang et al., 2016). However, amount of polymorphism identified and the statistical reliability of 

the results differ among the molecular markers (Sreedevi et al., 2015). Hence, since early 2000, 

integrating morphological and molecular markers has become accepted in insect taxonomy 

(Yang et al., 2012; Wang et al., 2016). 

The second step in establishing an IPM program is documenting existing pest management 

measures employed by farmers. In IPM, the use of synthetic pesticides is minimal, as a last resort 

and is limited to less harmful pesticides. Therefore, quantifying the risks associated with current 

management options is crucial in helping farmers and policy makers adopt better pest 

management decisions that are environmentally benign (FAO, 2008). Several pesticides risk 

indicators or models have been developed. These models are mathematical equations that 

considers a variety of input data such as active ingredient toxicity, rate and frequency of 

application, chemical properties of the pesticides and farm size (FAO, 2008). Risk indicator 

models include the environmental impact quotient (EIQ), chemical hazard evaluation for 

management strategies (CHEMS1),multi-attribute toxicity factor (MATF), Norwegian 

environmental risk indicator (NERI), pesticides environmental risk indicator (PERI), 

environmental indicator model (SYNOPS),  environmental potential risk indicator for pesticides 

(EPRIP), system for predicting the environmental impact of pesticides (SyPEP), environmental 

yardstick for pesticides (EYP) and the World Health Organization (WHO) classification of 

pesticides by hazard (Kovach et al., 1992; Levitan, 1997; WHO, 2009). Based on their inherent 

toxicity, WHO (2009) groups pesticides into 5 classes namely Ia: extremely hazardous; Ib: 

highly hazardous; II: moderately hazardous; III: slightly hazardous and U: unlikely to present 

acute hazard in normal use. The WHO (2009) classes mean that chemical identified as highly 

hazardous are more lethal and have a higher greater risk of poisoning than those that are slightly 

hazardous. The EIQ model is widely used  in selecting the most benign pesticides (Kovach et al., 

1992; Kniss and Coburn, 2015).  



It is also used to compare the introduction of genetically modified organisms i.e. GMOs  and is 

also recommended by Food and Agricultural Organization (FAO) of the United Nations for 

measuring the effect of introducing IPM (Eklo et al., 2003; Teng et al., 2005; Kromann et al., 

2011; Brookes and Barfoot, 2015; Perry et al., 2016). The EIQ includes health risk and exposure 

of farmers, bystander, consumers and the environment. That means the WHO classes are 

included in the EIQ index. The EIQ model summarize all pesticide used during the season thus 

giving a total score for the environmental pesticide load/concentration (Kovach et al., 1992). The 

lower the EIQ value, the least hazardous the pesticides is. The EIQ model is also easier to use 

and requires only a few input data.  

Managing pests with minimal environmental pesticide load requires the availability of effective 

non-chemical pest control alternatives (Lehtonen and Goebel, 2009). Deliberate actions aimed at 

enhancing the multiplication of biocontrol agents and improving soil health may significantly 

reduce the amount of pesticides used in sugarcane but also cost of control. For example, 

chemical control of Diatraea centrella, Diatraea saccharalis and Castniomera licus, the main 

pests of sugarcane in Guyana has been abandoned (Richards-Haynes, 2007; Lehtonen and 

Goebel, 2009; Guyana Sugar Corporation, 2017). Parasitism by the Metagonistylum minense and 

improved drainage and management practices provides effective control of these pests (Guyana 

Sugar Corporation, 2017). In Brazil, integration of an insect pathogenic fungi Metarhizium 

anisopliae-based biopesticide in the control regime of Mahanarva fimbriola results in effective 

control of the pest but at a 10 times less cost of synthetic insecticides (Ereno, 2002).  

There are limited published studies focused on characterization of pest and beneficial organism 

in sugarcane production in Malawi. Few studies were conducted at Nchalo and Dwangwa Estates 

evaluating the performance of South African varieties under Malawi conditions (Isyagi and 

Whitbread, 2002; Khembo et al., 2005). A monitoring study initiated in 2002 on the spread of C. 

sacchariphagus found that the pest was not present at Dwangwa and Nchalo sugar estates (Way 

et al., 2004). Another study reported the occurrence of Metarhizium spp. on white grubs (4 

isolates were identified from 154 cadavers) infesting sugarcane from undisclosed location in 

Malawi (Ngubane et al., 2012). All these studies were conducted in few commercial estates. No 

studies have been conducted on pest and insect pathogenic fungi occurrence, and pest 

management practices sugarcane under traditional farmers and outgrowers fields in Malawi. 



Therefore, it is necessary to characterize the main Lepidopteran pests, document pesticide use 

and exposure, and find prospect for viable alternatives to pesticides.  

Another factor to consider when developing an IPM program is feasibility or applicability of the 

pesticides alternatives to the actual implementers of the IPM strategy. Almost half of the Malawi 

population is illiterate and illiteracy is high in rural areas where the majority of the population 

lives (NSO, 2012; IMF, 2017).  This means that the majority of farmers are illiterate. Therefore, 

they may fail to grasp and adopt technologies that require new skill acquision. In addition, these 

farmers use hand-operated knapsack and jecto sprayers are the main pesticide application 

equipment (Singa, 2007).  

Finally, any IPM program to be adopted in Malawi needs to be presented to farmers in the 

context of reducing production costs and improving yields (Orr and Ritchie, 2004). The benefits 

and, how to deal with the risks (e.g. a minor pest becoming an economic pest; Ereno, 2002; van 

Antwerpen et al., 2008) associated with IPM need to be clearly define to farmers as they impact 

adoption (Pangapanga et al., 2012; Ward et al. 2016). This is especially important in the era of 

climate change where farmers need to make strategic decisions that enhance their ability to adapt 

to and mitigate the effects of climate change.  Future climate projections under different 

scenarios suggest an increase in maximum temperatures for Malawi (Saka et al., 2012; 

Zinyengere et al., 2014). However, projection on precipitation indicate greater uncertainty and 

variations with locations (McSweeney et al., 2010; Saka et al., 2012; Gama et al., 2014). The 

northern and central part of the country is projected to have a 200-400 mm compared to increase 

in mean yearly precipitation a 50-200mm for southern Malawi (Fig. 1; Saka et al., 2012). This 

projected mean annual increase will be due to an increase in the proportion of rainfall that falls in 

heavy events of up to 19% occurring during December through February (McSweeney et al., 

2010). Although it is difficult to determine to what extent climate change/variability will impact 

sugarcane production in Malawi, studies from elsewhere indicate that these projections will have 

a significant impact on moisture availability and will alter the biology of both host plants and/or 

associated arthropod species  and pesticides use (Biggs et al., 2013; Delcour et al., 2015; Ewald 

et al., 2015; Gawander, 2007; Hallmann et al., 2017; Munguira et al., 2015; Noyes et al., 2009; 

Zhao and Li, 2015). In addition, there is still a lack of knowledge on how extreme climate events 



such as droughts and floods will affect farmers’ behaviour and practices pertaining to pesticides 

they use to control various crop pests.  

2.2. Study objectives 

The main aim of this study was to provide basic data required for development of integrated pest 

management strategies in sugarcane in Malawi, thereby contributing to reduced environmental 

pesticide load. 

Specific objectives 

i. To determine how sugarcane farmers in Malawi will respond in terms of pesticides use to 

climate variability and how the response will affect their exposure to pesticides using 

secondary data (Paper 1). 

ii. To document existing pest control measures used by sugarcane farmers in Malawi and 

determine their corresponding environmental load (Paper II). 

iii. To characterize the main Lepidopteran pests infesting sugarcane in Malawi (Paper III). 

iv. To document and characterize the natural occurrence of potential beneficial fungal 

endophytes in sugarcane plant and insect pathogenic fungi in soils from sugarcane fields 

in Malawi that can be used as alternatives to inorganic pesticides (Paper IV). 

v. To evaluate inoculation methods for establishing an entomopathogenic fungus 

(Beauveria bassiana) as an endophyte in sugarcane, and assess whether the inoculations 

affects plant growth (Paper V). 

2.3. Materials and methods 

All field surveys were conducted in Malawi in Nkhata Bay, Nkhota Kota, Chikwawa and Nsanje 

Districts, respectively. Laboratory experiments were conducted at Lilongwe University of 

Agriculture and Natural Resources’ (LUANAR) Bunda Campus in Lilongwe and at Bvumbwe 

Agricultural Research Station at Bvumbwe in Thyolo District, respectively. Molecular analysis 

were conducted at Sugarcane Research Institute (SASRI), Mount Edgecombe, KwaZulu-Natal, 

South Africa and at Norwegian Institute for Bioeconomy Research, Ås, Norway. The field 

surveys and laboratory work were conducted between 2015 and 2018. 



2.3.1. Insect collection and identification 

About 221 insect samples were collected from sugarcane plants between June 2016 and March 

2017, from 9 locations in Chikwawa and Nsanje Districts belonging to 5 agricultural extension 

planning areas of the Shire Valley Agricultural Development Division (Paper III). All larvae 

were preserved in 70% alcohol in 30 mL sealed vials and were kept at +4°C until morphological 

and molecular identification analysis. Morphological identification was based on descriptions 

provided by Meijirman and Ulenberg (1996) and FAO (2018). GeneJet Genomic DNA 

Purification kit (Thermo Scientific, Waltham, MA, USA) was used to extract DNA for use in 

molecular identification according to the manufacturer’s instructions. Amplification of the partial 

cytochrome oxidase subunit I (Coi I) gene region was performed to confirm results of 

morphological identifications following the methods described by Folmer et al. (1994). 

2.3.2. Pesticide and secondary data collection 

Data on pesticide use and handling practices, and health effects experienced while handing 

pesticides were collected using a questionnaire survey between June 2015 and January 2016 

from 55 individual sugarcane farmers and 6 key informants representing 1474 sugarcane farmers 

in Nkhata Bay, Nkhota Kota and Chikwawa districts,  respectively (Paper I and II). The pesticide 

data from this survey was inputted into an online EIQ calculator available on Cornell University 

website (NYSIPM, 2017). Ecotoxicological data pertaining to the reported pesticides (Paper I 

and II) were obtained from the pesticides properties database of the University of Hertfordshire 

and WHO (2009). A review of published data on impact of climate change/variability on drivers 

of pesticides exposure was done using the pesticides used in sugarcane production in Malawi as 

a case study (Paper I). 

2.3.3. Soil and sugarcane sample collection, and mycological analysis 

Soil samples (10 per field, n = 60) and sugarcane plants (10 per location, n = 60) were collected 

with the help of a garden spade from 6 locations in Chikwawa District (Paper IV). The garden 

spade was disinfested between collection points by dipping in 70% alcohol to prevent cross-

contamination (Klingen et al., 2002). Five heat-conditioned G. mellonella larvae were used to 

bait entomopathogenic fungi (Meyling and Eilenberg, 2007) from soil following procedures 

outlined by Clifton et al. (2015). Each fungal infected G. mellonella larvae was considered an 

isolate. Using a sterile scalpel, each plant was dissected into 3 separate parts: leaf, stem and root. 



These plant sections were surface sterilized by passing them in household bleach (1% sodium for 

3 min) and ethanol (70% for 1 min) followed by triple rinsing in sterile distilled water. The 

sterilized section were plated on Sabouraud Dextrose Agar (SDA, Oxoid) and incubated in the 

dark at 25±5°C.  

Fungal growth ensuing from the edges of the sterilized plant sections and from G. mellonella 

larvae were identified morphologically to genus level by examining sporulation structures and 

conidia shape under the dissecting and light microscopy (Humber, 2012). Extraction of DNA 

was accomplished using DNeasy Plant Mini kit (Qiagen, Germany) following manufacturer’s 

instruction (Goble et al., 2012). Molecular identification was based on amplification of Bloc 

intergenic region using primer pair B22U (5′-AGATTCGCAACGTCAACTT-3′) and B822L (5′-

GTCGCAGCCAGAGCAACT-3′; Rehner et al., 2011). Sequencing for fungal isolates was done 

by GATC Biotech (in Germany) while SASRI (in South Africa) did for insect samples, 

respectively. 

2.3.4. Phylogenetic analysis 

Phylogenetic analysis were carried out for insect samples and fungal isolates (Paper III and IV) 

DNA sequences were edited and assembled using CLC Main workbench v7.0.1 (QIAGEN, 

Hilden, Germany) and aligned using  ClustalW (Thompson et al., 1997) in BioEdit 7.2.5 (Hall, 

1999). Published sequences available from GenBank were also downloaded for phylogenetic 

comparisons. Neighbor-Joining (NJ) and maximum likelihood (ML) analyzes based on K-2 

parameter model (Kimura, 1980) with complete gap deletion and 1000 bootstrap replications 

were conducted in Mega6 (Tamura et al., 2013). Based on model selection results (lowest 

Bayesian Information Criterion value), Tamura 3-parameter with discrete Gamma distribution 

(T92+I) was the best-fit substitution model for the insect samples data while Kimura 2-parameter 

80 with discreet Gamma distribution (K2+G) was the best-fit model for fungal isolates (Tamura 

et al., 2013). Separate phylogenetic analyses using the best-fit model were performed for C. 

partellus (n = 50), B. fusca (n = 11), S. frugiperda (n = 11) and B. bassiana (n = 80) in Mega6 

with 1000 bootstrap replications. DNA polymorphism analyses were done using DnaSP v5 

(Librado and Rozas, 2009). 



2.3.5. Establishment of insect pathogenic fungi as a sugarcane endophyte 

A greenhouse experiment was conducted to determine the best method for inoculating sugarcane 

(variety MN1) with an insect pathogenic fungi, B. bassiana (strain GHA) at Bvumbwe 

Agricultural Research Station (BARS; 15°55'27.1"S 127 35°04'12.5"E, 1174 m.a.s.l) located in 

Thyolo district, southern Malawi (Paper V). Three methods of inoculating plants with a fungus 

were employed in this study i.e. foliar spray, stem injection and soil drench (Wagner and Lewis, 

2000; Posada et al., 2007; Tefera and Vidal, 2009). Plants were inoculated 7 days after the 

emergence of the primary shoot using soil drench, stem injection and foliar sprays. Fungal 

colonisation was evaluated 7-10 and 14-16 days post inoculation (DPI) using the fragment 

plating method surface sterilizing plant tissue sections, and plating the sterilized sections on 

selective growth (Torres et al. 2011; Vega, 2018).  Effects of fungal inoculations on plant growth 

was evaluated at the end of the experiment. 

2.4. Main results and discussion 

2.4.1. Impact of climate change on pesticides used in sugarcane production 

In general, high temperature as predicted in current climate change scenarios will favour pests’ 

proliferation (Chandiposha, 2013; Das et al, 2011; Matthieson, 2007). As ectotherms, 

temperature influences insect feeding, metabolism, reproduction, development and dispersal. 

Higher temperature will enhance the multiplication of insects through reduced development time 

resulting in shortened life cycles. The spittlebug (Neophilaenus lineatus) is predicted to increase 

its host range in the United Kingdom (Whittaker and Tribe 1996). Shortening of generation time 

and increased pest activity has been reported for Plutella xylostella in Southern Africa (Nguyen 

et al., 2014; Ngowi et al., 2017). Natural enemies especially parasitoids may become less 

efficient if host species emerge earlier and there is rapid development of susceptible stages. The 

dominance of Chilo partellus over indigenous stemborers in Africa has been attributed in part to 

asynchrony with its natural enemies (Mutamiswa et al., 2017). A recent study by Machekano et 

al. (2018) found that due to differences in basal temperature responses between P. xylostella and 

its parasitoid Cotesia vestalis, the co-evolved host-parasitoid synchrony may be offset.  These 

temperature induced changes may result in increased frequency of pest outbreaks forcing farmers 

using biological control to resort to pesticide use in order to minimize crop losses.  



Projected higher temperatures will affect pesticide efficacy. For instance, pyrethroids such as 

cypermethrin is very toxic at temperatures below 26°C while organophosphates such as 

profenofos are more toxic at higher temperatures (Jegede et al., 2017; Noyes et al., 2009). 

However, organophosphates are generally more toxic to humans and the environment compared 

to pyrethroids. Because of the loss in efficacy of pyrethroids, farmers will resort to using more 

organophosphates, inadvertently increasing their pesticides exposure risk. In addition, more 

insecticides will be applied to combat pest outbreaks as evidenced by the recent Government of 

Malawi and sugarcane estates responses to outbreaks of fall armyworm (Spodoptera frugiperda) 

and yellow sugarcane aphid (Sipha flava) outbreaks during 2016-2017 and 2013-2014 cropping 

seasons, respectively. 

Climate scientists predict an increase in amount of rainfall received over short periods resulting 

in increased risk of flooding (Challinor et al., 2007; Gilbert et al., 2007). There is a greater risk 

of pesticides contamination of groundwater and surface water bodies through leaching and 

erosion of sorbed pesticides at higher rainfall intensities (Bloomfield et al., 2006; Camenzuli et 

al., 2012; Probst et al., 2005; Silburn et al., 2013). On the contrary, the degradation of pesticides 

is expected to be higher in conditions of higher temperatures, resulting in reduced environmental 

contamination (Dong and Sun, 2017; John et al., 2016).  

2.4.2. Incidence and management of sugarcane pests in Malawi 

As with the rest of sugar producing countries, traditional farmers grow sugarcane for household 

consumption and trade in local markets. Usually, the crop is row intercropped or grown in 

rotation with maize and various vegetables. On the other hand, commercial estates grow the crop 

for processing into sugar, ethanol and other related products. These commercial estates also 

outsource some of the sugarcane from smallholder farmers called outgrowers. In Malawi, 

outgrowers may belong to a farmer association or may be independent (Paper II and IV). The 

farmer association acts as a broker i.e. negotiating the contracts and acquiring input materials on 

credit on behalf of the outgrowers. Some farmer associations such as Dwangwa Smallholder 

Farmers and Kasinthula Cane Growers Association also perform agronomic operations such as 

pesticides application and harvesting on behalf of farmers.  

Farm surveys we conducted in 2015 and 2016 showed that plant pathogens, weed and insect pest 

infestation were the main sugarcane production constraints (Paper II). Weed were categorized 



into 4 groups: grasses (monocotyledons), broad-leafed (dicotyledons), sedges (monocotyledons) 

and mosses. Before canopy closure, weeds compete with plants for water, nutrients and light 

(Turner, 2011). Insect species belonging to 15 different genera were found infesting sugarcane 

(Paper II and III). C. partellus was the main stemborer pest.  

C. partellus is an exotic pest originating from Asia while B. fusca is a native of Africa. It has 

been present in Malawi for almost 90 years (Tams, 1932). S. flava (a native of the Americas) is a 

recent introduction to Africa. It was detected attacking sugarcane for the first time in Malawi in 

during 2013-2014 cropping season in Chikwawa district. During 2015-2016, outbreaks of the fall 

armyworm, Spodoptera frugiperda (also a native of the Americas) were reported on maize (Zea 

mays) in several African countries (FAO, 2017; Goergen et al., 2016). We found this pest 

infesting sugarcane in Chikwawa district (Paper III).  

Management of weeds and insect pests was highly dependent on pesticides (Table 1, Paper II). 

Information detailing how each specific pesticide should be handled is provided on a pesticide 

label. Pesticide labels for all the pesticides we documented in this study were in English. We 

found that only 10% or our respondents understood the information on the pesticide label. The 

pesticides used in the commercial estates and in some outgrowers’ fields were sources from 

South Africa. However, the rest of the farmers bought the pesticides from local agro input 

dealers. A permit obtained from the Malawi Pesticides Control Boards (PCB) is required for all 

agro input dealers to store and sell pesticides. Agro input dealers are required to have knowledge 

about toxicity and risks, associated with pesticides use handling and how to minimize the risks. 

The problem is that there are no official tests that can be taken to document agro input dealers’ 

pesticides knowledge. Moreover, there is limited enforcement of pesticide regulations in Malawi 

due to several factors including financial constraints and low number of qualified personnel.  

 

 

 

 

 



Table 1. Pesticides used by sugarcane farmers in Malawi 

Trade name Active ingredient Target pests 
Aceta, Acetamiprid acetamiprid Aphids, red spider mites 
Agromectin  Abamectin Red spider mites 
Ametryn  Triazine Annual broadleaf weeds and 

grasses 
Atrazine  atrazine and other triazines Annual broadleaf weeds and 

grasses 
Chlorpyrifos  Chlorpyrifos Larvae (white grubs) and 

adults of black maize beetles 
Cypermethrin  cypermethrin Aphids, stemborers 
Diuron  Diuron Weeds and mosses 
Dimethiote  dimethoate Aphids, thrips 
Dichlorvos  Aphids, thrips 
Harness Acetochlor Annual grasses 
Bandit  Imidacloprid Thrips 
MCPA  2-methyl-4-

chlorophenoxyacetic acid 
Broadleaf weeds and certain 
grasses 

Metolachlor  
 

S-metolachlor Broad-leafed and annual 
grassy weeds 

Marshall carbosulfan  
MSMA  monosodium methanearsonate Grass, sedges, broad-leafed 

weeds 
Profenothrin   profenofos + cypermethrin Red spider mites 
Roundup Glyphosate) Most annual grasses 
 

Herbicides were commonly used in our study areas in fields measuring 2ha or more. About 60% 

of outgrowers in Nkhota Kota and in all commercial estates regularly applied herbicides, 

although application rates varied greatly (Paper II). About 44% of the outgrowers in Nkhota 

Kota applied herbicides as cocktails containing 2 or 3 active ingredients. Ametryn and 

glyphosate were some of the frequently used herbicides (Table 1). Non-chemical weed control 

methods included hand weeding i.e. uprooting weeds by hands only and hand hoeing i.e. 

uprooting weeds with the help of a hoe. Hand weeding and hand hoeing was also employed to 

supplement chemical control in the large estates. This is standard practice in sugarcane weed 

management (Takim and Suleiman, 2017; Turner, 2011).  

We also documented insecticides which are chemicals used against insect pests. Acetamiprid, 

chlorpyrifos, cypermethrin and imidacloprid are some of the insecticides (Table 1, Paper II). 

Application rates for acetamiprid and cypermethrin varied greatly among traditional farmers. No 



insecticides were applied to control stemborers during the study period even though 

recommended pesticides were available. 

Because of their feeding behaviour, stemborers are difficult to control with insecticides. The 

most damaging stage (larvae) feed in leaf whorls for a short period of time before penetrating the 

stem where they live until pupation. Therefore, there is short period of time where foliar 

insecticides can be applied because once the stemborer enter the stem, they cannot come in 

contact with the insecticides. This means that only systemic insecticides can be used against 

stemborers.  Hence, non-chemical methods like early planting during main season and avoiding 

excessive nitrogen fertilization are employed. Scraps from tobacco (Nicotiana tabacum) stems 

were also use in managing maize black beetles and white grubs.  

Even though fungal disease called smut caused by Sporisorium scitamineum was reported by 

35% of respondents, no fungicides were used. Pest free sugarcane planting materials (seedcane) 

are dipped in 50°C hot water for 2 hours, roguing and burning of infected plants and sterilizing 

of harvesting equipment are used to manage the disease.  This practice is employed throughout 

the sugar industry worldwide.  

The problems of poor pesticides handling are not limited to sugarcane farmers nor Malawi as a 

country. Coffee and tobacco farming are the top 2 consumers of pesticides imported into Malawi 

(GoM, 2013). Orr and Ritchie (2004) reported that vegetable farmers in southern Malawi used 

highly hazardous insecticides, usually applied at above recommended doses and applied these 

insecticides more than 10 times. In years where there is a higher pest pressure (e.g. Tuta absoluta 

infestation in tomato during 2016-2017 crop season), farmers applied insecticides just before 

harvest (T. Kasambala Donga, personal observation).  In West Africa, calendar application of 

pesticides to vegetable farmers was very common (Williamson et al., 2008). In Ethiopia, farmers 

used a mixture of a highly toxic insecticides (malathion) and another chemical banned for 

agricultural use worldwide (DDT) for control of weevils that infest maize in storage (Williamson 

et al., 2008). In Zimbabwe, vegetable farmers did not follow recommended application rates for 

insecticides (Sibanda et al., 2000), 



2.4.3. Risks associated with pesticides used in sugarcane production in Malawi 

Pesticides application help to reduce pest populations within short periods. However, there are 

several problems associated with herbicides and insecticides. In Paper II, we made use of the 

EIQ model, Pesticide Properties Database (PPDB, 2017) and WHO (2009) classification of 

pesticides by hazard to identify pesticides that posed a higher environmental and health risk to 

man.  

We found that two commonly used insecticides agromectin and dichlorvos belonged to WHO 

(2009) highly hazardous class while the rest were either moderately or slightly hazardous. Based 

on highest application rate reported, MCPA had the highest environmental risk (EIQ value = 

5025.2) while acetamiprid had the lowest (EIQ value = 153.8). Except S-metalochlor, all the 

pesticides used are moderately or highly toxic (oral toxicity) to humans. About 50% of the 

pesticides are highly toxic to bees and birds, while 30% are highly toxic to aquatic life. About 

70% of the pesticides used have a higher probability of contaminating the environment (PPDB, 

2017).  

Pesticide exposure in human occurs via absorption through the skin (dermal contact), ingestion 

and inhalation of pesticide fumes. The main pesticides exposure routes for the farmers involved 

in this study were during pesticide handling (loading into sprayers and during spraying) and 

storage (pesticides were stored within the house). All farmers we interviewed knew the possible 

negative effects associated with pesticides. However, this awareness was not enough to compel 

them to invest in personal protective equipment (PPE). This is evident as two thirds of farmers 

wore plastic boots and cotton overalls to protect themselves from pesticides but only 9% had 

equipment meant to protect the head region. Similar results have been reported in other 

developing countries. In Côte d’Ivoire, over 75% cotton farmers corrected understood 

information on pesticide relating to the need for protecting eyes, nose and mouth; pesticide 

applicators did not wear any piece of PPE during 53% of times of pesticide applications (Ajayi 

and Akinnifesi, 2007). In northern Greece, 99% had knowledge of adverse effects of pesticides 

on human health but 46% of tobacco farmers did not use any PPE (Damalas et al., 2006). 

Therefore, it was not surprising that most of the farmers had experienced multiple acute 

symptoms due to pesticide exposure (Table 2). The most common symptoms were skin irritation, 

headache, coughing and running nose.  



Table 2. Common acute health symptoms reported by farmers exposed to pesticides during 

pesticide handling and storage 

Health symptom Frequency  of report (%)* of specific symptom  

(n = 55) 

skin irritation 78 

Coughing 67 

Running nose 67 

Headache 67 

Skin rash 22 

Other (chest pain, fever, dizziness and 

diarrhoea) 

11 

*Multiple responses allowed.  

 

There are a number of factors that influence improper pesticides handling among farmers in 

developing countries including Malawi that render them highly vulnerable to pesticides 

exposure. Illiteracy among farmers is one of the primary driver of pesticides abuse (Ajayi and 

Akinnifesi, 2007). Because of illiteracy, farmers have limited understanding application and 

safety instructions contained on the pesticide label. Where is there is limited agricultural 

extension support, it is difficult for farmers to extrapolate application rates given on pesticides 

labels (normally given in hectares or acres) to very small farm sizes (Ajayi and Akinnifesi, 2007; 

Bon et al., 2014). The second driver is governments, farmer association, or buyers’ policies 

regarding pesticides. In Malawi, registered sugarcane farmers get pesticides (mostly herbicides) 

as part of inputs package on credit every year. Farmers growing cotton on contract with cotton 

ginning companies are also in a similar situation.  In Côte d’Ivoire, free pesticides are given to 

cotton farmers (Ajayi et al., 2011). Lack of effective alternatives to pesticides is also a 

contributing factor. For instance, the Government of Malawi has a document (GoM, 2013) 

outlining IPM strategies for minimizing pesticides use in agriculture and ensuring environmental 

protection, but few effective non-chemical pest control technologies have been developed. 

Therefore, farmers have no choice than resorting to synthetic pesticides to manage the high pest 



pressure and ensure they harvest something. High poverty levels among the population of 

Malawians (The World Bank Group, 2017) may account for the lack of investment in PPE.  

The risk of environmental pesticide exposure can be reduced by addressing factors that 

contribute to poor pesticides handling and developing effective pest management strategies that 

have the least impact on human health and the environment. IPM is accepted worldwide as best 

approach in ensuring sustainable agriculture (FAO, 2014). There is a great need for suitable 

training of farmers themselves, farmer association pesticide applicators and agricultural 

extension personnel in good pesticides handling and disposal procedures. Farmer associations are 

very important in ensuring safe use of pesticides. We found that farmers belonging to farmer 

associations were provided inputs on credit and herbicides were included in the input package 

regardless of farm size or understanding of situation on the ground. A deliberate policy can be 

put in place that requires farmers to purchase a PPE set on becoming a member. Pesticide 

application should be based on economic thresholds in all sugarcane plantains and not just in 

large estates. Deliberate efforts need to be put in place to generate viable non-chemical pest 

control methods that can be used to replace certain harmful pesticides and may be integrated in 

existing pest control programs.  

2.4.4. Natural occurrence of beneficial fungal endophytes entomopathogenic fungi 

in sugarcane fields in Malawi 

Entomopathogenic fungi (EPF) in the genera Beauveria, Metarhizium and Isaria (order 

Hypocreales) are ubiquitous in soil and are also known to occur as endophytes of plants (Clifton 

et al., 2015; Fisher et al., 2011; Gurulingappa et al., 2010;  Lacey et al., 2015; Reay et al., 2010; 

Vega et al., 2008). In paper IV, we isolated from soil and sugarcane in 12 sugarcane fields in 

southern Malawi Beauveria sp., Isaria sp. and Metarhizium sp. Isolates were collected from soil 

by Galleria mellonella insect bait and can be considered entomopathogenic fungi. We also 

identified Beauveria sp. and Isaria sp. from surface sterilized sugarcane tissue, so it is probable 

that the isolates were endophytes. More isolates were collected from soil (81.7%, n = 60) than 

from sugarcane (36.7% n = 180). These results are consistent with previous findings that show a 

higher proportion of entomopathogenic fungi recovered from soil than from plant tissue (Ramos 

et al., 2017; Klingen and Haukeland, 2006). Beauveria was the most dominant genera as it was 

isolated from all locations and occurred at a higher frequency (72%) compared to Isaria (19%) 



and Metarhizium (9 %). Molecular identification based on the Bloc intergenic region of 50 

Beauveria isolates from soil and sugarcane indicated that the isolates were Beauveria bassiana.  

Endophytic B. bassiana has been reported in over 20 plant species distributed across 12 families 

including Fabaceae, Solanaceae, Malvaceae, Poaceae, Cucurbitaceae, and Euphorbiacea (Jaber 

and Ownley, 2018). However, our findings in the first report of B. bassiana occurrence as an 

endophyte of sugarcane. This also the first reports of Isaria sp. and Metarhizium sp. occurrence 

in sugarcane, and in agricultural soils in Malawi, respectively.  

 

 

Figure 3: Colony appearance of Beauveria sp. and Metarhizium sp. on Sabouraud dextrose agar 

(A and C) and under the microscope (x400 magnification, B and D). 

Phylogenetic analysis based on Bloc intergenic region of 50 Beauveria isolates indicated that the 

isolates were Beauveria bassiana (Paper IV). We identified a single clade that aligned closely 

with B. bassiana AFNEO_1 clade which comprises B. bassiana isolated from the coffee berry 

borer, Hypothenemus hampei (Coleoptera: Curculionidae) in coffee fields of South America and 

in Africa (Rehner et al., 2006). Analysis of DNA polymorphism showed little genetic 

differentiation among the isolates. This may indicate gene flow among the locations. Gene flow 

is an important element in the maintenance of genetic diversity as it provides a way in which 

new genes are introduced in a population. However, high rate of gene flow reduces genetic 

differentiation between population as genes are exchanged (APSNET, 2018). Gene flow between 

B. bassiana populations can occur via wind currents (Hajek, 1997) and possibly through 



exchange of seedcane. The low genetic diversity among the B. bassiana populations can also be 

attributed to the geographical scale considered. All isolates were collected from one 

agroecological zone.  

This is clearly different from agroecosystems in Denmark where B. bassiana isolated from soil, 

plant surfaces and insects at a single location were highly diverse (Meyling et al., 2009).  

Molecular characterization of the remaining isolates will be done before submitting this 

manuscript for publication. Molecular characterization will also help us to identify the presence 

of entomopathogenic species within our Isaria isolates since unlike Beauveria sp. and 

Metarhizium sp. (Fig. 3), not all Isaria spp kill insects.  

2.4.5. Inoculation of sugarcane by an entomopathogenic fungus, Beauveria bassiana  

Our greenhouse experiment demonstrated for the first time that B. bassiana has the ability to 

colonise sugarcane following soil drench, stem injection and foliar sprays of sugarcane plants 

(Paper V). B. bassiana recovery was significantly higher in plants that had stems injections 

(75%) and foliar sprays (43%) than soil drench (25%), respectively, in line with previous reports 

(Quesada-Moraga et al. 2007; Tefera and Vidal 2009; Guesmi-Jouini et al.  2014; Russo et al. 

2015; Jaber and Enkerli 2017). Poor persistence in soil may be the reason for the low recovery of 

the unformulated B. bassiana (Vänninen et al. 2000). In addition, inoculation of sugarcane with 

B. bassiana using soil drenches and foliar sprays was not detrimental to the plant but enhanced 

plant growth during the 16-day experimental period. Several studies have reported similar 

findings (Posada et al. 2007; Lopez and Sword 2015; Jaber and Enkerli 2017). However, as 

reported in similar studies conducted on crops in the same family as sugarcane (Inglis et al. 

1993; Renuka et al. 2016), the amount of B. bassiana recovered in this study decreased with 

time. This means that multiple application of B. bassiana may be required to derive maximum 

benefits from the endophytic interaction.  

Since we isolated and characterized B. bassiana in Paper IV, future effort will focus on 

evaluating the persistence and pathogenicity of the Malawi isolates for use in biological control 

of pest species and contribute to reduction of pesticide risks in Malawian agriculture. B. bassiana 

is recorded to infest over 700 insect species distributed across the following insect families 

Aleyrodidae, Curculionidae, Cercopidae, Scarabaeidea, Aphididae, and Thripidae (de Faria and 



Wraight, 2007; Inglis et al., 2001). Hence, aphids, thrips, mites and white grubs will be the target 

pests since they have a wide host range and are economic pests of several food crops grown in 

Malawi. Since stem injections are not practical on a large scale, we will focus on soil and foliar 

sprays (Akello et al., 2008; Meyling and Eilenberg, 2007; Posada et al., 2007; Hajek and 

Meyling, 2018). In addition, Beauveria species are considered safe (Zimmermann, 2007). We 

will also explore the potential of endophytic B. bassiana in controlling stemborers systematically 

as has been reported in the United States of America (reviewed in Jaber and Ownley, 2018).  

2.5. Conclusion and future perspectives 

2.5.1. Conclusion 

 
Our results indicate the main serious pests of sugarcane in Malawi are sucking insects (Sipha 

flava, Fulmekiola serrata and Tetranychus urticae), soil borne pests (Heteronychus licas and H. 

arator, Anomala sp.) and stemborers (Chilo partellus and Busseola fusca). We also found 

Spodoptera frugiperda sp. 1 infesting sugarcane. There was low genetic differentiation among 

population of C. partellus and B. fusca in southern Malawi. Management of these insect pests 

and also weeds were depended on synthetic pesticides. Climate variability via above average 

temperature will influence the amount and type of these pesticides. There is a great risk of 

environmental contamination and pesticides exposure among sugarcane independent sugarcane 

farmers.  

Two widely entomopathogenic fungi Beauveria bassiana and Metarhizium sp. were found 

occurring naturally in sugarcane and soils collected from sugarcane fields in Malawi. Our B.  

bassiana isolates were closely related to B. bassiana from Africa and South America collected 

from the coffee berry borer, Hypothenemus hampei. The Malawian B. bassiana were 

characterized by low genetic variation. Foliar and soil drenches of a commercial formulation of 

B. bassiana were effective in inoculating sugarcane. These results provides the starting point for 

exploring entomopathogenic fungal-based biological control of crop pest in Malawi.  

 



2.5.2. Future perspectives  

The use and poor handling of highly and extremely hazardous pesticides indicate that there is 

high potential of environmental contamination and development of pesticides exposure-related 

chronic illnesses among farmers. There is great need for pesticide awareness campaigns targeting 

farmers, agro-dealers, farmer associations and extension workers. We greatly recommend 

providing pesticide labels in vernacular languages. There is also a need to conduct further studies 

to determine which pesticides applied in sugarcane fields are leaching and contaminating the 

environment.  

One important research topic is examining pesticide residue levels in groundwater wells used by 

communities surrounding sugarcane estates. It is also important to track pesticide residues in 

nontarget organisms such as birds nesting in grasses and reeds, and fish in water bodies draining 

through sugarcane fields. The fact that fall armyworm was found on sugarcane indicate that it is 

pertinent to monitor this pests and its impact on sugarcane. 

Assessment of occurrence of entomopathogenic fungi in sugarcane and other cropping systems 

in all the major agroecological zones of Malawi will continue. Bioassays will have to be 

conducted first in the laboratory to identify most virulent isolates and later field trials will be 

implemented. Pilot IPM trials will also be conducted.  
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Abstract 
 

It is widely accepted that climate change will affect sugarcane production and its associated 

pests. Our aim with this paper was to review the impact of climate change on factors and 

processes affecting environmental exposure of pesticides used in sugarcane production in 

Malawi. We indicate that changes in temperature and rainfall will have a dual effect on pesticide 

risk. Temperatures (30-35°C) will affect pesticide toxicity although effects will vary with 

pesticide-pest combination. Rapid degradation of pesticides e.g. acetamiprid and atrazine is 

expected at temperatures above 30°C. Higher temperature may increase the incidence and 

severity of pests such as red spider mites prompting farmers to use more pesticides. On the other 

hand, the amount and timing of rainfall in relation to pesticide application is important in 

pesticide fate in the environment. There is a higher likelihood of pesticide transport to surface 

(through runoff) and percolating to groundwater at higher rainfall intensity. A higher soil water 

content will result in increased pesticide degradation. There a need to determine occurrence of 

pesticides residues in sugarcane cropping and aquatic systems surrounding sugarcane 

plantations. The sugar industry should consider the possibility of crop residues retention.  

Keywords 

Sugarcane, climate change, weather variability vulnerability, pesticide exposure, risk 
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1. Introduction 

Worldwide, Africa is the most vulnerable region to climate change (Challinor et al., 2007; 

Dasgupta et al., 2014). However, spatiotemporal variation in terms of vulnerability and 

susceptibility exists among and within African countries (Adhikari et al., 2015). Vulnerability to 

climate change - ‘the degree to which geophysical, biological and socio-economic systems are 

susceptible and unable to cope with, adverse impacts of climate change’ (IPCC, 2007). Brooks et 

al., (2005) outlined socioeconomic factors that determine a nation’s vulnerability and adaptive 

capacity to climate change. These factors include economy, health and nutrition, literacy rate, 

infrastructure, geography and demography and dependence on agriculture (Brooks et al., 2005). 

Malawi is one of the world’s poorest countries with a gross national income (GNI) per capita of 

USD320 (The World Bank Group, 2017). The majority of the population live in rural areas. 

About 55% of females are literate compared to 73% of males. The HIV/AIDS prevalence rate is 

9.2% (The World Fact Book, 2016). Since 2013/2014, food insecurity has been increasing 

(SADC/VAC, 2016).  Poverty rates are highest in southern Malawi and it is at a higher risk of 

flood or water borne diseases (The World Fact Book, 2016; Mwale et al., 2015). Hence, Malawi 

is very vulnerable to climate change impacts. 

There is a consensus among scientists that climate change (increased atmospheric carbon 

concentration and surface temperatures, and variation in precipitation) will significantly affect 

agriculture (Delcour et al., 2015; Aktar et al., 2009; Noyes et al., 2009; USAID, 2007).  

Changing onset and shortening of the rainfall season, increased frequency of riverine and flash 

floods, droughts, temperature and heat waves are evidence of climate change impacts in Malawi 

(Zulu et al., 2012). McSweeney et al., (2010) and Wood and Moriniere (2013) observed that it is 

difficult to isolate climate change from normal climate variability because of the variability of 
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Malawi’s climate brought about by three external atmospheric drivers. Malawi’s climate is 

greatly influenced by (1) the El Niño Southern Oscillation (ENSO), an Indo-Pacific phenomenon 

that modulates circulation (2) the Indian Ocean Dipole (IOD), an equatorial pattern that affects 

rainfall and (3) the Subtropical Indian Ocean Dipole (SIOD), which may be linked to higher than 

normal rainfall in southern Africa. Understanding how climate change/weather variability affects 

specific components of the agricultural sector is important for development and effective 

implementation of mitigation and coping strategies.  

Many studies have focused on the impact climate change will have on various aspects of 

sugarcane production (Jones et al., 2015; Zhao and Li, 2015; Marin et al., 2014; Chandiposha, 

2013; Fabio et al., 2013; Knox et al., 2010; Gawander, 2007; Deressa et al., 2005). Overall, 

these studies indicate that projected future temperatures will have no significant effect on 

sugarcane growth since the projected temperature increases are within the crop’s optimum range 

(30-32°C). High temperature scenarios will enhance sugarcane growth and yield (Gawander, 

2007). However, temperatures higher than 35oC will negatively affect sugarcane germination and 

internode development (Rasheed et al., 2011; Bonnett et al., 2006). Higher temperature will also 

lead to high evapotranspiration resulting in increased irrigation demands to minimise crop losses. 

In addition, temperature under current climate change scenarios will favour insect pests, weeds 

and certain fungal diseases (Das et al, 2011; Matthieson, 2007). Although, the occurrence of 

pests under changing climate is discussed in the literature, little attention has been given to 

implications of climate change on pesticide exposure in sugarcane production. Chandiposha 

(2013) provided an account of how climate change would influence pest occurrence and 

distribution but did not explain how the corresponding pesticides used to control such pests 

would be affected. Hence, the main objective of this review is to bring into focus the impact of 
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climate change on the sugarcane industry and the amount and exposure to pesticides used in 

sugarcane production in Malawi. 

2. Theoretical framework 

The risk from pesticide exposure is a function of pesticide toxicity and the probably of non-target 

organisms encountering it. Prevailing climate, soil condition and management influence the 

concentration (exposure) of a pesticide in the environment (Delcour et al., 2015; Kerle et al., 

2007; Fig. 1).  

 
Figure 1: Factors and processes influencing exposure of pesticides in the environment (Eklo, 
2018). 
 
In this paper, we focus on how projected climate change will affect risk from pesticides used in 

sugarcane production using Malawi as a case example. We obtained information on pesticides, 

climate change and its effects on agriculture from published literature available on the internet, 

books, official and private documents. We first describe environmental properties of pesticides 

approved for use in sugarcane in Malawi. A detailed description of possible effects of rising 

temperatures and changing precipitation patterns on these pesticides afterwards. 



6 
 

3. Pesticides used in sugarcane production in Malawi 
 

In order to minimize yield losses from weeds, arthropod pests and diseases; different types of 

pesticides are used in sugarcane production. In Malawi, herbicides and insecticides are the main 

types of pesticides used in the sugar industry (Kasambala Donga and Eklo, unpublished). 

Solubility in water, persistence in soil (measured as soil half-life), potential for adsorption to soil 

particles and mobility (Koc) and dissociation (pKa) are considered key properties when 

determining how a pesticide or its metabolites behave in the environment (Kerle et al., 2007). 

Water movement is important for transport of water-soluble pesticides, whereas wind transport is 

important for volatile pesticides.   

Table 1 provides details on various aspects of pesticides used by sugarcane farmers in Malawi. 

Solubility values of pesticides in Table 1 indicate that agromectin, chlorpyrifos and cypermethrin 

are less soluble in water, while acetamiprid, dimethoate, monosodium methanearsonate (MSMA) 

and 2-methyl-4-chlorophenoxyacetic acid (MCPA) are highly soluble. Plants easily absorb 

pesticides that are highly soluble (Kerli et al., 2007).  Pesticides with less than 30 days soil half-

life are nonpersistent. Moderately persistent pesticides such as glyphosate and cypermethrin have 

a soil half-life between 31 and 100 days. MSMA is the most persistent pesticide listed in Table 1. 

In Table 1, pesticides such as abamectin, chlorpyrifos, cypermethrin, fluazifop-P, glyphosate and 

profenofos have high Koc values. This implies that they are sorbed strongly to soil particles and 

remain concentrated on the application site. Soil half-life values range from 1-7 days for 

acetochlor to 200 days for MSMA. Some of the pesticides such as atrazine, ametryn and diuron 

have a high potential for contaminating groundwater through leaching. Glyphosate, MCPA and 

MSMA readily dissociate in solution (high solubility values) but differ in their degradation and 

organic carbon sorption constant. Profenofos, diuron, cypermethrin and chlorpyrifos do not 
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readily ionize but have a high propensity for adsorption onto soil particles. There is a high 

probability that runoff will contain these chemicals. There is high risk of surface and 

groundwater contamination from pesticides with low sorption coefficients such as acetamiprid, 

acetochlor, metolachlor, ametryn and atrazine.  

4. Climate effects on pesticides exposure 

4.1. Pest occurrence 
Climate induced changes will alter both the pest and/or host biology. Wet and humid conditions 

favour the proliferation of fungal and bacterial diseases. Climate induced dry weather may 

increase the incidence of ratoon stunt disease and smut (Matthieson, 2007). Although these are 

important diseases of sugarcane in Malawi, increase in their incidences will not affect pesticide 

exposure since these diseases are controlled using cultural methods.  

Higher temperatures may also increase the incidence and severity of insect pests. The severity of 

red spider mites infesting sugarcane in Chikwawa is closely linked to periods of dry hot weather, 

low humidity and high evapotranspiration (Koloko, 2016). A highly toxic pesticide, fipronil was 

used to manage an outbreak of African migratory locusts in the Lower Shire River Valley. 

During the 2014/2015 cropping season, additional amounts of acetamiprid and cypermethrin 

were sprayed to manage an outbreak of yellow sugarcane aphids.  
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Fipronil is highly toxic to terrestrial and aquatic life, does not dissociate and has high potential 

for bioaccumulation (PPDB, 2017). These few examples illustrate the impact of climate induced 

pest outbreaks on pesticides use and exposure. Farm workers and local communities are at 

increased risk of pesticide exposure through pesticide drift into canals renders (Wilson et al., 

2004) as they use water in irrigation canals for bathing and other household chores.  

4.2. Pesticide toxicity 
Higher temperatures will affect the toxicities of pesticides on their target pests although the 

effects will vary with pesticide-pest combination (Fishel, 2015; Noyes et al., 2009; Donahoe, 

2001). Temperature extremes affect pesticide efficacy through improper storage. Higher 

temperatures may cause pesticides to expand and also to volatilize and spill out upon opening of 

the container. Farmers lacking proper chemical stores and storing pesticides within their homes 

are at greater risk of pesticide exposure. Sadly, this is the case in many developing countries 

(Mengistie et al., 2015; Stadlinger et al., 2010; Kasambala Donga and Eklo, unpublished). 

Organophosphates tend to be more toxic to arthropod pests at 26-28°C than at 20°C while 

pyrethroids are more toxic at lower temperatures (Jegede et al., 2017; Noyes et al., 2009). 

Maximum temperatures in the sugarcane growing areas of Malawi range between 27°C-37°C 

(Phiri and Saka, 2008) are higher than temperatures used in pesticide toxicity studies (Jegede et 

al., 2017; Noyes et al., 2009). Since cypermethrin is widely used in Malawi to control a range of 

insect pests infesting sugarcane, a reduction in efficacy is likely to result in either increased 

frequency or amount of pesticide application.  

4.3. Pesticide degradation 
As shown in Fig. 1, temperature strongly influences the degradation of a pesticide and several 

reports exist on its effects on some of the pesticides examined in this study (de Beeck et al., 
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2017; Jegede et al., 2017). The rate of degradation of atrazine increased with increasing 

temperature (Dong and Sun, 2017). Higher temperature also enhances the activities of 

microorganisms that degrade pesticides. At 30°C and pH 7, bacteria degraded 90% of 

chlorpyrifos and profenofos within 8 days (John et al., 2016). Acetamiprid degradation was rapid 

in soils with higher temperatures (Vela et al., 2017). The sugarcane growing districts in Malawi 

experience considerably high temperatures (above 30°C) during most of the year. Hence, we 

expect the estimate of risk of pesticide exposure to be significantly lower under rising 

temperature assuming all other degradation factors remain constant.  

Soil moisture is also an important factor in pesticide degradation (Chai et al., 2013; Sebaï et al., 

2010). Except for rainfed sugarcane (less than 20%), irrigation is essential to meet the crop’s 

water demand. Under current climate scenarios, the demand for irrigation will rise. Irrigation 

may cancel high-temperature induced drought effects on pesticide degradation (Gonczi, 2016).  

4.4. Pesticide transport 
The pesticides currently used in sugarcane production in Malawi use water as a solvent. High 

temperatures will result in an increase in volatilization of highly- and semi-volatile pesticides 

through evapotranspiration of pesticides and their metabolites to the atmosphere (Bloomfield et 

al., 2006). However, most of the pesticides in use are less volatile (Kasambala Donga and Eklo, 

unpublished). Water-based pesticides such as MSMA and its metabolites show some persistence 

in soil and sediments because they tend to move slower than water and remain concentrated in 

shallow soil depths (Mahoney et al., 2015; Bloomfield et al., 2006) increasing the possibility of 

pesticide contamination in the environment after initial applications. A study in Australian 

forests found residues of atrazine and its metabolite desethylatrazine in 1.8m deep groundwater 

(Kookana et al., 2010).  
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Rainfall is a key factor influencing the transport of pesticides in the environment. The onset of 

the rainy season is around October to November in most parts of Malawi, with the highest 

rainfall occurring around February to March or early April, especially in the north. The rains tail 

off in late April and May when winter begins. Amount and timing of rainfall in relation to 

pesticide application is a much more important factor than average annual rainfall and 

temperature (Wang et al., 2018). For Malawi, the observed and predicted increases in the 

proportion of rainfall that falls in heavy events and during the wetter months of January and 

February affect the following pesticides pathways: leaching to surface and ground water, runoff 

and erosion. There is a high probability of pesticide movement to surface and groundwater at 

higher rainfall intensities since wetter soils have higher hydraulic conductivities (Bloomfield et 

al., 2006). The hydraulic conductivity varies with soil type and the water content of a particular 

soil. The soils in the main sugarcane growing areas are chiefly alluvial in Nkhota Kota, and 

alluvials and vertisols in Chikwawa. The water holding capacity of vertisols is high when 

compared to alluvials. This implies that there will be higher likelihood of pesticide-rich water 

percolating to groundwater in areas with vertisols in situations of higher rainfall intensities. On 

the other hand, a higher soil water content will result in increased degradation rate of pesticides 

(Jebellie, 1996) and hence, lower the pesticide risk estimate.  

Increased rainfall intensities may also result in flooding and runoff. Runoff will directly 

influence the fate of pesticides through an increased erosion of soil particles and transport of 

sorbed pesticides (Bloomfield et al., 2006). Increased precipitation may enhance runoff 

contamination by pesticides (Silburn et al., 2013; Probst et al., 2005). Rainwater and floodwater 

runoff account for transport of a quarter of the diuron applied yearly to sugarcane in Australia 

(Camenzuli et al., 2012). Approximately 19% of the rainfall received in Malawi is lost through 
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surface runoff (GoM, 2008). It is possible therefore, that a significant proportion of pesticides 

currently used in agriculture in Malawi is lost through this pathway. Therefore, in the event of 

increased precipitation and floods, the concentration of pesticides such as acetamiprid and 

metalochlor is expected to be high if these episodes occur immediately after their application. 

About 33% of Malawians do not have access to potable water (WHO and UNICEF, 2015). They 

depend on surface- and groundwater for drinking and other household chores (Chidya et al., 

2016; Chimphamba and Phiri, 2014) and are at greater risk of pesticide exposure.  

4.5. Pesticide sorption 
Soil management practices influence sorption - the distribution or partitioning of a pesticide in an 

environment. Sorption reduce risk of pesticide leaching but can also reduce pesticide degradation 

rate as the pesticides are not available for the microorganisms.  Dinisio and Rath (2016) reported 

high sorption of abamectin occurring in soils rich in organic matter. In another study, 

metalochlor and atrazine sorption increased in soils amended with biochar (Deng et al., 2017; 

Trigo et al., 2016). Biochar have some of the same effects like sugarcane burning after harvest 

and thereby increasing sorption. Adsorption of atrazine and endosulfan were better in soils 

covered with rice husks (Rojas et al., 2014). Leaching of MCPA was significantly reduced in 

Mediterranean agricultural soils amended with olive oil mill wastes (Peña et al., 2015). These 

results show that efforts aimed at improving soil fertility have a significant influence on the 

exposure of pesticides to the environment through enhancement of pesticide degradation and 

sorption. 

Crop management is also an important factor in pesticide sorption. In Malawi as in many of the 

sugarcane producing countries, sugarcane is burned prior to harvesting. Some ashes from 

burning plant residues are blown away from the site while some ashes remain on the sugarcane 
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field. These ashes contribute to pesticide sorption in soils (Yang and Sheng, 2003). For instance, 

soils amended with ashes from rice and wheat crop residues had higher sorption for diuron 

(Yang and Sheng, 2003). Sugarcane burning strongly influence the adsorption of substituted 

ureas and s-trianzines (Hilton and Yuen, 1963). However, the practice can lead to reduced 

effectiveness of pesticides. Annual burning of cereal fields also reduces the efficacy of 

chlorpyrifos, dimethoate and clomazone (Xu et al., 2008; Kamm and Montgomery, 1990).  In 

addition, the practice negatively affects the population of microbes and total organic matter 

(Souza et al., 2012), very essential components in microbial degradation of pesticides. Thus, 

burning reduces pesticide risk through increased pesticide sorption. At the same time, it may also 

increase pesticide exposure risk due to increased demand for inputs (fertilizer and herbicides). 

Increases in rainfall coupled with intensive farming using nitrogen fertilizers and burning of crop 

residues can result in acidification of soils. The pH of a soil and the ionic state of the pesticide 

influence pesticide fate. For example, at pH 4, part of ametryn (pKa = 4.10) exists as a positively 

charged conjugate acid (de Paula et al., 2016). The electrostatic interaction between the ametryn 

conjugate and the ionised soil particles are enhanced. As a result, ametryn is more persistent in 

acidic soils (de Paula et al., 2016). According to Meyer and Heathman (2015), the soils under 

intensive sugarcane production in Chikwawa have become acidic. Increasing temperature 

coupled with frequent irrigation or flooding may have contributed to the soil acidification 

through soil mineral leaching. In addition, excess cations contained in plant material necessary 

for balancing anions on organic molecules that could have neutralised the soil acidity upon 

decomposition are not available (Rengel, 2011). This implies that there will be accumulation of 

residues of weak acids such as MSMA, MCPA, glyphosate and ametryn and non-dissociating 



15 
 

pesticides. This scenario will increase the probability of soil contamination and negatively affect 

soil-dwelling non-target organisms.  

In conclusion, timing and amount of rainfall, and temperature will continue to influence 

degradation, sorption and transport of pesticides used in sugarcane production. Higher 

temperature will negatively affect pesticide toxicity prompting farmers to use more and/or 

change pesticides. There is greater risk of pesticides contaminating water bodies through runoff 

and erosion of sorbed pesticides. Persistence of pesticides such as ametryn and glyphosate may 

be higher in the acidic soils. There a great need to determine occurrence of pesticide residues in 

sugarcane cropping and aquatic systems surrounding sugarcane plantations. The sugar industry 

should consider the possibility of crop residue retention.  
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Abstract 

The sugarcane industry is the third largest user of pesticides in Malawi. Our aim with this study 

was to document pesticide use and handling practices that influence pesticide exposure among 

sugarcane farmers in Malawi. A semi-structured questionnaire was administered to 55 

purposively selected sugarcane farmers and 7 key informants representing 1474 farmers in 

Nkhata Bay, Nkhotakota and Chikwawa Districts in Malawi. Our results indicate that herbicides 

and insecticides were widely used. Fifteen moderately and one extremely hazardous pesticide, 

based on World Health Organization (WHO) classification, were in use. Several of these 

pesticides: ametryn, acetochlor, monosodium methylarsonate and profenofos are not approved in 

the European Union because of their toxicity to terrestrial and aquatic life, and/or persistence in 

water and soil. Farmers (95%) knew that pesticides could enter the human body through the skin, 

nose (53%) and mouth (42%). They knew that pesticide runoff (80%) and leaching (100%) lead 

to contamination of water wells. However, this knowledge was not enough to motivate them to 

take precautionary measures to reduce pesticide exposure. Farmers (78%) had experienced skin 

irritation, 67% had headache, coughing and running nose during pesticide handling. Measures 

are in place to reduce pesticide exposure in the large estates and farms operated by farmer 

associations. Smallholder farmers acting independently do not have the resources and capacity to 

minimize their exposure to pesticides. There is need to put in place pesticide residue monitoring 

programs and farmer education on commercial sugarcane production and safe pesticide use as 

ways of reducing pesticide exposure. 
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1. Introduction 

Sugarcane is the second most valuable crop after tobacco contributing 9-12% of 

Malawi’s foreign exchange earnings (FAO, 2015). In 2017, large estates contributed 83% to 

national production compared to 17% for smallholder farmers (ILLOVO, 2017). The 

Government of Malawi supports smallholder production of sugarcane as a sustainable way of 

reducing poverty (Chinsinga, 2017). Hence, the number of smallholder sugarcane famers also 

known as outgrowers has been increasing since 2011. However, since 2014, the amount of 

sugarcane processed at sugar mills from smallholder farmers has been decreasing while it has 

remained constant for the estates (ILLOVO, 2017). There are many contributing factors to the 

low sugarcane tonnage by smallholder farmers. Pest occurrence and poor crop management may 

be some of the factors (Tena et al., 2016).  

Pesticides are widely used throughout the sugar industry. The industry consumes 10-15% 

of pesticides imported in Malawi (GoM, 2017). Herbicides recommended for use in sugarcane 

production in Malawi include ametryn, atrazine, monosodium methylarsonate (MSMA), 2-

methyl-4-chlorophenoxyacetic acid (MCPA), s-metolachlor, pendimethalin, diuron, acetochlor 

and glyphosate (GoM, 2017; Agricane, 2011). Glyphosate is a pre-emergent herbicide for the 

control of emerged annual and perennial weeds, and for crop/ratoon eradication. It is a 

recommendation that farmers apply glyphosate when the land is lying in fallow. Atrazine and 

pendimethalin are also pre-emergent herbicides for the control of annual broadleaf and some 

grass weeds. Application of these herbicides is at the time of planting/ratooning and before weed 

emergence. Ametryn and MSMA are post-emergent herbicides for control of most annual and 

broadleaf weeds. Some herbicides such as acetochlor, atrazine and glyphosate are both pre -and 

post-emergent herbicides. Several insecticides including chlorpyrifos and profenofos have 

government approval (GoM, 2017).  

 

The undesirable effects of pesticides on the environment and human health are widely 

recognized. Pesticides can pollute the environment through pesticide runoff, drift, leaching and 

bioaccumulation (Mostafalou and Abdollahi, 2013; Wang et al., 2011; Weichenthal et al., 2010). 

The pesticide dichlorvos is an organophosphate fumigant pesticide that has no approval in the 

European Union (EU). It is highly toxic, has a high tendency to bioaccumulate (PPDB, 2017). 

Even though glyphosate is considered to have low mammalian toxicity (Tarazona et al., 2017), 



4 
 

its intensive use leads to groundwater contamination, herbicide resistance and inhibition of plant 

growth (Cederlund, 2017; Schryver et al., 2017; Van Stempvoort, 2016). Glyphosate is highly 

discussed in the EU because of possible carcinogenetic potential (EC, 2017). Glyphosate has 

approval for use in the EU until 2022 (PPDB, 2017).  

The Government of Malawi acknowledges that pollution of waterbodies, air, soil and 

food due improper handling, storage and disposal of pesticides is of high concern (GoM, 2010). 

Hence, there are laws and policies for regulating pesticides. The Pesticides Act No. 12 of 2000 

regulates the management of import, export, manufacture, distribution, storage, disposal and use 

of pesticides in Malawi. The integrated pest management plan (IPM) set in 2013 seeks to 

promote the use of environmentally friendly practices in major crops (GoM, 2017). IPM ‘means 

careful consideration of all available plant protection methods and subsequent integration of 

appropriate measures that discourage the development of populations of harmful organisms and 

keep the use of plant protection products and other forms of intervention to levels that are 

economically and ecologically justified and reduce or minimize risks to human health and the 

environment. IPM emphasizes the growth of a healthy crop with the least possible disruption to 

agro-ecosystems and encourages natural pest control mechanisms’ (EU Directive 2009/128/EC). 

Only pesticides with the least potential for environmental contamination can be included in IPM 

programs (FAO, 2014). The major problem in implementing successful IPM programs in Malawi 

is a lack of, or insufficient data on environmental pesticides load – toxicity resulting from 

pesticides. Hence, the main objectives of this work was to determine the environmental and 

health effects associated with pesticides used in sugarcane production in Malawi. 

2. Materials and methods 

2.1. Sugarcane production in Malawi 

Sugarcane is vegetatively propagated using cane setts (stem cutting having 3-6 

internodes). The recommended seed cane rate is 8-10 ton per hectare.  Row spacing for irrigated 

sugarcane is 1.5m and 1.0m for rain fed cane.  Either 1.5 or double cane setts are planted end-to-

end in furrow.  The initial sugarcane planted is plant cane and the subsequent crop arising from 

remnants of harvest of this initial crop is ratoon cane. Herbicides are applied on a calendar basis. 

Insecticides and acaricides are applied based on action thresholds.  
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Fields are allowed to dry for 30 days before being burned and manually harvested. The act of 

burning sugarcane concentrates sucrose and drives away snakes and crocodiles. 

There is a sugar mill at Dwangwa Estate in Nkhotakota and in Nchalo Estate in 

Chikwawa owned by ILLOVO Sugar Malawi Limited. Associated with these mills are 

smallholder farmers growing rainfed or irrigated sugarcane on contracts. These farmers acquire 

farm inputs on credit from registered farmer associations (Agricane, 2011). It is important to note 

that some associations perform agricultural operations such as herbicide applications, and pest 

and disease scouting on behalf of their members at a cost. In some associations, the farmer has 

the liberty of carrying out all the farm activities himself. These differences have consequences on 

farm practices among the various smallholder farmers. 

2.2. Description of study sites 

In Malawi, sugarcane is intensively cultivated in the Nkhata Bay, Nkhotakota, and 

Salima and Chikwawa districts (Fig. 1). The Nkhata Bay and Nkhotakota districts are high 

altitude areas with average annual rainfall of 1490 mm received mostly between December and 

April. The crop is rainfed in Nkhata Bay. The major source of irrigation to the sugar industry in 

Nkhotakota is Dwangwa River that drains into Lake Malawi. Chikwawa is a low altitude area 

(<150 masl) with half of the average rainfall received in Nkhotakota. Water is drawn from the 

Shire River that flows out of Lake Malawi. Because of the topography of Chikwawa, the district 

is prone to annual flooding from water movement from the Shire Highlands and groundwater 

discharge into the river (Meyer and Heathman, 2015).  In addition to sugarcane, many 

agricultural activities involving the use of pesticides take place on the catchments of the 

Dwangwa and Shire rivers, and Lake Malawi.  
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Figure 1: Map of Malawi showing location of sugarcane plantations and study sites in Nkhata 

Bay, Nkhotakota and Chikwawa Districts. 
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2.3. Study population 

We conducted the survey between June 2015 and January 2016 in Nkhata Bay, 

Nkhotakota and Chikwawa (Fig. 1). We used purposive sampling to identify respondents from 

association membership lists and/or with the help of local agricultural extension officers. As of 

2015, there were 2039 registered smallholder sugarcane farmers belonging to 18 associations in 

Malawi. Only farmers belonging to associations who had applied pesticides themselves during 

2014/15 were included in the survey. We also interviewed the farm/section/estate/agriculture 

managers for Dwangwa and Nchalo Estates; Kabadwa Cane Growers Association, Dwangwa 

Smallholder Cane Growers Association and Independent Cane Growers in Nkhotakota; 

Limphasa Sugar Corporation Limited in Nkhata Bay; and Kasinthula Cane Growers’ Association 

in Chikwawa. These represented 1474 smallholder farmers and served as key informants. A pre-

coded and pre-tested semi-structured questionnaire was interviewer-administered to capture 

information practices and knowledge related to pesticides. ‘Yes’ and ‘No’ were the allowable 

responses to closed questions. There were also questions with four to six factors per question and 

respondents were required to choose the most important. Respondents were politely requested to 

provide their demographic details, pesticide application history and the source of money used for 

buying pesticides.  

2.4. Sugarcane pests and pesticides used to control pests 

During the above-described interviews, farmers were requested to give information on 

incidence and severity of pests on their sugarcane farms. Another question required the farmers 

to rank the pests in order of importance. A pesticide knowledge section of the questionnaire 

collected information on whether the farmers knew the names of recommended pesticides, their 

application rates (quantity of pesticide mixed a specific water volume in a sprayer) and 

frequency. A series of closed questions helped the interviewer to capture data on type and timing 

of pesticide application. The questionnaire had questions also on effectiveness of the pesticides 

they have used.  

2.5. Environmental pesticide load  

Except in commercial estates, the majority of farmers in Malawi do not keep pesticides 

records (Tebug et al., 2012). This limited our choice of pesticide risk assessment models. 

Therefore, environmental pesticide load was determined using the environmental impact quotient 
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(EIQ) model. The EIQ model is easier to use and requires only a few input data.                       

The EIQ model is widely used for comparing different pesticide strategies and the environmental 

impact of pesticides used in agriculture (Kromann et al., 2011; FAO, 2008; Eklo et al., 2003). 

The EIQ model summarizes all pesticides used during the season, thus giving a total score for the 

environmental load (Kovach et al., 1992). Pesticide data: active ingredients (a.i.) quantity (in 

grams, g), application rates (g.a.i.) per hectare (ha) obtained from the questionnaire survey was 

entered into the EIQ model. Pesticide data pertaining to farmers who could not remember the 

quantities of pesticides they had used in 2014/15 were excluded in the calculation of 

environmental load. We used the online EIQ calculator on the Cornell University website 

(NYSIPM, 2017). In the online calculator, the application rate was given in g.a.i per 100m2. We 

also consulted the World Health Organization (WHO) recommended classification of pesticides 

by hazard and guidelines to classification published in 2009. 

2.6. Effects of pesticides used on human health 

During the questionnaire survey stated above, respondents were asked to report acute 

effects of pesticides they had experienced. Knowledge about how pesticides could enter the 

human body, ground wells and food were also evaluated. Farmers’ handling of obsolete 

pesticides, pesticide storage and disposal of pesticide containers was also documented.  

2.7. Data analysis 

All statistical analyses were conducted in the Statistical Package for the Social Sciences 

(SPSS) version 24. Descriptive statistics used were means and percentages.  Cross tabulations 

and chi-square test (χ²) were used to show how different groups of respondents answered the 

survey questions (Punch, 1998). For example, age and education level could affect a 

respondent’s ability to apply the correct application rate of a pesticide. For each farm, the 

environmental impact (EI) of each active ingredient per hectare was calculated using the formula 

shown below: 

EI per ha = EIQ x application rate (g. a.i. per ha) x % active ingredient x number of 

applications. 
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3. Results 

3.1. Study population 

We interviewed 42 smallholder farmers in Nkhotakota and 13 in Chikwawa districts and 

6 key informants. The 13 farmers interviewed in Chikwawa do not sell their sugarcane to any 

sugar mill in Malawi. The majority of respondents had completed primary school (Table 1). 

About 79% fully depended on farming for income while 12% owned businesses. The most 

common sugarcane variety grown was MN1 (45.0%) seconded by R570 (32.0%). None of the 

farmers had attended training on sugarcane production.  All key informants were above 40 years, 

had training in agronomy and over 10 years of experience in sugarcane cultivation. Income 

source was the main determinant of planting date (χ² = 8.383, df = 3, p = 0.039), October-

December for rainfed cane and April-September for irrigated cane. Harvesting took place 12-15 

months later.  

3.2. Sugarcane pests and pesticides used to control pests 

Considering pests together, weed infestation was a major pest in all the respondents’ 

farms. Herbicides were applied in all the estates and 60% of the smallholder farms in 

Nkhotakota. No herbicides were applied on the farms of farmers we interviewed in Chikwawa.  

The fungal disease smut caused by Sporisorium scitamineum was the most reported pest (35%) 

followed by sugarcane mosaic virus disease (17%).  

Table 1: Farmer’s demographic data (n = 55). 

Characteristic   
Age (years) No. respondents % respondents 
   20-29 5 9.1 
   30-39 9 16.4 
   > 40 41 74.5 
Education   
  None 1 1.8 
  Primary 38 69.1 
  Secondary 11 20.0 
  Tertiary 5 9.1 
Sugarcane farming 
experience (years) 

    

  < 5 35 66.0 
  5-10 7 13.2 
  >  10 11 20.8 
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Farm size (ha)   
  < 5 43 78.2 
  5-10 8 14.5 
  >  10 4 7.3 

 

 

Rusts (Puccinia melanocephela, P. fulvous sp. Nov. and P. kuehnii) and ratoon stunt 

(Leifsonia xyli subsp xyli) diseases were mentioned by less than 5% of the respondents. 

Stemborers were the main insect pests (16%) reported followed by white grubs (10%, larva of 

Heteronychus spp). Termites (Macrotermes spp) and aphids (yellow sugarcane aphids, Sipha 

flava) were reported by less than 10% of the respondents. The incidences of these pests varied 

with production system. Outgrower farmers in Nkhotakota reported sugarcane mosaic virus 

disease as the main sugarcane disease. Smallholder farmers in Chikwawa frequently mentioned 

the incidence of Lepidopteran stemborers.  

Key informants confirmed the occurrence and identity of the pests reported by 

smallholder farmers. They also provided the situation on the estates and smallholder farms 

managed by farmer associations and a list of recommended pesticides. In addition to the pests 

reported by farmers, the following pests occurred on the estates: unidentified species of mealy 

bug (Pseudococcidae), leaf roller moth larvae (Lepidoptera: Noctuidae), earth pearl or 

margarodes scale (Margarodidae), scale insects (Coccidae) and grasshoppers; nematodes; 

sugarcane aphid (Melanaphis sacchari) sugarcane thrips (Fulmekiola serrata), and red spider 

mites, RSM (Tetranychus urticae). Only half of these were considered economic pests and 

warranted induction of control mechanisms. The incidence of yellow sugarcane aphids was 

highest in Chikwawa (Nchalo Estate and farms belonging to the Kasinthula Cane Growers 

Association). No insect pests or fungal diseases were reported at the Limphasa Sugar Company 

in Nkhata Bay.  

 

The farmer’s decision to start using pesticides was based on advice of extension workers 

52%, pesticide label 26% and their own judgement 19%. However, the decision to apply 

herbicides was dependent on farm size (χ² = 8.000, df = 3, p = 0.046). Only half of the farmers 

with secondary school education could understand the information indicated on the pesticide 
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label (χ² = 35.616, df = 12, p = 0.000). Those with primary education relied equally on extension 

workers and fellow farmers on pesticides related issues (χ² = 32.716, df = 3, p = 0.000). 

Nevertheless, pesticide(s) a farmer actually used was dependent on pesticide availability                        

(χ² = 7.700, df = 3, p = 0.006).  Timing of pesticide application was based on pest occurrence (χ² 

= 27.543, df = 16, p = 0.036).  

Although all respondents reported sugarcane diseases, no pesticides were used to manage 

them. Instead, cultural methods such as varietal resistance, use of disease free seed, sterilizing 

cutting equipment and manual removal of diseased plants were employed. Insecticide were 

applied on large estates and farmers’ fields in Chikwawa. The insecticides acetamiprid and 

cypermethrin were used to manage aphids while four different insecticides controlled thrips. The 

organophosphate chlorpyrifos was used to control black maize beetles (Table 2).  

 

Smallholder farmers we interviewed in Chikwawa did not spray any herbicides on their 

farms. Herbicides were routinely applied in 60% of outgrowers’ fields in Nkhotakota, large 

estates and association-managed farms. Forty-four percent of these farmers applied herbicides as 

cocktails containing 2 or 3 herbicides. Commonly used herbicides were ametryn, atrazine, 

MSMA, MCPA and glyphosate (Table 2). Herbicide application rates for planted and ratoon 

sugarcane were different. For instance, for planted cane, the recommended rate for ametryn is 

2.40L/ha compared to 1.8L/ha for ratoon cane. Atrazine has three application rates (L/ha): 2.70 

for planted cane, 2.40 and 2.25 for ratoon cane, respectively. Application rates of ametryn (mean 

= 1710.00, p = 0.000), MSMA (mean = 2259.49, 1372.369, p = 0.000) and MCPA (mean = 

768.00, p = 0.012) differed significantly among the smallholder farmers in Nkhotakota. 

According to key informant interviews, glyphosate and acetochlor was used to terminate weeds 

from waterways, spot and perimeters, and for crop eradication. Fusilade forte 150 EC (fluazifop-

p-butyl 150g/L) is a ripener while ethrel 480 EC (ethephon 480g/L) is a flower suppressant used 

on large estates. All respondents used 20L knapsack and 15L jacto sprayers.  
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Table 2: Pesticides used by sugarcane farmers in Malawi and their target pest. 

Pesticide type Active ingredient Target pest(s) 

Insecticide Abamectin RSM, thrips, aphids 

 Acetamiprid Aphids 

 Carbosulfan Stemborers 

 Chlorpyrifos Larvae and adult black maize beetles 

 Cypermethrin Aphids, stemborers 

 Dichlorvos 

Dimethiote 

Aphids, thrips 

Aphids, thrips 

 Profenofos Thrips and RSM 

 Imidacloprid Thrips 

Herbicides Acetochlor Annual grasses 

 Ametryn Annual broadleaf weeds and grasses 

 Atrazine Annual broadleaf weeds and grasses 

 Diuron Weeds and mosses 

 Glyphosate Most annual grasses 

 MCPA Broadleaf weeds and certain grasses 

 MSMA Grass, sedges, broad-leafed weeds 

 Pendimethalin 

S-metolachlor 

Annual broad-leafed weeds 

Broad-leafed and annual grassy weeds 

 

We found that large estates had some elements of IPM in place for managing arthropod 

pests. Based on key informant interviewed, there are action thresholds for insecticide application. 

To minimize spider mites infestations, trash/tops remaining after cane burning and haulage is 

practiced at Nchalo Estate.  The egg parasitoid Trichogramma chilonis (at a rate of 2.5 c.c ha-¹, 

six releases in a growing season beginning from 4th month onwards at 15 days interval) is used 

to control stemborers. Scrap tobacco stems were used to manage maize black beetles. For 

management of all pests, each variety has less than 30% in the disposition. Monitoring of pests in 

time, space and varieties is routine.  
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3.3. Environmental pesticide load  

The calculated EI per ha values for commonly used pesticides in sugarcane production in 

Malawi are indicated in Table 3. The range of a.i. EIQ values was 12.5-59.5 with lowest EIQ 

value for s-metalochlor and highest for profenothrin. EI per hectare for an active ingredient was a 

function of application rate. Agromectin and acetamiprid had the lowest EI per hectare (12.0 and 

12.3-153.8) while dichlorvos and MCPA and MSMA had the highest EI per hectare values 

(7129.0, 5025.5, 4120.0 and 4044.4) respectively. Based on WHO (2009) classification of 

pesticides, 70% of the pesticides used by farmers were moderately hazardous while the rest were 

slightly hazardous (Table 3).   

3.4. Effects of pesticides used on human health 

Potential pesticide exposure pathways for farmers were pesticide storage, mixing, 

spraying and working in sprayed fields. Farmers preferred to store pesticides within the house 

(75%). The majority except of those with tertiary education lacked suitable personal protective 

equipment (PPE). Knee-length plastic boots and cotton overalls were the most widely used PPE 

(72%). All farmers recognized pesticides as poisons that can cause health problems. About 95% 

of them knew that pesticides could enter the human body through the skin, nose (53%) and 

mouth (42%). They knew that pesticides runoff (80%) and leaching (100%) lead to 

contamination of water wells.  Food contamination through pesticide handling close to kitchens 

and spray droplets were recognized by over 80% of the farmers. All farmers in this study had 

knowledge of acute effects of pesticides. The most felt effects were skin irritation, 78%; 

headache, coughing and running nose (67%); skin rash (22%); fever, dizziness, chest pain and 

diarrhoea (11%). Vomiting and diarrhoea were mentioned only by female farmers (F = 8.980, p 

= 0.005). 
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Table 3: Active ingredients, WHO toxicity class and EIQ values for pesticides used by sugarcane growers 

in Malawi 

Pesticide (active ingredient) WHO toxicity 
classa 

Application 
rate    
(a.i. g ha-¹) 
range  

 a.i. 
EIQ 

EI per ha 

Agromectin 18 EC (Abamectin 
18g/L) 

Ib 21.6 34.7 12.0 

Acetamiprid  
(acetamiprid  200g/L) 

II 24-300 28.7 12.3-153.8 

Marshal 250 EC  
(25% v/v carbosulfan) 

II 281.25 50.7 304.7 

Chlorpyrifos 500 EC 
(500 g/L chlorpyrifos) 

II 750 26.9 898.3 

Cypermethrin 200 EC (200g/L 
cypermethrin) 

II 37.5-600 36.4 24.3-389.2 

Dichlorvos EC (organophosphate 
1000g/L) 

 1500 53.3 7129.0 

Dimethiote 40EC  
(400g/L dimethoate) 

II 224 33.5 267.7 

Profenothrin  440 EC  
(40% of profenofos + 4% 
cypermethrin) 

II 440 59.5 934.8 

Bandit 350 SC  
(350g/L Imidacloprid) 

II 700 36.7 802.4 

Harness 960 EC  
(960g/L acetochlor) 

III 1152-1600 19.9 1959.5-
2721.6 

Ametryn 500 SC  
(500g/L triazine) 

II 465-3750 24.2 501.6-
4044.9 

Atrazine 500 SC  
(485g/L atrazine + 15g/L other 
triazine) 

III 750-1800 22.9 764.5-
1834.8 

Diuron 800 SC    
(diuron 800 g/L) 

III 1350 26.5 2550.5 

Roundup 
(510g/L glyphosate) 

III 324-3570 15.3 159.5-
2490.2 

MCPA 
(400g/L phenoxyacetic acid) 

II 480-3840 36.7 628.2-
5025.2 

MSMA 720 SL  
(720g/L organic arsenical) 

II 670-3564 18 774.7-
4120.9 

Metolachlor 960 EC  
(s-metolachlor) 

III 1080 12.5 1156.2 

Pendimethalin 330 EC 
(dinitroaniline 330 g/L) 

II 742.5 30.2 659.5 

a Ib: highly hazardous; II: moderately hazardous; III: slightly hazardous (WHO, 2009). 
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 Pesticides that no longer have regulatory approval or are under restricted use in the 

European Union (EU) were still approved by the Government of Malawi. Atrazine belongs to 

triazines and is an herbicide that does not have approval in the European Union (EU, PPDB, 

2017). Ametryn is also a triazine herbicide that does not have regulatory approval in the EU due 

to its persistence in soil and water under certain conditions (PPDB, 2017). MSMA is not widely 

approved for use in the developed world due to its toxicity and persistence in soils (PPDB, 

2017). Profenofos has high potential for bioaccumulation and is highly toxic to birds, fish and 

aquatic invertebrates (PPDB, 2017). Imidacloprid, acetamiprid, chlorpyrifos and cypermethrin 

are approved for restricted use in the EU since they are moderately to highly toxic to birds, 

honeybees and fish (Table 4). 

Table 4: Ecotoxicology parameters of pesticides used by sugarcane growers in Malawi 

Active  
ingredient 

Approval status 
in the EU 

Mammalian toxicity 
 (oral) level 

Toxicity to 
Honeybees 

 
Birds 

 
Aquatic life 

 

Abamectina ⎷      
Acetamiprid ⎷ M H H H  
Carbosulfan x4 H H H H  
Chlorpyrifos ⎷ H H H H  
Cypermethrin ⎷ M H L H  
Dimethiote ⎷ M H H M  
Profenofos x3 M H H H  
Imidacloprid ⎷2 M H H M  
Acetochlor x3,4 H M M M  
Ametryn x4 M L L M  
Atrazine x3,4 M M L M  
Diuron ⎷ M L M L  
Glyphosate ⎷ M M M M  
MCPA ⎷ M L M M  
MSMA x3,4 H M L M  
S-metalochlor ⎷ L L M M  
⎷: yes; x: no; L: low, M: moderate, H: high (University of Hertfordshire Pesticides Properties Database)   
aNo specific ecotoxicology data is available for this product. Toxic to water birds, fish and bees 

(Abamectin MSDS, 2013). 
2 Approved with restrictions on certain flowering plants 
3 Approved in the United States of America 
4 Approved in Australia 
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4. Discussion 

In this study, we report that pesticides are widely used to control weeds and arthropod 

pests infesting sugarcane cultivation in Malawi. We have also documented significant variation 

in pesticide application rates among smallholder farmers, a result consistent with previous 

findings elsewhere (Jallow et al., 2017; Schreinemachers et al., 2017). Only one of the 16 active 

ingredients reported in our study was extremely hazardous based on (WHO) classification. 

However, the majority are as moderately or slightly hazardous (PPDB, 2017). Although 

measures are in place to reduce human and environmental exposure to pesticides on the large 

estates and farms operated by farmer associations, smallholder farmers acting independently do 

not have the resources and capacity to minimize their exposure to pesticides. 

 

We found that farmers relied on fellow farmers and extension workers for pesticide 

choice and handling. In addition, income did not influence farmers’ pesticide choice. Our results 

partly agrees with the findings of Jallow et al. (2017). They found that other farmers were an 

important source of pesticide information for vegetable farmers in Kuwait. However, pesticide 

retailers significantly influenced Kuwaiti farmers’ decisions to initiate pest control using 

pesticides, while pest occurrence was main determining factor for farmers in our study. The 

reason for these differences is that farmers in the study by Jallow et al. (2017) procured 

pesticides on a cash basis unlike the majority of smallholder farmers in our study, who got their 

pesticides on credit from the farmer association. In addition, only a few pesticides such as 

acetochlor, cypermethrin, acetamiprid and glyphosate are readily available from retailers in our 

study area. Farmers can access MSMA, MCPA and triazines only through the farmer association.  

 

Herbicide cocktails (some with similar active ingredients and/mode of action) were used 

by more than a third of farmers in Nkhotakota. Since the crop is mostly rainfed in this area, many 

farmers were prompted to combine herbicides to combat high weed proliferation. In addition, 

some of these farmers grow cane in seasonal wetlands where difficult to control weed species 

such as Cynodon and Cyperus are the dominant species. However, over time this pesticides 

abuse (under- or over-dosing and using herbicide cocktails) could lead to development of 

herbicide resistance and other negative effects on the environment (El-Nahhal and Hamdona, 

2017; Vencill et al., 2012; McCoy, 2010).  
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We also found that plant and ratoon cane have different recommended rates of herbicides 

in Malawi. The likelihood of an illiterate farmer remembering the specific application rates for 

each growth stage are minimal. Even those who were able to read the pesticide label did not fully 

understand the information recorded on the label. As long as the herbicides are effective at the 

lower application rates, from a farmer’s point of view, there is no compelling reason to adopt the 

recommended application rates. Disregarding pesticide label instructions increases the risk of 

pesticides poisoning, the development of herbicide resistance and environmental contamination. 

  

We used the EIQ model to identify pesticides or pest management systems with a low 

environmental impact (Kromann et al., 2011; Eklo et al. 2003; Kovach et al., 1992). Pesticides 

with low EI per ha are considered to be more environmentally benign and can be integrated in 

IPM programs. Based on the EI, we recommend agromectin, acetamiprid, cypermethrin and 

dimethiote for insect pest control and a ban on dichlorvos.  The use of some herbicides such as 

acetochlor and triazines need to be restricted to reduce negative impact on humans and other 

non-target organisms. However, the EI per hectare value does not provide actual quantitative 

meaning on the nature of impact of a pesticide on the environment (Peterson and Schleier, 2014; 

Dushoff et al 1994). Hence, we obtained pesticide ecotoxicology data from the pesticides 

properties database of the University of Hertfordshire and WHO (2009) recommended 

classification of pesticides by hazards. Based on these two sources, we found that almost half of 

the pesticides reported in this study have potential to contaminate aquatic systems even at low 

concentrations (Olivier et al., 2013; Stoner and Eitzer, 2012). About 73% of the pesticides are 

also known to be highly toxic to honeybees, birds, fish and aquatic life (PPDB, 2017; Sanchez-

Bayo and Goka, 2014; Ventura et al., 2008).  The fact that there are no restriction on use of such 

pesticides is of great environmental concern. This is especially critical considering most of the 

rivers in the north and south of the country drain into Lake Malawi (GoM, 2010). Rare species of 

birds in southern Africa and endemic fish species inhabit the shores and marshes of Lake 

Malawi, and the Dwangwa and Shire Rivers (Anonymous, undated; Avibase, 2003). It is 

importance therefore, to establish pesticide monitoring programs.   
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Four pesticides namely chlorpyrifos, acetochlor, MSMA and carbosulfan used by 

sugarcane farmers in Malawi are highly toxic to mammals (PPBD, 2017). In this study, we only 

documented acute symptoms of pesticide exposure. However, farmers are also at a greater risk of 

developing pesticide-related chronic diseases through continued pesticide use, poor pesticide 

handling practices, dietary exposure, and drinking and using pesticide-contaminated water (Van 

der Werf, 1996; Ouedraogo et al., 2014; Mostafalou and Abdollahi, 2013; Saadi and Abdollahi, 

2012; Wang et al., 2011; Weichenthal et al., 2010). Farmers exposed to the organophosphates 

chlorpyrifos and profenofos are at greater risk of neurotoxication (PPBD, 2017). The 

chloroacetamide acetochlor is a mutagen, organ toxicant and affects the reproductive system. 

Atrazine is a carcinogen and may cause coma, respiratory collapse, gastric bleeding and renal 

failure (PPBD, 2017).   

 

We find that all respondents interviewed knew the harmful effects of pesticides. They 

also had knowledge of pesticide exposure routes in humans, groundwater and food. However, 

they did not take precautionary steps to reduce their exposure or use recommended application 

rates. These findings are in line with similar studies done elsewhere (Jallow et al., 2017; 

Schreinemachers et al., 2017; Anang and Amikuzuno, 2015). Either smallholder farmers did not 

have full understanding of the health risks posed by pesticides or did not consider personal 

protective equipment a priority considering the majority could not understand the pesticide label 

and had minimal financial capacity. The decision by some sugarcane farmer associations to 

perform all pesticide related activities for the farmers is critical in reducing farmers’ exposure to 

and environmental contamination by pesticides. Otherwise, associations may consider giving 

personal protective clothing and equipment as part of inputs given to farmers on credit. 

 

Reducing pesticide exposure risk among sugarcane producers can be achieved by 

following IPM principles. The IPM package for weeds could include the following: a) 

preventative measures aimed at reducing infestation and spread of weeds such as field sanitation, 

weed control along field margins and trenches, and equipment disinfestation after each use. b)  

Enhancing the ability of the plant to outcompete weeds. This can be achieved through varietal 

selection, observing seeding rates, row spacing, and fertilizer rates and placement. c) Herbicide 
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rotations and application at recommended application rates. This is a very crucial aspect 

considering that farmers did not follow the approved application rates.  

 

Some key pests, e.g. aphids can be managed by using fungal entomopathogens alone or 

in combination with insecticides (Wraight et al., 2016; Akbari et al., 2014; Tefera and Pringle, 

2004). Kasambala et al (unpublished) are documenting the occurrence of and characterizing 

fungal entomopathogens in sugarcane cropping systems in Chikwawa. They are also evaluating 

the potential efficacy of Beauveria bassiana (Hypocreales: Ascomycota) foliar sprays against 

aboveground arthropod pests of sugarcane under field conditions at the Nchalo Estate.  

5. Conclusion and recommendations 

Our results indicate the environmental and health risks associated with pesticides 

currently used for controlling weeds and arthropod pests infesting sugarcane in Malawi. We 

show that there is a need for training both farmers and extension personnel in sugarcane 

production. There is a need for pesticide awareness campaigns targeting farmers, agro-dealers, 

farmer associations and extension workers. We greatly recommend providing pesticide labels in 

vernacular languages. There is also a need to conduct further studies to determine which 

pesticides applied in sugarcane fields are leaching and contaminating the environment. One 

important research topic is examining pesticide residue levels in groundwater wells used by 

communities surrounding sugarcane estates. It is also important to track pesticide residues in 

non-target organisms such as birds nesting in grasses and reeds, and fish in water bodies draining 

through sugarcane fields.   
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Abstract: Sugarcane is one of the most valuable crops in the world. Native and exotic Lepidopteran
stemborers significantly limit sugarcane production. However, the identity and genetic diversity
of stemborers infesting sugarcane in Malawi is unknown. The main objectives for this study
were to identify and determine genetic diversity in stemborers infesting sugarcane in Malawi.
We conducted field surveys between June 2016 and March 2017 in the Lower Shire Valley district
of Chikwawa and Nsanje, southern Malawi. Molecular identification was based amplification the
partial cytochrome oxidase subunit I (COI) gene region. Phylogenetic trees for sequences were
generated and published GenBank accessions for each species were constructed. We found that
Malawi Busseola fusca (Lepidoptera: Noctuidae) specimens belonged to clade II, Spodoptera frugiperda
sp. 1 (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Crambidae) were infesting sugarcane.
Interspecific divergence ranged from 8.7% to 15.3%. Intraspecific divergence was highest for B. fusca,
3.6%. There were eight haplotypes for B. fusca, three for S. frugiperda and three for C. partellus.
The importance of accurate species identification and genetic diversity on stemborer management
is presented.

Keywords: Sugarcane; Lepidoptera; Noctuidae; Crambidae; population genetics; COI gene

1. Introduction

Sugarcane is an important cash crop throughout the tropics. Southern Africa has the lowest yields
of sugarcane (hg/ha), 82% less than the world average [1,2]. For over 50 years, sugarcane has been
grown for processing purposes in Malawi. Production is intense, year-round, and under irrigation in
estates. Smallholder farmers contribute 20% to the national production [3,4]. Some of these farmers
grow sugarcane under irrigation while others solely depend on rainfall. Some farmers grow the crop
either as an intercrop or as a monocrop or border crop. The crop is row intercropped with maize
(Zea mays L.), sorghum (Sorghum bicolor L. Moench), vegetables, or a combination, during the dry
season (May to November). Due to continuous monocropping on the large commercial estates, pest
prevalence is high. In addition, continuous pest refugia are provided by intercropping or rotating
sugarcane with cereals such as maize and sorghum.

A myriad of arthropod pests infests sugarcane. About 50 species of Lepidopteran moths
belonging to three families, namely Noctuidae, Crambidae, and Pyralidae, infest sugarcane [5,6].
Within the family Pyralidae, Eldana saccharina Walker, a native of Africa is considered a serious pest of
sugarcane [6]. It is widely distributed in sub-Saharan countries [7]. The species of Chilo (Crambidae),
namely C. partellus and C. sacchariphagus, are also economic pests of sugarcane in eastern and southern
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Africa [8]. C. partellus is an invasive pest that was introduced from India to Africa. Sugarcane is also a
host for C. orichalcociliellus [9]. Sesamia calamitis, S. creta, and Busseola (Noctuidae), although considered
as main pests of maize and sorghum [9,10], can also infest sugarcane. The larvae of these moths bore
into and feed internally on stem tissue. The larval entry points on the stem provide entrance for
fungal diseases. In younger plants, larval feeding results in death of the apical meristem, a condition
called ‘dead hearts.’ In older plants, feeding damage results in increased risk of lodging. In addition,
the quality and quantity of yield (sucrose) is also affected.

Multiple stemborer species may infest a field or individual plants [11,12]. However, variation
exists in the pest status of these pests on sugarcane in Africa [7]. In South Africa and Zimbabwe,
E. saccharina Walker is a major pest [13]. In Mozambique, the main stemborer species attacking
sugarcane is C. sacchariphagus Bojer [14,15], while in Botswana it is Chilo partellus Swinhoe [16].
Although E. saccharina and Sesamia calamistis Hampson are present in Ethiopia, they are not economic
pests on small-scale sugarcane farmers’ fields [6]. Outbreaks of the fall armyworm, Spodoptera frugiperda
(J.E. Smith) were first reported in Africa in 2016 [16,17]. During the 2016–2017 cropping season,
S. frugiperda was reported to infest maize in several African countries. Although S. frugiperda prefers
maize, it can also infest sugarcane [16].

The cytochrome c oxidase subunit 1 (COI) mitochondrial DNA (mtDNA) gene is widely used in
identification and determination of insect population structure [18,19]. Genetic diversity in B. fusca
populations is well documented. B. fusca populations cluster into three clades namely West Africa
(W), Kenya I (KI), and Kenya II (KII) [20–22]. Clade KII comprises B. fusca species from eastern and
central Africa [19,20]. On the contrary, studies establishing genetic differentiation in C. partellus in
Africa are limited. A study by Sezonlin M. et al. [19] found that C. partellus populations collected from
maize and sugarcane fields in South Africa and Swaziland were genetically similar. In that study,
11 C. partellus larvae from South African sugarcane were analyzed. The sequences generated in that
study were not compared with sequences from other countries to determine genetic variations. Also,
there are significant differences in the climate and geography of Malawi from that of South Africa.
It has been suggested that gene flow between organisms of the same species might be restricted by
physical barriers such as mountains and major rivers which may lead to speciation overtime [18].

Lack of knowledge of pest species identity and composition makes it difficult to properly address
the problem in the context of integrated pest management. Published records indicate the occurrence
of C. partellus, C. orichalcociliellus, and B. fusca in Malawi [23–25]. An unknown species of Chilo
and C. sacchariphagus are reported in unpublished records of sugar estates in Chikwawa, southern
Malawi. There is no record of E. saccharina occurrence in the country even though the pest occurs
in neighbouring Mozambique [7]. Currently, stemborer management is based on varietal mixtures.
Chemical control is less effective because of the cryptic nature of the pests. Biological control using
the egg parasitoid Trichogramma chilonis is also recommended. Research on occurrence of fungal
pathogens with insect control potential began in 2015. The success of such efforts hinges on correct
pest identification and characterization, which is currently lacking. Our aims in this study were to
accurately identify stemborer infesting sugarcane in Chikwawa and Nsanje Districts, southern Malawi
using the COI gene, and determine diversity and relatedness among stemborer species with published
reference sequences from GenBank. Results of this study will contribute to effective management of
stemborers in the Malawi sugarcane industry.

2. Materials and Methods

2.1. Survey Sites

Sugarcane is grown in the Nkhata Bay, Nkhota Kota, Salima, Chikwawa, and Nsanje districts
(Figure 1). There are several estates in Chikwawa, namely: Kasinthula, Sande, Nchalo, and Alumenda
Estates. Kaombe Estate is located in Nsanje District. In addition to estates, smallholder farmers typically
grow sugarcane in seasonal low-lying wetlands (locally called ‘dimba’) under rainfed conditions and
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residual moisture. No fertilizers or manure or pesticides are applied. The Shire River provides water
for irrigation in Chikwawa and Nsanje districts, respectively.

Figure 1. Map of localities where Busseola fusca, Chilo partellus, and Spodoptera frugiperda were sampled
in Chikwawa and Nsanje districts, southern Malawi.

2.2. Survey Methodology

Commercial sugarcane production in Malawi dates back to 1968 [26]. Surveys were conducted in
48 fields belonging to Kasinthula, Nchalo, Alumenda, Kaombe, and Sande Estates, and smallholder
fields located in agricultural extension planning areas (EPA) of Mbewe, Kalambo, Livunzu,
and Mikalango in Chikwawa and Nsanje districts in southern Malawi from June 2016 to March 2017.
All larvae collected were stored in 70% alcohol in 30 mL sealed vials and kept at 4 ◦C. The vials had
labels corresponding to a datasheet that had the following information: collection date, location,
plant damage, life stage, and number of larvae collected. The samples were shipped to the
South African Sugarcane Research Institute (SASRI), Mount Edgecombe, KwaZulu-Natal, South
Africa and the Norwegian University of Life Sciences, Ås, Norway for identification and molecular
characterization, respectively.

2.3. Morphological and Molecular Identification

Morphological identification of the collected larvae to genus or species level, or both, was based
on external anatomy (chaetotaxy and crochet arrangement) based on identification keys provided by
Meijirman and Ulenberg [27]. Fall armyworm samples were identified using FAO [28] descriptions of
the pest. A dissecting microscope was used in examining the larval specimens. Larvae were allocated
to three species namely: Busseola fusca, Chilo partellus, and Spodoptera frugiperda. Molecular tools
described below were used to confirm species and identify unknown species.
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2.4. DNA Extraction and Amplification

A total of 217 larvae were morphologically identified to species level, two specimens to genus
level and two to order level, respectively. At least one larval specimen from each of the identified
species/genera/order and from each of the 48 fields sampled were sent for DNA based identification
at the South African Sugarcane Research Institute (SASRI), Mount Edgecombe, KwaZulu-Natal,
South Africa. DNA was extracted from whole insects (if very small) or a body part, using the
GeneJet Genomic DNA Purification kit (Thermo Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions. The DNA was quantified using a NanoDrop Spectrophotometer (Thermo
Scientific, Waltham, MA, USA). PCR amplification was conducted using the KAPA 2G Robust
PCR Kit (Kapa Biosystems, Cape Town, South Africa) with approximately 50 ng DNA template.
The final reaction conditions were as follows: 1x Kapa2G Buffer A, 0.2 mM dNTP mix, 0.5 μM
each HCO 2198 and LCO 1490 and 0.5 units Kapa2G Robust DNA Polymerase. The DNA primer
sequences used were HCO 2198 (5′ TAAACTTCAGGGTGACCAAAAAATCA 3’) and LCO 1490
(5′ GGTCAACAAATCATAAAGATATTG 3′) [29].

PCR reactions were conducted in an Applied Biosystems Veriti Thermal Cycler (Applied
Biosystems, Marina Bay, Singapore). The thermal cycling profile was 94 ◦C for 2 min, followed
by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 50 s and 72 ◦C for 90 s. Final extension was at 72 ◦C for 10 min.
PCR products were purified using a DNA Clean and Concentrator kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions.

2.5. DNA Sequencing

DNA sequencing was conducted using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Sequencing reactions
were conducted in an Applied Biosystems Veriti Thermal Cycler using the BigDye Terminator v3.1
kit recommended thermal cycling profile. Sequencing products were purified using the BigDye
XTerminator Purification Kit (Applied Biosystems, Foster City, CA, USA) according to manufacturer’s
instructions. DNA sequences were analysed by capillary electrophoresis using the ABI3500 Genetic
Analyser (Applied Biosystems, Foster City, CA, USA) following standard operating protocols.

2.6. Sequence Analysis

DNA sequences were trimmed on the 5′ and 3′ ends to remove poor quality sequences using
CLC Main workbench v7.0.1 (QIAGEN, Hilden, Germany). The putative identities for each sequence
were established by comparison with the DNA barcode sequence repository of the BOLD database.
Sequences were aligned using ClustalW [30] with default settings in BioEdit 7.2.5 [31]. In addition,
reference sequences from GenBank were downloaded (Table 1) and incorporated in phylogenetic study.
A neighbor-Joining (NJ) and maximum likelihood (ML) analysis based on K-2 parameter model [32]
with complete gap deletion and resampled with 1000 bootstrap replications were done using all
sequences generated in the study and the reference sequences. We used the model selection option
in Mega6 [33] to find the best-fit substitution model for our dataset. Based on the lowest Bayesian
Information Criterion (BIC) value, Tamura 3-parameter with discrete Gamma distribution (T92 + I) [33]
fit the dataset best. Maximum Likelihood (ML) was performed in using the best-fit model and clusters
and 1000 bootstrap replications were used to support clusters. Separate phylogenetic analyses with
reference sequences were performed for B. fusca (n = 11) and S. frugiperda (n = 11) in Mega6. DnaSP
v5 [34] was used to calculate DNA polymorphism parameters: number of polymorphic (segregating)
sites, S; number of haplotypes, h; haplotype (gene) diversity, Hd; and nucleotide diversity, Pi (π).
All sequences produced have been submitted to GenBank.
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Table 1. Description of reference sequences used in this study and their associated GenBank
accession numbers.

Family Genus Species Accession No.

Noctuidae Busseola Fusca KY472246, KY472247, KM061945, KM061880,
DQ337201, DQ337199

Spodoptera frugiperda

KY472240, KY472248, KY472250, KY472253,
KY472255, GU095403
JQ547900, HM136602

HM136600, HM136599

Sesamia inferens KC911715

Crambidae Chilo partellus

KX351380, HQ991218
KP233794, HQ990905
HQ991286, HQ991263
HQ990908, HQ991263

3. Results

3.1. Occurrence of Busseola fusca, Chilo partellus, and Spodoptera frugiperda in Sugarcane Fields

3.1.1. Morphological Identification

From 48 sugarcane fields (Table S1), 221 larvae were collected. Based on morphology, we identified
219 larvae as Lepidoptera and 2 as Diptera. The 219 Lepidopteran larvae belonged to four genera
namely Chilo, Busseola, Spodoptera, and Sesamia. Morphologically, Sesamia spp could not be identified
to species level. However, we identified the remaining Lepidopteran larvae as Busseola fusca,
Chilo partellus, and Spodoptera frugiperda (Figure 2).

Figure 2. Percent distribution of Busseola fusca, Chilo partellus, and Spodoptera frugiperda (based on
morphological) collected from sugarcane fields in Chikwawa and Nsanje districts, southern Malawi
(n = 217).

3.1.2. DNA Based Identification

DNA was extracted from, amplified, and sequenced for 65 samples. Based on initial BOLD
searches; 59 sequences were identified as C. partellus, 4 as B. fusca, 1 as S. frugiperda and C. anus
Curtonotum anus (Curtonotidae: Diptera). Initial GenBank searches could not resolve the identity of the
Sesamia larva as the top 20 searches showed 94.5% identity match as S. inferens and the same percentage
to B. fusca. However, based on phylogenetic analyses, the sequence for this larva aligned with B. fusca
with higher bootstrap branch support values (Figure 3).
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Figure 3. Phylogenetic tree inferred using the Maximum Likelihood (ML)) method of mtDNA CO1
region of Busseola fusca, Chilo partellus, and Spodoptera frugiperda sequences obtained from sugarcane
fields in southern Malawi together with reference sequences from other African countries. (A) The tree
is based on the Kimura 2-parameter method. (B) The tree is based on Tamura 3-parameter model with
evolutionarily invariable (T92 + I). Both trees were resampled with 1000 bootstrap replicates. Bootstrap
support values on the branches are given.

3.2. Sequence Analysis

Sixty-five sequences of varying length (average 585 bp) were generated for B. fusca, C. partellus,
and S. frugiperda. Sequences were trimmed to 539 bp and used in analyses. A total of 25 sequences
were downloaded from GenBank for comparisons and comprised B. fusca (n = 7), C. partellus (n = 8)
and S. frugiperda (n = 10) (Table 2). A NJ and ML tree was produced for all sequences (n = 90) from
this study and GenBank. Both NJ and ML trees had comparable topologies with clearly differentiated
clades denoting distinct species (Figure 3). The first clade included all C. partellus specimens and their
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corresponding reference sequences (Figure 3). The second clade consisted of S. frugiperda individuals
and the third cluster had B. fusca samples (Figure 3).

Table 2. Haplotype number and diversity in Busseola fusca, Chilo partellus, and Spodoptera
frugiperda populations.

Species
No. of

Individuals
(n)

No. of
Polymorphic

Sites (S)

No. of
Parsimony

Informative
Sites (PI)

No. of
Haplotypes

Haplotype
Diversity

(Hd)

Nucleotide
Diversity

(π)

Intraspecific
Divergence

(mean)

B. fusca 11 40 36 8 0.9273 0.036 0.037
C. partellus 70 3 2 3 0.220 0.003 0.003

S. frugiperda 11 9 8 3 0.473 0.005 0.009

Based on both NJ and ML analyses of the alignment of the alignment with COI gene sequences,
we found that all C. partellus clustered with the reference sequences (Figure 3). The COI gene
sequenced Malawian C. partellus samples formed one cluster which was strongly supported (bootstrap
support value, 99%). As depicted in Figure 4, B. fusca individuals formed four distinct clusters
corresponding to country of origin. Finally, the S. frugiperda sequence generated in this study aligned
with S. frugiperda sp.1 from Ghana and the Americas (Figure 5). Mean between groups genetic distances
were: S. frugiperda and C. partellus, 13.5%; C. partellus and B. fusca, 15.3%; B. fusca and S. frugiperda,
8.7%. Mean within group species divergence were 0.3% for C. partellus, 3.7% for B. fusca, and 0.9% for
S. frugiperda. Intraspecific divergence for individuals within B. fusca ranged between 0.1% and 1.9%;
0.9% and 1.6% S. frugiperda; 0.0 and 2.1% C. partellus (supp. file S1).

Haplotype analysis using DnaSP identified three different haplotypes for S. frugiperda, eight for
B. fusca and three for C. partellus, respectively (Table 3). S. frugiperda COI sequence data had nine
polymorphic sites (1.73%) of which eight (1.54%) were parsimony informative (Table 3). Similarly,
the sequence data for B. fusca contained 40 segregating (7.78%) and 36 parsimony informative (7%)
sites, respectively (Table 3). C. partellus had three polymorphic (2.09%) and two parsimony informative
(1.40%) sites. Based on the sequence statistics shown in Table 3, nucleotide diversity (π) for each of the
three species indicate very low genetic diversity. Haplotype distribution for all three species is shown
in Table 3. All C. partellus specimens from Malawi were in the most common haplotype, H-3 (Table 3).
There were two haplotypes (H-1 and H-2) that had B. fusca individuals from Malawi (Table 3).

Figure 4. Phylogenetic tree inferred using the Neighbor-Joining (NJ) method of 11 mtDNA CO1 region
of Busseola fusca sequences obtained from sugarcane fields in southern Malawi together with reference
sequences from other African countries. The tree is based on the Kimura 2-parameter method. The tree
was resampled with 1000 bootstrap replicates. Bootstrap support values on the branches are given.
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Figure 5. Phylogenetic tree inferred using the Neighbor-Joining (NJ) method of 11 mtDNA CO1 region
of Spodoptera frugiperda sequences obtained from sugarcane fields in southern Malawi together with
reference sequences from other African countries. The tree is based on the Kimura 2-parameter method
and 1000 bootstrap duplications.

Table 3. Distribution of Busseola fusca, Chilo partellus, and Spodoptera frugiperda into respective
haplotypes.

Species Haplotype No. Individuals

1-4 B. fusca

H-1
H-2
H-3
H-4
H-5
H-6
H-7
H-8

3
2
1
1
1
1
1
1

N4-1405, N64-1410, N39-1408
KO23-9206, N2-1405
KY472246
KY472247
KM061945
KM061880
DQ337201
DQ337199

S. frugiperda

H-1

H-2
H-3

8

1
2

S41-9005, KY472250, KY472253, GU095403, JQ547900,
HM136602, HM136600, HM136599
KY472240
KY472248, KY472255

C. partellus H-1 1 KX351380

H-2 7 HQ991218, KP233794, HQ990905 HQ991286, HQ991263,
HQ990908, HQ991263

H-3

58

N2-1410, N10-1323, KO11-9206, N14-1323, N17-1405,
N19-1408, KA20-6506, KA24-8324, N25-1323, KA27-8314,
N28-1405, KA29-8112, N3-1410, N31-4212, KA32-8324,
N33-3253, S38-9008, MB4-125, N43-3525, N44-1410,
N45-1410, N46-3253, N47-1407, KA49-B540, N5-1408,
KO50-9226, N51-1323, N52-3801, N53-1405, N54-2625,
S56-9002, A58-6505, S59-9005, N6-1406, N60-1407,
N61-1406, N62-5023, S63-9006, N65-2625, KO7-9211,
S71-9006, N72-1410, N73-1323, KO74-9226, N75-5923,
S76-9006, N77-2625, N78-1321, S8-9005, N80-2625,
N89-1401, N91-4212, N92-5023, N96-1401, N98-1405,
N99-1401, MB100, N94-1406

4. Discussion

The cytochrome oxidase (COI) gene of the mitochondrial DNA is generally used to identify
biotypes and study population genetics in insects [18–22]. In this study, based on phylogenetic



Insects 2018, 9, 74 9 of 12

analyses of the COI gene, larvae of Lepidopteran species infesting sugarcane in southern Malawi were
identified as Busseola fusca, Chilo partellus and Spodoptera frugiperda (Figures 3–5).

There are two cryptic species within S. frugiperda known as ‘species 1 or rice’ and ‘species 2 or
maize or corn’ strains [35]. Both races occur in Africa [36]. The two races differ in their susceptibility
to chemical and biological agents [36]. Phylogenetic analysis based on the COI gene sequence,
the S. frugiperda sample we collected aligned with S. frugiperda sample from Florida in the United States
of America (USA). This indicated that the S. frugiperda specimen was of American origin. Moreover,
the S. frugiperda DNA sequences sample from Kaombe closely aligned S. frugiperda spp. 1 or ‘rice’
strains (Figure 5) from Ghana where first reports of S. frugiperda introduction in Africa were from [17].
DNA polymorphism analysis for this pest showed very low genetic diversity alluding to its recent
introduction in Africa.

S. frugiperda is an invasive species that was recently introduced in Africa [16,17]. It has a strong
preference for grasses [16]. Since the 2016/2017 cropping season, S. frugiperda has been proving to be a
serious pest of maize in Malawi. So far, the Government of Malawi’s efforts on managing this pest are
chiefly curative. The Food and Agricultural Organization (FAO) of the United Nations recommends
the use of pheromone traps for detecting the incidence and severity of S. frugiperda [37]. Accurate
identification of pest species is essential for effectiveness of pheromones traps as a monitoring tool [38].
Our results indicate that S. frugiperda infesting sugarcane in the Lower Shire Valley is the ‘rice strain.’
There is a need to ascertain if the ‘rice strain’ is the only S. frugiperda race infesting sugarcane in the
Lower Shire Valley since both races are known to infest maize. Considering the availability of host
plants throughout the year and the voracious nature of S. frugiperda, this species has the potential to
become a serious pest of sugarcane if no effective measures are put in place to control its spread. It is
also essential to determine the biology and species composition of S. frugiperda populations on major
cereal crops of Malawi.

B. fusca specimens characterized in the study had 3.7% intraspecies divergence indicating the
presence of geographical species [18,20–22]. The species had a higher haplotype diversity but low
nucleotide diversity (Table 2). This indicates that there is low genetic differentiation in B. fusca.
Our finding agrees with Assefa Y. and Dhlamini T. [18], and Peterson B.et al. [39] who reported limited
sequence divergence for B. fusca in both Swaziland and South Africa. However, these authors did not
determine genetic relatedness of their B. fusca insect specimens with those in other African countries.
Phylogenetic analysis for B. fusca sequences generated in this study formed a distinct but closely
related clade to B. fusca sequences from South Africa but was distantly related to B. fusca from Ethiopia
and West Africa, Ghana [18,35,40]. This indicates that the B. fusca in southern Malawi is part of the
Southern Africa population. This observation is in line with known B. fusca population expansion in
Africa [20]. Sezonlin M. et al. [20] indicated that B. fusca populations in southern Africa belong to clade
originate from Kenya and belong to B. fusca clade KII. The characteristic features for B. fusca clade KII
are high haplotype diversity and low nucleotide diversity [20–22].

In this study, we have determined the identity of Chilo species infesting sugarcane in Southern
Malawi using both morphological and the COI 1 gene barcode. It is Chilo partellus and not
C. sacchariphagus. As an entire population, C. partellus samples sequenced in this study displayed low
genetic diversity. Evidence of this is the low haplotype diversity (Hd) and nucleotide diversity (π)
calculated for C. partellus. This agrees with previous studies done on C. partellus specimens from South
Africa [19]. The current recommendation involving the use of the generalist egg parasitoid T. chilonis
may be less effective. Instead, the larval parasitoid Cotesia flavipes commonly used in C. partellus
classical biological control [41] should be employed.

Genetic variation within pest species may affect pest biology and the effectiveness of pest
control tactics [42–44]. For instance, B. fusca morphotypes differ in their susceptibility to the main
biological control agent, Cotesia sesamiae [20,21,41]. Similarly, genetic differentiation among E. saccharina
populations is associated with the pest’s host preferences and its natural enemy guild in different
agroecological zones of Africa [45].
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This study has shown that C. partellus (and not C. sacchariphagus) and B. fusca are the main
stemborers of sugarcane in southern Malawi. We also found that the recently invasive fall armyworm
S. frugiperda ‘rice strain’ infested sugarcane in southern Malawi. Genetic variability was low in B. fusca
and the majority of C. partellus populations. Some C. partellus individuals demonstrated higher genetic
diversity. Accurate pest identification is the key to sustainable and effective pest control. It is important
to sequence cereal stemborer species and associated natural enemies (arthropod and microbial) from
all agroecological zones of Malawi in order to improve current and offer prospects for future biocontrol
using microbial pesticides.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/9/3/74/s1,
Table S1: Lepidoptera larvae sampling points in sugarcane fields located in Chikwawa and Nsanje districts,
southern Malawi; supp. file S1: Sequences of representative larvae collected from sugarcane fields in Chikwawa
and Nsanje District, Southern Malawi.
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Abstract 

The occurrence of entomopathogenic fungi in the Hypocreales as endophytes in sugarcane (Saccharum 

officinarum) and in soil samples from sugarcane fields was evaluated in six location in southern Malawi. 

Fungi from soil were isolated by baiting 60 soil samples by the Galleria mellonella larvae method while 

fungal endophytes were isolated from 180 surface-sterilized plant tissue sections. Entomopathogenic fungi 

in the Hypocreales were isolated from all locations and fungi were found in 81.7% of the soil samples and in 

36.7% in sugarcane plant tissue as endophytes. The genus Beauveria was most frequently isolated (83 

isolates) but also Metarhizium (10 isolates) and Isaria (22 isolates) were collected. Beauveria spp. were 

more frequently obtained from soil samples than from sugarcane plant tissues (63.3% in soil compared to 

25% from plant tissues, χ2 = 67.383, df = 15, P < 0.001). Phylogenetic analysis of 50 Beauveria spp. based 

on DNA sequencing of the Bloc intergenic region indicated that these isolates were B. bassiana and aligned 

with B. bassiana isolates of African and Neotropical origin previously denoted as AFNEO_1. However, the 

Malawi B. bassiana isolates formed a distinct clade with 99-100 bootstrap support values. To the best of our 

knowledge, this is the first report of B. bassiana and Isaria spp. occurring naturally as an endophyte in 

sugarcane. Further, it is the first report of B. bassiana, Isaria spp. and Metarhizium spp. in the soil of 

sugarcane fields in Africa.   
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1. Introduction  

Entomopathogenic fungi in the order Hypocreales are known to kill and infect arthropods, occur in soil, and 

as endophytes in some plants or (Vega et al., 2008; Gurulingappa et al., 2010;  Reay et al., 2010; Fisher et 

al., 2011; Clifton et al., 2015; Lacey et al., 2015). Depending on their biology and ability to grow on 

artificial media, they may be used in biocontrol of plant pests (Lacey et al., 2015; Onwley et al., 2010). 

Entomopathogenic fungi may cause epizootics in soil-dwelling pest insects and mites (Pell et al., 2001). The 

genus Beauveria and Metarhizium and Isaria (Cordycipitacea: Hypocreales) are used in inoculative or 

inundation biological control of agricultural pests (Akello et al., 2008; Meyling and Eilenberg, 2007; Posada 

et al., 2007; Roy et al., 2010). 

 

The natural occurrence and diversity of entomopathogenic fungi in arthropods, soils and plants may be 

affected by abiotic and biotic factors such as climate, habitat, soil properties, plant species, agricultural 

practices and sampling method (Bruck, 2010; Klingen et al., 2002; Klingen and Haukeland, 2006; Meyling 

and Eilenberg, 2007; Quesada-Moraga et al., 2007). Klingen and Haukeland (2006) suggest that the use of 

pesticides, especially fungicides but also herbicide may reduce the prevalence of entomopathogenic fungi in 

the soil. Further, Klingen et al. (2002) found more entomopathogenic fungi in organic arable fields than in 

conventional. Clifton et al. (2015) found that soils from organic soybean or cornfields had more 

entomopathogenic fungi than conventional and that the occurrence of entomopathogenic fungi was 

negatively affected by tillage, nitrogen content of soil, herbicide and fungicide application. Further, Ramos 

et al. (2017) found more B. bassiana in soil and roots from organic than conventional bean fields. Meyling 

and Eilenberg (2007) reported that M. anisopliae was the most prevalent species in soils collected from 

agricultural fields compared to undisturbed areas such as hedgerows while B. bassiana was frequently 

isolated from soils from the undisturbed areas. In addition, Beauveria and Metarhizium have both been 

isolated as endophytes from perennial woody plants such as coffee, pine and cocoa (Ganley and Newcomb, 

2006; Posada and Vega, 2005; Vega et al., 2008) and non-woody plants such as beans and maize (Bing and 

Lewis, 1993; Parsa et al., 2016).  The occurrence of entomopathogenic fungal endophytes varies with regard 

to plant tissue (Arnold and Herre, 2003).  

 

Even though B. bassiana is known to be effective against arthropod pests that infest sugarcane (Cherry et 

al., 2004; Tefera and Pringle, 2004; Goble et al., 2012; Wu et al., 2014), few studies have focused on natural 

occurrence of entomopathogenic fungi in sugarcane cropping systems. Ngubane et al. (2012), however, 

isolated Metarhizium anisopliae, Beauveria bassiana, B. brongniartii and Lecanicillium lecanii from various 

insect cadavers collected from six sugarcane-growing countries in Southern Africa. To the best of our 
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knowledge, however, no studies on natural occurrence of entomopathogenic fungi in the Hypcreales as 

naturally occurring endophytes in sugarcane has been conducted. Based on this background, the aims of the 

present study were to investigate whether entomopathogenic fungi within the Hypocreales occur naturally in 

soils and as endophytes in sugarcane fields in Malawi and whether different sugar cane cropping systems 

affects their prevalence.  

 

2. Materials and methods 

2.1. Description of sugarcane production, location and sampling of plants and soil 

Sugarcane is vegetatively cultivated short stem cuttings (referred to as plant cane) and from old growth 

(referred to as ratoon cane). As in many African countries, smallholder farmers grow sugarcane for home 

consumption but also sell raw sugarcane in local markets (Baucum et al., 2009). These farmers grow 

traditional cultivars or a mixture of cultivars and intercrop the sugarcane rows with other crops such as 

maize and vegetables. Sugarcane is grown in seasonal wetlands, valley bottoms called ‘dambo’ and low-

lying areas called ‘dimba.’ For the purpose of this paper, we will refer to these as ‘traditional’ fields.  

Traditional farmers use a hoe for tilling the soil twice or more times per year and they irrigate the field as 

required. Insecticides are used without following economic thresholds by traditional farmers (Kasambala 

Donga and Eklo, 2018; Orr and Ritchie, 2003).  Commercial estates owned by foreign multinational 

companies also grow sugarcane to process it into sugar and other sugarcane based product. These estates use 

irrigation and other cultivars that originate from both within and outside African. A third category of 

sugarcane farmers are referred to as ‘outgrowers’ and they grow sugarcane using the same varieties as the 

commercial estates either under rainfed conditions or irrigation. Outgrowers are supposed to follow 

production guidelines used in commercial estates and may belong to a farmer association that provides input 

packages (seed, fertilizer and herbicides) on credit or may act independently (Kasambala Donga and Eklo, 

2018). Commercial estates and outgrowers sugarcane fields are ploughed once every 3.8 years. In 

commercial estate and outgrowers sugarcane fields, insecticides and herbicides are applied according to 

economic threshold levels (Kasambala Donga and Eklo, 2018) provided by ILLOVO Malawi agronomists 

based at Nchalo Estate. Sugarcane is harvested green in traditional fields but is burnt prior to harvesting in 

commercial estates and outgrowers’ fields. 

In this study, field surveys were conducted from July to December 2016 in six locations namely Mitole, 

Maseya, Phata, Kasinthula and Alumenda in Chikwawa District of southern Malawi. Within each location, 

two sites were randomly selected and 30 m x 30 m quadrat was used to establish sampling units (Fig. 1). We 

sampled plants that were less than 5 months-old. The average number of harvesting cycles (ratoons) for 

sugarcane production in Malawi is 3.8 years. Therefore, only sugarcane in the fourth to seventh cycle of 
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ratooning were sampled. Plants were sampled by carefully uprooting one plant form the center and from the 

four corners of the 30 m x 30 m quadrat. Collected plants (n = 60) were transported live in plastic bags in 

cooler boxes to the laboratory for subsequent assessment (within 24 h) for the presence of endophytic 

entomopathogenic fungi.  Five soil samples were collected at a distance of 60 cm from the base of the 

collected plant and down to 15 cm depth by the use of a garden spade. The spade was sterilized in 70% 

alcohol between sampling to prevent cross-contamination. Soil samples were then placed separately in 1 L 

polyethylene bags and transported immediately in 40 L cooler boxes to the laboratory for processing. 

 

2.2. Isolation of fungi  

2.2.1. Isolation of endophytic fungi from plant samples 

Upon arrival at the laboratory, the soil was carefully shaken off the plant roots and roots were washed with 

tap water. From each sampled sugarcane a 100 mm section of stem, leaf and root was cut out and surface 

sterilized as described by Parsa et al. (2013) by immersion them for 2 min in 3% sodium hypochlorite 

followed by 2 min in 70% ethanol and  then rinsed thrice for 30 s in sterile distilled water. Effectiveness of 

the sterilization process was evaluated by plating 100 μl of the last rinse water on Sabouraud Dextrose Agar 

(SDA, Oxoid) with 1% antibiotics (0.2 g penicillin, 0.2 g chloramphenicol and 0.2 g tetracycline dissolved 

in 10 mL sterile distilled water, followed by filter sterilization through a 0.2 mm filter). No fungal growth 

from the last rinse of water indicated that sterilization was successful. The sterilized plant tissue sections 

were dried on sterile paper for 1 min and trimmed the edges so that the sections measured 60 mm. The 60 

mm trimmed section were further dissected into five pieces and plated on SDA. After sealing with Parafilm, 

the Petri dishes were incubated in the dark for 14-21 days at 25±5 °C. Fungal growth emerging from the 

plant tissue were reisolated onto new SDA plates to obtain pure cultures. Mycelia and conidia from pure 

cultures were stored on silica gel at 25±5 °C and later used for morphological and molecular 

characterization. 

2.2.2. Isolation of fungi from soil samples 

In the laboratory, the five soil samples per site were thoroughly mixed to produce a 12 composite pooled soil 

samples. Soils were kept at 4 °C for until processing but never longer than for five days. All soil samples 

were sieved through a 2 mm mesh sieve to remove debris. Dry soil samples were slightly moistened with 

sterile water while wet soils were first air-dried to remove excess water and reduce the incidence of 

nematodes. The Galleria mellonella bait method described by Zimmermann (1986) was used to isolate 

entomopathogenic fungi from soil samples. Before used as baits, 4-5 week-old G. mellonella larvae were 

heat-conditioned as described by Woodring and Kaya (1988) by immersing in 56 °C sterile water for 15 s, 

followed by pouring cold water on top of the larvae for 30 s and then letting the larvae rest for 1 h to 
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recover. Five live heat-conditioned G. mellonella were then added to a 350 ml plastic container with aerated 

lid containing 300 g of the sifted soil sample and incubated for 14 days in the dark at 25±5 °C. The plastic 

containers were inverted once every two days to promote larval movement through the soil.  

 

Containers with soil samples were checked daily and dead larvae were removed  and surface sterilized by 

immersing them in 70% alcohol for 10 s, rinsed thrice in sterile water for 10 s and left to dry on a sterile 

paper towel. They were then individually placed in a moist chamber and incubated for 14 days at 25±5 °C. 

Dead lave were observed every 2 days for fungal growth and emerging fungi were isolated by placing them 

on SDA with 0.1% antibiotics and incubated as described above. A fungal culture obtained from a single 

larva was considered an isolate. Fungal isolates were stored in silica gel until morphological and molecular 

characterization. 

2.3. Morphological identification of fungi 

Entomopathogenic fungi in the Hypocreales were identified morphologically by examining under a 400X 

phase contrast microscope to genus level according to Humber (2012).  

 

2.4. Molecular identification of fungi down to species level 

To identify entomopathogenic fungi in the Hypocreales down to species level molecular techniques needs to 

be used (Bischoff et al., 2009). Molecular analysis of fungi down to species level in this study have until 

now, only been conducted on the 50 isolates that were morphologically identified to be in the genus 

Beauveria. We are presently working on molecular identification of the fungal isolates in the other genera as 

well.  

 

2.4.1. DNA extraction, PCR amplification and sequence analysis 

DNA extraction and PCR reactions were done at NIBIO, Ås, Norway. A few silica gel crystals from the 

stored fungal isolates placed onto SDA plates (9 cm diameter) and incubated in the dark for 14 days at room 

temperature (21-25 °C) in the laboratory at NIBIO. Mycelium and conidia were then harvested by scraping 

off a small portion of the fungus using a sterile scalpel. The harvested mycelium and conidia were then 

ground to a fine powder using a pestle and mortar in liquid nitrogen before extracting the genomic DNA 

using DNeasy Plant Mini kit (Qiagen, Germany) according to manufacturer’s instruction (Goble et al., 

2012). 
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PCR amplification targeting the Bloc intergenic region for 50 Beauveria isolates were carried out (Rehner et 

al., 2011) using Bio-Rad T100™ Thermal cycler. Amplification of the Bloc gene region was achieved with 

the primer pair B22U (5′-AGATTCGCAACGTCAACTT-3′) and B822L (5′-

GTCGCAGCCAGAGCAACT-3′). The reaction volume of 50 μl contained 1.5μl Mm MgCL2, 1 x PCR 

buffer, 4 μ 200 μM dNTPs, 1 μl of each primer (10μM), 0.1 μl 0.5U Platinum Taq DNA polymerase  and 

3μl genomic DNA. Cycling conditions were for Bloc gene regions were as follows: 5 min at 95 °C 

denaturation followed by a touch-down protocol with 30 s denaturation at 95 °C, 30 s at 70–60 °C (reducing 

annealing temperature by 1 °C per cycle), and 1 min at 72 °C. An additional 30 cycles were performed 

including 30 s at 95 °C, 30 s annealing at 60 °C, and 1 min at 72 °C followed by a final extension of 5 min at 

72 °C.  

 

The extracted DNA was quantified using gel electrophoresis - 1.0% agarose gel with TBE (45 mM Tris 

base, 45mM boric acid, 1mM EDTA pH 8.0). Staining of bands with ethidium bromide (Thermo Fisher 

Scientific, USA) was done to help with visualization of the amplified DNA through GelDoc EQ (Bio-Rad 

Laboratories, USA) gel imaging system equipped with PDQuest 2-D analysis software (Bio-Rad 

Laboratories, USA).  The size of the PCR products was determined by comparing to a 100 bp DNA ladder 

(New England Biolabs, UK). PCR products were diluted (where necessary) in nuclease free water to acquire 

the right concentration (10-50 ng-μl) recommended for sequencing. Sanger sequencing was done by GATC 

Biotech (Germany) using the B22U/ B822L primer pair.  

 

2.4.2. Phylogenetic analysis 

The sequences obtained from Bloc region were traced, edited and assembled using CLC Main workbench 7. 

Consensus sequences were aligned using ClustalW in BioEdit 7.2.5 (Hall, 1999). Published sequences 

(Goble et al., 2012; Kernasa et al., 2016; Rehner et al., 2006) for the identified genera were included in 

phylogenetic analysis. Intraspecific divergence was calculated using Mega6 (Kimura, 1980).  DNA 

polymorphism was determined using DnaSP v.5 (Librado and Rozas, 2009). Preliminary Neighbor-Joining 

(NJ) and Maximum Likelihood (ML) trees were generated for the aligned sequences using Mega6 (Tamura 

et al., 2013). Both NJ and ML trees were based on Kimura 2-parameter model, K2P (Kimura, 1980). Using 

model selection option in Mega6, we found that Kimura 2-parameter 80 with discreet Gamma distribution 

(K2+G) was the best-fit model to our dataset based on lowest Bayesian Information Criterion (BIC) value. 

We used the best-fit model to generate ML analysis using 1000 bootstrap replications. Reference sequence 

of Beauveria malawiensis was included to root the phylogenetic tree.   

 



8 

 

2.5. Data analysis 

Preliminary data exploration indicated that the data (frequencies of occurrence of soil and plant samples 

positive for Beauveria spp, Isaria spp. and Metarhizium spp. collected from soil and sugarcane plants) did 

not follow a normal distribution. Hence, frequency data were analyzed using non-parametric tests, 

independent samples option. Statistical analyses were carried out in SPSS version 25 (IBM® Statistics 

Software).  

 

3. Results 

3.1. Morphological identification 

A total of 180 plant tissues collected from 60 sugarcane plant samples and 60 G. mellonella larvae were 

used to bait 12 soil samples in this study. Fungi were isolated from 66 out of 180 (36.7%) plant tissues 

collected while entomopathogenic fungi were isolated from 49 out of 60 (81.7%) G. mellonella baited from 

soil. The entomopathogenic fungi found belonged to three genera: Beauveria, Metarhizium and Isaria. 

Irrespective of location and ecological habitat (soil or plant tissues), the mean proportion (±SE) of Beauveria 

isolates  was significantly higher (x̅ = 0.61±1.081, χ2 = 70.390, df = 15, P < 0.001) than that of Metarhizium 

spp. (x̅ = 0.05±0.277, χ2 = 18.089, df = 10, P = 0.0) and Isaria spp. (x̅ = 0.17±0.579, χ2 = 27,127, df = 15, P 

= 0.028). The distribution of these fungal isolates were significantly different across location (χ2 = 30.611, 

df = 5, P < 0.001) and field (χ2 = 36.770, df = 11, P < 0.001; Fig. 2). Beauveria spp. and Isaria spp. were 

isolated from all fields (except in Maseya where no Isaria spp. was isolated) while no Metarhizium spp. 

were isolated from Nchalo, Kasinthula and Phata (Fig. 2). There was no significant difference in the 

occurrence of Beauveria spp. in commercial estates and outgrowers fields but between these two field types 

and traditional fields (for each cropping system n = 80, P < 0.05).  Beauveria spp., Metarhizium spp. and 

Isaria spp. also occurred naturally as endophytes of sugarcane (Fig. 2). Beauveria spp. were more frequently 

obtained from soil than from plant tissue (45.7% in soil compared to 33.7% in leaves 15.6% in stems and 

4.8% in roots; χ2 = 67.383, df = 15, P < 0.001). From plant material, Isaria spp. were isolated more from 

leaves (χ2 = 36.414, df = 15, P = 0.002) and stems (χ2 = 20.571, df = 15, P = 1.150) than from roots. 

Metarhizium spp. were mostly isolated from soil with (χ2 = 18.089, df = 10, P = 0.053).  
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3.2. Phylogenetic analysis 

Sequences for all the 50 Beauveria isolates were generated and 29 Bloc sequences were downloaded from 

the GenBank for phylogenetic placement of the sequences. The alignment contained 845 positions. After 

eliminating gaps and missing data, 703 nucleotide positions were included in the final dataset. NJ and ML 

analyses based on the Bloc produced trees with similar topologies with well-resolved clusters representing 

isolates of five different species (Fig. 3). There were two main branches, one representing B. bassiana and 

B. varroae species and the other representing B. pseudobassiana, B. brongniartii and B. malawiensis 

species, respectively. All 50 Beauveria isolates sequenced in this study belong to B. bassiana (Fig. 3). The 

B. bassiana clade further separated into several branches. One branch contained all the 50 Malawian isolates 

and reference sequences of Africa (Cameroon, Côte d’Ivoire, Kenya, Togo) and the Neotropics (Brazil, 

Colombia, Costa Rica, Mexico, Nicaragua) denoted as AFNEO_1 (Rehner et al., 2006). The AFNEO_1 

clade includes B. bassiana strains isolated from coffee or from the coffee berry borer, Hypothenemus 

hampei (Rehner et al., 2006). Within this branch, the Malawi isolates formed a distinct clade with 99-100 

bootstrap support values (Fig. 3).  

 

Inter- and intra-specific divergences were calculated for all Bloc isolates. Pairwise genetic distances was 

lowest (0.016) for Malawian B. bassiana and B. bassiana of AFNEO_1 origin. Genetic divergence between 

Malawian B. bassiana and B. bassiana of non-AFNEO_1 origin was 0.045 (Table 1). No mean intraspecific 

divergence within the Malawian B. bassiana isolates was observed, while it was 0.014 within the 

AFNEO_1, and 0.045 within the non-AFNEO_ 1 B. bassiana individuals (B. bassiana s.l. isolated isolates 

collected from insects in several orders and from countries not listed in the AFNEO_1 group (Table 2; 

Rehner et al., 2006).  Table 2 also shows the results of haplotype analysis. A total of 23 haplotypes was 

found within B. bassiana species. The isolates from Malawi presented 3 haplotypes in which 1 was unique 

(110-A-S-C). The AFNEO_1 isolates presented 7 haplotypes. Description of individuals in each haplotype is 

presented in Table 3. 

 

4. Discussion 

To the best of our knowledge this is the first report of B. bassiana and Isaria spp. occurring naturally as an 

endophyte in sugarcane. B. bassiana and Isaria spp. isolated from  sterilized sugarcane plant tissue may 

have originated from the naturally inoculated plant parts, soil or through infected insect hosts.  This is 

supported by studies that recently demonstrated the ability of B. bassiana to experimentally establish as an 

endophyte of sugarcane (Kasambala Donga et al. (in press)). The higher incidence of B. bassiana in leaf 

tissue in our study could have been a result of aerial deposition of B. bassiana propagules (Hajek, 1997; 
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Meyling and Eilenberg, 2006). In addition, insects have the ability to transport B. bassiana to plant surfaces 

(Bruck and Lewis 2002a). It is also possible that virulent stage of B. bassiana infected sugarcane tissues 

through its endophytic relationship with the plant. As an endophyte, B. bassiana has been isolated from 

plant tissues of common bean, coffee and cocoa plants, faba beans, maize and pine needles (Akutse et al., 

2016; Bing and Lewis, 1993; Ganley and Newcomb, 2006; Posada and Vega, 2005; Ramos et al., 2017; 

Vega et al., 2008; 2010).  Isaria spp. (formerly Paecilomyces, Humber, 2012), has  been reported as 

endophyte in rice (Paecilomyces sp.); mangrove (Paecilomyces varioti); banana (Paecilomyces sp.) and 

coffee plants (Paecilomyces cf. fumosoroseus, P. cf. javanicus; Ananda and Sridhar, 2002; Cao et al., 2002;  

Tian et al., 2004; Vega et al., 2008). Endophytism between entomopathogenic fungi such as B. bassiana 

(not all Isaria spp. are pathogenic to insects) and plants is considered to be detrimental to insect pests (Vega 

et al., 2010; Vega, 2018). The negative impact on insect pests may be  through synthesis of herbivore-

induced plant volatiles (HIPVs) and secondary metabolites (terpenoids) involved in plant defense against 

herbivory, and alteration of plant volatiles (kairomones) used by insects in host location (Lin et al., 2016; 

2017; Price et al., 2011; Shrivastava et al. 2015; Vega, 2018). 

 

We also report for the first time, the natural occurrence of Beauveria spp., Isaria spp. and Metarhizium spp. 

in soil from sugarcane fields in Malawi. The prevalence of Beauveria spp. was significantly higher in fields 

of commercial estates (Alumenda and Nchalo) than in fields of outgrowers (Kasinthula and Phata) or in 

traditional sugarcane fields (Maseya and Mitole).  The difference in prevalence level may be due to 

variations in farm management practices (Geiger et al., 2010; Meyling et al, 2009). Although all sugarcane 

fields are subjected to convectional tillage i.e. turning over and loosening of soil after harvest, this practice is 

more frequent in traditional fields (multiple times in a year) compared to commercial estates and 

outgrowers’ fields (done once in every 3.8 years). Convectional tillage has previously been reported to be 

negatively associated with abundance of entomopathogenic fungi in agricultural fields (Clifton et al., 2015; 

Oliveira et al., 2013). In traditional fields, insecticides are applied based on pest occurrence and not 

economic thresholds (Kasambala Donga and Eklo, 2018). As a result, more insecticides are used in 

traditional farmers’ fields (Bon et al., 2014). Insecticides reduce insect populations in a field and maybe the 

endophytic inoculum in the plant due to fungally infected hosts and this may be important for the 

dissemination of entomopathogenic fungal inoculum between the soil and the phyllosphere (de Snoo, 1999; 

Klingen et al., 2002; Marshall and Moonen, 2002). However, several other biotic and abiotic factors that are 

known to influence the natural occurrence and diversity of entomopathogenic fungi in agroecosystems were 

not considered in this study (Clifton et al., 2015; Klingen et al., 2002; Klingen and Haukeland, 2006; 

Oliveira et al., 2013; Quesada-Moraga et al., 2007). To what extent these factors may have influenced our 

findings is currently unknown.  
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Our phylogenetic analysis placed the 50 Beauveria spp. isolates within B. bassiana clades. Malawian B. 

bassiana isolates found in our study were closely related to B. bassiana of other countries in African 

(Cameroon, Côte d’Ivoire, Kenya, and Togo) and Neotropical origin (Brazil, Colombia, Costa Rica, Mexico, 

and Nicaragua) referred to as AFNEO_1 and isolated from the coffee berry borer Hypothenemus hampei 

(Coleoptera: Cucurlionidae; Rehner et al., 2006). B. bassiana isolates characterized in our study belonged to 

a single distinct clade. The reason for this could be that all the AFNEO_1 isolates were from coffee berry 

borer but none of our isolates were isolated from this insect. Also, the low intraspecific divergence, 

haplotype and nucleotide diversity reported in this study show that there is gene flow within our B. bassiana 

populations. Therefore, we suggest that the B. bassiana population that we found in the six locations in 

Chikwawa district in southern Malawi could be considered as one structured population with a low genetic 

diversity. Our results are similar to Ramos et al. (2017) who found limited diversity among B. bassiana 

isolates from common bean fields in Cuba. It is also possible that we underestimated the diversity and 

richness of fungal endophytes isolated in our study as endophyte diversity and richness has been reported to 

increase with plant age in cacao (Theobroma cacao), Coccoloba (Coccoloba cereifera) and Lima bean 

(Phaseolus lunatus; Arnold and Herre, 2003; López-González et al. 2017; Sanchez-Azofeifa et al., 2012).  

 

The present study is the first to report of B. bassiana and Isaria spp. as naturally occurring endophytic fungi 

in sugarcane. Further, it suggests that B. bassiana and Isaria spp. occupies a naturally occurring reservoir in 

soils and crop tissues of conventionally and traditionally grown sugar cane. It also highlights the importance 

of B. bassiana as a potential naturally occurring enemy of pests in sugarcane since B. bassiana is already 

known to be effective against arthropod pests that infest sugarcane (Cherry et al., 2004; Tefera and Pringle, 

2004; Goble et al., 2012; Wu et al., 2014). Our molecular studies further suggest that the B. bassiana 

isolates we found in Malawi were closely related to B. bassiana of other countries in Africa and that these 

isolates are one structured population with a low gene flow. Future studies will focus on determining the 

effect of naturally occurring B. bassiana as and endophyte and in soil on sugarcane insect pest populations. 

Identification and analysing the rest of the isolates obtained in this study by the molecular methods 

described in this paper are underway and will be conducted before submitting this manuscript to a journal.  
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Figure captions 

Figure 1. Locations of the 12 sugarcane fields sampled in Chikwawa District, southern Malawi (A). 

Sampling scheme within a sugarcane field (B). 

 

Figure 2.  Number of fungal isolates in different genera (A). Beauveria spp., (B) Metarhizium spp., (C) 

Isaria spp. obtained from soils (n = 60) and as endophytes of sugarcane (Saccharum officinarum) tissues 

(root, n = 60; stem, n = 60; leaf, n = 60) from 2 commercial estates (Alumenda and Nchalo), 2 outgrowers 

fields (Kasinthula and Phata) and 2 traditional fields (Maseya and Mitole)  in Chikwawa District, southern 

Malawi.  

 

Figure 3. Phylogenetic tree of Beauveria indicating the position of Malawian isolates collected from 

sugarcane fields within the worldwide Beauveria genetic structure. The tree was inferred by (A) Maximum 

Likelihood (ML) method based on the Kimura 2-parameter model with a discrete Gamma distribution 

(K2+G) and (B) Neighbor-Joining (NJ) using the Kimura 2-parameter method of intergenic Bloc region of 

50 Malawian and 30 reference sequences from GenBank (given with their associated accession number). For 

the Malawi isolates, code after isolate number denotes substrate: S = soil, P = plant; location: MS = Maseya, 

MT = Mitole, N = Nchalo, P = Phata, K = Kasinthula, A = Alumenda. Branch support was measured 

through 1000 bootstrap repeations. 

 

 

Table captions 

Table 1: Pairwise genetic distances (K2P) between Beauveria species estimated using Mega6 

Table 2: Haplotype analysis for Beauveria bassiana isolates 

Table 3. Number of haplotypes and isolates contained in each haplotypes for B. bassiana species 
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Species Haplotype  No. (n) isolates  
1Malawian B. 

bassiana  

H-1 47 104-MS-S-T, 105-MS-S-T, 106-MS-S-T, 111-K-S-C, 112-K-S-C, 113-K-

S-C, 114-K-S-C, 116-PH-S-C, 117-PH-S-C, 118-PH-S-C, 124-PH-S-C, 

125-A-S-C, 126-PH-S-C, 130-N-P-C, 131-N-P-C, 132-N-P-C, 134-A-S-

C, 137-N-P-C, 139-N-S-C, 13-A-S-S, 141-PH-P-C, 143-MT-S-T, 14-A-S-

C, 16-MS-S-T, 17-K-S-C, 19-PH-P-C, 1-K-S-C, 20-A-S-C, 20-PH-P-C, 

21-K-S-C, 22-K-S-C, 27-A-S-C, 28-A-S-C, 36-A-S-C, 42-N-S-C, 45-N-S-

C, 46-N-P-C, 47-N-P-C, 48-A-S-C, 51-A-S-C, 5-A-S-C, 62-K-S-C, 63-K-

S-C, 70-K-S-C, 71-K-P-C, 77-K-S-C and 91-PH-P-C 

H-2 1 110-A-S-C 

H-3 2 24-K-S-C, 29-A-S-C] 
2AFNEO_1 B. 

bassiana 

H-1 1 DQ384382 

H-2 1 DQ384384 

H-3 1 DQ384358 

H-4 1 DQ384359 

H-5 1 DQ384365 

H-6 1 DQ384356 

H-7 1 DQ384366 
3Non-

AFNEO_1 B. 

bassiana 

H-1 1 DQ384397 

 H-2 2 DQ384400, HQ880692 

H-3 1 DQ384409 

H-4 1 EF193169 

H-5 1 EF193173 

H-6 1 DQ384358 

H-7 1 EF193174 

H-8 1 EF193176 

H-9 1 EF193179 

H-10 1 HQ880689 

H-11 1 HQ880691 

H-12 1 HQ880695 

H-13 1 HQ880696 
1 All sequenced Malawian B. bassiana isolates collected from sugarcane fields in Chikwawa District, Malawi. 
2 B. bassiana s.l. isolated isolates collected from the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) from Africa 

(Cameroon, Côte d’Ivoire, Kenya, Togo) and the Neotropics (Brazil, Colombia, Costa Rica, Mexico, Nicaragua; Rehner et al., 2006). 
3 B. bassiana s.l. isolated isolates collected from insects in several orders and from countries not listed in the AFNEO_1 group (Rehner et al., 

2006). 
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21 ABSTRACT

22 We investigated the ability of the fungal entomopathogen Beauveria bassiana strain GHA to 

23 endophytically colonize sugarcane (Saccharum officinarum) and its impact on plant growth. We 

24 used foliar spray, stem injection, and soil drench inoculation methods. All the three inoculation 

25 methods resulted in B. bassiana colonizing sugarcane tissues. Extent of fungal colonization  

26 differed significantly with inoculation method (χ² = 20.112, d.f. = 2, p = 0.000), and stem 

27 injection showed the highest colonization level followed by foliar spray and root drench. Extent 

28 of fungal colonization differed significantly with plant part (χ² = 33.072, d.f. = 5, p = 0.000); 

29 stem injection resulted in B. bassiana colonization of the stem and to some extent leaves; foliar 

30 spray resulted in colonization of leaves and to some extent, the stem; and soil drench resulted in 

31 colonization of roots and to some extent the stem. Irrespective of inoculation method, B. 

32 bassiana colonization was 2.8 times lower at 14-16 d post inoculation (DPI) than at 7-10 DPI (p 

33 = 0.020). Spraying leaves and drenching the soil with B. bassiana significantly (p = 0.01) 

34 enhanced numbers of sett roots. This study demonstrates for the first time that B. bassiana can 

35 endophytically colonize sugarcane plants and enhance the root sett and it provides a starting 

36 point for exploring the use of this fungus as an endophyte in management of sugarcane pests.

37 Key words: Biological control, endophytic fungus, entomopathogenic fungi, Hypocreales, 

38 Beauveria bassiana, phytobiome
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42 1. Introduction

43 Sugarcane (Saccharum officinarum; Poaceae) is one of the world’s most valuable crops. 

44 Although sugarcane originated in Polynesia, it is grown in approximately 120 tropical and 

45 subtropical countries with a global production of about 1.89 billion tonnes of crushed sugarcane                        

46 in 2016 (FAOSTAT 2018).  The sugarcane ecosystem (phytobiome) comprises numerous weeds, 

47 arthropods and more than 50 plant pathogens (Ferreira and Comstock 1993; Verma 2004; Leach 

48 et al. 2017). Arthropod pests associated with the crop worldwide include complexes of stalk 

49 feeders, sap sucking insects (e.g., aphids, thrips, mealybugs), root feeders (e.g., white grubs, 

50 stemborers), and spider mites (Dittrich et al. 2005; Barker et al. 2006; Leslie 2008, 2009; Goebel 

51 and Sallam 2011; Goble et al. 2014; SASRI 2014; Bharu 2015).  

52 The main arthropod pests infesting sugarcane in Africa include stemborers  (Chilo and 

53 Sesamia spp.), black maize beetles (Heteronychus spp.), thrips (Fulmekiola serrata), scale 

54 insects (Aulacaspis tegalensis), mealybugs (Saccharicoccus sacchari) and spider mites 

55 (Tetranychus urticae) (Smith-Meyer 1974; Nuessly 1994; Conlong 2001, 2008; SASRI 2014; 

56 Language 2015). The sugarcane yellow aphid (Sipha flava) was first recorded in southern Africa 

57 in 2013 (Conlong and Way 2014; Way et al. 2014). Management of all these pests currently 

58 relies on cultural methods, host plant resistance, chemical insecticide application, and biological 

59 control focusing on use of insect predators and parasitoids (Akbar et al. 2010; Goebel et al. 2010; 

60 Bowling et al. 2016). Chemical insecticides provide rapid and effective control of many pests 

61 and reduce labour cost associated with mechanical pest removal. However, health and 

62 environmental problems, the development of insecticide resistance, and cost, limits their use 

63 (WHO 2014; Kasambala Donga and Eklo 2018). Host plant resistance may contribute to reduced 

64 pesticide load in the environment, but it might not be long lasting or practical in instances of a 
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65 new virulent pest species (Humphries et al. 2010). Biological control agents are usually 

66 compatible with other pest control methods and are central in integrated pest management (IPM) 

67 programs of many crops.

68 Fungal entomopathogens belonging to the order Hypocreales (Ascomycota) or to the 

69 phylum Entomophthoramycota have been reported to protect plants from insect pests (Pell et al. 

70 2009; Vega et al. 2012). Fungi in the Entomophthoromycota are generally associated with 

71 natural epizootics on foliar insect hosts and are mostly used in conservation biological control 

72 (Ekesi et al. 2005; Baverstock et al. 2008; Pell et al. 2009). The major disadvantage with 

73 Entomophthoromycota is that they are mainly biotrophic with a close association with their 

74 insect or mite host and many cannot be mass-produced on artificial media (Jaronski and Jackson 

75 2012). On the other hand, hypocrealean fungi such as Beauveria and Metarhizium are 

76 hemibiotrophic, cosmopolitan and ubiquitous in the soil but do not commonly cause natural, 

77 large-scale epizootics on foliar insects in annual crops (Pell et al. 2009; Jaronski 2010). For 

78 instance, in a survey of natural enemies of Chilo sacchariphagus in sugarcane plantations in 

79 Moçambique, Conlong and Goebel (2002) found B. bassiana infesting only three cadavers of C. 

80 sacchariphagus larvae. Hypocrealean fungi are traditionally employed in both inundation and 

81 inoculation biological control (Maniania et al. 2001; Meyling and Eilenberg 2007; Remadevi et 

82 al. 2010; Klingen et al. 2014). Currently, large-scale inundation and inoculative biological 

83 control is being practiced in many countries including Austria, Brazil and South Africa (Lacey et 

84 al. 2015).  

85 There is growing evidence that fungal entomopathogens occur naturally or can be 

86 established artificially as endophytes in various crop plants and that such establishment might 

87 adversely affect insect pests (Vega 2008; Quesada-Moraga et al. 2014a; Greenfield et al. 2016; 
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88 Vega 2018). Beauveria bassiana artificially introduced as an endophyte in cotton (Gossypium 

89 hirsutum) negatively affected cotton aphid reproduction (Castillo Lopez et al. 2014) and 

90 endophytic B. bassiana in maize (Zea mays) resulted in all-season suppression of the European 

91 corn borer, Ostrinia nubilalis (Bing and Lewis 1992a; 1992b). In banana (Musa spp.), 

92 endophytic B. bassiana significantly reduced damage caused by larvae of Cosmopolites sordidus 

93 by 42-87% depending on the plant tissue (Akello et al. 2007). 

94 Several approaches have been used in establishing B. bassiana as an endophyte in target 

95 plants. Lewis and Bing (1991), Bing and Lewis (1992a; 1992b) and Wagner and Lewis (2000) 

96 successfully established B. bassiana as an endophyte in maize using foliar application at the two-

97 leaf or whorl stage. Beauveria bassiana was also established as an endophyte in cocoa 

98 (Theobroma cacao; Posada and Vega 2005) and coffee (Coffea arabica; Posada and Vega 2006) 

99 by inoculating the main radicle of seedlings. Posada et al. (2007) also established B. bassiana in 

100 coffee seedlings using stem injections, foliar sprays, and soil drenches, with highest endophytic 

101 recovery obtained in plants whose stems had been injected with a B. bassiana spore suspension. 

102 Tefera and Vidal (2009) reported that B. bassiana could be established as an endophyte in 

103 different sorghum (Sorghum bicolor) tissues through seed dressing, foliar sprays, and soil 

104 inoculation, with foliar sprays being the best method. Brownbridge et al. (2012) introduced B. 

105 bassiana into pine seedlings (Pinus radiata) using seed coating and root dipping. Quesada-

106 Moraga et al. (2014b) established B. bassiana as an endophyte in opium poppy (Papaver 

107 somniferum) tissue via seed soaking and found that B. bassiana was vertically transmitted via 

108 seeds from endophytically colonized maternal plants. Evaluating the potential of an 

109 entomopathogenic fungal species to establish as an endophyte in a given plant species is the first 

110 step in the process of determining whether this fungus might protect the plant from insect pests 

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280



6

111 or mites. The most common method for evaluating endophytic establishment is the fragment 

112 plating method (Torres et al. 2011). This method involves the elimination of epiphytes, by 

113 surface sterilizing plant tissue sections, and plating the sterilized sections on selective  growth 

114 media (Vega, 2018). Post-inoculation time for performing this step varies. Ten days were enough 

115 to confirm that B. bassiana could establish endophytically in artichoke, Cynara scolymus 

116 (Guesmi-Jouini et al. 2014). Greenfield et al. (2016) evaluated B. bassiana endophytic 

117 colonization of cassava (Manihot esculenta) at 7-9 and 47-49 d. Renuka et al. (2016) traced post-

118 inoculation persistence of B. bassiana in maize (Zea mays) for 90 d. 

119 Information on the ability of B. bassiana to endophytically colonize sugarcane and 

120 effects of B. bassiana on sugarcane plant growth is not available. We report that B. bassiana can 

121 become established as an endophyte in sugarcane using foliar spray, stem injection and soil 

122 drench and that endophytism with B. bassiana resulted in enhanced sugarcane plant growth.

123 2. Materials and methods 

124 2.1. Treatments, study location, and experimental design

125 The experiment was conducted in a greenhouse at the ILLOVO Malawi sugarcane quarantine 

126 facility at Bvumbwe Agricultural Research Station, Thyolo District, Malawi (15°55'27.1"S 

127 35°04'12.5"E, 1174 m.a.s.l). The experiment was set up as a completely randomized design with 

128 subsampling, and treatments consisted of three different fungal inoculation methods (foliar 

129 spray, stem injection, soil drench) and the control. The experiment was repeated four times. Each 

130 replicate had 36 plants: 9 foliarly-sprayed plants, 9 stem-injected plants, 9 soil-drenched plants, 

131 and 9 control plants. Therefore, the experiment consisted of 144 plants. Destructive sampling of 

132 plant tissue (leaves, stems, roots) to evaluate endophytic colonization by B. bassiana was done 7 
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133 and 14 d post-inoculation (DPI). For method, see below. Evaluation of plant growth was done 16 

134 DPI.

135 2.2. Plants 

136 The sugarcane variety MN1 was used. This is a commonly grown variety in Malawi (Kasambala 

137 Donga and Eklo, 2018). Sugarcane stems free from pests and diseases were collected from 7-10- 

138 month-old irrigated seedcane growing at the ILLOVO Nchalo Sugar Estate (Chikwawa District, 

139 Malawi). The stems were cut into smaller sections approximately 13.5 cm long. Each of these 

140 sections had two buds. These stem cuttings are referred to as 2-bud cane-setts (Fig. 1A). To 

141 prevent ratoon stunting disease and other bacterial sugarcane pathogens, cane-setts are routinely 

142 dipped in 50 °C water for 2 h. This treatment could have negative effects on germination 

143 (McFarlane 2013); therefore, surface sterilization in alcohol and sodium hypochlorite was used  

144 as described below. Two-bud cane-setts were washed for 1 min in running tap water to remove 

145 any debris before surface sterilizing by immersing for 3 min in 1% sodium hypochlorite followed 

146 by 1 min in 70% ethanol (Parsa et al. 2013; McKinnon et al. 2016). The tissues were then rinsed 

147 in sterile distilled water three times. The sterilized plant tissues were dried on sterile filter paper 

148 for 30 min before plating. Effectiveness of the sterilization process was evaluated by plating 100 

149 μl of the last rinse water on Sabouraud dextrose agar (SDA) and incubating the plate for 10 d at 

150 25 °C. Imprints of sterilized plant tissue were also prepared to ensure that the sterilization was 

151 successful. This was done by momentarily placing and pressing a surface sterilized plant tissue 

152 on SDA and incubating the plate for 10 d at 25 °C.

153 Two surface sterilized two-bud cane-setts were horizontally planted in each 10 L plastic 

154 bucket (height 235 mm, upper diameter 265 mm, lower diameter 170 mm) containing a steam-

155 sterilized mixture (2:1:1) of sandy loam soil, bagasse and sand from the ILLOVO Nchalo Sugar 
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156 Estate (Fig. 1B). The sterilization of the soil involved leading steam from a 210 L metal drum 

157 into a perforated hosepipe under a heavy-duty PVC black sheet secured at the edges by heavy 

158 stones. The temperature inside the PVC sheets was maintained at 92-95 °C for 5 h. The soil was 

159 cooled for 24 h before planting. Diammonium phosphate (25 g) was mixed with the soil mixture 

160 to provide phosphate in each 10 L plastic bucket. The soil was moistened using sterile distilled 

161 water 24 h before planting. After germination, buckets were thinned by discarding cane-setts 

162 with poorly growing shoots; therefore, each plastic bucket had only one two-bud sett with one or 

163 two healthy shoots. Plants were watered with sterile distilled water as required. The plastic 

164 buckets were kept in a greenhouse for 14 d after planting. 

165 2.3. Fungal strain

166 A commercial strain of B. bassiana (GHA) formulated as BotaniGard® ES was used (Laverlam 

167 International Corporation, Butte, MT). The strain was chosen based on its registered use against 

168 aphids and sugarcane borers. To generate the stock inoculum, one inoculating loop of liquid 

169 emulsifiable suspension was suspended in 1 ml of a 0.1% sterile water solution of Tween 80 

170 (Sigma-Aldrich, St. Louis, MO) and vigorously hand-shaken for 30 sec. From the suspension, 

171 100 μl was plated on SDA and incubated for 24 h at 25±5 °C. A single germinating conidium 

172 was transferred to a 90 mm diameter Petri dish containing SDA mixed with a 0.1% stock 

173 solution of antibiotics to inhibit bacterial growth (Posada and Vega 2005). The antibiotic stock 

174 consisted of 0.2 g of each of three antibiotics (chloramphenicol, penicillin and tetracycline) 

175 dissolved in 10 mL sterile distilled water, followed by filter sterilization through a 0.2 mm filter. 

176 From this, 1 mL was added to each liter of medium. The fungus was grown in the dark at 25±5 

177 °C until it covered the entire plate.
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178 The fungus was then harvested by scraping it off the SDA using a sterile spatula and 

179 suspending it in 10 ml sterile 0.1% Tween 80 and vigorously hand-shaking for one min. The 

180 suspension was filtered through sterile cheesecloth to remove hyphae and to obtain the stock 

181 suspension. An improved Neubauer haemocytometer was used to estimate the spore 

182 concentration of the stock suspension. Sterile distilled water was used to adjust the stock 

183 concentration to a final concentration of 1x10⁸ conidia ml-1.  Conidial viability was assessed just 

184 after harvest and prior to inoculation of plants by plating 100 μl of 1.7 x109 conidia ml-1 on SDA 

185 and incubating at 25±5 °C for 24 h. Three random groups of 100 spores were examined using a 

186 stereoscope to estimate percent germination. A conidium was considered germinated when a 

187 visible germ tube longer than half the diameter of the conidium was observed. Conidial 

188 germination was > 90% and was considered acceptable for use in the experiments. The stock 

189 suspension was stored in sterile 300 ml glass bottles in darkness at 4°C for 24 h before use.

190 2.4. Plant inoculation

191 Plants were watered to saturation using sterile distilled water 24 h before inoculations. Seven 

192 days after the emergence of the primary shoot, the plants were inoculated with B. bassiana. 

193 Three different inoculation methods were used: foliar spray application; stem injection and soil 

194 drench.  For inoculation by foliar spray, plants were sprayed in a separate room to prevent 

195 accidental inoculation of the other treatments via spray droplets. A manual atomizer was used to 

196 apply 100 ml inoculum (1x10⁸ conidia ml-1) onto the sugarcane leaves. The top of the plastic 

197 bucket was covered with aluminum foil to avoid conidial runoff to the soil. After spraying, the 

198 plants were covered with a plastic bag for 24 h to maintain a high level of humidity to facilitate 

199 fungal germination and plant colonization (Parsa et al. 2013) before being returned to the 

200 experimental blocks in the greenhouse. For inoculation by stem injection, a hole was made on 
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201 the primary shoot using a 5 ml sterile disposable insulin hypodermic needle to facilitate injection 

202 of 1 ml of conidial suspension (Akello et al. 2007; Posada et al. 2007). For inoculation by soil 

203 drench, 100 ml of inoculum was applied to the soil surface in close proximity with the root area. 

204 Control plants of all three treatments were treated with sterile water with 0.1% Tween 80.

205 2.5. Sampling for endophytic colonization

206 The first sampling was done 7 DPI. Due to problems with availability of a consistent power 

207 supply throughout the experiments, collection, surface sterilization and plating of plants samples 

208 onto Petri dishes was done on four consecutive days for the first sampling. The second sampling 

209 was done 14 DPI and took three consecutive days to process. At each sampling time, 3 foliarly-

210 sprayed plants, 3 stem-injected plants, 3 soil-drenched plants, and 3 control plants were carefully 

211 uprooted (from each replicate) to avoid damage to roots using a sterilized garden spade and 

212 placed in plastic bags. The garden spade was dipped in 70% alcohol after each plant was 

213 uprooted. The plants were then transferred to the laboratory for examination of endophytic 

214 colonization by B. bassiana. The base of the plant was washed under running tap water to 

215 remove debris and soil while carefully avoiding destruction of root tissue. After washing, leaves 

216 were processed first followed by roots, and lastly the stems. 

217 The endophytic colonization evaluation method outlined by Greenfield et al. (2016) was 

218 followed. Leaves (60 mm), stems and roots sections were surface sterilized (McKinnon et al. 

219 2016) as described above. The outer edges of the tissues were dissected and discarded. Each 

220 trimmed sample was cut into six sections, averaging 6x6 mm for leaves and 6 mm long for stems 

221 and roots and plated on a 90 mm Petri dish with SDA supplemented with antibiotics (as 

222 described above). The Petri dish was sealed with parafilm and incubated in the dark at 25±5 °C. 

223 The last rinse water was changed after processing each block of a given treatment. Before 
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224 discarding the final rinsing water, a 100 μl sample was plated on SDA and incubated for 10 d at 

225 25±5 °C to assess sterilization success. Imprints as described above were also done to assess 

226 sterilization success. The plates were inspected for fungal growth every 2-3 d for 20 d. If fungal 

227 growth was detected, the corresponding samples were discarded. No fungal growth on the 

228 medium used for the imprint indicated that sterilization was successful. Each plant yielded six 

229 plates, two per plant part divided into proximal and distal parts as described in Fig. 1C. 

230 2.6. Growth of B. bassiana-treated sugarcane plants

231 The following sugarcane growth parameters were determined 16 DPI: number of healthy green 

232 leaves; sett roots and shoot roots; plant height; length of longest root (the distance in cm from 

233 plant base to the tip of the root); length of newly emerged leaves (the distance in cm from 

234 stem/leaf joint blade to the tip of the leaf); and wet and dry biomass. Plant height was measured 

235 from the soil surface to the tip of the stem. Dry weight was determined after oven-drying whole 

236 plant samples at 50°C for 72 h (Greenfield et al. 2016). 

237 2.7. Data analysis

238 Colonization was considered as the number of tissue parts showing B. bassiana growth in each 

239 Petri dish. We modelled the number of tissue part inoculated using a negative binomial 

240 regression model. The model was chosen because overdispersion was observed under Poisson 

241 distribution (sample mean of the outcome = 0.71, variance = 2.07, variance/mean ratio = 2.92). 

242 Inoculation method, sampling time and plant part were the predictors in the model. We included 

243 an interaction term of treatment sampling time (time 1 = 7-10 DPI; time 2 = 14-16 DPI) and 

244 plant part (plant part 1 = leaf distal; plant part 2 = leaf proximal; plant part 3 = stem distal; plant 

245 part 4 = stem proximal; plant part 5 = root distal; plant part 6 = root proximal) inoculated was 
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246 used to test if colonization in the different plant tissues differed with time. All plant growth data 

247 was subjected to general linear model multivariate procedures. Prior to analyses number of bud 

248 roots data were subjected to log10+1 transformation because positive skewness was observed. 

249 Tukey HSD test (p = 0.05) was used to separate significant means. Model estimation and 

250 multivariate analysis were performed in SPSS software version 24 (IBM® Corp. 2016).  

251 3. Results  

252 3.1. Evaluation of endophytic colonization

253 All three inoculation methods resulted in B. bassiana becoming established as an endophyte in 

254 sugarcane tissues. Fungal colonization levels differed significantly with inoculation method (χ² = 

255 20.112, d.f. = 2, p = 0.000), sampling time χ² = 11.187, d.f. = 1, p = 0.001) and plant part (χ² = 

256 33.072, d.f. = 5, p = 0.000). Foliar spray resulted in successful colonization of leaves and stems 

257 but not roots (Fig. 2).  When using foliar sprays, the highest mean number of leaves colonized by 

258 B. bassiana was recorded at 7-10 DPI in distal leaves (2.6±0.05) and at 14-16 DPI in distal parts 

259 of the stem (2.44±0.97). These were significantly (p = 0.000) higher than that in proximal leaf 

260 and stem (Fig. 2). Beauveria bassiana colonization of leaf tissues significantly (p = 0.000) 

261 decreased between 7-10 and 14-16 DPI (Fig. 2).  

262 Stem injections led to B. bassiana colonizing stems and leaves but not roots (Fig. 2), and 

263 colonization was significantly higher in proximal parts of stems at both 7-10 and 14-16 DPI 

264 (4.6±0.05) compared to distal stems (1.67±0.70) (Fig. 2). Beauveria bassiana also colonized 

265 leaves following stem injection but at significant (p = 0.000) lower levels than that in stems. 

266 Beauveria bassiana recovery in stems and leaves did not change over time (Fig. 2). 
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267  Soil drench inoculation resulted in successful colonization of roots, and there was no 

268 significant (p = 0.05) difference in the colonization of proximal and distal roots. The highest root 

269 colonization (1.6±0.05) was recorded 7-10 DPI and it was significantly (p = 0.01) higher than at 

270 14-16 DPI. Beauveria bassiana was also detected in stems following soil drenches only at 7-10 

271 DPI (Fig. 2).

272 Based on the negative linear regression analysis and irrespective of inoculation method, 

273 B. bassiana colonization was 2.8 times lower at 14-16 DPI than at 7-10 DPI (p = 0.020). Based 

274 on the same analysis, expectations of B. bassiana colonization level of sugarcane was higher 

275 than the observed B. bassiana colonization level for all factors tested (inoculation methods, plant 

276 parts, time). 

277 Beauveria bassiana was never recovered from control plants. Penicillium and Aspergillus 

278 were the only other fungi isolated from plants receiving stem injections and foliar sprays. 

279 3.2. Growth of B. bassiana-treated sugarcane plants

280 Plant growth data indicate that inoculation method affected plant height (F = 3.985; df = 3; p = 

281 0.013), number of sett roots (F= 6.762; df = 3; p = 0.01) and fresh weight (F= 6.430; df = 3; P = 

282 0.011). Plants in the foliar spray and soil drench treatments developed more sett roots than plants 

283 in the stem injection and control treatments (Table 1). The length of leaves and height of plants 

284 that had received stem injections or a soil drench were not significantly different from each other 

285 (Table 1). None of the plants showed any signs of disease.

286 4. Discussion

287 This study has demonstrated for the first time the ability of B. bassiana to endophytically 

288 colonize sugarcane roots, stems and leaves following foliar spray, stem injection and soil 
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289 drenching. Our results agree with Behie et al. (2015) who found that, unlike Metarhizium spp., B. 

290 bassiana does not display preferential tissue colonization. In addition, B. bassiana recovery was 

291 significantly higher in plants inoculated via foliar sprays and stems injections than soil 

292 drenching. Several papers have reported similar results (Quesada-Moraga et al. 2007; Tefera and 

293 Vidal 2009; Guesmi-Jouini et al. 2014; Russo et al. 2015; Jaber and Enkerli 2017). In a study 

294 involving coffee plants, soil drenching was a more effective way of introducing B. bassiana as 

295 an endophyte than foliar sprays (Posada et al. 2007). One possible explanation for this finding is 

296 that the leaf might be a poor route of entry for B. bassiana due to the absence of stomata on the 

297 adaxial (upper) surface and the presence of substances/structures on the leaf surface that may 

298 have negatively affected germination of conidia (Posada et al. 2007). In contrast to coffee plants, 

299 sugarcane has stomata on both sides of the leaf (Ferreira et al. 2007). Considering that spray 

300 droplets from foliar spray application may not totally cover the abaxial  leaf surface, the adaxial 

301 stomata are probably an important route of entry for the B. bassiana germination tube in sugar 

302 cane. However, the germinating conidium has to overcome a cuticular wax layer that may 

303 completely cover the sugarcane plant stomata (Ferreira et al. 2007). Use of stem injection as an 

304 inoculation method bypasses these physical hurdles. 

305 Drenching the soil with B. bassiana did result in root colonization. Beauveria bassiana 

306 persistence in root tissue did not result in systemic colonization of other sugarcane tissues, as has 

307 been reported for banana (Akello et al. 2007), sorghum (Tefera and Vidal, 2009), and red 

308 campion (Silene dioica; Yan et al. 2015). There was no statistical difference in B. bassiana 

309 establishment in distal and proximal part of the roots. This is in contrast with what Greenfield et 

310 al. (2016) reported for cassava roots. The following explanation could account for this 

311 difference. During the first weeks of sugarcane germination, the root system is comprised chiefly 
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312 of thin, hairy and highly branched sett roots arising from the root band and thick, fleshy, and less 

313 branched shoot roots (Smith et al. 2005). These roots are concentrated in the top 20 cm of soil 

314 (Blackburn, 1984). Using a pot experiment, Kim et al. (2010) found that within 18 d of soil 

315 inoculation, B. bassiana strain GHA growth was concentrated in the upper soil surface. In our 

316 study, both the proximal and distal portions of the roots were concentrated in the upper soil 

317 surface. In addition, we could not attribute the reason for the poor establishment of B. bassiana 

318 in roots following soil drenches to the presence of B. bassiana antagonists in the soil as 

319 suggested by Tefera and Vidal (2009), since the soil used in our experiment had been sterilized. 

320 Furthermore, no other endophytes were isolated from roots of plants inoculated by soil 

321 drenching.  Lastly, B. bassiana has been reported to have lower soil persistence when applied as 

322 unformulated conidia using the soil drench method (Vänninen et al. 2000).

323 Overall, the incidence rate of B. bassiana colonization of sugarcane decreased over time 

324 and significantly differed among sugarcane tissues irrespective of inoculation method. This 

325 observation is similar to previous findings in other crops such as maize (Renuka et al. 2016), 

326 crested wheat grass (Agropyron cristatum) (Inglis et al. 1993) and iceberg lettuce (Lactuca sativa 

327 cv. Mirette) (Shrestha et al. 2015). Dilution of initial fungal inoculum due to rapid plant growth 

328 (Inyang et al. 1998) may account for the low persistence of B. bassiana. We would expect B. 

329 bassiana persistence to be very low as the plant ages. Therefore, multiple applications may be 

330 required to ensure persistence in the first 5 months when the plant is established. 

331 Recovery of B. bassiana from the distal part of leaves, stems, and roots following foliar 

332 sprays, stem injections, and soil drenches indicate that B. bassiana was capable of some 

333 movement within the plant, as already reported for maize (Bing and Lewis 1991; 1992a, Wagner 

334 and Lewis 2000), coffee (Posada et al. 2007), tomato (Solanum lycopersicum) (Klieber and 
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335 Reineke 2015) and pine trees (Pinus radiate) (Lefort et al. 2016). Yan et al. (2015) found that 

336 fungal endophytes displayed very limited systematic growth within plants; the inoculated fungal 

337 endophyte remained localized in the plant part that had received the initial fungal treatment. This 

338 seems to be the case with sugarcane, where the level of B. bassiana recovered was significantly 

339 higher in the plant part that received the initial fungal inoculum. In maize, however, mycelial 

340 growth in xylem vessels was the main mechanisms in which the fungus applied on the leaves 

341 colonized the stem (Wagner and Lewis 2000; Cherry et al. 2004). 

342 It is important to note that fungal entomopathogen endophytism might induce plant 

343 responses that might have an effect on the plant, insects and/or plant pathogens (Cory and 

344 Hoover 2006; Gomez-Vidal et al. 2006; Cory and Ericsson 2010; Yan et al. 2015). If compounds 

345 involved in host plant resistance are induced, systematic colonization over long periods by an 

346 entomopathogenic fungus in a given plant tissue may not be essential for detrimental effects on 

347 insect pests. For instance, terpenoids are an integral part of the plant chemical defense system 

348 (Singh and Sharma 2015). Shrivastava et al. (2015) found that B. bassiana-inoculated tomato 

349 leaves significantly altered the plants’ terpenoid chemistry (α-phellandrenec, δ-2-carene, 

350 sabinene, and α-humulene) and a monoterpene (myrcene) was detected in B. bassiana-treated but 

351 not in control plants. Similarly, Gan et al. (2017) found that the concentration of carbon was 

352 significantly higher in roots of B. bassiana-treated tall fescue plants (Festuca arundinacea) 

353 compared to control plants. Therefore, even though the fungus might not be detected, induced 

354 plant responses might still be present. The effect of endophytic B. bassiana on sugarcane 

355 biochemistry and the possible interaction with other beneficial endophytes that colonize 

356 sugarcane (Rodrigues et al. 2016; Jaber and Ownley 2017) needs further investigation. 
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357 Inoculation method, inoculum concentration and host plant properties are important 

358 factors in evaluation of the effect of fungal endophytes as plant growth promoters (Jaber and 

359 Enkerli 2017). Several studies have reported enhanced plant growth following B. bassiana 

360 inoculation via foliar spray, soil drench, or seed immersion (Reddy et al. 2009; Gurulingappa et 

361 al. 2010; Lopez and Sword 2015; Jaber and Enkerli 2017). In our study, spraying the leaves and 

362 drenching the soil with B. bassiana did result in enhanced plant growth (number of sett roots). 

363 Sett roots play a significant role in the establishment of the sugarcane plant. In addition, growth 

364 of the primary shoot is significantly affected by the growth and functionality of the sett root 

365 system (Pankhurst et al. 2004; Blair and Stirling 2006). It will be worth investigating whether 

366 promotion of sett roots through foliar sprays and soil inoculation could confer inoculated plants 

367 an advantage to better withstand abiotic stresses such as drought during the germination phase 

368 especially in this era of changing climate and extreme weather variability. In terms of plant 

369 height, plants that had received stem injection were significantly shorter than control plants. 

370 Stem injection involved wounding of the stalk and this action could have affected plant health 

371 (Akello et al. 2007; Doccola and Wild 2012). However, according to Yan et al. (2015), an 

372 introduced fungal inoculum may interact with the host plant defense system. The results of this 

373 interaction could be beneficial or detrimental. For instance, B. bassiana inoculated into tall 

374 fescue negatively affected the ability of the plant to regrow after root herbivory infestation (Gan 

375 et al. 2017). In faba beans (Vicia faba), inoculating the plants with B. bassiana did not result in 

376 consistent growth promotion (Jaber and Enkerli 2017).  In-depth studies aimed at elucidating the 

377 mechanism responsible for enhanced plant growth need to be conducted. 

378 Foliar spray for endophytic establishment of B. bassiana could have a potential in 

379 sugarcane IPM programs since  B. bassiana is already known to be effective against arthropod 
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380 pests that infest sugarcane (Cherry et al. 2004; Tefera and Pringle 2004; Goble et al. 2012; Wu et 

381 al. 2014). In addition, the B. bassiana strain used in this study is commercially available and can 

382 be sprayed using conventional farm equipment (Legaspi et al. 2000), which would facilitate its 

383 use in sugarcane plantations. Future studies will focus on determining B. bassiana endophytism 

384 effects on sugarcane insect pests, interaction with host-plant’s endophytes and elucidating the 

385 mechanism responsible for enhanced plant growth.
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664 Figure legends 

665 Fig. 1. Sugarcane stem cutting with two buds (two-bud cane-sett) used in propagating sugarcane 

666 in this study (A).  Sugarcane plants growing in 10 L plastic buckets (B). Definition of proximal 

667 and distal in reference to sugarcane leaves, stems and roots used in this paper (C, D; photo 

668 credits: Blackburn 1984) 

669 Fig. 2. Mean number (± SE) of plant part pieces with B. bassiana isolate GHA recovered from 

670 sugarcane leaves, stems, and roots 7 and 14 d post-inoculation (DPI) following foliar spray (A), 

671 stem injection (B), or soil drench (C). Different letters above columns indicates statistical 

672 difference using negative binomial regression (p = 0.05).

673
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