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Abstract

We study numerically single bump solutions of a homogenized Amari equa-
tion with periodic microvariation. Two attempts are made to detect single
bumps that depend on the microvariable. The first attempt which is based on
a pinning function technique is applicable in the Heaviside limit of the firing
rate function. In the second attempt, we develop a numerical scheme which
combines the two-scale convergence theory and an iteration procedure for the
corresponding heterogeneous Amari equation. The numerical simulations in
both attempts indicate the nonexistence of single bump solutions that de-
pend on the microvariable. Motivated by this result, we finally develop a
fixed point iteration scheme for the construction of single bump solutions
that are independent of the microvariable when the firing rate function is
given by a sigmoidal firing rate function.
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1. Introduction

The Amari equation [1]

∂

∂t
u(x, t) = −u(x, t) +

∞∫
−∞

ω(x− y)f(u(y, t))dy (1)
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is one of the simplest nonlocal field models for the spatiotemporal variation
of the neural activity in cortical networks. Here u denotes the average neural
activity, ω the coupling strength (referred to as the connectivity function)
and f the firing rate function. The actual networks are modelled as a con-
tinuous sheet of neurons where the typical spatial and temporal scales of
the activity are assumed to be much larger than the corresponding neuronal
scales.

The model (1) as well as its modifications and extensions have been used
as starting points for the study of traveling waves and localized stationary
solutions (so-called bumps) and the stability of these coherent structures. A
common assumption made in such investigations is that the firing rate func-
tion is approximated with the unit step function (Heaviside function). This
is convenient from the mathematical point of view as one in that case can
find closed form analytical expressions for the traveling waves and the bump
solutions. One then carries out the corresponding stability assessment either
by a phase space reduction method involving the projection of the dynamics
of the full system onto a finite dimensional space in the crossing coordinates
between the bumps profiles and the threshold values (i.e. the so-called Amari
approach) or by means of full stability analysis (i.e. the Evans function ap-
proach). Moreover, even though no rigorous mathematical justification is
given, one tacitly assumes that the Heaviside limit of the firing rate function
produces results which represent a sensible approximation to the results ob-
tained in steep but continuous firing rate case. The special case consisting
of a one-to-one correspondence between the admissible threshold values and
the pulsewidth coordinates, leads to localized stationary solutions called a
single bump solution (or a 1-bump solution) of the model (1). The problem
of existence and uniqueness of these solutions has been studied together with
their linear stability. See for example Coombes [2] and Bressloff [3] and the
references therein.

The problem of deviation from the Heaviside limit of the firing rate func-
tion can be resolved in the case when the spectrum of the connectivity kernel
is a rational function. In that case the Amari equation (1) can be converted
to an ODE which possesses a Hamiltonian structure. The existence of bumps
is then resolved by means of standard techniques for such systems i.e. detect-
ing the homoclinic orbits of the system. See for example [4] and [5]. In the
general case with no specific assumptions imposed on the connectivity kernel,



existence of stationary solutions is proved using functional analytical tech-
niques (fixed point theorems) as well as their dependence on the steepness
parameter of the firing rate function is explored [6, 7, 8, 9]. For the purpose
of constructing the actual stationary solutions one has to rely on different
numerical schemes. Coombes et al. [10] has proposed an iteration scheme
for construction of single bump solutions of the Amari equation (1) in the
case of a sigmoidal firing rate function, without actually given any rigorous
justification of the approach. In Oleynik et al. [11] two iteration schemes
for constructing single bump solutions in the case of sigmoidal firing rate
function are proposed. A rigorous justification of the convergence properties
of these schemes is also given. The first scheme is a bumps width iteration
method which generalizes the method proposed in Coombes et al. [10] while
the second one is a fixed point iteration procedure based on Kishimoto et al.
[6]. In [7] the spatial domain is assumed to be bounded and the firing rate
functions sigmoidal. Here the fixed point structure of the stationary problem
is exploited in the numerical construction procedure for the bumps solutions.

The modelling framework (1) and many of its extensions presuppose that
the medium is homogeneous and isotropic. Hence one does not not take
into account the microscopic fine structure which obviously is present in the
cortex. Modelling of these effects is therefore important and has hence been
subject to much research effort in the the neuroscience community. See for
example Bressloff [3] and the references therein. One way of tackling the
coupling of macro- and microstructure problem in neural field models is by
using homogenization techniques [12, 13]. When the medium possesses a pe-
riodic microstructure, the homogenization results in an averaging over some
well identified microscale. In the neural field theory context the coupling
between periodic micro level structure of the cortex and nonlocal mean field
description has been investigated in the works [14, 15, 16, 18, 17, 19]. It
turns out that the detailed microstructure has an impact on pattern forming
mechanisms as well as existence and stability of traveling fronts and pulses.

Standard homogenization techniques consist of different type of perturba-
tion expansions (see for example Persson et al. [20] and the references
therein). Modern homogenization theory based on multi-scale convergence
theory represents an alternative and rigorous approach to this problem. It
yields efficient and rigorous methods for studying the coupling between the
microstructure and macroscopic levels. The multiscale technique was orig-



inally presented by Nguetseng [21]. A review of the method is given in
Lukkassen et al. [22].

In [23], [24] and [25] it is shown that the nonlocal neural field model

∂

∂t
uε(x, t) = −uε(x, t) +

∫
Ω

ω(x′ − x, x
′ − x
ε

)f(uε(x
′, t))dx′ (2)

converges to

∂

∂t
u(x, y, t) = −u(x, y, t) +

∫
Ω

dx′
∫
Y

dy′ω(x′ − x, y′ − y)f(u(x′, y′, t)) (3)

in the two-scale sense when ε → 0. Here x ∈ Ω ⊆ RN , t > 0. The con-

nectivity kernel ω by assumption is periodic in the second argument y =
x

ε
,

i.e. ωε(x) = ω(x,
x

ε
). A key feature in the derivation of (3) from (2) is the

exploitation of Visintin’s theorem on two-scale convergence of convolution
integrals [26]. This result enables us to get the correct limit of the convolu-
tion term in (2) as ε→ 0. Svanstedt et al. [24] construct the y-independent
single bump solutions of the homogenized equation (3) by using the pinning
function technique in the case of Heaviside step firing function. In the same
paper stability theory for these bumps is developed. Just as in the transla-
tional invariant case (1) intervals for which the pinning function is increasing
correspond to unstable bumps, while for the complementary regimes with a
decreasing pinning function the corresponding bumps are stable.

This serves as a background for the present paper.

In this paper we first of all give numerical evidence for the nonexistence
of y-dependent single bump solutions. We demonstrate this in two different
ways: First of all, we use a pinning function technique which generalizes the
method developed in Svanstedt et al. [24]. This method is applicable to the
case when the firing rate function is given by means of the Heaviside step
function. Secondly, we make use of a combination of the iteration method
for single bumps developed in Oleynik et al. [11] and the two-scale conver-
gence superposition method described in Visintin [26]. The latter method is
designed for constructing single bump solutions of the homogenized Amari



equation (3) in the case of the sigmoidal firing rate function. Then, as conse-
quence of these two attempts to construct single bumps of (3) with a nontriv-
ial variation in the local variable y, we embark on formulating a numerical
scheme for iterative construction of y-independent single bumps of (3).

We organize the present paper as follows: In Section 2 we present the sta-
tionary versions of the models (2) and (3) and the assumptions imposed on
the connectivity kernel and the firing rate function. Section 3 is devoted to
the two attempts to construct for y-dependent single bump solutions numer-
ically. In Section 4 we construct y-independent single bump solutions of (3)
by means of a direct iteration scheme. Section 5 contains the conclusions
and outlook.

2. The stationary heterogeneous and homogenous Amari models

The stationary versions of the heterogeneous and homogenized Amari
models are given as the fixed point problems

Uε(x) =

∞∫
−∞

ωε(x− x′)f(Uε(x
′))dx′ (4)

and

U(x, y) =

1∫
0

∞∫
−∞

ω(x− x′, y − y′)f(U(x′, y′))dx′dy′ (5)

respectively. The y-independent stationary solutions of the homogenized
Amari model (5) must satisfy the fixed point problem

U(x) =

∞∫
−∞

〈ω〉(x− x′)f(U(x′))dx′ (6)

where 〈ω〉 is the mean value of the connectivity kernel ω, i.e.

〈ω〉(x) =

1∫
0

ω(x, y)dy (7)



In the present work the connectivity kernel ω is assumed to be expressed in
terms of the scaling function ϕ and the synaptic footprint function σ, i.e.

ω(x, y) =
1

σ(y)
ϕ[

x

σ(y)
] (8)

where σ is given as

σ(y) = 1 + γ cos(2πy), γ ∈ [0, 1) (9)

The scaling function ϕ : R→ R is assumed to be spatially symmetric (ϕ[ξ] =

ϕ[−ξ]), absolute integrable (
∞∫
−∞
|ϕ[ξ]|dξ < ∞), continuous, bounded and

piecewise smooth. In this work the scaling function ϕ will be given as the
wizard hat function

ϕ(ξ) = e−|ξ|(1− α|ξ|), α > 0 (10)

and the difference of Gaussian functions

ϕ(ξ) = Ke−kx
2 −Me−mx

2

, K > M > 0, k > m > 0 (11)

Due to the properties of the scaling function ϕ and synaptic footprint func-
tion σ, the connectivity kernel ω satisfies the the same set of properties
as the scaling function ϕ: It is spatially symmetric w.r.t. first variable
(ω(−x, y) = ω(x, y)), absolute integrable on R for each y ∈ [0, 1], contin-
uous, bounded and piecewise smooth in (x, y).

The firing rate function f is assumed to be smooth, i.e. it satisfies the
following general properties

• f : R→ [0, 1],

• f ′ is continuous and bounded,

• f ′(u) > 0,

• lim
u→−∞

f(u) = 0, lim
u→+∞

f(u) = 1.



In the present paper we consider firing rate functions where derivative has
compact support, i.e. f(u) = 0 if u 6 0 and f(u) = 1 if u > τ with τ > 0:

f(u) =


0, u 6 0
φ(u), 0 < u < τ
1, u > τ

, (12)

where τ > 0, φ is an arbitrary smooth, monotonically increasing, and nor-
malized function with the additional property

φ(0) = 0, φ(τ) = 1.

We refer to the parameter τ as the smoothness parameter and the firing rate
function (12) as the sigmoidal firing rate function.

As an example of a firing rate function of the type (12) we have

f(u) =


0, u 6 θ

(u− θ)p

(u− θ)p + (1− (u− θ))p
, θ < u < θ + τ,

1, u > θ + τ

, (13)

where the parameter p is positive. Here θ plays the role as the threshold
value for firing of the neural activity.

When τ → 0, the firing rate function (12) approaches the Heaviside step
function H i.e.

f(u) = H(u− θ) =

{
0, u < θ
1, u > θ

, (14)

In Oleynik et al. [11] two iteration methods for constructing spatially sym-
metric single bump solution U(x) of the integral equation

U(x) =

∞∫
−∞

ω(x− x′)f(U(x′))dx′ (15)

were developed in the case of sigmoidal firing rate function (13). In that
paper the squeezing property observed in Kishimoto et al. [6] for stationary
solutions

Uτ (x) ≤ U(x) ≤ U0(x) (16)



was exploited in one of the iteration schemes referred to as the direct iteration
scheme. Here U0 and Uτ are solutions of (15) corresponding to the firing rate
functions f0 and fτ given as

f0(u) = H(u− θ), fτ (u) = H(u− (θ + τ)) (17)

Kishimoto et al. [6] and Oleynik et al. [11] refer to the model (15) with
the firing rate functions f0, fτ , and f as the f0−, fτ−, and f− field model,
respectively.

A notable feature which is analogous to the squeezing property (16) is that
the solutions Uε(x), U(x, y) and U(x) of (4), (5) and (6), respectively, with
the firing rate function given by (12) satisfies the squeezing property of the
Kishimoto–Amari type

U τ
ε (x) ≤ Uε(x) ≤ U0

ε (x) (18)

U τ (x, y) ≤ U(x, y) ≤ U0(x, y) (19)

U τ (x) ≤ U(x) ≤ U0(x) (20)

Here Uµ
ε , Uµ(x, y) and Uµ(x) ( with µ = 0, τ ) are stationary solutions of (4),

(5) and (6), respectively, with firing rate function given by (17). Just as in
Kishimoto et al. [6] and Oleynik et al. [11] we refer to the models (4), (5)
and (6) with the firing rate functions f0, fτ , and f as the f0−, fτ−, and f−
field models, respectively.

In Svanstedt et al. [24] the existence and stability of single bump solutions of
the homogenized Amari equation (6) were studied in the f0− case by means
of pinning function technique. Just as in Oleynik et al. [11] and in accor-
dance with the bounds (19) and (20) we can squeeze a single bump solution
in the sigmoidal case in between the known single bumps solutions Uτ and
U0. We will exploit this fact in the subsequent sections. In the present paper
we will give numerical evidence for the conjecture that any bump solution of
the homogenized Amari equation is independent of the local variable y i.e.
it satisfies (6).

3. Nonexistence of y-dependent solutions of the homogenized Amari
equation

In this section we demonstrate in detail the two attempts to construct
y-dependent solutions of (5). The first attempt is based on a generalization



of the pinning functions technique developed in Svanstedt et al. [24]. This
method is applicable to the case when the firing rate function is given by
means of the Heaviside step function (14). The second attempt is based on a
combination of the iteration method for single bumps developed in Oleynik
et al. [11] and the two-scale convergence superposition method described
in Visintin [26]. This method is designed for constructing the single bump
solutions of the homogenized Amari equation (6) in the case of the sigmoidal
firing rate function (13). Numerical experiments based in these two attempts
indicate that the single bump solutions are y-independent.

3.1. Bumps width method

Let us consider solutions of stationary problem (5) when the firing rate
function f is modeled by means of the Heaviside step function (14). The
solution U(x, y) is assumed to be symmetric with respect to first variable x,
i.e. U(−x, y) = U(x, y) for all x ∈ R, y ∈ R and 1-periodic in the variable y,
i.e. U(x, y) = U(x, y + 1) for all x ∈ R, y ∈ R. Due to the 1-periodicity of
U(x, y) in the y-variable it is only necessary to study the bumps construction
problem for y ∈ [0, 1).

For the sake of completeness we first recall the construction of single bumps
as outlined in Svanstedt et al. [24]. One starts out by assuming that there ex-
ists a unique ∆ > 0 such that the stationary solution U(x) satisfies U(∆) = θ.
∆ is referred to as the bumps width. Therefore, the stationary solution can
be written in terms of the pinning function W as

U(x) = W (∆− x) +W (∆ + x) (21)

where the pinning function is the antiderivative

W (L) =

L∫
0

〈ω〉(x)dx (22)

of the mean value 〈ω〉 defined by (7). The bump width ∆ can now be found
from the pinning condition

W (2∆) = θ (23)

Our aim is to generalize the pinning function technique of Svanstedt et al.
[24] by allowing the bump width ∆ to be y-dependent: ∆ = ∆(y). The



crossing condition between the bumps and the threshold value θ now reads

U(∆(y), y) = θ, y ∈ [0, 1) (24)

Since the firing rate function f is assumed to be modeled by means of Heav-
iside step function (14), we formally obtain the expression

U(x, y) =

1∫
0

∆(y)∫
−∆(y)

ω(x− x′, y − y′)dx′dy′ (25)

for the single bump solution. The next step consists of deriving the coun-
terpart of the pinning condition (24). We proceed as follows: Introduce the
anti - derivative Φ of the scaling function ϕ

Φ[η] =

η∫
0

ϕ[ξ]dξ (26)

The expression (25) can be rewritten as

U(x, y) =

1∫
0

F (σ(y − y′), x,∆(y′))dy′ (27)

where the integrand F is defined as

F (σ(z), x,∆(y′)) ≡ Φ
[∆(y′) + x

σ(z)

]
+ Φ

[∆(y′)− x
σ(z)

]
The pinning condition (24) now reads

1∫
0

F (σ(y − y′),∆(y),∆(y′))dy′ = θ (28)

The nonlinear Fredholm equation (28) serves as the starting point for deter-
mining the bumps width. Due to the dependency of function F on z = y−y′,
∆(y) and ∆(y′) in (28) standard numerical methods for solving nonlinear
equations (such as Euler’s method) are not applicable. Instead we proceed



as follows: We divide the unit interval [0, 1] into n equidistant subintervals
[y0, y1], [y1, y2], . . . , [yn−1, yn] where the partitioning points y0, y1, . . . , yn−1, yn
are given as y0 = 0, y1 = y0 + h,. . ., yn−1 = y0 + (n − 1)h, yn = 1, with the
stepping length h = 1/n. The integral on the left hand side of (28) is now
approximated my means of an ordinary Riemann’s sum i.e.

1∫
0

F (σ(y − y′),∆(y),∆(y′))dy′ '
n−1∑
i=0

F (σ(y − yi),∆(y),∆(yi))h

Then for each y = yj, (j = 0, 1, . . . , n − 1) we get the following system of n
nonlinear equations

n−1∑
i=0

F (σ(yj − yi),∆(yj),∆(yi)) · h = θ, for j = 0, 1, . . . , n− 1. (29)

for the determination of the sequence of bumps width values ∆0 ≡ ∆(y0),
∆1 ≡ ∆(y1), . . ., ∆n−1 ≡ ∆(yn−1).

In order to solve the system (29) numerically by means of MATLAB, we
define the initial guess which is required by the MATLAB Optimization Tool-
box for solving the system of nonlinear equations. The method for solving the
system of nonlinear equations is based on the trust region fsolve algorithm.
See Mor et al. [27] and the references therein for details. In our simulations
we have used very many different initial guesses ∆(0)(y) of the solution ∆(y)
such as

∆(0)(y) = A cos(a(y + c)) + C, (30)

∆(0)(y) = B sin(b(y + d)) +D, (31)

where A, a, B, b, C, c, D, d are arbitrary constants which do make ∆(0)(y)
1-periodic. In all the computations we fixate the number of intervals and
the stepping length in the discretization (29) to be n = 80 and h = 0.0125,
respectively. We also assume that θ = 0.15. Figs. 1 and 2 show the outcome
of the numerical simulations in the case of the scaling functions (10) and (11),
respectively. It turns out that the numerically obtained bumps width ∆(y)
remain constant in all the cases we have investigated within the error margins
in the numerical computation. We have chosen to approximate this constant
with ∆mean of the sequence ∆0 ≡ ∆(y0), ∆1 ≡ ∆(y1), . . ., ∆n−1 ≡ ∆(yn−1)



i.e.

∆(y) ≈ ∆mean =
1

n

n∑
i=0

∆i (32)

which is graphically depicted in Figs. 1 and 2. The same figures display the
numerical error εabs obtained in the computation i.e.

εabs = ∆max −∆min,

∆max = max
06i6n

∆i, ∆min = min
06i6n

∆i

(33)

The tables 1 and 2 summarize the error estimates obtained in the numerical
simulations, thus supporting the conjecture that the bumps width ∆ is in-
dependent of y in case of scaling functions (10) and (11), respectively. Here
the relative error εrel is defined as

εrel =
εabs

∆mean

(34)

Fig. 3 shows the variation of the bumps width ∆mean with the heterogeneity
parameter γ in case of scaling functions (10) and (11) for θ = 0.15. In Fig. 4
we compare the results for dependency of bumps width of the solutions of y-
dependent and y-independent fixed point problems (5) and (6), respectively,
on the heterogeneity parameter γ. Basically, we compare the Fig. 3a with
the result from Svanstedt et.al.[24], and see that the shapes of the curves
are the same, while the values of the parameter γ which correspond to the
switching from existence to nonexistence (green stars) are different. This
difference may be due to numerical errors since the value ∆ is plotted more
precise than ∆mean which is calculated as a mean value of the roots of the
system of n nonlinear equations. We do not pursue this issue, however, as
our aim was to support the conjecture that the bumps are y-independent.

3.2. The superposition method

In this section we look for y-dependent stationary solutions of the hetero-
geneous Amari equation (2) in case of the sigmoidal firing rate function (13),
i.e. we consider the solutions of the fixed point problem (4). We proceed
by using combination of the methods developed in Oleynik et al. [11] and
Visintin [26].
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Figure 1: The bumps width as a function of the local variable y for narrow (Fig. 1a) and
broad (Fig. 1b) bumps in the case of the scaling function (10). The number of intervals
and the stepping length in the discretization (29): n = 80 , h = 0.0125. Other input
data: γ = 0.5, θ = 0.15, α = 2. The absolute and relative errors are εabs = 2.72 · 10−8,
εrel = 2.79 · 10−7 (B = −0.7, b = 4π, d = 0.1, D = 1.1) and εabs = 3.12 · 10−9,
εrel = 9.46 · 10−9 (B = −0.3, b = 4π, d = 0.4, D = 0.8) for narrow and broad bumps,
respectively.
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Figure 2: The bumps width as a function of the local variable y for narrow (Fig. 2a) and
broad (Fig. 2b) bumps in the case of the scaling function (11). The number of intervals
and the stepping length in the discretization (29): n = 80 , h = 0.0125. Other input
data: γ = 0.5, θ = 0.15, K = 1.5, k = 2, M = 1, m = 1. The absolute and relative
errors are εabs = 3.86 · 10−4, εrel = 1.76 · 10−3 (B = 0.2, b = 2π, d = 0.4, D = 0.1) and
εabs = 1.91 · 10−9, εrel = 4.63 · 10−9 (B = 0.2, b = 4π, d = 0.2, D = 0.6) for narrow and
broad bumps, respectively.
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Figure 3: The bumps width ∆mean as a function of the heterogeneity parameter γ in the
case of the scaling function (10) with α = 2 (Fig. 3a) and the scaling function (11) with
K = 1.5, k = 2, M = 1, m = 1 (Fig 3b). The number of intervals and the stepping length
in the discretization (29): n = 80 , h = 0.0125. The threshold value: θ = 0.15.
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Figure 4: The width ∆mean of 1-bump solution of y-dependent fixed point problem (5)
as a function of the heterogeneity parameter γ – dashed line, and the width ∆ of 1-
bump solution of y-independent fixed point problem (6) as a function of the heterogeneity
parameter γ – bold line in the case of the scaling function (10). The green stars are
the merging points of narrow (blue) and broad (red) bumps widths. Input data: α = 2,
n = 80, h = 0.0125, θ = 0.15.



Table 1: The absolute and relative errors in the computation of the narrow and broad
bumps widths in case of the scaling function (10). Input data: n = 80, h = 0.0125,
θ = 0.15, α = 2.

Narrow bumps widths errors
B b d D εabs εrel ∆mean

-0.7 4π 0.1 1.1 2.72 · 10−8 2.79 · 10−7 0.0973
0.5 4π 0.3 1 1.44 · 10−10 1.48 · 10−9 0.0973
-0.8 4π -0.1 0.9 2.73 · 10−9 2.81 · 10−8 0.0973
0.8 2π 0.2 1.2 1.35 · 10−7 1.39 · 10−6 0.0973
0.9 2π 0.4 1.3 2.40 · 10−9 2.46 · 10−8 0.0973

Broad bumps widths errors
B b d D εabs εrel ∆mean

-0.3 2π 0.4 0.8 3.12 · 10−9 9.46 · 10−9 0.3298
0.4 2π 0.2 0.5 1.22 · 10−8 3.70 · 10−8 0.3298
-0.5 4π 0.5 0.9 8.15 · 10−9 2.47 · 10−8 0.3298
0.6 4π 0.6 0.7 1.00 · 10−8 3.04 · 10−8 0.3298
-0.6 4π 0.7 1.3 5.08 · 10−8 1.54 · 10−7 0.3298

It is easy to check that the connectivity kernel ωε satisfies the same proper-
ties as the connectivity kernel ω due to the properties of scaling function ϕ
and synaptic footprint function σ. This enables us to propose an iteration
method for constructing single bump solutions of (4) in a way analogous to
Oleynik et al. [11] for single bumps in (15).

We assume that the bump solution Uε is spatially symmetric and localized:
Uε(−x) = Uε(x) and Uε(±∞) = 0. Moreover, we assume that there exist
∆ > 0 and small δ > 0 such that

Uε(x) > θ, |x| < ∆− δ;

Uε(x) < θ, |x| > ∆ + δ
(35)

which means that the crossing condition Uε(x) = θ has at least one positive
solution. The equation (4) can now be expressed as

Uε(x) =

∞∫
0

rε(x, x
′)f(Uε(x

′))dx′, ε > 0



Table 2: The absolute and relative errors in the computation of the narrow and broad
bumps widths in case of the scaling function (11). Input data: n = 80, h = 0.0125,
θ = 0.15, K = 1.5, k = 2, M = 1, m = 1.

Broad bumps widths errors
B b d D εabs εrel ∆mean

0.3 2π 0.3 0.7 1.89 · 10−9 4.58 · 10−9 0.4124
0.1 2π 0.1 0.7 2.78 · 10−9 6.74 · 10−9 0.4124
0.2 4π 0.2 0.6 1.91 · 10−9 4.63 · 10−8 0.4124
0.4 4π 0.3 0.6 1.89 · 10−9 4.59 · 10−9 0.4124
0.2 2π 0.7 0.5 1.89 · 10−9 4.59 · 10−9 0.4124

Narrow bumps widths errors
B b d D εabs εrel ∆mean

0.5 2π 0.6 0.4 9.17 · 10−4 3.07 · 10−3 0.2702
0.6 4π 0.1 0.5 4.21 · 10−4 1.58 · 10−3 0.2667
0.2 2π 0.4 0.1 3.86 · 10−4 1.76 · 10−3 0.2190
0.6 2π 0.1 0.4 4.72 · 10−4 1.77 · 10−3 0.2667
0.5 4π 0.7 0.1 1.83 · 10−4 6.81 · 10−3 0.2680

where the integral kernel rε is defined as

rε(x, x
′) ≡ ωε(x− x′) + ωε(x+ x′) (36)

The construction of single bump solution of (4) proceeds in the following
way. First, we introduce f ε0−, f ετ−, and f ε− field models with output firing
rate functions f0, fτ , defined in (17), and f , defined in (13), respectively.

We denote U0
ε , U τ

ε , and U∗ε as the solutions of the f ε0−, f ετ−, and f ε− field
models, respectively. U0

ε intersects θ at ∆ε
0, i.e. U0

ε (∆ε
0) = θ, and U τ

ε inter-
sects θ + τ at ∆ε

τ , i.e. U τ
ε (∆ε

τ ) = θ + τ .

Due to the dependency of the parameter ε we also assume that the solu-
tion U τ

ε may intersect θ + τ more than one time. Let us define the values δ′



and δ′′ such that

U τ
ε (x) > θ + τ, if |x| < ∆ε

τ − δ′,

U τ
ε (x) < θ + τ, if |x| > ∆ε

τ + δ′,

U0
ε (x) > θ, if |x| < ∆ε

0 − δ′′,

U0
ε (x) < θ, if |x| > ∆ε

0 + δ′′

A single bump solution of the f ετ− field model can now be expressed as

U τ
ε (x) =

∆ε
τ−δ′∫
0

rε(x, x
′)dx′ (37)

Let us consider the equation (4). We check numerically if ∆ε
τ + δ′ < ∆ε

0− δ′′
and split the interval [0,∞) into the following three subintervals [0,∆ε

τ − δ′],
[∆ε

τ − δ′,∆ε
τ + δ′], [∆ε

τ + δ′,∆ε
0 − δ′′], [∆ε

0 − δ′′,∆ε
0 + δ′′], and [∆ε

0 + δ′′,∞).
The bump solution Uε can now be expressed as

Uε(x) =
∆ε
τ−δ′∫
0

rε(x, x
′)f(Uε(x

′))dx′ +
∆ε
τ+δ′∫

∆ε
τ−δ′

rε(x, x
′)f(Uε(x

′))dx′+

+
∆ε

0−δ′′∫
∆ε
τ+δ′

rε(x, x
′)f(Uε(x

′))dx′ +
∆ε

0+δ′′∫
∆ε

0−δ′′
rε(x, x

′)f(Uε(x
′))dx′+

+
∞∫

∆ε
0+δ′′

rε(x, x
′)f(Uε(x

′))dx′

Since Uε(x
′) > θ+τ for x′ ∈ [0,∆ε

τ−δ′], then due to the properties of the firing
rate function (13) f(Uε(x

′)) = 1 on the interval [0,∆ε
τ − δ′]. Since Uε(x

′) < θ
for x′ ∈ [∆ε

0 + δ′′,∞], then f(Uε(x
′)) = 0 on the interval [∆ε

0 + δ′′,∞].
Therefore, we obtain

Uε(x) =
∆ε
τ−δ′∫
0

rε(x, x
′)dx′ +

∆ε
τ+δ′∫

∆ε
τ−δ′

rε(x, x
′)f(Uε(x

′))dx′+

∆ε
0−δ′′∫

∆ε
τ+δ′

rε(x, x
′)f(Uε(x

′))dx′ +
∆ε

0+δ′′∫
∆ε

0−δ′′
rε(x, x

′)f(Uε(x
′))dx′

(38)
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Figure 5: The solutions U∗
ε of (4) in the case of the scaling function (10) (Fig. 6a) and the

scaling function (11) (Fig. 6b). Input data: ε = 10−5, γ = 0.5, θ = 0.1, τ = 0.05, p = 2,
α = 2, K = 1.5, k = 2, M = 1, m = 1.

and by taking into account (37) we get

Uε(x) = U τ
ε (x) +

∆ε
τ+δ′∫

∆ε
τ−δ′

rε(x, x
′)f(Uε(x

′))dx′+

∆ε
0−δ′′∫

∆ε
τ+δ′

rε(x, x
′)f(Uε(x

′))dx′ +
∆ε

0+δ′′∫
∆ε

0−δ′′
rε(x, x

′)f(Uε(x
′))dx′

(39)

In the whole procedure we check numerically the positiveness of the kernel
rε(x, x

′) for all intervals of integration and finally by iterating (39) with the
starting point (37) we find the solution U∗ε (x).

The next step in the iteration procedure consists of extending the solu-
tions U∗ε to functions defined on the product space R × [0, 1]. Figs. 6a and
6b display graphically the solutions U∗ε for the scaling functions (10) and
(11), respectively, for ε = 10−5.

We will now describe a method for constructing solutions U(x, y) of (4) by



means of U∗ε (x). This procedure is based on the two-scale convergence intro-
duced by Nguetseng [21] and the technique suggested by Visintin [26].

Let Y = [0, 1). We say that a sequence {uε} ∈ L2(R) two-scale converges to
u ∈ L2(R× Y ) if

lim
ε→0
{
∫
R

uε(x)ϕ(x,
x

ε
)dx} =

∫∫
R×Y

u(x, y)ψ(x, y)dxdy

for any smooth function ψ : R × R → R that is 1-periodic with respect to
the second argument. In this case, we will conventionally write uε →

2
u.

This convergence is crucial for obtaining the homogenized system (3) (see
[23, 24, 25]). However, any numerical analysis of this convergence is a non-
trivial task, and to the best of our knowledge this problem has not yet been
explored. Below we suggest a numerical algorithm which is based on a more
conventional convergence.

We proceed as follows: For any ε > 0, introduce the number N and the
function Sε : R× Y → R defined as

N (x) := max{n ∈ Z : n 6 x}, x ∈ R
Sε(x, y) := ε(x/ε) + εy, ∀(x, y) ∈ R× Y, ∀ε > 0

According to [26] we have the following equivalence

Uε →
2
U in Lp(R× Y ) ⇔ Uε ◦ Sε → U weakly in Lp(R× Y ) (40)

to find the 1-periodic extension U(x, y) of the function U∗ε (x). Here Uε ◦
Sε(x, y) = Uε(Sε(x, y)).

By using the iteration scheme developed in [11] we obtain numerically the
vector Uε(x). The difficulty of the numerical simulations consists of finding
the superposition U∗ε (x) ◦ Sε(x, y) since U∗ε (x) is found as a vector. Here we
outline the numerical method for solving this problem.

We proceed as follows:

• Find explicitly the matrix Sε(x, y) for x ∈ [−xst, xst], y ∈ [0, 1] with
step h.



• Find the extended matrix Sextε (x, y) for [−xst − x0, xst + x0], y ∈ [0, 1)
with smaller step h/k, k ∈ N, k > 1.

• Find the matrix Index which consists of the indexes of the elements of
the matrix Sε in the matrix Sextε .

• Find a matrix U ext
ε by using the iteration formula (39) which consists

of the columns U ext
εj for x = Sextεj , where Sextεj is column j in the matrix

Sextε .

• Select the elements from the matrix U ext
ε only with the indexes from

Index matrix.

• Get the matrix U which is numerical superposition of the U∗ε (x) and
Sε(x, y).

To show that our method works, we apply it to the example of the super-
position of connectivity kernel ωε in the case of the scaling function (10)
and Sε(x, y) which we can find either explicitly by plotting the composition
ωε(Sε(x, y)) or implicitly by using the superposition method. The results
are shown in the Fig. 6 for ε = 10−4. The next step in the construction
procedure consists of finding the numerical superposition Uε(x) and Sε(x, y)
for the connectivity kernels (10) and (11).

The Figs. 7a and 7b in the case of wizard hat scaling function (10) and
the difference of Gaussian scaling functions (11), respectively, show that the
solutions U(x, y) do not change with the local variable y. This supports
numerically the hypothesis that the bump solutions are y-independent.

4. Iteration scheme for bump solutions of the homogenized Amari
equation

The previous sections give numerical evidence for nonexistence of y-
dependent stationary solutions. This indicates that the homogenized Amari
model (3) plays a key role in the study of bump solutions. Motivated by this,
we embark in this section on formulating an iteration scheme for construction
of single bump solutions of this model. The numerical procedure is based on
a modification of the scheme developed in Oleynik et al. [11].



(a) (b)

1

Figure 6: The superposition ωε(x) ◦Sε(x, y) implicitly (a) and explicitly (b) in the case of
the scaling function (10). Input data: α = 2, γ = 0.5, ε = 10−4.

We first observe that the mean value of the connectivity kernel 〈ω〉 satis-
fies the same properties as the connectivity kernel ω due to the properties of
the scaling function ϕ and footprint function σ. Fig. 8 shows the mean value
of the connectivity function 〈ω〉 for different parameters γ: γ = 0, γ = 0.3,
γ = 0.5, γ = 0.7 in the cases of the scaling functions (10)– (a) and the scaling
function (11) – (b).

We then investigate the existence/nonexistence of the single bump solutions
U0 and U τ of the f0− and fτ− model, respectively. We proceed by using the
pinning function technique developed in Svanstedt et al. [24]. The graph of
the pinning function (23) for different values of heterogeneity parameter γ is
depicted in the cases of the scaling function (10) (Fig. 9a) and the scaling
function (11) (Fig. 9b). We observe that the interval of existence of single
bumps is decreasing when we increase the heterogeneity. Numerically, we
observe that for fixed values of θ and γ there is a τ -interval, say [0, τcr], for
which we have two single bump solutions. Fig. 9 shows a plot of τcr for some
selected values of heterogeneity parameter. For τ > τcr there are no bumps.
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Figure 7: The superposition of the U∗
ε (x) ◦Sε(x, y) in the case of the scaling function (10)

- (a) and the scaling function (11) - (b). Input data: ε = 10−5, γ = 0.5, θ = 0.1, τ = 0.05,
p = 2, α = 2, K = 1.5, k = 2, M = 1, m = 1.



We have plotted the number of single bump solutions as a function of the
smoothness parameter τ and the heterogeneity parameter γ in the cases of
the scaling function (10) (Fig. 10a) and the scaling function (11) (Fig. 10b).
This plot reveals that the τ -interval for existence of single bump solutions
decreases with the degree of heterogeneity.

We now assume that the smoothness parameter τ and the heterogeneity
parameter γ are designed in such a way so that single bump solutions U0

and Uτ of the f0− and fτ− field model exist, i.e. that (τ, γ) belongs to dark
green regions in Fig. 10. By assumption this means that U0 and Uτ have
unique positive intersection points with the threshold values θ and θ + τ in
∆0 and ∆τ , respectively, i.e. U0(∆0) = θ, Uτ (∆τ ) = θ + τ . We now observe
that if the equation (6) has a spatially symmetric stationary solution U∗, it
satisfies the fixed point problem

U∗ = TfU
∗ (41)

where

(TfU)(x) = Uτ (x) +

∆0∫
∆τ

r(x, x′)f(U(x′))dx′, (42)

with the integral kernel r defined as

r(x, x′) ≡ 〈ω〉(x− x′) + 〈ω〉(x+ x′) (43)

In accordance with the squeezing result (20), we have the Kishimoto–Amari
type of bound

Uτ (x) ≤ U∗(x) ≤ U0(x) (44)

In order to construct the single bump solution U∗ of f− field model with
this property, we first make use of the following result which we easily derive
by making a slight modification of the fixed point theorem in Oleynik et al.
[11] which we here present without proof:

Theorem 1. Let the operator Tf : [Uτ , U0] ⊂ B → B be defined by (42),
where B is chosen to be either L2([∆τ ,∆0]) or C([∆τ ,∆0]). Assume that
r(x, x′) ≥ 0 for x, x′ ∈ [∆τ ,∆0]. Then the operator Tf has a fixed point in
[Uτ , U0]. Moreover, the sequences {T nf Uτ} and {T nf U0} converge to the mini-
mal and maximal fixed point of the operator Tf , respectively. If lim

n→∞
T nf Uτ =

lim
n→∞

T nf U0, then the fixed point is unique and given by U∗.



Notice that this theorem yields the single bump solution U∗ restricted to
the interval [∆τ ,∆0]. The next step in the iteration procedure consists of
extending this solution to the whole x-axis. Following Oleynik et al. [11], we
do this in the following way: Introduce the function

Φ(x, x′) =

x′∫
0

1∫
0

r(x, z)dz, x, x′ ∈ R, x′ > 0, (45)

with

∂Φ

∂x
(x, x′) =

1∫
0

1

σ(y)

(
ϕ[
x′ − x
σ(y)

]− ϕ[
x′ + x

σ(y)
]
)
dy.

The following theorem guarantees that we can do the desired extension to
the whole real axis:

Theorem 2. If

1. U0 is a decreasing function on the interval [∆τ ,∆0], i.e.

∂Φ

∂x
(x,∆0) < 0, ∀x ∈ [∆τ ,∆0]

and Uτ is a decreasing function on the interval [∆τ ,∆0], which is equiv-
alent to

∂Φ

∂x
(x,∆τ ) < 0, ∀x ∈ [∆τ ,∆0],

2. ∫ ∆0

∆τ

∣∣∣ ∂
∂x
〈r〉(x, x′)

∣∣∣dx′ < ∂Φ

∂x
(x,∆τ ), ∀x ∈ [∆τ ,∆0],

3. the function Φ possesses the following properties

• Φ(x, z) 6 θ ∀x > ∆0, z ∈ [∆τ ,∆0]

• Φ(x, z) 6 θ + τ ∀x > ∆τ , z ∈ [∆τ ,∆0]

then the fixed point U∗ defined on the interval [∆τ ,∆0] can be extended to a
bump solution U(x) of (6) defined on R such that U(x) > θ + τ ∀x ∈ [0,∆τ ]
and U(x) < θ ∀x ∈ (∆0,∞).
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Figure 8: The mean value of the connectivity kernel ω in the case of the scaling function
(10) – (a) and the scaling function (11) – (b) for different values γ. Input data: α = 2,
K = 1.5, k = 2, M = 1, m = 1, γ = 0, γ = 0.3, γ = 0.5, γ = 0.7.

We omit the proof of this result.

If 〈ω〉(∆0) < 0, then W (L, γ) is decreasing. Then there exists τ > 0 such
that W (2∆τ ) = θ + τ (∆τ < ∆0), and therefore a 2∆τ− solution. Since
there is a 2∆0− solution of the f0− field model, i.e. Φ(∆0,∆0) = θ then
there exists a value τ > 0 such that Φ(∆τ ,∆τ ) = θ + τ for ∆τ < ∆0.

Numerically we can check that the conditions of Theorem 1 and Theorem 2
are verified in the cases of the scaling function (10) and the scaling function
(11).

In Figs. 11b and 12b we have plotted U∗ on the interval x ∈ [∆τ ,∆0]
obtained by iteration from U0 and Uτ when f is given as in (13) for differ-
ent values of the heterogeneity parameter. We clearly observe that U∗ is
bounded in-between from below by Uτ and from above by U0 on the interval
x ∈ [∆τ ,∆0]. In Figs. 11a and 12a we extend these solutions to the whole
x-axis.
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Figure 9: The pinning function (23) for different values of the heterogeneity parameter γ
with corresponding critical values of the smoothness parameter τ in the case of the scaling
function (10) - (a) and the scaling function (11) - (b). Input data: α = 2, K = 1.5, k = 2,
M = 1, m = 1, p = 2, θ = 0.1, γ = 0, τcr = 0.1130, γ = 0.5, τcr = 0.0925, γ = 0.7,
τcr = 0.0709, γ = 0.95, τcr = 0.0329, γ = 0, τcr = 0.0891, γ = 0.3, τcr = 0.0812, γ = 0.5,
τcr = 0.0667, γ = 0.7, τcr = 0.0440.
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Figure 10: The number of single bump solutions as a function of smoothness parameter
τ and the heterogeneity parameter γ for a given threshold value θ: a) in the case of the
scaling function (10) and b) the scaling function (11). Input data: θ = 0.1, α = 2, K = 1.5,
k = 2, M = 1, m = 1.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

 

 
Uτ (γ=0)

U
0
 (γ=0)

U* (γ=0)
Uτ (γ=0.7)

U
0
 (γ=0.7)

U* (γ=0.7)

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

x

 

 
Uτ (γ=0)

U
0
 (γ=0)

U* (γ=0)
Uτ (γ=0.7)

U
0
 (γ=0.7)

U* (γ=0.7)

(b)

1

Figure 11: The functions Uτ , U0, U∗ as solutions of the fτ−, f0− and f− field model,
respectively, in the case of the scaling function (10). Input data: α = 2, p = 2, θ = 0.1,
τ = 0.05, γ = 0, γ = 0.7.
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Figure 12: The functions Uτ , U0, U∗ as solutions of the fτ−, f0− and f− field model,
respectively, in the case of the scaling function (11). Input data: K = 1.5, k = 2, M = 1,
m = 1, p = 2, θ = 0.1, τ = 0.05, γ = 0, γ = 0.5.



5. Conclusions and outlook

The present paper is devoted to numerical construction of single bump
solutions of the homogenized Amari model for steep firing rate functions and
their Heaviside limit.

First, we have demonstrated in detail two attempts to construct solutions
of (5) which exhibit a variation in the local variable y. The first attempt
was based on an extension of the pinning functions technique developed in
Svanstedt et al. [24]. This method is applicable to the case when the firing
rate function is given by means of the Heaviside step function (14). In the
second attempt we made use of a combination of the iteration method for
single bumps developed in Oleynik et al. [11] and the superposition method
outlined in Visintin [26]. This method was designed for constructing the
single bump solutions of the homogenized Amari equation (3) in the case of
sigmoidal firing rate function (13). Numerical experiments based on these
attempts clearly indicated that the single bump solutions do not exhibit a
variation with the local variable y. This gave support to the idea that the
homogenized model (3) should crucial play a role in the theory and should
be the focus of the study.

As a consequence, we developed an iteration scheme for constructing sin-
gle bump solutions of (6) in the case of sigmoidal firing rate function (13)
based on Oleynik et al. [11]. The actual bumps U∗ are bounded by two
single bump solutions U τ and U0 in the f0− and fτ− field model of (6) by a
Kishimoto–Amari type of bound (44). U0 and U τ are constructed by means
of the pinning function technique from Svanstedt et al. [24]. We detected re-
gions of existence/nonexistence of U0 and U τ as a function of the smoothness
parameter τ and the heterogeneity parameter γ. The plot (10) reveals that
the τ -interval for existence of single bump solutions decreases with the degree
of heterogeneity. The construction of U∗ was then carried out by means of
fixed point iteration scheme based on Oleynik et al. [11].

In our future work we aim at rigorous studying the existence of single bump
solutions of (5) from a mathematical perspective. We conjecture that this
problem can be tackled by using techniques from nonlinear functional analy-
sis and the degree theory. In line with that we will investigate the possibility
of developing an iteration scheme for the fixed point problem (5) for more



general firing rate functions.
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