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ABSTRACT 

A question has been raised in recent years as to whether the risk field, including analysis, 

assessment and management, ought to be considered a discipline on its own. As suggested by 

Aven (2012), unification of the risk field would require a common understanding of basic 

concepts, such as risk and probability; hence, more discussion is needed of what he calls 

‘foundational issues’. In this paper, we show that causation is a foundational issue of risk, and 
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that a proper understanding of it is crucial. We propose that some old ideas about the nature of 

causation must be abandoned in order to overcome certain persisting challenges facing risk 

experts over the last decade. In particular, we discuss the challenge of including causally relevant 

knowledge from the local context when studying risk. Although it is uncontroversial that the 

receptor plays an important role for risk evaluations, we show how the implementation of 

receptor-based frameworks is hindered by methodological shortcomings that can be traced back 

to Humean orthodoxies about causation. We argue that the first step toward the development 

of frameworks better suited to make realistic risk predictions is to re-conceptualize causation, by 

examining a philosophical alternative to the Humean understanding. In this paper, we show how 

our preferred account, causal dispositionalism, offers a different perspective in how risk is 

evaluated and understood. 

KEY WORDS: Local knowledge; causation; risk assessment; norms; practice 
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1. INTRODUCTION 

Risk is traditionally treated as a discipline-specific matter, requiring different tools and 

approaches depending on the area of application. In recent years, however, it has been suggested 

that risk fields, including analysis, assessment and management, ought to be considered a 

discipline on its own (Aven & Kristensen, 2005). Aven urges that in order to develop the risk field 

as a discipline, we should aim for a common scientific platform and common concepts (Aven, 

2012). This, however, requires more discussion about what he calls foundational issues, for 

instance about the concepts of risk or probability. 

A reason why such discussions are important when dealing with risk is offered in a recent paper 

by Rocca and Andersen, where they show how scientific disagreements about risk evaluations 

can arise also in cases where there is empirical agreement over the available data (Rocca & 

Andersen, 2017). When scientists disagree, not over facts, but over their implications, this 

suggests that their conclusions are based on premises that are not stated explicitly. The example 

discussed by Rocca and Andersen shows how different understandings of complexity led to 

different risk evaluations over stacked genetically modified plants in cases when the individual 

genetically modified plants had already been assessed and found safe. Once these implicit 

assumptions are made explicit and subject to open and critical discussion, the debate can move 

forward. 

In this paper, we argue that causation is a foundational issue of risk. A proper understanding of 

causation is thus crucial for risk analysis, risk assessment and risk management. When seeking to 

identify which exposures contributed causally to a harm, or predict potential harms from an 

exposure, we are dealing with causal matters. How we understand causation will therefore 

influence how risk is understood and predicted. This is a conceptual or even ontological 

discussion, and ought to be philosophically informed (Anjum, 2016; Eriksen, Kerry, Mumford, Lie, 

& Anjum, 2013). 

Recently, it has been proposed that the risk field can only advance if we abandon some old ideas 

and adopt some new ones (Sexton, 2015). Here we propose that something that should be 

abandoned are some standard ideas about the nature of causation, and that this can help us 

overcome certain persistent challenges facing risk experts in the last decade. In particular, we 

discuss the challenge of including causally relevant knowledge from the local context when 

studying risk. Although it is uncontroversial that the receptor plays a crucial role for risk, we show 

that the implementation of receptor-based risk assessment frameworks is hindered by 

methodological shortcomings that can be traced back to an orthodox view of causation. As we 

will see, although this orthodoxy has been criticized by a number of contemporary philosophers, 

standard scientific thinking has been resilient to revising its most fundamental assumptions. 
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2. WHAT IS LOCAL KNOWLEDGE? 

Traditionally, scientific risk assessment is described as consisting of a first phase in which the 

potential hazards are identified, followed by an analysis of the likelihood that each hazard 

actually provokes harm. The aim of such assessment is to gain some general understanding about 

the causal potential of a certain stressor. One might for instance assess whether a pollutant can 

cause a harmful effect in a variety of experimental and observational contexts, and investigate 

the dose-effect relationship. The next step is to evaluate the significance of this potential in a 

particular population or context. For this evaluation, it is critical to consider levels of exposure, 

vulnerability of the exposed system, relevant conditions, and so on, of the local context. 

We should note, then, that local context is crucial for risk assessment in two ways. The first is 

that causal inferences concerning hazards are drawn from multiple evidence, collected under 

specific contexts: experimental animals (e.g. toxicology), exposed individuals (e.g. 

pharmacovigilance), communities (e.g. epidemiology), population (e.g. experimental trials) or 

ecosystems (e.g. ecology). Secondly, these data are then used to make evaluations and 

predictions for different contexts, for instance about the impact of a certain hazard on a specific 

individual, economy, workplace, area, community or ecosystem. As such, local-level evidence and 

knowledge is ubiquitous in the process of risk assessment, both in generating causal knowledge 

and in applying it. We thus define local knowledge as all the available information about (i) the 

specific settings from which the causal inferences are drawn, and (ii) the contexts to which the 

causal inferences are applied. 

Consider an example. Suppose we want to assess whether the intensive use of neonicotinoids in 

agricultural practices can have a causal role in the decline of honeybee colonies. This could be 

investigated using lab toxicological tests, in which single honeybees are exposed to field-realistic 

dosages of insecticide. We could also perform chronic feeding tests using entire colonies in the 

field. In the first case, local knowledge would include dosage of the insecticide, lab conditions 

and variables linked to the tested bees, such as their genetics and health conditions. In the second 

case, we would need to include additional knowledge concerning the tested bee community, 

such as local fauna, landscape, nutritional availability, feeding habits, pathogens or exposure to 

other chemicals. If the experimental data show a slight impact of neonicotinoids exposure on 

honeybee health, we might want to see how this potential hazard applies to a specific intensive 

agricultural area. We could then perform a long-term observational study on the beehives 

surrounding the area. In this case, we should extend local knowledge to include also the patterns 

of exposure, interactions between the insecticide and local factors, interactions within the bee 

community and with the human communities, bee-keeping practices, et cetera. 



5 
 

What counts as relevant local knowledge will therefore depend on the overall aim of the risk 

assessment process. Specifically, it depends on the type of evidence we analyze, the level of 

complexity and the question addressed. 

 

3. LOCAL KNOWLEDGE AND RISK ASSESSMENT: PERSISTENT CHALLENGES 

The importance of local knowledge for risk assessment has been stressed increasingly over the 

last decades, especially for environmental risk (Gallagher et al., 2015; Løkke, 2010; Williams, 

Dotson, & Maier, 2012). One has moved beyond the assessment of single stressors, outcomes, 

sources and pathways, acknowledging the crucial role of interactions between stressors and 

environmental factors for the insurgence of harmful effects in complex systems (Sexton, 2015). 

Improved risk assessment frameworks are developed explicitly to meet the challenge of 

evaluating the combined harms from co-exposure to multiple stressors, including chemicals, 

biological, physical and psychosocial entities. The Cumulative Risk Assessment (CRA) framework, 

for instance, was proposed by US EPA with the purpose of making risk assessment ‘more reliable, 

realistic and relevant’(U.S. EPA, 2003). One significant novelty in CRA and similar frameworks was 

that they promoted community-level, local-based risk assessment (Callahan & Sexton, 2007). 

Official agencies and scientists recognized the importance of focusing on the receptors, and not 

only the chemical, in order to uncover local processes of harm and time-dependent pathways of 

toxicity. Overall, more emphasis was placed on high-level, social interactions that can amplify or 

hinder the effect of a particular stressor, opening up to a multi-disciplinary process of risk 

assessment. This would include collaborations with social scientists and anthropologists 

(Checker, 2007; Dendena & Corsi, 2015). 

Researchers from environmental toxicology, immune-toxicity, social science and anthropology 

have urged that genuinely complex phenomena cannot be studied through isolation of causal 

factors (Abolins et al., 2017; Mesnage et al., 2013; Moretto et al., 2017; Peterson et al., 2003; 

Sawyer & Loja, 2015; Seok et al., 2013; Suryanarayanan, 2013). 

US EPA stated in 2003 that conventional risk assessment needs to advance to include qualitative 

data, evidence about combined effects, non-chemical stressors and realistic analyses of exposed 

scenarios (U.S. EPA, 2003). Although some progress has been made in this direction, a definite 

approach has not yet been developed. Not only are risk assessment processes still judged as 

inefficient, but there are also more alarming concerns that ‘a single unified and comprehensive 

approach might not be practical, given this complexity’(Moretto et al., 2017). We now present 

briefly some of the practical challenges that remain unsolved. 

How to study causal complexity and interactions through separation, isolation and addition. 

Current approaches for assessing potential risks from exposure to multiple chemicals prefer 
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‘whole mixture methods’. Indeed, the most accurate way to account for complex interactions, 

such as synergism and inhibition, as well as for unidentified components, is to assess the toxicity 

of the whole mixture (Boobis et al., 2011; Callahan & Sexton, 2007). However, this approach is 

often unfeasible. In real world conditions, the variety of exposure to different types of mixtures 

is enormous (Løkke, 2010). This forces us to simplify the assessment of toxicity by studying 

separate chemicals and stressors, and then to combine them following an approximate model. 

Effectively, this involves an adoption of the principle of additivity as the default assumption. That 

is, the toxicity data of different chemicals are assumed to combine in an additive way, thereby 

excluding the possibility of toxicodynamic interactions, such as synergistic effects. We see this in 

the recent framework of RISK21, which applies the additivity assumption to chemicals with 

common mechanism of toxicity and low levels of exposure, compatible with real-world 

situations, in order to identify a ‘threshold of toxicological concern’ for every specific mixture 

(Moretto et al., 2017; Solomon et al., 2016). The problem is that this perpetuates the danger of 

overlooking potential synergistic effects, thus under-estimating the total toxicity of low exposure 

to multiple chemicals, which was exactly the type of problem that these risk frameworks aimed 

to overcome in the first place. To this date, the effects of interactions also at low concentrations 

remains a subject of uncertainty (Boobis et al., 2011).1 

How to study all relevant causal knowledge through quantitative approaches and measurements. 

Receptor-based approaches should start from a thorough characterization of the local context 

for which the risk is evaluated. Such extensive analyses can produce multiple lines of evidence, 

including qualitative data. These are usually descriptive, and aim to uncover the unique 

characteristics of certain cases by finding the stories behind a particular person, household or 

community. For the purpose of local-level risk assessment, qualitative methods might have an 

epistemological advantage because they allow us to study a local community over time and in 

detail, including information about local population, their lifestyle, health, diet, occupation, 

culture, as well as environmental factors. Moreover, qualitative approaches often focus on 

identifying how the analysis can be affected by the context in which it is carried out. Typically, 

these approaches emphasize the deep understanding of a single case, rather than the 

comparison of many cases. A story reported by Checker from a low-income African-American 

neighborhood might illustrate the dangers of excluding such knowledge: “…in collecting surface 

soil samples, testers had actually sampled new dirt that residents had imported and put over 

their old, contaminated dirt… ‘They sent out some people to do that testing out here and they 

scooped a little bit of dirt with spoons on the ground. Hey, I done put dirt on top of dirt trying to 

get rid of the floods and things we been having out here for years’”(Checker, 2007). This might 

                                                           
1 A large meta-study from 2011 found studies indicating that synergistic interactions at low concentrations are unlikely to occur. 
However, the studies focusing on low concentrations were very few and short-term, performed on animal models. Because of 
the scarcity of evidence, the authors of the study concluded that it is ‘too early to draw firm conclusions, particularly for 
cumulative and low level chronic exposures’ (Boobis et al. 2011, p. 381). 
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seem like a trivial example of bad practice that could easily be avoided. However, no framework 

has so far been able to genuinely integrate socio-anthropological narrative data with quantitative 

indicators of environmental risk. Factors linked to host, life-style and environment are 

acknowledged in the RISK21 framework to modulate the toxic effect of chemical stressors; yet, 

such modulators should only be included ‘if deemed necessary… and the number of variables to 

consider should be kept to a minimum’(Solomon et al., 2016). While it is recognized that such a 

study requires ‘additional types of scientific expertise’, because of practical constraints, it also 

demands a ‘rigorous methodology for a clear delimitation of the analysis so that it is manageable 

and provides meaningful and applicable results’(Solomon et al., 2016). By demanding such 

restrictions in order to enable parameter quantification, the challenge remains how not to lose 

crucial information provided by the case studies. 

How to predict propensities using statistics and probability theory. Predictions about risk in 

specific cases are typically probabilistic and informed by statistical data. How to understand 

probability, however, is a controversial issue in philosophy, as well as in the risk field (Aven & 

Reniers, 2013; Flage, Aven, Zio, & Baraldi, 2014). We can illustrate the conceptual tension within 

probability theory with an example from medicine. Suppose a doctor is evaluating whether to 

give a certain medicine to a child. This would involve an estimate also of the child’s risks of 

undesired effects of the medicine. In doing this, the doctor will consider the statistical evidence, 

both for targeted and untargeted effects. But she will also have to assume that the dispositions 

of the medicine to produce benefits and harms are not purely statistical matters, but caused by 

some intrinsic properties of the molecule. For instance, the medicine can bind a specific receptor, 

interact with certain hormones or be metabolized by the liver. Similarly, the susceptibility of the 

patient to be harmed depends on some intrinsic characteristics, if he carries a rare mutation in 

that specific receptor, or a liver impairment. In other words, the risk of harm (and benefit) 

depends on intrinsic propensities of the specific combination drug - patient. Probabilistic and 

statistical data, on the other hand, are simply mapping the outcomes of drug - patient 

interactions in a population. Such data might be indicative of the propensities of the specific 

patient, but this cannot be the default assumption. For instance, a patient with a point mutation 

in the gene POLG, which codes for the mitochondrial protein DNA polymerase γ, will have a high 

propensity to develop fatal liver failure as a secondary effect of the anti-epileptic drug valproic 

acid (Stewart et al., 2010). However, this mutation is rare and therefore not easily detectable 

using statistical data from the general population, or even specific sub-populations. In order to 

arrive at the hypothesis of a link between the genetic mutation and the secondary effect of the 

drug, one could therefore not rely on statistical studies on large populations, but would have to 

make detailed observations of certain specific cases of harm (Rocca, Anjum, & Mumford, 2018). 

However, even if we accept that individual or local propensities are not fully described by 

statistically derived probabilities, we are left at the moment without a valid alternative in the 
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field of risk assessment, at least not one that is generally acknowledged by the scientific 

community. 

 

4. HUMEAN INFLUENCE ON SCIENTIFIC METHODOLOGY 

The methodological problems described above might seem of a purely practical nature: how to 

deal with complexity, causation and probability given the available scientific tools. The way in 

which a scientific enquiry is approached, however, is not only conditional upon technology or 

knowledge advance, or on the specific evidence available. It is also restricted by a set of norms 

for “the correct, systematic acquisition of empirical knowledge”, which we here refer to as norms 

of science (Anjum & Mumford, 2018a). Note that there are different types of norms in science, 

for instance concerning ethical practice (e.g., transparency, disinterestedness, 

communality)(Hansson & Aven, 2014). The norms that we discuss in this paper, however, are 

restricted to epistemic ones, specifying how scientists should best collect and process empirical 

knowledge (Anjum & Mumford, 2018a). For instance, evidence based medicine explicitly gives 

epistemological priority to statistical evidence over mechanistic evidence (Clarke, Gillies, Illari, 

Russo, & Williamson, 2013). Highest priority is given to randomised controlled trials (RCTs), at 

least for establishing a causal relationship between treatment and outcome. That medical 

decisions ought to be ‘evidence based’ thus means that they should be informed by evidence of 

a particular type. Similar non-empirical, foundational assumptions can be found in all scientific 

disciplines, although these are usually much more implicit than they are in evidence based 

medicine. 

Contemporary discussions in philosophy and science have focused on the relationship between 

theory of causation and scientific practice (Beebee, Hitchcock, & Menzies, 2009; Illari & Russo, 

2014; Mumford & Tugby, 2013; Phyllis, Russo, & Williamson, 2011) . The reason why it is 

important to identify foundational assumptions in science, including causation, is that they shape 

and restrict every aspect of the scientific process: type of research question, choice of method 

and study design, interpretation of data and application of the results. The point of making these 

foundational assumptions in science explicit, is to motivate a rethink of the basic norms of science 

when practice falls short for our purposes. Only by changing the norms of science can we change 

scientific practice (Anjum & Mumford, 2018a). The following discussion is meant to prepare the 

ground for a bottom-up change in risk approaches (from the most fundamental level to the 

practical one). 

ONTOLOGY → EPISTEMIC NORMS → METHODS → PRACTICE 

We will now show that the persistent challenges for risk assessment methodology can be traced 

back to shortcomings of a certain scientific framework. This framework emphasizes use of 



9 
 

correlation data as the starting point for causal analysis, use of quantitative methods and large 

data sets, use of statistical (Bayesian) tools for prediction and probability understood as 

frequentism. By uncovering some of the basic ontological assumptions underlying this epistemic-

normative framework, we wish to offer an alternative starting-point for discussing the practical 

limitations that this places on scientific risk assessment. In particular, we want to show how the 

understanding of causation, first suggested by David Hume (Hume, 1739), has deeply influenced 

the established scientific norms and practice. Hume stipulated an empiricist criterion of 

knowledge, that one can only trust as true knowledge what can be traced back to observation. 

Causation is linked to regularity. Scientific methodology often starts from correlation data when 

seeking to establish causation. To be empirically based, causation must then either be treated as 

something observable, or met with skepticism. Hume did both (Hume, 1739). First, he analyzed 

causation into three observable features: i) regularity, or the constant conjunction of cause and 

effect, ii) temporal priority, meaning that the cause precedes the effect and iii) contiguity, the 

contact between cause and effect in time and space. His skepticism toward making causal claims 

follows from his problem of induction. Due to the lack of empirical proof of a necessary 

connection between cause and effect, one cannot predict from the observation of (i-iii) that next 

time the cause occurs, the effect will follow. Any generality assumed in the causal claim that A 

causes B is an inductive, hence logically invalid, inference. As a scientific claim, it is therefore 

empirically unwarranted. The practical consequence of this is that causal theories and predictions 

are a source of scientific uncertainty. On this view, therefore, correlation data are seen as more 

dependable for causal conclusions and predictions than theoretical knowledge of causal 

mechanisms. 

Causation must be studied by comparison and in isolation. In risk assessment, one might be 

interested in predicting the possible harms of a certain stressor, which means we start with the 

cause and investigate its potential effects. Another way to study causation is to start with an 

outcome, such as a harm, and try to pin it to a causal factor that produced it (Sexton, 2015). For 

an empiricist, none of these are easy tasks. Most causal processes include a range of factors, thus 

one might be mistaken about which factor (or factors) was responsible for the effect. Lewis, a 

modern-day Humean, suggested that we think of causation as a sine qua non, or necessary 

condition, for the effect (Lewis, 1973). Such necessary conditions might be observed by 

comparing two causal set ups: one in which the factor is present, and one in which it is absent. 

In the lab, one will try to isolate the causal factor as much as possible from its usual complexity 

to see what it does on its own, but this might not always be practically possible. RCTs are one 

way to do this, the idea being that if there is a difference in outcome between the two situations, 

it is because of the controlled factor. Only if the cause can be isolated or controlled in this way, 

can we say to have ‘observed’ its causal contribution. Without such isolation, we cannot know if 

some other factor was present that produced the effect instead. This is called the problem of 
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overdetermination and is a problem for studying causation in its natural complexity (Collins, Hall, 

& Paul, 2004). From an empiricist point of view, we thus see that causal complexity becomes a 

challenge for establishing what exactly the causal contribution of each factor is, which means 

that separation and isolation are necessary steps of the scientific procedure. 

Quantitative data gives better science. Scientific studies are typically judged by the quality of 

their data, which often means the quantity. Even qualitative studies have to report how large the 

sample is, and how representative it is of its targeted population. Experiments should be 

repeated, preferably under the same or similar conditions. These criteria for scientific quality are 

rational from an empiricist perspective. Hume denied that there could be such a thing as a unique 

causal event, such as the creation of the universe (Hume, 1739, 1748). According to him, for 

epistemological reasons, causation requires repetition. But because of the problem of induction, 

we cannot assume that we have enough repetitions to make a correct prediction. For this, we 

would need a complete set of past, present and future data, which is practically impossible. What 

we must do instead is to have the largest data set that our resources allow. For the empiricist, 

we thus see that quantitative approaches, including lots of data and repetitions, will provide 

better evidence of causation than qualitative or in-depth studies of a few cases. 

Causal predictions must be probabilistic. Because we never have complete data, causal 

predictions are rarely made with 100 percent certainty in science. Many will assume, however, 

that if one had complete data and scientific knowledge, infallible predictions would be possible. 

For instance, one might think that the outcome of a coin toss is at least in principle predictable 

from complete knowledge of the initial conditions. This assumption can be traced back to the 

philosophical idea of determinism. But even if we assume that determinism is true, causal 

predictions remain a practical problem. From the empiricist criterion that we can only know what 

can be observed, the future becomes unknowable to us. This type of reasoning would compel us 

to only accept scientific predictions as probabilistic claims. Motivated by a commitment to 

determinism, which states that no events are genuinely probabilistic, such less-than-certain 

predictions are typically generated within a Bayesian framework of subjective belief (Pearl, 2000; 

Swinburne, 2002). So, although causal predictions would be infallible under the assumption of 

determinism, they still have to be probabilistic in order to be scientifically (i.e. empirically) 

grounded. 

Probabilities are statistically derived. Regardless of one’s commitment to Bayesian frameworks, 

statistics plays a central role in science. Statistical tools are used to generate, present and 

interpret data, and to make predictions. In epidemiology and evidence based decision-making, 

predictions about a particular case is explicitly derived from statistical data concerning the 

relevant population. This way of calculating probability can be rationally justified by the 

philosophical theory of frequentism. Frequentism defines probability as the proportion of the 

outcome over a sequence of trials. The best method for predicting probabilities for an individual 
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would then be exactly by observing what happens on population level. Every individual case will, 

on this view, be a statistical average of its relevant sub-population or ‘twin model’. We might 

even define ‘relevant population’ as one that makes the individual case an average. Frequentism 

is an empiricist theory of probability, with probabilities generated by quantitative data. 

Returning to the persistent challenges discussed above, we can now see how Humean ontology, 

epistemic norms and scientific practices are closely related. Starting with the practice, we 

indicate the underlying norm and show which Humean assumption would motivate it. 

Practice: Causal complexity and interactions are studied through separation, isolation and 

addition. Norm: Individual factors must be distinguished from confounders in order to establish 

their causal contribution. Ontological assumption: Causation is a difference-maker, or necessary 

condition, for its effect. Such difference-makers are observable, but not in cases of 

overdetermination. 

Practice: Causal knowledge is generated through quantitative approaches and measurements. 

Norm: Causal knowledge ought to be confirmed quantitatively, through correlation data, 

including large-scale comparative studies. Ontological assumption: Causation is a type of 

regularity, only established through repeated observations of two types of events following each 

other. 

Practice: Predictions about individual cases are uncertain, but can be calculated using statistically 

generated probabilities. Norm: Estimates of the likelihood of an effect for an individual case 

should be informed by what happens in other similar cases. Ontological assumption: Probabilistic 

predictions reflect lack of knowledge, plus estimated degree of subjective belief in the outcome. 

Alternatively, probability is objective and given by the frequency of an outcome over a sequence 

of trials. 

 

5. CHALLENGING THE HUMEAN NORMS AND PRACTICES 

We said that in order to change scientific practice, we must also change their underlying 

epistemic norms (Anjum & Mumford, 2018a). How can we do this? To change such norms of 

science, we must start from different ontological assumptions than the Humean ones. In 

particular, we must start from a different understanding of causation. 

A number of anti-Humean approaches to causation have already been suggested(Armstrong, 

1983; Bird, 2007; Ellis, 2001; Heil, 2017; Marmodoro, 2016). Typical for these is that they 

supplement the regularity theory with some extra modal strength of necessity (Anjum & 

Mumford, 2018b; Mumford, 2004). Although Hume denied any form of necessity in the world, 

the Humean and anti-Humean traditions generally agree on most of the observable features 
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relevant for scientific methodology: law-like regularities, causes as difference-makers, probability 

understood in terms of frequentism, and so on. It would therefore not be necessary to replace 

any of the epistemic norms or practices discussed above if we were to replace one of these 

frameworks with the other. In response to this, a theory of causation has recently been 

developed by Anjum and Mumford, called causal dispositionalism (Mumford & Anjum, 2011b), 

based on a neo-Aristotelian ontology of causal powers. This reconceptualization of causation has 

sparked philosophical debate and the theory has already been applied to other disciplines 

(Edwards, 2018; Kerry, 2017; Trivino & Nuno de la Rosa, 2016). Application also includes harm 

detection from medicines and industrial contamination (Rocca & Anjum, 2018; Rocca et al., 

2018), and development of a clinical framework for person-centered practice (Evans, Lucas, & 

Kerry, 2017; Low, 2017). We will now briefly present some features of causal dispositionalism 

and then go on to show how this ontological approach would challenge some standard scientific 

norms and practices informed by Humeanism. 

Causes are intrinsic dispositions. On the Anjum-Mumford theory, causes are dispositions. A 

disposition is a certain type of property that can exist unmanifested (Mumford, 1998). 

Reproduction is the manifestation of the disposition of fertility, but one can still be fertile without 

reproducing. Dispositional properties are a problematic issue for the empiricist, and Hume 

denied any knowledge of dispositions, forces or powers (Hume, 1739). For an empiricist, the only 

reason for believing that something is fertile, fragile or explosive is because we have repeatedly 

observed similar things reproducing, breaking or exploding. For a dispositionalist, however, 

causation cannot simply be an extrinsic relation between two types of occurrences. Something 

counts as a cause only insofar as there is an intrinsic disposition that contributes to the effect. 

For instance, a medical treatment should have an intrinsic disposition to cure. In the case of 

placebo, the outcome is the same, but it is produced by a disposition in the patient, not the 

treatment. Establishing causation between A and B must thus involve establishing that there is 

such an intrinsic disposition of A to bring about B. This requires theoretical, not only empirical, 

justification. 

Causation requires interaction of dispositions. We often focus on single causes and effects at the 

time for practical purposes, and take all other factors as background conditions. A dispositionalist 

would say that any contextual factor that might dispose toward or away from the effect should 

be considered a causally relevant factor. From this starting point, an effect is never produced by 

only one factor, or disposition, but by the (often nonlinear) interactions of many. Any effect is 

thus produced by the interaction of multiple dispositions, or what Martin calls ‘mutual 

manifestation partners’(Martin, 2008). Someone can be fertile, for instance, but this disposition 

cannot manifest itself without the interaction with an appropriate manifestation partner. When 

studying the effect of an intervention, therefore, one cannot focus only on what is added to the 

situation. Instead, one must consider how the intervention interacts with what is already there 
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as part of the context, that is, which manifestation partners are involved. Ibuprofen has a 

disposition to cure pain, but it can also cause pain in some people, depending on their intrinsic 

properties (e.g. genetics). The same type of intervention in two different contexts would then 

give two different causal processes. 

Causation is singular and context-specific. Dispositionalism is a singularist theory about 

causation, which means that causation happens at a particular time and place that need not be 

repeated. This contrasts with the regularity theory, which explicitly denies single, unique 

instances of causation. A regularity theorist must be able to observe that the same type of cause 

is repeatedly followed by the same type of effect, under some set of ideal, normal or sufficiently 

similar conditions. For a dispositionalist, a full set of causal conditions are rarely, if ever, repeated. 

We saw that, from a Humean notion of causation, one cannot claim causation for unique cases. 

The creation of the universe could for Hume not count as a cause, insofar as it was a unique event 

(Hume, 1739). Repetition is thus a Humean requirement for establishing causation, but for the 

dispositionalist this is a purely epistemic matter. Ontologically, there is nothing problematic 

about a unique case of causation if one is a causal singularist. Rather than trying to repeat a causal 

process in exactly the same way many times, a dispositionalist would look at what is unique to a 

specific causal situation and how the various dispositions provided by the context could 

potentially influence the outcome. 

Causal predictions are tendential. Causal tendencies come in degrees, from very weak to very 

strong. But essential for causal tendencies is that no matter how strongly they dispose towards 

an effect, the effect can in principle be counteracted by other tendencies. A cause will tend to 

produce its effect, but it cannot guarantee or necessitate it. A heater that has an intrinsic 

disposition to heat a room to 25 degrees might still fail to do so if a window is open. Because of 

the tendential nature of causation, dispositionalists acknowledge that causal predictions are 

fallible. The primary reason for this fallibility is not that we are unable to predict what type of 

contribution a disposition will make (e.g. a heater will tend to warm a room rather than cooling 

it), but that any such causal contribution is irreducibly Tendential (Mumford & Anjum, 2011a). 

Causal tendencies are given by individual propensities. Since causal tendencies are dispositional, 

intrinsic and singular, they are also qualitative. Causal tendencies are thus not the same as 

statistical tendencies; rather, they are propensities(Mellor, 1971; Popper, 1990). They cannot be 

revealed simply by observing the incidence of outcome in a population. This has to do with the 

very nature of such tendencies: they do not always result in a detectable outcome. A tendency 

can be very common, but too weak to ever manifest itself (e.g. the toxic disposition of cyanide in 

apple seeds), or it can be very strong, but too rare to be detected statistically (e.g. the 

anaphylactic shock of vaccines) (Rocca et al., 2018). Propensities must be assigned uniquely to 

each individual situation, rather than derived from the frequency of outcomes. For instance, the 

0.5 propensity of a fair coin to land heads is given by its properties (shape, weight distribution, 
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etc.), not by the proportion of outcomes in a series of previous trials. Similarly, the propensity of 

a woman to develop breast cancer is given by her properties (genetics, age, lifestyle, etc.), not by 

the frequency of breast cancer in her relevant sub-group. On a singularist view, such frequency 

might indicate the propensity, but it does not generate it (Anjum & Mumford, 2018a). 

To sum up, a dispositionalist sees complexity, context-sensitivity, uniqueness, interaction and 

fallibility as essential to causation(Mumford & Anjum, 2011b). This points to the importance of 

local, contextual knowledge. To focus only on a single causal factor, intervention or stressor when 

making predictions about the outcome, will be to disregard most of the causally relevant factors 

of the causal interaction. From this perspective, frameworks such as CRA, as proposed by US EPA 

in 2003(U.S. EPA, 2003), seem dispositionalist in nature, at least if we consider the original 

intentions and motivations. The importance of studying causal complexity, such as combined risk, 

co-exposure, multiple stressors and sources, was explicitly acknowledged. The possibility of 

interaction (synergism and antagonism) was used to show the shortcoming of assuming the 

principle of additivity as default. Instead, nonlinear interaction of various stressors were 

emphasized (Callahan & Sexton, 2007; Williams et al., 2012). Another shortcoming of the 

standard statistical approach that CRA was intended to overcome, is the distinction between 

population risk and the risk of individuals or sub-populations(U.S. EPA, 2003; Williams et al., 

2012). Instead of focusing on single stressors, isolated from their complex interactions, and 

population level risk, CRA would have a focus on locally based risk assessment and individual risk 

factors, emphasizing the role of community and stakeholder engagement as a valuable source of 

knowledge (Gallagher et al., 2015a). 

Frameworks such as RISK21, promoted as a new way forward for risk assessment, develop the 

CRA  outlines, but without being able to overcome persistent challenges, as we have shown. This 

limitation comes from an attempt to adapt the original ‘dispositionalist intentions’ to standard 

Humean methodology for dealing with causation, complexity and probabilities. If a new way 

forward is what we are looking for, it ought to start with an honest revolution at the foundations 

of our intuitions. From a causal dispositionalist starting point, the scientist should prefer a 

framework that analyses risk by starting from case studies of real-world interactions. And if the 

renewal is genuine, when faced with methodological challenges, she should not look for 

compromises with previous practices, for instance by assuming additivity, downgrading results 

from qualitative studies or consider as few modulating factors as possible in order to maintain 

the analysis feasible. On the contrary, she should dare to extend the boundaries of scientific 

thinking and invest resources in a search for genuine alternatives. 

 

6. FROM HUMEAN TO DISPOSITIONALIST METHODOLOGY: TRANSFORMING SCIENCE? 
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So far, we have proposed that a discussion on the basic assumptions about causation is needed 

in the risk field, and that this should be done in dialogue with philosophers. We have offered a 

dispositionalist reconceptualization of causation. We have not tried to defend this theory against 

other contemporary theories of causation, since this is done elsewhere (Anjum & Mumford, 

2018b; Mumford & Anjum, 2011b). Instead we address another question: if we do accept the 

dispositionalist reconceptualization of causation, how could this contribute to a better yet 

feasible methodological approach? 

One might get the impression that dispositionalism makes causal predictions practically 

impossible, because of the uniqueness of each causal context. We should explain why this is not 

the case. Although such uniqueness remains a practical challenge for science in general, we think 

that dispositionalism can give us a better way to make causal predictions of harm for the context 

of application. In practice, this involves adjusting the prediction in light of detailed knowledge 

about the dispositions of a certain stressor and the way in which these interact with dispositions 

and propensities provided by the local context (individual, community, ecosystem etc.). The more 

we know about these mechanisms of interactions, and which dispositions are involved in the 

interaction, the better our causal understanding, hence predictions. 

Let’s illustrate this with an example. While MRI-scanning is generally a safe and effective 

diagnostic tool, one would still use it with caution in patients with an artificial pacemaker. First 

of all, this is because of the mechanistic understanding of the interaction between the magnetic 

field created by the MRI-scanner and the metal implant attached to the heart. But it also requires 

that one has relevant knowledge about that individual patient. “Relevant knowledge” here refers 

to those causal mechanisms that will be involved in this particular case. This means that, although 

there are a number of dispositions and propensities involved, not all of them will be relevant for 

making a good causal prediction. Each causal set-up is thus in some sense unique, because it will 

have a unique combination of dispositions, but it is still possible to make causal predictions if we 

understand how various dispositions interact in different combinations. This, however, requires 

theoretical and explanatory knowledge that goes beyond regularities and frequencies of 

occurrence. 

Dispositionalism emphasizes that causation is singular and context-specific, and that a causal 

process might never be repeated in its entirety. Causal knowledge, even of the general type, must 

then be derived from what can be found in single cases. How would this work? Especially, this 

seems difficult if a case is very rare or even unique. However, we suggest that detailed analyses 

of specific cases can contribute to general causal knowledge. Most importantly, the cases that 

we think are more useful for this purpose are those in which the expected causal outcome fails 

to happen: deviations or outlier cases, rather than confirmatory ones (Rocca et al., 2018). While 

confirmatory studies work well to indicate that there is a causal link between an intervention and 

an outcome, they usually reveal little about how the causal process happens or what might 
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interfere with it. In contrast, when the expected outcome fails to happen, we can investigate the 

case in detail to identify causally relevant factors, or interferers. 

This reconceptualization of causation would have certain implications for how risk ought to be 

studied and practiced. For instance, one dispositionalist assumption is that a cause tends to 

produce different effects, depending on the dispositions with which it interacts. This would 

motivate a norm stating that contextual variation and heterogeneity should be part of the causal 

investigation of detecting the dispositions of a stressor. This norm suggests a practice in which 

causal dispositions of a stressor are studied by observing it in different types of interactions or 

contexts. 

Another dispositionalist assumption is that effects are produced by the interactions of multiple 

dispositions, or mutual manifestation partners. A norm following this could be that the causal 

investigation ought to start from an in-depth, qualitative study of a real-life setting, in its full 

complexity. This norm motivates the practice that assessment of risk starts from a detailed, 

qualitative study of the contexts of harm. 

A third dispositionalist assumption is that causal predictions are about what tends to happen, 

depending on the intrinsic propensities and dispositions that are involved and how they interact. 

From this, we could postulate that causal predictions of harm should consider which propensities 

and dispositions are involved in a particular, local context and must be sensitive to epistemic 

limitation. This norm favors the practice in which causal predictions are based on theoretical 

understanding of the dispositions and propensities involved, while also identifying which other 

factors could affect the predicted outcome and how. 

How feasible is this approach? Although they are not yet mainstream, scientific approaches 

already exist that seem dispositionalist in nature. A characteristic of these is that the causal 

insights come from detailed studies of post-harm cases. For instance, in a study designed to 

investigate the role of pesticides in the decrease of bee colonies, Chakrabarti and colleagues 

sampled Indian honeybees (Apis cerana) from populations in the vicinity of an intensively 

cultivated area and from populations in areas of low or no pesticide intensity (Chakrabarti et al., 

2015). Individual bees from the two populations were compared for several morphological 

factors, and significant differences were found. These results were then corroborated by 

controlled experiments, where bees from the low cultivation area were fed increasing doses of 

agro-toxic. Without the detailed analyses of individual bees from a particular setting, it would be 

impossible to generate the study’s working hypotheses. In other words, a single-case study gave 

a better opportunity to develop deep understanding of the causal process, which again 

contributed to an understanding of general causal mechanisms. So although the starting-point of 

the study was singular and local, the causal insights that it generated were general. 



17 
 

Such use of contextual, in-depth studies as a starting point for causal hypotheses, which would 

otherwise be overlooked using more orthodox methodologies, is not unique. The field of medical 

anthropology offers several examples. One emblematic example is the study of the causal factors 

underlying the epidemiological synergy of drug abuse, HIV and other blood-borne diseases 

(Singer, 1994). Without the help of contextualized case studies of specific communities, the sole 

epidemiological analysis of AIDS/HIV could not provide a causal understanding of the complexity 

underlying risk behaviors related to the disease transmission (Loomis Marshall, Singer, & Clatts, 

1999). 

We see, therefore, that crucial causal insights come from qualitative approaches that give access 

to rich and varied data about the local context for which harm is assessed. This shows the 

importance of integrating social science methodology in the scientific risk assessment, from start 

to finish. Anthropologists have stressed the methodological shortcomings of assessing risk 

without considering hidden arenas of experience and social interaction when measuring the 

interaction between chemicals and human (and even animal) health (Checker, 2007; Sawyer & 

Loja, 2015). In particular, progress in the field of environmental justice increasingly reveals that 

large epidemiological studies can be deceptive in their estimate of real exposure to chemicals. 

For a more realistic estimate, one should begin the risk assessment process by in-depth 

interviews or ethnographical studies of the contaminated context (Arcury et al., 2005). Such post-

harm contexts can be found in all risk related areas and should be used more systematically in 

developing new risk assessment frameworks. 

 

7. CONCLUSION 

The aim of this paper has been to encourage an interdisciplinary dialogue between philosophers 

and analysts, in order to create awareness about some tacit basic assumptions that guide 

scientific enquiry. We have argued that the first step toward the development of more realistic 

frameworks for risk assessment is to re-conceptualize causation, by acknowledging philosophical 

alternatives to the Humean orthodoxy. Of these, we presented our preferred account, causal 

dispositionalism. Following this conceptual shift, it becomes possible to look for new 

methodologies that start from a detailed study of the local context of harm and the causal 

mechanisms involved, and let the insights from this study guide the research hypotheses and 

study design. In practice, this means that stressor focused and effect focused approaches to risk 

assessment can inform each other, rather than being separated or restricted by disciplinary 

traditions(Moretto et al., 2017). Risk assessment would then become a genuinely 

multidisciplinary effort, where insights and approaches from various disciplines are treated as 

integrated and mutually informative. 
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