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A similarity index for comparing coupled matrices 

 

Abstract 

Application of different multivariate measurement technologies to the same set of samples is an 

interesting challenge in many fields of applied data analysis. Our proposal is a two-stage 

similarity index framework for comparing two matrices in this type of situation. The first step is 

to identify factors (and associated subspaces) of the matrices by methods such as principal 

component analysis (PCA) or partial least squares (PLS) regression to provide good (low-

dimensional) summaries of their information content. Thereafter, statistical significances are 

assigned to the similarity values obtained at various factor subset combinations by considering 

orthogonal projections or Procrustes rotations, and how to express the results compactly in 

corresponding summary plots. Applications of the methodology include the investigation of 

redundancy in spectroscopic data and the investigation of assessor consistency or -deviations in 

sensory science. The proposed methodology is implemented in the R-package 

“MatrixCorrelation” available online from CRAN. 

Key words: Similarity index, Canonical Correlation, Significance testing, Orthogonal projections, 

Procrustes rotations, RV coefficient.  
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1. Introduction 

The problem of comparing pairs of variables/vectors by some type of correlation coefficient is 

fundamental and well understood (see e.g. Draper and Smith (1998)). In modern science there is, 

however, also an increasing need for comparing collections of variables (represented by data 

matrices of multivariate measurements). Interesting situations arise when comparing 

measurements obtained by different technologies or instruments for a fixed set of (n) samples. 

Important applications frequently appear in spectroscopy, in the omics areas and when comparing 

trained sensory assessors for detecting deviating assessments (Tomic et al. (2013)).  

The RV coefficient  by Robert and Escoufier (1976) is among the most popular methods for 

comparing matrices in a correlation like style. Smilde et al. (2009) pointed out that the RV-

coefficient suffers from an increasing bias (towards 1) when the number of variables (columns) 

increase compared to the number of samples (rows) in the two matrices. They therefore proposed 

the RV2-coefficient as a bias reducing (but still biased) alternative to the RV-coefficient. Mayer 

et al. (2011) pointed at some fundamental problems with the RV2 and proposed a corrected and 

unbiased alternative to the RV- (and RV2) directly based on the classical adjusted R-square 

statistic. The RVgq-coefficient proposed by El Ghaziri and Qannari (2015) is an alternative 

unbiased modification of the RV coefficient that also avoids the RV2 shortcomings. Other matrix 

similarity measures of particular interest for the present study are the Procrustes similarity index 

by Sibson (1978) and the generalized coefficient of determination (GCD) by Yanai, (1974). 

In the present paper, we propose an alternative similarity index approach for comparing two sets 

of measurements by considering an associated pair of data matrices. The proposed similarity of 

matrices index (SMI) approach is based on the idea of comparing a selection of dominant 
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subspace combinations derived by appropriate matrix decomposition strategies such as the 

principal component analysis (PCA) and partial least squares (PLS) regression. We also propose 

a statistical test of difference/similarity between the matrices associated with the SMI 

calculations. In order to simplify the decision-making part of an SMI-based analysis, a so-called 

”Diamond plot” is proposed. Two alternatives for comparing the subspaces will be considered, 

one that is based on Orthogonal Projections (OP) and one that is based on Procrustes Rotations 

(PR), see Kendall (1984). Both alternatives correspond to classical choices of linear 

transformations for comparing subspaces. The particular aspects of similarity considered when 

calculating the SMI depends on i) the subspace identification method (such as PCA or PLS) and 

ii) the type of regression method (OP or PR) used in the subsequent comparison. The choice of 

methods from i) and ii) specifies what will here be called the context for comparing the 

measurements. PCA is the appropriate choice for investigating similarities between the subspaces 

of dominant and stable variance associated with the two data matrices. PLS is the appropriate 

alternative when comparing the validated predictive parts of two data matrices with respect to 

some response variable(s).  

Regarding the choice of regression method, we promote the OP as the primary alternative. The 

PR, we think, should rarely be considered alone, but rather as a valuable supplement to OP in 

situations where there are particular reasons to reveal if important relationships between the two 

datasets can be accounted for by scaling and rotations only. A typical field of application, where 

the PR is of particular interest, is sensory analysis (Amerine et al. (1965)). It can for instance be  

observed that the data generated by two sensory assessors may describe the same underlying 

dimensions, but one assessor switches for instance the order of the two first underlying 

dimensions as compared to the other. We therefore recommend judging the similarity of two 
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datasets by considering both OP and PR as a good way of capturing the presence of such 

phenomena. 

The paper is organized as follows: In Section 2, we present a brief summary of existing and 

related methodologies with focus on the RV-coefficient alternatives together with the ideas 

motivating the SMI approach. Section 3 presents the mathematical definition of the SMI and its 

key properties for both the OP and the PR cases. We then continue by demonstrating an 

application of the SMI-framework to the collection of alternative factor combinations obtained by 

varying the number of subspace dimensions. This application includes a permutation test for 

associating statistical significances with the obtained SMI-values. Section 4 presents a collection 

of examples, with both simulated and real datasets, to demonstrate potential applications of the 

suggested methodology. Finally, we draw our conclusions after discussing the relationships 

between our proposal and some established alternatives from the literature. 

 

2 Background and motivation 

We consider the problem of comparing two different sets of measurement taken on a fixed set of 

(n) samples. After mean centering of the measured variables, the resulting datasets are typically 

represented in two matrices X1 and X2 of dimensions 𝑛 × 𝑚1 and 𝑛 × 𝑚2, respectively. Among 

the various alternatives for comparing matrices that have been put forward in the literature, there 

are several interesting methods that are quite closely related to the RV coefficient  by Robert and 

Escoufier (1976). Their original RV coefficient is defined as 𝑅𝑉(𝐗1, 𝐗2) =
𝑡𝑟(𝐘1

𝑡𝐘2)

√𝑡𝑟(𝐘1
𝑡𝐘1)𝑡𝑟(𝐘2

𝑡𝐘2)

, 

where 𝐘1 = 𝐗1𝐗1
𝑡  and 𝐘2 = 𝐗2𝐗2

𝑡 , and tr() denotes the matrix trace. Besides the original RV 

coefficient we consider the following methods to be of particular interest for our study: 1) The 
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modified RV-coefficient by Smilde et al. (2009): 𝑅𝑉2(𝐗1, 𝐗2) =
𝑡𝑟(𝐘1

𝑡𝐘2)

√𝑡𝑟(𝐘1
𝑡𝐘1)𝑡𝑟(𝐘2

𝑡𝐘2)

, where 𝐘1 =

𝐗1𝐗1
𝑡 − 𝐷(𝐗1𝐗1

𝑡), 𝐘2 = 𝐗2𝐗2
𝑡 − 𝐷(𝐗2𝐗2

𝑡 ) and 𝐷() denotes the matrix diagonal. 2) The adjusted 

RV-coefficient by Mayer et al. (2011): 𝑅𝑉𝑎𝑑𝑗(𝐗1, 𝐗2) =
𝑝∙𝑞∙𝑛𝑐+𝑛𝑟∙𝑡𝑟(𝐂12

𝑡 𝐂12)

√[𝑝∙𝑝∙𝑛𝑐+𝑛𝑟∙𝑡𝑟(𝐂11
𝑡 𝐂11)][𝑞∙𝑞∙𝑛𝑐+𝑛𝑟∙𝑡𝑟(𝐂22

𝑡 𝐂22)]

. 

Here Cij is the correlation matrix between Xi and Xj, p and q are the number of columns in X1 and 

X2, respectively, 𝑛𝑟 = 
(𝑛−1)

(𝑛−2)
  and nc = 1 - nr where n is the number of rows in X1 (and X2). 3) 

The adjusted RV-coefficient by Ghaziri & Qannari (2015): 𝑅𝑉𝑔𝑞(𝐗1, 𝐗2) =
𝑅𝑉(𝐗1,𝐗2)−𝑚RV

1−𝑚RV
. Here, 

𝑚RV =
𝑡𝑟(𝐗1

𝑡𝐗2)

√𝑡𝑟(𝐗1
𝑡𝐗1)𝑡𝑟(𝐗2

𝑡𝐗2)

 denotes the expected value of the RV coefficient, i.e. the mean RV value 

for all possible permutations of the rows of one of the matrices. According to the authors, this 

will correct for random similarities between the two matrices. 4) The Procrustes similarity index 

by Sibson (1978): (𝐗1, 𝐗2) =
𝑡𝑟(𝐗1

𝑡𝐗2𝐇)

√𝑡𝑟(𝐗1
𝑡𝐗1)𝑡𝑟(𝐗2

𝑡𝐗2)

 , where 𝐇 is the Procrustes transformation scaling 

and rotating/reflecting 𝐗2 to minimize the distance ‖𝐗1 − 𝐗2𝐇‖𝐹 with respect to the Frobenius 

norm. 5) The generalized coefficient of determination (GCD) by Yanai, (1974): The GCD is 

originally defined in terms of the projection matrices onto the column spaces of X1 and X2. By 

relatively simple algebraic manipulations it can be shown that the original GCD definition is 

equivalent to 𝐺𝐶𝐷(𝐗1, 𝐗2) = 𝑅𝑉(𝐓, 𝐔), where T and U are orthogonal bases for the column 

spaces of X1 and X2, respectively.  

Note that the definitions given above are chosen to emphasize the relationships between the 

different methods. The definitions presented in the original references are equivalent, but not 

necessarily identical to the definitions given above. More measures for comparing matrices can 
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be found in Ramsay et al (1984). See Section 2.5 for a short summary of the coefficients 

considered for particular comparison to our own proposals given below.  

In spite of their obvious relevance in various situations, application of many well established 

methods may appear challenging (and in our opinion sometimes confusing) from a practitioner’s 

point of view. In particular, the task of assigning statistical significances to large values (i.e. 

values close to 1) obtained by the existing coefficients, is not properly dealt with in the literature.  

In the present paper, an alternative similarity index approach for comparing two sets of 

measurements is proposed. As indicated above, we consider the mean centered data matrices X1 

and X2 that are coupled by the n rows typically referring to a joint set of samples.  

The underlying assumption throughout our development is that the two data matrices can be 

decomposed as follows: 

𝐗1 = 𝐓𝐏1
t + 𝐄1, where T = 𝐗1𝐂1 

𝐗2 = 𝐔𝐏2
t + 𝐄2, where U = 𝐗2𝐂2. 

(1) 

Here, the matrix products 𝐓𝐏1
t and 𝐔𝐏2

t correspond to approximations of X1 and X2, respectively, 

representing the relevant structures of interest. The associated residual parts accounting for noise 

and irrelevant structure are represented by the residual matrices 𝐄1 and 𝐄2. The column vectors of 

𝐂1 and 𝐂2 represent the required coefficients to express the T- and U columns as linear 

combinations of the X1- and X2 columns (variables), respectively. To be consistent with a 

terminology that is appropriate for both principal component analysis (PCA) and partial least 

squares (PLS) regression, it is assumed that the matrices T and U are always orthogonal (with 

normalized columns), i.e. representing normalized score vectors. The corresponding matrices 
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𝐏𝟏 = 𝐗𝟏
𝒕 𝐓 and 𝐏𝟐 = 𝐗𝟐

𝒕 𝐔  are in agreement with the standard chemometrics terminology referred 

to as loading matrices (often considered for interpretation of the components).  

The separation of relevant from irrelevant (i.e. 𝐄1 and 𝐄2) structure can be obtained by various 

approaches depending on the purpose of the analysis. PCA (see Joliffe (2002)) and PLS 

regression (see Wold et al. (1984)) with normalized scores (see Björck and Indahl (2017)) are the 

methods emphasized in our applications, but any method for deriving orthogonal matrices T and 

U from X1 and X2, respectively, will fit into the proposed similarity of matrices index (SMI) 

framework.   

The new SMI approach is based on the idea of finding linear combinations of the X1-variables 

(X1-factors) that coincide with linear combinations of the X2-variables (X2-factors) by matching 

the two matrix approximations 𝐓𝐏1
t and 𝐔𝐏2

t as accurately as possible. 

 

3. Methodology 

3.1 The similarity of matrices index framework 

Throughout the paper, it is assumed that the orthogonal score matrices T and U in (1)(1) are 

centered and of dimensions (np) and (nq), respectively (i.e. 𝐓t𝐓 =  𝐈𝑝 and 𝐔t𝐔 =  𝐈𝑞 are both 

identity matrices), where 0 < 𝑝 ≤ 𝑚1 and 0 < 𝑞 ≤ 𝑚2. The regression coefficient matrices for 

fitting U and T according to some regression method M of interest (here M = OP or M = PR) are 

denoted 𝐁T and 𝐁U respectively, with the resulting fitted values 𝐔̂ = 𝐓𝐁T and 𝐓̂ = 𝐔𝐁U. The 

proportions of explained variance associated with T and U are given by ‖𝐓̂‖
𝐹

2
/𝑝 and ‖𝐔̂‖

𝐹

2
/𝑞 , 

respectively (‖∙‖𝐹
2  denotes the squared Frobenius norm, i.e. ‖𝐀‖𝐹

2 = ∑ |𝑎𝑖,𝑗|  
2

𝑖,𝑗 ). 
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We require that for the regression method M of interest, the inequalities 0 ≤ ‖𝐓̂‖
𝐹

2
/𝑝 ≤ 1 and 

0 ≤  ‖𝐔̂‖
𝐹

2
/𝑞 ≤ 1 always hold, and that the maximum value of 1 is obtained if and only if the 

fitted values  𝐓̂ = 𝐓  or 𝐔̂ = 𝐔. With reference to the method M, the similarity of matrices index 

(SMI) of the two matrices T and U is defined by 

𝑆𝑀𝐼𝑀(𝐓, 𝐔) = 𝑚𝑎𝑥(
 ‖𝐓̂‖

𝐹

2

𝑝
 ,

‖𝐔̂‖
𝐹

2

𝑞
), (2) 

i.e. the maximum of the two proportions of explained  variance. In (4) and (5) below it will be 

seen that taking the maximum in (2) means accounting for as much as possible of the smaller of 

the two subspaces spanned by T and U, respectively.  Note that if  𝐔 = 𝐔̂ = 𝐓𝐁T or 𝐓 =

𝐓̂ = 𝐔𝐁U, then either  ‖𝐔̂‖
𝐹

2
/𝑞 = 1 or  ‖𝐓̂‖

𝐹

2
/𝑝 = 1. 

Property 1 

𝑆𝑀𝐼𝑀(𝐓, 𝐔) = 𝑚𝑎𝑥(
 ‖𝐁𝐔‖𝐹

2

𝑝
 ,

 ‖𝐁𝐓‖𝐹
2

𝑞
),  (3) 

which means that knowledge of the regression coefficients 𝐁U and 𝐁T is sufficient for computing 

the 𝑆𝑀𝐼𝑀defined in (2). 

Proof: 

Because 𝐔t𝐔 =  𝐈𝑞,  ‖𝐓̂‖
𝐹

2
= 𝑡𝑟𝑎𝑐𝑒(𝐓̂t𝐓̂) = 𝑡𝑟𝑎𝑐𝑒(𝐁𝐔

t 𝐔t 𝐔𝐁𝐔) = 𝑡𝑟𝑎𝑐𝑒(𝐁U
t 𝐁𝐔) =  ‖𝐁𝐔‖𝐹

2 . 

Correspondingly, we obtain  ‖𝐔̂‖
𝐹

2
=  ‖𝐁𝐓‖𝐹

2 , which proves the Property 1■ 
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3.1.1 The orthogonal projection (OP) context 

When comparing T and U in the context of orthogonal projections (M = OP), the associated 

regression coefficient matrices are particularly simple and closely related, i.e. 

Property 2 

𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔) = 𝑚𝑎𝑥 (
 ‖𝐁𝐓‖𝐹

2

𝑝
 ,

‖𝐁𝐔‖𝐹
2

𝑞
) =

 ‖𝐓t𝐔‖
𝐹

2

𝑟
 ,  (4) 

where r = min(p,q). 

Proof: 

From our initial assumptions 𝐓t𝐓 =  𝐈𝑝 and 𝐔t𝐔 =  𝐈𝑞, we have 𝐁𝐓 = (𝐓t𝐓)−1𝐓t𝐔 =𝐓t𝐔 and  

𝐁𝐔 = (𝐔t𝐔)−1𝐔t𝐓 = 𝐔t𝐓 = 𝐁𝐓
t . Consequently  ‖𝐁𝐔‖𝐹

2 =  ‖𝐁𝐓
𝑡 ‖𝐹

2 =  ‖𝐁𝐓‖𝐹
2 =  ‖𝐓t𝐔‖𝐹

2 , and the 

maximum in equation (3) is clearly obtained by dividing ‖𝐓t𝐔‖𝐹
2  with the minimum of p and q ■ 

 In the nontrivial case (𝐓t𝐔 ≠ 𝟎) with 𝐓t𝐔 = 𝐕𝐒𝐖t being the compact singular value 

decomposition (SVD) of the (p×q) matrix 𝐓t𝐔, it is clear that the associated squared Frobenius 

norm in the OP context only depends on the nonzero singular values 𝑠1, 𝑠2, … , 𝑠𝑟  (where r = 

min(p,q) if 𝐓t𝐔 has full rank) and the following property holds: 

Property 3 

𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔) =
 ‖𝐒‖𝐹

2

𝑟
=

1

𝑟
∑ 𝑠𝑘

2𝑟
𝑘=1 ,   (5) 

where 𝑠1, 𝑠2, … , 𝑠𝑟 are the singular values of the p × q matrix 𝐓t𝐔 and r = min(p,q). 

Proof: 
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Let the SVD of 𝐓t𝐔 = 𝐕𝐒𝐖t where the singular values 𝑠1, 𝑠2, … , 𝑠𝑟 correspond to the diagonal 

elements of S. Then  ‖𝐓t𝐔‖𝐹
2 = 𝑡𝑟𝑎𝑐𝑒((𝐓t𝐔)t(𝐓t𝐔)) = 𝑡𝑟𝑎𝑐𝑒(𝐖𝐒𝐕t𝐕𝐒𝐖t) 

= 𝑡𝑟𝑎𝑐𝑒(𝐖𝐒2𝐖t) =  𝑡𝑟𝑎𝑐𝑒(𝐖t𝐖 𝐒2) = 𝑡𝑟𝑎𝑐𝑒(𝐒2) =  ‖𝐒‖𝐹
2 = ∑ 𝑠𝑘

2𝑟
𝑘=1 , and the result 

therefore follows from equation (4) ■ 

According to equation (5), the 𝑆𝑀𝐼𝑂𝑃 is simplified to the average of the squared (non-zero) 

singular values of 𝐓t𝐔 in the OP context. 

By noting that the Frobenius norm is fixed when multiplying 𝐓t𝐔 from the left and right by the 

orthogonal matrices T and U, respectively, the following property also holds: 

Property 4 

𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔) =
(𝐏𝐓 · 𝐏𝐔)

𝑚𝑖𝑛 (𝐏𝐓 · 𝐏𝐓, 𝐏𝐔 · 𝐏𝐔)
 ,  (6) 

where 𝐏𝐓 = 𝐓𝐓t and 𝐏𝐔 = 𝐔𝐔t are the n × n projection matrices associated with the subspaces 

spanned by T and U respectively, and (·) represent the trace inner product between n × n 

matrices. 

Proof: 

The Frobenius norm being fixed when multiplying 𝐓t𝐔 from the left and right by the orthogonal 

matrices T and U, means that ‖𝐓t𝐔‖𝐹
2 = ‖𝐓𝐓t𝐔𝐔t‖𝐹

2 = 𝑡𝑟(𝐏𝐓𝐏𝐔) = 𝐏𝐓 · 𝐏𝐔. Because 

𝐏𝐓 · 𝐏𝐓  =  ‖𝐓t𝐓‖𝐹
2 =  ‖𝐓‖𝐹

2 = 𝑝 and 𝐏𝐔 · 𝐏𝐔  =  ‖𝐔‖𝐹
2 = 𝑞,  equation (6) is obtained by making 

the obvious substitutions into equation (4) ■ 
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Equation (6) shows that for the centered matrices T and U, 𝑆𝑀𝐼𝑂𝑃 is proportional (by 

multiplication with the scalar 𝑚𝑖𝑛 (𝑝, 𝑞)/√𝑝𝑞) to the correlation between the projection matrices 

PT and PU (being considered as n2 dimensional vectors).  

Some comments: 

1. The nonzero singular values 𝑠𝑘 of 𝐓t𝐔 coincide with the cosine of the principal angles 

between the column spaces associated with T and U or equivalently the associated 

canonical correlations (𝜌𝑘), i.e. 𝑠𝑘 = 𝜌𝑘 (k = 1,…,r), see Björck and Golub (1973).  

2. Canonical correlations are fixed under rank preserving linear transformations. Hence, for 

any pair of matrices (X1, X2) where the associated column subspace identities Col(X1) = 

Col(T) and Col(X2) = Col(U) hold, a canonical analysis of (X1, X2) will, according to 

property 3 (Equation (5)), provide the singular values required for computing 

𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔).  

3. According to Darlington et al. (1973), the remarkable link between the sum of squared 

canonical correlations and the shared variance between two sets of factors was first 

proposed by Wrigley and Neuhaus (1955).  

4. In the particular situations where T and U are chosen to span the entire column spaces of 

X1 and X2 respectively, the corresponding projection matrices 𝐏𝐗𝟏
= 𝐏𝐔 and 𝐏𝐗𝟐

= 𝐏𝐓. 

Yanai (1974) introduced a similarity measure commonly known as Yanai’s generalized 

coefficient of determination (GCD) by defining 𝐷(𝐗𝟏, 𝐗𝟐) =  
(𝐏𝐗𝟏

· 𝐏𝐗𝟐
)

‖𝐏𝐗𝟏
‖‖𝐏𝐗𝟐

‖
 . The GCD is 

essentially calculating the correlation between the two projection matrices 𝐏𝐗𝟏
and 𝐏𝐗𝟐

. 

According to our remark after the proof of equation (4), the 𝑆𝑀𝐼𝑂𝑃 and the GCD are 
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proportional by the scaling factor (𝑚𝑖𝑛 (𝑝, 𝑞)/√𝑝𝑞), and if rank(X1) = rank(X2) (p = q) 

the two measures coincide. 

 

3.1.2 The Procrustes Rotation (PR) context   

In the OP context, the associated matrices of regression coefficients (B) are derived without any 

imposed restrictions, and complete similarity (𝑆𝑀𝐼𝑂𝑃(𝐓, 𝐔) = 1) occurs if one of the matrices is 

an exact linear transformation of the other.  

Procrustes Rotations, see Gower (1975), represents an interesting closely related alternative for 

measuring similarities when additional restrictions imposed on the regression coefficients B are 

required.  A typical area of application is sensory analysis (Amerine et al. (1965)) where two 

assessors may perceive the same underlying dimensions, but one assessor reverses, say, the first 

two dimensions as compared to the other. In such cases it may be particularly useful to consider 

the SMIOP together with an alternative similarity measure taking the PR aspect into account. 

To formulate the PR context of similarity, we start by considering matrices T and U of identical 

size and rank (p = q). In particular, the required transformation matrix 𝐁𝐓 is proportional to an 

orthogonal matrix R by some scaling constant (𝑔) so that 𝐁𝐓 = 𝑔𝐑. The argument simplifying 

the SMI in the OP context (property 3) is valid also for the PR context, and extends further 

(because p = q = r by assumption) into 

Property 5 

                            𝑆𝑀𝐼𝑃𝑅(𝐓, 𝐔) = 𝑚𝑎𝑥 (
 ‖𝐁𝐓‖𝐹

2

𝑝
 ,

‖𝐁𝐔‖𝐹
2

𝑞
) =

 ‖𝑠̅𝐑‖𝐹
2

𝑟
= 𝑠̅2  ‖𝐑‖𝐹

2

𝑟
= 𝑠̅2,  (7) 

i.e. the squared average of the associated singular values (canonical correlations).  
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Proof:  

The optimal choice for R and the associated scaling constant 𝑔 to obtain  𝐁𝐓 = 𝑔𝐑 is derived 

from the SVD of (𝐓t𝐔) = 𝐕𝐒𝐖t by defining 

                                       𝐑 = V𝐖t and the scalar 𝑔 =  𝑡𝑟(𝐒)/‖𝐓‖𝐹
2  = 𝑠̅,  (8) 

where 𝑠̅ =
1

𝑟
∑ 𝑠𝑘

𝑟
𝑘=1   is the average of the non-zero singular values of 𝐓t𝐔. Correspondingly, 

𝐁𝐔 = 𝑠̅𝐑t = 𝐁𝐓
t , i.e. the PR regression coefficients are derived from the OP regression 

coefficients by interchanging the singular values of 𝐓t𝐔 by their average■   

If the number of columns in T and U are different (𝑝 ≠ 𝑞), and the SVD of (𝐓t𝐔) = 𝐕𝐒𝐖t with 

𝐑 = V𝐖t, we have  ‖𝐑‖𝐹
2 = ‖𝐑t‖𝐹

2 = min(𝑝, 𝑞) = 𝑟  corresponding to the number of non-zero 

singular values (except for degenerate cases) in S. By taking Equation (8) as an alternative 

definition of SMIPR, we obtain an obvious extension of the PR context to the general situation 

also including matrices T and U where the number of columns differ (𝑝 ≠ 𝑞). 

Due to the restrictions imposed on the regression coefficients B in the PR context, SMIOP 

obviously dominates SMIPR, and their exact relationship is given by the following property: 

Property 6 

The difference between SMIOP and SMIPR  

𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔) − 𝑆𝑀𝐼𝑃𝑅(𝐓, 𝐔) = 
1

𝑟
∑ (𝑠𝑘

𝑟
𝑘=1 − 𝑠̅)2  ≥ 0,  (9)  

i.e. it equals the empirical variance of the r non-zero singular values (canonical correlations) 

associated with the matrix product 𝐓t𝐔. 
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Proof:  

Using the properties 3 and 5 the following is obtained 

 𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔) − 𝑆𝑀𝐼𝑃𝑅(𝐓, 𝐔) = (
1

𝑟
∑ 𝑠𝑘

2𝑟
𝑘=1 ) − 𝑠̅2 = 

1

𝑟
∑ (𝑠𝑘

𝑟
𝑘=1 − 𝑠̅)2 ≥ 0■  

With reference to the arguments given above for exploring the Procrustes context, it is important 

to stress that the main interest when using the SMIPR lies in comparing it with the SMIOP. If the 

two measures result in very different values for a particular data set, that is strong evidence of the 

information in the two matrices not being satisfactory accounted for by a rotation and scaling 

only. 

3.2 Permutation testing  

When there is a strong linear (or rotational) relationship between the measurement variables 

recorded in X1 and X2, one can expect the associated orthogonal matrices T and U (representing 

the “stable” and/or “relevant” parts of the structure in X1 and X2) to yield large SMI-values in the 

OP (or PR) context. Analogous to the paired samples t-test the following null hypothesis is 

formulated:  

H0: “The distributions from which T (np) and U (nq) have been derived coincide so that in the 

case where p ≥ q, the U-factors can be expressed as linear (rotated) combinations of the T-

factors.” 

 

Hence, on can reject H0 and conclude (H1) that “…the U-factors cannot be expressed as linear 

(rotated) combinations of the T-factors…” unless the associated test statistic SMI(T,U) is 

sufficiently close to 1. Note that for p ≥ q, SMI(T,U) = 1 if and only if the U-columns can be 

linearly transformed (rotated) into the T-columns. 
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A distribution for SMI(T,U) is not likely to be analytically available, but a procedure for testing 

H0 based on random permutations can be justified by considering the residual similarity of 

matrices index defined as 𝑆𝑀𝐼𝑟𝑒𝑠 = 1 − 𝑆𝑀𝐼 (we omit the matrix arguments (T,U) in the 

notation from now on). According to the essence of the equations (2) and (4), this definition 

relates to the corresponding classical ANOVA identity 𝑆𝑆𝑟𝑒𝑠 = 𝑆𝑆𝑡𝑜𝑡 − 𝑆𝑆𝑟𝑒𝑔 by multiplying 

throughout the 𝑆𝑀𝐼𝑟𝑒𝑠 with the factor 𝑆𝑆𝑡𝑜𝑡  =  min(𝑝, 𝑞). Under the null hypothesis one can 

expect large SMI-values and correspondingly small 𝑆𝑀𝐼𝑟𝑒𝑠-values (unless the number of samples 

n is close to 𝑚𝑖𝑛(𝑝, 𝑞)).  

The appropriate random sampling of “small” 𝑆𝑀𝐼𝑟𝑒𝑠-values can be obtained by a large number  

( = 100000 is used in our examples) of repeated calculations of 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚) = 𝑆𝑀𝐼(𝐓, 𝐔(𝑝𝑒𝑟𝑚)), 

where 𝐔(𝑝𝑒𝑟𝑚)denotes a permutation of the rows in U (by simple symmetry both T and U, or T 

alone can be permuted in this fashion for the same purpose). By considering the resulting  

𝑆𝑀𝐼𝑟𝑒𝑠 =  1 − 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚) values as a random sample from the underlying distribution of SMI-

values consistent with H0,  the H0 is rejected at the significance level α > 0 if the observed SMI-

value (measured for the original matrices T and U) is smaller than the empirical (1 – α) percentile 

of the randomly sampled 𝑆𝑀𝐼𝑟𝑒𝑠-values obtained from the permutation procedure.  

By implementing the proposed permutation testing procedure using  = 100000 random 

permutations, one can obtain good estimates of the P-values associated with the null distribution 

by calculating: 

𝑃 = 1 −
#(1 − 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚) ≥ 𝑆𝑀𝐼)


=

#(𝑆𝑀𝐼 > 1 − 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚))


 . 

Recall that the score matrices U and T in our formulas are typically obtained by applying either 

PCA or PLS to the original data matrices X1 and X2. The reason why the proposed permutation 
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scheme is sound, is that any permutation of the rows in U or T will also result by applying PCA 

(or PLS) to the matrix obtained by the identical permutation of the rows in the corresponding X1 

or X2. Complete PCA- or PLS remodeling from permuted versions of X1 and X2 is therefore 

unnecessary, and this ensures that the permutation part required for sampling from the null 

distribution can be executed with high efficiency.  

Note that when the minimum number of columns min(𝑝, 𝑞) in T and U is close to the number n 

of rows in 𝐗1and 𝐗2, the associated SMI–value will tend to be large because the columns of both 

T and U then are spanning relatively “large” subspaces of the n-dimensional Euclidean space 𝑹𝒏.  

In such cases, it is therefore recommend to avoid using the proposed significance testing. To 

prevent against possible misuses of the testing procedure in such cases, an alternative suggestion 

is to consider the following modified P-value estimate 

𝑃𝑚𝑜𝑑 =
#(𝑆𝑀𝐼 > max (1 − 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚), 𝑆𝑀𝐼(𝑝𝑒𝑟𝑚)))


  

as a more robust alternative for implementations of the SMI-framework. 

 

3.3 The stepwise guide to exploring subspace similarities  

According to our assumptions, the data matrices X1 and X2 are the results of recording two 

different sets of measurement variables for a common set of samples (followed by column mean 

centering of both matrices). The following three steps summarize the SMI-based data analysis 

procedure:  

Step 1 – the score matrices and variable combinations 

According to Equation (1), we compute the score matrices and associated variable combinations 
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(the coefficient matrices 𝐂1 and 𝐂2) satisfying 𝐓 = 𝐗1𝐂1and 𝐔 = 𝐗2𝐂2.  Depending on the 

purpose of the study, various alternatives may be considered. In the examples shown below, 

focus is on i) Principal Component Analysis (PCA), which is appropriate for investigating when 

one suspects that the subspaces of stable and dominant variance associated with the two matrices 

coincide, ii) Partial Least Squares (PLS) regression, which is appropriate when comparing the 

validated predictive parts of two data matrices with respect to one or more response variables. 

Note that for applications based on PCA, stability of the subspaces spanned by T and U in (1) can 

be assessed, i.e. by comparing the condition number of the associated loading matrices P1 and P2 

to some threshold value .  This is closely related to the consideration of scree plots (showing the 

proportions of variance accounted for by including particular components), see Joliffe (2002) that 

includes more methods for choosing the appropriate number of PCA components. For PLS, a 

validation step such as cross-validation (CV) or bootstrapping (Efron and Tibshirani (1993)) may 

be required for a stable and robust choice of columns to include in T and U.  

Step 2 – the SMI calculations 

Equations (4) and (5) represent equivalent alternatives for calculating SMIOP, with (4) as the 

computationally most efficient alternative. By equation (8), the SMIPR requires an explicit 

calculation of the singular values of 𝐓t𝐔.  In situations where also consideration of the SMIPR is 

desired, the associated singular values will also be available for a fast additional computation of 

SMIOP according to equation (5). 

Step 3 – statistical significance and visualization of the results 

Let T(1:p) and U(1:q)  denote the first p ≤ m1 and q ≤ m2 columns of T and U respectively, and 

define 𝑆𝑀𝐼𝑂𝑃
𝑖,𝑗

= 𝑆𝑀𝐼𝑂𝑃(𝐓(1:𝑝), 𝐔(1:𝑞)) and 𝑆𝑀𝐼𝑃𝑅
𝑖,𝑗

= 𝑆𝑀𝐼𝑃𝑅(𝐓(1:𝑝), 𝐔(1:𝑞)). From the various 
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possible (i, j)-combinations, one can generate a detailed view of the subspace relationships (and 

associated variable combinations for the two sets of measurements) by considering the diamond 

plot (an example of this plot is shown in Figure 3 below). The diamond plot provides a compact 

display of the 𝑆𝑀𝐼𝑖,𝑗-value combinations (shown as grey-level intensities) and their associated 

statistical significances. The set symbols (“”, “” and “=”) and significance stars (“*”, “**” and 

“***”) in each cell (i, j) denote the following relationships: 

 No rejection of the null hypothesis associated with T(1:i)  and 𝐔(1:𝑗) is indicated by “=” if   

i = j and by the subset symbols “” or “” if i < j or i > j, respectively. A cell (i, j) 

containing “*”, “**” or “***” indicates the significance level for rejection of the null 

hypothesis (at the 0.05, 0.01 and 0.001 levels, respectively) in the associated comparison.  

Practical use of the diamond plot will be illustrated in the examples below.  

3.4 Standard criteria for correlation coefficients 

By definition, the proposed similarity indices (SMIOP and SMIPR) apply only to pairs of 

orthogonal matrices T and U associated with the original data matrices X1 and X2. Under this 

restriction, the proposed similarity indices (SMIOP and SMIPR) relate to the requirements (see 

Ramsay et al. (1984)) of a matrix correlation measure (r) as follows: 

1. 𝑟(𝑎𝐗1, 𝐗2) = 𝑟(𝐗1, 𝑏𝐗2) = 𝑟(𝐗1, 𝐗2) - invariance by scalar multiplication: When the method 

for extracting the orthogonal score matrices (T and U) is invariant under scalar multiplications of 

the original data matrices X1 and X2, this property holds for both SMIOP and SMIPR. In particular 

it holds when T and U are derived by PCA or PLS. 
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2.  𝑟(𝐗1, 𝐗2) = 𝑟(𝐗2, 𝐗1) - symmetry: This property holds for both SMIOP and SMIPR because the 

non-zero singular values of 𝐓t𝐔 and 𝐔t𝐓 are identical.   

3. 𝑟(𝐗, 𝐗) = 1 - comparison of identical matrices: This holds for both SMIOP and SMIPR because 

for U=T,  𝐓t𝐔 = 𝐓t𝐓 = 𝐈 (the identity matrix) and the associated singular values are all identical 

to 1. 

4. 𝑟(𝐗1, 𝐗2) = 0 if and only if 𝐗1
t 𝐗2 = 0 - orthogonality between matrices: This holds for both 

SMIOP and SMIPR and follows from the fact that only the 0-matrices have their singular values 

identical to 0.   

In the special case where X1 and X2 are vectors, i.e. X1 = x1, X2 = x2 and p=q=1, we have 

𝐓 = 𝐭 = 𝐱𝟏/‖𝐱𝟏‖,  𝐔 = 𝐮 = 𝐱𝟐/‖𝐱𝟐‖ and 𝑆𝑀𝐼𝑂𝑃(𝐭, 𝐮) = (𝐭𝒕𝐮)2 = 𝑐𝑜𝑟𝑟(𝐱𝟏, 𝐱𝟐)
2, i.e. the 

squared Pearson correlation between x1 and x2. Consequently, the proposed permutation testing 

also gives a valid inference alternative for the squared Pearson correlation, i.e. a possibility of 

rejecting  the null hypothesis, and conclude that two vectors being compared are “not highly 

correlated” i.e. they do not share a common subspace. 

3.5 Relations to indices proposed in the literature 

In the literature, in particular the reviews given by Ramsay et al. (1984) and Cramer and 

Nicewander (1979), there are numerous suggestions of how to define and calculate correlation 

measures for matrices.  

According to Ramsay et al. (1984), the most frequently used among the measures of matrix 

correlation between two (np) matrices 𝐗1 and 𝐗2 is  

                          𝑟1(𝐗1, 𝐗2) = 𝑡𝑟𝑎𝑐𝑒(𝐗1
t 𝐗2)/(𝑡𝑟𝑎𝑐𝑒(𝐗1

t 𝐗1)𝑡𝑟𝑎𝑐𝑒(𝐗2
t 𝐗2))

1/2
.  (10) 
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Here, the function r1 corresponds to the ordinary Pearson correlation function for np-dimensional 

vectors (as obtained by stacking the matrix columns on top of each other). Note that |𝑟1| satisfies 

the requirements 1-4 above.  

Alternatively, one may suggest measuring the relationship between 𝐗1 and 𝐗2 by applying 

formula (10) to the associated orthogonal matrices T, U of 𝐗1 and 𝐗2, i.e.  

                             𝑟1(𝐓, 𝐔) = 𝑡𝑟(𝐓t𝐔)/(𝑡𝑟(𝐓t𝐓)𝑡𝑟(𝐔t𝐔))1/2.   (11) 

The inherent ambiguity with respect to the choice of directions in the T- and U basis vectors of 

Equation (11) makes uncritical applications of the r1-function problematic, because the diagonal 

elements in the trace calculation of the numerator may cancel even when T and U span the same 

subspace. The following example illustrates the problem:  

Example  

Consider the orthogonal matrices 

                                           𝐓 =

[
 
 
 
 

1
√2

⁄ −1
√6

⁄

0 2
√6

⁄

−1
√2

⁄ −1
√6

⁄ ]
 
 
 
 

,  𝐔 =

[
 
 
 
 

1
√2

⁄ 1
√6

⁄

0 −2
√6

⁄

−1
√2

⁄ 1
√6

⁄ ]
 
 
 
 

 .  

Obviously SMIOP(T,U) = SMIPR(T,U) = 1, but 𝑟1(𝐓, 𝐔) = 0 because the trace 𝑡𝑟(𝐓t𝐔) =

𝑡𝑟 [
1 0
0 −1

] = 0.    

It should be noted that the idea of calculating an index for reduced matrices have been suggested 

earlier (see the paragraph on “Clipping Transformations” in Ramsey et al. (1984), page 409). We 

believe that the geometrical aspects of the proposed SMI-framework and the associated 
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visualization method for the significance testing may ignite renewed interest in the subject both 

from the applied and theoretical points of view.  

The popular RV coefficient of Robert and Escoufier (1976) is mentioned both in the introduction, 

and in several of the examples presented below. There are alternative equivalent formulations of 

the RV coefficient, and one of them is based on the definition of the 𝑟1-function in Equation (10): 

 𝑅𝑉(𝐗1, 𝐗2) = 𝑟1(𝐗1𝐗1
t , 𝐗2𝐗2

t ) = 𝑟1(𝐓𝐒1𝐕1
t𝐕1𝐒1𝐓

t, 𝐔𝐒2𝐕2
t𝐕2𝐒2𝐒2

2𝐔t) = 𝑟1(𝐓𝐒1
2𝐓t, 𝐔𝐒2

2𝐔t). (12) 

Here T denotes the left singular vectors- and S1 the non-zero singular values of X1, and U denotes 

the left singular vectors- and S2 the non-zero singular values of X2. V1 and V2 denotes the 

corresponding right singular vectors. The rightmost expression in (12) shows that the squared 

singular values acts as weights for the various left singular vector directions in their contributions 

to the RV coefficient. Note that the 𝑟1-canceling problem demonstrated in the above example is 

avoided for the RV coefficient. This is because the associated trace summations defining 𝑟1 

involve positive numbers (squares) only.   

By substituting the diagonal singular value matrices 𝐒1and 𝐒2 in (12) with identity matrices of 

corresponding size, we obtain a situation where all the singular vectors are treated as equally 

important and the resulting computation is 𝑅𝑉(𝐓, 𝐔) = 𝑟1(𝐓𝐓t, 𝐔𝐔t). By recalling (from the 

introduction) that Yanai’s 𝐺𝐶𝐷(𝐗1, 𝐗2) = 𝑅𝑉(𝐓, 𝐔), it can be concluded that 𝐺𝐶𝐷(𝐗1, 𝐗2) =

𝑟1(𝐓𝐓t, 𝐔𝐔t), i.e. the Pearson correlation between the projection matrices 𝐓𝐓t  and 𝐔𝐔t that 

indeed corresponds to Yanai’s (1974) original definition of the GCD. It should be noted that in 

the original definitions of both 𝑅𝑉(𝐗1, 𝐗2) and 𝐺𝐶𝐷(𝐗1, 𝐗2), the complete matrices of left 

singular vectors T and U (associated with the respective sets of non-zero singular values) are 

included in the calculations. 
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The fundamental idea of the proposed SMI-framework is to vary the numbers p ≤ m1 and q ≤ m2 

of included columns for systematic comparison of the reduced matrices T = T(1:p) and U = U(1:q). 

Note that an obvious partial version of the GCD is obtained when using the indicated reduced 

versions of T and U. Within a scaling factor depending on p and q (see comment 4 in Section 

3.1.1) the partial GCD is related to SMIOP as follows:  

From the trace identities 

𝑡𝑟(𝐔t𝐓𝐓t𝐔) = 𝑡𝑟(𝐓𝐓t𝐔𝐔t),   𝑡𝑟(𝐓𝐓t) = 𝑡𝑟(𝐓t𝐓) = 𝑝  and  

𝑡𝑟(𝐔𝐔t) = 𝑡𝑟(𝐔t𝐔) = 𝑞, 

and by noting that 𝑚𝑖𝑛 (𝑝, 𝑞)/√𝑝𝑞 = √𝑚𝑖𝑛 (
𝑝

𝑞
,
𝑞

𝑝
), the following equations hold   

                                        𝐺𝐶𝐷(𝐓, 𝐔) = 𝑅𝑉(𝐓, 𝐔) = 𝑆𝑀𝐼𝑂𝑃(𝐓,𝐔)√𝑚𝑖𝑛 (
𝑝

𝑞
,
𝑞

𝑝
).    (13) 

It should also be noticed that there is a simple connection between the analogous partial version 

of the 𝑃𝑆𝐼 (mentioned in the introduction) and 𝑆𝑀𝐼𝑃𝑅. Directly from their respective definitions, 

it follows that 𝑃𝑆𝐼(𝐓, 𝐔)2 = 𝑆𝑀𝐼𝑃𝑅(𝐓,𝐔) for the orthogonal matrices T and U and the Procrustes 

transformation 𝐇 = 𝑔𝐑  resulting from equation (14). 

As pointed out by Smilde et al. (2009), the RV-coefficient suffers from an increasing bias 

(towards 1) when the number of variables (columns) increase compared to the number of samples 

(rows) in the two matrices. They therefore proposed the RV2-coefficient as a bias reducing (but 

still biased) alternative to the RV-coefficient. Arguing that the main problem of the RV-

coefficient is numerator inflation due to the guaranteed positive diagonals of 𝐗1𝐗1
𝑡  and 𝐗2𝐗2

𝑡 , the 

two diagonals are simply set to 0 in the RV2-coefficient. Mayer et al. (2011) pointed at some 
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fundamental problems with RV2 and proposed a corrected and unbiased alternative to the RV- 

(and RV2) directly based on the classical adjusted R-square  𝑟𝑎𝑑𝑗
2 (𝐱, 𝐲) = 1 − 𝑛−1

𝑛−2
(1 − 𝑟2(𝐱, 𝐲)) 

statistic between two n-dimensional vectors x and y. It should be noted that the RVgq-coefficient 

proposed by El Ghaziri and Qannari (2015) is also unbiased.  

Some interesting properties of the alternative RV-coefficients can be illustrated through two 

simple simulations with random data. We first create a 1000 x 1000 orthogonal matrix and select 

columns from this to form two matrices spanning from 1 column to 500 columns wide, having no 

common subspace. Second, we sample standard normal values to fill two 1000 x p matrices with 

randomly overlapping, non-structured subspaces. The results of applying RV, RV2, RVadj, RVgq 

and SMIOP (using the maximum possible number of components, i.e. equal to GCD) are displayed 

in Figure 1. 

For matrices of reasonable dimensions, one would hope to see only 0 coefficients in both 

simulations. In the case of non-overlapping subspaces, one can observe that RV, RVgq and SMIOP 

are indeed 0, while RV2 and RVadj decrease to a value of -1 as p approaches 500. The latter 

would imply maximum negative correlation, which is counter intuitive as the spaces spanned by 

the matrices are orthogonal. In the case of random matrices, SMIOP is the only measure starting at 

0, though as expected the proportion of overlap between the subspaces spanned increases linearly 

until the overlap is complete at p = 1000. RV, RV2, RVadj start at 0.57 and increase past 0.9 

already at p = 7. RVgq starts at -0.7531, but also increases toward 1, though only passing 0.9 as p 

nears 40. 
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Figure 1 - Matrix correlations of noise matrices of varying number of columns (N=1000). Upper: 
two orthonormal matrices spanning orthogonal subspaces. Lower: two standard normal random 
matrices with overlapping subspaces. 

 

4. Examples  

In each of the examples,   = 100,000 random permutations have been used for calculating the 

reported p-values. For the sake of comparison, the resulting values for both SMIOP and SMIPR 

(together with some of the other indices) were included in all examples. A complete list of 

coefficient values for all examples is found in the Supplementary Material. When appropriate, we 

discuss reasons for consistencies and discrepancies. One of the examples is about prediction, and 
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PLS has been used for finding the orthogonal matrices T and U in that one. In the remaining 

examples, PCA have been used for finding T and U.    

4.1. A simulated example where the RV-coefficient fails 

This example illustrates a simple situation with two matrices 𝐗1 and 𝐗2 (see Figure 2, and their 

numerical values in Appendix Table 1) of size (82) and associated orthogonal PCA-score 

matrices T and U of identical size. In this situation, the classical RV-coefficient is RV(𝐗1, 𝐗2) = 

0.07 and fails to indicate the obvious geometrical relationship in the measurements. On the other 

hand, both 𝑆𝑀𝐼𝑂𝑃
2,2(𝐗1, 𝐗2) = GCD(𝐗1, 𝐗2)  = 0.89 and 𝑆𝑀𝐼𝑃𝑅

2,2(𝐗1, 𝐗2)  = 0.89. The explanation 

of the disagreement between the RV-coefficient and the SMI-values is that the dominant score 

vector t1 (the first column of T) of 𝐗1 is highly correlated with the second score vector u2 (the 

second column of U) of 𝐗2 and vice versa, i.e. corr(t1, u2) = 0.95, corr(t2, u1) = 0.93, and 

𝑐𝑜𝑟𝑟(𝒕1, 𝒖1) = −0.01. The obvious conclusion based on the RV-coefficient (no relationship 

between the two datasets) is overwhelmingly inconsistent with the geometrical picture in Figure 2 

and the large associated 𝑆𝑀𝐼2,2(𝐗1, 𝐗2) -values.  
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Figure 2 – The two configurations of points essentially differ by rotation and scaling only. 

The permutation testing associated with 𝑆𝑀𝐼𝑂𝑃
1,1(𝐗1, 𝐗2)  and 𝑆𝑀𝐼𝑃𝑅

1,1(𝐗1, 𝐗2)  leads to rejection of 

H0 at any significance level, indicating significant evidence against collinearity between the two 

dominant principal components. The other SMI-value combinations results in P-values > 0.5 for 

both OP and PR, i.e. no significant evidence against H0 for the associated variable combinations. 

It is important to notice that the application of the RV-coefficient after standardization of the 

columns in  𝐗1 and 𝐗2 yields a completely different result (the new value is 0.89 and equals the 

𝑆𝑀𝐼2,2-values found above in the first two decimal places). This is obviously counterintuitive in 

perspective of the scale-invariance property of the Pearson correlation calculated between vectors.  

The same tendencies can be observed for the RV2(𝐗1, 𝐗2) = 0.05  and RVadj(𝐗1, 𝐗2) = 0.06  for 

non-standardized data versus RV2(𝐙1, 𝐙2) = 0.88 and RVadj(𝐙1, 𝐙2) = 0.84 for the standardized 

versions (𝐙1, 𝐙2) of the (𝐗1, 𝐗2)-data, respectively. Finally, using Procrustes rotations, the 

PSI(𝐗1, 𝐗2) = 0.34 indicate some similarity for the original data, and a relatively large similarity 

PSI(𝐙1, 𝐙2) = 0.94 for the standardized data. 

4.2 Two cases with simulated data 

The purpose of this example is to illustrate properties of the SMI in some highly structured 

situations with simulated data.  

In the first case, we generate a “wide” matrix X1 of size (100×300) by random sampling of its 

entries from the standard normal distribution followed by centering. The associated matrix X2 is 

constructed by eliminating the 3rd component from the SVD-expansion of X1. In the second case, 

“tall” matrices X1 and X2 of size (300×10) where generated according to the same type of random 

sampling- and elimination of the 3rd SVD-component.  
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The diamond plots in Figure 3 show the associated 𝑆𝑀𝐼𝑂𝑃
𝑖,𝑗 (𝐗1, 𝐗2) -values for various 

combinations of PCA-components for both the “wide” and the “tall” cases. Note that the 𝑆𝑀𝐼-

values are large (as can be expected from our construction of X2) for most combinations. Note that 

for combinations exposing the eliminated SVD-component (of the 𝐗2 matrices), corresponding 

reductions in the SMI-values appear systematically. From the left plot in Figure 3, note that in the 

first case with matrices of size 100×300, H0 is not rejected for the combinations associated 

with 𝑆𝑀𝐼𝑂𝑃
8,10(𝐗1, 𝐗2), 𝑆𝑀𝐼𝑂𝑃

9,9(𝐗1, 𝐗2), 𝑆𝑀𝐼𝑂𝑃
9,10(𝐗1, 𝐗2) and 𝑆𝑀𝐼𝑂𝑃

10,10(𝐗1, 𝐗2) (in spite of the 

eliminated SVD-component in X2). This observation clearly indicates that the proposed 

significance testing procedure is conservative. 

The pattern formed by the SMI values in Figure 3 is consistent with the explained variance analogy 

of the SMI coefficient. For 𝑆𝑀𝐼𝑂𝑃
𝑖,𝑖 (𝐗1, 𝐗2) (i ≥ 3) the resulting SMI-values are 2/3, 3/4, 4/5,…, 

9/10 that correspond exactly to the ratios of 𝐗2-dimensions contained in the associated 𝐗1-

dimensions, as the 3rd SVD-component of  𝐗1 is absent from 𝐗2. 

The associated RV-coefficient values are RV(𝐗1, 𝐗2) = 0.98 and RV2(𝐗1, 𝐗2) = RVadj(𝐗1, 𝐗2) = 

0.92 for the 100×300 matrices, while PSI(𝐗1, 𝐗2) = 0.99 and GCD(𝐗1, 𝐗2) = 1.  For the 300×10 

matrices one can observe that RV(𝐗1, 𝐗2) = RV2(𝐗1, 𝐗2) = RVadj(𝐗1, 𝐗2) = 0. 94, while 

PSI(𝐗1, 𝐗2) = 0.94 and GCD(𝐗1, 𝐗2) = 0.9. 
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Figure 3 - SMIOP including the first 10 component combinations after centering of the 

matrices X1 and X2. The entries of X1 are drawn randomly from the standard normal 

distribution (dimensions indicated in the headers). X2 is obtained by removing the 3rd SVD 

component from X1. “=”, “” and “” indicate that H0 is not rejected. The stars indicate 

rejection of H0 at different significance levels as follows: *** = P<0.001, ** = P<0.01 and * = 

P<0.05. 

 

4.3 An example from sensory science 

Sensory science is a field where the RV coefficient is often included as a part of the data analysis 

and –interpretations, see e. g. Tomic et al. (2013). In the example shown here, the data matrices X1 

and X2 represent the measurements from two sensory labs (doing professional tasting) on a number 

of candy products (here we can think of each lab as an “instrument” measuring some desired 

variables in the present context). The two data matrices considered are obtained by averaging the 

individual assessor score values given on each of the candy products (assessor panel averages). 

There were six different products (samples), which were all measured three times (3 replicates) 
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using six different sensory attributes resulting in an (186)-panel data matrix. In this particular 

analysis the products are treated as independent, but as the sample triplicates are expected to have 

similar attribute values they are grouped together in the permutation testing. The two labs and the 

associated data sets are parts of a larger study described in Tomic et al. (2010).  In this particular 

type of applications it is of special interest to compare the values of SMIOP and SMIPR. A small 

difference between these values can be taken as evidence for the extent of agreement between the 

two panels being accounted for by a possible scaling and rotation of the underlying dimensions, 

only. 

Using the SMI, we find that the dominant PCA-score vectors of each panel data set (accounting for 

86% and 83% of the total variance) indicate a large similarity in the dominant PCA-components, 

i.e. 𝑆𝑀𝐼𝑂𝑃
1,1(𝐗1, 𝐗2)  = 𝑆𝑀𝐼𝑃𝑅

1,1(𝐗1, 𝐗2)  = 0.93. However, the correlation between the subsequent 

pair of components is relatively small (0.30), and by including the second PCA component from 

both panels, the associated similarities are considerably reduced, i.e. 𝑆𝑀𝐼𝑂𝑃
2,2 = 0.52 and 𝑆𝑀𝐼𝑃𝑅

2,2 =

0.41. This shows that the two panels have little correspondence in the second subspace dimension 

and that the difference is even larger when restricting similarity to rotation/scaling. It should also 

be noticed the PSI and GCD values are moderate, i.e. PSI(𝐗1,𝐗2) = 0.68 and GCD(𝐗1,𝐗2) = 0.59. 

On the other hand, we have RV(𝐗1, 𝐗2) = RV2 (𝐗1, 𝐗2) = 0.93 and RVadj(𝐗1, 𝐗2) = 0.92. The 

relatively large values of the RV coefficients are best explained by the strong influences of the 

most dominating principal component in the two panels (see above), causing the discrepancies 

between the data matrices along their respective second components to be much less emphasized. 

Since sensory science data analysis traditionally relies much on the interpretation of two or three 

components provided that the RV coefficient is sufficiently large, this aspect may indeed imply 

unfortunate conclusions.    
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Figure 4 shows the SMI values with the factor/subspace combinations traditionally used for 

interpretation of the sensory data (indicated by the thicker frame). Figure 5  shows the observed 

and fitted score values. Clearly, the two panels strongly agree on the most dominant dimension in 

the two datasets. The agreement when including the second dimension, however, appears as much 

vaguer, and the comparison by SMIPR indicates a significant mismatch between the 2-dimensional 

representations of the panels. The mismatch for SMIOP is also illustrated by Figure 5  showing a 

larger difference between the observed T(1:2) and OP-predicted sample score-values 𝐓̂(1:2) =

𝐔(1:2)𝐁𝐔(1:2) in the second dimension (the vertical axis). The statistics of the significance testing 

shows that the P-values associated with 𝑆𝑀𝐼𝑂𝑃
2,2(𝐗1, 𝐗2)(= 0.52) and 𝑆𝑀𝐼𝑃𝑅

2,2(𝐗1, 𝐗2)(= 0.41) are 

0.06 and 0.0000, respectively. Consequently, at the  = 0.05 significance level, H0 is rejected in 

the PR-context and nearly rejected in the OP-context for the associated SMI-values.  

              

 

Figure 4 - SMIOP and SMIPR for all combinations of up to three PCA-components from Panel 

1 and Panel 2. The red square (thicker line) indicates the dimensions most popular for 
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interpretations in sensory analyses. The “=”, “” and “” indicate that H0 is not rejected. 

Triple stars (***) indicate rejection of H0 at the significance level P<0.001. 

  

Figure 5 - Plot of the first two components of T(1:2) (+) and the predictions 𝐓̂(𝟏:𝟐)(×). Dashed 

lines connect the scores and the predicted scores to indicate the level of mismatch in both 

components.  

 

4.4 An example based on predictive PLS spaces from spectroscopic datasets 

In this example, we consider the subspaces and associated factors obtained by two measurement 

technologies through predictive modelling by the use of both 

 PLS-regression with several responses extracting (with respect to predictions) the 

orthogonal matrices V and W from X1 and X2, respectively. 

 PCA extracting (with respect to variance content) the orthogonal matrices T and U from X1 

and X2, respectively.  
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Using PLS for identifying the subspaces to compare, means that the SMI will measure what the 

two matrices X1 and X2 have in common with regard to the modelling of some particular 

response(s). 

 Spectroscopic measurements by Raman shifts (Gardiner and Graves (1989)) and NIR wavelengths 

(Stark et al. (1986)) are both highly multivariate measurement technologies that are here used for 

prediction of two polyunsaturated fatty acid (PUFA) Y-responses (standardized) from the same set 

of (n = 69) samples.  

A leave-one-out cross-validation approach was used for choosing the appropriate dimensions and 

associated factors for each dataset separately. With the Raman (X1) data of size (69 x 1096), p = 6 

PLS components (V) were required in order to give the best possible predictions by means of cross 

validation. With the NIR (X2) data of size (69 x 301), selection of q = 10 components (W) was 

indicated as the best cross validated choice. The associated 𝑆𝑀𝐼𝑂𝑃
6,10(𝐕,𝐖) = 0.67, indicate that 

the NIR predictive space accounts for a substantial proportion of the variation in the Raman 

predictive space. The other matrix correlation measures are a bit lower when using the same 6 and 

10 dimensional subspaces as input: 𝑆𝑀𝐼𝑃𝑅
6,10(𝐕,𝐖) = 0.59, RV/GCD(𝐕1:6,𝐖1:10) = 0.52, 

RV2(𝐕1:6,𝐖1:10) = 0.47, RVadj(𝐕1:6,𝐖1:10) = 0.46, PSI(𝐕1:6,𝐖1:10) = 0.60 and GCD(𝐕1:6,𝐖1:10) 

= 0.52. 

Figure 6 shows the diamond plots of the 𝑆𝑀𝐼𝑂𝑃
𝑖,𝑗

 by including all subspace combinations (and 

associated factors) up to 10 dimensions for both the NIR and Raman data based on PCA (left) and 

PLS (right). Note that the diamond plot similarity pattern is quite consistent for the two subspace 

selection alternatives (a closer inspection shows that the SMIOP is slightly larger on average for the 

PLS subspaces, 𝑆𝑀𝐼𝑂𝑃
6,10(𝐓, 𝐔) = 0.53). The cells marked with “” represent SMI-values 

sufficiently large for not rejecting H0. The correspondence between data similarity (PCA) and 
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predictive similarity (PLS) is comparable for the other matrix correlation measures when applied 

to the PCA-scores: RV/GCD(𝐓1:6, 𝐔1:10) = 0.41, RV2(𝐓1:6, 𝐔1:10) = 0.35, RVmod(𝐓1:6, 𝐔1:10) = 

0.34 and PSI(𝐓1:6, 𝐔1:10) = 0.51.  

                 

Figure 6 - The left plot shows SMIOP for all component combinations of PCA on NIR and 

Raman spectra. The right plot shows the SMIs components found by PLS regression. The 

red rectangle shows all component combinations up to the numbers found to be optimal for 

prediction by cross-validation for NIR and Raman, respectively. “=”, “” and “” shows 

that H0 is not rejected. Stars indicate rejection of H0 at the significance levels: *** = P<0.001, 

** = P<0.01, * = P<0.05. 

 

4.5 Example on spectroscopic datasets to compare non-overlapping subsets of variables 

This example demonstrates an application of the SMI-framework to assess subspace (and 

associated factor) similarities based on subsets of variables obtained by NIR-measurements. By 

vertically splitting the NIR-data matrix from Example 4 into four equally sized blocks 

(𝐗1, 𝐗2, 𝐗3, 𝐗4), we consider the variables corresponding with the two middle blocks X2 and X3 
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(associated with the wavelengths ranging from 1550 to 1698nm and 1700 to 1848nm, respectively).  

The diamond plot in Figure 7 shows the 𝑆𝑀𝐼𝑂𝑃
𝑖,𝑗

(𝐗2, 𝐗3)-values for up to 10 PCA-component 

combinations. Because NIR measurements often give strong correlations along large bands of 

wavelengths, one can expect several of the SMI-values to be relatively large. It should be noted 

that for the subspaces (and associated factors) of equal dimension, rejections of H0 are obtained. 

In particular, we obtain 𝑆𝑀𝐼𝑂𝑃
7,7(𝐗2, 𝐗3) = 0.80 with a corresponding P-value less than 0.001.  By 

including extra components for either one of the subspaces (and associated set of factors), however, 

the corresponding P-values increase and the associated null hypotheses are no longer rejected. 

Thus, the diamond plot shows that much of the same information is present in both matrices. The 

discrepancy along the diagonal in Figure 7 is most likely related to the very first pair of PCA-scores 

that are not very similar (𝑆𝑀𝐼𝑂𝑃
1,1(𝐗2, 𝐗3) = 0.45 ⇔ 𝑐𝑜𝑟𝑟(𝒕1, 𝒖1) = 0.67). Finally, note that 

RV(X2, X3) = 0.60, a relatively small value (compared to the entire collection of 𝑆𝑀𝐼𝑂𝑃-values 

indicated in Figure 7) not revealing the evidently strong relationships between the two data blocks, 

due to the low correspondence in the first principal component. The same conclusion can be drawn 

from RV2(𝐗2, 𝐗3) = 0.59 and RVadj(𝐗2, 𝐗3) = 0.60. Because of the large number of variables, 

GCD(𝐗2, 𝐗3) = 1, while PSI(𝐗2, 𝐗3) = 0.95, as it rotates to principal components of higher 

correspondence.  
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Figure 7 - SMIOP for all combinations of up to 10 components from wavelength numbers 

76:150 and wavelength numbers 151:225. “=”, “” and “” shows that H0 is not rejected. 

Stars indicate rejection of H0 at the significance levels: *** = P<0.001, ** = P<0.01, * = 

P<0.05. 

 

5. Discussion 

The proposed two-step SMI-framework for comparing matrices (that may be associated with 

different measurement technologies) goes as follows: First, one identifies the stable subspaces 

accounting for the relevant directions of variability for the two data matrices. Thereafter, the 

associated subspaces are compared with respect to either an orthogonal projection (OP) or a 

Procrustes rotation (PR). Based on the singular values of 𝐓t𝐔, both the OP and the PR can be 

calculated to expose the nature and level of similarity between the matrices considered. 

When interest lies in investigating whether the samples in two different matrices have more or 

less the same configuration, but the actual components included in the SMI-measurements have 
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different explained variances in the two matrices, the similarities as measured by SMIPR and  

SMIOP  can be used as criterion (see Section 3.1.2). 

Note that different subspace estimation procedures can be used, depending on the scope of the 

study. In most cases PCA is the natural alternative, but in situation where the focus is mainly on 

the subspaces providing particular predictive information, using PLS for the subspace 

identification is a more appropriate alternative. 

The suggested SMI-framework for assessing similarities has been related to several established 

methods (the various RV coefficients, Yanai’s GCD  and the PSI), and some interesting 

advantages were demonstrated: By concentrating on comparing subspaces, we were able to 

introduce statistical testing of the hypothesis assuming equality of a set of factors associated with 

the compared datasets. In contrast, traditional applications of the RV coefficient and classical 

applications of canonical analysis focus on testing the hypothesis of absence of relationship 

between the matrices. In most real cases, where the investment in extra resources and new 

technology for collecting more data is preferred only when proven profitable, this type of 

statistical testing is the answer to a less interesting question.  

Compared to the RV coefficient (Equation (12)), which depends on the squared singular values of 

the data matrices 𝐗1and 𝐗2, the SMI-framework considers only the stable structural elements 

without taking the size of the singular values into further account. From a geometrical point of 

view, the weighting of dimensions in the RV coefficient represents a bias towards the dimensions 

associated with the larger singular values.  

In Section 3.5 we illustrated some further benefits of using the SMI instead of the different RV 

coefficients using simulated data. When generating orthogonal matrix columns (variables) 
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spanning non-overlapping subspaces (Figure 1, upper part) , one could see that the values of RV2 

and RVadj were decreasing monotonously towards -1 when the dimensionality of the non-

overlapping subspaces associated with the two matrices were increasing.  

When the entries of the two matrices were randomly drawn from the standard normal distribution, 

their columns are typically spanning overlapping subspaces. As is shown in the lower part of Figure 

1, all of the alternative RV coefficients yielded large matrix correlation values that were quickly 

(after including 10-100 columns) increasing towards 1. The properties exposed here should be kept 

in mind when drawing conclusions based on the different RV coefficients, especially when the 

matrices to be compared have a large number of columns compared to the number of rows. Note 

that the SMIOP did not expose any of the counterintuitive properties observed for the various RV-

alternatives. First of all, it does not increase towards the value 1 before the number of subspace 

dimensions become close to the number of variables. This is a necessary consequence of the fact 

that the n-dimensional columns of the two matrices both are spanning an increasingly large part of 

the full Euclidean space (Rn). Furthermore, SMIOP is also straight forward to use for cases where 

the original (raw) matrices are wide (containing more columns than rows), as the subspaces 

interesting for comparisons often have much lower dimensions. 

6. Conclusions 

Based on the example applications and the arguments given above, we claim that the SMI-

framework (and Yanai’s GCD) offers a way of measuring matrix similarity which is more in line 

with a common sense understanding of matrix similarity than the various RV coefficients. The 

SMI-framework equipped with the diamond plot that visualizes both the SMI-values and 

corresponding significance, is also better facilitated for doing ordinary statistical inference. The 

entire SMI-approach has been introduced as an explorative framework for investigation of 
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various similarities of subspace combinations. We believe the diamond plots may be recognized 

as particularly useful for quickly recognizing the “broader” geometrical picture of relationships 

present in the datasets subject to comparison.  
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Appendix 

Table 1: Coordinates for the two sets of points in the first example in Section 4.1. 

𝐗1 𝐗2 

-1,0 1,0 -5,5 -0,5 

1,0 1,0 -5,0 0,3 

5,0 0,5 -0,8 0,7 

5,0 -0,5 0,8 0,8 

1,0 -1,0 5,5 0,5 

-1,0 -1,0 5,8 -0,5 

-5,0 -0,5 0,9 -0,6 

-5,0 0,5 -0,7 -0,9 

 
 

 


