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Abstract

Background: Photobacteriosis is an infectious disease developed by a Gram-negative bacterium Photobacterium
damselae subsp. piscicida (Phdp), which may cause high mortalities (90–100%) in sea bream. Selection and breeding
for resistance against infectious diseases is a highly valuable tool to help prevent or diminish disease outbreaks, and
currently available advanced selection methods with the application of genomic information could improve the
response to selection. An experimental group of sea bream juveniles was derived from a Ferme Marine de Douhet
(FMD, Oléron Island, France) selected line using ~ 109 parents (~ 25 females and 84 males). This group of 1187
individuals represented 177 full-sib families with 1–49 sibs per family, which were challenged with virulent Phdp for a
duration of 18 days, and mortalities were recorded within this duration. Tissue samples were collected from the parents
and the recorded offspring for DNA extraction, library preparation using 2b-RAD and genotyping by sequencing.
Genotypic data was used to develop a linkage map, genome wide association analysis and for the estimation of
breeding values.

Results: The analysis of genetic variation for resistance against Phdp revealed moderate genomic heritability with
estimates of ~ 0.32. A genome-wide association analysis revealed a quantitative trait locus (QTL) including 11 SNPs at
linkage group 17 presenting significant association to the trait with p-value crossing genome-wide Bonferroni corrected
threshold P≤ 2.22e-06. The proportion total genetic variance explained by the single top most significant SNP was
ranging from 13.28–16.14% depending on the method used to compute the variance. The accuracies of predicting
breeding values obtained using genomic vs. pedigree information displayed 19–24% increase when using genomic
information.

Conclusion: The current study demonstrates that SNPs-based genotyping of a sea bream population with 2b-RAD
approach is effective at capturing the genetic variation for resistance against Phdp. Prediction accuracies obtained
using genomic information were significantly higher than the accuracies obtained using pedigree information which
highlights the importance and potential of genomic selection in commercial breeding programs.
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Background
The gilthead sea bream (Sparus aurata) is a widely distrib-
uted highly important farmed fish species. Global produc-
tion of gilthead sea bream has risen about 60% during the
last decade with an increase of 116,858 to 175,232 metric
tons [1]. Mediterranean aquaculture is a major contributor
with an annual production of ~ 147,649 metric tonnes [2].
Nonetheless, the industry has challenges ranging from dis-
ease outbreaks to consumer acceptance and preferences,
as well as fish welfare issues.
Photobacteriosis, which is also known as fish pasteurellosis,

is one of the major infectious diseases that causes economic
losses [3]. This disease is developed by a Gram-negative bac-
terium, which may cause high mortalities (90–100%) espe-
cially in the larval and juvenile [4, 5] phases. Exploiting the
available natural genetic variation and selection for genetic
resistance against this infectious agent may prove a highly
valuable tool to help prevent or diminish disease outbreaks.
Several factors may affect the response to selection, heritabil-
ity and the index value given to a trait are the more pro-
nounced ones. Rapid genetic progress can be achieved
through selective breeding [6] given that the trait is of mod-
erate to high heritability [7]. Recently, it has been reported
that resistance to photobacteriosis is moderately heritable
with heritability values ranging from 0.18 to 0.45 [8, 9].
RAD-Seq (Restriction-site associated DNA sequencing) is

a reduced representation high-throughput sequencing tech-
nique for the simultaneous detection of single nucleotide
polymorphisms (SNPs) and genotyping of individuals for
the detected SNPs [10]. RAD-Seq technique consists of dif-
ferent steps including (a) digestion of genomic DNA with a
restriction enzyme, (b) size selection of DNA fragments
and library preparation with unique individual specific nu-
cleotide barcodes (c) multiplexing the libraries from differ-
ent samples, and subsequent high-depth sequencing of the
flanking regions. RAD-Seq has already been successfully
used in several studies of aquaculture species to generate
high-density linkage maps [11–15] and genome wide asso-
ciation studies (GWAS) in a cost-efficient manner [16–18].
2b-RAD is a flexible and easily-streamlined version of
RAD-Seq, which utilizes type IIB restriction enzymes to
cleave genomic DNA from both up and downstream of the
enzyme recognition site [19]. 2b-RAD is relatively simple
and resulting tags are uniform in length, making them ideal
for amplification and sequencing on next-generation plat-
forms. It also avoids the sampling error due to its nature to
incorporate all the endonuclease recognition sites for se-
quencing though sampling error may happen in RAD-Seq
during size selection step [20]. Several studies have already
successfully utilized the 2b-RAD approach for exploring
the genetic basis of traits in fish species [9, 21, 22].
The use of recent available technological advancements

(i.e. genome-wide sequencing and genotyping technolo-
gies) allows to perform high resolution studies to detect

molecular markers that are linked to trait(s) of economic
importance, which could prove potent tools to overcome
challenging genetic correlations. Several studies have indi-
cated that knowledge about genetic markers linked to
genes affecting quantitative traits can increase the selec-
tion response of animal breeding programs, especially for
traits that are difficult to improve by traditional selection
[23, 24]. Several studies (genome wide association studies,
GWAS) in Atlantic salmon have reported significant asso-
ciation between genetic markers and quantitative traits of
economic importance with significant effects of identified
loci on trait(s) [25–27].
Moreover, development of genomic resources using de-

scribed advancements also provides the opportunity to
apply advanced selection methods e.g. genomic selection
(GS) with state of the art statistical models. The application
of GS with genome-wide distributed molecular markers
(e.g. SNPs) to breeding is particularly valuable for difficult
traits like disease resistance, which is almost impossible to
measure on the selection candidates. Breeding values esti-
mated using genomic prediction with genome-wide opti-
mally dense molecular markers can deliver significant
improvements in selection accuracy compared to trad-
itional pedigree-based approaches [9, 18, 28, 29].
The current study aimed at identifying genetic basis of

resistance to photobacteriosis in the gilthead sea bream
by estimating the genetic variation in explaining resist-
ance to this infectious agent, and performing a GWAS
to detect quantitative trait loci and estimate accuracy of
pedigree vs. genomics based selection.

Methods
Population
A population of nearly 1300 gilthead sea bream juveniles
originated from the Ferme Marine de Douhet (FMD,
Oléron Island, France) breeding nucleus derived from a
cross of 109 parents (25 females and 84 males). Parents
were crossed by artificial fertilization using full factorial
mating design in “blocks” with 8 block in total, and in
each block 3–4 females were fertilized by 9–11 males.
Finclip tissues were sampled from each parent for later
parentage assignment and genomic analysis. All the ex-
perimental fish were created the same day and mixed in
a single non-sorted batch.

Challenge test and trait recording
The developed population of nearly 1300 individuals
(body weight ~ 3–5 g) at ~ 120 days post hatching was
transferred to the experimental aquarium of the Istituto
Zooprofilattico Sperimentale delle Venezie (Legnaro,
Italy) for the challenge test. The population was kept for
30 days in rectangular fiberglass 4000 L tanks supplied
with re-circulating aerated seawater (30 ppt salinity) to
get acclimatized and fed with a commercial pellet diet
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(Neo Supra Al4g, LeGoussant). A total of 1233 fish were
challenged with a virulent strain of Photobacterium
damselae subsp. piscicida (Phdp, 249/ITT/99) by intra-
muscular inoculation of 1000 CFU. The remaining 67
fish represented the biological control group and
received intramuscular injection with PBS 0.01 M.
The challenge test lasted for 18 days and mortalities were

recorded twice a day within this duration. A random sam-
ple of 30 dead fish was analyzed using validated molecular
assay detailed by Roberta et al. (2018) [30] to confirm that
mortalities were primarily due to the infection. The surviv-
ing animals were euthanized with an overdose of MS-222
(100 mg/L) at 18 days post-infection. Two phenotypic traits
as a measure of resistance against photobacteriosis were re-
corded on the tested individuals; dead/survive (PDS) and
day to death (PD2D) post challenge. Individuals that sur-
vived until day 18 were considered to be survivors. Finclip
tissue samples were collected from all dead and alive indi-
viduals and stored in ethanol 85% at 4 °C.

DNA extraction, 2b-RAD library preparation and
sequencing
Genomic DNA was extracted from ~ 20 mg of collected
tissue samples of parents and progeny using a commercial
kit (DNA Tissue HTS 96 Kit, Invisorb, Germany), follow-
ing the manufacturer’s instructions. The resulting DNA
quantity was determined by using a Qubit fluorimeter
with a dsDNA BR Assay (Invitrogen, California) and DNA
quality was checked at 1% agarose gel electrophoresis.
A total of 1342 2b-RAD libraries (109 parents and 1233

juveniles) were prepared following the protocol reported
by Wang et al. [19] with minor modifications described as
follow. The template DNA for each individual (300 ng)
was digested in 6 μl reaction volume using 1.4 U AlfI
(Thermo Fisher Scientific, USA) at 37° for 1 h, followed by
enzyme heat inactivation at 65° for 20 min. The ligation
reaction was performed by combining 6 μl of digested
DNA with 20 μl of a ligation master mix containing
0.4 μM each of two library-specific adaptors with fully de-
generate cohesive ends (5′ -NN- 3′), 10 mM ATP (New
England Biolabs, USA), and 1 U T4 DNA ligase (SibEn-
zyme Ltd., Siberia). Ligation was carried out at 16° for 3 h,
with subsequent heat inactivation for 10 min at 65°.
Sample-specific barcodes were designed through a Bar-

code Generator program (http://comailab.genomecenter.-
ucdavis.edu/index.php/Barcode_generator). The PCR
reaction were prepared in a volume of 50 μl containing
mixes of 12 μl of ligated DNA product, 0.5 μM of each
primer (P4 and P6-BC, Eurofins Genomics S.r.l, Italy),
0.2 μM each primer (P5 and P7, Eurofins Genomics),
25 mM dNTPs (New England Biolabs, NEB, Ipswich,
Massachusetts, USA), 1× Phusion HF buffer, and 1 U Taq-
Phusion high-fidelity DNA polymerase (New England Bio-
labs). This PCR reaction of 50 μl was then divided into

three independent reactions of 16.6 μl each to reduce the
problem of PCR duplicates.
2b-RAD tags were amplified using the following cycling

conditions: 98 °C for 4 min, 13 cycles of. 98 °C for 5 s, 60 °
C for 20 s, 72 °C for 5 followed by 5 min at 72 °C. Adaptor
and primer sequences were those reported in Wang et al.
(2012) [19]. The quality of all amplicon libraries was
checked at 1.8% agarose gel and then purified using the
SPRIselect purification kit (Beckman Coulter, Pasadena,
CA). The concentration of the purified libraries was quan-
tified using a Qubit dsDNA BR Assay Kit (Invitrogen,
USA) and Mx3000P qPCR Instrument. Additionally, the
quality of 10% of randomly selected libraries was also
assessed by running them on an Agilent 2100 Bioanalyzer.
Individual libraries were pooled into equimolar

amounts by adopting two different multiplexing strat-
egies for parents (64 libraries per pool) and offspring
(128 libraries per pool). The quality of each pool was
verified on Agilent 2100 Bioanalyzer. Finally, pooled li-
braries were sequenced on an Illumina NextSeq500 plat-
form (Illumina, San Diego, CA) using 50 base single-end
sequencing (v2 chemistry, high output kit - 50 cycles).

Genotyping RAD alleles
Adapters trimming and filtering based on the quality score
of the sequenced reads were performed using custom de-
veloped scripts from the 2bRAD pipeline v2.0 [19], with
final read length obtained was 36-bp. Reads were filtered
out if the average Phred quality score within a sliding win-
dow of 4 bp was less than 15. As genomic reference se-
quence for sea bream was not available, a 2b-RAD tags
based reference was developed de novo by clustering the
of quality reads of parents. Perl based custom developed
scripts in combination with CD-HIT program were used
to develop the reference sequence [19, 31] which was fur-
ther used to call genotypes by aligning individual specific
reads to the reference sequence. Alignments of short reads
to the reference sequence were performed using bwa
samse (V = 0.7.13-r1126) [32]. The mpileup function of
SamTools version 1.2 [33] was used to call variants and
the call option of bcftools [33] was used to call the geno-
type at each variant site for each animal.
Genotypes were called for each animal with a mini-

mum genotype quality of 20, a minimum read depth of
5, and a population wise observed minor allele counts
for a particular site must be at-least 50. A minimum of
40 individuals in a population needed to have a genotype
call that met this criterion at a specific position. A SNP
that passed the above mentioned criteria were consid-
ered as a putative SNP for further analyses.

Parentage assignment
The SNP-based genotypic data were available for both
parents and offspring, which were further filtered based
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on polymorphism by applying a criteria of minor allele
frequency (MAF ≥ 0.35) and genotyping rate of ≥90%.
The remaining selected set of highly informative SNPs
(n = 750) were then used to construct pedigree applying
the likelihood ratio method implemented in CERVUS
version 3.0 [34]. Parentage assignments were validated
using opposite homozygote count method. [35, 36] with
the full set of SNPs.

Genetic linkage analysis
Quality controls (QC) were performed both at marker
and individual level, SNPs were filtered out based on the
criteria of locus specific missing rate > 30%, deviation
from expected Mendelian segregation (P < 0.001), and
Hardy-Weinberg equilibrium exact test (P < 1.0e− 7). In-
dividuals were filtered out based on two criteria; (i) with
more than 30% missing rate of genotype calls, and (ii)
individuals which had less than 4 full-sibs in a family.
The criterion “ii” was only used for the construction of
linkage map to include only informative families for ana-
lysis and to avoid computational problems in building
map. Linkage groups (LGs) were built using a minimum
LOD threshold value of 46 in the “SeparateChromo-
somes” module of Lep-Map v2 [37] by allowing a max-
imum distance of 20 cM between consecutive SNPs. The
“JoinSingles” module of Lep-Map was used to join singu-
lar markers to the already defined linkage groups apply-
ing LOD score limit of 5 in combination with LOD
score difference of 2 between the best LG and the
second-best LG of each joined marker. The module
“OrderMarkers” was then used to estimate the order and
distance between the markers in centiMorgans (cM).
“OrderMarkers” implements a hidden Markov model to
compute the likelihood of the order of markers [37] .
The option “sexAveraged = 1” was applied during execu-
tion of “OrderMarkers” when constructing the consen-
sus sex average map. Maps are reported as sex averaged
maps unless otherwise indicated.

Statistical analyses
Heritability estimations
A summary of phenotypic data was obtained from a gen-
eralized linear model in R. The heritability of PDS (binary
trait dead/survive) and PD2D (day to death) was esti-
mated by ASReml 4.0 [38] using a pedigree (A) or gen-
omic (G) relationship matrix with the following linear
mixed model:

y ¼ μþ Zuþ e ð1Þ

where y is a vector of ‘n’ records on PDS and/or PD2D,
μ is an overall mean, u is a vector of additive genetic ef-
fects distributed as u∼N ð0;Gσ2

uÞ, or u∼N ð0;Aσ2
uÞ;where

σ2u is the additive genetic variance, G and A are genomic

and pedigree relationship matrices, respectively; Z is the
corresponding incidence matrix to additive effects, and e
is the vector of random residual effects with e∼N ð0; Iσ2

eÞ
.

The genomic relationship matrix was constructed
using the VanRaden [39] method as ZZ0

2�
PNsnp

i¼1
pið1−piÞ

; where

piis the allele frequency of second allele and Nsnp is the
total number of SNP markers, while pedigree relation-
ship matrix was computed using algorithm of Meuwis-
sen and Luo [40]. Heritability (narrow sense) was
estimated as the ratio of additive genetic variance to
total phenotypic variance by running univariate analyses.

Genome wide association analysis
A genome wide association analysis was performed using
a linear mixed model equation. The same model as de-
scribed in (1) was used to perform genome wide associ-
ation analysis, however an additional variable was added
to estimate marker effects. The GCTA program [41]
with “–mlma-loco” function was used to detect marker
~ trait associations. This approach ensures that the ef-
fect of a SNP is estimated by accounting for additive
genetic variance captured by all the markers at linkage
groups other than the SNP containing linkage group.
SNPs were considered genome-wide significant when

they exceed the Bonferroni threshold for multiple testing
(alpha = 0.05) of 0.05/tg, where tg = 22,544 (total number
of genome-wide SNPs). The genome-wide significant
threshold used in this study was P ≤ 2.22 × 10−06, which
is equivalent to −log10(P) = 5.65.
Quantile-quantile plot with distribution of observed

vs. expected p-values was checked, and the Inflation fac-
tor (lambda, λ) was calculated using following equation.

lambda λð Þ ¼ median χ2ð Þ
0:456

Estimation of SNP variances
Variances explained by the top significant SNP(s) were
estimated using two following approaches (direct and
indirect).

1. For the direct approach, variance explained by
significant markers was computed as VarSNPi

¼ 2piqiα
2
i [42]. Therefore, the proportion of the

genetic ð%varGSNPiÞ or phenotypic (%varPSNPi )
variances captured by these markers equals
varSNPi
σ2u

� 100 and
varSNPi
σ2p

� 100, respectively.

Where, pi and qi are allele frequencies for the
major and the minor alleles respectively, αi is
the allele substitution effect, σ2u and σ2p are the
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genetic and phenotypic variances computed with
the above animal model using genomic
relationship matrix.

2. For the indirect approach, the proportion of the
genetic or phenotypic variance explained by the
genome-wide significant (GWS) SNP(s) was estimated
using the model (1) with the addition of a fixed effect of
detected GWS SNP(s). However, the Gmatrix used in
this model was constructed with all other SNPs except
GWS SNP(s). The variance (genetic or phenotypic)
explained by the GWS SNP(s) was expressed as a
reduction in the total genetic or phenotypic variance.

Breeding value estimation
Pedigree vs. genomic breeding values for PDS and PD2D
were computed to quantify and compare the accuracy of
the breeding values estimated using pedigree or genomic
information. The same model (1) described under the
genome-wide association study was applied and the pre-
dictions were performed using PBLUP, GBLUP, BayesB,
BayesC [43], and Bayesian Lasso [44] models using the
R/BGLR [45] program.

Accuracy of prediction
Accuracy of prediction was calculated using cross valid-
ation scheme by random masking ~ 20% of the popula-
tion with 994 training and 248 validation animals.
The mean accuracy of 20 replicates were computed as

correlation (rcorr) of the estimated breeding value (pedi-
gree/genomic) with the true phenotype, which were scaled

by the square root of the heritability as rcorr ¼ ρðG½P�EBV ;yÞ
√h2

;

where ρ = correlation coefficient, G [P] EBV = repre-
sents breeding values estimated using genomic or pedi-
gree information; y =observed phenotypes; h2= genomic
or pedigree based heritability estimates.

Data availability
The information of linkage map and the sequence of tags are
available in Additional file 1. The information on potential
candidate genes underlying the QTL along with functional
description of these candidate genes is available in Add-
itional file 2. The programs used for analyses in this study
could either be freely acquired or purchased from relevant
developers.

Results
Descriptive statistics
Descriptive statistics of the recorded traits (PDS and PD2D)
are given in Table 1 with information on recorded traits
and available number of observations. Mortality curve and
distribution of mortalities along the course of challenge test
is presented in Fig. 1. We observed ~ 36.5% of mortality
with 449 dead and 784 survivors within 18 days of the

challenge test (Fig. 1). The distribution of dead and alive
sibs out of total sib count per full-sib family are also plotted
which are given in (Additional file 2: Figure S2.1). However,
no mortalities were observed in the control group of unin-
fected fish.

Genotyping RAD alleles
Sequencing of 2b-RAD libraries using ~ 14 runs on
NextSeq 500 platform yielded a total of 5.21 billion
reads, distributed as 0.61 and 4.6 billion across parents
and offspring respectively. The mean number of raw
reads were 5.59 (±1.55) million per parent and 3.89
(±1.72) million per offspring. The quality filtering of raw
reads slightly reduced the number of reads with a 0.50%
(26.05 million reads) loss, which resulted in an average
number of quality reads of 5.57 million per parent and
3.86 million per offspring.
The catalogue of tags that was built from the quality

reads of parents which consisted of 230,500 unique
2b-RAD loci which were used as reference sequence. The
SNP calling revealed that 37,247 of the tags had at-least one
SNP detected for this population of parents and offspring.
However, in order to increase overall informativeness and
minimize the amount of missing or erroneous information,
SNP data were further filtered using criteria of minor allele
frequency ≥ 0.05 per SNP and locus specific genotyping rate
of ≥30%, which resulted in 28,330 quality SNPs left for fur-
ther analyses. Individuals were also removed if genotyping
rate of an individual was < 30%, and the level of heterozy-
gosity > 65%. Out of total 1342 individuals, 46 individuals
(~ 3%) did not meet this criterion and hence were filtered
out. After the above described filtration steps, SNPs based
genotyping data consisted of 28,330 loci typed on 1296 in-
dividuals (1187 offspring 109 parents).

Parentage assignment
Pedigree construction using selected highly informative
SNP markers produced 177 full-sib families with 1–49
sibs per family. Out of 177 full-sib families, 74 families
had a minimum of 5 sibs per family which were used for
the construction of linkage map. The comparison of as-
signment results using likelihood method vs. opposite
homozygotes count showed concordance of about
97.79% in assignments.

Table 1 Descriptive statistics of recorded traits

Traits N Missing
Values

Mean Min Max SD

PDS 1187 0 0.37 0 1 0.48

PD2D 1187 0 13.28 3 18 6.20

PDS dead/survive phenotype, binary trait, PD2D day to death phenotype, N
number of records, min minimum values, max maximum values, SD
standard deviation
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Linkage map
The linkage map consisted of 22,544 SNPs, which were
grouped into 24 linkage groups (SA01-SA24) with a total
sex-average map length of 1970.29 cM (Table 2 and
Additional File 1). There were 5786 SNP singleton
markers, which did not get assignments to any group.
Linkage group SA24 had the lowest while SA02 showed
the highest number of SNPs with 758 and 1102 markers
respectively. The correlation between number of SNPs
and corresponding chromosome map length was 0.549
(n = 24 LGs). The female genetic map was 2068.32 cM
and the male genetic map was 1727.02 cM.
The majority of unassigned SNPs showed no-minor

homozygote condition, which hints existence of some
artifact due to presence of repetitive elements, base call
bias etc. In addition, these SNPs were not informative and
hence could not be placed in any linkage group. There-
fore, all unassigned SNPs were filtered out and the rest of
the genetic analyses were performed using 22,544 SNPs.

Estimates of variance components and GWAS
The estimated variances for PDS vs. PD2D traits using
pedigree and/or genomic information were very similar
(Table 3). Both genomic or pedigree based heritability
estimates for PDS and PD2D were ~ 0.32 with genetic cor-
relation of ~ 1.00 indicating that PDS and PD2D are very
similar traits in our dataset possibly due to occurrence
of mortalities in a short span (Fig. 1) causing both traits
behaving similar.
The GWAS analysis for PDS and PD2D resulted in a clear

signal with a strong peak of 11 SNPs at SA17, which sur-
passed the Bonferroni-corrected genome-wide significance
threshold with p-value of 2.218e-06 (Fig. 2 and Additional
file 2: Figure S2.2). The allele substitution effects, minor
allele frequencies and variances explained by these SNPs
are presented in table 4. The proportion of total genetic
variation captured by the highest significant SNP was

13.28% when computed using the direct method while it
was around 16.14% when calculated using indirect
method. The detected QTL region (including 11
genome-wide significant SNPs) of SA17 spans from 37.3
to 53.1 cM with peak SNP positioned at 44.7 cM. When
the most significant SNP “248936_32” was included as a
fixed effect in the GWAS model, none of the 10 surround-
ing SNPs showed associations with the trait (Fig. 3a-b and
Additional file 2: Figure S2.3A-B).
Both GWAS and variance components based results

for PDS and PD2D were identical. Hence, GWAS results
for only the PDS are presented and discussed in this
main document while GWAS results on PD2D are given
in the Additional File 2.

Quantile-quantile plot
A plot presenting distribution of observed vs. expected
p-values is presented in Fig. 4. The genomic inflation factor
(lambda λ) of the fitted GWAS model with all markers was
1.145 and 1.132 (Fig. 4 and Additional file 2: Figure S2.4)
for PDS and PD2D respectively.

Accuracy of prediction
Prediction accuracies estimated using pedigree and/or
genomic information on PDS and PD2D are given in
Table 5. Overall, genomic information based accuracies
(GBLUP, BayesB, BayesC, Bayesian Lasso) were signifi-
cantly higher compared to pedigree information
(PBLUP) based accuracy. Average genomic information
based accuracies for PDS and PD2D was 0.569 and 0.545
while pedigree information based accuracy was 0.465
and 0.449 respectively (Table 5).
The prediction accuracy for both PDS and PD2D traits

estimated using various genomic information based
models showed that the Bayesian models worked better
or equally as GBLUP. Accuracy estimates using GBLUP
were 0.559 and 0.541 for PDS and PD2D respectively. In

Fig. 1 Distribution of mortalities within 18 days of challenge test
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comparison with GBLUP, both BayesB and Bayesian
Lasso models yielded marginally improved accuracies for
both PDS and PD2D traits. BayesB model displayed the
highest accuracy for both PDS or PD2D with estimates of
0.577 and 0.554 respectively. For both PDS and PD2D
traits, Bayesian models were ranked (with respect to ac-
curacy) in descending order as BayesB (accuracy = 0.577

and 0.554 respectively), Bayesian Lasso (accuracy = 0.572
and 0.547 respectively) and BayesC (accuracy = 0.567
and 0.537 respectively) with marginal differences in ac-
curacies (Table 5).

Discussion
The current study aimed at exploring genetic variation
contributing resistance against photobacteriosis, detect-
ing QTL(s) for resistance as well as determine the
consistency in accuracies for genomic vs. pedigree based
prediction methods. Photobacteriosis is one of the major
infectious diseases that leads to high economic losses,
and it is highly important to find efficient strategies to
combat this infectious disease.
The observed mortality of ~ 37% in our challenged

test was significantly lower than reported by Antonello
et al. [8] and Palaiokostas et al. [9] with more than 95%
mortalities. Our experiment used intramuscular inocu-
lation of Phdp, which was different compared to the
other two studies where fish were infected using bathe
method [8, 9]. Observed mortality curve under this

Table 3 Estimates of variance components on dead/survive and
days to death phenotype using pedigree vs. genomic
information

Components Pedigree Genomic

PDS (σ2p) 0.239 (0.012) 0.244 (0.012)

PDS (σ2g) 0.0736 (0.020) 0.081 (0.015)

PDS (h
2) 0.308 (0.074) 0.332 (0.052)

PD2D (σ2p) 39.398 (2.003) 39.704 (2.002)

PD2D (σ2g) 12.606 (3.426) 12.604 (2.473)

PD2D (h2) 0.320 (0.076) 0.317 (0.052))

PDS dead/survive phenotype, binary trait, PD2D day to death phenotype, σ2g
total genetic variance, σ2p total phenotypic variance, h2 heritability

Table 2 Genetic linkage map of gilthead sea bream, Sparus aurata (SA)

Linkage
Groups

Number
of Markers

Male Map
Length (cM)

Female Map
Length (cM)

Average
Length (cM)

SA01 1100 63.09 82.04 79.90

SA02 1102 69.15 89.10 86.68

SA03 997 69.87 85.72 85.98

SA04 1084 89.89 89.82 98.11

SA05 1038 88.11 98.02 103.61

SA06 907 62.22 80.76 78.96

SA07 976 65.65 84.21 81.00

SA08 903 67.01 90.27 84.90

SA09 968 62.48 86.07 81.16

SA10 900 69.77 86.08 77.94

SA11 929 72.00 81.81 77.18

SA12 920 77.39 88.98 83.22

SA13 1003 70.11 87.37 78.22

SA14 904 74.44 90.25 83.77

SA15 912 70.32 91.80 81.30

SA16 876 68.00 81.44 74.57

SA17 880 67.97 80.29 74.75

SA18 912 70.75 83.43 77.96

SA19 941 70.19 82.07 74.84

SA20 893 75.88 89.32 83.08

SA21 918 72.17 99.38 85.01

SA22 868 76.12 87.17 83.42

SA23 855 79.03 76.92 78.83

SA24 758 75.43 76.00 75.88

Total 22,544 1727.02 2068.32 1970.29
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model was also discordant from previous reports,
which is highly likely due to the method of inoculation
and lower dosage concentration (1000 CFU) used in
our study. We observed peak mortalities at day 5 post
infection, which reached to asymptote around day 8,
whereas the studies from Antonello et al. [8] and
Palaiokostas et al. [9] showed a much wider distribution
of mortalities, and peak mortalities falling between day

7 to 14. The challenge test of our study ultimately pro-
duced relatively more variation and an informative
mortality curve resulting in a higher proportion of sur-
vivors compared to the challenge test of the other two
studies where survival was very low.
In the current study, the variances were estimated

using two sources of information separately i.e. genomic
or pedigree information. Results showed that resistance

Fig. 2 Manhattan plot showing the distribution of –log10 P-values across linkage groups 1–24

Table 4 Variances explained by genome-wide significantly associated SNPs

SA Locus ID Pos Allele1 Allele2 MAF α SE P-value %varG %varP

17 248936_32 44.729 G T 0.278 −0.163 0.026 6.69e-10 13.281 4.406

17 24643_19 49.430 A G 0.467 −0.139 0.023 2.55e-09 11.922 3.955

17 283885_36 44.372 G C 0.343 −0.140 0.024 3.03e-09 10.929 3.626

17 81173_9 40.766 A G 0.362 −0.132 0.024 3.74e-08 9.892 3.282

17 211563_28 53.066 A G 0.353 −0.143 0.026 4.61e-08 11.512 3.819

17 265801_18 37.385 T C 0.321 −0.132 0.025 1.78e-07 9.457 3.137

17 95842_16 51.835 G C 0.425 0.116 0.023 5.53e-07 8.113 2.692

17 225775_29 40.582 T C 0.367 0.122 0.025 9.84e-07 8.570 2.843

17 213907_2 50.873 C G 0.348 0.114 0.024 2.01e-06 7.278 2.414

17 3001_36 48.242 A G 0.238 −0.134 0.028 2.09e-06 8.018 2.660

17 53157_6 44.333 T C 0.179 −0.151 0.032 2.18e-06 8.226 2.729

SA linkage group number for gilthead sea bream (Sparus aurata, SA), Pos (cM) genetic map position of SNP, A1 & A2 minor & major alleles, respectively, MAF minor
allele frequency, α Allele substitution effect, SE standard error, P aignificance value, varG proportion of genotypic variance explained, varP proportion of
phenotypic variance explained
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against Phdp (defined as survival after being infected by
the pathogen) had moderate heritability with values ran-
ging from 0.308 to 0.332 varying with source of informa-
tion (pedigree or genomic) and trait (PDS and/or PD2D)
used. We did not find any significant difference in herit-
ability estimates of PDS or PD2D, and the genetic correl-
ation between these traits was ~ 1, giving the impression
that these are the same trait, possibly because mortalities
happened in a very small window of time and hence
making both traits behave in the same way. The Moder-
ate heritability illustrates that there is encouraging po-
tential for improving resistance against Phdp through
selective breeding. The moderate level of heritability es-
timates (h2 = 0.31 to 0.33) obtained in our study were
very similar to those reported by Palaiokostas et al.
(2016) [9] (h2 = 0.22 and 0.28), and falling within the
range of estimates reported by Antonello et al. (2009) [8]
(h2 = 0.18 to 0.45).
In this study, a high-density linkage map was con-

structed containing 22,544 SNPs distributed over 24
linkage groups, which is consistent with the karyotype of
gilthead seabream [46]. The map length obtained in our
study was 1970.29 cM, which is slightly longer than what
was obtained by Tsigenopoulos et al. (2014) [47], who
reported a total map length of 1769.7 cM. The difference
in map lengths could be explained by the difference in
genome coverage and map resolution. However, the link-
age map length obtained by Palaiokostas et al. [9] was
twice the map length obtained in this study, which could
be due to differences in adopted parameters/methods.

Comparison of sex (male vs. female) specific linkage
maps showed an occurrence of sex-biased recombin-
ation with total female-specific map was 341.3 cM lon-
ger than the male specific map with female-to-male
recombination rates of 1.2:1.0 (Table 2). Similar results
on sex-specific map lengths were reported by Franch et
al. (2006), Tsigenopoulos et al. (2014), and Aslam et al.
(2018) [47–49] which was discordant with the results
from Palaiokostas et al. [9] who found male specific map
(4010 cM) slightly longer (1.05:1.0) than female map
(3822 cM). This discordance could be due to differences
in populations, and/or different methodological parame-
ters used in both studies. Many fish species including
Atlantic salmon, Rainbow trout, Zebrafish etc. have
shown significant reduction in recombination rate for
the heterogametic sex [50–52]. Similar trend has also
been seen in many mammal species e.g. human, dog,
pigs etc. [53–55] where heterogametic male expressed
lower recombination rate than female. However, sea
bream is a protandrous hermaphrodite with ability to
produce either kind of gamete (sperm or ova) at differ-
ent stages of their life, and limited to non is known on
sex determination system/loci for this species, and
karyotype analysis has not revealed the existence of sex
chromosomes [56]. The sex-biased recombination is less
likely to reflect occurrence of heterogametic nature in S.
aurata but possibly progression towards the evolution of
sex chromosomes which evolve from autosomes via re-
duction and/or cessation of recombination, leading to
the evolution of heteromorphic sex chromosomes [57].

Fig. 3 Manhattan plot of –log10 P-values distributed along the length (cM) of SA17. Highlighted green dots represent genome-wide significant
SNPs and horizontal solid line represents the Bonferroni significance threshold (−log10 P-values = 5.654). a Plot with all the markers on SA17 and
the top most significant SNP is highlighted green with asterisk (*) symbol; b plot after correcting for the top most significant SNP and using it as
a fixed effect in the model. Fixing the top most significant SNP in the model caused an overall shrinkage in P-values for all the SNPs including
previously significant SNPs (highlighted green)
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The genome-wide association analysis yielded a strong
peak of 11 SNPs crossing the genome-wide Bonferroni
threshold level indicating a QTL at linkage group 17 (Fig.
2 and Additional file 2: Figure S2.2). At-least 8 out of 11
SNPs that crossed genome-wide threshold level in the
GWAS analysis showed a favorable effect on the trait with
negative α values for PDS and positive PD2D, which repre-
sent a shift towards zero mortality and increment in sur-
viving days, respectively (Table 4 and Additional file 2:
Table S2.5). However, there were 2 to 3 (PD2D vs. PDS, re-
spectively) genome-wide significant SNPs that had un-
favorable effects on the trait (Table 4 and Additional file 2:
Table S2.5) with α values in opposite directions which
means it would be necessary to find combinations of fa-
vorable alleles at those loci to progress the trait in desired
direction. The GWAS results from Palaiokostas et al. [9]
did not show any genome-wide significant QTL which
could be due to differences in genetic background of pop-
ulations used in both studies and/or the methodological
differences of challenge tests used (i.e. route of infection,
immersion vs. intramuscular injection, and differences in
weight of challenged fish, 0.5-1 g vs. 3–5 g). The

distribution of restriction enzyme used for the library
preparation becomes much more crucial when popula-
tions have different genetic backgrounds as different parts
of the genomes might be covered and represented in both
studies.
The obtained λ values of GWAS for PDS and PD2D

were 1.145 and 1.132 respectively (Fig. 4 and Additional
file 2: Figure S2.4), which was slightly inflated from the
acceptable limit of 1.1 [58] indicating small inflation in
P-values of GWAS. We tested 5–10 principal compo-
nents for the population structure/stratification but did
not find any significant effect on λ coefficient. This slight
inflation could be due to an initial variation of body
weight (~ 3–5 g) in the challenged population which
could not be adjusted due to lack of individual specific
records on body weight.
Variances explained by the top significant SNPs of

GWAS were estimated using two methods, the direct
method estimated SNP specific variances from the α and
allele frequencies [59], and the indirect method that
used genome-wide significant SNP(s) as a fixed effect(s)
in the model. Individual SNP specific genetic variances
estimated using the direct method (Table 4) should not
be considered as an additive function because these
QTL SNPs are in LD with an average value of ~ 0.30
(ranging from 0.05–0.65, Fig. 5). Moreover, the observa-
tion of high shrinkage in P-values for all the SNPs at
linkage group 17 (Fig. 3a-b, Additional file 2: Table
S2.5A-B) with the use of the most significant SNP
(Locus ID: 248936_32) as a fixed effect gives an indica-
tion for the presence of single QTL in the region. Hence,
the variances explained by the genome-wide significantly
associated SNPs within this region could either be aver-
aged (mean %varG = 10.53, Table 4) or variance ex-
plained by the most significant SNP (Locus ID:
248936_32 and %varG = 16.14, estimated in indirect
method) should be the one accounted to avoid any pos-
sible inflations. The relatively large impact of single QTL
on the total genetic variation (13.3% using Falconer and
Mackay [59], and 16.14% applying the indirect method)
does not necessarily mean that the tagged SNP is a
causative mutation, but this SNP explains an important
amount of QTL variation, either directly or through LD
with the causative mutations.
The sequence (36 bp) of the highest significantly associated

tag/SNP (248936_32) was aligned to the unpublished sea
bream genome assembly (Saurata_v1), which resulted in sig-
nificant (e-value = 4.00e-09) alignment with chromosome 19.
The region of approximately ±50Kb surrounding the highest
significant SNP “248936_32” was searched for underlying
candidate genes that might affect the resistance against
pathogen. Detected genes within the specified region are de-
tailed in (Additional file 2: Table S2.6). The SNP aligned to a
position 8,024,839 bp at chromosome 19 and the flanking

Fig. 4 Quantile-quantile plot of –log10 P-values – dead/survive
phenotype (PDS)

Table 5 Genomic vs. pedigree based prediction accuracies for
PDS and PD2D traits

Model Accuracy (PDS) Accuracy (PD2D)

PBLUP 0.465 ± 0.098 0.449 ± 0.089

GBLUP 0.559 ± 0.049 0.541 ± 0.043

BayesB 0.577 ± 0.055 0.554 ± 0.043

BayesC 0.567 ± 0.052 0.537 ± 0.035

Bayesian Lasso 0.572 ± 0.048 0.547 ± 0.040
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region of ±50Kb contained 4 genes (Additional file 2: Table
S2.6). Sox-17 alpha-like (Sox-32) is an SRY-box (Sox) tran-
scription factor that is important during development of dif-
ferent tissues and organs. Sox-17 has been recently reported
to also control adult hematopoiesis [60, 61] . Considering
that blood precursors differentiate into several lineages of
immune-relevant cell types, it might be possible that genetic
variants at Sox-17 locus have a role in response to bacteria.
The next gene encodes a mitochondrial protein that is part
of the large (39S) ribosomal subunit, without clear associ-
ation with immune response [62].
Acyl- thioesterase 1 (ACT1) is a key enzyme regulating

an important post-translational protein modification,
S-palmitoylation. Protein palmitoylation is crucial for
functioning of key immune-related proteins (e.g. T cell
receptor, Fcε receptor I, Fcγ receptor II, toll-like receptor
4). Bacteria might also high-jack the palmitoylation ma-
chinery of host cells to internalization, survival, and rep-
lication [63].
Regulator of G protein signaling 20 belongs to a family of

regulator of G protein signaling (RGS) proteins, which are
regulatory and structural components of G protein-coupled
receptor (GPCRs) complexes [64]. It is known that RGS
proteins expressed in immune effector cell such as mast
cells and lymphocytes as well as in their end-organ targets
(i.e., bronchial smooth muscle) represent an important
regulatory component of the intracellular signaling path-
ways induced by GPCRs in allergic inflammation [64, 65].

Infectious agent (Phdp) of this disease has ability to cause
septicemia and inflammation in different organs (e.g. liver,
guts etc.). Variation in expression levels of RGS protein due
to genetic variants at the locus may lead variation in
resistance.
Based on available information, the most likely candi-

date genes appear to be SOX-17 for its role in prolifera-
tion and differentiation of blood cells, RGS which has
shown to play a role in allergic inflammation by activat-
ing G-protein-coupled receptors, and ACT1 because pal-
mitoylation has been shown to be important in bacterial
infections.
Overall, the accuracy of prediction for resistance against

Phdp using genomic information was observed to be 19 to
24% higher than the accuracy obtained using pedigree in-
formation which clearly shows that genomic information
based predictions are much better than pedigree-based
ones. A similar trend of higher accuracies using genomic-
vs. pedigree-based information has been reported in Atlan-
tic salmon [18, 28, 29] for parasite and pathogen resistance
traits, as well as in other livestock species [66–68] on pro-
duction traits. The advantage of genomic information over
pedigree is because of realized genomic-based relatedness
between animals deviate from pedigree-based relationship
coefficients which can also utilize relationships among indi-
viduals which might not be related through the known
pedigree. Genomic-based realized relationships also unravel
within family variation which is not captured by pedigree

Fig. 5 Heatmap of LD structure among genome-wide significant SNPs of GWAS analysis. Locus ID with green asterisk sign represents the top
most significant SNP
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information. In general, genomic selection in aquaculture
populations allows predictions with higher accuracy espe-
cially for traits that cannot be measured on the selection
candidates (e.g. disease resistance and fillet quality) and the
potential within family can also be fully exploited with the
use of genomic information.
Irrespective of source of information (pedigree or gen-

omic) used, we observed 29 to 52% higher accuracy of
prediction compared to the reported results by Palaiokos-
tas et al. (2016) [9]. The PBLUP based accuracies (0.465–
0.449; Table 5) obtained in our study were around 52%
higher than the estimate of 0.30 obtained by Palaiokostas
et al. (2016) [9]. Genomic information based average ac-
curacy (0.557) obtained in this study was ~ 29% higher
than the average genomic based accuracy of 0.43 reported
by Palaiokostas et al. (2016) [9]. This discordance could be
because of differences in population background (e.g. ef-
fective population size) and population structure (e.g.
average relationship between training and validation)
which might lead to better predictions and higher selec-
tion accuracies due to elevated LD in a specific population
[67]. The obtained lower genomic accuracy of Palaiokostas
et al. (2016) [9] compared to our results could partially be
because of relatively smaller dataset on phenotypes (777
vs. 1187) as well as SNP markers (11,239 vs. 22,544).
The comparison of accuracy of prediction within gen-

omic information based models (GBLUP, BayesB, BayesC,
and Bayesian Lasso) showed that BayesB fractionally out-
performed all other models for both PDS and PD2D, and the
ranking was followed by Bayesian Lasso BayesC and
GBLUP with estimates as an average of both traits (PDS and
PD2D). Relative performance of the GS models depends on
the genetic architecture of the trait, and the GWAS results
of our analysis revealed that a few genes/loci with moderate
to large effect and many loci with a small effect might be
involved in total genetic variation of the trait. Thus, Bayes-
ian prediction methods are expected to perform better or
equally well as GBLUP method [29, 67] which was found
concordant with the expectations.

Conclusion
The current study demonstrates that SNP based geno-
typing of a sea bream population using 2b-RAD ap-
proach is effective at capturing the genetic variation for
resistance against Phdp. A genome-wide significant QTL
at LG17 was detected which explained 13.28 to 16.14%
of genetic variation. The QTL region is encased by genes
like SAP, Il6ra and 26S non-ATPase regulatory subunit
which might be involved in variation for resistance
against Phdp. Prediction accuracies obtained using gen-
omic information were significantly higher (19 to 24%)
than the accuracies obtained using pedigree information
which highlights the importance and potential of gen-
omic selection in commercial breeding programs.
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