
1 
 

Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: 

photosynthetic performance and ROS formation 

 

Tânia Gomesa,b*, Li Xiea,b, Dag Bredeb,c, Ole-Christian Lindb,c, Knut Asbjørn Solhaugb,d, Brit 

Salbub,c, Knut Erik Tollefsena,b,c 

 

aNorwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk 

Assessment, Gaustadalléen 21, N-0349 OSLO, Norway. 

bCentre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), 

Post box 5003, N-1432 Ås, Norway. 

cDepartment for Environmental Sciences, Faculty of Environmental Science & Technology, 

Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway. 

dDepartment of Ecology and Natural Resource Management, Norwegian University of Life 

Sciences (NMBU), Postbox 5003, N-1432 Ås, Norway. 

 

 

 

 

 

*Corresponding author: Tânia Gomes, Norwegian Institute for Water Research (NIVA), 

Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 OSLO, Norway; 

Tel: (+47) 98215423, Fax: (+47) 221852 00; E-mail address: tania.gomes@niva.no. 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 

The aquatic environment is continuously exposed to ionizing radiation from both natural and 

anthropogenic sources, making the characterization of ecological and health risks associated 

with radiation of large importance. Microalgae represent the main source of biomass 

production in the aquatic ecosystem, thus becoming a highly relevant biological model to 

assess the impacts of gamma radiation. However, little information is available on the effects 

of gamma radiation on microalgae species, making environmental radioprotection of this 

group of species challenging. In this context, the present study aimed to improve the 

understanding of the effects and toxic mechanisms of gamma radiation in the unicellular 

green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic 

apparatus and ROS formation. Algae cells were exposed for 6 hrs to gamma radiation (0.49-

1677 mGy/h) and chlorophyll fluorescence parameters obtained by PAM fluorometry, while 

two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of 

ROS. The alterations seen in C. reinhardtii PSII functional parameters after 6 hrs of exposure 

to gamma radiation showed modifications of PSII energy transfer associated with electron 

transport and energy dissipation pathways, especially at the higher dose rates used. Results 

also showed that gamma radiation induced ROS in a dose-dependent manner under both light 

and dark conditions. The observed decrease in photosynthetic efficiency seems to be 

connected to the formation of ROS and can potentially lead to oxidative stress and cellular 

damage in chloroplasts. To our knowledge, this is the first report on changes in several 

chlorophyll fluorescence parameters associated with photosynthetic performance and ROS 

formation in microalgae after exposure to gamma radiation. 
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1. Introduction 

Ecosystems are continuously exposed to ionising radiation from natural sources such as 

cosmic radiation and natural radionuclides found in soil and rocks. However, anthropogenic 

activities (e.g. nuclear power production and accidents, weapon production and testing, 

radioactive waste storage and medical use of radionuclides) can lead to increased doses of 

radiation in the environment (Unscear 2008). Ionizing radiation such as α-particles, β-

particles and γ-rays (photons) that are emitted by atomic nuclei as a result of their decaying 

process, are known to induce adverse effects on organisms including DNA damage, growth 

reduction, reproduction impairment and morphological alterations (Reisz et al., 2014). 

Gamma radiation in particular is composed of high-energy penetrative photons with high 

frequency and short wavelength that can interact with biological matter and cause ionization 

or excitation of endogenous molecules and instigate various types of damage in a number of 

organisms. Most of the published literature on the effects of gamma radiation in non-human 

biota has focused on mammals, invertebrates, fish and plant species, leaving a significant gap 

of information for species habiting the lower levels of the trophic hierarchy (Dallas et al., 

2012; Real et al., 2004; Vanhoudt et al., 2012). As primary producers, microalgae play an 

important role in the functioning of aquatic ecosystems, producing oxygen and energy and 

recycling nutrients on which many organisms within the ecosystem rely on. For this reason, 

the effects of gamma radiation on algae can directly affect the structure and function of this 

ecosystem resulting in oxygen depletion and decreased primary productivity and thus affect 

not only the organisms themselves but also impact other organisms in the food chain (Daam  

et al., 2009; Prado et al., 2011; Rioboo et al., 2007). Based on its important ecological 

function in freshwater ecosystems, the microalgae Chlamydomonas reinhardtii was chosen as 

model species in this study. C. reinhardtii is an unicellular green algae frequently used in 

ecotoxicity testing due to its rapid growth rate, its ease of use in testing and culturing in 

controlled laboratory conditions and its sensitivity to several contaminants. Moreover, its 

genome has been sequenced with several molecular and genomic tools available (Merchant et 

al., 2007) and the complete biology has been described in detail (Harris, 2009), making this 

microalgae extremely useful to study adaptive responses at cellular, physiological, 

biochemical and molecular levels upon exposure to gamma radiation (Mendez-Alvarez et al., 

1999). The biological effects of ionizing radiation has not been extensively studied in algae, 

though decreased growth and survival, gene recombination, increased DNA damage and 

repair and disruption of the photosynthetic process have been reported in C. reinhardtii after 

acute and chronic exposure to gamma radiation (Boreham and Mitchel, 1993; Chankova and 
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Bryant, 2002; Chankova et al., 2005, 2007; Davies, 1966; Kohn et al., 1967; Lawrence and 

Holt, 1970; Posner and Sparrow, 1964; Rea et al., 2008).  

Photosynthesis is a complex and highly integrated series of redox and enzymatic processes 

that regulate the survival of photosynthetic organisms such as microalgae. The light energy 

absorbed by chlorophyll molecules (e.g. photosystem antenna) can be used in three 

competitive processes: a) be transferred through the electron transport chain to fixate carbon 

(photochemical quenching), b) dissipate as heat (non-photochemical quenching) or c) be re-

emitted at a slightly longer wavelength as light (chlorophyll fluorescence). Thus, by 

monitoring chlorophyll a fluorescence it is possible to assess the response of the 

photosynthetic apparatus and correspondent photochemical processes under normal and 

stressful conditions (Maxwell and Johnson, 2000; Ralph et al., 2007). Some studies have also 

reported inhibition of chlorophyll a and b synthesis and loss of photosystem functionality and 

the activity of the oxygen-evolving apparatus in algae species after exposure to gamma 

radiation (Kohn et al., 1967; Rea et al., 2008). Despite some data demonstrating effects, the 

impact of gamma radiation on the photochemical processes involved in photosynthetic 

activity of C. reinhardtii is still limited.  

Under normal cellular conditions, reactive oxygen species (ROS) are formed by the inevitable 

leakage of electrons from the electron transport activities of chloroplasts, mitochondria, and 

plasma membranes or as a by-product of various metabolic pathways localized in different 

cellular compartments. Moreover, exposure to environmental stresses (e.g. drought, salinity, 

metal toxicity, UV-radiation, etc.) can stimulate the production of ROS due to disruption of 

cellular homeostasis (Halliwell and Gutteridge, 2007). It is believed that one of the main 

impacts of gamma radiation is due to the interaction with atoms or molecules in the cell to 

produce highly reactive species (superoxide radicals, hydroxyl radicals and hydrogen 

peroxide); either directly by oxidation of water or indirectly by the formation of secondary, 

partially generated ROS. This over-production of ROS will react rapidly with critical 

components of the cell such as lipids, proteins and DNA, causing disturbance of cellular 

mechanisms (Apel and Hirt, 2004; Jan et al., 2012; Reisz et al., 2014). While some studies 

have been conducted on oxidative stress responses under irradiation conditions, studies on 

gamma radiation-induced ROS and oxidative stress in algae species are scarce.  

The goal of this study was to evaluate the impact of gamma radiation produced by a 60-cobalt 

irradiation source on the photosynthetic activity of C. reinhardtii using PAM fluorometry. 

Additionally, the intracellular production of ROS in response to gamma radiation was also 

investigated using two fluorescent probes, the 5-(and-6)-carboxy-2’7’-
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difluorodihydrofluorescein diacetate (H2DFFDA) and the dihydrorhodamine 123 (DHR 123). 

Cellular ROS levels were determined under light and dark conditions and linked to effects on 

photosynthetic parameters (maximum quantum efficiency of photosystem II (PSII), efficiency 

of the oxygen-evolving complex, effective quantum efficiency of PSII, non-photochemical 

quenching, coefficients of photochemical and non-photochemical quenching and 

photosynthetic electron transport rate) to provide a better understanding on the effects of 

gamma radiation in the microalgae C. reinhardtii. 

 

2.  Material and Methods 

2.1. Microalgae cultures 

Exposure experiments were performed with the unicellular freshwater algae C. reinhardtii 

(NIVA-CHL153; Norwegian Institute for Water Research, Oslo, Norway), grown in high salt 

growth medium (HSM; Harris, 2009) with an initial number of 107 cells/L. The C. reinhardtii 

cultures were kept for 3 to 4 days in 1 L of HSM media at 20 ± 2ºC, with orbital shaking at 90 

rpm and under continuous illumination (93 ± 6 μmol/m2/s1) provided by cool–white 

fluorescence lamps (TLD 36W/950, Philips, London, UK) in an Infors Multitron 2 incubator 

(Infors AG, Bottmingen, Switzerland) to ensure that cultures were in the exponential growth 

phase. Immediately before each exposure experiment, algal cells were collected by 

centrifugation at 7000 rpm for 15 minutes (Avanti J-265 XP Centrifuge, Beckman Coulter, 

California, USA) for removal of growth medium. The HSM medium was decanted and cells 

washed with 50 mL of deficient HSM medium (medium lacking EDTA and trace metals) and 

centrifuged again at 7000 rpm for 10 minutes. Washed cells were re-suspended in 10 mL of 

deficient HSM and centrifuged at 3000 rpm for 10 minutes and the resulting pellet was re-

suspended in 2 mL of deficient HSM. Cell number was counted with a multisizer counter 

(Beckman Coulter Counter Multisizer 3, Miami, USA) and adjusted to an initial cell density 

of 18 × 107 cells/mL in 6 mL of deficient HSM. A deficient HSM was chosen as the exposure 

media to avoid interaction of the fluorescent probes used to assess ROS formation with the 

metal components present in the HSM media used for algae culturing. All glass material used 

for media preparation and experiments was appropriately washed and autoclaved prior to use 

to avoid microbial contamination. Culture samples were also regularly observed under the 

microscope to detect microbial contamination.  

 

2.3. Gamma radiation exposure 
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Gamma radiation exposures were conducted at the FIGARO experimental facility (Norderås, 

Norway) at the Norwegian University of Life Sciences (NMBU, Ås, Norway). C. reinhardtii 

was exposed for a total of 6 hours to external 60Co gamma radiation in the front row of 96-

well microplates (FalconTM, Oslo, Norway), after which Photosystem II (PSII) efficiency 

and ROS formation were determined. Exposure was conducted for a short period to avoid 

fluorescence artefacts arising due to substantial microalgal growth. A total of thirteen gamma 

doses were tested, divided in two exposure experiments: the first experiment applied dose 

rates to water from 235 to 1677 mGy/h and the second applied dose rates to water from 0.49 

to 114 mGy/h. Each experiment had a corresponding control and was run three times with 

four replicates per dose rate. For both exposure experiments, microplates were positioned at 

distances away from the gamma source corresponding to the air kerma rates and dose rates to 

water (D(water)) presented in Table I.  

Field dosimetry (air kerma rates measured with an ionization chamber) was traceable to the 

Norwegian Secondary Standard Dosimetry Laboratory (Norwegian Radiation Protection 

Authority, NRPA, Oslo, Norway) (Bjerke and Hetland, 2014). Dose rates to water in the 

center of microplate wells (front row) were estimated according to Bjerke and Hetland (2014) 

and used as a proxy for dose rates to the microalgae. Actual air kerma rates were measured 

using an Optically Stimulated Luminescence (OSL) based dosimetry system from Landauer, 

i.e., nanoDots dosimeters and InLight microSTAR reader, as follows. For the highest dose 

rate (Dwater=1677 mGy/h), nanoDots with 5 mm polypropylene build up caps were exposed in 

the same position as the front row of the 96-well microplates used for algae exposure. For the 

second experiment, nanoDots positioned at the front of the microplates were exposed without 

buildup caps for the dose rates tested, applying a conversion factor for calculation of air 

kerma dose rates when not using buildup caps (Hansen and Hetland, 2015). Total doses were 

calculated from measured dose rates (mGy/h), multiplied by total exposure time (h) (see 

Table I for more information on total doses). 

 

Table I – Dose rates and total doses used in the gamma radiation exposures with 

Chlamydomonas reinhardtii. 

Dose rate Dwater 

(mGy/h)* 

Total dose 

Dwater (mGy) 

Air kerma rate 

(mGy/h) 

0.49 2.9 0.4 ± 0.03** 

1.2 7.1 1.1 ± 0.7** 

4.5 27.0 3.7 ± 0.2** 

11.2 67.3 9.9 ± 0.5** 

45.4 273 36.9 ± 1.2** 
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114 686 103.3 ± 5.2** 

235 1408 237.4 ± 14.6** 

663 3978 554*** 

788 4728 659*** 

943 5658 788*** 

1134 6804 947*** 

1374 8244 1147*** 

1677 10062 1448**** 
*Uncertainty (K=2) for dose rate estimates is ~10% (Bjerke and Hetland, 2014). 

**Measured with nanoDots. Uncertainty based on standard deviation of 3 nanoDots. 

***Estimated based on a combination of nanoDots measurements and field dosimetry, including attenuation of intensities according to 

Bjerke and Hetland (2014). Uncertainty (K=2) for dose rate estimates in ~10%. 

****Uncertainties (K=2) for nanoDot measurements are ~5%. 

 

2.3. Photosystem II efficiency 

PSII efficiency of C. reinhardtii exposed to gamma radiation was determined following 

Herlory et al. (2013) and Juneau et al. (2002) and adapted to the experimental conditions used 

in this study. Algae cells were exposed to 60Co radiation at a final concentration of 3x105 cells 

in 200 μl of deficient HSM under ambient light and at room temperature (20C). Chlorophyll 

a fluorescence was determined with a PAM fluorometer (PAM-2000, Heinz Walz GmbH, 

Effeltrich, Germany) and fluorescence parameters calculated according to the formulas 

expressed in Table II. Upon exposure, C. reinhardtii cells were dark adapted for 30 min to 

allow complete oxidation of PSII reaction centres and the minimum and maximum 

fluorescent yields of PSII in the dark adapted state (F0 and Fm, respectively) were determined 

for each dose rate and corresponding control. Both yields were used to calculate the maximum 

quantum yield (Fv/Fm) and the efficiency of oxygen-evolving complex (OEC) of PSII. 

Subsequently, dark-acclimated cells were illuminated by an actinic light at intensity 

equivalent to the incubation light (~100 μmol/m2/s1) and the current fluorescence yield Ft, the 

minimum fluorescence yield in the light F′0 and the maximum fluorescence yield in the light 

(F’m) values recorded. With the light adapted yields, the effective quantum yield (ΦPSII), the 

coefficients of photochemical (qP) and non-photochemical quenching (qN), non-

photochemical quenching (NPQ), relative photosynthetic electron transport rate (ETR) and 

relative photochemical (qP(rel)) and non-photochemical quenching qN(rel) were calculated. 

0.01–300 μM atrazine (CAS number: 1912- 24-9, purity ≥97%) and 0.001–30 μM diuron ([3-

(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU)], CAS number: 330-54-1, purity ≥98%) 

obtained from Sigma-Aldrich (United Kingdom) were dissolved in dimethylsulfoxide (Sigma-

Aldrich, UK, purity ≥99%) and used as positive controls in the assay.  
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Table II – Fluorescence parameters calculated from PAM fluorometry measurements in 

Chlamydomonas reinhardtii exposed to gamma radiation. 

Parameter Definition Equation Reference 

 

Maximum quantum 

efficiency of PSII 
 Schreiber, 2004 

OEC 
Efficiency of the oxygen-

evolving complex 
 Kriedemann et al., 1985 

 

Effective quantum 

efficiency of PSII 
 Genty et al., 1989 

qP 
Coefficient of 

photochemical quenching 
) 

Schreiber et al., 1986; 

Juneau and Popovic, 1999 

qN 
Coefficient of non-

photochemical quenching 
 

Schreiber et al., 1986; 

Juneau and Popovic, 1999 

NPQ 
Non-photochemical 

quenching  
 

Bilger and Bjorkman, 

1990 

ETR 
Relative photosynthetic 

electron transport rate 
0.5 x ΦPSII x PAR x IA

* Genty et al., 1989 

qP(rel) 
Relative photochemical 

quenching 
 Buschmann, 1995 

qN(rel) 
Relative non-

photochemical quenching 
 Buschmann, 1995 

*Where 0.5 is a factor that assumes equal distribution of energy between PSII and PSI, PAR is the actinic photosynthetically active radiation 

generated by PAM2000 and IA is the assumed absorbance by the photosynthetic organism (0.84). 

 

2.4. ROS assay 

ROS formation was detected using the probes carboxy-2’,7’-difluorodihydrofluorescein 

diacetate (H2DFFDA, Invitrogen, Molecular Probes Inc., Eugene, OR, USA) and 

dihydrorhodamine 123 (DHR 123, Invitrogen, Molecular Probes Inc., Eugene, OR, USA), 

both being stored as 50 mM stock solution in DMSO at -20°C before use. H2DFFDA is a non-

polar, non-fluorescent probe that enters the cells freely, which presents an improved 

photostability compared to the chlorinated fluorescein derivatives commonly used (Szivák et 

al., 2009). Once inside the cell, H2DFFDA is hydrolysed by cellular esterases to non-

fluorescent carboxy-2,7-difluorodihydrofluorescein (H2DFF), which is retained in the cell. In 

the presence of a variety of ROS, H2DFF is converted by oxidation to carboxy-2,7-

difluorofluorescein (DFF), a highly fluorescent final product localized in the cytosol (Nestler 

et al., 2012; Winterbourn, 2014). DHR 123 is the non-fluorescent dihydroderivative of 

rhodamine 123, a fluorescent, lipophilic and positively charged compound used as a 



9 
 

mitochondria-specific dye. After cellular uptake, DHR 123 is oxidized back to rhodamine 123 

after reacting with an oxidant, which moves (after oxidation) to the mitochondria, where it is 

sequestered. Both H2DFFDA and DHR 123 have similar structural features and are oxidised 

by similar oxidative/radical mechanisms, where their final fluorescent products can be 

quantified by relative fluorescence (Negre-Salvayre et al., 2002; Winterbourn, 2014). ROS 

production in C. reinhardtii exposed to gamma radiation was determined as described by 

Jamers et al. (2009), Stoiber et al. (2011) and Szivák et al. (2009), and adapted to the 

experimental conditions used in this study. Briefly, for each dose rate, a final concentration of 

3x105 algal cells in 100 μL of deficient HSM was added to 100 μL of deficient HSM with 

either H2DFFDA or DHR123 probes (5 μM final concentration). Algal cells were exposed 

under ambient light for H2DFFDA probe and total darkness for DHR123 at room temperature 

and the fluorescence recorded hourly on a microplate fluorescent reader (Fluoroskan Ascent 

2.5, ThermoFisher Scientific, USA) with excitation/emission of 485/538 nm. Natural 

fluorescence of irradiated deficient HSM in combination with the probes (without presence of 

algae) for each dose rate was also analysed and the resulting fluorescence subtracted to 

eliminate interference of non-algal ROS production. The relative fluorescence obtained for 

both probes at each dose rate was expressed as fold induction comparative to the control. 0.1–

3000 μM hydrogen peroxide (H2O2, CAS number: 7722-84-1, purity ≥30%) and 0.01–1000 

μM paraquat dichloride hydrate (CAS number: 75365-73-0, purity ≥30%) obtained from 

Sigma-Aldrich (United Kingdom) were used as positive controls in the assay. 

 

2.5. Statistical analysis 

Statistical analyses were performed using XLStat2016® (Addinsoft, Paris, France) and 

GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA). Results are presented as 

mean ± standard error. No significant differences were found between controls for both 

exposure experiments, so data for all dose rates was combined to assess statistical differences. 

Significant differences in PSII efficiency parameters and ROS formation between dose rates 

were calculated using one-way analysis of variance (ANOVA) or Kruskal–Wallis One Way 

Analysis of Variance on Ranks. If significant, pairwise multiple comparison procedures were 

conducted, using the Tukey test or the Dunn’s method. Statistical significance was set at 

p<0.05.  

 

3. Results 

3.1. Photosynthetic performance 
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Atrazine and diuron were used as positive controls to evaluate the photosynthetic performance 

of C. reinhardtii using PAM fluorometry. Results obtained for both compounds 

(Supplementary Figures A1 and A2) showed significant impact on several chlorophyll 

fluorescence parameters, especially ΦPSII and ETR. The impact of gamma radiation on the 

photosynthetic activity of C. reinhardtii after 6 hrs of exposure is shown in Figures 1, 2 and 3 

for dark- and light-acclimated states.  

 

3.1.1. Dark-acclimated fluorescence parameters 

In the dark-acclimated state, no significant effects were observed for the minimum (F0) and 

maximum (Fm) fluorescence signals from 0.49 to 114 mGy/h (p>0.05). At higher dose rates, 

both fluorescence yields were significantly higher than the control (p<0.05). Both F0 and Fm 

increased 1.1-, 1.2- and 1.3-fold after exposure to 235, 663 and 788 mGy/h (p<0.05), while at 

higher dose rates the values remained stable (p>0.05). No effect of gamma radiation was 

observed on the maximum quantum efficiency of PSII (Fv/Fm) after 6 hrs of exposure, 

whatever the dose rate used (Figure 1 E, F). The efficiency of the oxygen-evolving complex 

(OEC) only decreased compared to the control value for 0.49, 1.2, 11.2 and 45.4 mGy/h, even 

though to a lower extent (p<0.05). No effects were detected at higher dose rates (p>0.05). 

 

3.1.2. Light-acclimated fluorescence parameters 

Light-acclimated parameters were only determined at dose rates higher than 235 mGy/h, since 

no significant differences were found for dark-acclimated parameters at lower dose rates 

(Figure 1 A, C, E). In the light-acclimated state, algae cells showed a decrease in the quantum 

efficiency of PSII photochemistry (ΦPSII) with increasing dose rate (Figure 2A). ΦPSII 

decreased from 1.1-fold of the control at 943 mGy/h to 1.4-fold of the control at 1677 mGy/h 

(p<0.05), suggesting the activation of non-photochemical processes. In fact, non-

photochemical quenching (NPQ) increased with increasing dose rate, up to 1.7-fold higher 

than the control at the highest dose (1677 mGy/h). This increase in NPQ appeared to be 

accompanied by an increase in the coefficient of non-photochemical quenching (qN), even 

though at a lower extent (Figure 2C). No significant differences were found for the 

photochemical quenching coefficient (Figure 2D) between control and irradiated algae cells 

for any of the dose rates applied (p>0.05). Exposure to gamma radiation also altered the 

photosynthetic electron transport process of algae cells (Figure 2E), as expressed by the 

decrease in the electron transport rate (ETR). The ETR decreased 1.1-, 1.2-, 1.3- and 1.4-fold 
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compared to control after exposure to 943, 1134, 1374, 1677 mGy/h, respectively (p<0.05), 

while at lower dose rates no significant differences were found between the groups (p>0.05). 

The relative distribution of the energy dissipation processes through the PSII of control and 

irradiated C. reinhardtii is shown in Figure 3. Algae cells exposed to gamma radiation 

showed a decrease in the relative photochemical quenching qP(rel) with increasing dose rate, 

up to 2–fold lower than the control at the highest dose rate tested (1677 mGy/h, p<0.05). On 

the other hand, a significant increase was detected for the relative non-photochemical 

quenching qN(rel) in irradiated algae cells from 788 to 1677 mGy/h (1.1- to 1.2- fold, p<0.05). 

 

3.2. ROS formation 

H2O2 and paraquat were used to evaluate the performance of the ROS formation bioassay in 

C. reinhardtii using the two fluorescent probes H2DFFDA and DHR 123. The results obtained 

for both compounds showed a significant concentration and time-dependent increase in ROS 

formation after incubation with both probes (Supplementary Figures A3 and A4). 

The exposure of C. reinhardtii cells to gamma radiation resulted in a significant production of 

ROS over time for both the H2DFFDA and DHR 123 probes (Supplementary Figure A5), 

where 6 hrs exposure provided the best response, as seen in previous experiments (Almeida, 

2015). ROS levels produced by gamma radiation after 6 hrs of exposure are presented as fold 

induction compared to the control in both light and dark conditions after incubation with 

H2DFFDA and DHR 123 probes, respectively (Figure 4). In algae cells incubated with 

H2DFFDA, a significant increase in ROS was observed at 4.5 mGy/h (1.3-fold, p<0.05), 

followed by a decrease to control levels at 11.2 mGy/h (p>0.05) and a dose dependent 

increase at higher doses, reaching a 2.8-fold increase at highest dose (1677 mGy/h, p<0.05). 

The pattern of ROS formation obtained after incubation with DHR 123 probe was different 

from that observed for H2DFFDA, with higher ROS levels being formed at the highest doses 

used. The production of ROS exhibited a dose response with increasing dose rates from 4.5 

mGy/h up to 663 mGy/h (1.1- to 7.6- fold, p<0.05). At higher dose rates, a steady state was 

reached (p>0.05) showing a maximum 8.2-fold induction at the highest dose (p<0.05). 

4. Discussion 

Microalgae represent important ecotoxicological models since they constitute the main source 

of biomass production and thus support the structure and function of the whole aquatic 

ecosystem. In this way, negative effects of ionizing radiation in algae species will likely have 

an impact not only on the algae itself, but potentially also impact other levels of the aquatic 
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food chain. Only a very limited number of studies have addressed the effects of gamma 

radiation on microalgae species, making this group of species one of the least studied in terms 

of environmental radioprotection. In this context, this study aimed to improve the 

understanding of the effects and toxic mechanisms of gamma radiation in the green algae C. 

reinhardtii by assessing interference with photosynthesis and the formation of ROS. 

To date, the effects of ionizing radiation on the photosynthesis in algae are still poorly 

explored, and it remains unclear to which level algae are adversely impacted and which toxic 

mechanism or mode of action (MoA) is the most relevant. Currently, the development of 

pulse amplitude modulated (PAM) fluorometry to measure chlorophyll a fluorescence has 

been shown to be a simple, rapid and sensitive tool for testing of contaminants impact on 

photosynthetic activity (photosystem II) in C. reinhardtii (e.g. Juneau et al., 2001, 2002; 

Juneau and Popovic, 1999). The known PSII inhibitors atrazine and diuron were used as 

positive controls to evaluate the photosynthetic performance of C. reinhardtii using PAM 

fluorometry, whose results are in accordance with other studies with the same compounds in 

cultures of C. reinhardtii (e.g. Almeida, 2015; Nestler et al., 2012). Overall, the chlorophyll 

fluorescence parameters obtained by PAM fluorometry showed relevant effects of gamma 

radiation on C. reinhardtii photosynthesis, even though the total doses used were not 

sufficiently high to show complete inhibition of algae photosynthetic activity. Maximum 

quantum efficiency Fv/Fm, a measure of the maximal PSII photochemical efficiency after a 

period of dark-adaption, has been reported to be sensitive towards different environmental 

stressors and widely used to reflect impairment of PSII (Ralph et al., 2007). In this study, the 

Fv/Fm measured in C. reinhardtii remained unaffected after exposure to gamma radiation. This 

result indicates that the light harvesting capacity of PSII was intact during the range of dose 

rates used in this study, with more than 70% of the light absorbed by the photosystem II being 

used for photochemistry. This is in accordance with a previous study where a slight decrease 

in Fv/Fm was observed after exposure to a total dose of 8.4 Gy (4.2 Gy/h, 2 h exposure), 

while no alterations were seen at 3.1 Gy (Rea et al., 2008). Fv/Fm also remained unaltered in 

several plant species (e.g. Arabidopsis thaliana) after exposure to 137Cs and 60Co radiation 

(Kim et al., 2005; Vanhoudt et al., 2014), thus verifying that the photosynthetic capacity of 

PSII is not susceptible to perturbations by gamma radiation in these species. 

The efficiency of the oxygen evolving complex (OEC) reflects the state of the water photo-

oxidation process in photosynthetic organisms and is one of the most sensitive components of 

the photosynthetic electron transport chain on the oxidizing site of PSII (Kriedemann et al., 

1985). For C. reinhardtii exposed to gamma radiation, no major changes were detected in the 
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OEC, suggesting that gamma radiation did not impact the water-splitting apparatus at the dose 

rates used. A study by Rea et al. (2008) showed a significant but small increase in the oxygen 

evolution of C. reinhardtii exposed to a total gamma doses of 8.4 Gy, as well as a significant 

reduction of OEC associated proteins at doses higher than 10 Gy. However, the direct effect 

of gamma radiation in the OEC of photosynthetic organisms is still not well documented.  

Contrary to what was seen for Fv/Fm, a significant decrease was observed for the quantum 

efficiency of PSII (ΦPSII) in light-exposed algae with increasing dose rates. ΦPSII expresses the 

proportion of light absorbed by chlorophyll in PSII that is used for photochemistry at steady 

state of PSI-PSII electron transport (Genty et al., 1989; Juneau et al., 2002). A decreased ΦPSII 

is expected to cause alterations within PSII photochemistry and electron transport associated 

with energy dissipation via regulated and non-regulated non-photochemical pathways (Juneau 

et al., 2001). In fact, a significant increase of NPQ with increasing dose rates was observed in 

this study indicating that non-photochemical processes were activated in gamma-exposed 

algae to dissipate excess light energy. Concomitantly, this decrease in ΦPSII was also 

accompanied by an increase in qN with increasing dose rates, thus strengthening the idea that 

the quenching of PSII fluorescence by gamma radiation was not related to interference with 

the photochemical processes in C. reinhardtii. Algae and plants have evolved NPQ 

mechanisms to dissipate excess light absorbed energy as heat in order to protect the 

photosynthetic apparatus from oxidative damage (Niyogi, 1999). On the other hand, no effect 

was detected in the photochemical quenching parameter qP in all dose rates tested. Several 

studies have shown the insensitivity of this parameter to some environmental factors, thus 

rendering it not always appropriate to assess the overall photochemical activity of 

photosynthetic organisms under stressful conditions (Buschmann, 1999; Juneau et al., 2005). 

Even though this parameter measures approximately the fraction of open PSII reaction 

centres, it does not take into account their efficiency (Genty et al., 1989). A non-

complementarity has also been shown between qP and qN due to the fact that both parameters 

do not refer to the same state of energy storage and dissipation via the photosynthetic 

apparatus (Buschmann, 1999). For this reason, the relative photochemical and non-

photochemical quenching coefficients (qP(rel) and qN(rel), respectively) were proposed by 

Buschmann (1999) to complement the information given by qP and qN. Both qP(rel) and qN(rel) 

are normalized to the same reference signal, thus expressing the relative amount of 

photochemical and non-photochemical quenching as a fraction of the total quenching when 

going from a dark-adapted to a light-adapted state (Juneau et al., 2005). The dissipation 

energy pathways assessed through quenching analysis showed that in gamma-irradiated algae, 
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light energy was mainly dissipated by non-photochemical quenching, as illustrated by the 

increase in qN(rel), and not used in photochemistry as seen by the reduction in qP(rel) with 

increasing dose rates. So, the lack of alterations in qP seen in exposed algae showed that there 

was no change in the fraction of open PSII reaction centres, however, the efficiency of these 

open centres lowered with increasing dose rates, as indicated by the reduction in qP(rel). 

Therefore, when gamma irradiation inhibited the ΦPSII of algae cells, the regulation of energy 

dissipation processes was due to an increase in non-photochemical energy dissipation 

processes, as illustrated by the increase in qN, NPQ and qN(rel). 

The concomitant decrease in photochemical efficiency and increase in non-photochemical 

quenching seen in C. reinhardtii exposed to gamma radiation indicate the impairment of 

photosynthetic processes and seem to be associated with alterations in the electron transport 

process (Genty et al., 1989), as confirmed by the reduction in ETR with increasing dose rate. 

The relative ETR provides an empirical estimate of the flow rate of electrons through the 

photosynthetic chain, and the decrease seen in this study indicates that gamma radiation 

directly influences electron transport in algae. However, this effect in electron transport does 

not seem to be associated with the PSII donor site, as no major changes were detected in the 

OEC, but probably with other sites of the PSII-PSI electron transfer chain (e.g. electron 

acceptor side or PSI protein complex).  

No studies exist on the effects of gamma radiation on these photosynthetic processes in algae 

species but when comparing these results with those obtained for plants, gamma radiation has 

a dissimilar MoA with NPQ being generally inhibited in plants when exposed to gamma 

radiation generated by 137Cs and 60Co (Kim et al., 2005, 2010; Moon et al., 2008; Vanhoudt et 

al., 2014). Alterations in NPQ can be connected to alterations in pigments, which for gamma 

radiation exposure have been partly linked to altered xanthophyll cycle activities in plant 

species (Moon et al., 2008). Only Kohn et al. (1967) addressed the impacts of gamma 

radiation in C. reinhardtii pigment synthesis, suggesting significant damage of a synthetic 

unit responsible for one or more steps in chlorophyll synthesis leading to inhibition of both 

chlorophyll a and b, but no connection was made to alterations in the photosynthetic activity 

of exposed algae. Studies following uranium and metal (Hg and Cu) exposure have shown 

similar impairment of the photochemical process in algae, and has been associated with an 

obstruction of electron transfer between photosystems as a consequence of the PSII reaction 

centres being in a reduced state due to limited re-oxidation of plastoquinone QA (Juneau et 

al., 2001, 2002, Herlory et al., 2013). In algae exposed to herbicides like atrazine and diuron 

(the positive controls used in this study), the blocking of the electron transport from the 
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primary to secondary plastoquinone (QA to QB) is normally associated with significant 

increases in the Fo and Fm signals (Kumar and Han, 2010), as also observed for C. reinhardtii 

exposed to gamma radiation in this study. However, it is still not clear by which mechanisms 

gamma radiation impairs the photosynthetic process in C. reinhardtii.  

As reported earlier, ΦPSII, qN, and NPQ are the most sensitive indicators of alterations in the 

photosynthetic performance of algae and highly dependent on the mechanism of action of the 

stressor/contaminant (Juneau and Popovic 1999; Juneau et al., 2002; Herlory et al., 2013; 

Ralph et al., 2007). The results obtained for algae exposed to gamma radiation showed that 

the ΦPSII was more affected than Fv/Fm, a commonly observed phenomenon in algae (Ralph et 

al., 2007). In fact, the ΦPSII is influenced by the stoichiometry of PSII:PSI, Calvin cycle 

activation and the activity of the xanthophyll cycle, being the most sensitive indicators of 

toxic impacts in the photosystem. On the other hand, Fv/Fm measures optimal photosynthetic 

activity and does not reflect the true nature of the PSII activity under normal light conditions, 

which can be of large importance when taking into consideration that some contaminants have 

increased impact in the dark (Juneau et al., 2007; Ralph et al., 2007). Similarly to ΦPSII, 

changes in NPQ and qN were more responsive and sensitive than changes in Fv/Fm, as these 

parameters integrate all toxic effects on photosynthetic electron transport and its related 

processes, while Fv/Fm only indicates PSII charge separation and is not influenced by forward 

electron transport in PSII (Juneau et al., 2001, 2002). A non-complementarity between qP and 

qN was also detected in algae exposed to gamma radiation, similarly to responses seen for 

other environmental stressors such as temperature, low irradiance or the presence of 

contaminants as metals and pesticides (Juneau et al., 2005). Additionally, the use of the 

relative parameters qP(rel) and qN(rel) represented more adequately the proportion of the 

different quenching processes, with the photochemical part of the fluorescence quenching 

(qP(rel)) being more affected than one would expect based on the evaluation of qP. qP(rel) and 

qN(rel) used in complement to the information given by qP and qN gave a better evaluation of 

the alterations in the photosynthetic process and energy dissipation processes in C. reinhardtii 

in response to gamma radiation. 

In microalgae, ROS are mostly generated in the reaction centres of PSI and PSII, and in the 

chloroplast thylakoids as by-products of photosynthetic processes (Asada, 2006; Knauert and 

Knauer, 2008). The use of fast and direct bioassays using oxidation-sensitive fluorescent 

probes to monitor intracellular ROS formation has been widely used in algae species and 

proven effective in showing general oxidative stress after exposure to several contaminants 

(e.g. Nestler et al., 2012; Szivák et al., 2009). However, a limitation in ROS detection using 
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this type of probes is the necessity of low light conditions, as most of the commercialized 

probes are light sensitive (Szivák et al., 2009). Accordingly, a fluorinated derivative of 

fluorescein with improved photostability H2DFFDA was used to assess intracellular ROS 

production in C. reinhardtii under normal light conditions. In parallel, DHR123, a light 

sensitive probe was also applied to investigate ROS formation upon gamma radiation 

exposure under dark conditions. H2O2 and paraquat were used to evaluate the performance of 

the ROS formation bioassay in C. reinhardtii using both fluorescent probes. The results 

obtained for both compounds showed a significant concentration and time-dependent increase 

in ROS formation after incubation with both probes. These results are consistent with the 

known toxic mechanism of H2O2 and paraquat (e.g. Jamers et al., 2009; Jamers and De Coen, 

2010; Nestler et al., 2012; Prado et al., 2012) and showed the suitability of using both 

compounds as positive controls to study the intracellular generation of ROS in algae species.  

As expected, results obtained for H2DFFDA probe showed that gamma radiation caused an 

increase in ROS production with increasing dose rate in C. reinhardtii cells. The direct and 

indirect formation of ROS by gamma radiation can damage or modify essential proteins and 

lipid components present in the thylakoid membrane of chloroplasts, leading to alterations in 

the photosynthetic apparatus (Jan et al., 2012). These alterations can originate a cascade of 

reactions that leads to the disruption of the photosynthetic electron chain and consequently to 

the formation of additional ROS and oxidative stress (Stoiber et al., 2011). This is in 

accordance with the results obtained from the chlorophyll fluorescence parameters, which 

showed alterations of the photosynthetic process and consequently disturbance in the electron 

transport chain in response to gamma radiation. NPQ, in particular, is one of the regulatory 

mechanisms present in the photosystem to restrict the production of ROS (Roach and Krieger-

Liszkay, 2014). In fact, NPQ increased in algae with increasing dose rates, highlighting the 

connection between the production of ROS and alterations in the photosynthetic apparatus of 

exposed algae.  

In dark conditions, an increase in ROS production with increasing dose rate was also detected 

with the DHR 123 fluorescence probe, even though a plateau was reached at higher dose 

rates. These results suggest that the mechanism of ROS production by gamma radiation is 

independent of photosynthesis activity and light, as should be expected. Other mechanisms 

(not entirely dependent of light) can also be associated with the production ROS by gamma 

radiation, as for example the activation of other endogenous ROS-producing systems (e.g. 

mitochondrial electron transport chain) or the modulation and depletion of antioxidant 

capacity of cells (Jan et al., 2012; Reisz et al., 2014; Riley, 1994). Gamma radiation has been 
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linked to perturbations in the mitochondrial metabolism in the form of mitochondria-

dependent ROS formation, increased mitochondria membrane potential and promoted 

respiration and ATP production (Reisz et al., 2014), processes that are not dependent of light 

and can lead to further propagation of ROS. Organisms, including microalgae, have 

developed several antioxidant defence mechanisms to counteract the production of ROS, 

which include ROS-scavenging enzymes such as catalase, ascorbate peroxidase, superoxide 

dismustase, glutathione-S-transferase, as well as non-enzymatic antioxidants as 

metallothionein, carotenoids as β-carotene, glutathione, etc. (Apel and Hirt, 2004; Halliwell 

and Gutteridge, 2007). However, when the formation of ROS exceeds the capacity of the 

antioxidant defence system, elevated levels of ROS can give rise to oxidative stress and 

consequently oxidative damage. It has already been shown that both cumulative and acute 

gamma radiation can disrupt the cellular redox balance through oxidation and inactivation of 

detoxifying enzymes, low GSH/glutathione disulphide ration and a decrease in the levels of 

low molecular weight antioxidants, subsequently leading to significant oxidative 

modifications (e.g. protein carbonylation, DNA damage and lipid peroxidation) (Jan et al., 

2012; Reisz et al., 2014; Riley, 1994). Nonetheless, the underlying mechanisms of oxidative 

regulation and/or action in algae species are still unknown and need further study. In the case 

of plants, gamma radiation-induced oxidative stress has been shown in the form of enzymatic 

inactivation/activation, enhanced glutathione levels, lipid peroxidation and alterations in 

pigment synthesis (see review by Jan et al., 2012). However, these modifications were 

species-, dose- and duration-dependent in plants and a more thorough assessment is required 

in order to unravel how gamma radiation affects the antioxidant processes in algae. 

 

5. Conclusions 

The results obtained in this study demonstrated that short-term exposure to gamma radiation 

leads to an inhibition of photosynthetic performance and ROS formation in the algae C. 

reinhardtii. Gamma radiation affected the PSII photochemistry in algal photosynthesis at 

higher dose rates, with light energy mostly dissipated through non-photochemical processes 

potentially as countermeasures to protect the photosystem from ROS formation and oxidative 

damage. Modifications of PSII energy transfer associated with electron transport were also 

detected at higher dose rates, likely associated with ROS production by gamma radiation. The 

dose-dependent ROS production in C. reinhardtii exposed to gamma radiation seems to be 

influenced not only by photosynthesis but also by other non-light dependent physiological 

processes within algal cells, as alterations in the antioxidant defence system and perturbations 



18 
 

in the mitochondrial metabolism. Our findings provided the first insight into the mechanisms 

involved in gamma radiation toxicity on C. reinhardtii photosynthetic activity and ROS 

formation. Future studies should be directed towards a full characterization of the molecular 

mechanisms of gamma radiation induced damage to PSII and of the involvement of ROS in 

the oxidative damage to PSII reaction centres. Moreover, attention should also be paid to the 

gamma radiation ROS-induced mechanisms in algae cells, focusing on sites of production, 

propagation mechanisms and effects on the antioxidant defence system and consequent 

oxidative damage. Additional studies with longer exposure duration should also be conducted 

for a better assessment on how gamma radiation affects algae growth and propagation of 

adverse effects to the population level. 
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Figure captions: 

Figure 1 –Variation in fluorescence parameters of Chlamydomonas reinhardtii in the dark-

acclimated state exposed to gamma radiation for 6 hrs. A) F0 – Minimum fluorescent yield, B) 

Fm – Maximum fluorescent yield, C) Fv/Fm – Maximum quantum yield, D) OEC – Efficiency 

of oxygen-evolving complex. The experimental results (Mean±SEM) represent 3 independent 

studies. Letters represent statistical differences between dose rates (p < 0.05). 

 

Figure 2 – A) Quantum efficiency of PSII photochemistry (ΦPSII), B) non-photochemical 

quenching (NPQ), C) coefficient of non-photochemical quenching (qN), D) coefficient of 

photochemical quenching (qP) and E) electron transfer rate (ETR) of PSII in Chlamydomonas 

reinhardtii exposed to high gamma radiation for 6 hrs. The experiment results (Mean± SEM) 

represented 3 independent studies. Letters represent statistical differences between dose rates 

(p < 0.05). 

 

Figure 3 – Relative distribution of dissipation energy processes through the PSII of 

Chlamydomonas reinhardtii exposed to high gamma radiation for 6 hrs. A) Relative 

photochemical quenching (qP(rel)), B) Relative non-photochemical quenching (qN(rel)). The 

experiment results (Mean±SEM) represented 3 independent studies. Letters represent 

statistical differences between dose rates (p < 0.05). 

 

Figure 4 – Reactive oxygen species (ROS) formation in Chlamydomonas reinhardtii exposed 

to gamma radiation for 6 hrs and measured in fluorescence H2DFFDA (in the light) and DHR 

123 (in the dark). The experimental results (Mean±SEM) represent 3 independent studies. 

Letters represent statistical differences between dose rates (p < 0.05). 
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Figure A1 –Variation in fluorescence parameters of Chlamydomonas reinhardtii in the dark-

acclimated state exposed to the positive controls atrazine and diuron for 6 hrs. Fv/Fm – 

Maximum quantum yield, OEC – Efficiency of oxygen-evolving complex, F0 – Minimum 

fluorescent yield, Fm – Maximum fluorescent yield. The experimental results (Mean ± SEM) 

represent 3 independent studies.  
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Figure A2 –Variation in fluorescence parameters of Chlamydomonas reinhardtii in the light-

acclimated state exposed to the positive controls atrazine and diuron for 6 hrs. ΦPSII – 

Effective quantum yield and ETR – Electron transfer rate. The experimental results (Mean ± 

SEM) represent 3 independent studies.  
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Figure A3 – Reactive oxygen species (ROS) as a function of time in Chlamydomonas 

reinhardtii exposed for 6 hrs in the light (probe H2DFFDA) and the dark (probe DHR123) to 

the positive controls H2O2 and paraquat. The experimental results (Mean ± SEM) represent 3 

independent studies. RFU – relative fluorescence units. 
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Figure A4 – Reactive oxygen species (ROS) formation in Chlamydomonas reinhardtii 

exposed to positive controls H2O2 and paraquat for 6 hrs and measured in fluorescence 

H2DFFDA and DHR 123.  The experimental results (Mean ± SEM) represent 3 independent 

studies. Letters represent statistical differences between dose rates (p < 0.05). 
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Figure A5 – Reactive oxygen species (ROS) as a function of time in Chlamydomonas 

reinhardtii exposed in the light and in the dark to gamma radiation for 6 hrs. The 

experimental results (Mean ± SEM) represent 3 independent studies. RFU – relative 

fluorescence units. 
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