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Abstract. 
 

In this thesis we study the performance of skewness and kurtosis adjusted option pricing 

models. We estimated and analyzed volatility, skewness and kurtosis from a risk-neutral 

distribution from historical option prices on OBX TR index. We found that skewness and 

kurtosis adjusted option models based on Edgeworth and Gram - Charlier expansions are not 

robust when pricing out of the money options and highly sensitive to low volatility and short 

time to maturity due to negative probabilities from the expansion series. Compared to Black, 

Scholes and Merton’s option model, skewness and kurtosis price adjustment resulted in lower 

at the money option prices and higher out of the money. For hedging purposes, delta hedging 

adjusted for skewness and kurtosis require far less contracts near at the money and more 

contracts deep out of the money for a call option with negative skewness. Our empirical 

analysis, based on the methodology from Gurdip Bakshi, Kapadia, and Madan (2003), found 

moments from short maturity options to be higher in absolute values and more sensitive to 

outliers compared to medium maturity. We found that implied kurtosis is highly volatile and a 

strong negative correlation with implied skewness. This could have big implications for 

traders, investment managers and risk managers trying to take into account skewness and 

kurtosis in their models. The conclusion is that it seems to be very challenging, something this 

thesis will point out and discuss.  
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Abstrakt. 
 
I denne avhandlingen analyserer vi resultatene av skjevhet og kurtose justerte opsjons 

prismodeller. Vi estimerte og analyserte volatilitet, skjevhet og kurtose fra en risiko - nøytral 

fordeling fra historiske opsjonspriser på OBX TR index. Vi fant at skjevhet og kurtose 

justerte opsjons prismodeller basert på Edgeworth og Gram-Charlier serier er lite robuste for 

prising av opsjoner med innløsningspris out of the money(OTM), og er svært følsomme for 

lav volatilitet og kort tid til forfall på grunn av negative sannsynligheter for de ovennevnte 

serier. Sammenlignet med Black, Scholes og Merton’s opsjons prismodell, prisjustering med 

skjevhet og kurtose resulterte i lavere pris på opsjoner at the money(ATM), og høyere priser 

på OTM opsjoner.  

Vi fant at delta sikring justert for skjevhet og kurtose krever langt færre kontrakter ATM og 

flere kontrakter OTM for en kjøpsopsjon med negativ skjevhet. Vår empiriske analyse, basert 

på metodikk fra Gurdip Bakshi, Kapadia og Madan (2003), viste at for opsjoner med kort tid 

til forfall er kurtosen høyere og skjevhet mer negative og svært følsomme for pris avvik/hopp 

i forhold til opsjoner med middels (lengre) tid til forfall. Implisitt kurtose er også svært volatil 

og har en høy negativ korrelasjon med implisitt skjevhet. Dette kan ha stor innvirkning for 

tradere, forvaltere og risiko analytikere som prøver å ta hensyn til skjevhet og kurtose i sine 

modeller. Konklusjonen er at dette er svært utfordrende, noe denne oppgaven vil ta opp og 

diskutere. 
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1. Introduction 
 

Black, Scholes and Merton’s way of deriving their option pricing model is based on 

continuous dynamic delta hedging to arrive at a risk-neutral valuation. Their model has been 

extensively utilized and consistent with existing theory, it is however extremely sensitive to 

jumps in the asset price and stochastic volatility (Haug & Taleb, 2011). Empirical evidence 

shows that financial price data have higher peak and heavier tails compared to a normal 

distribution (Mandelbrot, 1997). Unexpected news can cause instant shocks, but the reversion 

back to mean level is typically gradual (slow) (Haug, Frydenberg, & Westgaard, 2010).  Low 

frequency events with extreme impact is by Taleb (2007a) called black swans. These events 

give increased probability in the tails compared to a normal distribution and measured by the 

fourth moment (kurtosis). In the real world we observe asset prices in discrete time and will 

never be able to remove all risk by delta hedging, even if we re-hedge several times a day 

(Emanuel Derman, 1998). Gamma increase closer to expiration, especially around at the 

money, and maintaining an approximate risk-neutral position is close to impossible. Because 

of transaction-costs, you are actually guaranteed to lose money by continuously re-hedging 

your position (Haug, 2007b). Generally, option traders prefer to hedge options with options. 

Though, a static or approximate continuous delta hedge can remove a lot of risk, only a 

position in another option can hedge against Greeks, i.e. gamma and vega.  

 

Implied volatility and volatility smile is often seen as better estimate of future volatility 

compared to historical volatility. The expectation of future volatility is likely only one of 

several factors affecting implied volatility (Haug et al., 2010). We believe the volatility smile  

reflects supply and demand for options, see for instance Haug and Taleb (2011) or Garleanu, 

Pedersen, and Poteshman (2009). Also a risk-premium for skewness and kurtosis (Gurdip 

Bakshi et al., 2003), as these moments are not included in the original BSM-formula. Implied 

volatility and skewness have been a subject in several previous studies, such as Gurdip Bakshi 

et al. (2003) and Conrad, Dittmar, and Ghysels (2013), but not much on kurtosis as we are 

aware. The aim of this thesis is to study how higher moments, with focus on kurtosis, affect 

option prices and delta. We also look at statistical behavior and distribution of moments 

implied from option prices. We apply extended models of Black-Scholes-Merton to study the 

effect of skewness and kurtosis in pricing securities and delta hedging, and the model’s 

robustness to changes in volatility, time to maturity and different values of skewness and 

kurtosis.  
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Defining a suitable window of historical skewness and kurtosis can be challenging, which is 

why we look at moments from option prices that are forward looking by nature. An empirical 

analysis of historical option prices on OBX is performed where we calculated implied 

moments every Thursday from May 2006 to June 2017, and analyzed the distribution and 

behavior of kurtosis, skewness and volatility. To our knowledge, this has not been done in this 

particular market before.  

 

The difference between delta-adjustment with skewness and kurtosis and original Black-

Scholes-Merton, as we will show, is highly relevant for investors, option-traders, risk 

managers and other stakeholders in the financial market who try to hedge a position. Based on 

one author’s professional experience, understanding the distribution of and adjusting for 

higher moments is especially relevant in VaR calculations, valuation of businesses and/or 

trading options or contracts with embedded options.  

 

Results from earlier studies have limited comments on constraints in the skewness and 

kurtosis option models based on Jarrow and Rudd (1982), which is significant when studying 

deep out of the money options with short time to maturity and/or low volatility. However, a 

study by Jondeau and Rockinger (2001) find a corridor for values of skewness and kurtosis 

where the model yields satisfying results. We find that the model is not only sensitive for 

values of skewness and kurtosis, but also less robust for pricing option out of the money 

options with short time to maturity and low volatility. The original model, and the extensions 

of it, is expanded with series that yields negative probabilities in certain areas. Mainly there is 

a problem with negative prices when the theoretical price from Black-Scholes or Black76 is 

low, as is typical for options deep out of the money.   

 

Due to the many limitations in the skewness and kurtosis models based on Jarrow and Rudd 

(1982), extracting the implied third and fourth moment will not be accurate. For our empirical 

analysis, we apply a model-free method from Gurdip Bakshi et al. (2003) to extract higher 

moments from option prices. Chang, Christoffersen, and Jacobs (2013) applied the same 

method to S&P500 options and analyzed higher moments as pricing factors in the cross 

section of stock returns. We relate the calculated moments to asset returns and perform a 

sensitivity analysis to evaluate the robustness of the method applied.   

In the next section we give a brief review of previous literature and the history of option 

valuation. Theory and performance of modified skewness and kurtosis models found detailed 
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in section three and four, and description of method applied in section five. Section six 

describes data applied in our empirical analysis, and in section seven we present the result. In 

section eight, we summarize our main findings and concludes.   

2. Literature review 

Several economists have since the beginning of 1900s found empirical evidence of price data 

with high peaks, skews and heavy tails compared to the normal/Gaussian distribution. 

Numerous theories and formulas developed during the late 1900s are ignoring the these very 

important characteristics of price data. One plausible reason might be the mathematical 

simplicity and application of various models when assuming Gaussian distribution. Wesley C. 

Mitchell (1915) is probably the first to publish empirical evidence of a high peaked and 

heavy/fat tailed distribution. His work was updated and reprinted in both 1921 and 1938, and 

he is describing findings of time-varying volatility and a high frequency of rather small 

deviations in commodity price data from year 1891 to 1918 (Mitchell, 1938). Mandelbrot is 

referring to Mitchell in his well-known paper from 1963, where he also finds evidence of high 

peaked and fat-tailed return distributions. He found the second moment of the distribution to 

be very unstable when you have leptokurtic distributions and purposed a stable Paretian 

distribution as a better fit compared to the normal distribution. Ignoring the leptokurtic 

properties of financial data is very common, resulting in many well-known theories and 

financial models being consistent with each other but unrealistic for empirical data. For 

instance, Moore (1917) and Osborne (1959) found empirical evidence of high peaks and fat 

tails but concluded the real distribution to be approximately normally distributed (Haug, 

2007b). 

 

Louis Bachelier, a French economist, defended in 1900 his PhD thesis on option pricing, The 

Theory of Speculation. His model is very similar to the one published many years later by 

Black, Scholes and Merton. Bachelier assumed that the asset price was normally distributed 

and following an arithmetic Brownian motion (Haug, 2007a). Though assuming the asset 

prices follow a normal distribution is an undesirable property, his work was very innovative. 

He also showed in a profit and loss diagram how to create synthetic options with positions in 

both the underlying asset and options, and different option-strategies we know as bull-spread 

and call back spreads (Haug, 2007b). The put-call parity is not further described by Bachelier, 

but his profit and loss diagrams suggest he had some knowledge about the relationship 

between the two. (See section 3.2.2 for a derivation of the put-call parity) 
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The put-call parity has shown to be a robust property in option trading and the first known 

publication vaguely describing the put-call parity is from 1688 by Joseph de la Vega. Later 

Higgins (1902) and Nelson (1904) described the put-call parity in their books as a very robust 

arbitrage argument and tool to hedge options with options. Nelson (1904) also gave a 

description of market neutral delta hedging for at the money (ATM) options and a vague 

explanation of the idea behind dynamic delta hedging (Haug, 2007b). The put-call parity was 

rediscovered and formally described by Stoll in 1969, but his work is without any references 

to the earlier work of Nelson and Higgins.  

 

In 1997 Myron Scholes and Robert C. Merton was awarded the Nobel prize for their option 

pricing model derived together with Fisher Black (1938-1995) in 1973. Their model is one of 

the most known in finance. The formula itself was not a new discovery, but rather how they 

derived it. The model, referred to as Black-Scholes or Black-Scholes-Merton, is by many, 

viewed as a good approximation for pricing European options. This model has several 

deficiencies, mainly that empirically we do not observe the same volatility across different 

strike prices or maturities, and that continuous dynamic delta hedging is not possible because 

we only observe discrete prices. Though dynamic delta hedging does remove a lot of the risk, 

Merton (1998), p. 328) was aware of the challenges with continuous dynamic delta hedging;  

 

“A broader, and still open, research issue is the robustness of the pricing formulae in 

the absence of a dynamic portfolio strategy that exactly replicated the payoffs to the 

option security. Obviously, the conclusion on that issue depends on why perfect 

replication is not feasible as well as on the magnitude of the imperfection. Continuous 

trading, is, of course, only an idealized prospect, not literally obtainable; therefore 

with discrete trading intervals, replication is at best only approximate”.    

 

For this reason, the Black, Scholes and Merton model cannot necessary be considered as a 

real risk-neutral valuation.  

The volatility smile or smirk is a likely result of the leptokurtic properties of the underlying 

distribution. By assuming constant volatility across different strikes Black-Scholes tends to 

underprice out of the money (OTM) options. The implied volatilities at different strikes and 

the changes in the volatility smile is often used as an indication of market expectations of 

future volatility.  
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Many economic researchers have proposed extensions to improve the model. The Merton 

Jump diffusion model (Merton, 1976) is one, where the model accounts for jumps in the 

asset-price as opposed to Black-Scholes-Merton who assumed continuous price. In this thesis 

we will focus on models adjusting for skewness and kurtosis. In 1982, Jarrow R. and Rudd A. 

published a paper where they tried to improve the Black-Scholes-Merton model with a semi-

parametric approach using an Edgeworth expansion to account for skewness and kurtosis in 

the underlying asset prices. Their model adjusted for moments in the asset price, not return, 

but was inconsistent with the martingale restriction. Later, adjusted and modified versions of 

their model have been published. Corrado and Su (1996a)) corrected Jarrow & Rudd’s model 

to adjust for skewness and kurtosis in asset returns, and used a Gram-Charlie expansion. 

Brown and Robinson (2002) found a mistake in Corrado & Su’s definition of Hermite 

polynomial and corrected the expression for the skewness coefficient. Jurczenko, Maillet, and 

Negréa (2004) refers to Longstaff (1995) and further improved the model to be consistent 

with the martingale restriction (no arbitrage) and used a modified Black-Sholes option value. 

As we can read from Longstaff (1995), when there exist market frictions, the martingale 

restriction does not need to hold. The modification only results in small deviations from the 

original Corrado & Su – model but could be economical significant for options deep OTM 

options. Interesting features about this model is the possibility to extract implied moments of 

skewness and kurtosis when we have information about historical prices. However, economist 

like Jondeau and Rockinger (2001) and Straja (2003) found that for certain levels of skewness 

and kurtosis the result is a negative option-price. A description of the model and the behavior 

of Q3, skewness, and Q4, kurtosis, is detailed in section four of this thesis.  

 

Literature on estimation of risk-neutral densities (RND) from option prices is extensive, 

beginning with Breeden & Litzenberger in 1978. They introduced a state contingent security 

where the pay-off in perfect capital markets could be replicated by a butterfly-spread. They 

derived the RND-function by discounting the second derivative of the call price function, with 

respect to the exercise price. This method requires available option prices on a wide range of 

strikes, and have showed to yield unstable results (Jondeau, Poon, & Rockinger, 2007). Non-

structural parametric methods to estimate RNDs allows for higher moments, and a convenient 

extension of BSM is RNDs as a mixture of log-normal densities. Other methods of RND 

estimation use different splines methods to interpolate and extrapolate the implied volatility 

smile when you have a narrow strike range before converting it to a density, i.e.  Bliss and 

Panigirtzoglou (2004) and Taylor (2007). 
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Gurdip  Bakshi and Madan (2000), (hereby referred to as BKM), found that by using explicit 

positioning across option strikes, any type of payoff could be priced. These findings are 

applied in Gurdip Bakshi et al. (2003), where they use contingent claim theory to derive a 

measure of volatility, skewness and kurtosis form the risk-neutral return density. By not 

imposing any specific structure on the underlying process, the calculated moments are more 

likely to be close to a risk-neutral measure and should be comparable across time. The 

specific position across options is feasible with only OTM options, where higher weight is 

assigned to options further out than options near ATM. Gurdip Bakshi et al. (2003)’s main 

objective was the third moment and found the index-skew to be more negative than individual 

skews, mainly as a result of risk aversion and fat-tailed physical distribution. This thesis 

employ a discretized version of this method to extract higher moments, similar to Turan G  

Bali and Murray (2013). A detailed description is found in section 5.  

 

3. Theory 
 
It is widely accepted and recognized that higher moments have a substantial impact on 

different pricing models and therefore models on option pricing. When referring to moments 

we talk about the 3rd and 4th moment of a distribution, skewness and kurtosis. The use of 

higher moments will most likely improve the performance of those models. Researchers and 

practitioners have started to use those higher moments in their models. Conventional 

measures are mostly the sample skewness and kurtosis.  

In this section, theory of option pricing models adjusted for skewness and kurtosis will be 

discussed.   

If the reader is familiar with skewness, kurtosis, Jarque – Bera test statistics and the BSM 

model, go directly to page 16, part 3.4. 

 

3.1 Skewness and kurtosis 
 

Skewness is defined as a measure of asymmetry of the probability distribution of a real valued 

random variable about its mean and is based on the third moment of the data. The 

interpretation is not necessary that intuitive and positive skew is indicating that the tail on the 

right side of the mean is fatter and longer. The opposite is when the skew is negative the tail 

on the left side is longer and fatter.  The skewness for a normal distribution is 0, and the 

formula is denoted like this: 
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Skewness = ∑ (𝑋𝑖−µ)3𝑁
𝑖=1

𝑁(𝜎3)
  Where µ is X average and 𝝈 is the standard deviation 

 
 
 
Figure showing positive and negative skew 

 

 
Figure 1. Figure of distribution with positive skew, symmetrical and negative skew.  
Source :  https://www.safaribooksonline.com/library/view/clojure-for-data/9781784397180/ch01s13.html 

 
 

Kurtosis defined by Pearson is related to the tails of the distribution and it is the fourth 

moment of the data. Especially in financial markets, most days are quiet, but we infrequently 

observe a few larger jumps that gives the kurtosis effect. Kurtosis is also a degree of 

peakedness of a distribution and the number is a standardized form of the fourth moment of 

those variations.  Higher kurtosis is a result of more infrequent extreme outliers. A normal 

distribution has a kurtosis value of 3. Distributions with a kurtosis greater than 3 is defined as 

leptokurtic. Distributions equal 3 or 0 excess kurtosis is named mesokurtic and is equal to the 

normal distribution. The last one with negative excess kurtosis is named platykurtic. 

 

Kurtosis = 
∑ (𝑋𝑖−µ)4𝑁

𝑖=1
𝑁(𝜎4)

 where µ is X average and 𝝈 is the standard deviation 

 

Kurtosis can also be written in the form where the variance is defined.   

Kurtosis = ∑ (𝑋𝑖−µ)4𝑁
𝑖=1

𝑁(1
𝑁

∑ (𝑋𝑖−µ)2𝑁
𝑖=1 )2  

https://www/
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In the nominator the differences are raised to the power of 4 and summarized. In the 

denominator the variance is squared twice, multiplied by N observations. N in denominator as 

in 1
𝑁

 can also be N-1, due to situation if it is a population(N) or a sample (N-1), this is called 

the Bessel`s correction.  Here you can see that there is greater effect if you raise each number 

and sum it up or you raise the average of a set of the same numbers. 

Figure showing leptokurtic, mesokurtic and platykurtic distributions. 

 

 
Figure 2. Leptokurtic, mesokurtic and platykurtic distribution. Source: 
https://statisticsandprobability.blogspot.com/2010_01_01_archive.html 

 

3.1.1 Testing for normality – Jarque – Bera test statistics 
 
The Jarque – Bera test is a goodness of fit measure of departure from normality. The test is 

based on the sample skewness and kurtosis, and is defined as 

 

JB = 𝑛
6

(𝑆2 + (𝐾−3)2

4
) 

Where  

n = number of observations 
S = Skewness 
K = Kurtosis 
 

The JB statistics has an asymptotic chi-square distribution with 2 degrees of freedom, 

see Jarque and Bera (1980). 
 
 

https://statisticsandprobability.blogspot.com/2010_01_01_archive.html
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3.2 Black, Scholes and Merton option pricing formula. 
 
The generalized formulae include a continuous dividend-/convenience yield (cost of carry) 

and the model can be used to value European options on stocks, stocks with continuous 

dividend payout, futures and currency options. See the original paper from  Black and Scholes 

(1973) and Merton (1973). 

 

 𝐶𝐵𝑆𝑀 = 𝑆𝑒(𝑏−𝑟)𝑇N(𝑑1) – X𝑒−𝑟𝑇N(𝑑2) 

 

d1 = 
ln(s

x)+(b+σ2

2 )T

σ√T
 

d2 = d1 −  σ√T 

 

Where  

S = Asset price 

X = Strike or Exercise price 

σ = Volatility measured in standard deviation 

T = Time to expiration 

r = risk – free interest rate 

b = cost of carry 

N(d) = The cumulative normal distribution function. 

 
The BSM model relies upon a set of central assumptions that does not necessarily apply to 

actual markets. A summary of the assumptions;  

 

• Constant and known 𝜎; standard deviation  

• Constant and known carry rates; r, b and 𝝲 (convenience yield) 

• No transaction costs 

• Frictionless and continuous markets 

• The markets follow a Geometric Brownian motion, the drift and volatility are 

constant. 

• The stock does not pay dividend. This was one of the first assumptions, but if the 

dividend is known in time and size this can and is taken care of in later modifications 

of the formula. 
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3.2.1 Black76 model on futures. 
 
In 1976 Fischer Black modified the original formula to apply for futures contracts. Which 

apply to this paper where the continuous 1st and 2nd pos OBX contracts are used. See also 

Black (1976) for details. 

 
𝐶𝐵76 = 𝑒−𝑟𝑇(𝐹N(𝑑1) – XN(𝑑2)) 

d1 = 
ln(𝐹

x)+(σ2

2 )T

σ√T
 

d2 = d1 −  σ√T 

 

Where: 

F = Current future price 

X = Strike or Exercise price 

σ = Volatility measured in standard deviation 

T = Time to expiration 

N(d) = The cumulative normal distribution function. 

R = risk – free interest rate 

 

Figure 3 is a 3D plot of Black76 call values to illustrate how the option price change with 

time to maturity (ttm) and moneyness. Input used are; strike = 100, underlying price varying 

from 70 to 130 and ttm from zero to 365 days. Volatility is set at 20%, and risk – free interest 

rate is 2%. 



 18 

 
Figure 3. 3D-plot of Black76 call values with respect to underlying price and ttm. Input; Strike: 100, Asset price: 70 – 130, 
ttm: 0 – 365 days, volatility:20% and risk – free interest rate:2%. 

 

3.2.2 Put – Call Parity  
 
Put – Call parity defines the relationship between a European call option and a European put 

option on the same strike and same time to maturity. 

Call = P + S – 𝑋𝑒−𝑟𝑡 
Put  = C – S + 𝑋𝑒−𝑟𝑡 
 
Where: 
P = Put 
C = Call 
S = Spot/Asset price  
X = Exercise/Strike price 
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3.2.3 Implied volatility.  

A parameter in BSM and Black76 that cannot be directly observed is volatility. Volatility 

implied by option price is known as implied volatility (herby referred to as IV). There is no 

closed form solution for IV, but numerical approximations and iterative techniques exist.  

 

Corrado and Miller Jr (1996)’s extended approximation for moneyness is a numerical 

approximation where IV for a call is; 

𝜎 ≈
√2𝜋

𝑆𝑒(𝑏−𝑟)𝑇 + 𝑋𝑒−𝑟𝑇 {𝑐𝑚 −
𝑆𝑒(𝑏−𝑟)𝑇 − 𝑋𝑒−𝑟𝑇

2

+ [(𝑐𝑚 −
𝑆𝑒(𝑏−𝑟)𝑇 − 𝑋𝑒−𝑟𝑇

2
)

2

−
(𝑆𝑒(𝑏−𝑟)𝑇 − 𝑋𝑒−𝑟𝑇)

2

𝜋
]

1
2

} /√𝑇 

Where 𝑐𝑚 is the observed market-price for the call option, S the underlying asset price, X the 

strike price, b dividends, r the risk-free interest rate and T time to maturity.  

See Haug (2007a) for a full description of the approximation for put-options.  

 

This approximation is not able to find implied volatility when  (𝑆𝑒(𝑏−𝑟)𝑇−𝑋𝑒−𝑟𝑇)
2

𝜋
 > 

(𝑐𝑚 − 𝑆𝑒(𝑏−𝑟)𝑇−𝑋𝑒−𝑟𝑇

2
)

2
. 

For these options we find IV by iteration in excel.  

 

3.3 Testing a Monte Carlo simulated Geometric Brownian Motion 
(GBM) for skew and kurtosis. 

 
One of the assumptions in the BSM model is that the stock prices follow a GBM. See for 

instance Benth (2003) and Øksendal (2010) for an in depth explanation and derivation of the 

GBM.  

A GBM is a continuous time stochastic process, in which the natural logarithm of the 

randomly varying quantity follows a Brownian motion, that is also called a Wiener process 

with a drift, . A drift is normally an interest rate adjusted for continuous time effect. The 

GBM is a stochastic process satisfying a stochastic differential equation (SDE). 

If the process, 𝑆𝑡 follows a GBM then it has to follow this stochastic differential equation. 
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D𝑆𝑡  = µ 𝑆𝑡 dt + 𝝈𝑆𝑡 d 𝑊𝑡 

 

Where 𝑊𝑡 is the Wiener process and the µ as mentioned above is the drift and 𝜎 is the 

volatility or standard deviation. The first part in this equation tells us about a drift that is 

deterministic or fixed. The last part is random and unpredictable increments that occur during 

the process. 

Solving for 𝑆𝑡 one gets this expression for the stock price; 

 

𝑆𝑡 = 𝑆0 𝑒((µ −0.5 𝜎2)𝑡+ 𝜎𝑊𝑡) 
 

There are several different processes for generating random number samples, and some have 

got critique for not generating adequately random samples or repeating itself. Excel generator 

has got some critique for not generating satisfying pseudo-random numbers (Haug, 2007b). In 

R, we are using the default generator “Inversion”. This generator is regarded as one of the 

better pseudo random number generators and based on the “Mersenne – Twister” algorithm. 

See the original paper Matsumoto and Nishimura (1998). 

Home page http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html,  

and articles, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html  

See also https://www.rdocumentation.org/packages/base/versions/3.5.0/topics/Random  

for other RNG alternatives in R. 

The package “randtoolbox” provides R functions for the two methods pseudo and quasi 

RNGs, as well as statistical tests to quantify the quality of generated random numbers. 

See the note on RNG with R from Dutang and Wuertz (2009). 

We want to study how the skew and kurtosis evolves when simulating a GBM using the 

default RNG in R. A 2-year price process was simulated with 504 daily returns 200000 times, 

the skew and kurtosis of the returns for each simulation was calculated. See figure 4, 5 and 6 

and table 1 for histograms and descriptive statistics. 

 

The parameters used are 2% interest rate(r), volatility(𝝈) of 20% and the starting point is 𝑆0 = 

100. First, a sample run of 100 simulations to see how it looks like, the time t on the x axis is 

in years 

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
https://www.rdocumentation.org/packages/base/versions/3.5.0/topics/Random
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Figure 4. 100 test simulations of a GBM with r = 2%, volatility(𝝈) of 20% and 𝑆0 = 100. Time t on the x axis is in years. 

 
 
The result from the 200K simulation gives these histograms of kurtosis and skewness. 
 

 
Figure 5. Histogram of the calculated Pearson kurtosis for each simulation. A normal distribution has a Pearson kurtosis 
equal to 3. 
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Figure 6. Histogram of the calculated skewness for each simulation. A normal distribution has a skewness value equal to 0. 

 
Summary Monte Carlo simulation 
 

 
Table 1. A short summary of the High – Low skew and kurtosis numbers. The Pearson kurtosis vary from 2,28 to almost 5 at 
the most. 

 
Due to sampling error and/or the simulated numbers are discrete and not continuous these 

distributions for skew and kurtosis are far from normal. In continuous time all the skew and 

Pearson kurtosis’s are per definition 0 and 3 respectively. 

It is interesting to see the skews form a normal distribution, but as expected, due to discrete 

time and sampling, all the kurtosis data forms positive skew and kurtosis numbers, and is 

actually closer to a log normal distribution. The effect on the kurtosis is significant when the 

generator gives big jumps. See descriptive statistics. This means that the kurtosis is very 

sensitive to big jumps in the market and very volatile, in fact twice the skewness. Regarding 

kurtosis and discretized GBM, search is done for equivalent work but so far there is very little 

we have found on the subject. 

 

 

 

 

Skew Kurtosis
Low High Low High

2 year 200K sim -0,53 0,52 2,28 4,88
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Table 2. Descriptive statistics for simulated skewness and kurtosis from GBM, Interval: 2 years, 200 000 simulations.  

 
 

3.4 Expansion series. 
 
3.4.1 Taylor Series 
 
Taylor series is named after the English mathematician Brooke Taylor (1685-1731). The first 

time he was credited this discovery was probably after a paper in 1786 by a Swiss 

mathematician with the name Simon Antoine Jean Lhuilier (1750–1840), where he referred to 

“Taylor series”. 

The approaching technique is based on a Taylor approximation or Taylor series. A Taylor 

series is series of polynomials and expansions of a function about a point and is very powerful 

for approximations. A one-dimensional Taylor series is an expansion of a real function like 

f(x) about a point x = a is given by 

 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)
1!

(𝑥 − 𝑎) + 𝑓′′(𝑎)
2!

(𝑥 − 𝑎)2 + 𝑓′′′(𝑎)
3!

(𝑥 − 𝑎)3 + …. 

 

If a = 0, the expansion is known as a Maclaurin series which is a Taylor expansion about 0. 

 

For more information about Taylor and Maclaurin series, we refer to textbooks such as  

Lindstrøm (2016), any edition of Calculus from Edwards, Penney, and David (2013), Weir, 

Hass, and Thomas (2010) or Stewart (2008). 

 

  Skewness Kurtosis 
Nobs 200000 200000 
Min -0,53229 2,28830 
Max 0,51798 4,88000 
1.Quart -0,07253 2,83800 
3.Quart 0,07297 3,11200 
Mean 0,00018 2,98800 
Median 0,00063 2,96900 
SE Mean 0,00024 0,00048 
Stdev 0,10862 0,21539 
Skew -0,00706 0,64650 
Kurtosis 0,07449 1,06200 
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3.4.2 Edgeworth Series 
 
Edgeworth series is named after Francis Ysidro Edgeworth (1845 – 1926). He was a political 

economist from Ireland and very interested in statistics during the 1880s.  

Edgeworth series are series that will approximate a probability distribution by or in terms of 

its cumulants. The advantage is that the series errors are controlled, and it is more accurate.  It 

is called an asymptotic expansion. The expansion is based on the normal distribution and 

added additional moments.  

 

F(x) = 𝟇(x) – 1
𝑛0,5

1
3!

 𝜆3 𝜙(3)(x) + 1
𝑛
 [ 1

4!
 𝜆4 𝜙(4) (x) + 10

6!
 𝜆3

2 𝜙(6)(x)] –   

 1

𝑛
3
2
 [ 1

5!
 𝜆5 𝜙(5) (x) 35

7!
 𝜆3𝜆4 𝜙(7) (x) + 280

9!
 𝜆3

3 𝜙(9) (x)] + …. 

 

Where 𝜙(𝑥) is the normal distribution 

𝜆3 = 3rd moment = Skewness  

𝜆4 = 4th moment = Kurtosis 

Edgeworth series suffer from some disadvantages, 

• The integral of the density is not necessarily equal to 1 

• Probabilities can be negative 

• They are made up of Tayler series around mean. 

• They do not have a relative error only an absolute one. 

 

Defined in Johnson, Kotz, and Balakrishnan (1994) 

b(x) = standardized binomial density 

µ3 = Skewness 

µ4 = Kurtosis 

x = [ln (𝑆
𝑋
) + 1

2
 𝜎2T]/ (𝝈√𝑇) 

 

In a standardized form the density can be written as: 

f(x) = standardized “Edgeworth density”  

f(x) = b(x) * E(x)  

E(x) =1 + 1
6
 µ3 (𝑥3 – 3x) + 1

24
 (µ4 – 3) (𝑥4 – 6 𝑥2 + 3) + 1

72
 µ3

2 (𝑥6 – 15𝑥4  + 45𝑥2 – 15) 
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3.4.3 Gram – Charlier Series 
 
Gram – Charlier series is named after Jørgen Pedersen Gram (1850 -1916) and Carl Vilhelm 

Ludwig Charlier(1862 -1934). Gram was a Danish Actuary and mathematician, Charlier was 

a Swedish astronomer. 

 
The Gram – Charlier  “A type” series is based on the normal distribution and expanded with 

the 3rd and 4th moments of the normal distribution just like the Edgeworth series. Instead of 

cumulants in the Edgeworth series, Gram – Charlier uses moments. 

 

𝑓𝐴(𝑥) = 𝑓(𝑥) + ∑ 𝑎𝑘  
𝑛

𝑘=3

𝑓(𝑘)(𝑥) 

 

Where f(x) is the normal distribution and 

𝑓(𝑘) = the kth derivative of the function f and  

𝑓(𝑘) (𝑥) =−1𝑘 𝐻𝑘(x)f(x)  

Where 𝐻𝑘(x) are the Chebyshev – Hermite polynomials. 

The first four polynomials are therefore 

H0 = 1 

H1 = x 

H2 = 𝑥2 − 1 

H3 = 𝑥3 − 3𝑥 

H4 = 𝑥4 − 6𝑥2 + 3 

Where  x = [ln (𝑆
𝑋
) + 1

2
 𝜎2T]/ (𝝈√𝑇) 

 

See Stuart, Ord, and Kendall (1994) pp. 226-233 for proper in depth discussion of the 

differences between Edgeworth and Gram – Charlier series. 

Because those series consist of polynomials they have more than one root and define an area 

of feasible solution(s). This, as we will show in section 4, give negative probabilities and 

therefor negative option values.  The series of Edgeworth and Gram – Charlier are almost 

similar but for computation the Gram – Charlier series seems to have a better performance 

than the Edgeworth series, see Johnson et al. (1994). 
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3.4 Evolution of methods, theory and models. 
 

Jarrow and Rudd (1982) were the first to come up with a model that corrected for the third 

and fourth moment, skewness and kurtosis. Jarrow and Rudd’s model uses an Edgeworth 

expansion, and is based on the BSM model adjusted for skewness and kurtosis that are 

different from the lognormal distribution. Therefore, the model adjusts for skewness and 

kurtosis in the prices instead of the return distribution.  

See also Stuart et al. (1994) pp. 226 -233. 

 

14 years later, in 1996, Corrado and Su (1996a) and Corrado and Su (1996) come up with 

their contribution to a non-normal option valuation and the model is dealing with excess 

skewness and kurtosis based on the so called true implied risk – neutral density. The model is 

based on an expansion of the Black-Scholes-Merton formula in order to incorporate non-

normal distributions, where kurtosis and skewness of the assets’ returns are considered. They 

used the expansion of the Gram – Charlier normal probability density series (series A) to 

model the distribution of the asset’s return. The formula Corrado and Su came up with 

contained two typographical errors,  Brown and Robinson (2002), observed that and corrected 

it in their paper. In 2002/04, Jurczenko et al. (2004) modified the model in order to prove 

consistency with a Martingale restriction. The differences between those models are not very 

significant but can be economically significant when options are far out of the money and for 

long maturities, especially when the market is volatile and turbulent. The Corrado – Su model 

modified by Jurczenko et al. is more accurate because the former model did not hold under 

the Martingale restriction, and this model will be used for calculations. While writing this 

thesis we came upon a possible mistake in Haugs book, Haug (2007a) “The Complete Guide 

to option pricing Formulas” on page 250, 6.7.5. The modified formula is not adjusted for 

Jurczenko et al. (2004)’s findings. In their paper they discounted the strike price and adjusted 

for w (see the formula below) in the original d in N(d) and used the corrected d in the original 

BSM model as well. 

The difference between the formula of the Black76 model and the modified Corrado – Su 

model is the addition of two terms to the first model, which added the analyzed series skew 

and kurtosis values. The equation of the model defines the option price of a call option on a 

stock index future and presented below. 
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Call Price = e−rt(FN(d1) – XN(d2)) + µ3 Q3 + (µ4 – 3) Q4   

 

Where  

 
Q3 = 1

6(1+𝑤)
 F 𝜎 √𝑇 (2 𝜎 √𝑇 – 𝑑1)n(𝑑1) 

 
𝑄4 = 1

24(1+𝑤)
 F 𝜎 √𝑇 (𝑑1

2 – 3𝑑1𝝈√𝑇 + 3𝜎2T – 1) n(𝑑1) 
 
w = µ3

6
 𝜎3 𝑇

3
2 + µ4

24
 𝜎4 𝑇2 

 
d1= [ln( 𝐹

𝑋𝑒−𝑟𝑇) + 1
2
 𝜎2T – ln(1+w)]/ (𝝈√𝑇) 

 
𝑑2 = d1 – σ√T 
 
N(d) = The cumulative normal distribution function. 

N(d) = The standardized normal density function  

F = Future price 

Price of a put option is found by put-call parity.  

 
Figure 7 and 8 show the effect of -Q3 and Q4 on a call option with different volatilities with 

respect to moneyness or strikes. Risk – free rate = 2%, Time to maturity = 1/12 year. 

Skewness and Pearson kurtosis is 0 and 3 respectively. This graph is probably shown in 

Heston (1993a) and (Heston, 1993b), for the first time.  

 

 
Figure 7. The effect of -Q3 and Q4 on a call option on different strikes. Input; volatility: 15%, risk – free rate: 2%, ttm: 1 
month, skewness: 0 and Pearson kurtosis: 3.  
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Figure 8. The effect of -Q3 and Q4 on a call option on different strikes. Input; volatility: 25%, risk – free rate: 2%, ttm: 1 
month, skewness: 0 and Pearson kurtosis: 3. 

 
Looking at Q4 in figure 7 and 8, an ATM call option is overpriced in the BSM world and an 

OTM call option is underpriced. Higher volatility, 25% (figure 8), has a larger effect on the 

price, and the effect widens out. The effect has a larger interval. 
 

Figure 9 is an example of the real price difference between Adjusted Corrado and Su model 

and the B76 model. The difference between those models is actually the sum of  µ3 Q3 + (µ4 – 

3) Q4. Parameters used are S = 100, Exercise prices 75-125, r = 2%, volatility = 20%, T=1/12, 

skewness=-0.5 and Pearson kurtosis = 6. Under those assumptions the ATM call price in the 

B76 model is 0.3 overpriced and ITM and OTM options are underpriced and reach local 

moneyness maxima at approximately 90 and 110. If you change the parameters, the graph will 

change but the main conclusion is the same. 
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Figure 9. Graph of the price difference, Modified Corrado & Su vs B76. Input; skew = -0,5 and Pearson kurtosis of 6. S=100 
Volatility 20%.  

 

Gram – Charlier and similar expansions allows for excess flexibility over the normal 

probability density function due to introduction of the skewness and kurtosis of the empirical 

distribution as parameters as mentioned above. This expansion will for certain parameters of 

skewness and kurtosis give negative values, due to its polynomial structure and 

approximation. Rubinstein (1998) provides approximate skewness – kurtosis values where the 

Edgeworth expansion gives positive values.  Jondeau and Rockinger (1999)  and Jondeau and 

Rockinger (2001), analyzed the Gram – Charlier expansion and came up with feasible 

solutions where the expansion is positive. The positivity constraints give values of the 

kurtosis in the area of (0 – 4) and for each kurtosis that is acceptable there exists a symmetric 

interval for the skewness and the opposite. The skewness values are between -1.05 and 1.05. 

Therefore, the positivity constraints require that the Gram – Charlier methods can only be 

used for moderate deviations from normality.  Shown later in this thesis, the price of a 

European option can be used to explore and calculate skewness and kurtosis for a certain day 

or time period similar to the procedure of Jondeau and Rockinger regarding taking or not, the 

positivity constraint into consideration. They suggest that when the unconstrained 

identification yields skewness-kurtosis values for which the positivity constraints are violated 

we do have a model misspecification. In theory, one can add more terms in the expansion to 

overcome this misspecification but there are arguments and reasons why this probably will 

fail.  
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The more terms the more roots in the polynomial and this will only move or decrease the 

domain where approximation is positive, especially the Edgeworth series and the parameters 

will mostly be more unstable, and it will also induce multicollinear parameters if you add 5th 

and 6th moment to the skewness and kurtosis model.  
 
From Bowman and Shenton (1973) paper they say in their last conclusion that;   

 

“The present study shows that it may not be easy to find a good fitting distribution to a 

theoretical distribution using five or more moments. In fact in connexon with the normal 

mixture, there is the paradox that, the nearer to normality the theoretical distribution is, the 

less likely it is that a normal mixture fit can be found.”  

 

From Jondeau and Rockingers own research they suggest that Bowman and Shentons 

conclusion can be changed to;   

 

“The nearer kurtosis is to the one of the normal distribution, the less likely it is that a 

parametric approximation can be found.” 

 

That means the estimates of µ and 𝝈 vary very little but skewness and especially kurtosis 

dispersion/patterns and variation vary a lot, which can induce multicollinearity. They found 

that for a given kurtosis the larger the skewness gives better result, and the Gram – Charlier 

density estimation is better the more the tails deviate from the normal. Therefore, it is very 

important first to check for departures from normality. For instance with a Jarque Bera test. 

 Jondeau and Rockinger (2001)’s paper is recommended for a deeper analysis of the positivity 

constraints and feasible solutions of the Gram – Charlier expansion with positivity constraints 

in such a manner that you can call it a distribution. See also Straja (2003) comments on this 

subject. 

Since these expansions are only approximations, ∑ 𝑓(𝑋𝑗) ≠ 1𝑗 ,  the moments are slightly in 

error. Correcting for this error after the expansion, either Gram – Charlier or Edgeworth, will 

rescale the probabilities so that they will sum up to 1, by replacing f(𝑋𝑗) with f(𝑋𝑗)/ ∑ 𝑓(𝑋𝑗)𝑗 . 

Using the rescaled density, calculate the mean µ ≅ ∑ 𝑓(𝑋𝑗)𝑗 𝑋𝑗 and then the variance around 

the new mean; var ≅ ∑ 𝑓(𝑋𝑗)(𝑗 𝑋𝑗 − µ)2. Last, you have to replace the 𝑋𝑗 with the 

standardized zero mean, standard deviation and one random variable (𝑋𝑗 – µ)/V. This 
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modification will give approximate values but in return they will all be positive. See 

Rubinstein (1998). 

 

4. Modified Corrado & Su sensitivity analysis and delta hedging. 
 

In this section we analyze the robustness of modified Corrado & Su model with respect to 

volatility and kurtosis and show how negative probabilities from Gram-Charlier expansion 

affect the option price. In 4.2 we analyze how skewness and kurtosis affect delta hedging 

compared to BSM.  

 

4.1 Sensitivity analysis 
 
Sensitivity analysis of prices with respect to volatility and kurtosis are calculated. Fixed 

historical skew value of – 0.5 is used and the result is shown in 3D’s and a contour plot with 

the same parameters. Here one can see what influence the kurtosis and volatility have on the 

call price.   

 

Parameters used; S = 100, r = 0.02, T = 1/12, Skew = - 0.5 see figure 10. 

 

 
Figure 10. Impact of kurtosis and volatility with skew fixed at -0,5. Input; S=X= 100, ttm: 1 month, r: 2%. Left figure is a 3D 
plot, right figure is a contour plot with same input. Values used to create the 3D – and contour plot is found in appendix, 
table 11. 

 



 32 

The next strike is 105 and the same exercise is done, now the lowest point is at (15%,0) and 

the highest point is at (25%, 0), see figure 11, compared to the 100 strike where the lowest 

point was found to be at (15%, 10) and the highest value at (25%, 0).  

 

 
Figure 11. Impact of kurtosis and volatility with skew fixed at -0,5. Input; S=X= 105, ttm: 1 month, r: 2%. Left figure is a 3D 
plot, right figure is a contour plot with same input. Values used to create the 3D – and contour plot is found in appendix, 
table 12 

 

 
Figure 12. Impact of kurtosis and volatility with skew fixed at -0,5. Input; S=X= 110, ttm: 1 month, r: 2%. Left figure is a 3D 
plot, right figure is a contour plot with same input. Values used to create the 3D – and contour plot is found in appendix, 
table 13 

At the 110 strike, a quite different pattern is appearing and the lowest point is at (18%,0) and 

it is negative. And the highest point is at (25%,10.) 
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Figure 13. Impact of kurtosis and volatility with skew fixed at -0,5. Input; S=X= 115, ttm: 1 month, r: 2%. Left figure is a 3D 
plot, right figure is a contour plot with same input. Values used to create the 3D – and contour plot is found in appendix, 
table 14 

At the 115 strike, the lowest point is at (25%,0) and it is negative. And the highest point is at 

(25%,10.) 

 
 
 

 
Figure 14. Impact of kurtosis and volatility with skew fixed at -0,5. Input; S=X= 120, ttm: 1 month, r: 2%. Left figure is a 3D 
plot, right figure is a contour plot with same input. Values used to create the 3D – and contour plot is found in appendix, 
table 15 

The 120 strike, the lowest point is at (25%,0) and it is negative also here. The highest point is 

(25%,10.) as well. 
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As a curiosity a 3D plot of Price ATM call with respect to time to expiration and Pearson 

kurtosis is shown. The price is a decreasing function of the kurtosis.  

 

 
 
Figure 15. 3D plot of the Price of an ATM call on the Z axis, time to expiration on the X axis and kurtosis on the Y axis. Skew 
is -0.5, r = 2%. 

 

4.2 Delta hedging adjusted for skewness and kurtosis. 
 
From a hedging point of view the Jurzenko et al adjusted Corrado and Su model is a closed 

form solution and gives therefore a closed form solution when taking the first partial 

derivative with respect to the underlying price S. One can write the skewness and kurtosis 

adjusted delta on this form. See also  Vähämaa (2003), Corrado and Su (1997) and Backus, 

Foresi, and Wu (2004). 

 

The delta consists of the original BSM delta plus the addition of the non-normal skewness and 

kurtosis elements.  

 

𝛿 =  𝜕𝑐
𝜕𝑆

 = N(𝑑1) + µ3𝑞3 + (µ4 – 3) 𝑞4        
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Where  

 

𝑞3 =
𝜕𝑞3

𝜕𝑆
=

1
3! (1 + 𝑤)

[𝜎3𝑇3
2⁄ 𝑁(𝑑1) + {

𝜙1𝑑1

𝜎√𝑇
+ 𝜎2𝑇 − 1 − 𝜙1} 𝑛(𝑑1)] 

𝑞4 =
𝜕𝑞4

𝜕𝑆
=

1
4! (1 + 𝑤)

[𝜎4𝑇2𝑁(𝑑1) + 𝜎3𝑇3
2⁄ 𝑛(𝑑1)

+
𝑛(𝑑1)
𝜎√𝑇

{𝜙2 − 2𝜎2𝑇 + 2𝑟𝑇 + 2ln (𝑆 𝐾⁄ −𝑟𝑇)} −
𝑛(𝑑1)𝑑1𝜙2

𝜎2𝑇
] 

 
𝜙1 = rT – (3/2)𝜎2T + ln(S/𝐾−𝑟𝑇) 

 

𝜙2 = 𝑟2𝑇2 –  2r 𝜎2𝑇2   + (7/4) 𝜎4𝑇2 – 𝜎2𝑇 +  ln(S/𝐾−𝑟𝑇) (2rT – 2𝜎2T + ln(S/𝐾−𝑟𝑇) 

 

w = µ3
6

 𝜎3 𝑇
3
2 + µ4

24
 𝜎4 𝑇2 

 

 

4.2.1 Delta adjustments 
 
In this chapter we take a look at how delta adjustments evolve during different volatilities and 

moneyness. As before the parameters used is; t = 1/12, r =2% and S =100 

  

 

 
Figure 16. Effect of -Q3 and Q4 on delta adjustment with volatility 15%. Input; S: 100, r: 2%, ttm: 1 month.  

 



 36 

 
Figure 17. Effect of -Q3 and Q4 on delta adjustment with volatility 25%. Input; S: 100, r: 2%, ttm: 1 month. 

 
The only difference between the figures with delta adjustments and moneyness is with an 

increased volatility the “bell” curve widens out but the top is the same, approximately 0,06 

units at the most and appears when the strike is equal to the underlying security. 

 

Figure 18 shows the combined effect of -Q3 and Q4 on delta adjustments. The adjustment is 

the sum of these elements  µ3𝑞3 + (µ4 – 3) 𝑞4.  

As before the parameters used are S = 100, Exercise prices 75-125, r = 2%, volatility = 20%, 

T=1/12, skewness=-0.5 and Pearson kurtosis = 6. 

 

 
Figure 18. Delta adjustment, modified Corrado & Su vs Black 76. Input; S: 100, X: 75-125, r: 2%, Volatility: 20%, ttm: 1 
month, skewness: -0,5, kurtosis: 6 
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4.2.2 Delta ratio 
 
The delta ratio is defined as the skewness and kurtosis adjusted delta divided by the BSM 

delta 

 

Delta ratio =  𝛿/ N(𝑑1)   𝛿  as in chapter 4.2 

 

 

Figure 19 and 20 show plots of the delta ratio with 2 different volatilities. Parameters used in 

this case are: skewness of – 0.5 and kurtosis of 3 (normal). The delta ratio is a function of 

volatility, moneyness, skewness, kurtosis, time to maturity and interest rates. 

 

 
Figure 19. Deltaratio, Modified Corrado & Su delta divided by BSM, with parameters, skew= -0.5, kurtosis = 3, t=1/12, r=2% 
and vol=15%. 

 

The graph reaches a maximum at approximately 1.1 or 10% less contracts. The graph crosses 

the 1 line at strike 115, meaning you need more contracts for hedging for strikes > 115 versus 

the BSM model. 
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Figure 20. Deltaratio, Modified Corrado & Su delta divided by BSM, with parameters, skew= -0.5, kurtosis = 3, t=1/12, r=2% 
and vol=25%. 

 
At 25% volatility (figure 20), the largest positive effect on delta ratio is an approximately 110 

call. The derivative of the function where its equal to 0 is a function of volatility, both level 

and moneyness.  

An interpretation; when the graph is above 1 then you need less contracts to hedge a position 

in stock and vice versa when the graph is below 1 then you need more contracts to hedge the 

same position adjusted for the ratio the graph shows. 1.3 means 30% less contracts, and 0.5 

you need to double the amount of contracts compared to the BSM model. 

 

Kurtosis has little effect on the ATM delta despite having a relatively huge impact on the 

price, compared to Skewness that has little effect on the price but a huge impact on the delta.  

The delta equation may function as a reminder to market players and risk management that 

options can vary from the BSM world when the underlying market has a significant skewness 

and kurtosis.  Especially one can experience this with short lived options where hedging 

options is a problem in short gamma positions.  

 

Using excess kurtosis of 1, skewness of -1.5 and volatility of 25%, figure 21 is different from 

the others. Maximum adjusting for delta is almost 30% less at the 110 strike this is the same 

as the figure above but the curvature at the end is quite different. Compared to original BSM 

model you need less contracts or the delta is higher, in the range 85 to almost 130.  

 



 39 

 
Figure 21. Deltaratio, Modified Corrado & Su delta divided by BSM, with parameters, skew= -1.5, kurtosis = 4, t=1/12, r=2% 
and vol=25%. 

 

The figure 22 is a 3D plot of the ratio of the skewness and kurtosis adjusted delta compared to 

Black and Scholes delta of an ATM 100 call option for different levels of skewness and 

kurtosis and illustrates the impact on the delta ratio. It can be observed that delta ratio is a 

decreasing function of both skewness and kurtosis.  

 

 
Figure 22. 3D of deltaratio impact of skewness and kurtosis on an ATM call.  
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4.2.3 Mini-case 
 

Imagine you have 100000 stocks in a company and want to hedge your position against price 

risk and you want a delta neutral position. You can do it several ways, e.g. sell options, buy 

options or make a synthetic short position.   

1. Selling calls against your position will give you extra premium in your account and no 

capital outlay but you have to rebalance your position because of short gamma. 

2. Buying puts against your position will involve a capital outlay and a possible loss if the 

stock doesn’t move in the hedging period but unlimited profit potential if the stock moves.  

3. The last option is to do a conversion. Buy puts and sell calls against your position with 

minimal or zero capital outlay. 1:1, buy 1 put and sell 1 call same strike and same time to 

maturity. 

 

Assuming a market regime with IV of 25%, skew = -0.5 and kurtosis of 6 the following 

number of contracts are needed compared to BSM. 

  

Delta ATM options 

 

Strategy one 

BSM sell calls 100000/0.52 = 192 307  

MCS sell calls 100000/0.55 = 181 818 

Diff contracts sold        10 489  

 

Strategy two 

BSM buy puts 100000/0.48 =   208 333 

MCS buy puts 100000/0.45   = 222 222 

Diff contracts bought     =   13 889 

 

Strategy three 

Buy and sell one to one. Buy 100000 puts and sell 100000 calls against the 100000 long stock 

position. Same strike and same time to maturity.  

 BSM MCS 

Delta call ATM 0.52 0.55 

Delta put ATM 0.48 0.45 
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What strategy to choose depends on the risk you accept, present volatility in the market, extra 

funds for speculation or just want to safe and secure a position (profit) or is e.g. not allowed to 

sell right now, employment stocks. Regardless of risk preferences, if a call contract cost for 

instance NOK 2,9 the difference in number of contracts amount to NOK 30 418,-. 

 

5. Methodology – Extracting skewness and kurtosis from option 
prices. 
 
5.1 Parametric risk neutral moments approach 
 
This section is primarily based on the work done by Gurdip Bakshi et al. (2003) (BKM for 

short), Turan G  Bali and Murray (2013), Turan G. Bali, Hu, and Murray (2017). They have 

also based their work on Dennis and Mayhew (2002), Duan and Wei (2009) and Conrad et al. 

(2013). 

Moments from option prices can be extracted with several different methods, see for instance 

Turan G. Bali et al. (2017), here one parametric method is shown. An alternative is a 

nonparametric approach, based on taking differences in the implied volatilities of all the 

options with different strikes or moneyness. 

The parametric method is based on the  methodology from Gurdip  Bakshi and Madan (2000) 

and Gurdip Bakshi et al. (2003). Turan G  Bali and Murray (2013)’s paper is also based on 

BKM to estimate the V, W and X (representing the price of volatility, cubic and quartic 

contract) from real option prices and that means it is basically based on discrete prices.  

 

The BKM moments are recovered in a model-free fashion without imposing any structure on 

the underlying process and based on a series of computations. Their objective is to represent 

moments of the risk-neutral distribution in terms of traded option and BKM show that the 

annualized variance (𝑉𝐴𝑅𝐵𝐾𝑀 ), skewness (𝑆𝑘𝑒𝑤𝐵𝐾𝑀) and excess kurtosis (𝐾𝑢𝑟𝑡𝐵𝐾𝑀) of the 

risk neutral distribution of a index’s log return from present (t) to a time into the future (𝜏) 

can be calculated like this: 

 

𝑉𝐴𝑅𝐵𝐾𝑀 = 𝑒
𝑟𝜏𝑉𝑖,𝑡− µ2

𝜏
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𝑆𝑘𝑒𝑤𝐵𝐾𝑀 = 𝑒
𝑟𝜏𝑊−3µ𝑒𝑟𝜏 𝑉+2µ3

[𝑒𝑟𝜏 𝑉−µ2]
3
2

   

 

𝐾𝑢𝑟𝑡𝐵𝐾𝑀 = 𝑒
𝑟𝜏𝑋+ 𝑒𝑟𝜏𝑊+ 𝑒𝑟𝜏𝑉+ 3µ4

(𝑒𝑟𝜏𝑉−µ2)2  

 

µ = 𝑒𝑟𝜏 – 1 –  𝑒
𝑟𝜏

2
V – 𝑒

𝑟𝜏

6
W – 𝑒

𝑟𝜏

24
X, 

 
r represents the continuously compounded risk – free rate for the time t to time t + 𝜏. V, W 

and X represent the risk neutral expectation of the squared, cubed and fourth power of the log 

of returns in the same period.  

The risk based BKM volatility (𝑉𝑜𝑙𝐵𝐾𝑀) is to be annualized standard deviation of the 

distribution of the log return and is defined as 

 

(𝑉𝑜𝑙𝐵𝐾𝑀) = √𝑉𝑎𝑟𝐵𝐾𝑀 
 
The BKM vol is to be used in e.g. risk measures and VAR computations. 

 

Calculation of V, W and X using the BKM approach. 

 

The approach is based on two assumptions. First the spot has to be adjusted for dividends. 

Using the future this is already taken care of, and second the formulas in BKM assume that 

option prices are available with strikes that are equally spaced above and below the current 

spot price. And allowing for all option data one can a descrete approach defined in Turan G  

Bali and Murray (2013). 

 

V = ∑
2(1−ln(

𝐾𝑖
𝐶

𝑆𝑝𝑜𝑡))

(𝐾𝑖
𝐶)2

𝑛𝑐
𝑖=1  Call(𝐾𝑖

𝐶)𝛥𝐾𝑖
𝐶 +  ∑

2(1+ln(𝑆𝑝𝑜𝑡
𝐾𝑖

𝑃 ))

(𝐾𝑖
𝑃)2

𝑛𝑃
𝑖=1  Put(𝐾𝑖

𝑃)𝛥𝐾𝑖
𝑃 

 

 

W = ∑
6𝑙𝑛(

𝐾𝑖
𝐶

𝑆𝑝𝑜𝑡) – 3ln (
𝐾𝑖

𝐶

𝑆𝑝𝑜𝑡)
2

(𝐾𝑖
𝐶)2

𝑛𝑐
𝑖=1  Call(𝐾𝑖

𝐶)𝛥𝐾𝑖
𝐶  -  ∑

6𝑙𝑛(𝑆𝑝𝑜𝑡
𝐾𝑖

𝑃 ) + 3ln (𝑆𝑝𝑜𝑡
𝐾𝑖

𝑃 )
2

(𝐾𝑖
𝑃)2

𝑛𝑃
𝑖=1  Put(𝐾𝑖

𝑃)𝛥𝐾𝑖
𝑃 
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X = ∑
12𝑙𝑛(

𝐾𝑖
𝐶

𝑆𝑝𝑜𝑡) – 4ln (
𝐾𝑖

𝐶

𝑆𝑝𝑜𝑡)
3

(𝐾𝑖
𝐶)2

𝑛𝑐
𝑖=1  Call(𝐾𝑖

𝐶)𝛥𝐾𝑖
𝐶  +  ∑

12𝑙𝑛(𝑆𝑝𝑜𝑡
𝐾𝑖

𝑃 )
2

 + 4ln (𝑆𝑝𝑜𝑡
𝐾𝑖

𝑃 )
3

(𝐾𝑖
𝑃)2

𝑛𝑃
𝑖=1  Put(𝐾𝑖

𝑃)𝛥𝐾𝑖
𝑃 

 

 

Where 𝑖 indexes the OTM call and put options with available prices.  

Spot is the closing price of stock adjusted for dividend or futures in our case.  

𝐾𝑖
𝐶, 𝐾𝑖

𝑃 is the strike of the ith OTM put or call option when the strikes are ordered in 

decreasing and increasing order.  

Put(𝐾𝑖
𝑃), Call(𝐾𝑖

𝐶) is the price of the put or calls option with strike 𝐾𝑖
𝐶, 𝐾𝑖

𝑃.   

The 𝑛𝑃, 𝑛𝐶 is the notation of the number of OTM puts and calls that are available. 

Last we set  

𝛥𝐾𝑖
𝑃= 𝐾𝑖−1

𝑃 - 𝐾𝑖
𝑃 for 2 ≤ 𝑖 ≤  𝑛𝑃,  

𝛥𝐾𝑖
𝑃 = Spot – 𝐾𝑖

𝑃, 

𝛥𝐾𝑖
𝐶  = 𝐾𝑖

𝐶 – 𝐾𝑖−1
𝐶  for 2 ≤ 𝑖 ≤  𝑛𝐶, 

and 

𝛥𝐾𝑖
𝐶  = 𝐾𝑖

𝐶 – Spot. 

 

Allowing 𝛥𝐾 to vary for each option, it relaxes the assumption in the BKM formulas that the 

prices are available for options with fixed intervals between strikes. The weighting structure 

in V, W and X assign higher weight to put options with low – and call options with high 

moneyness versus options near ATM. A negative skew is present when the cost of combined 

position in OTM put exceeds the position in calls.   

 

All the risk neutral moments for the OBX future for week m is then calculated using weekly 

data calculated on every Thursday each week for the last 574 weeks for options that expires in 

approximately 0,5 months for the 1st pos and 1,5 months for the 2nd pos. Our data is then 

contemporaneous to the price used as denominator in the moment calculations. 
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6. Data 
 
 

The underlying asset in our study is OBX Total Return (TR) 1st and 2nd position futures 

prices. Because information in the option prices are forward looking, it’s better to use the 

futures price instead of OBX-index to extract implied volatilities, skewness and kurtosis. The 

futures price also accounts for expected dividends, so we don’t need to further adjust the 

option prices. From DataStream, provided by Thomson Reuters, we have downloaded OBX 

TRc1 and OBX TRc2, from the introduction of OBX futures in March 1993, to March 2018. 

OBX TRc1 is a 1st position continuous series of the nearest futures prices and rolls to the next 

contract on the last trading day and OBX TRc2 the second position (Datastream, August 

2010). First five years there are several days with no price-observations the, for this reason we 

continue with data from 1997 and forward. On days with missing price-observation we use 

the previous day’s price. 

 

 

 
Figure 23. OBX, Historical futures price from January 1997 to March 20118. Data collected from Thompson Reuters 
Datastream. 

 

Figure 23 shows the historical futures price from January 1997 to March 2018. Overall, the 

index has been in a positive trend, but with some turbulent periods, especially in 2008 due to 

the global financial crisis. The largest fall is found during September 2008, which is about the 

time Lehman Brothers filed for bankruptcy. Before the financial crisis, the largest crash in the 
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financial market is what known as Black Monday on October 19,1987 where stocks and 

indices fell over 20% in one single day (DJIA fell 22%).    

The OBX is a tradable index and dividends are mostly payed during the first two quarters 

each year. During these months, 1st position contract could trade at a higher price compared to 

2nd position before ex-dividend date.   

 
 

 

 

 

 

 

 

 

 

Table 3. Descriptive statistics OBX TRc1 1997-2018. 

 
Table 3 show descriptive statistics for the 1st position continuous futures series. We find 

negative skewness for the whole sample-period and excess kurtosis of 6,28. In table 4, 

skewness and kurtosis are calculated for each year and tested for normality with Jarque – Bera 

test. We statistically reject normality for all years except 2009 and 2017. We find the largest 

yearly kurtosis in 2005, and the total (years 1997 – 2017) to be higher than any of the single 

years. These results are in accordance with our expectations of non-normality, even with over 

5000 observations.  

  

Descriptive statistics of daily returns 
Mean 0,032 % 
Standard error 0,021 % 
Median 0,078 % 
Standard deviation 1,520 % 
Variance 0,023 % 
Kurtosis 6,281 
Skewness -0,485 
Minimum -11,282 % 
Maksimum 10,986 % 
Observations 5299 
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Table 4. OBX TRc1, skewness and kurtosis pr year 1997 – 2017, Jarque – Bera – test, p-values and significance level. By 
probability, returns in year 2009 and 2017 are close to normally distributed, market with **. 

 

From table 4, we find three years with marginally positive skewness, but a negative skew for 

the whole sample-period. The overall kurtosis is higher than the highest individual-year 

kurtosis, and for comparison we have done a similar analysis of other indexes that have a 

longer trading history. Table 5 report our findings from the different indexes. The S&P500 

index has a long history of tracking large companies through different economic policies and 

shifts, as well as minor and major events affecting the financial market. Because of the crash 

in 1987, we calculate historical skewness and kurtosis before and after the event, year 1987 

alone, and the whole sample period.  Except from S&P 500 and NIKKEI 225, the other 

indexes were established during the 1980’s and the crash in 1987 seems to have a large 

impact on their historical kurtosis. All the indexes are negatively skewed, most negative in 

1987 and for the whole sample period. We find excessive kurtosis for all the indexes in 1987 

Year Skew Kurtosis Jarque Bera JB-p values Level Signific 

1997 -0,81 6,85 183,10 2,2*(10^-16) 100,00 % 
1998 -0,18 5,08 47,01 6,2*(10^-11) 100,00 % 
1999 0,03 4,23 15,94 0,0003464 99,97 % 
2000 -0,50 4,29 27,82 9,084*(10^-7) 100,00 % 
2001 -0,32 4,25 20,63 3,32*(10^-5) 100,00 % 

2002 -0,26 4,06 14,76 0,0006223 99,94 % 

2003 -0,26 4,12 16,13 0,0003141 99,97 % 
2004 -0,76 4,67 53,72 2,163*(10^-12) 100,00 % 

2005 -0,72 7,02 191,77 2,2*(10^-16) 100,00 % 
2006 -0,57 5,54 81,39 2,2*(10^-16) 100,00 % 
2007 -0,35 4,34 24,04 6,028*(10^-6) 100,00 % 
2008 -0,37 4,77 38,67 4,004*(10^-9) 100,00 % 
2009 -0,15 3,43 2,88** 0,237 76,26 % 
2010 0,01 4,62 27,50 1,07*(10^-6) 100,00 % 
2011 -0,20 3,90 10,17 0,00600 99,40 % 
2012 -0,21 3,77 8,07 0,01765 98,24 % 
2013 -0,25 3,65 7,13 0,02827 97,17 % 
2014 0,13 4,57 26,62 0,006174 99,38 % 
2015 -0,10 5,12 47,78 1,66*(10^-6) 100,00 % 
2016 0,08 4,12 13,35 0,001264 99,87 % 
2017 -0,20 3,29 2,61** 0,271300 72,87 % 
Total -0,48 9,27 8898 0,000 100,00 % 

Max 0,13 7,02 192,00     
Min -0,81 3,29 2,61     
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and for HIS 1987-2018 and AORD 1984-2018. In comparison, the OBX seems to carry 

features recognizable in other indices.       

   

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

Table 5. Skewness and kurtosis on other indices, with different time-periods.   

 

Collecting data on historical option prices proved to be a challenge. From DataStream, we 

were able to find historical option-prices for ATM and implied volatility for 80% to 120% 

moneyness with 5% intervals from January 2010. For our analysis we need prices for OTM 

put and call options on the OBX, preferably from before 2008 up to today. These historical 

data are downloaded from Titlon.no. This database provides daily historical, high, low, last 

and closing prices on all options, put and call, on the OBX from 1990 to June 2017. It also 

holds information about open interest and expiration date, but data on traded volume is not 

available. We continue with the observations from 04th of May 2006 and forward. The dataset 

is sorted by first deleting all observations with missing closing price and bid-ask spread. Not 

included in our analysis is observations with only a last trading price, because we don’t have 

any information at which time the option was last traded. We use the mid-value of bid and ask 

prices as closing price. All option with prices less than 0,1 NOK is also deleted from our 

dataset.  

KURTOSIS TYPE: PEARSON. Last trading day 2018-04-19 

Index Period Kurtosis Skew 
GSPC – S&P 500 1950 – 1987 7,23 -0,11 
GSPC – S&P 500 1988 – 2018 12 -0,31 
GSPC – S&P 500 1987 56,84 -5 
GSPC – S&P 500 1950 – 2018 30,15 -1,017 
N225 – NIKKEI 225 1987 35 -3 
N225 – NIKKEI 225 1965 – 1987 13 -0,9 
N225 – NIKKEI 225 1988 – 2018 8,78 -0,15 
N225 – NIKKEI 225 1965 – 2018 12,57 -0,42 
GDAXI – DAX  1988 – 2018 8,8 -0,24 
FCHI – CAC  1990 – 2018 7,63 -0,069 
HSI  - HANG SENG INDEX 1987 105,5 -8,4 
HSI  - HANG SENG INDEX 1988 – 2018 19,63 -0,55 
HSI  - HANG SENG INDEX 1987 – 2018 61,48 -2,36 
AORD – AUSTRALIAN ALL ORDINARIES  1987 83 -7,12 
AORD – AUSTRALIAN ALL ORDINARIES  1984 – 1987 4,85 -0,2 
AORD – AUSTRALIAN ALL ORDINARIES  1988 – 2018 9,48 -0,6 
AORD – AUSTRALIAN ALL ORDINARIES  1984 – 2018 95,95 -3,58 
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We do calculations of risk neutral implied moments on every Thursday from 2006 to 2017. 

Close prices are applied for both future and options, but there still is a possibility for errors in 

time quote. The consequence of this is them not being exactly comparable. The moneyness of 

the option is found by dividing strike price on the asset price. For each day we match the 

options with the shortest time to maturity with the 1st position futures contract and the second 

shortest with the 2nd position futures contract. In March 2015 we find some errors in the data, 

that is all historical option data is stored with the same expiration date. This period is 

therefore excluded from our empirical analysis.    

 

Three-month NIBOR is applied as risk free rate and downloaded from Norges Bank (Bank, 

2018). Though NIBOR is not risk free we use it as a proxy for treasury bills. At Oslo Børs we 

have found information about number of traded contacts by year on the OBX-index. Number 

of traded contracts peeked during the years 2006 – 2008, and at its maximum in 2007 with 

over 1,7 million contracts. From 2009 and forward the number of traded contracts range from 

667 406 to 977 244 a year.  

7. Results 
 
In this section we present the results from our empirical analysis based on the methodology 

described in section 5. Gurdip Bakshi et al. (2003) employed an average of daily data to 

construct a weekly estimate, but due to limited time, volatility, skewness and kurtosis from a 

risk-neutral distribution are calculated weekly. The moments are calculated every Thursday 

from options expiring at the nearest and second nearest maturity. For weeks where Thursday 

is a holiday/non-trading day, implied moments is calculated on the previous day or nearest 

trading day.  

 

When we only observe daily asset-prices in discrete time, every change from day to day is a 

jump. But even with intraday-data, we still would be observing jumps of different size 

because of discrete prices. Stochastic volatility is likely to cause jumps in the asset price 

independent of discrete or continuous time. Option-prices are largely driven by supply and 

demand, as a result of investors/stakeholder’s perception of future price movements and new 

information (Garleanu et al., 2009). News arrive in discrete time and at different frequency, 

and the effect on supply and demand is highly variating. Volatility tend to increase with both 

positive and negative news. Positive shocks are often more gradually, and negative shocks 
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seems to yield an more instant effect (Haug et al., 2010). The information can be seen as a 

mixture of many Gauss-distributions which aggregated lead to a distribution with high peak 

and fat tails (Haug & Hoff, 2018), but not all information or events are of a frequent mode. 

Taleb (2007a) emphasizes that Gaussian is not an approximation of real randomness, and with 

no lower or upper bound, probabilities are not observable or measurable. Thus significance 

testing of problems based on probabilities we in reality cannot observe or measure, will not be 

possible (Taleb, 2007b). It is not our intention to draw a conclusion about the causes of jumps 

in financial price data, but we believe a discussion on the subject about likely causes are 

important for a better understanding of kurtosis. BSM assumes a constant volatility, no 

arbitrage and that you can remove all the risk with continuous dynamic hedging. However, 

this principle is very sensitive to market frictions, jumps and stochastic volatility, thus we 

cannot necessarily view the BSM-option price as a truly risk-neutral valuation (Taleb, 2015). 

If options are not risk neutral, are risk-neutral densities truly risk-neutral? Gurdip Bakshi et al. 

(2003)’s method is a model-free measure of risk-neutral moments without any assumptions 

about the form of the distribution, but there is uncertainty as to whether the calculated 

moments can be viewed as true risk-neutral moments when the underlying assumption behind 

risk-neutral valuation does not hold for empirical financial price data. We will view these 

moments as moments from a risk-neutral distribution, keeping in mind the arguments against 

the risk-neutral valuation principle.    

 

7.1 Historical kurtosis 

 
Figure 24. Moving windows of OBX historical kurtosis and historical kurtosis from 02.01.2002 – 02.01.2018. 
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Moving window of historical excess kurtosis is highly volatile and deviate from those from a 

normal distribution with excess kurtosis equal to zero, even with a wide window. This is a 

likely consistency with the result from GBM-simulations in section 3.3, where discrete time 

seems to cause timeseries to deviate from a normal distribution. Moving 2 and 5-year 

windows, from 2002 – 2018, is never less than zero and mostly higher than the shorter 

windows. The shorter windows are more volatile, and the historical kurtosis is negative for 

shorter periods but mostly >0. From figure 24 we see several spikes, occurring when there is 

one or a few observations with a large deviation from the mean. The large spike 12th October 

2005 is mostly due to 16 previous days with missing price-observations in the underlying 

asset, which has a great impact on the shorter windows. The dashed line is the static historical 

kurtosis from January 2002 to January 2018 and for the whole period higher than the moving 

windows, except from the spikes in year 2005 and 2009. If the ratio between small deviations 

in return compared to large deviations is stable over time, the historical kurtosis will be above 

0 (or 3 with Pearson kurtosis) even with long time series. Taleb (2007a) wrote; 

 

“a true fat-tailed distribution can camouflage as thin-tailed in small samples; the 

opposite is not true”. 

If the amount of small deviations increases relative to large deviations when including more 

observations, the larger deviations will have a greater impact on the kurtosis. Larger samples 

are more likely to be fat-tailed than small samples.   

 

7.2 Moments calculated from option prices. 
 
The number of out of the money options is highly variating throughout our sample, especially 

with time to maturity less than 14 days we find very few OTM options. Since the method we 

apply requires a minimum of two OTM puts and OTM calls to calculate implied moments, we 

have 9 missing calculations. One possible solution to this problem would be to use the put-

call parity. But because of large market-maker spreads, and mid-price under lower bound for 

in the money options, this leads to negative prices out of the money out if mid-value of the 

spread is used at option price. Using only ask-prices, negative prices by put-call parity is not a 

problem but would potentially yield biased results.  
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Table 6. Descriptive statistics of weekly moments calculated from short maturity options. 

 
 

 

 

 

 

 

 

 

 

Table 7 Descriptive statistics of weekly moments calculated from medium maturity options.  

From our time series of implied moments, 18 calculations with positive skewness is found 

from options with medium long maturity and 180 calculations where kurtosis is less than 

zero. Similar to Gurdip Bakshi et al. (2003) we find the short maturity options to be more 

skewed and have a higher kurtosis than medium maturity options, with 10 Thursdays having a 

positive implied skewness and only 32 Thursdays with excess kurtosis less than zero.  

 

We have not managed to find previous research studying the statistical behavior and 

distribution of implied kurtosis. Haug et al. (2010) presented a similar study on implied 

volatility with a unique dataset. However, we recognize that our analysis is subject to noise 

and estimation errors, and with non-constant time to maturity the timeseries of moments are 

not exactly comparable and ideally should have the same time to maturity for all calculations. 

 

 
VOL 1.pos SKEW 1.pos KURT 1.pos 

Mean 21,78% -1,135 3,07 
Median 19,50% -1,087 2,502 
Minimum 7,72% -4,156 -1,544 
Maksimum 79,36% 1,022 25,073 
Observations 573 573 573 
Standard deviation 9,94 % 56,34 % 265,80 % 
Kurtosis 7,527 2,587 10,617 
Skewness 2,207 -0,477 2,152 

  VOL 2. pos SKEW 2.pos KURT 2.pos 

Mean 21,96 % -0,989 1,128 
Median 20,14 % -1,016 0,858 
Minimum 9,15 % -2,381 -2,4 
Maksimum 63,82 % 1,115 8,472 
Observations 574 574 574 
Standard deviation 9,01 % 50,18 % 174,66 % 
Kurtosis 4,643 0,568 0,592 
Skewness 1,792 0,368 0,752 
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Descriptive statistics from table 6 and 7 is not annualized and based on weekly estimates. The 

volatility of implied kurtosis is, as expected, extremely volatile with a standard deviation of 

265,8% (174,66%) for short (medium) maturity options. Short maturity implied skewness is 

the only time-series with negative skewness, with the mean more negative than the median. 

All series have excess kurtosis, but its more evident for the short maturity moments.     

 

 

Figure 25. Density of kurtosis from a risk-neutral distribution, short and medium maturity. For 1. Pos; Skewness: 2,152 
Kurtosis: 10,617. For 2. Pos; Skewness: 0,752 Kurtosis: 0,592 

Figure 25 shows a density plot of kurtosis from a risk neutral distribution against the normal 

distribution. The positive skewness in the distribution is confirmed in the plot with a longer 

right tail, implying a greater probability of observing large values of excess kurtosis as 

opposed to negative values. Short maturity kurtosis is peaked, implying more observations 

with small deviations from the mean compared to a normal distribution, and high excess 

kurtosis. The shape of the density-plot for medium maturity implied kurtosis is similar to one 

of a log-normal distribution, with moderate positive skew and excess kurtosis, but have a 

wider distribution and longer right tail. Moments from a normal distribution will not itself 

have a distribution, only a point, and these results supports our assumption of about non-

normality.  

 

Table 8. Correlation between volatility measure and risk-neutral skewness and kurtosis. 

 
 

Correlation 
  VOL 1.pos SKEW 1.pos   VOL 2. pos SKEW 2.pos 
SKEW 1.pos 0,31 1 SKEW 2.pos 0,161 1 
KURT 1.pos -0,424 -0,834 KURT 2.pos -0,238 -0,848 
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BKM did not find any consistent pattern for kurtosis, however we find a strong negative 

correlation between implied skewness and kurtosis. This seems to be consistent with Chang et 

al. (2013)’s analysis of S&P500 option, where they found a correlation between implied 

skewness and kurtosis of -0,83. Small values of implied skewness is found on days with small 

values of implied kurtosis, and vice versa a highly negative skewness on days with high 

kurtosis. While volatility is not highly correlated with skewness or kurtosis, the sign of the 

correlation-coefficient imply that implied skewness is less negative and implied kurtosis is 

less positive with a high volatility.  

 

The following graphs show historical futures price and log return, calculated BKM volatility 

and skewness and kurtosis from a risk-neutral distribution for short and medium maturity 

options May 2006 to June 2017.  

 

 

 
Figure 26. Left y -axis: OBX log-return, right y-axis: OBX TRc1 asset price, May 2006 – June 2017. 
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Figure 27. Volatility from a risk-neutral distribution, calculated from short and medium maturity option prices, May 2006 – 
June 2017  

 

 
Figure 28. Kurtosis from a risk-neutral distribution, calculated from short and medium maturity option prices, May 2006- 
June 2017. 
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Figure 29. Skewness from a risk-neutral distribution, calculated from short and medium maturity option prices, May 2006- 
June 2017. 

 
Volatility extracted from option prices peeks during the financial crisis in 2008 and has a 

maximum at 79,36% for the 1st position contract. After year 2012 and onwards this volatility 

measure is less volatile and at a lower level than previous period. These results seem to be in 

accordance with implied volatility and historical volatility observed the last years. Implied 

skewness and kurtosis are highly variating and more volatile compared to volatility. The 

short-term maturity implied kurtosis is higher and skewness more negative than the medium 

maturity, but they follow a similar pattern, indicating they are related. Moments decrease with 

long maturity options and increase with short maturity options. This is consistent with 

findings in previous studies like Gurdip Bakshi et al. (2003) and likely consistent with Haug 

et al. (2010) who found short-maturity implied volatility to be more volatile and very 

sensitive to shocks.  

 
Gurdip Bakshi et al. (2003) found in their study of OEX, the index skewness never to be 

positive, and more negatively skewed than individual assets. As did Chang et al. (2013). 

Figure 29 show the implied skewness from our empirical analysis of the OBX, and unlike 

Gurdip Bakshi et al. (2003) and Chang et al. (2013), we find observations with positive skew. 

Interestingly, most of the days with positive implied skewness occurs in a highly volatile 

period and could imply investors and traders expecting the asset price to increase after a large 
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fall and therefor buying OTM call options. Skewness in the underlying asset is found to be –

0,48, but the implied skewness is overall more negative with an average of -1,13 for nearest 

maturity and -0,98 for the next maturity. A possible explanation, might be a tendency of 

investors using put-options as insurance, causing OTM put option price to increase relative to 

OTM calls. Gearing is imposing a greater risk to investors when the market falls, and as most 

investors are long in stocks they can hedge some of that risk by buying OTM puts.   

 
When volatility is abnormally high, as in year 2008, we find a tendency for calculated 

moments of skewness and kurtosis to be lower. High volatility implies an increased 

probability of large price movements and increase the option price. As a possible 

interpretation is that when large movements are accounted for through a high volatility, this 

moment dominates and suppressing/override the effect of the third and fourth moment.  And 

vice versa, when volatility is at a normal to low level, the possibility of large price-

movements seems to be accounted for and priced through skewness and kurtosis.  

 

Similar to BKM and Conrad et al, from figure 26-29 we can see the moments are related to 

movements in the underlying asset. The volatility measure increases simultaneous at times 

with clustering of large log returns. Implied skewness and kurtosis tends to be higher, in 

absolute terms, when asset returns are less volatile. The moments are highly volatile through 

the whole sample period and, we believe, very important in valuation and for traders and 

stakeholders exposed to tail risk.    
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7.3 Sensitivity analysis.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Characteristics of highest and lowest implied moments of volatility, skewness and kurtosis from medium maturity 
options. 

 
Gurdip Bakshi et al. (2003) found a high implied kurtosis to flatten the implied volatility 

smile when implied skewness very negative. Since the negative correlation between skewness 

and kurtosis is so strong, the days with the most negative implied skewness also have a high 

implied kurtosis. The shape of the volatility smile on days with highly negative skewness 

without a high kurtosis is therefore difficult to test. Table 9 show characteristics of highest 

Low volatility Moneyness range OTM put IV – OTM 
call IV 

Vol Skew Kurt 

28.11.2013 94% - 106% 2,16 % 9,14 % -0,705 2,106 
21.11.2013 95%-107,1% 0,89 % 9,70 % -0,275 0,612 
07.11.2013 95,7% - 106,8% 1,34 % 9,83 % -0,417 0,756 

High volatility 
    

13.11.2008 83,6% - 138,4% 17,35 % 63,82 % 0,064 -1,013 
09.10.2008 89,1% - 121,7% 33,61 % 63,52 % -0,277 -1,022 
30.10.2008 79,7% - 128,1% 17,37 % 61,39 % -0,344 -1,395 
04.12.2008 74,7% - 124,4% 9,14 % 60,47 % -0,537 -0,665 

Highly negative skewness 
    

20.09.2007 78,3% - 102,1% 12,75 % 22,97 % -2,381 4,192 
12.02.2015 75,4%-107,7% 25,10 % 19,64 % -2,285 8,472 
19.10.2006 84,72%-101,07% 3,73 % 17,84 % -2,222 2,627 
11.09.2014 89,3% - 105,3% 14,31 % 13,24 % -2,163 6,280 

Positive skewness 
    

08.06.2006 97,05% - 118,81% 3,60 % 23,48 % 1,115 -0,011 
16.10.2008 90,8% - 166,4% 39,13 % 55,92 % 0,813 -1,157 
20.11.2008 87,1% - 151,1% 15,06 % 58,03 % 0,555 -1,047 
03.07.2008 95,3% - 122% 8,06 % 25,21 % 0,507 -0,944 

Low kurtosis 
     

22.06.2006 97,7% - 102,65% 2,61 % 16,51 % -0,100 -2,400 
17.12.2009 98,4% - 101,4% -0,41 % 11,45 % -0,243 -2,393 
20.07.2006 97,5% - 102,2% 4,50 % 14,82 % -0,357 -2,337 
03.08.2006 97,4% - 103,6% 2,51 % 16,61 % 0,000 -2,138 
28.12.2006 97,8% - 101,8% 0,97 % 12,06 % -0,477 -2,025 

High kurtosis 
     

12.02.2015 75,4%-107,7% 25,10 % 19,64 % -2,285 8,472 
05.02.2015 75,1%-109% 22,80 % 19,42 % -2,129 7,059 
13.08.2015 80,6%-107,4% 18,43 % 16,52 % -1,961 7,004 
29.01.2015 73,5%-110,3% 23,72 % 20,58 % -2,043 6,395 
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and lowest values of the implied moments, and for low volatility and low kurtosis both the 

moneyness range and difference between implied volatility for the smallest put and largest 

call strike is little. There is very few out of the money options for all the Thursdays with low 

kurtosis (excess kurtosis less than zero), and the result may be due to sample size on these 

days. Four out of the five is found in year 2006.  

 

Thursdays with the highest kurtosis is observed in 2015. These days also have very negative 

risk-neutral skewness and modest volatility. The moneyness range is skewed with puts further 

out of the money compared to calls. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 10. Sensitivity analysis of BKM’s method. Average change in the implied moments when changing input parameters. 
Dates used in the analysis; 08.06.2006, 03.08.2006, 20.09.2007, 09.10.2008, 16.10.2008, 28.11.2013, 05.02.2015, 
12.02.2015. * representing the largest change.  

 

Table 10 is a sensitivity analysis performed on days also represented in table 9. Options 

farthest from ATM is removed, and minus two calls means we have removed the two calls 

with the highest moneyness. Not all eight days have enough OTM puts or calls to analyze the 

effect of moving more than one or two observations, and thus the average change in the last 

five rows is based on fewer calculations. Changing time to maturity has the largest effect on 

the volatility-measure and removing 4 calls or puts has the largest effect on skewness and 

kurtosis (marked with * in the table). Minor changes to the input in the model does not seem 

to have a large effect, but with many calculations on days with few OTM options, it is 

difficult to draw a valid conclusion about the robustness of this method. One solution to 

Average change Volatility Skewness Kurtosis 
Rf +2% 0,000 0,108 -0,144 
Rf 0%/-2% 0,000 -0,097 0,104 
TTM -20 -0,095* -0,038 0,000 
TTM +20 0,053* 0,064 -0,085 
Minus one call 0,000 0,133 -0,105 
Minus two calls 0,007 0,339 -0,129 
Minus one put 0,013 -0,225 -0,073 
Minus two puts 0,025 -0,331 0,634 
Minus one call & one put 0,018 -0,096 -0,051 
Minus two calls & two puts 0,032 -0,160 0,660 
Minus four calls 0,002 0,097 0,373 
Minus ten calls 0,015 0,418* 1,038* 
Minus four puts 0,002 -0,410* 2,628* 
Minus ten puts 0,014 -0,830* 4,839* 
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further test the robustness of the model on days with few out of the money options could be to 

interpolate and extrapolate the implied volatility smile using a spline-method and compare the 

results.   

 

We have run a linear regression for a simple test to see if there is a relationship between the 

implied moments and asset return. The time-series of implied moments are tested for unit root 

with a Dickey-Fuller test and found to be stationary. Following regressions is done on short 

and medium maturity implied moments;  

 

𝐿𝑜𝑔𝑅𝑒𝑡𝑢𝑟𝑛𝑡 = 𝛼0 + 𝛽1𝑉𝑜𝑙 + 𝛽2𝑆𝑘𝑒𝑤 + 𝛽3𝐾𝑢𝑟𝑡 

𝐿𝑜𝑔𝑅𝑒𝑡𝑢𝑟𝑛𝑡+1 = 𝛼0 + 𝛽1𝑉𝑜𝑙 + 𝛽2𝑆𝑘𝑒𝑤 + 𝛽3𝐾𝑢𝑟𝑡 

𝐿𝑜𝑔𝑅𝑒𝑡𝑢𝑟𝑛𝑡+2 = 𝛼0 + 𝛽1𝑉𝑜𝑙 + 𝛽2𝑆𝑘𝑒𝑤 + 𝛽3𝐾𝑢𝑟𝑡 

𝐿𝑜𝑔𝑅𝑒𝑡𝑢𝑟𝑛𝑡+4 = 𝛼0 + 𝛽1𝑉𝑜𝑙 + 𝛽2𝑆𝑘𝑒𝑤 + 𝛽3𝐾𝑢𝑟𝑡 

 

Since implied moments are on a weekly basis, asset prices are sorted to correspond with the 

same dates before calculating log returns. The purpose of these regressions is to find out if 

moments have a significant impact on current and/or future returns. Referring to our 

discussion initially, we will not emphasize coefficient p-values too much, rather the size and 

sign of the coefficients. Regression results are to find in the appendix, table 17 – 18. All 

moments (and intercept for medium maturity) are significant with negative sign in the first 

regression. R-squared show that the moments have some power in explaining changes in 

return. Regression on moments from short maturity options, BKM vol is the largest of the 

coefficients, and Skew the largest for medium maturity. When regressing on return t+1, the 

coefficients for each of the variables are very small, and the signs change depending on 

horizon (t). BKM Skew from second regression on short maturity options show significant t-

statistics, and coefficient with positive sign. F-statistics is only significant for regression on 

log returns, and we cannot statistically prove to have found any relationship between 

subsequent returns and BKM Vol, Skew or Kurtosis. This is not too surprising and if we 

assume semi efficient markets, it natural to believe that new information is reflected in the 

price within short time. To find out if moments from option prices hold information about 

future price movements, a more sophisticated method and frequent time-series of daily, or 

event intraday, we believe is required.  
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8. Conclusion 
 
When returns in the underlying assets do not follow a normal distribution, higher moments 

are very important for pricing securities and managing risk. We find that Jurczenko et al. 

(2004)’s extensions of BSM, including parameters of higher moments, seems to have a large 

effect on delta. When skewness is negative, delta near ATM and up to 110% moneyness on a 

call option with volatility from 15% - 25% deviate notably from BSM delta. In this area delta 

ratio is over one, indicating one requires less contracts to hedge a position in stocks with 

options compared to regular BSM delta. For OTM options over 110% moneyness, delta ratio 

is below one and you need more contracts to hedge the position. For positive skewness, the 

delta adjustment will be inverted. We find that kurtosis has a great effect on price and less 

effect on delta, while skewness has a greater effect on both price and delta in this model. For 

further research, we suggest a study on delta hedging on historical price data, or Monte Carlo 

simulation of GBM, with different option models adjusted for skewness and kurtosis and 

different rebalancing intervals to find out which model minimize risk and hedging error.  

 

Charles Corrado has written 2 very interesting papers about option pricing we recommend 

reading for further study, “The hidden martingale restriction in Gram – Charlier option 

prices” from 2007 and “Option pricing based on the generalized lambda distribution” from 

2010. Both papers will increase the knowledge and will give us a broader base for further 

research and investigation about option pricing theory. The paper from 2001 introduced the 

Generalized Lambda Distribution (GLD) as a flexible tool for modelling non-lognormal 

security price distributions. Major advantages of the GLD include the flexibility to assign 

almost any combinations of skewness and kurtosis values. The paper from 2007 describes a 

martingale restriction “hidden” from view in the option price. This type of restriction in Gram 

– Charlier option prices appears to have gone unnoticed and is worth further investigation.  

 

Skewness and kurtosis adjusted option pricing models based on Jarrow and Rudd (1982) use 

extensions which in certain areas give negative probabilities and also negative prices. The 

problem with negative prices is mostly evident for OTM options when BSM value is low, but 

also very sensitive to changes in volatility and short time to maturity. There are several other 

studies confirming this, and thus have found that these models can only be used for moderate 

deviations from normality (Jondeau & Rockinger, 2001).  
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We find that moments calculated from a risk-neutral density from short maturity options to be 

highly volatile and very sensitive to outliers, with higher implied kurtosis and more negative 

implied skewness compared to medium maturity. This is consistent with similar studies on 

other market indices, for instance Gurdip Bakshi et al. (2003). Moments seem to be related to 

movements in asset returns, this is also confirmed in regression of moments on log-returns, 

and we find a strong negative correlation between skewness and kurtosis. This looks to be a 

likely consistency with Conrad et al. (2013), Chang et al. (2013) and Turan G  Bali and 

Murray (2013) who found a strong relationship between moments, and a negative relationship 

between implied skewness and return.  

 

Though volatility and skewness might have a greater effect on security’s price, both historical 

and implied kurtosis is significantly more volatile than second and third moment, which is 

why we believe kurtosis is so important for option traders and other stakeholders. The strong 

negative correlation between implied skewness and kurtosis is likely to be very important 

when adjusting for moments in derivative valuation. Distribution of kurtosis implied from 

medium and short maturity option prices are positively skewed, implying a higher probability 

of fat tails and outliers. Distribution of short maturity implied kurtosis seems to be very 

sensitive to outliers and show high peak, positive skew and excess kurtosis. Implied kurtosis 

from medium maturity seems to be closer to a log-normal distribution, with moderate positive 

skew and excess kurtosis. Implied volatility smile, or smirk, is recognized as a consequence 

of supply and demand, but likely skewness and kurtosis also, see for instance Gurdip Bakshi 

et al. (2003) or Garleanu et al. (2009). 
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Appendix.  
 
Tables 11-15 show the underlying values used to create 3D figures (10 - 14) on impact of 
kurtosis and volatility with skewness fixed at -0,5 and ttm one month. Notice especially tables 
13 - 15. The problem with negative prices is present when BSM price is low, low kurtosis and 
low to moderate volatility for short maturity option.   
 

 

Table 11. Underlying values used to create 3D figure 10 on impact of kurtosis and volatility with skewness fixed at -0,5 and 
ttm 1 month.  
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Table 12. Underlying values used to create 3D figure 11 on impact of kurtosis and volatility with skewness fixed at -0,5 and 
ttm 1 month. 

M
od

ifi
ed

 C
or

ra
do

 Su
 C

al
l v

al
ue

s 
Pa

ra
m

et
er

s U
nd

er
ly

in
g 

Fu
tu

re
 O

BX
CF

1
F=

10
0,

X=
10

5,
r=

0.
02

,T
=1

/1
2,

Vo
l=

15
 - 

25
%

, S
ke

w
= 

- 0
.5

Ku
rt

os
is 

ty
pe

 =
 P

ea
rs

on
Vo

la
til

ity
/ 

Ku
rt

os
is

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

1
0,

15
90

0,
23

12
0,

31
00

0,
39

44
0,

48
36

0,
57

68
0,

67
35

0,
77

32
0,

87
55

0,
98

00
1,

08
64

2
0,

17
05

0,
23

77
0,

31
11

0,
38

98
0,

47
31

0,
56

03
0,

65
10

0,
74

46
0,

84
08

0,
93

92
1,

03
97

3
0,

18
20

0,
24

42
0,

31
22

0,
38

52
0,

46
26

0,
54

38
0,

62
84

0,
71

60
0,

80
61

0,
89

85
0,

99
30

4
0,

19
35

0,
25

07
0,

31
32

0,
38

05
0,

45
21

0,
52

73
0,

60
59

0,
68

74
0,

77
14

0,
85

78
0,

94
63

5
0,

20
49

0,
25

71
0,

31
43

0,
37

59
0,

44
16

0,
51

08
0,

58
33

0,
65

87
0,

73
68

0,
81

71
0,

89
96

6
0,

21
64

0,
26

36
0,

31
53

0,
37

13
0,

43
11

0,
49

44
0,

56
08

0,
63

01
0,

70
21

0,
77

64
0,

85
29

7
0,

22
79

0,
27

01
0,

31
64

0,
36

67
0,

42
06

0,
47

79
0,

53
83

0,
60

16
0,

66
74

0,
73

57
0,

80
62

8
0,

23
94

0,
27

66
0,

31
75

0,
36

20
0,

41
01

0,
46

14
0,

51
58

0,
57

30
0,

63
28

0,
69

50
0,

75
95

9
0,

25
08

0,
28

30
0,

31
85

0,
35

74
0,

39
96

0,
44

49
0,

49
32

0,
54

44
0,

59
81

0,
65

43
0,

71
28

10
0,

26
23

0,
28

95
0,

31
96

0,
35

28
0,

38
91

0,
42

84
0,

47
07

0,
51

58
0,

56
35

0,
61

36
0,

66
61

11
0,

27
38

0,
29

60
0,

32
07

0,
34

82
0,

37
86

0,
41

20
0,

44
82

0,
48

72
0,

52
88

0,
57

30
0,

61
94

B7
6

0,
28

81
7

0,
35

31
5

0,
42

28
0

0,
49

66
8

0,
57

42
5

0,
65

51
0

0,
73

89
4

0,
82

53
9

0,
91

41
8

1,
00

51
1,

09
78

8



 64 

 
Table 13 .Underlying values used to create 3D figure 12 on impact of kurtosis and volatility with skewness fixed at -0,5 and 
ttm 1 month. 
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Table 14. Underlying values used to create 3D figure 13 on impact of kurtosis and volatility with skewness fixed at -0,5 and 
ttm 1 month. 
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Table 15. Underlying values used to create 3D figure 14 on impact of kurtosis and volatility with skewness fixed at -0,5 and 
ttm 1 month. 
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Table 16. Underlying values to create figure 22 showing impact of skewness and kurtosis on deltaratio for ATM call.   
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Y=LogReturn Coefficients Standard error t-Stat P-value R^2 F 
Intercept -0,0054 0,0051 -1,0653* 0,2872 0,1071 22,7124 
VOL 1.pos -0,0608 0,0153 -3,9822* 0,0001 

 

SKEW 1.pos -0,0259 0,0044 -5,8544* 0,0000 
KURT 1.pos -0,0031 0,0010 -3,1879* 0,0015 

 

Y=LogReturn t+1  R^2 F 
Intercept 0,0111 0,0054 2,0667* 0,0392 0,0093 1,7843 
VOL 1.pos -0,0138 0,0161 -0,8566 0,3920 

 

SKEW 1.pos 0,0093 0,0046 1,9951* 0,0465 
KURT 1.pos 0,0011 0,0010 1,0853 0,2783 

 

Y=LogReturn t+2  R^2 F 
Intercept -0,0024 0,0054 -0,4376 0,6618 0,0022 0,4085 
VOL 1.pos 0,0029 0,0161 0,1816 0,8559 

 

SKEW 1.pos -0,0013 0,0047 -0,2860 0,7750 
KURT 1.pos 0,0004 0,0010 0,3675 0,7134 

 

Y=LogReturn t+4  R^2 F 
Intercept 0,0018 0,0053 0,3355 0,7374 0,0016 0,3093 
VOL 1.pos 0,0059 0,0160 0,3674 0,7135 

 

SKEW 1.pos 0,0042 0,0046 0,8988 0,3692 
KURT 1.pos 0,0009 0,0010 0,9033 0,3668 

Table 17. Regression results from 1. Position implied moments. Model specified on page 56. Significant t-statistics, at 95% 
level, marked with *.    
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Y=LogReturn Coefficients Standard error t-Stat P-value R^2 F 
Intercept -0,0314 0,0050 -6,3050* 0,0000 0,2129 51,3154 
VOL 2. pos -0,0430 0,0149 -2,8890* 0,0040 

 

SKEW 2.pos -0,0526 0,0049 -10,7417* 0,0000 
KURT 2.pos -0,0090 0,0014 -6,2787* 0,0000 

 

Y=LogReturn t+1  R^2 F 
Intercept 0,0084 0,0056 1,4963 0,1351 0,0044 0,8360 
VOL 2. pos -0,0129 0,0168 -0,7693 0,4421 

 

SKEW 2.pos 0,0048 0,0055 0,8688 0,3853 
KURT 2.pos 0,0002 0,0016 0,0942 0,9250 

 

Y=LogReturn t+2  R^2 F 
Intercept -0,0024 0,0056 -0,4303 0,6671 0,0015 0,2912 
VOL 2. pos 0,0102 0,0168 0,6088 0,5429 

 

SKEW 2.pos -0,0005 0,0055 -0,0853 0,9320 
KURT 2.pos 0,0006 0,0016 0,3690 0,7123 

 

Y=LogReturn t+4  R^2 F 
Intercept 0,0069 0,0055 1,2526 0,2109 0,0044 0,8351 
VOL 2. pos 0,0016 0,0166 0,0943 0,9249 

 

SKEW 2.pos 0,0076 0,0055 1,3917 0,1646 
KURT 2.pos 0,0012 0,0016 0,7811 0,4350 

Table 18. Regression results from 2. Position implied moments. Model specified on page 56. Significant t-statistics, at 95% 
level, marked with *.    
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