

Master’s Thesis 2017 30 ECTS

Faculty of Science and Technology

Ivar Maalen-Johansen

Brick wall analysis by

photogrammetry and image

processing techniques

Espen Johnsen

Geomatics

Faculty of Science and Technology

Preface

I would like to express my sincere gratitude towards my three supervisors: Ingunn
Burud, Thomas Kringlebotn Thiis and Ivar Maalen-Johansen.
Ingunn Burud, I am very grateful for your continuous support throughout this
thesis. Your insights and guidance has been of most importance to me.
I would also like to thank Thomas Kringlebotn Thiis for his invaluable contribu-
tions to this project. Thank you for showing interest in the progression of this
thesis, it has been very motivating.
A special thanks to my teacher throughout these five years, Ivar Maalen-Johansen.
Thank you for sharing your vast knowledge in photogrammetry, our conversations
have been very helpful to me.

To Sigrid, thank you for all your kind-heartedness.

Finally, I would like to express my gratitude to Kristine for your unfailing support
and encouragement throughout my years of study.

Espen Johnsen, Ås, 12. May 2018

ii

Abstract

Deterioration of brick wall buildings can be seen as an effect from years of exposure
to wind and weather. For example, through repeated freeze-thaw cycles, struc-
tural damage of the bricks might occur. In this thesis a method to automatically
estimate the condition of a brick building is explored. Images of the building are
captured with a Remote Piloted Aircraft System and then further processed to
produce orthophotos of the facades of the building. Pix4D mapper is used as the
photogrammetry software to produce the orthophotos. A script in Python pro-
gramming language is developed to assess the condition of the walls. The script
makes use of the Scikit-image library to implement several image processing tech-
niques. The script is written in order to segment each brick in the orthophoto and
classify them according to their condition. The segmentation is based on a series
of image processing techniques, such as thresholding, binary morphological oper-
ations and labeling of binary regions. The classification of the bricks are based on
entropy calculations.

The results show that a brick by brick segmentation and classification is possi-
ble. For one of the orthophotos in this project, an estimated 95% of the bricks
seen in the orthophoto were identified and analysed. Weaknesses in the method
are related to orthophoto quality and the scripts ability to accurately segment
and classify the bricks. Improvements are explored and suggested for both issues.
Different segmentation and classification methods are discussed. In addition the
possibility of adding terrestrial sourced images to improve orthophotos is explored.
Importance of camera and image quality, flight procedure and the need for radio-
metric consistency in the orthophotos are discussed as well.

iv

Samandrag

Forvitring av mursteinbygningar kan sj̊aast p̊a som ein effekt av mange års ek-
sponering for vær og vind. Sprekkdanningar i mursteinane kan komme av at vatn
som trenger inn i det porøse materialet ekspanderer n̊ar det frys til is. I denne
oppg̊ava tar ein sikte p̊a å estimera tilstanden til ein mursteinsbygning ved fo-
togrammetri og digital biletanalyse. Bilete av bygningen vart tatt med ein drone
og ortofoto av fasadane vart produsert i Pix4D, ein programvare for fotogram-
metri. Eit skript vart utvikla i programmeringsspr̊aket Python for å estimera
tilstanden til bygningen. I Python vart eit bibliotek, kalla Scikit-image, nytta
til å implementera fleire bildebehandlingsprosedyrar. Tanken med skriptet var å
segmentera ut kvar murstein som er synleg i ortofotoet, og dermed klassifisera
mursteinen basert p̊a kva tilstand den er i. Segmenteringa er basert p̊a ein serie
av bildeprosesseringsteknikkar som terskling, morfologiske operasjonar og identi-
fisering av binære bilderegionar. Klassifiseringa av tilstanden til mursteinane er
basert p̊a entropiverdiar.

Resultatet visar att ein analyse er mogleg å gjennomføra p̊a eit detaljniv̊a som
tilsvarar ein analyse av murstein for murstein. Til dømes, i eit ortofoto i dette
prosjektet har ein estimert at omtrent 95% av musteinane synleg i ortofotoet
vart segmentert og klassifisert. Svakhetar ved metoden og resultatet er knytt
opp til kvaliteten p̊a ortofotoet og skriptets evne til å segmentera og klassifisera
mursteinane nøyaktig. Forslag til forbetringar er utforska og føresl̊att for begge
tema. Forskjellige segmenterings og klassifiserings algoritmar er diskutert, samt
verdien av kamerakvalitet, bildekvalitet og behovet for radiometrisk kontroll.

vi

Contents

Preface ii

Abstract iv

Samandrag vi

1 Introduction 1
1.1 Brick buildings and deterioration 1
1.2 Previous work . 1
1.3 Aim of thesis . 2

2 Software and Hardware 3
2.1 Pix4D mapper . 3

2.1.1 Outline of processing steps 3
2.2 Python . 4

2.2.1 Scikit-image . 4
2.3 Adobe Photoshop, Camera Raw . 4
2.4 Phantom 4 . 4

3 Theory 5
3.1 Photogrammetry . 5

3.1.1 Interior, exterior and relative orientation 5
3.1.2 Orientation process . 7
3.1.3 Orthophoto . 7
3.1.4 Ground Sampling Distance 8

3.2 Digital Image processing . 9
3.2.1 Digital image representation 9
3.2.2 Thresholding . 10
3.2.3 Morphology . 10
3.2.4 Labels and properties . 11
3.2.5 Entropy . 12

4 Method 13
4.1 Image acquisition . 13
4.2 Pix4D mapper . 14
4.3 Analysing orthophotos in Python 18

4.3.1 Entropy analysis . 21

5 Results 25
5.1 Distribution of entropy values . 25
5.2 Location of damaged bricks . 28

viii

6 Discussion 31
6.1 Model analysis . 31

6.1.1 Coverage . 31
6.1.2 Classification of bricks . 32

6.2 Further improvements . 35
6.2.1 Segmentation . 35
6.2.2 Classification . 38
6.2.3 Camera . 39
6.2.4 Radiometric control and consistency 39
6.2.5 Addition of terrestrial sourced images 40
6.2.6 Flight plan . 40

7 Conclusion 42

References 43

A Pix4D mapper processing options 46

B Python script 48

ix

1 Introduction

1.1 Brick buildings and deterioration

Depending on location and local climate, buildings must withstand deterioration
from years of exposure to wind and weather. This is evident in brick wall build-
ings[11]. One of the damaging effects comes from wind-driven rain. Moisture from
the rain can penetrate the porous material and expand upon freezing, damaging
the brick wall. The damage effect is magnified with repeated freeze-thaw cycles[24].

The KA-building (Chemical Analysis, Figure 1.1) of the Norwegian University
of Life Sciences serves as a great example of a brick building with bricks that
vary from good to very poor condition. Therefore this building serves as a good
training site for developing different methods to analyse the condition of brick
walls in general. The size and placement of the building is shown in Figure 1.2.

Figure 1.1: The Chemical Analysis building

1.2 Previous work

In 2013, Kristian S. Førde tried to develop a toolkit to identify and recognize
bricks with freeze-thaw damages[7]. Førde’s thesis might serve as a good comple-
mentary text to read for anyone who wish to further investigate the challenge of
classifying the condition of brick buildings.

On Pix4D official website, a project that bear some resemblance to this can be
found[32]. In this project a facade inspection of Messina building in Italy was
done. By capturing images with a drone (DJI Inspire 1+ FC350) of the building

1

Figure 1.2: Location of the building. The walls are named accordingly and will be
used throughout the thesis. Coordinate system of the map is WGS84/UTM 32N

facade, an orthophoto was produced in Pix4D software and a manual analysis was
done in CAD software.

1.3 Aim of thesis

How could one automatically estimate the condition of a brick building, such as the
Chemical Analysis building. By creating and analysing orthophotos of the brick
walls, is it possible through image processing techniques to assess the condition of
the building?

2

2 Software and Hardware

2.1 Pix4D mapper

Pix4D mapper is a proprietary software that make use of photogrammetry and
computer vision techniques to produce, among other things, three-dimensional
point clouds and Orthophotos. The main inputs of Pix4D are digital images in
either JPEG or TIFF format. For TIFF it is possible to use infrared and thermal
images as well as RGB images. Pix4D mapper Pro version 4.2.25 was used.

The main outputs of Pix4D are 3D point clouds, Digital Surface and Terrain Mod-
els, 3D textured models and Orthophotos. Other ”intermediate” products such as
calibrated camera parameters, undistorted images and more can also be exported.
Pix4D allows for exporting the products in many formats[19]. This facilitates the
possibility of further processing the data in other software such as AutoCAD, Qgis
and Blender to mention a few.

The software can be installed as a desktop solution, but also offers processing in
the cloud. One solution is to directly upload images to the cloud and automati-
cally start processing without defining any processing parameters. A more robust
solution is to define the processing options in the desktop version before uploading
to the cloud. The results can be downloaded again and further improvements and
processing can be done. For example, by adding manual tie points or defining
orthoplanes to produce orthomosaics of facades[16]. In the desktop version it is
also possible to define a processing area to minimize processing time.

2.1.1 Outline of processing steps

There are three main processing steps in Pix4D mapper:

1. Initial Processing

2. Point Cloud and Mesh

3. DMS, Orthomosaic and Index

For the purpose of creating an orthomosaic of the building facades, only step 1
and 2 are needed. In step 1, the software will try and match points across images
(tie-points) and through automatic aerotriangulation and bundle block adjustment
create a three dimensional point cloud, called ray-cloud in Pix4D. The second step
will densify the point cloud from step 1. Typically, For a 14 megapixel camera
and a project with 250 images, this will create points in the range of 20 - 50
million points. The coordinates x, y, z for each point is stored, as well as the color
information for each point. Step 2 increases the density of the three-dimensional
point cloud created in step 1. This should also increase the accuracy of the Digital
Surface Model and the orthomosaic.

3

2.2 Python

Python is an object-oriented programming language. It was developed by Guido
van Rossum and first published in 1991. The software is freely usable and dis-
tributable[22]. The script in this thesis was written with Spyder 3[29]. Spyder
stands for ”Scientific Python Development Environment”. It comes with popular
packages such as NumPy for linear algebra, SciPy for signal and image processing,
and matplotlib for interactive plotting. Python version 3.6.1 was used with Spyder
version 3.1.4.

2.2.1 Scikit-image

scikit-image[33] is a package used for image processing in Python. It extends the
SciPy module and provides a set of image processing algorithms. Version 0.13.0
was used.

2.3 Adobe Photoshop, Camera Raw

Adobe Photoshop is a raster graphics editor. Camera Raw[1] is used to edit images
to make adjustments to, for example, exposure and white balance.

2.4 Phantom 4

The phantom 4, seen in Figure 2.1, is a light-weight Remotely Piloted Aircraft
System (RPAS), weighing 1380 grams. It has Global Navigational Satellite System
(GNSS) capabilities and captures positional data from both GPS and GLONASS.
It also has an Inertial Measurement Unit(IMU) and compass. The camera on
the drone is attached with a Gimbal system to reduce effects of vibrations during
flight. It also enables the camera to change viewing-directions from -90 to +30
degrees. The camera attached has a CMOS with a size of 6.17mm×4.55mm, with
a resolution of 4000 × 3000 pixels. The camera has a rolling shutter mechanism.
Images can be recorded to a micro SD memory card in JPEG and DNG format.

Figure 2.1: Phantom 4. Image from the official website of DJI

4

3 Theory

3.1 Photogrammetry

Photogrammetry can be described as the science of making measurements from
images. Measurements are used to derive placement, shape and size of the pho-
tographed object[5]. This is possible when the geometry of the situation during
the exposure is re-established. For example the geometry of the internal parts of
the camera (interior orientation), the position and attitude of the camera (exterior
orientation) and the relative position between images (relative orientation).

Through careful measurements and an ingenious consideration of the geometric
relationships between image and object coordinates it is possible to calculate the
coordinates of the photographed object in three dimensional space, for example
through triangulation. This information is used to produce products such as three-
dimensional point clouds, Digital Elevation and Surface models and Orthophotos.
The quality and precision of these outputs are often correlated with the success
of establishing the parameters of interior, exterior and relative orientation.

3.1.1 Interior, exterior and relative orientation

When you take a photo, you capture the rays of light reflecting from the scene,
through the projection center of the camera and onto a two-dimensional plane.
Ideally this will fulfil the central projection and collinearity condition. With cen-
tral projection it is meant that all light reflected from the scene converges in the
central projection center of the camera before it is spreads out again on the image
sensor plane. The collinearity condition means that through a given point P on
the projection plane (the image sensor) a straight line can be drawn through the
projection center and onto the object that reflected the light in the first place, see
Figure 3.1.

The interior orientation relates to the geometry inside the camera, such as focal
length, principal point, radial and tangential lens distortion. Some of these are
seen in Figure 3.2

The exterior orientation parameters will place the position and attitude of the
cameras projection center in a three-dimensional space. The position can be de-
scribed as a vector: [x, y, z], while the attitude if the camera regards the angles:
[ω, φ, κ].

The relative orientation concerns the relative position and orientation between,
for example, two images. When these sizes are known, it is possible to triangulate
the three-dimensional coordinates of object seen in the overlapping images.

5

Figure 3.1: A geometric description of the relation between the projection plane,
projection center and point P on the ground. Modified figure from [2].

Figure 3.2: The image plane with projection center (O), focal length (c) and principal
point (PPS). Modified figure from [2].

6

3.1.2 Orientation process

There are several ways to establish the orientation parameters described above.
The process is highly dependent on the use case and the software involved. A short
comparison between traditional fixed-wing aerial photogrammetry and RPAS pho-
togrammetry can highlight some of the differences.

In traditional aerial photogrammetry the camera used will often be a high-end
camera, with very large image sensors. The interior orientation parameters can
be established before the flight, known as pre-calibration. Through precise GNSS
and IMU instruments, good approximate exterior orientation parameters are es-
tablished. The direction and overlap of the images are relatively ordered and
taken in a nadir direction (orthogonal to the ground). With the addition of visible
ground control points in the images, it is possible to correct and control for errors
in the orientation process.
In RPAS photogrammetry the camera could be a lightweight consumer-grade cam-
era, with a smaller image sensor. The interior orientation parameters are estab-
lished during the orientation process, known as self calibration. The GNSS and
IMU instruments are not as precise, but can be used as approximate values in the
software. The orderliness of image overlap are possibly much more randomised,
and the camera direction could vary from nadir to oblique.

These differences requires different methods for calculating the orientation param-
eters involved. For modern photogrammetry software, computer vision techniques
are implemented to take advantage of increasingly larger amount of images with
very high overlap percentage, as is often the case for RPAS projects. For example
through implementing algorithms such as SIFT (Scale-invariant feature trans-
form)[12]. The algorithm is used to automatically match key points across images
to produce tie-points. Key points are features in an image with high contrast
and interesting texture, wich makes it an ideal point to recognice in other images.
Tie-points are essentially key points matched across different images. Tie-points
and approximate values from GNSS and orientation instruments from the RPAS
are used in a bundle block adjustment[30] to establish the model[10].

3.1.3 Orthophoto

In this thesis the term orthophoto relates to the orthomosaic produced in Pix4D
with the orthoplane tool[17].

A major distinction between a photo and an orthophoto is the difference in pro-
jection. Typically a photo will have a central projection, which creates distortions
as described in the previous section. An orthophoto will have an orthogonal pro-
jection, which gives the photo map like qualities. This facilitates the use of mea-
surements in the image to be correct across the entire orthophoto. The projection
is visualised in Figure 3.3.

7

Figure 3.3: To the left we see the typical central projection found in most cameras.
To the right is an orthogonal projection, same as the projections one can find in maps.
Figure from [15].

3.1.4 Ground Sampling Distance

The ground sampling distance (GSD) is an important parameter regarding the fi-
nal resolution of photogrammetry products. The ground sampling distance relates
to the size of the image ”footprint” on the ground/object during image acquisition.
The GSD is dependent on the camera sensor size, focal length and the distance to
the object photographed. The relation between distance and camera parameters
can be seen in Figure 3.4. The higher the ground sampling distance is, the lower
the spatial resolution of the image, hence less details are visible in the image.
To calculate the ground sampling distance, one needs to know the image sensor
size (Sw), distance to object (H), focal length (Fr) and the image width in pixels
(imW). The relationship is described in Equation 1. The ground sampling dis-
tance value relates to the length one pixel represents on the object photographed.

GSD

(
cm

px

)
=
Sw(mm)×H(M)× 100

Fr(mm)× imW (px)
(1)

8

Figure 3.4: The relation between focal length and distance to terrain

3.2 Digital Image processing

In this section, the main characteristics of an digital image is introduced. Some
terminology is defined and the main packages from scikit-image are described.

3.2.1 Digital image representation

A digital image can be described as a two-dimensional matrix where each element
in the matrix is known as a pixel. The pixel value refers to the measured light
intensity in that specific part of the image. For an eight-bit image the intensity
values will be within the range of 0 − 255. For a typical color image there will
be a matrix for each primary color: red, green and blue. Stacked on top of each
other, this will produce a pixel-depth of 24 bits. Which means that there are
approximately 16 million different variations in color available, as described in
Equation 2.

[0− 255]3 × 3 ≈ 16million (2)

Another typical intensity range is that of a binary image. This image will only
have two intensity values: [0, 1]. One can think of it as an image with only fore-
ground and background elements. An important concept in binary images relates
to the consecutive connection of foreground pixels. This can be described as a
region in the binary image. Two regions are separate when there is no connect-
ing foreground pixels between them. Whether or not a pixel is connected to its
neighbouring pixels depends on the definition of the neighbourhood of the pixel.
Usually divided in 4- and 8-neighbourhood. For all purposes in this thesis, the
relation between pixels are in an 8-neighbourhood.

9

[]
|

[] – [x] – []
|

[]

[] [] []
\ | /

[] – [x] – []
/ | \

[] [] []

Figure 3.5: To the left a 4-neighbourhood, to the right an 8-neighbourhood

3.2.2 Thresholding

An image can be turned into a binary image through the process of thresholding.
In this process, each pixel value (a) in the image will be reassigned into either 0
or 1, based on the threshold value (q). If the pixel value is less then the threshold
value, it is reassigned as 0 (a0). And for a pixel value equal or above the threshold
value it is reassigned as 1 (a1).

fthreshold(a) =
a0 for a < q
a1 for a ≥ q

(3)

Usually the threshold value is constant while reassigning the pixel values of the
entire image. However it can also be adaptive, meaning that the threshold value
(q) will vary with the local variation of pixel values in a certain area around the
pixel, as shown in Figure 3.6.

Figure 3.6: To the left is an RGB image. In the middle the threshold value (q) is
constant and to the right the threshold value (q) is varying with the location in the
image.

3.2.3 Morphology

Morphological operations are usually performed on binary images to alter the
structure of the regions in the image. Usually a morphological operation will use
a search window, known as a structure element, to decide how the morphological
operation will manipulate the pixel based on the pixels within the search window.

10

Figure 3.7: The two figures on the left side shows the effect of removing small objects.
To the right we see how the fill holes method works. Upper: before morphological
operation, lower: after morphological operation.

Two typical morphological operations are erosion and dilation.

With erosion, the regions in the image will shrink. This happens because the low-
est intensity value within the structure element will be used to replace the center
pixel. For dilation the opposite is true. This means that the center pixel will be
replaced by the highest intensity value within the structure element. The erosion
and dilation operators can be sensitive to the size and shape of the structure ele-
ment used, and how the region in the binary image looks like. In the Scikit-image
package, two similar operators can be found, they are not dependent on the size
and shape of the structure element, but examines the properties of the regions in
the image.

Two methods implemented by scikit-image in the morphology module are: remove
small objects and remove small holes. The former will remove regions in the binary
image, based on a threshold regarding minimum size of the region to be removed.
The other function will remove small holes within a region, based on a threshold
value concerning what size the hole has to be before removing it. The effect of
both methods are shown in Figure 3.7

3.2.4 Labels and properties

Scikit-image has implemented some methods to work with regions in a binary
image. Namely label [27] and regionprops [25] found within the measure module.
As mentioned, a binary image will only have two levels, 0 and 1. With the label
method[6][34], the binary image will identify each binary region and replace the
values as an identification for connected regions. The algorithm can be described
as a flood filling algorithm[3], where regions are marked by scanning the connection
between consecutive pixel in either a 4- or 8-neighbourhood. The highest value in
the resulting image now reflects the total number of regions in the original binary
image.

11

The regionprops method will measure many properties of these binary labeled
regions[25]. The main property of interest, used in the method, is the bounding
box(bbox) property. The bounding box property will return four image coordinate
values: minx, miny, maxx, maxy. This represents the lower left and upper right
corner of the minimal bounding box for each labeled region in the binary image.

3.2.5 Entropy

The entropy method, from the scikit-image library[26], returns the minimum num-
ber of bits needed to encode the local grey-level distribution. Entropy is an impor-
tant concept in theory of digital communication[28]. A simple example of entropy
for digital images: Low entropy images will have large regions with similar pixel
values, which essentially means there is little information present in the image.
High entropy images will have a large variation in pixel intensity values, which
means that there is more information available in the image.

12

4 Method

An attempt was made to produce orthophotos of the brick walls of the KA-
building. These were made by first sourcing images with a Remotely Piloted
Aircraft System, and then images were processed in Pix4D mapper to produce
the orthophotos. Then a script was developed in Python to try and automatically
extract information about the condition of the bricks visible in the orthophotos.

The method section describes each step taken from flight to image analysis. The
procedure for the different steps in Pix4D mapper are extensively documented in
the manual[20] and on the Pix4D support site[21]. The procedure and thought
process behind the development of the script is explained in more detail.

4.1 Image acquisition

The images were acquired with a Phantom 4 using the on-board camera. During
flight the application DJI GO was set to record images every 2 seconds. Camera
settings were set to automatic (ISO, White balance, Exposure). The flight was
done manually and a high overlap between images was aimed for. The camera
was oriented towards the walls of the building, some example images can be seen
in Figure 4.1. In total 929 pictures were captured.

Figure 4.1: A selection of three images captured during flight

The images were recorded to the on-board micro SD card. They were stored as
JPEG files with a resolution of 3000 × 4000 pixels. The Phantom 4 also stored
information about camera settings, geographical position and gimbal orientation
parameters to the metadata section of the JPEG files. An example of how the
position and orientation data from one of the JPEG files are shown in table 1.

Table 1: A selection of JPEG metadata

GNSS Latitude 59.667735
Longitude 10.766825

Gimbal Yaw 80.1
Pitch -35.1
Roll 0.0

13

Figure 4.2: Screenshot from Adobe Camera raw plug-in. Exposure and white balance
adjusted

Image selection and pre-processing

After the flight, images were transferred to a computer from the SD card. Then
a selection of 322 images was done. The selection was done to exclude images
captured during take-off and landing. Because the building was not in the frame
during take-off and landing, these images would not contribute to the modelling
of the building. Also images that had extremely high overlap and little to no
variation in position x, y, z was removed. This was done because images which are
captured with no variation in position, with some variation in yaw, pitch and roll
is in general not the best image acquisition procedure in photogrammetry projects.
These selections of images including their metadata were the inputs for processing
in Pix4D mapper. Before loading the images into Pix4D mapper, they were edited
in Adobe camera raw software to make exposure and white balance consistent
across images, as seen in Figure 4.2. After the adjustments were made, the files
were saved in JPEG-format and all metadata was included. This ended the image
acquisition, selection and editing phase. This formed the inputs of a new project
in Pix4D.

4.2 Pix4D mapper

A new project was made in the Pix4D mapper, from the desktop version. The
322 images were added to the project and Pix4D established the geolocation and
orientation of all the images from reading the metadata. The coordinate system
was recognized as WGS84 / UTM Zone 32N. The geolocation of the images was
established before any processing steps was performed, as can be seen in Figure
4.3. The red area illustrates the processing area which was done by manually
drawing it inside the Pix4D workspace[18].

14

Figure 4.3: Pix4D mapper workspace. The red square represents the processing area
defined. The red circles are the approximate positions of the images captured.

Before uploading the project for processing in the cloud, processing options were
adjusted. Settings used can be seen in the appendix, Figure A.1 and A.2. After
selecting for processing step 1 and 2 (step 3 not chosen), the project was uploaded
to the cloud for processing. After processing, the project is exported and down-
loaded to the desktop again for further inspection. The result of step 1 and 2 is
seen in Figure 4.4.

Manual tie points (MTPs) were added in order to improve the point cloud and
matching between images. MTPs were added to each top and bottom corner of
the building facade. Improvements from adding MTPs was taken into account
by re-optimizing the project. The re-optimization removes the result from step 2,
therefore the project needed to be processed for step 2 again. The adding of MTPs
and re-optimization aligned the walls of the building correctly, as can be seen in
Figure 4.5. A view of the ray-cloud with camera positions can be seen in Figure 4.6.

After step 1 and 2 were processed, orthophotos of the facades were made. This was
done by first defining surfaces in the point cloud corresponding to the four walls
of the building. Orthoplanes were inserted and aligned with the corresponding
surfaces, as can be seen in 4.7. The orthoplane was adjusted to fit each wall of
interest. The resolution of each orthophoto was set to 0.40 cm

pix
. After specifying a

name for each orthoplane, the orthophotos were generated. Results can be seen
in Figures 4.8, 4.9 and 4.10.

15

Figure 4.4: Results after processing step 1 and 2. Manual Tie Points would be added
to correct for the misalignment of the walls.

Figure 4.5: MTPs, in green, were added to each corner of the building to improve the
point cloud. The alignment of the walls are corrected after re-optimization and step 2
is reprocessed.

16

Figure 4.6: Ray-cloud with camera positions.

Figure 4.7: The green surface is defined and used in order to align the orthoplane with
the wall. Size of the orthoplane is adjusted to cover the whole wall.

Figure 4.8: Orthophoto of KA-building, North wall.

17

Figure 4.9: Orthophoto of KA-building, South wall.

Figure 4.10: To the left: Orthophoto, West wall. To the right: Orthophoto, East wall

4.3 Analysing orthophotos in Python

The orthophotos were the basis of all further analysis. The remaining processing
steps were primarily done in Python with the use of scikit-image library. Through
several steps, an attempt to segment each individual brick from each other was
made. After segmentation an analysis of the segments was done to infer what
condition the bricks were in. Before loading the orthophotos into the script, they
were cropped in Adobe Camera Raw. The cropping was made to exclude areas
that are not part of the wall. In addition, windows on the facade were removed.
To illustrate the different steps, a smaller area of the east wall will be used for
demonstrating the procedure in Python.

To enable a brick by brick analysis of the bricks seen in the orthophotos, a method
was developed in order to segment the bricks from each other. The method aimed
to produce binary regions that maps onto each individual brick in the orthophoto.
In this way it would be possible to label each region, essentially giving each region
a unique identification number. And for each ID there would be information
about where it is located in the image, represented by a bounding box with image
coordinates. Ideally the semantics of the pixel values in the binary image would
be:

Binary image

{
0 = mortar
1 = brick

(4)

Another important aspect of this binary image is that each region should only map
on top of one brick in the orthophoto. The concept of regions was described in

18

Figure 4.11: Initial binary mask from thresholding with the adaptive threshold method
from scikit-image.

the theory section 3.2.1. The term region will be used throughout the sections in
the thesis. Ideally the position and extent of one individual region is the position
and extent of a brick in the orthophoto.

The first step in creating the binary regions was to threshold the orthophotos with
the threshold adaptive method from scikit-image. This produced a binary image
which formed the foundation of the binary regions intended to map on top of all
the bricks in the orthophoto. The results of the first step can be seen in Figure 4.11.

The next steps concerned the manipulation of the binary regions, in order to im-
prove the mapping. The methods remove small holes and remove small objects
from scikit-image was used. The former method would fill holes in the binary
regions, the latter would remove small regions. The results of this step is seen in
Figure 4.12.

A definitive characteristic in the structure of some brick wall buildings is the hor-
izontal lines of mortar between the layers of bricks. This should ideally also be
evident in the binary image. A method to ”detect” these horizontal lines was de-
fined in the script, named ”horizontal lines detection split” and can be located on
line 37 in the script, (see appendix). The input of the function is the binary image
processed so far. It considers the entire span across the x-axis for each row on the
y-axis. The thought is that if the mean value of this line is lower then a given
threshold, the entire line should be 0, essentially being classified as a continuous
horizontal line of mortar. If the mean value is higher then the given threshold
value, it will not manipulate any values across that row. The result of this step
can be seen in Figure 4.13.

19

Figure 4.12: To the left: initial binary image. To the right: filled holes and small
objects removed.

Figure 4.13: To the left: before horizontal lines are detected. To the right: After
horizontal lines detection split has been used.

20

Figure 4.14: Two connected regions can be seen in the right image. Ideally these
regions should not be connected.

The effect of the horizontal lines detection split method would ideally split the
regions from each other in the vertical direction. The next issue is the connection
of regions across different bricks in the horizontal direction. Two connected regions
can be seen in Figure 4.14. To gather more information about each region in the
binary image, label regions method in scikit-image was used. This method gave
each region in the binary image an unique identification by changing the value
of all connected pixels in that region, as can be seen in Figure 4.15. Next, the
regionprops method is used to gather information about the length of the regions
in x and y directions.
This information was used in combination with knowledge about the actual length
of the bricks and the resolution of the orthophoto. The resolution of the orthophoto
was set to 0.40 px

cm
. And the length of a brick was measured to be 228mm long and

54mm high. This means that, on average, one region in the binary image should
be 57 pixels long and 13.5 pixels high.

Width = 22.8 cm× 1 px

0.4 cm
= 57 px

Height = 5.4 cm× 1 px

0.4 cm
= 13.5 px

(5)

This knowledge was used in the method named ”grow and split” which can be
seen in the script on line 64 (see appendix). This method is used in an iterative
way. It measures y and x lengths and based on this will either expand the region
or acknowledge it as a region that conforms to the size of a normal brick. The
process can be seen in Figure 4.16. If the region has a length that equals for
example 2, 3, 4 or 5 consecutive bricks, it will split the region accordingly and
save the result. Regions that fall outside this lengths are expanded and merged if
they overlap, these regions might be acknowledged in subsequent iterations.

4.3.1 Entropy analysis

The binary regions established in the previous steps are the basis for gathering
the coordinates and minimum bounding box. The original orthophoto was now
analysed based on the region coordinates of the minimum bounding boxes of the
regions. The loop that analyses each region starts on line 288 in the script (see
appendix). The regions were classified into four types: green, yellow, orange and
red. Which is meant to be a descriptive range from best (green) to worst (red).

21

Figure 4.15: The regions in the binary image with a unique label for each region. The
difference in color represents different pixel values. This means that the binary image is
now turned into a label image. Where each individual region is defined by sharing the
same pixel value.

Figure 4.16: This figure illustrates the iterative function of the ”grow and split”
method defined in the script. On the first iteration, all regions that coheres to the
expected size is saved. The other regions are grown and merged. In the end most
regions are acknowledged having the ”correct” size.

22

Figure 4.17: A plot that show the distribution of entropy values of all regions identified.
The thresholds for each category is also shown. These limits were adjusted in the final
implementation and can be seen in the results section.

The variable introduced to classify the regions is the entropy method from Scikit-
image, this method is mentioned in section 3.2.5.
The limits for each class and the distribution of entropy values can be seen in
Figure 4.17. This figure will show how the bricks identified are classified. The
analysis should now be on a brick by brick level. If a brick gets an entropy value
above the green threshold value 4.25 and below the yellow threshold value 4.50,
it will be categorized as yellow. The result for all the bricks identified in this
example is visualised in Figure 4.18.

This concludes the methodology section.

23

Figure 4.18: To the left you can see the regions corresponding to the mask of the
orthophoto. To the right the orthophoto is shown together with the centroid coloured
according to the entropy analysis.

24

5 Results

Four orthophotos were produced and used as input for the script, analysing each
wall. Here the results are presented. The bricks were categorized into 4 different
categories: green, yellow, orange and red. This should be understood such that
green regions are in a better condition than the yellow regions and so forth. The
number of bricks in each category is presented in Tables 2, 3, 4 and 5.

Table 2: Condition of East wall

Condition Percentage Bricks

Green 77.4 3168
Yellow 19.8 810
Orange 2.4 98
Red 0.5 19

Total 100 4095

Table 3: Condition of West wall

Condition Percentage Bricks

Green 74.8 3294
Yellow 24.0 1058
Orange 1.1 48
Red 0.1 2

Total 100 4402

Table 4: Condition of South wall

Condition Percentage Bricks

Green 82.2 5671
Yellow 15.5 1068
Orange 2.0 136
Red 0.4 26

Total 100 6901

Table 5: Condition of North wall

Condition Percentage Bricks

Green 60.4 6027
Yellow 34.3 3424
Orange 4.8 481
Red 0.5 53

Total 100 9985

5.1 Distribution of entropy values

The distribution of entropy values for each wall is displayed in Figures 5.1, 5.2, 5.3
and 5.4. In these plots we can also see where the limits for each category is set.
The higher entropy values are consecutively categorized as green, yellow, orange
and finally red for the highest entropy values. These limits are set in lines 302,
309, 316 and 323 of the script (see appendix). The limits were set as is to classify
the bricks into one of the four categories: green, yellow, orange or red. Changing
these limits changes the percentages of regions in each category.

25

Figure 5.1: The distribution of entropy values for the East wall.

Figure 5.2: Distribution of entropy values, West wall.

26

Figure 5.3: Distribution of entropy values, South wall.

Figure 5.4: Distribution of entropy values, North wall.

27

5.2 Location of damaged bricks

Figures 5.5, 5.6 and 5.7 shows where the location of the damaged bricks are ac-
cording to the model. To visualise this, the identified regions are shown in the
colors: green, yellow, orange and red. Red regions are the regions with the highest
entropy value.

Figure 5.5: East wall. Bricks are coloured according to their entropy value.

28

Figure 5.6: West wall. Bricks are coloured according to their entropy value.

29

Figure 5.7: On the left side we see the South wall. On the right side we see the North
wall.

30

6 Discussion

6.1 Model analysis

6.1.1 Coverage

In order to compare how many bricks were analysed by the model and how many
bricks are visible in the orthophoto, an attempt to estimate the total number of
bricks visible was made. The bricks has a size of approximately 228mm× 54mm.
Including the mortar this produces about 63 bricks per square meter[23]. The total
size of the wall is estimated from the orthophotos, where windows were subtracted
from the total area. The total area of the two shorter wall (East and West), are
approximately ≈ 90m2. And for the two longer walls (North and South) ≈ 300m2.
The remaining area covered by bricks is shown in Table 6. This table compares
the estimation of bricks to the regions discovered in the model.

Table 6: An estimation of how well the coverage of the model was

Wall Area Bricks estimate Regions Coverage

East 68.2 m2 4297 4095 95.3 %
West 76.0 m2 4788 4402 91.9 %
North 236.5 m2 14897 9985 67.0 %
South 232.6 m2 14656 6901 47.1 %

Total 613.3 m2 25383 38638 65.7 %

For the South wall the coverage is estimated to be 47.1%. One major contributor
to this low number is the tree that covers the left side of the wall. As often is the
case for any remote sensing methods, obstacles in front of the object of interest is
detrimental to the results.

In general the two longer walls has a lower coverage rate. There are no obstacles
in front of the North wall, which raises the coverage percentage significantly com-
pared to the South wall. Although 67% is still rather low. One element which
contributes to this low rate is the lack of sharpness in the orthophoto. For exam-
ple, the sharpness of the orthophoto is relatively better in the upper part of the
orthophoto compared to the lower part. The effect of this variation in sharpness
on the success of the segmentation can be seen, in that the upper part is better
segmented then the lower part.

Another challenge with the longer walls is the interplay between the length of the
horizontal mortar lines and how the script is trying to calculate a mean value
along this line in order to detect it. The wall is 40 meter long and in effect the
straightness of the horizontal mortar lines are not necessarily consistent across the
entire wall, neither in the orthophoto. The effect of this can be seen in Figure
6.1. The figure is a selection of the north wall, lower right area. One can see that

31

a slight rotation in the horizontal line with regards to the mortar cuts into the
region detected in the first place.

Figure 6.1: A selection of the north, lower right side of the wall. The horizontal lines
detection cuts into the regions identified. This comes from the fact that the method
consider the whole width of the wall in one go. In effect cutting into regions if they do
not fall in line with the entire length of the wall. To the left is the binary image before
horizontal lines detection is implemented. The right image shows the effect.

The considerably higher coverage rate on the East and West wall is probably con-
nected to the sharper orthophoto produced and in addition the horizontal lines
detection algorithm (see script, line 37) works even better, because the wall is now
only around 12 meters long. For the two shorter walls, the definition of the split-
ting has changed from y to x direction. This means the detection of mortar is done
for two sections of the wall independently. In effect this reduces the ”demand” of
the horizontal correctness of the mortar to be valid across a shorter span. The
horizontal lines detection could be improved by adding ”splitting” options in x
and y directions at the same time. This would most likely improve the success of
the segmentation.

Figure 6.2: Effect of the horizontal lines detection split is more precise when the lines
of mortar are shorter. This is selection of the West wall, upper left area.

6.1.2 Classification of bricks

The idea behind classifying the bricks is that bricks in good condition should be
homogeneous and ”smooth” across its surface. A structural damaged brick will

32

Figure 6.3: Here we see the prominence of white salt on the bricks. This texture causes
the entropy value to be high and it is therefore categorized as red. Even though the
structure of the bricks are good in this area. This area is located on the right side of
the East wall.

have a rough surface and create shadow regions in the orthophoto. In an attempt
to distinguish the bricks from each other the entropy value for each region was
used.

In general the model will recognise and distinguish a good brick from a damaged
brick, given a precise segmentation. But sometimes a brick in relatively good con-
dition will be classified as category red. There are two characteristics that makes
this happen, when salt or algae are visible on the bricks surfaces. This can be seen
in figure 6.3 and figure 6.4 respectively.

Another weakness in the classification comes from the quality of the orthophoto.
The entropy value regards how much information there is in an image. In general a
blurry image will have less information then a sharp image. Therefore, if a brick is
identified in a blurry part of the orthophoto it is more likely categorized as green.
Vice versa if a brick is identified in a section where the orthophoto is sharp, the
brick will contain more information and is more likely to be categorized as red. A
blurry part of the orthophoto and its effect on the classification is illustrated in
figure 6.5.

33

Figure 6.4: The black stains on these bricks is most likely algae. This texture will give
a high entropy value and are therefore categorized as yellow, orange or red. This image
is from the leftmost part of the North wall.

Figure 6.5: This is the West wall, upper right side. Most of the bricks visible in the
top region are structurally damaged and should be categorized as red. But because the
orthophoto is blurry, hence less information is available, the entropy value is reduced.
Ideally, some of these bricks should be in the red category.

34

6.2 Further improvements

In this section other attempts and thoughts about improvements are mentioned.
The two first sections (6.2.1 and 6.2.2) concerns improvements and other attempts
made at segmenting and classifying the bricks in the orthophotos. The remaining
sections after that concerns possible improvements for better orthophotos.

6.2.1 Segmentation

The adaptive threshold method is most successful when the contrast between brick
and mortar is good. There are probably several ways one could take advantage of
the contrast between brick and mortar to enable a segmentation of the bricks.

An attempt was made with the k-means clustering method[9][4]. This is an unsu-
pervised classification method that assigns the pixel values into n clusters, where
the number of clusters is defined by the user. The implementation of k-means
from scikit-image was tested. For a small image with only one brick and some
mortar visible, the results were very good as seen in Figure 6.6. The result when
considering a larger part of the wall can be seen in 6.7. The results might be
improved by adjusting the settings in the algorithm or experimenting by adding
another index channel before segmentation, such an index channel is explained in
the next paragraph.

Figure 6.6: Here we see that the k-means algorithm works very well when considering
only one brick.

Another attempt at splitting bricks from mortar in the orthophoto, was to make
an index based on the color information available in the orthophoto. Inspired
by a well known method in remote sensing and vegetation measurements, is the
Normalized Difference Vegetation Index[31]. The idea is that different material will
reflect different wavelengths of light, and an index of this relation might accentuate

35

Figure 6.7: The success of the segmentation by the k-means algorithm varies across
the orthophoto.

the differences. The camera attached to the Phantom 4 has three channels: red,
green and blue. The index calculation that provided the best results are shown in
Equation 6, Listing 1 and Figure 6.8.

Index =
Green+Blue

Green−Blue
(6)

1 img = imread (’ 01 East 040 . t i f ’)
2 img = img [2 5 0 : 6 0 0 , 0 : 8 0 0 , :]
3 shape = np . shape (img)
4 channe l index = img . copy ()
5 channe l index = channe l index . mean(a x i s =2)
6
7 for i in range (shape [0]) :
8 for j in range (shape [1]) :
9 over = int (img [i , j , 1])+ int (img [i , j , 2])

10 under = int (img [i , j ,1])− int (img [i , j , 2])
11 p ixva l = abs (over /(under +0.1))
12 i f p ixva l >=12:
13 channe l index [i , j] = 255
14 else :
15 channe l index [i , j] = p ixva l
16
17 p l t . imshow (channe l index , vmax=10)

Listing 1: Attempt at channel index using the green and blue channels of the or-
thophoto. The result of this code can be seen in figure 6.8.

36

Figure 6.8: This shows the results of indexing the image like in Equation 6. The code
for this output image can be seen in Listing 1. The mortar seems to ”pop-out” from the
bricks. This method might prove successful given a greater control over the radiometric
conditions in the project. This is discussed under Radiometric control and consistency,
section 6.2.4.

37

An interesting strategy would be to take advantage of the build pattern in the brick
wall, for example the running bond build seen in the KA-building. An attempt to
segment the facade of buildings through orthophotos can be found in this article:
”Tiling of Ortho-Rectified Facade Images”[14]. A hybrid solution might take into
account traditional remote sensing classification techniques and modern pattern
recognition techniques used in computer vision.

6.2.2 Classification

The model only considers the entropy value in the classification process. The
success of the classification might be improved by considering several factors and
not only the entropy value. A popular method used in texture analysis is the
grey level co-occurrence matrix (GLCM)[8]. This method compares intensity val-
ues in the image and counts how often they occur between each other at given
distances and angles. There are several statistics that can be analysed in a grey
level co-occurance matrix, such as contrast, dissimilarity and homogeneity. An
attempt was made with the homogeneity attribute of the GLCM analysis, but the
classification result were much the same as the entropy method.

If the bricks are perfectly segmented, it is possible to store one single image for
each brick seen in the orthophotos and continue the brick by brick analysis by
examining this dataset. Some of the bricks in this dataset could be extracted
as a training set, where damaged and healthy bricks are identified(supervised
classification). Then the rest of the bricks could be assigned to each class in a
data-driven, machine learning manner. A visualisation of how such a data set
would look like for this project is shown in Figure 6.9. The figure shows all the
twelve bricks categorized as red for the East wall.

Figure 6.9: A visualisation of 12 bricks, categorized as red, from the orthophoto of the
East wall. Notice the image coordinates for each brick is shown in the title. This is just
some of the information one could consider in a data driven classification of bricks.

38

6.2.3 Camera

The camera attached to Phantom 4 has a CMOS with dimensions: 6.17mm ×
4.55mm. This seems to produce satisfactory results in some areas of the or-
thophotos in this project. A bigger sensor would contribute to lower the GSD
value and depending on the flight, increase image overlap. This makes it easier
for the processing in Pix4D to identify keypoints and tie-points, which should
contribute to better orthophotos. A bigger camera sensor can also make it easier
to fly, as the distance to the buildings facade might be extended while piloting
without reducing the level of detail available in the image.

Another characteristic of the Phantom 4 camera is the rolling shutter mecha-
nism[13]. This shutter mechanism is typical for low-grade CMOS cameras. The
effects of a rolling shutter mechanism becomes visible in the image if either the
camera or object is moving during exposure. It can produce geometrical distor-
tions in the image. A camera with a global shutter mechanism might be preferred
in photogrammetry projects.

Compared to a small image sensor, the larger sensor needs less light to make a
correct exposure, hence a faster shutter speed can be achieved. This is useful
since the drone might be moving during exposure. For images that are intended
for photogrammetry, there needs to be a balance between having enough time to
make the correct exposure and keeping the open shutter time short enough to
freeze the motion of the drone, so that blurry images are not captured. If blurry
images are taken, they should be removed during image selection.

6.2.4 Radiometric control and consistency

One should strive for consistent and optimal exposure during the whole flight.
Under or overexposed images will lose important information used in the pho-
togrammetry software, for example in recognising tie-points. Changes in exposure
from image to image can be detrimental to the quality of the orthophoto. Manual
settings can be used to circumvent automatic adjustments of exposure and white
balance settings during flight.

The best conditions to acquire images seems to be on cloudy days, at the bright-
est part of day. This could make consistent exposure and white balance easier to
achieve. The light reflected from the building is more likely to be consistent for
all the walls, as dense clouds will contribute to spread the light evenly across the
scene. Clouds can also reduce the chance of shadows being cast on the building
from nearby trees or buildings.
If the ground is covered in snow, number of tie-points identified in the project
might suffer due to lack of variations in texture on the snows surface. In addition,
correct exposure settings as well as white balance settings might be more chal-
lenging if there is much snow in the scene.

39

Connected to the discussion in section 6.2.1 concerning different segmentation
strategies, the success of these might improve the higher the radiometric consis-
tency is in the orthophotos.

6.2.5 Addition of terrestrial sourced images

A reoccurring problem in the orthophotos produced in this project is lack of sharp-
ness and correct geometry of the bricks at the lowest part of the walls. This makes
sense because of the lower overlap of images in this part of the walls. Either col-
lecting more images by flying lower or adding terrestrial sourced images could
circumvent this problem. An attempt was made at adding terrestrial sourced im-
ages, this is described in the next paragraph.

In an attempt to raise the quality of the East wall orthophoto, images taken from
the ground were acquired as well, albeit not on the same day as the flight was
done. The images were acquired with a Nikon D600 camera, with a 50mm fixed
lens. This is a full-format camera with a CMOS of 35.9mm× 24.0mm and has a
resolution of 6016× 4016. Two projects were merged, one for the drone flight and
one for the terrestrial. They were successfully merged and the orthophoto result
can be seen in figure 6.10. The sharpness and geometric quality increased to some
degree, but still there was a problem in the lower part of the orthophoto, and
the white balance was not consistent across the entire orthophoto. This might be
in part of the different light conditions between the two projects, and because of
poor image management regarding the pre-processing step where white balance
and exposure settings were adjusted. Although this attempt was not as successful,
it is recommended to combine aerial and terrestrial images in a project such as
this. The results might improve if images are captured on the same day under
similar weather conditions. It might be beneficial to take images with the same
camera as well, although Pix4D can handle multiple cameras in one project.

6.2.6 Flight plan

After considering the camera itself, the way in which images are gathered are
most important for the final results. The way one would choose to fly depends
on the object which is to be reconstructed. One should take into consideration
the required GSD one wants for the project and how much overlap is needed. If
the overlap is above 85% in flight direction and 70% in side overlap, good results
should be within reach in most cases.

Another important aspect regards to the movement between images. One should
avoid capturing images at the same position, only to vary the orientation of the
camera (φ, γ, κ). If a series of images are captured at the same position during
flight, for example, if the drone is hovering and still recording images, these should
then be removed during the image selection phase.

40

Figure 6.10: Orthophoto from a merged project with images from the camera attached
to the Phantom 4 and also a Nikon D600 camera taken from the ground. The variation
in white balance and light conditions are evident. One can see the difference in white
balance of the top and bottom window. This effect comes from different light conditions
during exposure, but also an unfortunate slip of poor image management, as photos with
wrong white balance settings were added. Still, geometric distortions can be seen in the
lower part of the orthophoto. Excluding that lowest part, the sharpness and detail was
better after adding the terrestrial sourced images.

41

7 Conclusion

This thesis has explored how one could assess the condition of a brick building by
producing orthophotos of the walls and analyse them with image processing tech-
niques. The method developed shows that it is possible to make a segmentation
on a brick by brick level and classify them according to their condition. Although
the completeness in segmentation of bricks and precision in classification varies.
Implementation of suggested improvements could possibly refine the completeness
of segmentation and precision in classification of the bricks. Exploring the same
method on other brick buildings with different bricks and facade structures might
also reveal other challenges that should be considered.

This project might also be seen as a small example of how the use of light-weight
RPAS and merging of multiple technologies, from photogrammetry to image analy-
sis techniques, can be used together in order to develop new insights. Light-weight
RPAS photogrammetry might help to close the gap between traditional maps and
building information modelling.

42

References

[1] Adobe. Camera raw. 2018. url: https://helpx.adobe.com/camera-

raw/using/supported-cameras.html.

[2] Øystein Andersen. Orientering i Stereoinstrument. 2003.

[3] Wilhelm Burger and Mark J Burge. Digital image processing: an algorithmic
introduction using Java. Springer, 2016.

[4] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina
Chanu. “Image segmentation using K-means clustering algorithm and sub-
tractive clustering algorithm”. In: Procedia Computer Science 54.2015 (2015),
pp. 764–771.

[5] Øystein Bjarne Dick. Geomatikk Kartfaglig Bildebruk. 2003.

[6] Christophe Fiorio and Jens Gustedt. “Two linear time union-find strate-
gies for image processing”. In: Theoretical Computer Science 154.2 (1996),
pp. 165–181.

[7] Sandvik Kristian Førde. “A toolkit for classification of state of buildings”.
MA thesis. NMBU, 2013.

[8] Robert M Haralick, Karthikeyan Shanmugam, et al. “Textural features for
image classification”. In: IEEE Transactions on systems, man, and cyber-
netics 6 (1973), pp. 610–621.

[9] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means
clustering algorithm”. In: Journal of the Royal Statistical Society. Series C
(Applied Statistics) 28.1 (1979), pp. 100–108.

[10] O Küng et al. “The accuracy of automatic photogrammetric techniques on
ultra-light UAV imagery”. In: ().

[11] Kim Robert Lisø et al. “A frost decay exposure index for porous, mineral
building materials”. In: Building and Environment 42.10 (2007), pp. 3547–
3555.

[12] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60.2 (2004), pp. 91–110.

[13] Marci Meingast, Christopher Geyer, and Shankar Sastry. “Geometric models
of rolling-shutter cameras”. In: arXiv preprint cs/0503076 (2005).

[14] Przemyslaw Musialski et al. “Tiling of ortho-rectified facade images”. In:
Proceedings of the 26th Spring Conference on Computer Graphics. ACM.
2010, pp. 117–126.

[15] Jae-Hyeung Park et al. “View image generation in perspective and ortho-
graphic projection geometry based on integral imaging”. In: Optics Express
16.12 (2008), pp. 8800–8813.

[16] Pix4D. How to create the Orthomosaic of a Facade. 2018. url: https :

//support.pix4d.com/hc/en-us/articles/202559889-How-to-create-

the-Orthomosaic-of-a-Facade.

43

[17] Pix4D. How to create the Orthomosaic of a Facade. 2018. url: https :

//support.pix4d.com/hc/en-us/articles/204664359-How-to-draw-a-

new-orthoplane.

[18] Pix4D. How to select / draw the processing area. 2018. url: https : / /

support.pix4d.com/hc/en-us/articles/202560179-How-to-select-

draw-the-Processing-Area.

[19] Pix4D. Using Pix4Dmapper Output Files with Other Software By Output.
2018. url: https://support.pix4d.com/hc/en-us/articles/202558499-
Using-Pix4Dmapper-Output-Files-with-Other-Software-By-Output.

[20] pix4d.com. Pix4D manual. 2018. url: https://support.pix4d.com/hc/
en-us/articles/202557969-Pix4Dmapper-Software-Manual-Table-

View.

[21] pix4d.com. Pix4D support site. 2018. url: https://support.pix4d.com/
hc/en-us.

[22] Python. History and License. 2018. url: https://docs.python.org/3/
license.html.

[23] randerstegl. randerstegl. 2018. url: http://www.randerstegl.no/no/

murstein/fullmurt-bygg/beregning-av-mursteinsforbruk.

[24] Kyllingstad S. et al. “Climate, environment and frost damage of architectual
heritage”. In: (2013).

[25] scikit-image. skimage.measure.regionprops. 2018. url: http : / / scikit -

image.org/docs/dev/api/skimage.measure.html?highlight=regionprops#

skimage.measure.regionprops.

[26] scikit-image.org. Entropy. 2018. url: http://scikit-image.org/docs/
dev/api/skimage.filters.rank.html#skimage.filters.rank.entropy.

[27] scikit-image.org. Label. 2018. url: http://scikit-image.org/docs/dev/
api/skimage.measure.html?highlight=label#skimage.measure.label.

[28] Claude Elwood Shannon. “A mathematical theory of communication”. In:
ACM SIGMOBILE Mobile Computing and Communications Review 5.1 (2001),
pp. 3–55.

[29] Spyder. Spyder documentation. 2018. url: https://pythonhosted.org/
spyder/index.html.

[30] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: Interna-
tional workshop on vision algorithms. Springer. 1999, pp. 298–372.

[31] Compton J Tucker. “Red and photographic infrared linear combinations
for monitoring vegetation”. In: Remote sensing of Environment 8.2 (1979),
pp. 127–150.

[32] Gabriel Versaci. Facade Inspection in Messina Using Pix4Dmapper Ortho-
plane. 2018. url: https://pix4d.com/facade-inspection-pix4dmapper-
orthoplane/.

44

[33] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In:
PeerJ 2 (June 2014), e453. issn: 2167-8359. doi: 10.7717/peerj.453. url:
http://dx.doi.org/10.7717/peerj.453.

[34] Kesheng Wu, Ekow Otoo, and Arie Shoshani. “Optimizing connected com-
ponent labeling algorithms”. In: Medical Imaging 2005: Image Processing.
Vol. 5747. International Society for Optics and Photonics. 2005, pp. 1965–
1977.

45

A Pix4D mapper processing options

Figure A.1: Settings for step 1: initial processing.

46

Figure A.2: Settings for step 2: Point Cloud and Mesh.

47

B Python script

48

0 # -*- coding: utf -8 -*-

1 """

2 Created on Thu Apr 5 13:25:31 2018

3
4 @author: Espen Johnsen

5 """

6
7 import matplotlib.pyplot as plt

8 import numpy as np

9 from scipy.misc import imread

10 from skimage.filters import threshold_adaptive

11 from skimage.morphology import remove_small_holes , remove_small_objects

12 from skimage.measure import regionprops , label

13 from skimage.segmentation import relabel_sequential

14 from skimage.filters.rank import entropy

15 from skimage.morphology import disk

16 from skimage import img_as_float

17
18 #Read Orthophoto

19 img = imread(’01_East_040.tif’)

20
21 #Copy img for processing

22 img = img[:,:,:]

23 img_edit = img.copy()

24 img_edit = img_edit[:,:,0]

25
26 #Threshold orthophoto

27 block_size = 17

28 binary = threshold_adaptive(img_edit , block_size , offset=0)

29
30 #Remove small holes in binary image

31 binary_remove_holes = remove_small_holes(binary , min_size=35)

32
33 #Remove small objects in binary image

34 binary_remove_objects=remove_small_objects(binary_remove_holes , min_size=8)

35
36
37 def horizontal_lines_detection_split(img , th=[], split_x=[]):

38
39 """

40 img :: Binary bool image

41 th :: List of thresholdvalues

42 split_x :: List of image coordinates

43 """

44
45 img_copy = img.copy()

46 shape = np.shape(img)

47
48 for j in range(len(split_x)-1):

49 for i in range(shape[0]):

50 if np.mean(img[i,split_x[j]:split_x[j+1]]) <= th[j]:

51 img_copy[i,split_x[j]:split_x[j+1]] = False

52
53 return img_copy

54
55 #Detect horizontal lines of mortar in the image

56 horizontal_mortar = horizontal_lines_detection_split(binary_remove_objects ,

57 th=[0.41, 0.5, 0.42, 0.42 , 0.45],

58 split_x=[0, 1225 , 1670 , 2457 , 2921 , np.shape(img)[1]])

59

60 #Remove small objects again

61 remove_objects = remove_small_objects(horizontal_mortar , min_size=8)

62
63
64 def grow_and_split(img_binary_input):

65
66 """

67 Input :: A binary image.

68 Values should be adjusted for brick size and orthophoto cm/px resolution

69 """

70 # Gives each region an unique ID.

71 labeled = label(img_binary_input , background=0, connectivity=1)

72 labeled = relabel_sequential(labeled)[0]

73
74 # Brick that does not conform to the cm/px size of bricks.

75 mock = labeled.copy()

76 mock[:,:] = 0

77
78 # Binary image that conforms to the cm/px size of bricks.

79 iteration = mock.copy()

80
81 #Loops over each region detected

82 for region in regionprops(labeled):

83 miny , minx , maxy , maxx = region.bbox

84 x_length = maxx-minx

85 y_length = maxy-miny

86
87 #Big connected regions

88 if 8 < y_length <= 16:

89 if 300 < x_length:

90 mock[miny+1:maxy-1, minx+10:maxx-10]= 1

91
92 #Connected Region of length that corresponds to 5 successive bricks

93 if 8 < y_length <= 16:

94 if 250 < x_length <= 300:

95 split = int((maxx-minx)*(1/5.0))

96 iteration[miny:maxy , minx:minx+split-2] = 11

97 iteration[miny:maxy , minx+split+2:minx+(split*2)-2] = 11

98 iteration[miny:maxy , minx+(split*2)+2:minx+(split*3)-2] = 11

99 iteration[miny:maxy , minx+(split*3)+2:maxx-split-2] = 11

100 iteration[miny:maxy , maxx-split+2:maxx] = 11

101
102
103 #Connected Region of length that corresponds to 4 successive bricks

104 if 8 < y_length <= 16:

105 if 230 < x_length <= 250:

106 split = int((maxx-minx)*(1/4.0))

107 iteration[miny:maxy , minx:minx+split-2] = 2

108 iteration[miny:maxy , minx+split+2:minx+(split*2)-2] = 2

109 iteration[miny:maxy , maxx-(split*2)+2:maxx-split] = 2

110 iteration[miny:maxy , maxx-split+2:maxx] = 2

111
112
113 #trippels and a half

114 if 8 < y_length <= 16:

115 if 198 < x_length <= 230:

116 mock[miny:maxy , minx-2:maxx+2]= 3

117
118
119 #Connected Region of length that corresponds to 3 successive bricks

120 if 8 < y_length <= 16:

121 if 148 < x_length <= 198:

122 split = int((maxx-minx)*(1/3.0))

123 iteration[miny:maxy , minx:minx+split-2] = 4

124 iteration[miny:maxy , minx+split+2:maxx-split-2] = 4

125 iteration[miny:maxy , maxx-split+2:maxx] = 4

126
127 #doubles and a half

128 if 8 < y_length <= 16:

129 if 128 < x_length <= 148:

130 mock[miny:maxy , minx-2:maxx+2]= 5

131
132 #Connected Region of length that corresponds to 2 successive bricks

133 if 8 < y_length <= 16:

134 if 99 < x_length <= 128:

135 split = int((minx+maxx)/(2.0))

136 iteration[miny:maxy , minx+1:split-2] = 6

137 iteration[miny:maxy , split+2:maxx] = 6

138
139 #one and a half

140 if 8 < y_length <= 16:

141 if 69 < x_length <= 99:

142 mock[miny:maxy , minx-2:maxx+2] = 7

143
144 #Connected Region of length that corresponds to 1 brick

145 if 8 < y_length <= 16:

146 if 44 < x_length <= 69:

147 iteration[miny:maxy , minx+3:maxx-3] = 1

148
149 #halfs

150 if 8 < y_length <= 16:

151 if 20 < x_length <= 44:

152 mock[miny:maxy , minx-2:maxx+2] = 9

153
154 #under half size

155 if 8 < y_length <= 16:

156 if 4 < x_length <= 20:

157 mock[miny:maxy , minx-2:maxx+2] = 10

158
159 return mock , iteration

160
161 def just_split(img_binary_input):

162
163 """

164 Input :: A binary image.

165 This should be used after the last iteration of grow and split

166 """

167
168 # Gives each region an unique ID.

169 labeled = label(img_binary_input , background=0, connectivity=1)

170 labeled = relabel_sequential(labeled)[0]

171
172 # Binary image that conforms to the cm/px size of bricks.

173 iteration = labeled.copy()

174 iteration[:,:] = 0

175
176 for region in regionprops(labeled):

177 miny , minx , maxy , maxx = region.bbox

178 x_length = maxx-minx

179 y_length = maxy-miny

180
181 #Big connected regions

182 if 8 < y_length <= 16:

183 if 300 < x_length:

184 iteration[miny+1:maxy-1, minx+10:maxx-10]= 1

185
186 #Connected Region of length that corresponds to 5 successive bricks

187 if 8 < y_length <= 16:

188 if 250 < x_length <= 300:

189 split = int((maxx-minx)*(1/5.0))

190 iteration[miny:maxy , minx:minx+split-2] = 11

191 iteration[miny:maxy , minx+split+2:minx+(split*2)-2] = 11

192 iteration[miny:maxy , minx+(split*2)+2:minx+(split*3)-2] = 11

193 iteration[miny:maxy , minx+(split*3)+2:maxx-split-2] = 11

194 iteration[miny:maxy , maxx-split+2:maxx] = 11

195
196
197 ##Connected Region of length that corresponds to 4 successive bricks

198 if 8 < y_length <= 16:

199 if 230 < x_length <= 250:

200 split = int((maxx-minx)*(1/4.0))

201 iteration[miny:maxy , minx:minx+split-2] = 2

202 iteration[miny:maxy , minx+split+2:minx+(split*2)-2] = 2

203 iteration[miny:maxy , maxx-(split*2)+2:maxx-split] = 2

204 iteration[miny:maxy , maxx-split+2:maxx] = 2

205
206
207 #trippels and a half

208 if 8 < y_length <= 16:

209 if 198 < x_length <= 230:

210 iteration[miny:maxy , minx+3:maxx-3]= 3

211
212
213 #Connected Region of length that corresponds to 3 successive bricks

214 if 8 < y_length <= 16:

215 if 148 < x_length <= 198:

216 split = int((maxx-minx)*(1/3.0))

217 iteration[miny:maxy , minx:minx+split-2] = 4

218 iteration[miny:maxy , minx+split+2:maxx-split-2] = 4

219 iteration[miny:maxy , maxx-split+2:maxx] = 4

220
221 #doubles and a half

222 if 8 < y_length <= 16:

223 if 128 < x_length <= 148:

224 iteration[miny:maxy , minx+3:maxx-3]= 5

225
226 #Connected Region of length that corresponds to 2 successive bricks

227 if 8 < y_length <= 16:

228 if 99 < x_length <= 128:

229 split = int((minx+maxx)/(2.0))

230 iteration[miny:maxy , minx+1:split-2] = 6

231 iteration[miny:maxy , split+2:maxx] = 6

232
233 #normal and a half

234 if 8 < y_length <= 16:

235 if 70 < x_length <= 99:

236 iteration[miny:maxy , minx+3:maxx-3] = 7

237
238 #Connected Region of length that corresponds to 1 brick

239 if 8 < y_length <= 16:

240 if 41 < x_length <= 70:

241 iteration[miny:maxy , minx+3:maxx-3] = 1

242
243 #halfs

244 if 8 < y_length <= 16:

245 if 20 < x_length <= 41:

246 iteration[miny:maxy , minx+2:maxx-2] = 9

247
248 return iteration

249
250 # A list which will contain each iterated binary image.

251 growth = []

252
253 #first run

254 mocked , iterated = grow_and_split(remove_objects)

255 growth.append(iterated)

256
257 #Second and consecutive runs

258 number_of_iterations = 6

259 for i in range(number_of_iterations):

260 mocked , iterated = grow_and_split(mocked)

261 growth.append(iterated)

262
263 #Final run , just split.

264 final_split = (growth[0] + growth[1] + growth[2] + growth[3] +

265 growth[4] + growth[5] + growth[6])

266 iterated_final = just_split(final_split)

267
268 #Label the image on last time.

269 final_label = label(iterated_final , background=0, connectivity=1)

270 final_label = relabel_sequential(final_label)[0]

271
272 #This will be the image marked according to entropy values and limits.

273 entropy_img = img.copy()

274 entropy_img = entropy_img.mean(axis=2)

275 entropy_img[:,:] = 0

276
277 #This will be the marked image. Center pixels of each region coloured

278 #according to entropy value and limits.

279 img_marked = img.copy()

280
281 #Size of the structure element to be considered in entropy function.

282 disk = disk(5)

283 entropia = [] #This is the entropy distribution.

284
285 #Statistics

286 status = {’green’:0, ’yellow ’:0, ’orange ’:0, ’red’:0}

287
288 for region in regionprops(final_label):

289
290 miny , minx , maxy , maxx = region.bbox

291 y, x = region.centroid

292 y = int(y)

293 x = int(x)

294
295 brick = img_as_float(img[miny:maxy ,minx:maxx ,0])

296 ent = entropy(brick , selem=disk)

297 ent = np.mean(ent.flatten ())

298
299 entropia.append(ent)

300
301 #green

302 if ent <= 4.3:

303 entropy_img[miny:maxy , minx:maxx] = 1

304 img_marked[y-2:y+2,x-2:x+2,0] = 0

305 img_marked[y-2:y+2,x-2:x+2,1] = 255

306 img_marked[y-2:y+2,x-2:x+2,2] = 0

307 status[’green’] += 1

308 #yellow

309 if 4.3 < ent <= 4.7:

310 entropy_img[miny:maxy , minx:maxx] = 2

311 img_marked[y-2:y+2,x-2:x+2,0] = 155

312 img_marked[y-2:y+2,x-2:x+2,1] = 155

313 img_marked[y-2:y+2,x-2:x+2,2] = 0

314 status[’yellow ’] += 1

315
316 if 4.7 < ent <=4.9:

317 entropy_img[miny:maxy , minx:maxx] = 3

318 img_marked[y-2:y+2,x-2:x+2,0] = 255

319 img_marked[y-2:y+2,x-2:x+2,1] = 155

320 img_marked[y-2:y+2,x-2:x+2,2] = 0

321 status[’orange ’] += 1

322
323 if 4.9 < ent:

324 entropy_img[miny:maxy , minx:maxx] = 4

325 img_marked[y-2:y+2,x-2:x+2,0] = 255

326 img_marked[y-2:y+2,x-2:x+2,1] = 0

327 img_marked[y-2:y+2,x-2:x+2,2] = 0

328 status[’red’] += 1

329
330
331 #stats

332 total = sum(status.values ())

333 green = status[’green ’] / total

334 yellow = status[’yellow ’] / total

335 orange = status[’orange ’] / total

336 red = status[’red’] / total

337
338 green_bricks = status[’green’]

339 yellow_bricks = status[’yellow ’]

340 orange_bricks = status[’orange ’]

341 red_bricks = status[’red’]

342
343 #Write stats to file.

344 #Uncomment to enable writing of file.

345 """

346 file = open(’01_east_data.txt ’,’w’)

347 file.write(’Total = {0}\nG = {1:.3f} Y = {2:.3f} O = {3:.3f} R = {4:.3f}\n’

348 ’G_no = {5} Y_no = {6} O_no = {7} R_no = {8} ’.format(total , green*100 ,

349 yellow*100 , orange*100 , red*100 ,

350 green_bricks , yellow_bricks , orange_bricks , red_bricks))

351 file.close()

352 """

353 #Entropy distribution plot

354 #Uncomment to enable plot and saving of result images

355 """

356 plt.hist(entropia , bins=40 , color=’gray ’, alpha=1, zorder=2)

357 plt.title(’East ’, fontsize=20)

358 plt.ylabel(’number of regions ’, fontsize=18)

359 plt.xlabel(’entropy value ’, fontsize=18)

360 plt.axvline(x=4.3, linewidth=2.0,

361 color=’green ’, zorder=3, label=’Green threshold ’)

362 plt.axvline(x=4.7, linewidth=2.0,

363 color=’yellow ’, zorder=3, label=’Yellow threshold ’)

364 plt.axvline(x=4.9, linewidth=2.0,

365 color=’orange ’, zorder=3, label=’Orange threshold ’)

366 plt.axvspan(2, 4.3, color=’green ’, alpha=0.15 , zorder=1)

367 plt.axvspan(4.3, 4.7, color=’yellow ’, alpha=0.15 , zorder=1)

368 plt.axvspan(4.7, 4.9, color=’orange ’, alpha=0.15 , zorder=1)

369 plt.axvspan(4.9, 6, color=’red ’, alpha=0.15 , zorder=1)

370 plt.legend(prop={’size ’: 16})

371 plt.xlim(xmin=2, xmax=6)

372 plt.tick_params(labelsize=16)

373 plt.savefig(’01_east_entropy.png ’, bbox_inches=’tight ’)

374
375 #Save result images.

376 coverage = entropy_img > 0.5

377 plt.imsave(’01_01east_coverage.png ’, coverage , cmap=’viridis ’)

378
379 plt.imsave(’01_east_binary.png ’, entropy_img , cmap=’binary ’)

380
381 plt.imsave(’01_east_marked.png ’, img_marked)

382 """

