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Abstract

The focus of this thesis has been on investigating the performance of some
estimators of the noise variance using the dimension-reducing methods PCR,
PLSR and a recently developed Bayesian method, Bayes PLS, through a
simulation study.

In all data modeling, there is a certain consumption of degrees of freedom
due to the estimation of unknown parameters. It can be important to
determine the degrees of freedom in order to assess the level of the noise
variance (dependent of the choice of estimator). In this thesis, a definition
of the degrees of freedom as the expected value of the trace of the first
derivative of the fitted values (suggested by Krämer and Sugiyama [2011])
has been applied. For PCR this leads to the simplified or ’naive’ definition
that the degrees of freedom equals the number of components included in
the fitted model (regression coefficients) + 1 (the intercept). In PLSR, the
relationship between the response and the fitted values is non-linear, so
finding an analytic expression of the derivative is quite complicated, maybe
even impossible. Therefore, two alternative PLSR estimators of the noise
variance has been investigated; one that uses the naive estimate of the
degrees of freedom, and one that is based on a numerical approximation of
the derivative of the fitted values.

Bayes PLS uses a numerical approach (MCMC) to estimate all the unknown
parameters, so the noise variance estimate can be obtained without having
to consider the degrees of freedom.

The results of the simulations show that the best estimators, in terms of
smaller estimation error, fewer number of components included in the fitted
model, and overall more stabile results, are the PLSR estimator with the
naive estimate of the degrees of freedom and the Bayes PLS estimator. The
simulations also show that the true value of the degrees of freedom of PLSR
is probably larger than the naive estimate in some situations.
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Sammendrag

I denne oppgaven har en simuleringsstudie blitt gjennomført, der de dimen-
sjonsreduserende metodene PCR, PLSR og Bayes PLS har blitt brukt til
å tilpasse lineære modeller, og til å estimere den vanligvis ukjente støyvar-
iansen. Deretter har de forskjellige støyvarians-estimatorene blitt vurdert
og sammenlignet med hverandre.

I all statistisk modellering m̊a ukjente parametre estimeres, og til denne
estimeringen brukes det et visst antall frihetsgrader. Det kan være viktig
å ansl̊a dette antallet frihetsgrader, for å kunne estimere niv̊aet av tilfeldig
støy i modellen (avhengig av valg av estimator). Frihetsgradene kan matem-
atisk defineres som forventningen til trasen til den partiellderiverte av de
tilpassede verdiene (foresl̊att av Krämer and Sugiyama [2011]). For PCR
fører denne definisjonen til den relativt enkle eller ”naive” definisjonen av
frihetsgradene som antall komponenter som inkluderes i den tilpassede mod-
ellen (regresjonskoeffisienter) + 1 (konstantleddet). I en modell tilpasset
ved PLSR er det et ikke-lineært forhold mellom responsen og de tilpassede
verdiene, s̊a å finne et analytisk uttrykk for den deriverte er komplisert,
om ikke umulig. Derfor har to forskjellige forslag til frihetsgrader for mod-
ellen tilpasset ved PLSR blitt brukt; det naive estimatet, og en numerisk
tilnærming til den deriverte av de tilpassede verdiene.

Bayes PLS bruker en numerisk metode (MCMC) til å estimere de ukjente
parametrene, s̊a støyvarians-estimatet gis uten at det er nødvendig å ansl̊a
frihetsgradene.

Resultatene av simuleringsstudien viser at de beste estimatorene, med hen-
syn p̊a lavest estimeringsfeil, færrest komponenter inkludert i den tilpassede
modellen, og gjennomg̊aende mest stabile resultater, er PLSR-estimatoren
med det naive estimatet av frihetsgrader, og Bayes PLS-estimatoren. Simu-
leringene viser ogs̊a at den sanne verdien av frihetsgradene i PLSR i noen
situasjoner trolig er høyere enn det naive estimatet.
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1 Introduction

Some dependencies between different variables in nature are quite ob-
vious; for example the relationship between the length and weight of a
person, or the relationship between the amount of accessible water and
sunlight (predictor variables), and the growth of a plant (dependent vari-
able/response). Discovering dependencies like these, that may be more or
less obvious, is an underlying objective of most scientific research. Two
main premises for this search may be formulated in the following way:

1. There exist some true relationships between variables that may be
expressed matemathically

2. There is a natural variation of individual observations that is not
captured by this defined relationship

This ’natural variation’ is what will in this thesis be referred to as the noise
variance, or random noise. It is ’noisy’ because it can not be explained.

The discipline of statistics is based on trying to express these relationships
as accurately as possible, by developing fitted models that serve both to
explain the effect of the variables in question, and to predict the response
for new values of the predictor variables. The quality of the prediction is
closely linked to the size of the true noise variance. Clearly, if the noise
variance is large, the prediction will also be less accurate. Of course,
usually the true noise variance is unknown.

There exist several methods of estimating the unknown parameters of a
statistical model, one of the more well-known is Ordinary Least Squares
(OLS). The OLS estimates are quite straightforward and intuitive, but
come with some major disadvantages; for high-dimensional data and/or
highly correlated predictor variables, the least squares estimates may be
very innacurate, or may not even be possible to calculate. Two statistical
methods that deal better with such types of datasets are Principal Com-
ponents Regression (PCR) and Partial Least Squares Regression (PLSR).
Both methods are based on compressing the data to retrieve most of the
relevant information from the predictor variables, and minimize any re-
dundancy. One advantage of PLSR over PCR is that PLSR considers

1



the covariance between the predictor variables and the response, whereas
PCR solely considers the covariance between the predictor variables.

Both PCR and PLSR provide estimates for most of the parameters of in-
terest. However, both methods lack a good, uniformly accepted estimator
for the noise variance. The unbiased OLS estimator of the noise variance
is the sum of the squared residuals (SSE) divided by its degrees of free-
dom. In PCR and PLSR the degrees of freedom of SSE is a somewhat
more complicated matter than it is in OLS.

A resently developed method, Bayes PLS, has its foundation in Bayesian
statistics, and is also based on the concept of a relevant subspace such as
PCR and PLSR. Bayes PLS uses in part a numerical approach (Markov
chain Monte Carlo) to obtain estimates of the unknown parameters, in-
cluding the noise variance.

Through simulation, this thesis will investigate the performance of some
chosen PCR and PLSR estimators of the degrees of freedom and the noise
variance. The datasets used will be simulated using the R package simrel
(Sæbø [2014]), so the true (otherwise unknown) value of the noise variance
will be known. A numeric approach (Krämer and Sugiyama [2011]) to the
degrees of freedom of PLSR will be considered in the simulation study,
and also the performance of PCR, PLSR and Bayes PLS respectively will
be evaluated and compared.

2



2 Variables, models and concepts

2.1 Notation

In this thesis the following notation is used:

� Random, scalar variables are denoted by capital Latin letters, e.g.
Y .

� Vectors of random variables are denoted by bold, lowercase Latin
letters,

e.g. y =


Y1

Y2
...
Yn

.

� Matrices of random variables are denoted by bold, capital Latin
letters, e.g. X. Sometimes the dimensions of such matrices are
also given, e.g. X

n×p
, meaning that the matrix X has n rows and p

columns.

� Scalars are denoted by lowercase Latin letters, e.g. k.

� Scalar parameters are denoted by lowercase Greek letters, e.g. β.

� Vectors of parameters are denoted by bold, lowercase Greek letters,
e.g. β.

� Matrices of parameters are denoted by bold, capital Greek letters,
e.g. Σ.

� Estimates of unknown parameters are denoted by a hat, e.g. β̂.

� The transpose of a vector is denoted by a t in superscript, e.g. the
transpose of y is written as yt.
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2.2 The linear model

Consider a response variable Y and a vector x of p predictor variables.
The variables Y and x are assumed to be simultaneously normal dis-
tributed:

[
Y
x

]
∼ N(

[
µY
µx

]
,

[
σ2
Y σtxY

σxY Σxx

]
)

where µY is the expected value of Y , µx is the p × 1 vector of expected
values of x, σ2

Y is the variance of Y , σxY is the p× 1 covariance vector of
x and Y , and Σxx is the symmetric p× p covariance matrix of x.

The conditional distribution of Y |x is expressed by the equation

Y |x = β0 + βtx+ ε (1)

where β0 is the intercept, β is the p × 1 vector of coefficients and ε is
the error term, which is assumed to be normal distributed with expected
value 0 and constant variance σ2

ε ∼ N(0, σ2)

Note that the variance of the error terms is equivalent to what has previ-
ously been referred to as the ‘noise variance‘. Thus the common notation
for the noise variance is σ2.

The model in (1) is known as the general linear model.

Since Y and x are both normal distributed, Y |x is also normal distributed
with expected value

E(Y |x) = β0 + βtx

The value of β is

β = Σ−1
xxσxY (2)
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and the intercept is

β0 = µY − βtµx

The variance of Y |x is

V ar(Y |x) = σ2 = σ2
Y − σtxY Σ−1

xxσxY (3)

Now consider a number of n samples drawn at random from the population
described above. The observations are stored in a n × 1 response vector
y and a n× p predictor matrix X =

[
x1 x2 . . . xp

]
.

All variables are mean-centered:

y∗ = y − Y 1

and

x∗i = xi −Xi1

where i = 1, 2, ..., p, Y is the average of the n responses in vector y, Xi is
the average of the n observations of predictor variable xi, and 1 is a n×1
vector consisting of 1’s.

For the remainder of this thesis xi = x∗i and y = y∗.

The intercept β0 is then equal to 0 due to the centering of the data.

The model in (1) can be expressed in matrix form

y|X = Xβ + ε (4)

2.3 A relevant subspace

When p is large (i.e. there are many predictor variables) it is natural
to question whether or not all the predictor variables are significant for
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estimation and prediction, and also if there may be cases of multicollinear-
ity. In this case it is common to assume that there is a subspace of the
original p-dimensional X-space containing most of the relevant informa-
tion about the response. This relevant subspace is spanned by a set of
relevant components.

The true covariance matrix of x can be written as a linear combination of
its eigenvalues λi and eigenvectors ei (eigen-decomposition). Since Σxx

is a square, symmetric matrix it follows from the Spectral Theorem (Lay
[2006]) that Σxx has p real eigenvalues (λi), and that the eigenvectors
(ei) corresponding to different eigenvalues are orthogonal. Also, Σxx is a
positive-definite matrix, so all its eigenvalues are positive. The eigenvalues
and eigenvectors of Σxx satisfy the equation

Σxxei = λiei

for i = 1, 2, ..., p.

Σxx can now be expressed in the following way

Σxx =

p∑
i=1

λieie
t
i = EΛEt

and correspondingly for the inverse

Σ−1
xx =

p∑
i=1

1

λi
eie

t
i = EΛ−1Et

where E is the matrix of the eigenvectors ei and Λ is a diagonal matrix
with the corresponding λi’s on the diagonal. The λi’s are sorted in de-
scending order so that λ1 ≥ λ2 ≥ ... ≥ λp. The eigenvectors are all unit
vectors, so the length or norm of each eigenvector is 1.

The true value of the regression coefficients can now be expressed using
the sum-representation of Σ−1

xx

β =

p∑
i=1

1

λi
eie

t
iσxY (5)
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The product of eti
1×p

and σxY
p×1

is a scalar, so equation (5) can be written as

β =

p∑
i=1

etiσxY
λi

ei =

p∑
i=1

αiei

where αi =
etiσxY

λi
.

Consider a set Pm containing the positions of the true relevant compo-
nents. Here m specifies the number of relevant components. (For example,
if Pm = {1, 2, 5}, then the true relevant components are component 1, 2
and 5, and m = 3.)

Then αi = 0 for all i /∈ Pm, and the true value of β is

β =
∑
i∈Pm

αiei
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3 Estimation

3.1 The fitted model

Analyzing the relationship between variables is what is known as regres-
sion, and the purpose of regression is often to be able to predict future
values of the response variable. The manner in which the response Y
depends on the predictor variables x can best be described by trying to
determine the values of the parameters in the model that is presumed
to fit the variables. Since the true values of the parameters are rarely
known, the analyst can only use the observed data to find an empirical
approximation to the true value. This is what is known as estimation.

In this thesis the main perspective is on the linear model described in (4),
but it should be mentioned that non-linear relationships between Y and
x could just as well be considered.

The fitted model with estimated regression coefficients (β̂) is

ŷδ = Xβ̂δ (6)

where δ is a regularization parameter defined by the choice of regression
method. Some different methods of regression and estimation will be
explored further in chapter 5.

Now new values of Y can be predicted for new observed values of x using
the fitted model in (6)

Ŷpred = β̂tδx

A general expression for the estimated coefficient vector is given by (Hel-
land and Almøy [1994])

β̂δ = Aδ(A
t
δSAδ)

−1At
δs (7)
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where S = XtX
n−1

is the empirical covariance matrix of X, s = Xty
n−1

is the
empirical covariance matrix of X and y, and Aδ is a matrix defined by
the choice of regression method.

The term n− 1 cancels out, and the expression in (7) can be written as

β̂δ = Aδ(A
t
δX

tXAδ)
−1At

δX
ty (8)

Now the fitted model in (6) can be expressed as a function of y

ŷδ = XAδ(A
t
δX

tXAδ)
−1At

δX
ty

= Hδy

where Hδ
n×n

is known as the hat matrix defined as

Hδ = XAδ(A
t
δX

tXAδ)
−1At

δX
t (9)

3.1.1 Variance and degrees of freedom

The amount of random noise affects the predictive accuracy of a fitted
model. In fact, the true value of the noise variance constitutes a theoret-
ical lower bound for the prediction error given by

MSEP = E(Y − Ŷpred)2

MSEP is the abbreviation for Mean Square Error of Prediction.

The estimate of the noise variance will therefore (if it is sufficiently accu-
rate) help to assess the fitted model’s ability for prediction.

An estimator of the noise variance is

σ̂2
δ =

SSEδ
n−DoFδ

(10)

SSEδ is a measure of the total variation of the data which is not explained
by the fitted model
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SSEδ = (y − ŷδ)t(y − ŷδ) (11)

The term DoFδ indicates the degrees of freedom that are consumed by
the specific regression method in use.

A general definition of the degrees of freedom has been referred to by
Krämer and Sugiyama [2011]

DoFδ = E
[
trace

(∂ŷδ
∂y

)]
(12)

Here X is assumed given and the expectation is taken with regard to y.

If ŷδ is linearly dependent on y, meaning thatHδ is not defined in terms of
y, the right side of equation (12) is simplified to the trace of Hδ (Krämer
and Sugiyama [2011]).

The estimation of the intercept consumes one degree of freedom, and so
does the centering of the data (in which case the intercept is equal to 0),
so in any case the correct expression of the degrees of freedom is

DoFδ = 1 + trace(Hδ) (13)

3.2 Evaluating estimator performance

As mentioned previously, there are usually several different statistical
methods that can be used to estimate the parameters of a model, and
even for a given choice of method there may be several reasonable sug-
gestions of estimators of a parameter. Determining which estimator is
the ‘best‘ can be a challenge. One attribute of an estimator that should
be examined is its bias (Devore and Berk [2007]). An estimator θ̂ is an
unbiased estimator of the parameter θ if the expected value of θ̂ is equal
to the true value of θ for all possible values of θ. The bias of the estimator
θ̂ can be calculated by

E(θ̂)− θ

10



To further evaluate the estimator’s performance the variance of the esti-
mator should be considered. The variance is

V ar(θ̂) = E(θ̂ − E(θ̂))2

= E(θ̂2)− (E(θ̂))2

If V ar(θ̂) is large, θ̂ is an unstable estimator; even if it is unbiased, and
on average will hit the target, the individual estimates will sometimes
deviate significantly from the true value of the parameter. So the desired
estimator is unbiased (if possible), and with as little variance as possible.
The unbiased estimator θ̂ of θ with minimum variance among all unbi-
ased estimators of θ is called the uniformly minimum variance unbiased
(UMVU) estimator of θ (Bickel and Doksum [2007]).

Note that the UMVU estimator of a parameter does not have the min-
imum variance among all estimators of that parameter. And in some
cases another estimator which is biased but with a smaller variance may
be preferable over the UMVU estimator, because even if on average the
estimator will not hit the true value of the parameter, it will provide more
stable estimates that do not vary as much as the estimates provided by
the UMVU estimator. This concept of accepting a larger bias in favor of
a lower variance is known as a bias-variance trade-off.

3.2.1 MSE and the bias-variance decomposition

The mean square error (MSE) of an estimator θ̂ is defined as the mean
squared difference between the estimates and the true value of the param-
eter θ (Devore and Berk [2007])

MSE(θ̂) = E(θ̂ − θ)2 (14)

MSE can be decomposed into the sum of the variance and the squared
bias of the estimator
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MSE(θ̂) = E(θ̂2 − 2θθ̂ + θ2)

= E(θ̂2)− 2θE(θ̂) + θ2

= E(θ̂2)− (E(θ̂))2 + (E(θ̂))2 − 2θE(θ̂) + θ2

= E(θ̂2)− (E(θ̂))2 + (E(θ̂)− θ)2

= V ar(θ̂) + (Bias(θ̂))2

MSE therefore provides a measure of an estimator’s performance that take
both bias and variance of the estimator into account. The estimator with
the lowest MSE is preferable.
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4 Bayesian inference

Most of the ideas presented in the previous section are examples of a
frequentist way of thinking. The general idea is that all estimation of
unknown parameters is done based on (and only on) the observed data.
Bayesians, on the other hand, believe that the model parameters should
themselves be regarded as stochastic variables with a prior probability
distribution (independent of the observed data). Thus the principle of
Bayesian inference is to fit models by combining prior assumptions and
observed data.

The foundation of Bayesian statistical modeling is Bayes’ theorem for
conditional probability distributions (Gilks et al. [1996])

P (A|B) =
P (B|A) · P (A)

P (B)

where P (A) is the a priori probability of A, and P (A|B) is the a posteriori
probability of A given B.

Following is an example to elaborate on the idea of Bayesian inference.

Consider the observed data D = {X1, X2, ..., Xn}, and assume that the
Xi’s are independent and identically distributed

Xi ∼ N(µ, σ2)

so the set of unknown parameters is given by θ = {µ, σ2}.

The a posteriori probability of θ given D is then

P (θ|D) =
P (D|θ) · P (θ)

P (D)

P (θ) is the probability of θ with no knowlegde of the observed data, and
P (D|θ) is the probability distribution of the data given the parameter
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θ, which is equivalent with the likelihood function L(θ|D). P (D) is the
‘probability of the data‘, an entity which is hard to compute and inter-
pret, but it is reasonable to view P (D) simply as a normalizing constant
ensuring that the integral of P (θ|D) evaluates to 1. Thus

P (θ|D) ∝ P (D|θ) · P (θ)

Now consider σ2 as given, so θ = {µ}. From the above it follows that
P (D|θ) is a joint normal distribution. Assume in addition that θ is
normally distributed

D|θ = {X1, X2, ..., Xn|µ} ∼ Nn(µ, σ2)

θ = {µ} ∼ N(ν, τ 2)

in which case it may be shown that θ|D is also normally distributed. In
this special case it is possible to find an analytical expression of f(θ|D),
the true probability density function (pdf) of θ|D

f(θ|D) ∼ N(
n·X
σ2 + ν

τ2

n
σ2 + 1

τ2

,
1

n
σ2 + 1

τ2

)

(Lehmann and Casella [2006]).

In general, an expression of f(θ|D) is not so easily obtained, but a func-
tion g(θ|D) proportional to f(θ|D) can be found by multiplying the pdf
of D|θ with the pdf of θ

g(θ|D) = f(D|θ) · f(θ)

Now as it turns out g(θ|D) is actually a kind of ‘un-normalized‘ version
of f(θ|D), and the two distributions share the same center of mass (see
figure 1). So, in situations where f(θ|D) is not known, but g(θ|D) is, a
number of samples can be drawn from g(θ|D) to estimate a pdf f̂(θ|D)
approximating the true a posteriori pdf.
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f(θ|D)
g(θ|D)

Figure 1: The distributions of f and g

4.1 Markov chain Monte Carlo (MCMC)

Monte Carlo integration is a numerical approach that uses random sam-
ples from a specific distribution to find an approximation of the true value
of an integral. One way of drawing the random samples is to generate
a Markov chain. This is what is known as Markov chain Monte Carlo
(MCMC). MCMC can be applied in different contexts, but has proven
to be especially suitable in use with Bayesian statistics. In this section a
short overview of MCMC is presented. For further details see e.g. Gilks
et al. [1996].

A Markov chain of n samples (n is now a number of choice for the analyst)
for the Monte Carlo integration is generated. The main feature of a
Markov chain is that the next element Xt+1 in the chain depends solely
on the current element Xt. The next element Xt+1 is sampled from a
distribution P (Xt+1|Xt) which is called the transition kernel of the chain.
Because only the current element is considered when sampling the next,
the chain will gradually ‘forget‘ its starting point X0, and over time the
distribution of the elements in the Markov chain will converge to a unique
stationary distribution, if this exists.
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To ensure that the stationary distribution, of which the distribution of
the elements of the Markov chain converges to, actually is our desired
pdf f(θ|D), the Metropolis-Hastings algorithm is implemented when con-
structing the chain. The Metropolis-Hastings algorithm samples a candi-
date Y for the next element Xt+1 of the chain from a proposal distribution
based on the current element Xt. Then Y is accepted with some proba-
bility defined by the algorithm. If Y is accepted, Xt+1 is set equal to Y ,
and if Y is not accepted Xt+1 is set equal to Xt. The Metropolis-Hastings
algorithm ensures that if Xt belongs to a certain distribution, then so
does Xt+1. So, after a sufficient burn-in phase, once an element from f
has been obtained in the chain, all the subsequent elements of the chain
will also be from f . In a practical implementation of a Markov chain the
analyst will have to decide the critical number m of initial elements of the
chain that will be discarded as elements from the burn-in phase.

In order to generate the Markov chain a starting value X0 needs to be
determined by the analyst. This starting value can in principle be cho-
sen completely at random, because the distribution of the elements of the
chain will eventually converge to our distribution of interest anyway. How-
ever the more extreme the starting value, the longer the burn-in phase,
and also the Metropolis-Hastings algorithm may have more difficulties
leading the chain towards the desired distribution. So it may be wise to
choose a well considered starting value for the chain.
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5 Regression methods

5.1 Ordinary least squares

Ordinary least squares (OLS) is a well-known regression method that
uses all observed information in X to estimate the model parameters.
The estimated coefficient vector can be obtained by inserting an arbitrary
p× p matrix in the place of Aδ from (7). Inserting Ap = Ip (the identity
matrix) in (7) reduces the expression significantly

β̂p = S−1s = (X tX)−1X ty

Similarly as described in section 2.3, the estimator can also be expressed
using a sum-representation of the estimated covariance matrix S

β̂p =

p∑
i=1

1

λ̂ i
êiê

t
is

where λ̂i and êi are estimates of the eigenvalues and eigenvectors of Σxx,
and they are found by eigen-decomposition of S.

The hat matrix in OLS is

Hp = X(X tX)−1X t

Since Hp does not depend on y, the relationship between ŷ and y is
linear, and the degrees of freedom of SSE can be found by applying the
simplified definition in (13)

DoFp = 1 + trace(Hp) = p+ 1
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Thus the OLS estimator of the noise variance σ2 is

σ̂2
p =

SSE

n− (p+ 1)

5.1.1 Performance of the OLS estimators

The expected value and variance of the OLS estimators (whenX is given)
are

E(β̂p) = β

V ar(β̂p) = σ2(X tX)−1

E(σ̂2
p) = σ2

V ar(σ̂2
p) =

2σ4

n− (p+ 1)

It can be shown that the OLS estimators have minimum variance among
all unbiased OLS estimators, so they are UMVU estimators (Bickel and
Doksum [2007]). When n >> p, and there is little or no multicollinearity
among the predictor variables x, OLS is a common choice of method for
regression. However, if p ∼ n or if some of the predictor variables are
highly correlated the inverted matrix (X tX)−1 can be very inaccurate,
resulting in unstable estimates (with inflated variance). When X tX has
less than full rank, for example when n < p, it is non-invertible, and
the estimates can not be computed at all. In these cases it is natural to
consider some choices of dimension reducing methods which are based on
the concept of a relevant subspace explained in section 2.3.
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5.2 Principal components regression

The main feature of principal components regression is to construct com-
ponents Zi as linear combinations of the p predictor variables using the
eigenvectors of S as loading vectors (Jolliffe [2002])

Zi = êtix

The principal components are pairwise orthogonal due to the orthogonal-
ity of the eigenvectors. The variances of the principal components Zi are
the corresponding eigenvalues λ̂i of S. If the decline of the eigenvalues is
rapid, a smaller number k of components will account for a large amount
of the variation in X.

After reducing the number of variables from p original predictors to k
principal components, the scores for the principal components for each
observation are stored as columns in a n× k matrix Z. The relationship
between Z and X is

Z = XÊk

The columns of Êk are the k first eigenvectors of S.

The model fitted by PCR is

ŷPCR,k = HPCR,ky

The subscript {PCR, k} is used to define the regularization parameter
δ = k, and to distinguish the PCR estimator from those of other regression
methods.

The hat matrix HPCR,k is defined as

HPCR,k = Z(ZtZ)−1Zt

= XÊk(Ê
t
kX

tXÊk)
−1Êt

kX
t
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and by comparing to the general definition of the hat matrix in (9), it
is clear that APCR,k = Êk. The estimate of β is found by applying the
definition in (8)

β̂PCR,k = Êk(Ê
t
kX

tXÊk)
−1Êt

kX
ty (15)

Note that if k = p then APCR,p = Êp is a p× p matrix, and the estimator
in (15) is the OLS estimator.

Also in this case, the estimator can be expressed using a sum-representation

β̂PCR,k =
k∑
i=1

1

λ̂ i
êiê

t
is

The sum of the squared errors (SSE) for the model fitted by PCR are
defined as (in agreement with the general expression in (11))

SSEPCR,k = (y − ŷPCR,k)t(y − ŷPCR,k)

The hat matrix is not defined in terms of y, so the relationship between
ŷPCR,k and y is linear, and the definitions in (13) and (10) are valid. It
can be shown that the trace of HPCR,k is equal to k, which leads to the
following PCR estimators of the degrees of freedom and the noise variance

DoFPCR,k = 1 + tr(HPCR,k) = k + 1 (16)

σ̂2
PCR,k =

SSEPCR,k
n−DoFPCR,k

=
SSEPCR,k
n− (k + 1)

(17)

Some may argue that the DoF-estimator for the model fitted by PCR
given in (16) is naive, as it only represents the number of independent
parameters estimated, completely ignoring other features of the data that
may also influence the consumption of DoF’s. Hassani et al. [2012] argue
that the search for maximal covariance also consumes DoF’s, and that
the eigenvector structure of the dataset affects the search process, and
therefore also the DoF consumption. It is therefore interesting to study
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how the estimator in (17) performs on datasets with different types of
eigenvector structures.

5.2.1 Determining k, the number of components to include in
the fitted model

The principal components are constructed in such a way that a low num-
ber of components can account for a large part of the variance in X.
However, even among the first PC’s there may be components that are
not significant for prediction of the response. Trying to assess whether or
not a component is relevant may be a difficult task. Helland and Almøy
[1994] has shown that with regard to prediction, components with large
eigenvalues should be included in the fitted model, even if they are non-
relevant. This finding may or may not be transferable to the estimation
of unknown parameters, but in any case it seems that the safest approach
(and what is also common practice in PCR) is to include all components
up to a certain number. By doing this it must be accepted that k will
with certainty be larger than m (the true number of relevant components)
in all cases where Pm 6= {1, 2, ...m} (and it may be larger than m in other
situations too).

5.2.2 Performance of the PCR estimators

The bias and variance of the PCR estimator of the regression coefficient
vector β (when X is given) are

E(β̂PCR,k)− β = −
p∑
i>k

êiê
t
iβ

V ar(β̂PCR,k) =
σ2

n− 1
(
k∑
i=1

1

λ̂i
êiê

t
i)

(see Appendix A.1.1 for proofs).

When k increases, the absolute value of the bias decreases, and when
k = p, the bias is 0, since β̂PCR,p is the OLS estimator. However, as k
increases, the variance of the estimator will also increase, especially when
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components with small estimated eigenvalues are included in the fitted
model, so the estimates will be increasingly unstable for higher choices of
k. So in this case choosing the optimal number of components k is an
example of a bias-variance trade-off (as mentioned in section 3.2).

The bias and variance of the PCR estimator of the noise variance σ2 are
(for a given X)

E(σ̂2
PCR,k)− σ2 =

(n− 1)
∑p

i>k λ̂i(ê
t
iβ)2

n− (k + 1)
.

V ar(σ̂2
PCR,k) =

2σ4

n− (k + 1)
+

4σ2(n− 1)
∑p

i>k λ̂i(ê
t
iβ)2)

(n− (k + 1))2

(see Appendix A.1.2 and A.1.3 for proofs.)

Large estimated eigenvalues (λ̂i) of components that are not included in
the estimate will have a significant contribution to the bias of the estimate.
What this means in practice is that if the choice of number of components
(k) leads to excluding components with high estimated eigenvalues, the
estimate may be significantly biased, which is in concordance with the
findings of Helland and Almøy [1994].

If n is large, and if all the relevant components are included in the es-
timate, the term (êtiβ)2 = (êti

∑
j∈Pm

1
λj
eje

t
j)

2 will converge to 0 when

i > k, because êi will converge in probability to ei and etiej = 0 when
i 6= j, because the eigenvectors are pairwise orthogonal. If, however, all
the relevant components are not included in the estimate, then there will
be convergence in probability that some estimated eigenvector êi will be
equal to one of the eigenvectors ej included in β. In this case the term
(êtiβ)2 will not converge to 0, since etiej 6= 0 if i = j.

Because the numerator and the denominator in the expression of the bias
both depend on n and k, it is difficult to evaluate analytically how the
bias will be affected by the size of k relative to n. But also in this case,
when k = p the estimator is equivalent to the OLS estimator, and the
bias will then be equal to 0. So as k increases, it seems reasonable to
assume that the bias will decrease. However, as k increases, the variance
of the estimator will also increase (this is evident by examining the first
summand of the expression of the variance).
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So to summarize, the size of the bias and the variance of the PCR esti-
mator of the noise variance seems inextricably connected to the crucial
choice of k. The number of components included in the fitted model
should not be to few or too many, and neither true relevant components
or non-relevant components with large estimated eigenvalues should be
excluded from the fitted model.

5.3 Partial least squares regression

Partial least squares regression (PLS or PLSR) is a method that has some
common features with PCR. The objective of PLSR is also to reduce the
dimension of the data by compressing the relevant information in the p
predictor variables into a lower number k of components (Wold et al.
[1983]). But in contrast to PCR, PLSR also considers the covariance
between the response variable and the predictor variables, and projects
both Y and x to a latent subspace. As a result the first PLSR components
will usually be of some significance for predicting Y (whereas in PCR, even
among the first components there may be no significant information for
prediction).

There are several different algorithms developed to compute the loadings
for the PLS components and the scores for regression. Many of these
algorithms are iterative, i.e. the computations will be done stepwise in a
loop until an initial condition fails. The orthogonalized PLSR algorithm
(Martens and Næs [1989]) is presented in Appendix B.1 as an example.

The model fitted by PLSR can also, like the models fitted by OLS and
PCR, be written as a function of y with an appropriate hat matrix

ŷPLSR,k = HPLSR,ky

where the hat matrix HPLSR,k is defined in terms of APLSR,k (introduced
in (7)). Helland [1990] showed that APLSR,k can be defined as

APLSR,k = [S0s S1s . . . Sk−1s] (18)

The components included in the model fitted by PLSR are component
number 1, 2, ..., k. If k = p then APLSR,p is a p×p matrix, giving the OLS
estimator.
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Consider a model fitted by PLSR with only 1 component (k = 1). Then,
following the definition in (18)

APLSR,1 = [S0s] = [s] =
1

n− 1
[X ty]

and inserting into (9) gives

HPLSR,1 = XX ty(ytXX tXX ty)−1ytXX t

(the term n− 1 cancels out.)

The model fitted by PLSR with 1 component can then be written as

ŷPLSR,1 = XX ty(ytXX tXX ty)−1ytXX ty

Clearly, the relationship between ŷPLSR,1 and y is not linear, so the
straight-forward definition in (13) cannot be applied. The general def-
inition in (12) may still be valid, but computing the derivative of ŷPLSR,1
is difficult (maybe even impossible), and it gets even more complex if more
components are included in the fitted model.

For the simulation experiments of this thesis, two alternative approaches
to the degrees of freedom of the model fitted by PLSR has been used.
The first approach is to let DoFPLSR,k = k + 1, thus leading to a naive
noise variance estimator similar to the PCR estimator in (17)

σ̂2
PLSR,k =

SSEPLSR,k
n− (k + 1)

SSEPLSR,k is defined as

SSEPLSR,k = (y − ŷPLSR,k)t(y − ŷPLSR,k)

The second approach is a numerical approximation of the degrees of free-
dom of PLSR suggested by Krämer and Sugiyama [2011]. They propose
two equivalent numerical methods to compute the derivative: one using
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a Lanczos matrix decomposition, and one which is based on Krylov sub-
space techniques. The latter method has a more favorable runtime as it
computes the DoF directly, whereas the Lanczos representation requires
several iterations of matrix-matrix-multiplications. However, from the
Lanczos decomposition algorithm derivatives of the regression coefficients
are also obtained, so both algorithms are implemented in the R package
plsdof (Krämer and Braun [2014]). This package also provides estimates
of the noise variance using the naive approach (described previously and
denoted by σ̂2

PLSR,k), and both Lanczos and Krylov representation. For
PLSR, the simulations done in this thesis are limited to only consider the
naive estimator and the Krylov estimator of the noise variance.

It should be noted that Krämer and Sugiyama [2011] mention some nu-
merical problems with the R package that sometimes lead to implausible
results, i.e. negative degrees of freedom.

5.4 Bayes PLS

Bayes PLS (Helland et al. [2012]) is a recently developed regression method
that is also (like PCR and PLSR) based on the concept of a relevant sub-
space. In Bayes PLS the unknown parameters are estimated using a prior
probability distribution (Bayesian inference), and a numerical approach,
Markov chain Monte Carlo.

As shown in section 2.3 the true value of β can be written as

β =
∑
i∈Pm

αiei

where Pm is the set of positions of the relevant components, ei is the ith

eigenvector of Σxx, and αi is a scalar given by

αi =
etiσxY
λi

Here λi is the eigenvalue corresponding to ei.

The parameter vector θ (as described in section 4) now consists of the
following unknown parameters (Helland et al. [2012])
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θ = {α,λ, σ2,E}

where E is a matrix in which the columns are the eigenvectors ei of Σxx.

The parameter α is a priori assumed normally distributed, λ and σ2 are
assumed inverse gamma distributed, and ei has a flat (uniform) distribu-
tion on the unit sphere.

The joint a priori pdf of θ is assumed to be

f(θ) = f(α) · f(λ) · f(σ2) · f(E)

and the a posteriori distribution to be estimated can then be written as

f(θ|y,X) ∝ f(y,X|α,λ, σ2,E) · f(α) · f(λ) · f(σ2) · f(E)

Following is the algorithm used to generate a Markov chain of sampled
values of θ:

1. An initial run of either PCR or PLSR is performed to obtain start-
ing values for the chain.

2. Each of the four parameters of θ are sampled one at a time, while
the others are held fixed. The new values of the parameters are
sampled from a suitable proposal distribution.

3. The four new samples together form a candidate element θ̂t+1, which
may or may not be accepted as a sample from the true distribu-
tion f(θ|y,X). The probability of acceptance is defined in the
Metropolis-Hastings algorithm, and depends on the previous ele-
ment of the chain.

Step 2 and 3 are repeated a given number of times decided by the analyst.
To obtain the desired random pattern the chain can be thinned by only
saving for example every 10th element. The number of burn-in phase
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elements must also be decided. After the burn-in phase there is reasonable
certainty that most of the elements in the chain actually belong to the
distribution f(θ|y,X). The estimated expected value of the a posteriori
distribution will then serve as the posterior estimator of θ. It can be shown
(Helland et al. [2012]) that this estimator will minimize the uniform loss
if the loss function is the expected squared error, E(θ̂ − θ)2.

The analyst can either decide on a fixed number of components to in-
clude in the fitted model, or choose to test for significance of the compo-
nents continously during the sampling, discarding any components that
are found to be not significant.

The algorithm above is implemented in the R package BayesPLS (Sæbø
[2016,]). The R-code for Bayes PLS is available at http://www.github.

com/solvsa/BayesPLS. This package provides estimates of all the un-
known parameters of the model, including estimates of σ2, which are
used in this thesis.
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6 Analysis of variance

Analysis of variance (ANOVA) is a widely used method of comparing two
or more groups of observations (Devore and Berk [2007]). The general idea
is to try to determine whether the group means are equal by comparing
the variance between groups with the variance within groups.

Note that some of the notation used in this chapter may coincide with
notation used in previous chapters. This is to abide by the nomenclature
more commonly used in connection with ANOVA. Some symbols and
letters may not have the same interpretation as earlier, and should not
get mixed up. The interpretation of the specific notation should either be
clear from the context, or explained explicitly.

6.1 One-way ANOVA

In a one-way ANOVA, the observations are denoted by Yij where i is
the group number (i = 1, 2, ..., a) and j is the observation number (j =
1, 2, ..., n). Assume that the number of observations are the same for all
groups, so the total number of observations is N = a · n. The model is

Yij = µ+ αi + εij (19)

where µ is the overall expected value for all observations, αi is the effect
of group i, and εij are the error terms. The error terms are assumed
normally distributed with expected value 0 and constant variance τ 2, i.e.
εij ∼ N(0, τ 2).

The total variation of the data (also known as the total sum of squares,
abbreviated by SST) is the sum of the squared differences between the
observations and the overall mean (denoted by Y ..)

SST =
a∑
i=1

n∑
j=1

(Yij − Y ..)2
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SST can be partitioned into SSG (group sum of squares) and SSE (error
sum of squares)

SST = SSG+ SSE

where

SSG =
a∑
i=1

n∑
j=1

(Y i.− Y ..)2

SSE =
a∑
i=1

n∑
j=1

(Yij − Y i.)
2

Y i. is the mean of group i.

The mean sums of squares are found by dividing the sums of squares with
their respective degrees of freedom

MSG =
SSG

a− 1

MSE =
SSE

N − 1

MSG is an estimate of the variance between groups, and MSE is an esti-
mate of the variance within groups.

To test for difference of group means, the following hypotheses are formu-
lated:

H0 : µ1 = µ2 = ... = µa

vs.

H1 : at least two µi’s are different

The test statistic F is defined as
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F =
MSG

MSE

When H0 is true, the ratio MSG/MSE should be close to 1, and F is then
Fisher distributed with (a− 1) and (N − 1) degrees of freedom. Using a
table, the critical value Fα,a−1,N−1 can be obtained, and H0 is rejected if
F > Fα,a−1,N−1. Here, α is the significance level decided by the analyst,
which defines the acceptable probability of wrongly rejecting H0.

6.2 Factorial design

The ANOVA model described above can be expanded to consider several
factors, each with two or more levels (Devore and Berk [2007]). If all
possible combinations of levels across all factors are tested, it is called a
full factorial design (also known as a completely crossed design). It is also
possible to do a fractional factorial design, where only a fraction of the
possible combinations are tested, but if it is not too resource intensive, it
is often favorable to do a full factorial design.

The model is similar to the model in (19), expanded with several factor
effects, e.g. αi, βj (and so on), interpreted as the effect of a given factor
A at level i, the effect of factor B at level j, etc. If the effect of one
factor varies dependent on the level of another factor, there is an inter-
action effect of the two factors. A second order interaction effect will be
symbolized in the model by, for example, the term (αβ)ij, interpreted as
the effect of two given factors A and B at the respective levels i and j.
Here, (αβ) is merely a way of notation, and does not symbolize a product.
The highest possible order of interaction effects included in a model is the
same as the total number of main factors included in the model.

Several types of parametrization of the factor effect estimates are possi-
ble. One example is the sum-to-zero-parametrization. By choosing this
parametrization, a restriction is imposed that the sum of the factor effect
estimates over all possible levels of the factor is 0

∑
i

αai=1 = 0

where a is the number of levels of the factor.
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Another possibility is the reference level parametrization, where the effect
of each factor (and interaction) at the first level is 0.

The total sum of squares (SST) is calculated in a similar way as in the
one-way ANOVA, i.e. as the sum of the squared differences between
the observations and the overall mean. SST can be partitioned into the
sums of squares corresponding to each of the main effects and interactions
effects, and the error sum of squares (SSE). When testing for significant
effects, it is common to start with the highest order interaction effect.
The test statistic F is defined as the mean sum of squares of the current
interaction effect (or main effect) being tested, divided by the mean sum
of squares of the error. If the test statistic exceeds the corresponding table
value of Fα,df1,df2, the particular interaction effect (or main effect) should
be kept in the fitted model.

If an interaction effect is considered to be significant, then all lower order
interaction effects and main effects that are a part of that specific inter-
action effect should also be included in the fitted model, even if they are
themselves not significant. All other lower order interaction effects should
be tested as described above. Then, a reduced model with only significant
effects (and included lower order interactions) can be fitted.

6.2.1 Fixed, random and nested factors

In the situations described above, the factors of the ANOVA models are
fixed, meaning that the factor has specific choices of levels that are not
selected at random, and/or it is not reasonable to claim that these lev-
els are representative for all possible levels of the factor (Giesbrecht and
Gumpertz [2004]). Hypothesis tests on fixed effects are performed as de-
scribed previously. The results of these hypothesis tests are only valid for
the actual levels being investigated.

If, on the other hand, the levels of a factor can be considered as randomly
selected from a larger population of possible levels, the factor is said to be
random. By conducting hypothesis tests on random effects, the objective
is to make inferences that are valid for all possible levels of the factor, not
only the specific levels included in the fitted model.

A random effect φ at a given level g is assumed to be normal distributed
with expected value 0 and constant variance
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φg ∼ N(0, τ 2
φ)

The variance of the error terms, τ 2, and the variance of the random effect,
τ 2
φ , are now referred to as variance components. The sum of the variance

components is a measure of the total variation across all replicates and
all levels of the random factor(s). Testing for significance of the random
effect φ is equivalent to testing if τ 2

φ > 0.

A model that consists of both fixed and random effects is known as a
mixed model. Sometimes the levels of one factor may depend of the levels
of another factor, a concept known as nesting. If the levels of a factor
B depends on the levels of a factor A, the factor B is said to be nested
within factor A.
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7 Simulation

The response and predictor data used in this thesis are simulated by the
R package simrel (Sæbø [2014]). The data simulation is based on a mul-
tivariate normal distribution and on the concept of a relevant subspace.
Some of the key properties of the data are entered as input arguments in
simrel (some of these properties are the usually unknown parameters of
the true model). The data are then drawn at random under constraints
set by the true parameters. The output provided by simrel includes the
simulated response vector y and predictor matrix X (the training data),
as well as some of the true parameters such as the regression coefficients.
The value of the regression coefficients will disclose which of the predic-
tor variables are truly significant, since all the non-significant predictor
variables will have a coefficient equal to 0. An optional set of test data is
also available as a part of the output.

In the following section, the basic concepts of simrel are described. For
further reading, see Sæbø et al. [2015].

7.1 A description of simrel

Below is a description of some of the input arguments of simrel :

� n: The number of samples.

� p: The number of predictor variables.

� m: The number of relevant components.

� relpos : A vector containing the positions of the relevant components.

� γ: A parameter of the exponential decline in the eigenvalues.

� R2 : The R2 of the true model (the proportion of variance explained
by the model).

The predictor variables span a p-dimensional space, and as discussed in
section 2.3, most of the relevant information of the predictor variables can
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be compressed into a m-dimensional subspace spanned by the eigenvec-
tors of the covariance matrix of the predictor variables. The principle of
simrel is similar to that of PCR, only in reverse; first the true eigenvalues
are generated by a formula defined in such a way that the first eigenvalue
is equal to 1, and then the succeding eigenvalues decline in a rate de-
fined by the simrel -argument γ (when γ increases, the eigenvalues decline
more rapidly). Then the covariance matrix of the response Y and the
components z is constructed, the Y ’s and z’s are sampled, and then an
orthonormal rotation matrix R is constructed. R rotates the data from
the Z-space to the X-space by x = Rtz. Since R is orthonormal it follows
that

RtR = RRt = Ip

so the same matrix R can also be used to rotate the data from the X-
space and back to the Z-space. In other words R is in fact equivalent to
the true matrix of eigenvectors E of Σxx presented in section 2.3.

The covariance matrix of x and the covariance vector of x and Y can
then be found by

Σxx = RtΣzzR

σxY = RtσzY

Thus all parameters needed to calculate the true coefficient vector β (as
defined in (2)) are given.

The true value of the noise variance σ2 (defined in (3)) can be expressed
as

σ2 = σ2
Y (1− σ

t
xY Σ−1

xxσxY
σ2
Y

)

= σ2
Y (1−R2)

In simrel σ2
Y is set to be equal to 1, so the true value of σ2 is 1 − R2.

Since R2 is one of the input arguments of simrel, the true value of σ2 can
easily be defined by the analyst.
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7.2 The design of the experiment

Because all the true parameters of the simulated data are known when
using simrel, a number of interesting features of estimation and prediction
can be studied as functions of these parameters. Since the philosophy of
simrel is so similar to that of PCR, it is for example possible to use PCR
to try to determine the number and positions of the relevant components,
and compare with the number and positions of the true, relevant com-
ponents as specified in the simrel -arguments m and relpos. Also, since
simrel provides the true values of β and σ2, estimates of these parameters
can be compared with the true values, serving both to assess the estima-
tion ability of one specific method, and to compare different methods to
each other.

The parameters of the simulated data can be varied, and then the effect
of the variation can be assessed by studying the quality of the estimation
and/or prediction for one or several specific methods. For example it
is well known that the performance of OLS is affected by the size of n
relative to p. It may be of interest to study how big an impact a change
in n may have on other methods as well. There is also reason to believe
that there may be interaction effects of some of the parameters of the
data, such as the position of the relevant components and how rapid the
eigenvalues decline (specified in the simrel -argument γ).

When planning the experiment, it was decided to use two different levels
of some of the main simrel -arguments, in order to generate some combi-
nations of true parameters of the datasets believed to be interesting to
study. The levels of the simrel -arguments used (both the ones that are
varied and the ones that are held fixed) are presented in table 1.

Table 1: The values of the simrel-arguments.

n p m relpos γ R2

50 25 3 {1, 2, 3} 0.9 0.7
15 {3, 5, 7} 0.2 0.2

As table 1 shows, some of the simrel -arguments are chosen to be held
fixed, because otherwise the amount of data would simply be too large to
handle for this thesis. Four of the simrel -arguments are varied between
two different levels, so there is a total number of 16 different combinations
of simrel -arguments. For the remainder of this thesis these combinations
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will be referred to as design points (dp). For example, the first design
point, dp1, has the following simrel -arguments:

n = 50, p = 25,m = 3, relpos = {1, 2, 3}, γ = 0.9, R2 = 0.7

(see Appendix C.1 for an overview of the simrel -arguments of all the
design points.)

By keeping the number of predictor variables p fixed, and then choosing
the two levels of n to be one that is smaller than p and one that is larger,
the two important scenarios of n > p and n < p are included in the study.
The argument m is inextricably connected to relpos, as m defines the
number of relevant components, which obviously must equal the length of
relpos. In this study only situations with 3 true, relevant components are
considered, so even though relpos has two different levels, m stays fixed
at 3.

The levels of relpos are chosen so that there is one type of dataset where
the relevant components are all in sequence, and starting with component
1 (relpos = {1, 2, 3}, the low level), and another type of dataset where the
opposite is the case; the relevant components are not in sequence, and the
first relevant component is not component 1 (relpos = {3, 5, 7}, the high
level). Both γ and R2 are set at one high level (0.9 and 0.7, respectively)
and one low level (both 0.2). Thus the true value of σ2 also has two levels
(given by 1−R2): 0.3 and 0.8.

The focus of this simulation study is on the estimation of the noise vari-
ance, σ2, by using the three dimension-reducing methods PCR, PLSR and
Bayes PLS. Both the naive PLSR-estimator and the Krylov-estimator (of
PLSR) will be used, so the study will consider a total of four estimators.
The number of components (k) included in the fitted model varies from 1
to 8.

For each choice of k for all 16 design points, 7 different seeds are used
when simulating (so that all the data in this thesis are reproducable).
Also, there is a number of 3 replicated datasets for each of the 7 seeds.
This is done by setting simrel to draw n · 3 observations instead of just n,
and then subsetting the simulated data matrices into 3 datasets with n
observations each. This results in a total number of N = 21 comparable
datasets for each choice of k for each design point.
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7.2.1 Estimation error

The estimation error of a single estimate is measured by

ω = (σ̂2 − σ2)2 (20)

The average of the estimation errors then serve as an estimate of the mean
square error defined in (14)

M̂SE =
1

N

N∑
i=1

ωi

In some cases it may be preferable with a measure of estimation error that
is on the same scale as the estimates themselves, such as the root mean
square error

R̂MSE =

√
M̂SE

For the remainder of this thesis, the hat operator of the estimates de-
scribed above will be skipped for the sake of readability.
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8 Results

8.1 Results of the main simulation:
estimation of σ2

The results of the main simulation are presented in this section. The
RMSE of the 21 σ2-estimates are plotted against k (the number of com-
ponents), and there is one plot for each design point. The plots are dis-
played in groups of four in one figure, and all four plots in the same figure
belong to design points with the same number of observations (n) and the
same positions of the true relevant components relpos. The two top plots
of each figure both display a high level of R2, and the two bottom plots
both display a low level of R2. Similarly, the two left plots of each figure
both display a high level of γ, and the two right plots both display a low
level of γ.

In addition to the RMSE-plots, the averages of the σ2-estimates have also
been plotted against k. These plots can be found in Appendix D.1.

Several numerical issues were encountered with the PLSRkrylov estimates
obtained from the R package plsdof (Krämer and Braun [2014]). One issue
was that out of a total of 2688 Krylov estimates of degrees of freedom there
were 144 occurences of negative DoF’s. All the PLSRkrylov σ2-estimates
with negative DoF-estimates have been removed from the experiment.

Another problem encountered was that some of the DoF-estimates reached
the upper bound for the DoF defined by the analyst when using plsdof.
This upper bound was set to min(n − 1, p − 1). The reason for choos-
ing this particular upper bound stems from the intuitive belief that the
DoF of PLSR should not exceed the DoF of OLS (N. Krämer, personal
communication, February 28, 2018). A total of 103 incidents of such up-
per bound DoF’s were found, and several of them significantly deviated
from the comparable DoF-estimates, resulting in some implausible val-
ues for the corresponding σ2-estimates. Since these upper bound DoF’s
are so easily identifiable, their corresponding σ2-estimates have also been
removed from the experiment. In total, approximately 9 % of the esti-
mates had to be removed due to either negative or upper bound DoF’s.
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Because of this, the actual number of PLSRkrylov estimates that go into
the RMSE estimates illustrated in the plots vary from 14 to 21. For an
overview of the number of occurences of negative and upper bound DoF’s,
see Appendix C.2.

The Bayes PLS function of the R package BayesPLS is at its present state
both time consuming and quite difficult to use. The function requires that
the user defines several parameters that are not easily interpretable for
someone not familiar with the theory of Bayesian inference and MCMC.
The user may also find it difficult to obtain the desired convergence of the
Markov chain, which can be monitored by plots supplied by the function.
Sometimes small adjustments in the input arguments have to be made
for the chain to converge, and so it may be necessary to run the function
several times to obtain reliable estimates of the parameters of the model.
There are also certain types of datasets that will cause the function to
break before completing the estimation. In this simulation, experience
has been that the combination of a large value of γ with a large number
of components to be included in the fitted model may sometimes cause
a computational error of the function. However, by adjusting the input
arguments of the function, all the desired Bayes PLS estimates of σ2 were
successfully obtained.

8.1.1 RMSE of the estimates

For almost all combinations of n, relpos, γ and R2, the PCR estimator
needs more components than all of the other three estimators to obtain
the smallest possible RMSE. Comparing the RMSE’s of the PLSRnaive,
PLSRkrylov and Bayes PLS estimates, it looks like they behave quite
similarly overall, especially when γ and/or R2 are large. When R2 is small
the RMSE of the PCR estimator also behaves somewhat similarly to that
of the other three estimators, needing fewer components included in the
fitted model than when R2 is large (but still more components than the
other three estimators need). As shown previously, σ2 and R2 are closely
connected. When σ2 is large R2 is small, and conversely. Therefore, it is
no surprise that all four estimators have a smaller minimum RMSE when
R2 is large than when it is small.

The staircase shape of the PCR estimates in the two left plots of figure
3 indicates that the non-relevant components 2, 4 and 6 on average do
not provide much useful information to improve the estimates. It seems
that one can actually distinguish the relevant components from the non-
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Figure 2: Root mean square error of the estimates vs. number of components. All PLSRkrylov
estimates with negative or upper bound DoF have been removed. The plots belong to dp1, dp2, dp9
and dp10, all having n = 50, p = 25 and relpos = {1, 2, 3}.

relevant components directly from this plot. In the plots to the right of
figure 3 the characteristic staircase shape of the PCR estimates is no longer
present. Here γ is small, meaning that the non-relevant components 2, 4
and 6 have higher true eigenvalues than when γ is large.

When γ is large and R2 is large, the PLSRnaive, PLSRkrylov and Bayes
PLS estimator all need more than 1 component included in the fitted
model to obtain their respective minimum RMSE’s. In all other situations,
the RMSE’s of all three estimators seem reasonably small for k = 1. In
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Figure 3: Root mean square error of the estimates vs. number of components. All PLSRkrylov
estimates with negative or upper bound DoF have been removed. The plots belong to dp3, dp4, dp11
and dp12, all having n = 50, p = 25 and relpos = {3, 5, 7}.

some situations, especially when γ is small, the RMSE of the PLSRnaive
estimates increases quite rapidly for k > 1.

Comparing only the RMSE’s of the PLSRnaive and PLSRkrylov estimates
in figure 2, 3 and 5, they are almost identical when γ is large, and when γ
is small their behaviour is also quite similar, only with the RMSE of the
PLSRnaive estimates being a bit larger than that of the PLSRkrylov esti-
mates. Remembering that the PLSRnaive and PLSRkrylov σ2-estimator
is found by dividing the SSE with the degrees of freedom, and keeping in
mind that their SSE’s are equal, since it is calculated from the same model
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Figure 4: Root mean square error of the estimates vs. number of components. All PLSRkrylov
estimates with negative or upper bound DoF have been removed. The plots belong to dp5, dp6, dp13
and dp14, all having n = 15, p = 25 and relpos = {1, 2, 3}.

fitted by PLSR, the only element that differentiates between the PLSR-
naive estimator and the PLSRkrylov estimator is the choice of degrees
of freedom used for the estimator. Following are the Krylov estimates of
the DoF of dp10 (lower right plot of figure 2) with 2 components, as an
example:
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Figure 5: Root mean square error of the estimates vs. number of components. All PLSRkrylov
estimates with negative or upper bound DoF have been removed. The plots belong to dp7, dp8, dp15
and dp16, all having n = 15, p = 25 and relpos = {3, 5, 7}.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

r1 9.7908 9.7983 12.4978 11.9634 10.6185 9.1964 11.3779

r2 12.7983 12.1846 17.3590 9.6715 10.3793 10.9729 26.0000

r3 11.6814 10.4959 11.6823 12.0115 9.5507 8.9191 11.5473

Disregarding the seed7-r2 estimate, which is an upper bound DoF, all
the DoF-estimates have a value between 8.9 and 17.4, with the majority
being between 9 and 13. In comparison, the naive estimate of degrees of
freedom is k + 1, which in this case equals 3. The fact that the RMSE of
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the PLSRkrylov estimates is clearly smaller than that of the PLSRnaive
estimates may suggest that the true value of the degrees of freedom is in
fact larger than k+1 in the particular situation of dp10 with 2 components.

Figure 4 show some erratic behaviour of the RMSR of the PLSRkrylov
estimates, especially in the upper left plot (dp5), where the RMSE reaches
an unexpected peak for k = 2. The PLSRkrylov σ2-estimates for dp5 with
2 components are

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

r1 0.22362 0.35830 0.13796 0.28804 0.07312 0.26781 0.14404

r2 0.13687 3.67224 0.15571 0.19756 0.28483 0.16028 NA

r3 0.13377 0.29861 0.43007 0.24704 0.35614 0.37615 0.41033

(The NA is due to the removal of negative and upper bound DoF’s.) Here
the true value of σ2 is 0.3. The seed2-r2 estimate with a value of 3.67 is
almost 10 times larger than the true value, and it is also much larger than
all the other σ2-estimates for dp5 with 2 components. The corresponding
DoF-estimates are

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7

r1 3.64164 3.17395 2.97611 3.13670 3.96819 2.53925 3.08775

r2 2.32001 13.70660 2.92633 3.07782 2.77503 2.99436 -10.76062

r3 2.84871 2.80426 4.02443 2.92254 3.09747 3.92587 2.71768

The seed2-r2 DoF-estimate is also notably larger than the other DoF-
estimates. Since it is not equal to the upper bound (which in this case is
14), its corresponding σ2-estimate has not been removed from the data,
and it is obviously what is causing the inflated RMSE.

Unlike the RMSE of the PLSRnaive estimates, the RMSE of the Bayes
PLS estimates seems to sometimes behave quite randomly with regard
to the size of k. However, a small number of components returns an
acceptably small RMSE in all situations except when γ is large and R2 is
large (as also mentioned previously).

8.1.2 Analysis of the effects of the simulation factors

To analyze the main effects and interaction effects of the factors of the
simulation, a mixed model was fitted, including also the random effects
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of seed and r (replicate nested within seed). The full model, with all
interactions, is inconveniently long to be expressed here with symbols, so
a simplified version of the model, including only the main effects, is given
instead

ωabcdefgh = µ+ αa + βb + ζc + ηd + νe + ρf + φg + ψh(g) + εabcdefgh (21)

where

� ω is the estimation error as defined in (20)

� µ is the overall mean

� αa is the effect of method at level a

� βb is the effect of component at level b

� ζc is the effect of n at level c

� ηd is the effect of relpos at level d

� νe is the effect of γ at level e

� ρf is the effect of R2 at level f

� φg is the random effect of seed at level g

� ψh(g) is the random effect of r at level h within seed at level g

The interaction effect terms, omitted in (21), would for example be sym-
bolized by (for a second order interaction)

(αβ)ab

in this case meaning the interaction effect of method at level a and com-
ponent at level b.

Experience so far has showed that the PLSRkrylov estimator can be highly
unreliable in individual cases. Therefore it has been decided to disregard
this estimator in the analysis of variance.

The levels of the different factors are
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� a = 1, 2, 3, corresponding to the estimators Bayes PLS, PCR, and
PLSRnaive

� b = 1, 2, ..., 8, indicating the number of components

� c = 1, 2: n = 15 and n = 50

� d = 1, 2: relpos = 1, 2, 3 and relpos = 3, 5, 7

� e = 1, 2: γ = 0.2 and γ = 0.9

� f = 1, 2: R2 = 0.2 and R2 = 0.7

� g = 1, 2, ..., 7

� h = 1, 2, 3

Also, φ ∼ N(0, τ 2
φ), ψ ∼ N(0, τ 2

ψ) and ε ∼ N(0, τ 2).

The full model with all interactions up to the sixth order interaction was
fitted in R, and the ANOVA table of the fitted model can be found in
Appendix C.3.1. Using a test level of 0.05, the table shows that the
sixth order interaction effect and all of the fifth order interactions effects
are non-significant. Among the fourth order interactions there were four
significant interactions:

� method - component - relpos - R2

� method - component - γ - R2

� method - n - γ - R2

� component - relpos - γ - R2

All of the 12 third order interactions that make up the four significant
fourth order interactions mentioned above were retained in the fitted
model. In addition, four other third order interactions were significant
on a 0.05 level:

� method - component - n

� method - relpos - γ

� component - n - γ
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� component - n - R2

Out of the total number of 15 second order interactions, all were significant
except for the n-relpos-interaction.

The reduced model was fitted in R, and the ANOVA table of the model
can be found in Appendix C.3.2. Note that the third order interaction
of component - γ - R2 obtained a p value of 0.424 (> 0.05), but it was
nevertheless kept in the fitted model because it is a part of a higher order
interaction included in the fitted model.

Plots of some of the interaction effects of the reduced fitted mixed model
are presented and interpreted in this section. None of the lower or-
der interactions that are included in a higher order interaction will be
considered, as they only offer a simplification (and maybe even an over-
simplification) of the information and trends that can be seen in the higher
order interaction effect plots. Plots that are not directly commented on
are placed in Appendix D.2.

Any interaction that does not include the factor component must be re-
garded with caution, as those effects are averages over all choices of num-
ber of components to include in the fitted model. Because one estimator
can have quite a large estimation error for one choice of k and still obtain
a reasonably small estimation error for another choice of k, these aver-
ages may not be directly comparable between estimators. However, the
change of estimation error for one estimator due to the other factors in
the interaction may be compared with the others.

For all three estimators, the minimum estimation errors are (as seen be-
fore) smaller when R2 is large than when R2 is small. Also, all three
estimators seem to obtain an approximately equal minimum estimation
error, but for a different choice of number of components included in the
fitted model. The largest estimation errors occur for the PCR estimator
when R2 is large and only a few components are included in the fitted
model.

Figure 6 shows than when R2 is large and relpos is at a high level, all
three estimators need more than 1 component included in the fitted model
to obtain the minimum estimation error. This is also the case when R2 is
large and γ is large (figure 7). When R2 is large and relpos is at a low level,
the estimation errors of Bayes PLS and PLSRnaive are approximately
equal regardless of k. They are also very similar when R2 is large and γ
is small.
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Figure 6: Interaction effect of methods/estimators, components, relpos and R2. The red lines are
confidence intervals.

When R2 is small, a change in relpos does not seem to have much of an
impact on any of the three estimators. For Bayes PLS and PCR it seems
that all choices of k results in approximately equal estimation errors. For
PLSRnaive, however, the choice of k seems more crucial when R2 is small,
as its estimation error appears to evenly increase as k increases. Also when
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Figure 7: Interaction effect of methods/estimators, components, γ and R2. The red lines are confi-
dence intervals.

R2 is small and γ is small, both the Bayes PLS and PLSRnaive estimators
have a smaller estimation error when k is small.

Figure 8 shows that when R2 is large, the effect of both n and γ is ap-
proximately equal for all three estimators. When R2 is small, the PCR
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Figure 8: Interaction effect of methods/estimators, n, γ and R2. The red lines are confidence intervals.

estimator seem less affected by a change in γ than the other two estima-
tors.

The minimum estimation errors are smaller when n is large than when n is
small for all three estimators (figure 9). Again, all three estimators obtain
approximately equal minimum estimation errors for each respective level
of n, but for a varying number of components. As seen before, the PCR
estimator needs more components than the other two estimators to reach
its minimum estimation error.

For the PCR estimator, the optimal number of components appears to be
almost unaffected by the level of n. For the Bayes PLS and PLSRnaive
estimator, all choices of k seem to result in approximately the same esti-
mation error when n is large. When n is small, the estimation error of the
Bayes PLS estimator behaves a bit randomly in relation to k, whereas the
estimation error of the PLSRnaive estimator increases when k increases.
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Figure 9: Interaction effect of method, components and n. The red lines are confidence intervals.

8.2 Bias of the PCR and PLSRnaive estimates

When k = p and p < n, the PCR and PLSRnaive estimators of the
noise variance both equal the OLS estimator of the noise variance, and
so they are unbiased. To study how the bias of the estimates evolves
as k increases towards p, a simulation study similar to the one presented
above has been done. Now only the situations where n > p are considered,
namely design point 1, 2, 3, 4, 9, 10, 11 and 12, and only the two above-
mentioned estimators. The number of components (k) ranges from 1 to
25 (equal to p). The simrel -arguments relpos, γ and R2 still vary between
two levels as before. The results are presented in figure 10 (plots of the
average estimates) and figure 11 (plots of the RMSE’s of the estimates).
All the plotted averages and RMSE’s are calculated from a number of 21
estimates (7 seeds and 3 replicates).

The plots in figure 10 show that the value of the PLSRnaive estimates are
on average always less than the value of the PCR estimates, regardless
of relpos, γ and R2. Both estimators seem to be approximately unbiased
for k = 25, as anticipated. The overall bias of the PCR estimates is not
notably influenced by a change in γ. In general, the bias of the PCR
estimates appears to be decreasing as k increases.
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Figure 10: Average estimates vs. number of components. The dotted line is the true noise variance.
The plots belong to dp1, dp2, dp3, dp4, dp9, dp10, dp11 and dp12, all having n = 50 and p = 25.

When γ is small and/or R2 is small the overall bias of the PLSRnaive
estimates is negative. The most extreme cases of negative bias are found
when both γ and R2 are small, then the PLSRnaive estimates do not
reach their smallest possible average bias (in absolute value) until k = 25.
When relpos is at a high level and γ is large the PLSRnaive estimates
needs approximately 4-6 components to reach a near-minimum bias. In all
other cases the PLSRnaive estimates obtains a near-minimum bias with
only a few components included in the fitted model.
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Figure 11: Root mean square error of the estimates vs. number of components. The plots belong to
dp1, dp2, dp3, dp4, dp9, dp10, dp11 and dp12, all having n = 50 and p = 25.

From the RMSE plots in figure 11 it is clear that the PCR estimates on av-
erage performs poorly for k = 1(or a small number of components) regard-
less of relpos, γ and R2. The choice of k giving the first near-minimum
RMSE for the PCR estimates, however, seems inextricably connected to
the position of the relevant components. When R2 is large, after reaching
its first near-minimum, the RMSE of the PCR estimates does not seem
to change much as k increases. However when R2 is small, the RMSE
will (after reaching its minimum) start to increase as k increases. The
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overall behaviour of the RMSE of the PCR estimates does not seem to be
influenced much by the change in γ.

For the PLSRnaive estimates, regarding first the two lower right plots
where γ and R2 are both small, the minimum RMSE is clearly obtained
for k = 1. As seen in figure 10 the estimates with this particular choice
of k do not have the minimum bias (in absolute value) over all k, so the
variance of the estimator for this particular choice of k must be small (due
to the bias-variance decomposition of MSE explained in section 3.2.1).
In fact, in all cases where γ is small, the PLSRnaive estimates seem to
obtain a near-minimum RMSE for k = 1. When γ is large the RMSE of
the PLSRnaive estimates behave more similarly to the RMSE of the PCR
estimates, but PLSRnaive generally needs fewer components than PCR
to obtain a near-minimum RMSE.

8.3 Estimating the number and positions of the
relevant components

As briefly mentioned in section 5.2.1, estimating the number and positions
of the relevant components can be a challenge. The true, relevant compo-
nents are the only components that have a non-zero covariance with the
response, so one approach is to consider the empirical covariance between
the estimated component and the response. If the estimated covariances
are similar enough to the true covariances, it could be possible to point
out the positions of the true, relevant components.

In this section the true and estimated eigenvalues and covariances of the
components has been compared for one example dataset from each of the
16 design points. The plots of the 8 first example datasets are shown in
figure 12 and 13. The plots of the remaining 8 example datasets are in
Appendix D.3.

Only a subset of the simrel -arguments decides the positions of the true
relevant components and their covariances. Because the same seed is used
to draw the sample data, all datasets that are simulated with the same
level of relpos and the same value of γ, will also have the same positions
of the true relevant components, with the exact same true covariances.
Therefore, when regarding the plots of the true and estimated eigenvalues
and covariances, some of the design point example datasets are directly
comparable (dp1-dp5-dp9-dp13, dp2-dp6-dp10-dp14, and so on). What
is different between them is the quality of the estimation, which depends
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Figure 12: The true eigenvalues (bars) and covariances (blue dots) are illustrated in the plot to the
left, and the corresponding estimates are illustrated in the plot to the right. All values are scaled by
the largest occurring value. The design points featured here all have n = 50 and R2 = 0.7.

on (in addition to relpos and γ) the remaining varied simrel -arguments
n and R2.

It must be emphasized that the true and estimated covariances and eigen-
values are all scaled, for visual purposes, and therefore their numerical
values can not be compared directly. What should instead be investi-
gated are the relative sizes of the covariances for each component. The
largest covariance should be regarded as belonging to the most relevant
component, and so on. For the eigenvalues, it is the speed of decline
of the eigenvalues which is interesting, not the values of the eigenvalues
themselves.
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Figure 13: The true eigenvalues (bars) and covariances (blue dots) are illustrated in the plot to the
left, and the corresponding estimates are illustrated in the plot to the right. All values are scaled by
the largest occurring value. The design points featured here all have n = 15 and R2 = 0.7.

In some cases the value of the estimated covariances actually seem to give
a decent indication as to which are the true, relevant components, for
example in the situations where relpos is at a low level, γ is large and
R2 is large (dp1 and dp5). However, in most other cases, the estimated
covariances appear to be quite unreliable. Especially when γ is small,
a large number of the estimated covariances are notably different from
0 (when their corresponding true covariances are, in fact, equal to 0).
The differences between the relative size of the true covariance versus the
relative size of the estimated covariance also seem random at times; a
component that has one of the largest true covariances to the response
(of all components) may have one of the smallest estimated covariances,
and conversely.
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In earlier plots of the RMSE of dp3 and dp11 (figure 3), a characteristic
staircase shape of the RMSE of the PCR estimates suggested that the true
positions of the relevant components could be identifiable. Comparing
with the single example of estimated covariances of dp3 (figure 12), the
true, relevant components are clearly not so easily identified. In this case,
component number 3 (for example) has an estimated covariance with the
response approximately equal to 0, which is highly inaccurate, as the true
covariance in this case is relatively large. Although not illustrated here,
experience has shown that changing the seed when simulating can result
in greatly varying estimates of the covariance of the components. What
this means is that different sets of sample data drawn from the same, true
distribution may give very differing estimates of the number and positions
of the relevant components.

While the estimated covariances seem to be quite inaccurate, the speed of
decline of the estimated eigenvalues does appear to be quite close to the
speed of decline of the true eigenvalues (a little less accurate when n is
small). Although this observation may not bring any direct information
regarding whether or not a component is relevant, it may still be of some
interest with regard to estimating σ2 (and possibly also for other reasons).
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9 Discussion

9.1 The known and unknown factors/parameters

In this thesis the quality of the σ2-estimate has been studied for different
choices of estimation methods and of number of components (k) included
in the fitted model, with regard to the following factors/parameters of the
data:

1. The size of n (the number of samples) relative to the size of p (the
number of predictor variables)

2. The position of the relevant components (relpos)

3. The speed of decline of the eigenvalues (γ)

4. The amount of variation explained by the model (R2)

In any practical situation, the number of observations and the number of
predictor variables are defined by the design of the experiment at hand,
so the n - p relationship is known to the analyst. The last three factors,
however, are usually unknown. So even though the results of the simula-
tions of this thesis are presented on the basis of knowing the true values
of all these factors, the reader should always keep in mind that in a prac-
tical situation the analyst will have to make a choice of which method to
use, and of how many components to include in the fitted model, without
knowing the true values of relpos, γ and R2.

As seen in section 8.3, trying to estimate relpos is quite difficult. As for
the factor R2, it is closely related to σ2, so trying to estimate R2 in order
to find the best estimate of σ2 is a sort of a circular reference problem.

Remember that γ is in fact a parameter created by simrel, in order to be
able to simulate the eigenvalues of a dataset with the help of a straight-
forward formula. In a real-life, practical situation, the behaviour of the
eigenvalues may not be modeled in this manner, as they would be expected
to behave more randomly. Still, for argument’s sake, one may assume that
there exists some parameter γ∗ similar to γ, defining the overall speed of
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decline of the eigenvalues. As also seen in section 8.3, the speed of the
decline of the eigenvalues appears to be somewhat easier to estimate than
many of the other unknown parameters of a dataset. Therefore, it seems
plausible that there could exist a reasonable estimator of γ∗, that may
provide some valuable information on the nature of the dataset.

9.2 The performance of the estimators

The PCR estimator stands out from the other three estimators by almost
always needing a higher number of components included in the fitted
model to obtain its near-minimum estimation error. The factor relpos
especially affects the optimal k for the PCR estimator. As mentioned
above, estimates of relpos can be highly inaccurate, so relying on such
estimates when choosing the size of k is not well-advised. Since all three
other estimators always seem to obtain an equally small minimum estima-
tion error as PCR, but for a smaller choice of k, it seems hard to justify
the use of the PCR estimator in any of the situations discussed in this
thesis.

When γ and R2 are both large, the Bayes PLS, PLSRkrylov and PLSR-
naive estimators all obtain smaller estimation errors when more than 1
component is included in the fitted model. For the PLSRnaive estima-
tor the situation is quite different when γ is small, especially when n is
also small: the optimal choice of k is 1, and the estimation error then
increases quite rapidly as k increases. In other words, when using the
PLSRnaive estimator, the factor γ appears to be especially important to
consider when deciding which number of components to include in the
fitted model. When γ is large, k should be larger than 1. When γ is
small, k should not be larger than 1.

The PLSRkrylov estimator performs just as well or better than the PLSR-
naive estimator in many situations. However, several weaknesses of the
PLSRkrylov estimator have been identified through this simulation. Firstly,
the practice of removing estimates from a simulation experiment is in it-
self questionable. It may be justified in this situation because the faulty
estimates (with negative or upper bound DoF’s) are so easily identified,
also for a practitioner. Of course, for the practitioner this means that
sometimes the method will simply fail in bringing an estimate altogether
(as often as almost 1 out of 10 situations, jugding from the rate of failure
seen in this simulation). What is worse is that sometimes, in some single
incidents, the method returns a highly inaccurate estimate, that may not
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be so detectable in a practical situation. The unpredictable behaviour of
the PLSRkrylov estimator suggests that the method can not be relied on
in a practical situation.

The estimation error of the Bayes PLS estimator sometimes behaves quite
random, but with relatively little variation, for different choices of k. A
small k seems to be a good choice for the Bayes PLS estimator in most
situations, except for when γ and R2 are both large (as mentioned above).
If the choice of estimator is between Bayes PLS and PLSRnaive, the fact
that the Bayes PLS estimator is somewhat less sensitive to the choice of
k works to its advantage. The fact that the Bayes PLS estimator may
be both more time-consuming and difficult to use makes the PLSRnaive
estimator appear more attractive.

9.3 The degrees of freedom of PCR and PLSR

The naive estimate of degrees of freedom (k + 1) has been investigated
for both methods PCR and PLSR. The PCR estimator of σ2 (with k + 1
degrees of freedom) steadily approaches the true value of σ2 as k increases.
This is a trend seen for all combinations of relpos, γ and R2. The optimal
choice of k is obviously affected by the level of relpos. However, a change
in γ seems to have less of an impact on the average bias of the PCR
estimates, suggesting that the degrees of freedom are not affected by the
speed of decline of the eigenvalues (contradicting some of the claims of
Hassani et al. [2012]). The naive estimate of the degrees of freedom for
the PCR estimator therefore appears to be a reasonable estimate. When
the PCR estimate of σ2 is biased, it is likely a result of not including
enough components in the fitted model, rather than of the estimate of the
degrees of freedom being erroneous. It has also been shown that including
non-relevant components with large eigenvalues in the fitted model may
improve the precision of the estimation (which is in line with what Helland
and Almøy [1994] argued for prediction).

For the PLSRnaive estimator, the bias of the estimate is affected by the
size of γ and R2. Especially when γ and R2 is small, the true degrees
of freedom is probably larger than the naive estimate of k + 1 (as also
suggested by Krämer and Sugiyama [2011]). This claim is also backed
up by the fact that the PLSRkrylov estimator often performs better than
the PLSRnaive estimator in this specific situation, and the corresponding
Krylov estimates of degrees of freedom have then been shown to be no-
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tably larger than k+ 1. When γ is large, the Krylov estimates of degrees
of freedom do not differ so much from the naive estimate of k + 1.

9.4 Further studies

The RMSE’s of the estimates are themselves estimates of the true RMSE’s.
Therefore, the inferences made in this thesis come with a margin of un-
certainty related to the uncertainty of the RMSE-estimator. The most
straightforward way of evaluating an estimator is by trying to estimate
its expected value and variance, but since there is only one RMSE for
each combination of method, design point and number of components,
this is not possible. The only way to do this would be to repeat the entire
experiment (with different seeds) several times.

The simulations of this thesis are limited to only consider certain selected
levels of the parameters of a dataset, and therefore, the validity of the
results are also limited. An expansion of the study, including more levels
of the parameters, and possibly also other parameters, would contribute
to ratify or invalidate the results discussed above. For example, it may
seem like an unrealistically simple situation in which only 3 components
are truly relevant. A more realistic (practically oriented) scenario would
perhaps be to consider a relpos with more of a spread, with positions
ranging from for example 1 up to p, and with m being notably larger
than 3.

The parameter γ has stood out as a factor that could possibly have an
effect on the quality of the σ2-estimate. In addition to considering more
levels of γ in a follow-up study, it would also be of interest to investigate
the ability of estimating γ∗ (as described previously). In such a study,
the simulated datasets should not all have a ’smoothened’ decline of the
eigenvalues, as the datasets provided by simrel have.

It seems reasonable that the parameter p (the number of predictor vari-
ables, which has not been focused on in this thesis) should affect the
degrees of freedom of both PCR and PLSR. The naive estimate of the
degrees of freedom does not take the size of p into account. Is this reason-
able? One can maybe argue that when the number of predictor variables
increase, the search for relevant components becomes more extensive, and
therefore the consumption of degrees of freedom should increase.

The findings of this thesis should be attemptively applied to real datasets.
Since the noise variance is inextricably connected to the precision of pre-
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diction, one suggestion is to compare the σ2-estimate to the MSEP (mean
square error of prediction) of real datasets, found by using (for example)
cross-validation.

The estimation error/RMSE of the estimates has in this thesis been stud-
ied for all choices of k (up to a selected maximum number of components),
which sometimes makes it difficult to compare between methods. A dif-
ferent approach could have been to only regard the number of components
that return the smallest error, either for each individual estimation, or for
all comparable estimates (i.e. the smallest RMSE). An even more elegant
tactic would be to find some tradeoff measure that accomodates both cri-
terias of smallest possible estimation error and fewest possible number
of components included in the fitted model, and then compare between
methods.

It is quite unsatisfactory that the PLSRkrylov estimator seems to per-
form so well all in all, but then in some odd, individual cases, it fails with
no apparent explanations as to why. The indications seen in this thesis
that the Krylov estimates of the degrees of freedom are, in some situa-
tions, more correct than the naive estimate of k+ 1, makes it tempting to
investigate the Krylov estimator further, and try to find better implemen-
tations of the theory behind it, in order to reduce the amount of random,
bad estimations.

9.5 Conclusion

There are notable differences in performance of the four σ2-estimators
investigated in this thesis. The PCR estimator requires a higher number
of components included in the fitted model to obtain reasonably good
estimates. The PLSRkrylov estimator sometimes performs well, but it
is very unstabile and therefore unreliable. Out of the four estimators,
the Bayes PLS and the PLSRnaive estimator provide the overall best
and/or most stabile estimates of σ2. The PLSRnaive estimator is more
sensitive to the choice of number of components, especially relative to
the collinearity of the predictor variables (quantified by γ, the speed of
decline of the eigenvalues). There are indications that the true value of
the degrees of freedom of PLSR is probably larger when the predictor
variables are less correlated. The Bayes PLS estimator usually performs
well with a few (2-3) components regardless of the structure of the data,
but it is somewhat more difficult and time-consuming to use.
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N. Krämer and M. Sugiyama. The degrees of freedom of partial least
squares regression. Journal of the American Statistical Association,
2011.

S. Sæbø. simrel: Linear model data simulation and design of computer
experiments, 2014. URL https://CRAN.R-project.org/package=

simrel.

D. C. Lay. Linear algebra and its applications. Pearson, 3. edition, 2006.

I. S. Helland and T. Almøy. Comparison of prediction methods when
only a few components are relevant. Journal of the American Statistical
Association, 1994.

J. L. Devore and K. N. Berk. Modern mathematical statistics with appli-
cations. Thomson Brooks/Cole, 2007.

P. J. Bickel and K. A. Doksum. Mathematical statistics: Basic ideas and
selected topics vol. I. Pearson Prentice Hall, New Jersey, 2. edition,
2007.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov chain Monte
Carlo in practice. Chapman & Hall/CRC, London, 1. edition, 1996.

E. L. Lehmann and G. Casella. Theory of point estimation. Springer
Science & Business Media, 2006.

I. T. Jolliffe. Principal Component Analysis. Springer, New York, 2.
edition, 2002.

S. Hassani, H. Martens, E. M. Qannari, and A. Kohler. Degrees of free-
dom estimation in principal component analysis and consensus principal
component analysis. Chemometrics and Intelligent Laboratory Systems,
2012.

S. Wold, H. Martens, and H. Wold. The multivariate calibration problem
in chemistry solved by the pls method. In A. Ruhe and B. K̊agström,
editors, Lecture Notes in Mathematics, pages 286–293. Springer Verlag,
Heidelberg, Germany, 1983.

63

https://CRAN.R-project.org/package=simrel
https://CRAN.R-project.org/package=simrel


H. Martens and T. Næs. Multivariate calibration. Wiley & sons, 1989.

I. S. Helland. Partial least squares regression and statistical models. Scan-
dinavian Journal of Statistics, 1990.
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A Proofs

A.1 Expected value and variance of the PCR
estimators

For the sake of readability, all PCR estimates mentioned in this section will
be denoted with a subscript k, rather than PCR,k.

Theory of linear regression gives the following

E(y) = Xβ

β =

p∑
i=1

1

λi
eie

t
iX

ty

where λi and ei are the ith eigenvalue and eigenvector of Σxx, respectively.
The eigenvectors are all of unit length and orthogonal, so etiej is equal to
1 if i = j and 0 if i 6= j.

As shown in section 5.2

ŷk = Hky

where Hk = Z(ZtZ)−1Zt (the hat matrix).

Assume that X is given, and that all variables are centered. Then Z =
XÊk, and the PCR estimator of the regression coefficients for the original
predictor variables is given by β̂k = Êk(Z

tZ)−1Êt
kX

ty.
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A.1.1 Bias and variance of β̂k

The bias of β̂k is

E(β̂k)− β = E(Êk(Z
tZ)−1Êt

kX
ty)− β

= Êk(Z
tZ)−1Êt

kX
t · E(y)− β

= Êk(Z
tZ)−1Êt

kX
tXβ − β

=
k∑
i=1

1

λ̂i
êiê

t
i

p∑
j=1

λ̂jêjê
t
jβ − β

=
k∑
i=1

êiê
t
iβ − β

= (
k∑
i=1

êiê
t
i − I)β

= −
p∑
i>k

êiê
t
iβ

The variance of β̂k is

V ar(β̂k) = V ar(Êk(Z
tZ)−1Êt

kX
ty)

= Êk(Z
tZ)−1Êt

kX
t V ar(y) (Êk(Z

tZ)−1Êt
kX

t)t

= σ2(Êk(Z
tZ)−1Êt

kX
tXÊk(Z

tZ)−1Êt
k)

=
σ2

n− 1
(
k∑
i=1

1

λ̂i
êiê

t
i

p∑
j=1

λ̂jêjê
t
j

k∑
q=1

1

λ̂q
êqê

t
q)

=
σ2

n− 1
(
k∑
i=1

1

λ̂i
êiê

t
i)
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A.1.2 Expected value and variance of SSEk

The sum of the squared errors of PCR is given by

SSEk = (y − ŷk)t(y − ŷk)
= ((I −Hk)y)t((I −Hk)y)

= yt(I −Hk)y

The expected value of SSEk is

E(SSEk) = E(yt(I −Hk)y)

= tr((I −Hk)σ
2) + βtX t(I −Hk)Xβ

= σ2(n− (k + 1)) + βt(X tX −X tHkX)β

= σ2(n− (k + 1)) + βt(X tX −X tZ(ZtZ)−1ZtX)β

= σ2(n− (k + 1)) + βt(X tX −X tXÊk(Z
tZ)−1Êt

kX
tX)β

= σ2(n− (k + 1)) + (n− 1)βt(

p∑
i=1

λ̂iêiê
t
i

−
p∑
j=1

λ̂jêjê
t
j

k∑
q=1

1

λ̂q
êqê

t
q

p∑
r=1

λ̂rêrê
t
r)β

= σ2(n− (k + 1)) + (n− 1)βt(

p∑
i=1

λ̂iêiê
t
i −

k∑
j=1

λ̂jêjê
t
j)β

= σ2(n− (k + 1)) + (n− 1)βt
p∑
i>k

λ̂iêiê
t
iβ

= σ2(n− (k + 1)) + (n− 1)

p∑
i>k

λ̂i(ê
t
iβ)2

The variance of SSEk is

V ar(SSEk) = V ar(yt(I −Hk)y)

= 2tr((I −Hk)σ
2(I −Hk)σ

2) + 4βtX t(I −Hk)σ
2(I −Hk)Xβ

= 2σ4(n− (k + 1)) + 4σ2βtX t(I −Hk)Xβ

= 2σ4(n− (k + 1)) + 4σ2(n− 1)

p∑
i>k

λ̂i(ê
t
iβ)2

67



A.1.3 Bias and variance of σ̂2
k

Regarding the naive estimator

σ̂2
k =

SSEk
n− (k + 1)

The bias of σ̂2
k is

E(σ̂2
k)− σ2 = E

( SSEk
n− (k + 1)

)
− σ2

=
1

n− (k + 1)
E(SSEk)− σ2

=
1

n− (k + 1)
((n− (k + 1))σ2 + (n− 1)

p∑
i>k

λ̂i(ê
t
iβ)2)− σ2

=
(n− 1)

∑p
i>k λ̂i(ê

t
iβ)2

n− (k + 1)

The variance of σ̂2
k is

V ar(σ̂2
k) = V ar

( SSEk
n− (k + 1)

)
=

1

(n− (k + 1))2
V ar(SSEk)

=
1

(n− (k + 1))2
(2σ4(n− (k + 1)) + 4σ2(n− 1)

p∑
i>k

λ̂i(ê
t
iβ)2)

=
2σ4

n− (k + 1)
+

4σ2(n− 1)
∑p

i>k λ̂i(ê
t
iβ)2)

(n− (k + 1))2
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B Algorithms

B.1 The orthogonalized PLSR algorithm

The orthogonalized PLSR algorithm for one response variable (Martens &
Næs, 1989):

1. Scale the data to obtain the standardized variables X0 and y0.

2. Choose kmax to be a number higher than the expected number of
latent PLS components (k).

3. For each level of a = 1, ..., kmax run through steps 3a-3f:

(a) Compute the loading weigths wa:

wa = cX t
a−1ya−1

where c is a number scaling wa to a unit vector

c = (yta−1Xa−1X
t
a−1ya−1)−0.5

(b) Compute the scores ta:

ta = Xa−1wa

(c) Compute the X-loadings pa:

pa =
Xt

a−1ta

ttata

(d) Compute the y-loading qa:

qa =
yta−1ta

ttata

(e) Deflate the matrices X0 and y0 by subtracting the information
related to the current component:
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E = Xa−1 − tapta

f = ya−1 − taqa

(f) Update the inputs:

Xa = E

ya = f

a = a+ 1

4. Choose k, the number of components to use in the fitted model.

5. Estimate the regression coefficients for the fitted model:

β̂PLSR,k = W (P tW )−1q

where W
p×k

=
[
w1 w2 ... wk

]
, P
p×k

=
[
p1 p2 ... pk

]
, and q

k×1
=


q1

q2
...
qk

.
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C Tables and data

C.1 Overview of the 16 design points used in the
simulations

Table 2: The simrel-arguments for each dp

dp n p m relpos γ R2

1 50 25 3 {1, 2, 3} 0.9 0.7
2 50 25 3 {1, 2, 3} 0.2 0.7
3 50 25 3 {3, 5, 7} 0.9 0.7
4 50 25 3 {3, 5, 7} 0.2 0.7
5 15 25 3 {1, 2, 3} 0.9 0.7
6 15 25 3 {1, 2, 3} 0.2 0.7
7 15 25 3 {3, 5, 7} 0.9 0.7
8 15 25 3 {3, 5, 7} 0.2 0.7
9 50 25 3 {1, 2, 3} 0.9 0.2
10 50 25 3 {1, 2, 3} 0.2 0.2
11 50 25 3 {3, 5, 7} 0.9 0.2
12 50 25 3 {3, 5, 7} 0.2 0.2
13 15 25 3 {1, 2, 3} 0.9 0.2
14 15 25 3 {1, 2, 3} 0.2 0.2
15 15 25 3 {3, 5, 7} 0.9 0.2
16 15 25 3 {3, 5, 7} 0.2 0.2

C.2 Summary of negative and upper bound DoF’s

Following is an overview of the number of negative and upper bound DoF’s
occuring in the Krylov DoF estimates. The columns correspond to the
number of components included in the fitted model.
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$dp1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 0 0 0 0 0 0

upperboundDoF 0 0 0 0 0 0 0 0

$dp2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 3 4 4 4 5 4 3

upperboundDoF 0 0 0 0 0 0 0 0

$dp3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 1 0 0 0 0 0

upperboundDoF 0 0 0 0 0 0 0 0

$dp4

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 1 1 2 1 2 1

upperboundDoF 0 0 0 1 1 2 3 2

$dp5

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 1 1 0 0 0 0

upperboundDoF 0 0 0 0 0 0 0 0

$dp6

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 3 3 3 3 3 2 1

upperboundDoF 0 2 3 3 4 4 3 3

$dp7

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 1 1 2 2 2 3

upperboundDoF 0 0 1 0 0 0 1 1

$dp8

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 0 0 0 0 0 0

upperboundDoF 0 1 2 2 1 1 1 1
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$dp9

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 2 3 2 1 0 0 0

upperboundDoF 0 1 1 0 1 1 1 1

$dp10

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 1 2 2 1 3 3

upperboundDoF 0 1 2 2 4 3 3 3

$dp11

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 0 0 0 0 0 0

upperboundDoF 0 0 0 0 0 1 1 1

$dp12

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 0 3 3 3 4 4

upperboundDoF 0 0 1 0 0 0 0 0

$dp13

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 1 2 2 1 1 1

upperboundDoF 0 0 0 1 0 1 1 1

$dp14

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 1 1 2 4 3 3 2

upperboundDoF 0 2 2 2 1 1 1 1

$dp15

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 0 0 1 0 0 1

upperboundDoF 0 1 2 2 2 2 2 1

$dp16

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

negativeDoF 0 0 0 0 1 2 3 3

upperboundDoF 0 1 1 2 0 0 1 1
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C.3 ANOVA tables for the fitted linear mixed model

C.3.1 The full fitted model with all interaction effects

Df Sum Sq Mean Sq F value p value

Method 2 1.6588 0.8294 39.0486 0.0000

Comp 7 1.9804 0.2829 13.3201 0.0000

n 1 26.9483 26.9483 1268.7739 0.0000

relpos 1 1.8462 1.8462 86.9230 0.0000

gamma 1 2.1370 2.1370 100.6126 0.0000

R2 1 15.5574 15.5574 732.4713 0.0000

Method:Comp 14 12.0293 0.8592 40.4544 0.0000

Method:n 2 0.6052 0.3026 14.2472 0.0000

Method:relpos 2 2.2433 1.1216 52.8088 0.0000

Method:gamma 2 2.8302 1.4151 66.6251 0.0000

Method:R2 2 6.4358 3.2179 151.5038 0.0000

Comp:n 7 0.8493 0.1213 5.7125 0.0000

Comp:relpos 7 1.9900 0.2843 13.3848 0.0000

Comp:gamma 7 2.1341 0.3049 14.3536 0.0000

Comp:R2 7 8.5817 1.2260 57.7201 0.0000

n:relpos 1 0.0078 0.0078 0.3650 0.5458

n:gamma 1 1.4813 1.4813 69.7419 0.0000

n:R2 1 14.5864 14.5864 686.7552 0.0000

relpos:gamma 1 0.4192 0.4192 19.7344 0.0000

relpos:R2 1 1.3192 1.3192 62.1117 0.0000

gamma:R2 1 3.2848 3.2848 154.6537 0.0000

Method:Comp:n 14 1.0554 0.0754 3.5491 0.0000

Method:Comp:relpos 14 2.7465 0.1962 9.2364 0.0000

Method:Comp:gamma 14 0.5264 0.0376 1.7701 0.0370

Method:Comp:R2 14 3.1934 0.2281 10.7395 0.0000

Method:n:relpos 2 0.0143 0.0072 0.3373 0.7137

Method:n:gamma 2 1.1714 0.5857 27.5758 0.0000

Method:n:R2 2 0.6202 0.3101 14.5991 0.0000

Method:relpos:gamma 2 0.1301 0.0651 3.0631 0.0468

Method:relpos:R2 2 1.1969 0.5985 28.1764 0.0000

Method:gamma:R2 2 1.2430 0.6215 29.2622 0.0000

Comp:n:relpos 7 0.0227 0.0032 0.1525 0.9937

Comp:n:gamma 7 0.4607 0.0658 3.0989 0.0029

Comp:n:R2 7 0.9630 0.1376 6.4770 0.0000

Comp:relpos:gamma 7 0.3646 0.0521 2.4525 0.0164

Comp:relpos:R2 7 1.6277 0.2325 10.9479 0.0000
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Comp:gamma:R2 7 0.1485 0.0212 0.9988 0.4298

n:relpos:gamma 1 0.0349 0.0349 1.6431 0.1999

n:relpos:R2 1 0.0084 0.0084 0.3959 0.5292

n:gamma:R2 1 1.0660 1.0660 50.1886 0.0000

relpos:gamma:R2 1 0.1823 0.1823 8.5838 0.0034

Method:Comp:n:relpos 14 0.2410 0.0172 0.8105 0.6585

Method:Comp:n:gamma 14 0.2311 0.0165 0.7772 0.6953

Method:Comp:n:R2 14 0.3248 0.0232 1.0924 0.3586

Method:Comp:relpos:gamma 14 0.3006 0.0215 1.0108 0.4387

Method:Comp:relpos:R2 14 1.4338 0.1024 4.8220 0.0000

Method:Comp:gamma:R2 14 0.5773 0.0412 1.9416 0.0184

Method:n:relpos:gamma 2 0.0578 0.0289 1.3597 0.2568

Method:n:relpos:R2 2 0.0271 0.0135 0.6380 0.5284

Method:n:gamma:R2 2 0.5035 0.2517 11.8527 0.0000

Method:relpos:gamma:R2 2 0.0317 0.0159 0.7465 0.4741

Comp:n:relpos:gamma 7 0.0174 0.0025 0.1173 0.9972

Comp:n:relpos:R2 7 0.0398 0.0057 0.2674 0.9666

Comp:n:gamma:R2 7 0.2784 0.0398 1.8722 0.0697

Comp:relpos:gamma:R2 7 0.3467 0.0495 2.3318 0.0224

n:relpos:gamma:R2 1 0.0109 0.0109 0.5149 0.4730

Method:Comp:n:relpos:gamma 14 0.0481 0.0034 0.1617 0.9998

Method:Comp:n:relpos:R2 14 0.0547 0.0039 0.1840 0.9996

Method:Comp:n:gamma:R2 14 0.2933 0.0210 0.9865 0.4640

Method:Comp:relpos:gamma:R2 14 0.2781 0.0199 0.9352 0.5193

Method:n:relpos:gamma:R2 2 0.0230 0.0115 0.5403 0.5826

Comp:n:relpos:gamma:R2 7 0.0213 0.0030 0.1434 0.9948

Method:Comp:n:relpos:gamma:R2 14 0.0941 0.0067 0.3163 0.9923

C.3.2 The reduced fitted model

Df Sum Sq Mean Sq F value p value

Method 2 1.6588 0.8294 39.3455 0.0000000

Comp 7 1.9804 0.2829 13.4213 0.0000000

n 1 26.9483 26.9483 1278.4210 0.0000000

relpos 1 1.8462 1.8462 87.5839 0.0000000

gamma 1 2.1370 2.1370 101.3776 0.0000000

R2 1 15.5574 15.5574 738.0406 0.0000000

Method:Comp 14 12.0293 0.8592 40.7620 0.0000000

Method:n 2 0.6052 0.3026 14.3555 0.0000006

Method:relpos 2 2.2433 1.1216 53.2104 0.0000000

Method:gamma 2 2.8302 1.4151 67.1316 0.0000000
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Method:R2 2 6.4358 3.2179 152.6558 0.0000000

Comp:n 7 0.8493 0.1213 5.7560 0.0000012

Comp:relpos 7 1.9900 0.2843 13.4866 0.0000000

Comp:gamma 7 2.1341 0.3049 14.4627 0.0000000

Comp:R2 7 8.5817 1.2260 58.1590 0.0000000

n:gamma 1 1.4813 1.4813 70.2722 0.0000000

n:R2 1 14.5864 14.5864 691.9770 0.0000000

relpos:gamma 1 0.4192 0.4192 19.8844 0.0000083

relpos:R2 1 1.3192 1.3192 62.5839 0.0000000

gamma:R2 1 3.2848 3.2848 155.8296 0.0000000

Method:Comp:n 14 1.0554 0.0754 3.5761 0.0000062

Method:Comp:relpos 14 2.7465 0.1962 9.3067 0.0000000

Method:Comp:gamma 14 0.5264 0.0376 1.7836 0.0350659

Method:Comp:R2 14 3.1934 0.2281 10.8212 0.0000000

Method:n:gamma 2 1.1714 0.5857 27.7855 0.0000000

Method:n:R2 2 0.6202 0.3101 14.7101 0.0000004

Method:relpos:gamma 2 0.1301 0.0651 3.0864 0.0457214

Method:relpos:R2 2 1.1969 0.5985 28.3907 0.0000000

Method:gamma:R2 2 1.2430 0.6215 29.4847 0.0000000

Comp:n:gamma 7 0.4607 0.0658 3.1225 0.0027132

Comp:n:R2 7 0.9630 0.1376 6.5263 0.0000001

Comp:relpos:gamma 7 0.3646 0.0521 2.4712 0.0156488

Comp:relpos:R2 7 1.6277 0.2325 11.0311 0.0000000

Comp:gamma:R2 7 0.1485 0.0212 1.0064 0.4243251

n:gamma:R2 1 1.0660 1.0660 50.5702 0.0000000

relpos:gamma:R2 1 0.1823 0.1823 8.6490 0.0032820

Method:Comp:relpos:R2 14 1.4338 0.1024 4.8587 0.0000000

Method:Comp:gamma:R2 14 0.5773 0.0412 1.9564 0.0172648

Method:n:gamma:R2 2 0.5035 0.2517 11.9428 0.0000066

Comp:relpos:gamma:R2 7 0.3467 0.0495 2.3495 0.0214297
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D Additional plots

D.1 Plots of the averages of the σ2-estimates

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

n = 50, p = 25,  R2 = 0.7

relpos = 1−2−3, γ = 0.9

number of components

σ̂2

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

n = 50, p = 25,  R2 = 0.7

relpos = 1−2−3, γ = 0.2

number of components

σ̂2

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

n = 50, p = 25,  R2 = 0.2

relpos = 1−2−3, γ = 0.9

number of components

σ̂2

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

n = 50, p = 25,  R2 = 0.2

relpos = 1−2−3, γ = 0.2

number of components

σ̂2

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 2 3 4 5 6 7 8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Average of estimates

BayesPLS PCR PLSRkrylov PLSRnaive

Figure 14: Average estimates vs. number of components. All PLSRkrylov estimates with negative or
upper bound DoF have been removed. The dotted line is the true noise variance. The plots belong to
dp1, dp2, dp9 and dp10, all having n = 50, p = 25 and relpos = {1, 2, 3}.
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Figure 15: Average estimates vs. number of components. All PLSRkrylov estimates with negative or
upper bound DoF have been removed. The dotted line is the true noise variance. The plots belong to
dp3, dp4, dp11 and dp12, all having n = 50, p = 25 and relpos = {3, 5, 7}.
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Figure 16: Average estimates vs. number of components. All PLSRkrylov estimates with negative or
upper bound DoF have been removed. The dotted line is the true noise variance. The plots belong to
dp5, dp6, dp13 and dp14, all having n = 15, p = 25 and relpos = {1, 2, 3}.
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Figure 17: Average estimates vs. number of components. All PLSRkrylov estimates with negative or
upper bound DoF have been removed. The dotted line is the true noise variance. The plots belong to
dp7, dp8, dp15 and dp16, all having n = 15, p = 25 and relpos = {3, 5, 7}.
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D.2 Interaction effect plots
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Figure 18: Interaction effect of components, relpos, γ and R2. The red lines are confidence intervals.
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Figure 19: Interaction effect of method, relpos and γ. The red lines are confidence intervals.
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Figure 20: Interaction effect of component, n and γ. The red lines are confidence intervals.
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Figure 21: Interaction effect of component, n and R2. The red lines are confidence intervals.
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D.3 True and estimated eigenvalues and covariances
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Figure 22: The true eigenvalues (bars) and covariances (blue dots) are illustrated in the plot to the left,
and the corresponding estimates are illustrated in the plot to the right. All values are scaled by the
largest occuring value. The design points featured here all have n = 50 and R2 = 0.2.
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Figure 23: The true eigenvalues (bars) and covariances (blue dots) are illustrated in the plot to the left,
and the corresponding estimates are illustrated in the plot to the right. All values are scaled by the
largest occuring value. The design points featured here all have n = 15 and R2 = 0.2.
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E Software

This thesis was written with LaTeX (Sweave) in RStudio version 1.0.143.
All programming and plotting is done in RStudio.
The R scripts are available at https://github.com/siriskodvin/masterthesis.
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