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Abstract

To meet an increasing demand for food production there is a need for faster genetic gains

in Norwegian cereal breeding through more precise phenotyping. High-Throughput Phe-

notyping (HTP) and genomic selection through multispectral imaging and statistical anal-

ysis offer possibilities of yield gains. Several indices have been tested to indicate grain

yield, such as the Normalized Differential Vegetation Index (NDVI), MERIS Terrestrial

Chlorophyll Index (MTCI) and the Enhanced Vegetative Index (EVI). These indices uti-

lize the difference in reflectivity in different spectral bands. The indices can indicate

differences between healthy plants, stressed plants or non-plants.

The research revolves around 96 plots of 24 historical wheat cultivars and 602 plots of

301 younger breed lines. Both sites planted at Vollebekk research farm at Ås in Norway,

laid out in an alpha-lattice split plot design. The design for the 24 historical cultivars had

two levels of nitrogen (N) fertilization, 75 and 150 kg N/ha, applied at sowing. There

were two replicates of wheat cultivars of each fertilization level. The set of 24 spring

wheat represents the yield progress over the last 40 years in Norway.

Multispectral images were taken in the wavebands green (GRE) (550nm), red (RED)

(660nm), red edge (REG) (735nm) and near-infrared (NIR) (790nm) with a Parrot Se-

quoia multispectral camera combined with a sunshine sensor. The spectral band images

were stitched together using Pix4D software by utilizing GPS coordinates and image fea-

tures. To aid stitching of the multispectral and RGB images, tie point objects were laid

out in the field. Maps of vegetation indices were computed in Python, by forming linear

combinations and ratios of sums and differences in the multispectral reflection. In addi-

tion,3D models and Digital Surface Models (DSM) of the area were calculated from RGB

images using Pix4D, which were used to indicate plant height. All cameras and sensors

were mounted on a light Unmanned Aerial Vehicle (UAV). Images were taken throughout

the season of growth at regular intervals.
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The time series of the vegetation indices showed peak values during the period of grain

filling before declining when plants approached maturity. Values where slightly higher for

wheat plots that received a higher dose of fertilization throughout the season of sampling.

By combining the digital measurements with manual measurements of grain yield, kernel

weight, and plant height, the statistical significance of separating cultivars is explored.

Keywords: multispectral imaging, vegetation, vegetation indices applications, precision

farming, UAV
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Chapter 1
Introduction

To meet an increasing demand for food production, the Norwegian government have

stated their goal to increase the national food production by 20% within 2030 (Landbruks-

og matdepartementet, 2012). In the purpose of achieving the stated goal a comprehensive

effort in scientific research is needed to ensure enough safe food. With cereal playing a

key role as food and fodder for livestock, and world trends for total crop yields ceasing to

improve, stagnating or collapsing (Ray et al., 2012), development of knowledge in crop

potential and grain yield (GY) is desired.

Traditional methods for inspecting physiological traits and behavior of crops is time con-

suming and labor intensive. Earlier technologies for agricultural purposes aimed to ease

labour intensive work, like tractors with computer vision (Rovira-Más et al., 2003) and

smart, self driving tractors (CEMA aisbl - European Agricultural Machinery, 2017), en-

ables the farmer to invest more time in surveying crops and planning of treatments. Imple-

menting ”Big Data”-analysis can further contribute to technological progress in farming

through the internet of things (Wolfert et al., 2017).

Remote sensing methods like multispectral imaging from unmanned aerial vehicles (UAV)

(Haghighattalab et al., 2016; Tattaris et al., 2016; Montesinos-López et al., 2017; Bleken,

2017) provides a none destructive approach to examine cereal properties. Methods for

estimating plant temperatures from infrared radiation and water concentration in plants

(Peñuelas et al., 1997; PEñUELAS et al., 1993; Tattaris et al., 2016) have been examined,

1



Chapter 1. Introduction

as well as usage of RGB-images to estimate plant height (PH) and biomass (Bendig et al.,

2014). These methods for observing crops will benefit the farmer in in-season treatment

of growth, moreover providing a platform for high-throughput phenotyping (HTP) for

plant breeders (Tattaris et al., 2016; Haghighattalab et al., 2016; Sankaran et al., 2015b,a;

Montesinos-López et al., 2017). This allows breeders to evaluate a range of different traits

for a large numbers of different cultivars in a fast and cost effective manner (Araus and

Cairns, 2014). By using remote sensing and HTP methods breeders can select genotypes

in earlier generations and thereby accelerate genetic gains by shortening the breeding cy-

cle (Crossa et al., 2011).

The purpose of this thesis is to contribute to the understanding of HTP and the complex-

ity of its methods by studying data collection from UAV. This thesis will ponder upon

methods to obtain the spectral signature of cereal and furthermore explore correlations

between the spectral signatures and admired traits, in order to help plant breeders in ex-

ploration of future cultivars. Two known vegetation indices will bi investigated, namely

the MERIS Terrestrial Chlorophyll Index (MTCI), related to chlorophyll content (Zhang

and Liu, 2014), and the Normalized Differential Vegetation Index (NDVI), first proposed

by Tucker (1979) to be a mean of estimating biomass, but later shown to be related to

the concentration of nitrogen and biomass (Gamon et al., 1995), to examine their relation

to GY. A method for estimating plant height through a digital surface model (DSM) will

be discussed. All three attributes, the two indices NDVI and MTCI, and the DSM, are

produced from images acquired with an UAV, and later put together in a image-stitching

software.

This thesis is a contribution to an on-going project called vPheno (viritual phenomics)

started may 1st 2017. However, pilot studies have been conducted at NMBU from 2016

(Burud et al., 2017; Bleken, 2017). This thesis will utilize some of the same methods as

Eivind Bleken showed in his thesis (Bleken, 2017), to further investigate the correlations

of mentioned vegetation indices to characteristics and traits of different cultivars. For this

thesis, two different test sites was examined. One site containing 301 relatively new breed

lines of different cultivars and one smaller site containing 24 historical cultivars.

2



The key questions for this thesis to answer will be:

1. Will NDVI and MTCI measured on different times through the season correlate

with GY?

• Is there other manual measurements that will correlate with NDVI or MTCI?

2. Given correlations exists, will the correlation of NDVI and MTCI to GY differ

between historical and young breed lines?

3. Will computer estimated plant height reflect manual measured plant height?

3
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Chapter 2
Background and Theory

Before elaborating on methods to obtain the different vegetation indices and how their

hypothetical correlation regarding different traits, this chapter will present a brief history

on how the indices came to be, the utilization of them and the underlying theory on how

the vegetation indices hypothetically relate to the traits.

2.1 Plant growth and health

The growth process of spring wheat can be described in stages. Zadoks et al. (1974)

proposed a decimal code for distinguishing the different stages of growth. The Zadoks

code is one of the most universally accepted systems (Simmons et al., 1995) with primary

stages and sub stages, called secondary stages, presented in Table 2.1 with primary stages

only. Germination, stage 0, starts as soon the seed is sowed followed by leaf development

in stage 1. Stages 2, 3 and 4 recognized by elongation and further leaf development before

head emerges in stage 5 and pollination in stage 6. The wheat plant is then going through

grain filling and ripening the following weeks. It is denoted by Zadoks code as stages 7,

8 and 9. Through grain filling the moisture of the kernel decreases as the grain dry weight

increases, going from milky to doughy, to hardened in the ripening season with maximum

grain weight when moisture percentage is between 30 and 40 percent.

70 to 90 percent of the final grain yield is produced by photosynthates, products of photo-

synthesis, during grain filling (Simmons et al., 1995). Knowing chlorophyll is important

5



Chapter 2. Background and Theory

Table 2.1: Growth stages of spring wheat described by the Zadoks code.

Zadoks code Growth stage

0 Germination
1 Seeding development
2 Tillering
3 Stem elongnation
4 Boot
5 Head Emergence
6 Flowering
7 Milk development
8 Dough development
9 Ripening

for photosynthesis (Mauzerall, 1976) gives incentives for studying chlorophyll content

during the different stages of growth, especially the process of grain filling.

2.2 Reflection

When materials is exposed to electromagnetic radiation, the radiation is transmitted, re-

flected or absorbed depending on the nature of the given material. In plant leafs this is

depending on the leaf surface properties, internal structure and biochemical components.

Plants vary their sensitivity and absorption of electromagnetic radiation of different wave-

lengths. This varies with growth stage of the plant, but more importantly with the health

of the plant (Peñuelas and Filella, 1998). By exploiting the difference in reflection in

light, indices can be applied in order to classify vegetation from soil, moreover distin-

guish unhealthy plants form healthy ones.

One of the first utilization of these differences in reflectance was done by Rouse Jr et al.

(1974), who applied calculations of the ratio between reflectance in near infrared (NIR)

and RED from satellite images to survey areas of high vegetation density. A large vari-

ation on vegetation indices from satellite images was explored in the following years to

study their correlations to biomass, water- and chlorophyll content (Tucker, 1979). In later

years, use remote sensing in agriculture applications have increased (LeBoeuf, 2000). Ex-

ploration of UAV to serve as platforms in agricultural use has lead to reduced costs and

6



2.2 Reflection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

400 500 600 700 800 900

R
ef

le
ct

an
ce

Wavelength [nm]

G
re

en

R
ed

N
IR

R
ed

-e
d

ge

Stressed PlantHealthy Plant Soil

Visible

Figure 2.1: The reflectance of electromagnetic radiation from vegetation and soil.

increased resolution of images.

Perry Jr and Lautenschlager (1984) described the reflection signature of vegetation, Fig-

ure 2.1. The different amount of reflection in different spectral bands gives opportunity to

form vegetation indices based on combinations of the response in the spectral bands. Fig-

ure 2.1 describes the amount of reflected radiation for healthy plants (green line), stressed

plants (yellow line) and soil (brown) in the range of visible light to near infrared.

2.2.1 Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is calculated by subtracting the

reflectance in the RED band from the reflectance in the NIR band. This difference is

further divided on the sum of the two giving the index

NDV I =
NIR−RED

NIR +RED
(2.1)

where NIR is the reflectance in the NIR band and RED is the reflectance in the RED band.

The NDVI will alvays be between -1 and 1.
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Chapter 2. Background and Theory

NDVI will have high values, near 1, for healthy vegetation, and NDVI values for soil

engages positive values close to zero. In this way, NDVI will be a good feature for distin-

guishing between vegetation and soil.

2.2.2 MTCI

As an indicator for chlorophyll content, studies have shown that the position of the maxi-

mum slope of the curve for reflected light, called red edge (REG), in relation to the reflec-

tion of light in RED- and NIR-band, is related to the concentration of chlorophyll (Dash

and Curran, 2004). Dash and Curran (2004) proposed an index for estimating chlorophyll

content and through it monitoring plant health. The MERIS Terrestrial Chlorophyll Index

(MTCI) was derived as

MTCI =
NIR−REG

REG−RED
(2.2)

where where NIR is the reflectance in the NIR band, REG and RED is the reflectance in

the REG- and the RED band respectively.

2.3 Acquiring images

2.3.1 Multispectral Cameras

There is a range of techniques for sampling multispectral images (Hagen and Kudenov,

2013). Due to different wavelength having different refraction in transparent or translu-

cent materials, lenses and mirrors can be used to split different wavelength onto different

photo sensors. Another technique is using photocells combined with filter, making the

camera sensible only for a small range of wavelengths.
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Camera Camera

Overlap

Figure 2.2: Acquiring images for photogrammetry purposes requires images to overlap.

2.3.2 Photogrammetry

To build 3D models and precise orthomosaic images, images acquired need to have high

percentage of overlapping area. For sufficient accuracy, images should have at least 50-

60% overlap. Both orthomosaic images and 3D models will have higher precision the

more keypoints, i.e. points in different images recognizable from the same point on the

target. Figure 2.2 is a schematic figure displaying the camera positions for two images.

The target, represented by one single canopy of wheat, will have distinguishable points in

both images taken. These points are used to construct a 3D mesh, which in turn are to be

filled by fragments of the raw images in between the keypoints.

2.3.3 Shadowing

Image acquisition from UAVs call for homogeneous weather conditions with continuous

lighting. Flying in weather with spars clouds can result in images with various illumi-

nation not corrected for. Small clouds could cast shadows upon the target without the

shadow falling on the irradiance sensor (Figure 2.3). This undesirable effect is more

prone to occur for the UAV flying at higher altitudes.
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Camera

Irradiance sensor

Figure 2.3: Whether with sparse cloud cover can result in images not corrected by the irradiance
sensor, hence the sensor will not detect relatively small shadows.

2.4 Statistics

The plants examined in this project was planted in a alpha lattice split plot design, mean-

ing that cultivars are planted in columns, there are six columns per block. There were

four blocks for each level of fertilizer. And the whole set up was replicated. This maxi-

mizes the possibilities to study the differences between cultivars within the two levels of

fertilizer. The model that was tested stated that trait was dependent on the cultivar, the

level of fertilizer, and the interaction between the two. The SAS software (code given in

appendix) calculated the least square mean for the specific cultivar, and the least square

mean for the specific cultivar given a level of fertilizer.

PCA

To explore correlations between traits this thesis will utilize Principal component analysis

(PCA) (Esbensen et al., 2002). The PCA usually use terms as objects and variables as
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ab

c

PC2

PC1

Figure 2.4: Principal components 1 and 2 (PC1, PC2) in relation to data points distributed across
the abc-room.

two essential describing features of the PCA. The object is a vector with values for every

measured variable. This is directly applicable to the data in this thesis. The different cul-

tivars serves as the objects, as they have values for every trait, which will be the variables

of the PCA.

The set of data points can be so large that it gets unpractical to list it as a table in or-

der to read interesting information from it. In the nature, different variables often have

something in common. Information about one variance can often give information about

the other. For instance, tall people tend to have larger shoes than shorter people. In this

thesis, measurements of a cultivars height and the weight of that cultivars grains will, like

the shoe size of tall people, hold some information about the other one. This information

is then redundant. By creating a new characteristic based on a linear combination of the

two, the PCA will combine every trait in data set and eventually create a characteristic as

a linear combination of all traits. The characteristic will describe maximum variation for

the hole set of observations. This characteristic which maximizes variance across the data

is named principal component 1 (PC1). The next principal component, PC2, lies orthogo-

nal on PC1 and in the direction of the second largest variation in the data. A visualization

of the two is given in Figure 2.4.

Every PC is constructed from a linear combination of the unit vectors. The coefficients
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of in the linear combination are called loadings. It is the same number of coefficients for

each PC as there are unit vectors. The loadings of all the PCs constructs a transformation

matrix between the original space onto the space spanned by the PCs. The loadings

holds information about the relationship between the PCs and the original space. It is the

loadings plot that is to be examined to investigate the correlation between different traits.
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Chapter 3
Method

This chapter will describe the materials for this thesis, as well as present the methods used

to obtain data from the data. This includes wheat field growing conditions, gathering of

image data, initial image processing and software algorithms for analysis. Furthermore

describe how the acquired data was analysed.

3.1 Test site

The study site is located at Vollebekk Research Farm, Figure 3.1, near the Norwegian Uni-

versity of Life Sciences (NMBU) in Ås, Akershus, Norway (59°39’N 10°45’E). There is

situated two experimental sites on the research farm. The two sites have different breed

lines of cultivars planted. One relatively large site, with technical name 17CMLGI1, con-

taining 301 different breed lines planted may 4th. 2017, in two replicates with the same

amount of fertilizer in both replicates. The smaller site, with technical name 17BML-

ROBOT1, contains 24 historical spring wheat cultivars, and was planted may 24th. 2017.

The test field was split up in four segments, two for each fertilizer level of 15 kg daa-1

Nitrogen and 7.5 kg daa-1 Nitrogen. The two levels of Nitrogen fertilizer will be described

in this thesis form this point on as 15 kg daa-1 and 8 kg daa-1. Both sites was planted in a

alpha lattice split plot design.

The two sites will be referred to as site A, for the larger 17CMLGI1-field, and site B for

13
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Site B

Site A

NMBU

17CMLGI1

17BMLROBOT1

Figure 3.1: The two fields are situated at Vollebekk Research farm west of NMBU, about 35 km
south of Oslo, Norway.

the smaller 17BMLROBOT1-field.

Table 3.1 shows an overview of the field design of site B. In this alpha lattice split plot

design each field plot is labelled after their name, fertilizer level and replication i.e.

Name Fertilizer-level Replicate. On site A (Figure 3.2), field plots is named

Name Replicate due to no difference in fertilizer. The statistical model tested for Site

A was that trait was dependent of breed lines only.

Besides having these distinct names, every field plot is assigned a four digit identification

number unique for every position in the test field. This number, ranging from 1101 to

3028 for site A, and from 1101 to 1812 in site B, contains information on what column

and row a given field plot is situated. In Table 3.1 Bastian 15 1 in the upper right

corner is given the identification number of 1101, likewise Bastian 15 2 in the lower

right corner of Table 3.1 is given the number 1812. These 96 field plots makes up the

set of cultivars to examine. There were planted two additional barrier columns in site B

on each side to shield from environmental stress factors. On site A border columns was

placed on each side, as well as two border columns in the middle.
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3.1 Test site

Table 3.1: The test site B with the 96 field plots schematically shown together with their respective
replication number and fertilizer level. Border field plots are not included. The schematic layout
in this figure is tilted about 60°counter clockwise from its actual situation at Vollebek Research
Farm.

Rep. 1 Rep. 2
15 kg Nitrogen daa-1 7.5 kg Nitrogen daa-1 7.5 kg Nitrogen daa-1 15 kg Nitrogen daa-1

Bastian SW11011 Rabagast Bjarne Rabagast Avle GN11644 Arabella
GN13618 Runar SW21074 SW11230 SW11011 Demonstrant GN10521 Zebra
Mirakel SW01074 GN10521 Demonstrant Bastian GN11644 Rabagast SW11230
PS-1 SW11230 SW11011 Reno Reno Polkka Mirakel Runar
GN11542 Polkka Arabella Polkka Runar Arabella SW01074 Tjalve
Arabella Krabat Krabat GN11542 Tjalve GN13618 Bjarne Demonstrant
Avle GN10637 Mirakel GN10637 PS-1 SW21074 Reno Krabat
SW21074 GN10521 Runar Tjalve GN10637 Krabat Avle GN10637
Rabagast Zebra GN11644 Avle Seniorita Zebra PS-1 Seniorita
Seniorita GN11644 Zebra PS-1 GN10521 GN11542 SW11011 Polkka
Bjarne Tjalve Seniorita SW01074 Bjarne SW01074 SW21074 GN11542
Demonstrant Reno GN13618 Bastian SW11230 Mirakel GN13618 Bastian

Figure 3.2: Field leyout of Site A, 17CMLGI1.
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Treatment of herbicides and fungicides was applied. Manual measurements of days to

heading (DH), days to maturity (DM) was carried out through the season. Plant height

(PH) was measured as the cultivars reached maximum height in late season. Following

maturing the test field was harvested and the two parameters; hectoliter weight (HLW)

and 1000-kernel weight (TKW) was measured for site B. On site A was plant cover mea-

sured. For Both sites was grain GY measured.

3.2 Sampling

To collect images for this thesis a unmanned aerial vehicle (UAV) was used, carrying a

Parrot Sequoia multispectral camera and a irradiance sensor. The camera was mounted

on the UAV facing downwards, and the irradiance sensor mounted on top of the UAV.

The multispectral camera had five lenses, collecting RGB-images as well as images in the

spectral bands of green (550 nm), RED (660 nm), REG (735 nm) and near infrared (790

nm), resembling the specral bands precented in 2.1. The bandwidth of the image bands

was 40 nm for bands green, RED and NIR, and 10 nm for REG, making the REG band the

highest defined band. Images can be seen in Figure 3.3. Each of the images taken with

the four spectral bands lenses had an image resolution of 1.2 mega pixels (Mpx). The

RGB-camera produced images of 16 Mpx resolution. The irradiance sensor had filters for

detecting the amount of incoming radiation in the mentioned four spectral bands from di-

rect light from the sun or diffuse light from cloudy weather conditions. This allows every

image to be automatically corrected for illumination differences. Once the camera and

irradiance sensor was mounted and the UAV ready, the cameras were set to take images

automatically at a given pace of three images every two seconds. The cameras was set to

record while the UAV was still on the ground. This resulted in images taken in a range of

heights as the UAV was ascending and descending.

To secure correct identification by the image processing software ground control points

(GCP) where laid out in the test field. The GCPs, seen in Figure 3.4, was placed in each of

the four corners of site B, and an additional GCP in the top center of site A. Additionally
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(a) (b) (c) (d) (e)

Figure 3.3: Parrot Sequoia captures one RGB image 3.3a and four images for different spectral
bands green 3.3b, RED 3.3c, REG 3.3d and near infrared 3.3e

(a) (b)

Figure 3.4: Two types of ground control points (GCP) was used. One with a easily defined center
depicted by a cross 3.4a, and one with a circle 3.4b.

to ease image processing, these GCPs was helpful in aligning image series throughout the

season.

In an event of the irradiance sensor not function properly, a calibration target, or a Cali-

brated Reflectance Panel (CRP), Figure 3.5, was included in the field images. The CRP

used was produced by MicaSense (MicaSense, 2018a) had a QR-code for image process-

ing software readability and an area of known reflectance. The exact value for reflectance

is confidential and are provided by MicaSense upon inquiry.

(a) (b) (c) (d)

Figure 3.5: The image calibration panel depicted in four images for different spectral bands green
3.3b, RED 3.3c, REG 3.3d and near infrared 3.3e. The uniform area next to the QR-code is the
area of known reflectance.
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3.3 Pix4D

The image processing software used in this thesis was Pix4D. Pix4D is a commercial im-

age processing software specialized on solutions for surveying, construction, real estate

and, for our need, agriculture. In this section, an exemplification for using Pix4D for

agricultural purposes will be described by step-by-step approach.

3.3.1 Start Project

To process images from a flight into GeoTIFF images, a new project is initialized. After

giving the new project a describing name, the program calls for images to process. Here

is all images, like shown in Figure 3.3, for for a flight uploaded, including radiometric

calibration images, Figure 3.5. Note that images from different flights may cause distur-

bance in triangulating images if images form the two flights do not overlap sufficiently

(Pix4D, 2018b). The software will not process RGB-images and multispectral images

simultaneously. They are to be processed separately.

Exif data (the metadata) for every image is read and the user is requested to remove im-

ages with invalid Exif data. In the following step, the user is allowed to inspect what Exif

data is obtained from the uploaded pictures. Images taken in different heights, e.i. whilst

the UAV is ascending og descending, are favourable to remove during this step.

Pix4D is already tailored for agricultural use and thus the software have templates for

further processing options. Large GeoTIFF files, over 5000 pixels in any direction, will

be segmented into tiles less than 5000 pixels in both directions. These tiles can be merged

in Pix4D.

3.3.2 Radiometric Calibration

When loading acquired images from the field into Pix4D, images of the radiometric CRP

can be included. The software is programmed to automatically detect target plates from
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Figure 3.6: The flowchart describes the process flow of processing images in Pix4D with foresight
on agricultural applications.
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(a)
(b)

Figure 3.7: Manuel radiometric calibration of images in Pix4D requires the user to upload a band
image of the CRP 3.7a, and enter the albedo for that specific target. After repeating the process
for all multispectral bands, successful calibration will be shown by green check marks 3.7b.

certain producers Pix4D (2018a). For the target used in this thesis, which was manufac-

tured by MicaSense, automatic detection was inoperative. Successful calibration of the

multispectral images required manual calibration by uploading images of the radiometric

CRP in actual spectral band and by cursor clicks mark the region of known reflectance to-

gether with its value, known as albedo (Figure 3.7a). Successful calibration will be shown

by green check marks 3.7b. Images acquired whith irradiance sensor, but processed with-

out calibration will not be as accurate as needed for scientific research (MicaSense, 2018b;

Tudor, 2018)

3.3.3 GeoTIFF Stitching

After successful calibration, the software is ready to start stitching images from the field

together by triangulating points in between overlapping images. This produces a ”ray-

Cloud”. The rayCloud gives the user options to alter and give additional input to aid

rematching wrongly triangulated image points. The user can specify manual tie points

(MTP), Figure 3.8. The user is requested to mark points in raw images, lower right corner

of Figure 3.8, witch matches up to the same point in the field.
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Figure 3.8: Screenshot from Pix4D during making of maunal tie points (MTP).

After marking an adequately number of MTPs, the rayCloud is updated by the user click-

ing ”Rematch and optimize” in the top left corner of Figure 3.8. This will present a new

rayCloud. If the result is not satisfying, applying additional MTPs will help.

For larger projects where images is acquired from several flights, MTPs can be used

to merge projects for better accuracy. This is done by identifying one particular MTP

occurring in different flights by the same label, option seen in top right corner of Figure

3.8.

When the rayCloud is constructed free for anomalies, the groundwork for an acceptable

GeoTiff image is done. The GeoTIFF, seen for the two fields are shown in Figure 3.1. The

image is a constructed image of the whole area from where the UAV have captured the

uploaded images. The software then produces reflectance maps for each spectral band,

and index maps for defined indices. In Figure 3.9 NDVI vaulues are displayed. The user
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Figure 3.9: Index map in Pix4D. This index map shows NDVI values for one date used during
this thesis.

is allowed to specify the range of pseudo colors used. Images can be exported to their

respective project folder.

3.3.4 Digital Surface Model - DSM

Pix4D produces a visual representation of every pixels height over main see level (MSL).

This image takes in consideration the global position system (GPS) data from the irradi-

ance sensor, and triangulates the position for pixels. Images with higher resolutions will

provide a more detailed DSM. For this purpose, the RGB images, which had a resolution

of 16 Mpx, where used.
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3.4 Data Extraction

3.4 Data Extraction

To extract the sought data from the reflectance maps, Gunnar Lange, developed a graph-

ical user interface (GUI) for extracting data form the different spectral band GeoTIFF

images. The software reads the different spectral images as numpy arrays (The SciPy

community, 2018a). The user of the software is requested to mark every field plot by four

cursor clicks defining the area of sampled values. The sampled values is extracted from

the respective spectral image and calculated by the equations 2.1 and 2.2 presented on

page 7. The work flow of this software is pipelined and well described by the software

user guide (Hykkerud, 2017).

3.4.1 Field Plot Segmentation

Creating an image segmentation containing one square for every field plot using the GUI

of Lange’s software is a time consuming and demanding process. An alternative way for

producing sought mask was briefly explored in this thesis. By exploring scipy-package

ndimage. An incomplete psudocode for this attempt is presented in Listing 5.8 (com-

plete code given in appendix). Different combinations of spectral bands from both RGB

images, which had greater resolution, and from multispectral images was tested. Listing

5.8 presents utilization of NDVI image because of its high contrast between vegetation

and soil (Rouse Jr et al., 1974). Manual values for thresholds was determined from visual

inspection of the image histogram. Further was ndimage.binary fill holes ap-

plied for making full masks.

Listing 3.1: Making a mask for data extraction.

img = g d a l . Open ( ’ NDVI image name ’ ) . ReadAsArray ( )

h i s t , b i n e d g e s = np . h i s t o g r a m ( ndvi , b i n s =80)

b i n c e n t e r s = 0 . 5 * ( b i n e d g e s [ :−1] + b i n e d g e s [ 1 : ] )

p l t . p l o t ( b i n c e n t e r s , h i s t )

b i n a r y i m g h = ndv i > h i g h t h r e s h o l d

b i n a r y i m g l = ndv i < l o w t h r e s h o l d

b i n a r y i m g = np . i n v e r t ( b i n a r y i m g h + b i n a r y i m g l )
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p l t . imshow ( b i n a r y i m g )

f i l i m g = ndimage . b i n a r y f i l l h o l e s ( b i n a r y i m g )

p l t . imshow ( f i l i m g )

3.5 Handling of Height values

3.5.1 Height data extraction

An extension to the software for extracting height values for the field plots is made during

this thesis. The extension is written on a duplicate of Gunnar Lange’s Python script. This

allows a fast extraction of data for every field plot in the field, over longer time series.

The height values is given from the DSM as meter over mean sea level, so an conversion

algorithm to present the plant height (PH) in comparable units was made. Bleken (2017)

proposed a simple, yet effective method for convert DSM values into PH in his thesis.

Eivind Bleken proposed to sample DSM values in between rows and columns and thus

creating a regression model of the ground to subtract from the DSM values for the field

plots.

In this thesis a mehtod similar to that Bleken (2017) proposed was used. Using the ex-

tension to Lange’s software enables extracting values in between rows for DSM images

throughout the season. The areas to serve as ground reference, shown in Figure ??, are

sampled in between rows at three points for every gap between the rows.

Python Code

The code in Listing 3.2, which is a snippet from the total code, describes the regression

of ground sample values. It itterates though the eight rows making a new regression line

for each row. The test field had 16 columns, included two border columns on both sides.

Ground height samples was carried out just outside column one, between column eight

and nine and just outside column 16. The positions across columns for ground samples

is then 0.5, 8.5 and 16.5 in values of column number. The height value for sampled

point in the gap north of, and south of given row is then averaged in order to estimate
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Figure 3.10: The image is a product of Lange’s software. The small areas serving as ground
reference for calculating PH. The background is the produced DSM image from Pix4D, where the
interval from lowest to highest pixel value is a rather small range of under 10, making the image
difficult to see due to low contrast. Axis is referring to pixel coordinate.
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Figure 3.12: A visualization of how ground reference points are measured in the suggested height
adjustment regression. The curvature of the ground (brown) is hypothetical, probably exaggerated.
Illustration of wheat plants is downloaded from www.pngimg.com.

the height at the ground the plant actually grows. Furthermore when all necessary values

are collected, a regression model is fitted by numpy.polyfit. The polyfit function

returns a numpy.array whose elements are the polynomial coefficients for the least

square polynomial fit (The SciPy community, 2018b). The element named row data is

a pandas.DataFrame (Pandas, 2018) holding information about ground height mea-

surements for all 27 ground samples in rows and date of the DSM as columns, named

sample.

Listing 3.2: Regression line from ground height samples.

f o r row number in range ( 8 ) :

g r o u n d m e a s u r e c o l u m n s = np . a r r a y ( [ 0 . 5 , 8 . 5 , 1 6 . 5 ] )

g r o u n d m e a s u r e h e i g h t = np . a r r a y ( (

( r o w d a t a [ sample ] [ row number +1]+ r o w d a t a [ sample ] [ row number + 2 ] ) / 2 ,

( r o w d a t a [ sample ] [ row number +10]+ r o w d a t a [ sample ] [ row number + 1 1 ] ) / 2 ,

( r o w d a t a [ sample ] [ row number +19]+ r o w d a t a [ sample ] [ row number + 2 0 ] ) / 2 ) )

g r o u n d h e i g h t r e g r e s s i o n = np . p o l y f i t ( g round measu re co lumns ,

26



3.5 Handling of Height values

g r o u n d m e a s u r e h e i g h t , 1 )

The height value for the field plots are adjusted accordingly to the regression model by

the code listed in Listing 3.2, for each row. A snippet from the code adjusting PH is

listed in Listing 3.3. This snippet is placed inside the for loop of Listing 3.2, making

the next for loop iterating through the field plots in the specific row. The element named

height data is a pandas.DataFrame with ’ID’ as the place identifier described

in Section 3.1.

The four digit place identifier holds information about row and and column of the field

plot, consequently suitable for calculating the adjusted height. The last two digits in the

identifier makes up the column number of its field plot. The adjusted data is then cal-

culated by subtracting the value from the rows regression model from the obtained value

from the DSM. Note that regression slope, denoted by ground height regression[0],

is multiplied by the column number plus two. This is to take in to account the two border

rows in the test field, both not given identification numbers. Please be advised that the

codes listed in listings 3.2 and 3.3 have lines omitted for presenting purpose. Complete

code is given in appendix.

Listing 3.3: Adjusting PH values by regression.

f i r s t s q u a r e i n r o w = 16* row number

l a s t s q u a r e i n r o w = 16 + (16 * row number )

f o r k , f i e l d I D in enumerate (

h e i g h t d a t a [ ’ ID ’ ] [ f i r s t s q u a r e i n r o w : l a s t s q u a r e i n r o w ] ) :

d i g i t f o r c o l = i n t ( s t r ( f i e l d I D ) [ 2 : ] )

v a l u e f r o m d a t a = h e i g h t d a t a [ s t r ( sample ) ] [ squarenumber +1]

a d j u s t e d d a t a = v a l u e f r o m d a t a − (

g r o u n d h e i g h t r e g r e s s i o n [ 0 ] * ( d i g i t f o r c o l +2) +

g r o u n d h e i g h t r e g r e s s i o n [ 1 ] )

The code for adjusting plant heights was written to be applied on all data obtained from

all dates where images was acquired. The code gave reasonable values for PH only for

images from August 1st.
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3.5.2 Visualization

For simple visual inspection of the computer estimated heights a 3D scatter plot and a

3D bar diagram was used. Python package matplotlib provides possibilities for easy

plotting in thee dimensions (John Hunter and Darren Dale and Eric Firing and Michael

Droettboom and The Matplotlib development team, 2018).

3.6 Statistical Analysis and PCA

As described in Section 3.1 the test site was lied out in an alpha lattice split plot design.

This allows the SAS program to perform statistical analysis of variances using the mixed

procedure (PROC MIXED). The SAS code, which is included in appendix, produces least

square means for three groups. Namely the 24 cultivars and one group for the interac-

tion between the cultivars and the fertilizer level for both 8 and 15 kg of nitrogen per

daa. The code additionally produced p-values for the null-hypothesis to be true. The null-

hypothesis being that there are no difference between the elements within a group. A low

p-value can show significance for the findings and thereby rejecting the null-hypothesis.

The least square means was calculated for all manually measured heights, including PH,

TKW, HLW, DH, DM and GY. Furthermore, least square means for the vegetation indices

obtained by the remote sensing apparatus was calculated as well.

Gao et al. (2017) showed that PH is significantly negative correlated to GY and chloro-

phyll content. Vegetation indices like NDVI and MTCI as means of characteristics for

chlorophyll content have shown positive correlation against GY (Zhang and Liu, 2014).

Therefor, like Bleken (2017) introduced in his thesis, two parameter which hypothetically

correlates with GY was examined. That is dividing cultivars NDVI and MTCI values on

their respective value for PH. The parameters where denoted

NDV I × PH−1 =
NDV I

PH
(3.1)

where NDVI is the Normalized Differential Vegetation Index, PH is the plant height [cm]

and NDVI× PH−1 [cm−1]. Likewise for
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3.6 Statistical Analysis and PCA

MTCI × PH−1 =
MTCI

PH
(3.2)

where MTCI is the MERIS Terrestrial Chlorophyll Index, PH is the plant height [cm] and

NDVI× PH−1 [cm−1].

To trace indications of other parameters to correlate either positive or negative, a simple,

yet effective, principal component analysis (PCA) tool called Hoggorm, visualized by

Hoggormplot, both developed by Tomic (2018). The PCA used in this thesis follows

Oliver Tomic’s example on sensory data. For revealing variance in traits of small varia-

tions, the data of the traits for this thesis was centered and normalized by subtracting the

mean value and dividing by the standard deviation within each trait, before performing

PCA.
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Chapter 4
Results and Discussion

This chapter will present the findings of the methods used in this thesis. After preparing

the material for data extraction, organization of the data found, an interpretation of the

findings will follow as an discussion. This thesis, being of an exploratory character, will

discuss findings as they are presented.

Due to difficulties in calibrating multispectral images and lack of complete orthomosaic

resulted in few dates with valid data for site A. As a result of this, this thesis will focus on

data from site B.

4.1 Measurements

4.1.1 NDVI and MTCI

The indices calculated from equations 2.1 and 2.2, for NDVI and MTCI respectively, pro-

duced values presented in Figure 4.1 for site B. It shows NDVI values to hold maximum

values between day 36 and 54. Comparing with manually measured number of days to

heading in range from 47 to 55. This suggest that NDVI values are high in the heading

stage, stage 5 in the Zadoks code 2.1, and the flowering stage, which usually occur 10

days after heading stage (Simmons et al., 1995). The data for MTCI values show a clear

peak on day 69, (1st of august). This is within the last stages of milk and dough develop-

ment. As mentioned in section 2.1, high chlorophyll content in these stages is important

for final grain yield. MTCI, as an indirect measurement of chlorophyll content, showing
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Figure 4.1: Extracted values for MTCI (top) and NDVI (bottom).

high values may predict high grain yield.

The variation in MTCI in Figure 4.1 is more spread out than values for NDVI. Examining

Figure 4.2 and Figure 4.3 shows that the different fertilizer levels is an important contrib-

utor to this. This speaks for involving REG band in VI calculations to show differences,

hence it may better monitor this difference.

Figure 4.3 shows the same data as Figure 4.1, only split into the field plots treated with

different level of fertilizer. The differences in values are most clear for MTCI, having far

greater values for high level of fertilizer. This is especially clear in the spike seen on day

69 in stage 7 and 8 of the Zadoks code. The differences in NDVI values between the two

fertilizer levels is more subtile compared with the differences in MTCI values. Closer

studies of the differences for each cultivar, Figure 4.4, show a slightly higher NDVI value

for the higher level of fertilizer.
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4.1 Measurements

Figure 4.2: Index maps for MTCI (top) and NDVI (bottom) in the period of heading through grain
filling.

4.1.2 Estimation of plant height

As described in section 3.5.2, a simple scatter plot in three dimensions, Figure 4.5c, pro-

vided an easy way to evaluate data for further analysis. It showed that only DSM from

August 1st was a complete data set. It was a serendipity that manual measurements of

PH was done on 4th of august. This allowed direct comparison between the computer

estimated, Figure 4.5b, and the manual measured PH, Figure 4.5a.

As ripening stage approaches, PH is not changing significantly. The short time between

manual measurement and DSM acquirement being nearly optimal for comparison. Ob-

serving the Figures 4.5a and 4.5b one can see that the computer estimated PH is about

0.1 to 0.2 meters lower compared to manually measured PH. By subtracting the computer

estimated PH value for a field plot from its respective manual measured PH an estimation

error plot can be shown (Figure 4.5d). From the error plot, Figure 4.5d, a slight arc across

columns can be extracted. This might be a result of the method in which ground height

was sampled. Figure 4.6 shows DSM values for PH, in addition to ground sample points

and linear regression for the ground in row 18 (furthest north). Note the regression line,

which holds the value to subtract from the PH DSM value, lying above the center ground

sample point and under both side points, resulting in an higher value to subtract for ad-

justing PH than the center ground sample would suggest, thus a higher error (Figure 4.5d)

at the center of rows.
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Figure 4.3: Extracted values for MTCI (top) and NDVI (bottom) split into cultivars treated with
8 kg/daa 4.3a and 15 kg/daa 4.3b of Nitrogen
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Figure 4.4: Extracted values for MTCI (top) and NDVI (bottom) for cultivar GN10637.

A solution to encountering different errors across columns may be to use a greater number

of ground sample points, like Bleken (2017) proposed in his thesis. In fact, when using

more points to sample ground height, there will be a possibility to apply a polynomial

regression to estimate the ground height where the field plot is planted.

Correlation between the least square means of the manual measured cultivar heights to

the computer estimated heights was -0.376. This means that the method for computer

estimated height does not reflect the actual height of the cultivars. Bendig et al. (2014)

found correlations between manual measured and computer estimated heights as high as

0.92. Such high correlations was obtained by creating a model of the ground height before

plant growth.

4.2 Statistical Analysis
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(a) Manually measured (b) Computer estimated

(c) Scatter plot (d) Error

Figure 4.5: Manually measured 4.5a from 4th of august and computer estimated 4.5b heights
for 1st of august. The scatter plot 4.5c as described in section 3.5.2. Direct difference between
measured and estimated PH in subfigure 4.5d.
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Figure 4.6: Regression line, GRE, made from three ground sample points, red, for each row,
together with DSM values of PH obtained 1st of august.
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4.2.1 P-values and Least Square Means for Traits

As described in section 3.6, statistical analysis using PROC MIX in the SAS software

was applied. The output from this method provided p-values. The p-value is the prob-

ability finding values that are equally or more extreme than the values observed, given

that there is no difference in trait for group sampled. The three groups where culti-

vars, the level of fertilizer and the interaction between fertilizer level and cultivar. With

the model presented in section 2.4 in mind, this reads that the p-value in group e.g.

Cultivar × Nitrogenlevel for a trait e.g. GY is 0.0002 (from Table 4.1. This means

that, since the p-value <0.05, one can say that there is a significant difference in GY for

all cultivars given either of the two levels of fertilizer. P-values for the five manually

measured traits included in this thesis is presented in Table 4.1. All traits, besides DM,

show significance for the cultivar group. For the other two groups, fertilizer level and

interaction between cultivar and level of fertilizer, only GY for interaction group shows

significance. However GY for fertilizer and TKW for interaction both have p-values right

above 0.05 serving as the cut off value.

The SAS-code produced least square means for the three groups. The least square means

for the five manually measured traits for site B is presented in Table 5.4 for cultivar group,

Table 5.5 for cultivars given 8 kg/daa Nitrogen of fertilizer and Table 5.6 for cultivars

given 15 kg/daa Nitrogen of fertilizer.

For site A, there was no different fertilizer level hence only one group of candidates,

namely the cultivars. SAS code for site A (given in appendix) estimated the least square

means for the two observations of each breed line. For reasons already explained, the

dataset for site A was decimated by non-calibrated images and missing image peaces.

Although, two dates had both complete and calibrated images. These dates where 1st of

June and 14th of July. SAS software-provided p-values for these two is given in Table

4.5. By the Table one can say that dates for NDVI values shows significance to reject the

null hypothesis of no difference in between breed lines. MTCI on the other hand does not

show sufficient significance to reject the null hypothesis.
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4.2 Statistical Analysis

Table 4.1: Probabilities for the Null-hypothesis to be true for the groups cultivars, nitrogen levels
and cultivars × nitrogen level for the traits, GY, TKW, HLW, DH, DM and manually measured
PH at site B.

Group GY TKW HLW DH DM PH

Cultivars <.0001 <.0001 <.0001 <.0001 0.2642 0.0001
Nitrogen level 0.0531 0.4094 0.5981 0.4183 0.9865 0.1311
Cultivar × Nitrogen level 0.0002 0.0670 0.2227 0.1266 0.5424 0.7299

Table 4.2: p-values fro NDVI and MTCI values observed in site A, 17CMLGI1

NDVI MTCI

date 1. Jun 14. Jul 1. Jun 14. Jul
days since sowed 28 71 28 71

p-value <.0001 <.0001 0.3082 0.1481

p-values

To show where findings in values for MTCI and NDVI was significant, p-values is plotted,

Figure 4.7, for each day measured as the negative logarithmic value to show significant

findings. The red line is marking the value for p = 0.05, serving as confidence level (CL).

Values above the red line indicates significance. Likewise the p-values for the different

manual measured traits, the cultivar group is the only group which shows significant find-

ings in almost all observations.

Least Square Means

The estimated values for indices, as least square means, was calculated by the SAS soft-

ware. Figure 4.8 shows the least square means for the 24 cultivars of NDVI and MTCI.

Hence the cultivars being the only group with majority of significant findings, only least

square means of cultivar group is presented. One can see the similarities to the raw data,

plotted in Figure 4.1, only with an higher MTCI value in June 14th. This might be a result

of missing data from some of the values for MTCI, making the value of remaining values

to weigh more in the model.
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Figure 4.8: Least square means for indices MTCI (top) and NDVI (bottom) for the 24 cultivars.

Correlation

To summarize correlation between the manually measured traits, Pearson correlation co-

efficients was calculated and are presented in Table 4.4. In Site B there were no strong

correlations to GY, >0.5, positive nor negative. Although GY correlate slightly for TKW,

DM and PH, 0.337, 0335 and -0,363 respectively. High DM might correspond with a

longer milk and dough developing stage, granting longer time for grain weight to grow

(Simmons et al., 1995). And negative correlation for GY and PH as lower plants use less

energy on transporting nutrients from the soil to the kernel.

NDVI shows to have negative correlation to GY in early season with value -0.417 for the

earliest date in the data set. A possible explanation to this is that plants with high values

for NDVI in early season mature to early to exploit time for the kernel to develop grain

weight. This is specially reflected by the correlation between NDVI in early season and

TKW. The time of heading and milk- and dough development shows little to no correla-

tion to GY. This is in the same realm as finding from Gao et al. (2017). MTCI, on the
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other hand, shows an opposite pattern in correlation with GY than to that of NDVI, going

from slightly positive in early season to slightly negative in late season. The correlations

shown by Gao et al. (2017) for MTCI at heading and 10 days after heading was found to

be even higher (0.63 and 0.69 respectively) than the findings in this thesis. Zhang and Liu

(2014) showed correlations of 0.652 and 0.583 for heading and grain filling respectively.

Since MTCI have been shown to indirectly measure content of clorophyll (Zhang and

Liu, 2014), and chlorophyll being important for yield production (Simmons et al., 1995),

one would expect to see high values for GY for cultivars maintaining high MTCI values

through the season, particularly during grain filling period. This is reflected by the data for

correlation between MTCI and TKW, where high MTCI in early season may predict high

weight for the kernel. However, the earliest measurement for MTCI and TKW correlation

contradicts this by having a large negative value, large relative to the other correlations in

the matrix. The reason for this may be the missing data for some fields on that date.

For Site A, the significant findings, reportedly by their p-values shown in Table 4.5, shows

that only values for MTCI can be said not to be dependent on the cultivar. Looking closer

into correlations between the traits, Table 4.6, shows values similar to those seen in Site

B. Plants in Site A was planted May 4th and all plants headed in the first week of July,

making the measurement of July 14th fall in the period of milk and dough development.

This is represented in the high correlation between GY and MTCI of 0.49 for this date.

This correlation is considerably larger than that for Site B.

4.2.2 NDVI× PH-1 and MTCII× PH-1

Recalling new parameters presented in equation 3.1 and 3.2 in Section 3.6, the new pa-

rameter NDV I×PH -1 and MTCI×PH -1 was calculated on raw data and SAS software

mixed procedure applied for measurements from day 54, July 17th. This date was chosen

because of it is situated around heading time, and because of its significant findings for

all thee groups in NDVI, however only significant for the cultivar group in MTCI. Due to

incomplete sets of data for computer estimated heights manual measurement of PH served

as values for this computation in spite of manual measurements was preformed on day 72,

18 days after July 17th. The results of this computation is given in Table 4.3 for group of
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Table 4.3: Least square means for indices for cultivars only

NDVI MTCI PH [cm] NDVI PH -1 [cm-1] MTCI PH -1[cm-1]

p-value 0.0003 0.0019 0.0001 0.3284 0.0039

Bjarne 0.900 0.529 72.840 1.12E-02 6.49E-03
Zebra 0.895 0.591 86.820 1.07E-02 7.03E-03
Demonstrant 0.893 0.521 81.077 1.05E-02 6.23E-03
Krabat 0.894 0.574 82.430 1.12E-02 7.05E-03
Mirakel 0.900 0.530 88.393 1.04E-02 6.13E-03
Rabagast 0.891 0.561 74.735 1.19E-02 7.39E-03
Seniorita 0.911 0.515 87.593 1.12E-02 6.33E-03
GN11644 0.899 0.544 77.694 1.12E-02 6.50E-03
GN11542 0.896 0.502 82.578 1.08E-02 5.95E-03
GN13618 0.893 0.539 86.808 1.11E-02 6.70E-03
Arabella 0.891 0.499 82.125 1.02E-02 5.59E-03
GN10521 0.895 0.471 81.456 1.10E-02 5.59E-03
SW01074 0.900 0.506 79.654 1.11E-02 6.09E-03
GN10637 0.889 0.557 77.577 1.13E-02 7.04E-03
SW11230 0.891 0.540 81.862 1.09E-02 6.70E-03
PS-1 0.892 0.523 82.266 1.12E-02 6.68E-03
SW11011 0.877 0.514 84.893 1.03E-02 6.23E-03
SW21074 0.890 0.539 78.757 1.06E-02 6.31E-03
Tjalve 0.885 0.495 77.052 1.10E-02 6.13E-03
Avle 0.893 0.544 81.259 1.02E-02 6.23E-03
Bastian 0.897 0.507 78.854 1.17E-02 6.68E-03
Runar 0.897 0.491 90.441 1.11E-02 6.16E-03
Reno 0.888 0.452 94.063 1.02E-02 5.57E-03
Polkka 0.892 0.486 88.970 1.09E-02 6.07E-03

cultivars only. Pearson correlation matrix for cultivars given 8 kg/daa of nitrogen and for

cultivars given 15 kg/daa of nitrogen are given in appendix. The interesting data to look

closer on to is the Pearson correlation matrix, Table 4.4

The correlation for the new parameters to GY, presented in Table 4.4, was negative and

not noteworthy, <0.15 for the group of cultivars only. Bleken (2017) could report in his

thesis positive values of 0.315 using MTCI and 0.221 using NDVI for the same group.
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Table 4.4: Pearson correlation matrix for least square means of vegetation indices and manually
measured traits in Site B. *p-value for model are <0.05, **p-value for model are <0.01. P-values
for correlation models are given in appendix.

GY TKW HLW DH DM PH

TKW 0.337
HLW 0.066 0.196
DH -0.023 -0.211 0.082
DM 0.335 -0.084 -0.069 0.292
PH -0.363* 0.315 0.228 -0.198 -0.386*

NDVI 14062017 -0.417 -0.511* 0.002 0.115 -0.152 0.195
NDVI 19062017 -0.347 -0.579** 0.038 0.164 -0.109 0.079
NDVI 29062017 -0.202 -0.522* -0.028 0.144 -0.290 -0.071
NDVI 03072017 -0.113 -0.582** 0.064 0.224 -0.167 -0.071
NDVI 14072017 -0.036 -0.421* 0.090 0.401 0.024 0.010
NDVI 17072017 -0.146 -0.478* 0.105 0.320 0.092 0.040
NDVI 25072017 0.085 -0.207 0.139 -0.206 0.306* 0.029
NDVI 01082017 0.076 -0.244 0.131 0.150 -0.059 0.172
NDVI 07082017 0.188 -0.233 0.104 0.540** 0.568** -0.176
NDVI 14082017 0.285 -0.081 0.059 0.589** 0.538* -0.186

MTCI 14062017 0.022 -0.471* 0.164 0.432* 0.304 -0.004
MTCI 29062017 0.215 0.348 -0.061 -0.053 0.003 -0.359*
MTCI 03072017 0.115 0.253 -0.109 0.14 -0.049 -0.293
MTCI 14072017 0.053 0.145 0.158 0.211 -0.002 -0.157
MTCI 17072017 0.127 0.032 0.070 0.232 0.170 -0.356
MTCI 25072017 -0.024 0.304 0.001 -0.336* 0.092 0.046
MTCI 01082017 0.136 -0.126 0.176 0.412 0.298 -0.491**
MTCI 07082017 -0.100 -0.017 -0.021 0.016 0.147 -0.276
MTCI 14082017 -0.133 0.071 -0.108 -0.104 -0.06 -0.158

NDVIxPHˆ(-1) -0.144 -0.446 0.003 0.255 -0.004 -0.46*
MTCIxPHˆ(-1) -0.061 -0.067 0.069 0.239 -0.024 -0.374

Table 4.5: p-values fro NDVI and MTCI values observed in site A, 17CMLGI1

Variable p-value

PlantCover <.0001
DH <.0001
DM <.0001
PH <.0001
GY <.0001

NDVI 01062017 <.0001
NDVI 14072017 <.0001

MTCI 01062017 0.3082
MTCI 14072017 0.1481
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Table 4.6: Pearson correlation matrix of traits investigated for Site A. *p-value for model are
<0.05, **p-value for model are <0.01. P-values for correlation models are given in appendix.

PlantCover DH DM PH GY

DH -0.266**
DM -0.403** 0.521**
PH 0.314** -0.153** -0.190**
GY 0.218** -0.219** 0.161** 0.072

NDVI 01062017 0.822** -0.364** -0.461** 0.293** 0.320**
NDVI 14072017 0.174** 0.174** 0.136* 0.073 0.335**

MTCI 01062017 0.299** -0.221** -0.248** 0.130* 0.124*
MTCI 14072017 0.058 -0.033 0.147* -0.025 0.490**

4.2.3 PCA

For finding further correlations the simple PCA plotting tool provided a mean of visual

evaluation of possible associations. From a PCA’s loadings plot, Figure 4.10 and 4.9, one

can see traits that supposedly have firm correlation to appear near each other, and traits

to have negative correlation appearing diagonally across opposite each other. Due to a

relatively small amount of significant findings for groups of fertilizer (N-level) and the

interaction between cultivar and level of fertilizer, only loadings for cultivar is presented

in loadings plot from site B (4.10). Vegetation indices with low correlations have been

held back to improve readability of the loadings plot.

Interpreting Figure 4.10 one can expect to see negative correlations between measure-

ments of NDVI and TKW, as well as for MTCI and PH. In addition to the negative corre-

lation seen in Table 4.4 between GY and PH.

To summarize the differences in correlation between the historical cultivars, Site B, and

the younger breed lines, Site A, one can see a clear distinction between vegetation indices

before and after heading for the young breed lines. This distinction seem unclear for the

historical cultivars.

45



Chapter 4. Results and Discussion

Figure 4.9: Loadings plot prom performed PCA on data from site A with plotting tool by Tomic
(2018). Only vegetation indices with the highest correlations to manual measured traits are shown.

Figure 4.10: Loadings plot prom performed PCA on data from site B with plotting tool by Tomic
(2018). Only vegetation indices with the highest correlations to manual measured traits are shown.
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4.3 Further Discussion

4.3.1 Calibration

There is one date where Figure 4.1, 4.3 and 4.4 displays a slight increased value, espe-

cially for MTCI, namely 1st of August. Values from this date is also standing out in Table

4.4, where they seem to follow the development in values from earlier and later dates.

Investigating the quality report from the image processing in Pix4D shows that images

for this day where calibrated for the camera only, not taking different illuminations into

account. If that where the only circumstance one could expect to see different part of the

reflectance images having diverse illuminations as with sparse clouded weather. Inspect-

ing the images from that date, Figure 4.11, yields no clear indications on homogeneous

light conditions. However, by inspecting the reflectance image of the RED band, one

can see that it is blurred, having the contour lines of soil in between wheat plots smeared

out. Soil have a higher value of reflected red light compared to that of vegetation. This

blur mixes pixels belonging to vegetation plots with pixels representing soil, producing

higher value of RED reflectance for wheat plants for this date. Remembering equation

2.2, where RED reflectance have negative impact on the denominator causing enlarge-

ment of the MTCI value.

On the contrary remembering equation 2.1, this hypothesis of an enlarged RED reflectance

value would have a negative impact on the value of NDVI, which in Figure 4.1, 4.3, 4.8

and 4.4 is absent.

Figure 4.11: Reflectance images for site B 1st of August in four channels from let to right: GRE,
NIR, RED and REG. The orientation of these images is rotated 60 degrees counter clocwise.
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4.3.2 Data Extraction

Segmentation

In order to make HTP a time saving method for breeders, manually selecting area in the

GeoTIFF-image of the field for each field plot is not preferable. Haghighattalab et al.

(2016) suggested three methods for obtaining a mask for selecting sought data. First

method is a simple grid with cells-length and -width defied by the length and width of

the field plots as input. This method obtained reflectance values from the soil in between

field plots, in addition to the wanted reflectance values form plant canopy, since the cells

was attached to each other. This would lead to similar effects as seen in the RED channel

of images from 1st of August (Figure 4.11), where the reflectance value from the canopy

have blended with that of the soil. Second method described has a similar approach,

besides taking in to consideration the gap between field plots. This method produced sep-

arated cells with a defined spacing. Cells was defined to be shorter in length and narrower

in width than planted field plots. The third method was based upon the sharp contrast

between the reflectance of soil and the reflectance of vegetation in early season, applying

the maximum likelihood classifier, also known as the Bayesian classifier, described by the

ERDAS Field Guide (ERDAS, Inc, 1999), to classify pixels associated with vegetation as

an image mask. Haghighattalab et al. (2016) encountered the same difficulty as in this

thesis, that of plants in adjacent field plots identified as one.

A brief effort to make the mask for field plot selections autonomous was done as de-

scribed in section 3.4.1. The result of this attempt, presented in Figure 4.12, met the same

difficulty as Haghighattalab et al. (2016), having multiple field plots merged to one. In

Figure 4.12c, NDVI image form July 3rd was used, as it shows the plants mid-growth,

having leaf area generally large enough to cover the ground where it was sowed, but not

so fully grown to cover gaps in between field plots. One can see plants that have received

a higher level of fertilizer, the two rows at the top and the two rows at the bottom in Figure

4.12, being prone to have covered the the gap between field plots. On the other hand, the

field plots that received the lower level of fertilizer, the four rows in the middle is prone

to not completely cover the ground where it have been planted. In order to obtain values

for further statistical analysis, a decision was made to manually define the mask for every
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4.3 Further Discussion

(a) (b) (c)

Figure 4.12: The process of making a mask to define field plots using NDVI image (4.12a) by
applying threshold values (4.12b) decided from inspection of pixel value histogram, to filling holes
(4.12c).

field plot.
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Chapter 5
Conclusion

In the introduction to this thesis three key questions were stated. After the study of the

multispectral signature of spring wheat conducted in the thesis, one can evaluate these

key questions.

In this thesis, multispectral images acquired from an UAV was used to generate orthomo-

saic images of two wheat fields, which in turn were combined to produce the vegetation

indices (VIs). The two wheat fields consisted of different cultivars of spring wheat, Site A

containing 301 relatively young breed lines, and Site B containing 24 historical cultivars.

A considerable amount of time was used to explore alternatives inside the image process-

ing software Pix4D for constructing orthomosaic and DSM images with sufficient quality.

The indices for each planted field plot was collected and organized by Python software.

The measurements of the two VIs, NDVI and MTCI, were hypothesized to have different

correlations to GY trough the season of growth. Differences in correlations were observed

in both fields. In addition to the differences in the correlations for VIs and GY within the

fields, the two fields exhibited different trends for the correlations to GY.

In Site B, Although the VIs correlations to GY were modest, having absolute value <0.5,

a trend could be seen. For NDVI correlations to GY take on negative values in early

season, as low as -0.417, and rises trough the season to its peak at 0.285. For MTCIs

correlation to GY, one can see an opposite trend to that of NDVI, values are decreasing

trough the season of growth. None of the correlations between VIs and GY are shown to
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be significant, having the lowest p-value for the intercept at 0.068 for correlation between

NDVI at 14th of Jun to GY, which indicates no certain connection.

In Site A, despite having fewer days of observations, clear differences in correlations be-

tween VIs and manual measured traits have been shown. For correlation between NDVI

and GY takes on similar values, 0.320 and 0.335 successively for the two dates. Both

correlations are positive and not changing substantial, in contrast to the change observed

in Site B. MTCIs correlations to GY, however, shows an increase in correlation with its

highest value of 0.490 for MTCI at 14th of July, about one week after heading occured.

All correlations of VIs to GY displays significance, suggesting that there is a connection.

Other correlations between VIs and manual measured traits that are interesting to mention

is the correlation between early NDVI measurements and TKW before heading occurs,

peaking at -0.582 for measurements from 3rd of July. The slightly negative correlation

between early NDVI measurements and DM, speaks for early NDVI to be connected to

the extent of the grain filling period. Short grain filling period will result in low average

grain weight.

Due to few valid measurements from Site A, there are little data to compare correlations

between VIs and GY for historical cultivars and young breed lines. The differences ob-

served shows higher, and significant, for correlations between VIs and GY in Site A,

namely the younger breed lines. The correlations found in Site A follows the findings of

other studies (Zhang and Liu, 2014; Gao et al., 2017).

The attempt at estimating PH by using DSM with adjusting height by linear regression

for ground height did not produce usable results. The correlation between computer es-

timated PH and manually measured PH was -0.376. In order to improve the computer

estimated PH, one could apply more ground measure points and use a polynomial re-

gression to estimate ground height. A solution for estimating more accurate PH may be

to calibrate the DSM by GCP with well defined GPS coordinates, particularly for height

over MSL. One can benefit from building a calibrated DSM of the site before plants start

52



to grow. DSM including plants may then be subtracted by the ground DSM direct.
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Appendix

The Appendix consists of NDVI and MTCI plotted for each of the 24 historical cultivars.

Further is the 3D visualization of the PH from DSM. Followed by the python source that

have been used. Then the collected data for 17BMLROBOT1 is listed. DSM images with

psudocolors is then followed by Pearson correlation matrix with respective correlation

p-value matrix listed.

5.1 Plotting

5.1.1 NDVI and MTCI for historical cultivars
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Figure 5.1: Least square means of MTCI and NDVI for all 24 historical cultivars
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Figure 5.2: Least square means of MTCI and NDVI for all 24 historical cultivars
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Figure 5.3: Least square means of MTCI and NDVI for all 24 historical cultivars
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5.1.2 3D Visualization

(a)
(b)

(c) (d)

(e) (f)

Figure 5.4: 3D visualization of DSM values for PH and ground measure points. Ground points
for both rows and columns are shown. This displays the difficulty of handling incomplete DSM
data sets.
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5.2 Python and SAS code

5.2.1 Value importing and handling

”””

The f o l l o w i n g code i s w r i t t e n t o ha nd l e NDVI and MTCI

form m u l t i s p e c t r a l images o f V o l l e b e k k f i e l d u s i n g py t ho n s c r i p t s

by Gunnar Lange , A l e k s a n d e r Hykkerud and E i v i n d B l ek en .

”””

import m a t p l o t l i b . p y p l o t a s p l t

from d a t e t i m e import d a t e t i m e

import s y s

import os

from os import p a t h

import r e

import x l s x w r i t e r

from openpyx l import l oad workbook

import numpy as np

f i e l d n a m e = ’ 0104 B l e s s /0104 B l e s s ’

NDVI or EVI= ’EVI ’

x l s x o r c s v = ’ x l s x ’

f i e l d s = [ n f o r n in range ( 1 2 8 ) ]

b a s e p a t h = p a t h . d i rname ( f i l e )

f i l e p a t h = p a t h . a b s p a t h ( p a t h . j o i n ( b a s e p a t h , f i e l d n a m e + ’ mean ’+NDVI or EVI+

’ . t x t ’ ) )

i n f i l e = open ( f i l e p a t h , ’ r ’ )

l i n e s = i n f i l e . r e a d l i n e s ( )

i n f i l e . c l o s e ( )

w o r k i n g d i r = os . getcwd ( )

os . c h d i r ( ” . . \ . . \ Vol l ebekk\ F e l t k a r t V o l l e b e k k 2 0 1 7 ” )

wb names = load workbook (

” 17BMLROBOT1 − A v l i n g s f o r s k 24 h i s t o r i s k e s o r t e r V o l l e b e k . x l s x ” )

f i e l d b o o k = wb names [ ’ F e l t b o k ’ ]

os . c h d i r ( w o r k i n g d i r )

# From E i v i n d B l ek e n :

NDVI or EVI va lues = [ ]
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d a t e s = [ ]

s q u a r e s = [ ]

d a t e f o r m a t = ’%d−%m−%Y’

f o r l i n e in l i n e s :

i f l i n e . s t a r t s w i t h ( ’ Sq . numb : ’ ) :

l i n e = ( l i n e . s t r i p ( ) ) . s p l i t ( ’ : ’ )

s q u a r e = l i n e [ 1 ] . s p l i t ( )

s q u a r e s . append ( s q u a r e [ 0 ] . s t r i p ( ) )

v a l u e = ( ( l i n e [ 2 ] . s t r i p ( ) ) )

t r y :

v a l u e = f l o a t ( v a l u e )

NDVI or EVI va lues . append ( v a l u e )

e xc ep t V a l u e E r r o r :

i f v a l u e == ’ EmptySquare ’ :

NDVI or EVI va lues . append ( np . nan )

e l s e :

p r i n t ( ’Unknown d a t a e n c o u n t e r e d ’ )

p r i n t ( ’Unknown d a t a : ’ + s t r ( v a l u e ) )

s y s . e x i t ( 1 )

e l i f l i n e . s t a r t s w i t h ( ’ Image ’ ) :

l i n e = l i n e . s p l i t ( ’ : ’ )

l i n e = l i n e [ 1 ]

f o r s in r e . s p l i t ( ’ [ ] ’ , l i n e ) :

i f s . i s d i g i t ( ) :

l i n e = s [ : 4 ]

dd , mm, YY = l i n e [ : 2 ] , l i n e [ 2 : 4 ] , ’ 2017 ’

l i n e = s t r ( dd + ’− ’ + mm + ’− ’ + YY)

d a t e = d a t e t i m e . s t r p t i m e ( l i n e , d a t e f o r m a t )

d a t e s . append ( d a t e )

e l s e :

c o n t in u e

n u m b e r o f s q u a r e s = i n t ( l e n ( s q u a r e s ) / f l o a t ( l e n ( d a t e s ) ) )

v a l u e s = [ ]

f o r i in range ( i n t ( l e n ( NDVI or EVI va lues ) / f l o a t ( n u m b e r o f s q u a r e s ) ) ) :

v a l u e s . append ( NDVI or EVI va lues [

n u m b e r o f s q u a r e s * i : n u m b e r o f s q u a r e s * ( i + 1 ) ] )

v a l u e s = [ v a l u e f o r ( da t e , v a l u e ) in s o r t e d ( z i p ( d a t e s , v a l u e s ) ,

key=lambda p a i r : p a i r [ 0 ] )

] # from h t t p : / / goo . g l / GnBIY

y c o o r d s = [ ]

d a t e s = s o r t e d ( d a t e s )

x c o o r d s = [ 0 ]

r e p e a t e d r u n s = [ ]
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f o r j in range ( 1 , l e n ( d a t e s ) ) :

d a t e d i f f e r e n c e = s t r ( d a t e s [ j ] − d a t e s [ 0 ] )

d a t e d i f f e r e n c e = d a t e d i f f e r e n c e . s p l i t ( )

i f d a t e d i f f e r e n c e [ 0 ] == ’ 0 : 0 0 : 0 0 ’ :

r e p e a t e d r u n s . append ( j )

e l s e :

d a t e d i f f = i n t ( d a t e d i f f e r e n c e [ 0 ] )

i f not d a t e d i f f in x c o o r d s :

x c o o r d s . append ( d a t e d i f f )

e l s e :

r e p e a t e d r u n s . append ( j )

f o r k in range ( n u m b e r o f s q u a r e s ) :

s q u a r e = [ ]

f o r l in range ( l e n ( v a l u e s ) ) :

i f l in r e p e a t e d r u n s :

c o n t in u e

e l s e :

s q u a r e . append ( v a l u e s [ l ] [ k ] )

i f s q u a r e != [ ] :

y c o o r d s . append ( s q u a r e )

# own produce :

f i e l d r o w s = 8

f i e l d c o l u m n s = 16

b o r d e r r o w s = [ 0 , 1 , 14 , 15]

workbook = x l s x w r i t e r . Workbook ( s t r ( f i e l d n a m e ) + ’ ’ + s t r ( NDVI or EVI ) +

’ IDtag Named . ’+ s t r ( x l s x o r c s v ) )

w o r k s h e e t = workbook . a d d w o r k s h e e t ( )

bo ld = workbook . a d d f o r m a t ({ ’ bo ld ’ : True } )

a l p h a b e t = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

w o r k s h e e t . w r i t e ( ’A1 ’ , ’ SquareNumber ’ , bo ld )

w o r k s h e e t . w r i t e ( ’B1 ’ , ’ ID ’ , bo ld )

w o r k s h e e t . w r i t e ( ’C1 ’ , ’ Rep ’ , bo ld )

w o r k s h e e t . w r i t e ( ’D1 ’ , ’N−l e v e l ’ , bo ld )

w o r k s h e e t . w r i t e ( ’E1 ’ , ’Name ’ , bo ld )

f o r k in range ( n u m b e r o f s q u a r e s ) :

column = ’A’

row = k + 2

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , f i e l d s [ k ] + 1)
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f i e l d r o w n u m b e r = 18

f i e l d c o l u m n n u m b e r s t a r t = 1

b o r d e r f i e l d s = 0

f i e l d c o l u m n = f i e l d c o l u m n n u m b e r s t a r t

# C u l t i v a r Names as d i c t i o n r y

c u l t i v a r n a m e s = { ’ Border ’ : ’ B a s t i a n ’}

f o r l in range ( 9 7 ) :

c u l t i v a r n a m e s [ s t r ( f i e l d b o o k [ ’A’ + s t r ( l + 2 ) ] . v a l u e ) ] = s t r (

f i e l d b o o k [ ’ I ’ + s t r ( l + 2 ) ] . v a l u e )

# W r i t i n g ID−t a g and Name

f o r k in range ( n u m b e r o f s q u a r e s ) :

column = ’B ’

row = k + 2

column modulus = k % f i e l d c o l u m n s

i f column modulus in b o r d e r r o w s :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , ’ Borde r ’ )

w o r k s h e e t . w r i t e ( ’E ’ + s t r ( row ) , c u l t i v a r n a m e s [ ’ Borde r ’ ] )

b o r d e r f i e l d s += 1

e l s e :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( f i e l d r o w n u m b e r ) +

” { :02} ” . format ( f i e l d c o l u m n ) )

w o r k s h e e t . w r i t e ( ’E ’ + s t r ( row ) ,

c u l t i v a r n a m e s [ s t r ( f i e l d r o w n u m b e r ) +

” { :02} ” . format ( f i e l d c o l u m n ) ] )

f i e l d c o l u m n += 1

i f b o r d e r f i e l d s % l e n ( b o r d e r r o w s ) == 0 :

f i e l d r o w n u m b e r −= 1

f i e l d c o l u m n = f i e l d c o l u m n n u m b e r s t a r t

r e p c o u n t s t a r t = 5

r e p c o u n t = r e p c o u n t s t a r t

# W r i t i n g r e p e t i t i o n c o u n t

f o r k in range ( n u m b e r o f s q u a r e s ) :

column = ’C ’

row = k + 2

column modulus = k % f i e l d c o l u m n s

r e p m o d u l u s = k % (2 * f i e l d c o l u m n s )

i f r e p m o d u l u s == 0 :

r e p c o u n t −= 1

i f not column modulus in b o r d e r r o w s :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( r e p c o u n t ) )

N l e v e l = 0

r e p c o u n t s t a r t = 5
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r e p c o u n t = r e p c o u n t s t a r t

# W r i t i n g N i t r o g e n l e v e l

f o r k in range ( n u m b e r o f s q u a r e s ) :

column = ’D’

row = k + 2

column modulus = k % f i e l d c o l u m n s

r e p m o d u l u s = k % (2 * f i e l d c o l u m n s )

i f r e p m o d u l u s == 0 :

r e p c o u n t −= 1

i f r e p c o u n t == 4 or r e p c o u n t == 1 :

N l e v e l = 15

e l i f r e p c o u n t == 3 or r e p c o u n t == 2 :

N l e v e l = 8

i f not column modulus in b o r d e r r o w s :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( N l e v e l ) )

# W r i t i n g d a t e s and i n d i c e s

f o r number , d a t e in enumerate ( d a t e s ) :

column = a l p h a b e t [ number +5]

row = 1

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) ,

s t r ( NDVI or EVI )+ ’ ’ + d a t e . s t r f t i m e ( ’%d ’ ) +

d a t e . s t r f t i m e ( ’%m’ ) + d a t e . s t r f t i m e ( ’%Y’ ) , bo ld )

f o r i , i n d e x in enumerate ( v a l u e s [ number ] ) :

row +=1

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( i n d e x ) )

# W r i t i n g mean v a l u e s o f i n d i c e s

w o r k s h e e t . w r i t e ( s t r ( a l p h a b e t [5+ l e n ( d a t e s ) ] ) + ’ 1 ’ , ’ Mean ’+ s t r ( NDVI or EVI ) , bo ld )

f o r square num , i n d i c e s in enumerate ( y c o o r d s ) :

t r y :

w o r k s h e e t . w r i t e ( s t r ( a l p h a b e t [5+ l e n ( d a t e s ) ] ) + s t r ( square num +2 ) ,

s t r ( np . nanmean ( i n d i c e s ) ) )

e xc ep t :

c o n t in u e

workbook . c l o s e ( )
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5.2.2 Index Plotting

import pandas as pd

import m a t p l o t l i b . p y p l o t a s p l t

import numpy as np

from d a t e t i m e import d a t e

v i = pd . DataFrame . f r o m c s v (

’ B l e s s V I . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

sowed = d a t e ( 2 0 1 7 , 5 , 2 4 )

def d a y l i s t m a k e r ( columns , s t a r t d a t e =None ) :

i f s t a r t d a t e i s None :

s t a r t d a t e = columns [ 0 ] . s p l i t ( ’ ’ ) [ 1 ]

dd , mm, YYYY = i n t ( s t a r t d a t e [ 0 : 2 ] ) , i n t ( s t a r t d a t e [ 2 : 4 ] ) ,

i n t ( s t a r t d a t e [ 4 : 8 ] )

s t a r t d a t e = d a t e (YYYY,mm, dd )

days = [ ]

f o r d , d a t e s t r in enumerate ( columns ) :

d a t e s t r = d a t e s t r . s p l i t ( ’ ’ ) [ 1 ]

dd , mm, YY = i n t ( d a t e s t r [ : 2 ] ) , i n t ( d a t e s t r [ 2 : 4 ] ) ,

i n t ( d a t e s t r [ 4 : ] )

day = d a t e (YY,mm, dd )

days . append ( ( day−s t a r t d a t e ) . days )

re turn days

def d a t e l i s t m a k e r ( columns ) :

d a t e s = [ ]

f o r c , c o l in enumerate ( columns ) :

s a m p l e d a t e = c o l . s p l i t ( ’ ’ ) [ 1 ]

dd , mm, YYYY = i n t ( s a m p l e d a t e [ 0 : 2 ] ) , i n t ( s a m p l e d a t e [ 2 : 4 ] ) ,

i n t ( s a m p l e d a t e [ 4 : 8 ] )

s a m p l e d a t e = d a t e (YYYY,mm, dd )

d a t e s . append ( s a m p l e d a t e . s t r f t i m e ( ’%d %b ’ ) )

re turn d a t e s

NDVI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’NDVI ’ ]

NDVI dates = d a t e l i s t m a k e r ( NDVI col )

NDVI days = d a y l i s t m a k e r ( NDVI col , ’ 24052017 ’ )

MTCI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’MTCI ’ ]

MTCI dates = d a t e l i s t m a k e r ( MTCI col )
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MTCI days = d a y l i s t m a k e r ( MTCI col , ’ 24052017 ’ )

i n d e x = ’NDVI ’

f o r c , c u l t in enumerate ( c u l t i v a r s ) :

s t y l e = { ’ 1 ’ : ’ r ’ , ’ 2 ’ : ’ c ’ , ’ 15 ’ : ’− ’ , ’ 8 ’ : ’−−’}

sub = p l t . s u b p l o t ( 1 1 1 )

c u l t i v a r = v i [ v i [ ’Name ’ ] == c u l t i v a r s [ c ] ]

n l e v e l s = c u l t i v a r [ ’ N l e v e l ’ ] . t o l i s t ( )

r e p s = c u l t i v a r [ ’ Rep ’ ] . t o l i s t ( )

f o r row in c u l t i v a r . i t e r r o w s ( ) :

r u t e , d a t a = row

n l e v e l = d a t a [ ’ N l e v e l ’ ]

r e p = d a t a [ ’ Rep ’ ]

d a t a = d a t a [ e v a l ( i n d e x + ’ c o l ’ ) ] . r e p l a c e ( ’ nan ’ , np . nan )

t a g = ( c u l t i v a r s [ c ] + ’ ’ + s t r ( n l e v e l ) + ’ ’ + s t r ( r e p ) )

sub . p l o t ( e v a l ( i n d e x + ’ d a y s ’ ) , d a t a . t o l i s t ( ) ,

s t y l e [ s t r ( r e p ) ] + ’ x ’+ s t y l e [ s t r ( n l e v e l ) ] , l a b e l = t a g )

sub . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )

sub . s e t x t i c k l a b e l s ( e v a l ( i n d e x + ’ d a t e s ’ ) , r o t a t i o n =40)

sub . s e t y t i c k s ( [ 0 . , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . ] )

sub . s e t y t i c k l a b e l s ( [ 0 . , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . ] )

sub . s e t y l a b e l ( i n d e x )

sub . l e g e n d ( )

p l t . show ( )
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5.2.3 SAS codes provided by Morten Lillemo

Listing 5.1: SAS code for estimating Least Square Means from 17BMLROBOT1.

p roc i m p o r t d a t a f i l e = ’ c :\ s a s \2016\16 b m l r o b o t s p l i t . c sv ’ o u t = f e l t d a t a r e p l a c e ;

d e l i m i t e r = ’ ; ’ ;

p roc p r i n t ;

p roc mixed c o v t e s t d a t a = f e l t d a t a ;

c l a s s E n t r y N l e v e l Rep Block Col ;

model Avl ing = e n t r y N l e v e l e n t r y *N l e v e l / ou tp = r e s i d s ;

random r e p N l e v e l * r e p b l o c k (N l e v e l * r e p ) Col / s ;

l smeans e n t r y N l e v e l e n t r y *N l e v e l ;

ods o u t p u t LSMeans=lsm ;

p roc e x p o r t d a t a = r e s i d s o u t f i l e = ’ c :\ s a s \2016\ r e s i d u a l s . c sv ’ r e p l a c e ;

d e l i m i t e r = ’ ; ’ ;

p roc e x p o r t d a t a =lsm o u t f i l e = ’ c :\ s a s \2016\ l smeans . csv ’ r e p l a c e ;

d e l i m i t e r = ’ ; ’ ;

run ;

Listing 5.2: SAS code for estimating Least Square Means from 17CMLGI1.

p roc i m p o r t d a t a f i l e = ’ c :\ s a s \2017\17 cmlg i1 . csv ’ o u t = d a t a s e t r e p l a c e ;

d e l i m i t e r = ’ , ’ ;

p roc p r i n t ;

p roc mixed c o v t e s t d a t a = d a t a s e t ;

c l a s s Line Rep Block c o l ;

model P l a n t C o v e r = l i n e / ou tp = r e s i d s ;

random r e p b l o c k ( r e p ) c o l / s ;

l smeans l i n e ;

ods o u t p u t LSMeans=lsm ;

p roc p r i n t d a t a = r e s i d s ;

v a r Rute l i n e r e p P l a n t C o v e r r e s i d ;

p roc e x p o r t d a t a = r e s i d s o u t f i l e = ’ c :\ s a s \2017\ r e s i d u a l s . c sv ’ r e p l a c e ;

d e l i m i t e r = ’ , ’ ;

p roc e x p o r t d a t a =lsm o u t f i l e = ’ c :\ s a s \2017\ l smeans . csv ’ r e p l a c e ;

d e l i m i t e r = ’ , ’ ;

run ;
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5.2.4 p-values

Listing 5.3: Code for plotting p-values

import pandas as pd

import m a t p l o t l i b . p y p l o t a s p l t

import numpy as np

from d a t e t i m e import d a t e

def d a y l i s t m a k e r . . . # d e s c r i b e d

def d a t e l i s t m a k e r . . . # d e s c r i b e d

NDVI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’NDVI ’ ]

NDVI dates = d a t e l i s t m a k e r ( NDVI col )

NDVI days = d a y l i s t m a k e r ( NDVI col , ’ 24052017 ’ )

MTCI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’MTCI ’ ]

MTCI dates = d a t e l i s t m a k e r ( MTCI col )

MTCI days = d a y l i s t m a k e r ( MTCI col , ’ 24052017 ’ )

i n d e x = ’NDVI ’

pv = pd . DataFrame . f r o m c s v ( ’ . . . \ \ p values MTCI EVI NDVI . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

sub = p l t . s u b p l o t ( 1 1 1 )

f o r row in pv . i t e r r o w s ( ) :

group , d a t a = row

d a t a = d a t a [ e v a l ( i n d e x + ’ c o l ’ ) ] . r e p l a c e ( ’ nan ’ , np . nan )

t a g = ( s t r ( group ) )

sub . s e m i l og y ( s o r t e d ( e v a l ( i n d e x + ’ d a y s ’ ) ) ,[−np . log10 ( p ) f o r , p in s o r t e d ( z i p ( e v a l ( i n d e x + ’ d a y s ’ ) , d a t a . t o l i s t ( ) ) ,

key=lambda p a i r : p a i r [ 0 ] ) ] , ’x−’ , l a b e l = t a g )

sub . a x h l i n e ( y=−np . log10 ( 0 . 0 5 ) , c o l o r = ’ r ’ , l i n e s t y l e = ’−−’ , l a b e l = ’CL : 0 . 0 5 ’ )

scnd = sub . tw iny ( )

scnd . s e t x l i m ( sub . g e t x l i m ( ) )

scnd . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )

scnd . s e t x t i c k l a b e l s ( e v a l ( i n d e x + ’ d a t e s ’ ) , r o t a t i o n =40)

scnd . s e t x l a b e l ( ’ Date ’ )

sub . s e t t i t l e ( ’p−v a l u e s f o r ’+ index , y = 1 . 1 6 , f o n t s i z e =16)
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sub . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )

sub . s e t x t i c k l a b e l s ( e v a l ( i n d e x + ’ d a y s ’ ) )

sub . s e t y l a b e l ( ’−l og10 of ’+ i n d e x )

sub . s e t x l a b e l ( ’ Days s i n c e sowed ’ )

sub . l e g e n d ( )

p l t . g r i d ( True , a x i s = ’ y ’ )

p l t . show ( )

Listing 5.4: Code for plotting Least square means and raw data of VIs

import pandas as pd

import m a t p l o t l i b . p y p l o t a s p l t

import numpy as np

from d a t e t i m e import d a t e

raw = pd . DataFrame . f r o m c s v ( ’ . . . B l e s s V I . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

l smeans = pd . DataFrame . f r o m c s v ( ’ . . . V e g e t a t i o n I n d i c e s l s m e a n s . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

sowed = d a t e ( 2 0 1 7 , 5 , 2 4 )

def d a y l i s t m a k e r . . . # d e s c r i b e d by v a l u e hand le r−code

def d a t e l i s t m a k e r . . . # d e s c r i b e d by v a l u e hand le r−code

NDVI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’NDVI ’ ]

NDVI dates = d a t e l i s t m a k e r ( NDVI col )

NDVI days = d a y l i s t m a k e r ( NDVI col , ’ 24052017 ’ )

MTCI col = [ colname f o r colname

in v i . columns i f colname . s p l i t ( ’ ’ ) [ 0 ] == ’MTCI ’ ]

MTCI dates = d a t e l i s t m a k e r ( MTCI col )

MTCI days = d a y l i s t m a k e r ( MTCI col , ’ 24052017 ’ )

i n d e x = ’MTCI ’

sub = p l t . s u b p l o t ( 2 1 1 )

p l o t t i n g s = d a t a t o p l o t t

f o r row in p l o t t i n g s . i t e r r o w s ( ) :

r u t e , d a t a = row

d a t a = d a t a [ e v a l ( i n d e x + ’ c o l ’ ) ] . r e p l a c e ( ’ nan ’ , np . nan )

sub . p l o t ( e v a l ( i n d e x + ’ d a y s ’ ) , d a t a . t o l i s t ( ) )

sub . s e t y l i m ( 0 . 2 , 1 )

sub . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )
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sub . s e t y l a b e l ( i n d e x )

scnd = sub . tw iny ( )

scnd . s e t x l i m ( sub . g e t x l i m ( ) )

scnd . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )

scnd . s e t x t i c k l a b e l s ( e v a l ( i n d e x + ’ d a t e s ’ ) , r o t a t i o n =40)

scnd . s e t x l a b e l ( ’ Date ’ )

sub . t i c k p a r a m s ( a x i s = ’ x ’ , which= ’ bo th ’ , bot tom = F a l s e , t o p = F a l s e , l a b e l b o t t o m = F a l s e )

sub . s e t t i t l e ( ’ Sampled d a t a ’ , y =−0.18 , f o n t s i z e =16)

i n d e x = ’NDVI ’

sub = p l t . s u b p l o t ( 2 1 2 )

p l o t t i n g s = d a t a t o p l o t t

f o r row in p l o t t i n g s . i t e r r o w s ( ) :

r u t e , d a t a = row

d a t a = d a t a [ e v a l ( i n d e x + ’ c o l ’ ) ] . r e p l a c e ( ’ nan ’ , np . nan )

sub . p l o t ( e v a l ( i n d e x + ’ d a y s ’ ) , d a t a . t o l i s t ( ) )

sub . s e t y l i m ( 0 . 2 , 1 )

sub . s e t x t i c k s ( e v a l ( i n d e x + ’ d a y s ’ ) )

sub . s e t x t i c k l a b e l s ( e v a l ( i n d e x + ’ d a y s ’ ) )

sub . s e t y l a b e l ( i n d e x )

sub . s e t x l a b e l ( ’ Days s i n c e sowed ’ )

sub . l e g e n d ( )

p l t . show ( )
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5.2.5 Correlations

Listing 5.5: Code for calculating Pearson correlations and p-values for the correlations and print-

ing to CSV-files.

import pandas as pd

import numpy as np

import c od ec s

from s c i p y . s t a t s import p e a r s o n r

import pandas as pd

wi th c od e cs . open ( ’ 17 c m l g i 1 l s m V I . csv ’ , ” r ” , e n c o d i n g = ’ u t f−8 ’ ,

e r r o r s = ’ i g n o r e ’ ) a s f d a t a :

d a t a = pd . r e a d c s v ( f d a t a , h e a d e r = 0 , sep = ’ ; ’ )

names = s e t ( d a t a [ ’Name ’ ] )

d a t a = d a t a . d rop ( [ ’ Line ’ , ’Name ’ ] , a x i s =1)

d a t a . d ropna ( a x i s =1 , how= ’ any ’ , i n p l a c e =True )

NDVI 01062017 = d a t a [ ’ NDVI 01062017 ’ ]

NDVI 14072017 = d a t a [ ’ NDVI 14072017 ’ ]

MTCI 01062017 = d a t a [ ’ MTCI 01062017 ’ ]

MTCI 14072017 = d a t a [ ’ MTCI 14072017 ’ ]

GY = d a t a [ ’GY’ ]

PH = d a t a [ ’PH ’ ]

PH = d a t a [ ’PH ’ ]

P l a n t C o v e r = d a t a [ ’ P l a n t C o v e r ’ ]

DH = d a t a [ ’DH’ ]

DM = d a t a [ ’DM’ ]

c o r r m a t = np . a round ( np . c o r r c o e f ( [ P l an tCove r , DH, DM, PH ,GY,

NDVI 01062017 , NDVI 14072017 , MTCI 01062017 , MTCI 14072017 ] ) , d e c i m a l s = 3 ) [ 0 : , 0 : 5 ]

C = pd . Index ( [ ’ P l a n t C o v e r ’ , ’DH’ , ’DM’ , ’PH ’ , ’GY’ ] ,

name= ’ rows ’ )

I = pd . Index ( [ ’ P l a n t C o v e r ’ , ’DH’ , ’DM’ , ’PH ’ , ’GY’ ,

’ NDVI 01062017 ’ , ’ NDVI 14072017 ’ , ’ MTCI 01062017 ’ ,

’ MTCI 14072017 ’ ] , name= ’ columns ’ )

d f = pd . DataFrame ( co r rma t , i n d e x =I , columns=C)

df . t o c s v ( ’ . . . \ \ c o r r m a t . c sv ’ , sep = ’ ; ’ )

# from h t t p s : / / t i n y u r l . com / y88nwrkd

def c a l c u l a t e p v a l u e s ( d f ) :

77



df = df . d ropna ( ) . g e t n u m e r i c d a t a ( )

d f c o l s = pd . DataFrame ( columns= df . columns )

p v a l u e s = d f c o l s . t r a n s p o s e ( ) . j o i n ( d f c o l s , how= ’ o u t e r ’ )

f o r r in df . columns :

f o r c in df . columns :

p v a l u e s [ r ] [ c ] = round ( p e a r s o n r ( d f [ r ] , d f [ c ] ) [ 1 ] , 5 )

re turn p v a l u e s

p v a l u e m a t = c a l c u l a t e p v a l u e s ( d a t a [ [ ’ P l a n t C o v e r ’ ,

’DH’ , ’DM’ , ’PH ’ , ’GY’ , ’ NDVI 01062017 ’ , ’ NDVI 14072017 ’ ,

’ MTCI 01062017 ’ , ’ MTCI 14072017 ’ ] ] ) [ [ ’ P l a n t C o v e r ’ , ’DH’ ,

’DM’ , ’PH ’ , ’GY’ ] ]

p v a l u e m a t . t o c s v ( ’ . . . \ \ c o r r e l a t i o n p−v a l u e s . c sv ’ , sep = ’ ; ’ )
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5.2.6 Adjusting DSM

Listing 5.6: Code for adjusting PH from DSM.

import x l s x w r i t e r

import numpy as np

import pandas as pd

namebase = ’ 1404 Bless DSM ’

n a m e t a l e = ’ DSM IDtag Named ’

h e i g h t d a t a = pd . DataFrame . f r o m c s v ( namebase+ ’\\ ’+namebase+ n a m e t a l e + ’ . c sv ’ ,

h e a d e r =0 , sep = ’ ; ’ )

r o w d a t a = pd . DataFrame . f r o m c s v (

namebase+ ’ / ’+namebase+ ’ Row ’+ n a m e t a l e + ’ . c sv ’ ,

h e a d e r =0 , sep = ’ ; ’ ) . d ropna ( a x i s =1 , how= ’ a l l ’ )

row nan = r o w d a t a . columns [ r o w d a t a . i s n u l l ( ) . any ( ) ] . t o l i s t ( )

h e i g h t d a t a . d rop ( l i s t ( s e t ( row nan ) ) , a x i s =1)

workbook = x l s x w r i t e r . Workbook ( namebase+ ’ / ’+namebase+ ’ a d j u s t e d . x l s x ’ )

w o r k s h e e t = workbook . a d d w o r k s h e e t ( )

bo ld = workbook . a d d f o r m a t ({ ’ bo ld ’ : True } )

a l p h a b e t = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

w o r k s h e e t . w r i t e ( ’A1 ’ , ’ SquareNumber ’ , bo ld )

w o r k s h e e t . w r i t e ( ’B1 ’ , ’ ID ’ , bo ld )

w o r k s h e e t . w r i t e ( ’C1 ’ , ’Name ’ , bo ld )

# W r i t i n g Squarenumber , ID and Name

f o r k , ID in enumerate ( h e i g h t d a t a [ ’ ID ’ ] ) :

column = ’A’

row = k + 2

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( k ) )

f o r k , ID in enumerate ( h e i g h t d a t a [ ’ ID ’ ] ) :

column = ’B ’

row = k + 2

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( ID ) )

f o r k , name in enumerate ( h e i g h t d a t a [ ’Name ’ ] ) :

column = ’C ’

row = k + 2

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( name ) )

# A d j u s t i n g DSM−v a l u e
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f o r t , sample in enumerate ( [ c o l f o r c o l in c o l d a t a . columns

i f c o l . s p l i t ( ’ ’ ) [ 0 ] == ’DSM’ ] ) :

column = a l p h a b e t [3 + t ]

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( 1 ) , s t r ( sample ) , bo ld )

squarenumber = 0

f o r row number in range ( 8 ) :

g r o u n d m e a s u r e c o l u m n s = np . a r r a y ( [ 0 . 5 , 8 . 5 , 1 6 . 5 ] )

g r o u n d m e a s u r e h e i g h t = np . a r r a y ( (

( r o w d a t a [ sample ] [ row number +1]+ r o w d a t a [ sample ] [ row number + 2 ] ) / 2 ,

( r o w d a t a [ sample ] [ row number +10]+ r o w d a t a [ sample ] [ row number + 1 1 ] ) / 2 ,

( r o w d a t a [ sample ] [ row number +19]+ r o w d a t a [ sample ] [ row number + 2 0 ] ) / 2 )

) #mean v a l u e o f ground sample uver and under wheat f i e l d p l o t

g r o u n d h e i g h t r e g r e s s i o n = np . p o l y f i t ( g round measu re co lumns ,

g r o u n d m e a s u r e h e i g h t , 1 )

# o u t p u t i s a numpy a r r a y where f i r s t number i s s l o p e number

# and second i s i n t e r s e p t i o n

f i r s t s q u a r e i n r o w = a = 0+16* row number

l a s t s q u a r e i n r o w = 16 + (16 * row number )

f o r k , f i e l d I D in enumerate (

h e i g h t d a t a [ ’ ID ’ ] [ f i r s t s q u a r e i n r o w : l a s t s q u a r e i n r o w ] ) :

row = squarenumber + 2

i f f i e l d I D == ’ Border ’ :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , ’ Borde r ’ )

e l s e :

s q n r = f i e l d I D

d i g i t l i s t = [ i n t ( d ) f o r d in s t r ( s q n r ) ]

d i g i t f o r c o l = ( d i g i t l i s t [ 2 ] * 10) + d i g i t l i s t [ 3 ]

i f h e i g h t d a t a [ s t r ( sample ) ] [ squarenumber +1] == ’ nan ’ :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , np . nan )

e l i f h e i g h t d a t a [ s t r ( sample ) ] [ squarenumber +1] < (

g r o u n d h e i g h t r e g r e s s i o n [ 0 ] * ( d i g i t f o r c o l +2) +

g r o u n d h e i g h t r e g r e s s i o n [ 1 ] ) :

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , ’ N e g a t i v e ’ )

e l s e :

v a l u e f r o m d a t a = h e i g h t d a t a [ s t r ( sample ) ] [ squarenumber +1]

a d j u s t e d d a t a = v a l u e f r o m d a t a − (

g r o u n d h e i g h t r e g r e s s i o n [ 0 ] * ( d i g i t f o r c o l +2) +

g r o u n d h e i g h t r e g r e s s i o n [ 1 ] )

w o r k s h e e t . w r i t e ( s t r ( column ) + s t r ( row ) , s t r ( a d j u s t e d d a t a ) )

squarenumber += 1

workbook . c l o s e ( )
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Visualisation

Listing 5.7: Code for producing 3D scatter and bar plot of heights

from m p l t o o l k i t s . mplot3d import Axes3D

import numpy as np

import pandas as pd

import m a t p l o t l i b . p y p l o t a s p l t

h e i g h t d a t a = pd . DataFrame . f r o m c s v ( ’ DSM DSM IDtag Named raw . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

r o w d a t a = pd . DataFrame . f r o m c s v ( ’ DSM Row DSM IDtag Named . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

e s t i m a t e d a t a = pd . DataFrame . f r o m c s v ( ’ DSM adjusted . csv ’ , h e a d e r =0 , sep = ’ ; ’ )

r o w d a t a = r o w d a t a . d ropna ( a x i s =1 , how= ’ any ’ )

day = ’ DSM 01082017 ’

f i g = p l t . f i g u r e ( )

ax = f i g . a d d s u b p l o t ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )

p l a n t h e i g h t s = h e i g h t d a t a [ day ]

IDs = h e i g h t d a t a [ ’ ID ’ ]

xs = [ ]

ys = [ ]

z s = [ ]

f o r ID in h e i g h t d a t a [ ’ ID ’ ] :

i f ID == ’ Border ’ :

c o n t in u e

xs . append ( i n t ( s t r ( ID ) [ 2 : 4 ] ) + 2 )

ys . append ( i n t ( s t r ( ID ) [ 0 : 2 ] ) )

f o r k , h e i g h t in enumerate ( p l a n t h e i g h t s ) :

i f IDs [ k +1] == ’ Border ’ :

c o n t in u e

i f f l o a t ( h e i g h t ) < 0 :

z s . append ( np . nan )

e l s e :

z s . append ( f l o a t ( h e i g h t ) )

xg = [ ]

yg = [ ]

zg = [ ]

c o l s e t = [ 0 . 5 , 8 . 5 , 1 6 . 5 ]

f = 1
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f o r s , c o l in enumerate ( c o l s e t ) :

f o r m in range ( 9 ) :

xg . append ( c o l )

yg . append (9*2−m)

zg . append ( r o w d a t a [ day ] [ f ] )

f += 1

ax . s c a t t e r ( xs , ys , zs , c= ’ r ’ , marker = ’ ˆ ’ , l a b e l = ’ P l a n t He ig h t ’ )

ax . s c a t t e r ( xg , yg , zg , c= ’ b ’ , marker = ’ o ’ , l a b e l = ’ Ground He ig h t ’ )

ax . s e t x l a b e l ( ’ Columns ’ )

ax . s e t y l a b e l ( ’Rows ’ )

ax . s e t z l a b e l ( ’ H e i gh t ’ )

p l t . l e g e n d ( )

f i g . s u p t i t l e ( ’ H e i g h t s ’ + s t r ( day ) )

p l t . show ( )

x e s t = [ ]

y e s t = [ ]

z e s t = [ ]

f o r ID in e s t i m a t e d a t a [ ’ ID ’ ] :

i f ID == ’ Border ’ :

c o n t in u e

e l s e :

x e s t . append ( i n t ( ID [ 2 : 4 ] ) + 2)

y e s t . append ( i n t ( ID [ 0 : 2 ] ) )

f o r k , h e i g h t in enumerate ( p l a n t h e i g h t s ) :

i f IDs [ k ] == ’ Border ’ :

c o n t in u e

e l s e :

z e s t . append ( f l o a t ( h e i g h t ) )

f i g = p l t . f i g u r e ( )

axm = f i g . a d d s u b p l o t ( 1 1 1 , p r o j e c t i o n = ’ 3d ’ )

t o p = x e s t + y e s t

bot tom = np . z e r o s l i k e ( z e s t )

wid th = d e p t h = 0 . 9

axm . ba r3d ( x e s t , y e s t , bottom , width , depth , z e s t , shade =True )

axm . s e t x l a b e l ( ’ Columns ’ )

axm . s e t y l a b e l ( ’Rows ’ )

axm . s e t z l a b e l ( ’ H e i gh t [m] ’ )

p l t . l e g e n d ( )

f i g . s u p t i t l e ( ’ E s t i m a t e d H e i g h t s ’ + s t r ( day ) )

p l t . show ( )
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5.3 Masking

Listing 5.8: Making a mask for data extraction.

import pandas as pd

import m a t p l o t l i b . p y p l o t a s p l t

import s c i p y

from s c i p y import ndimage

import cv2

from sk image . morphology import w a t e r s h e d

from sk image . f e a t u r e import p e a k l o c a l m a x

from m a t p l o t l i b . image import imread

import s y s

import numpy as np

from osgeo import g d a l

from PIL import Image

img = g d a l . Open ( ’ . . . ndv i . t i f ’ )

img = img . ReadAsArray ( )

img [ img<0]=0

def r o t c r o p i m g ( image ) :

img = s c i p y . ndimage . r o t a t e ( image , −29)

img = img [ 2 5 0 0 : 5 2 5 0 , 2 4 5 0 : 4 1 5 0 ]

re turn img

ndv i = r o t c r o p i m g ( img )

ndv i = ndv i [ : , : ]

p l t . imshow ( ndv i )

h i s t , b i n e d g e s = np . h i s t o g r a m ( ndvi , b i n s =80)

b i n c e n t e r s = 0 . 5 * ( b i n e d g e s [ :−1] + b i n e d g e s [ 1 : ] )

p l t . p l o t ( b i n c e n t e r s , h i s t )

b i n a r y i m g h = ndv i > 0 . 8 9

b i n a r y i m g l = ndv i < 0 . 8 5

b i n a r y i m g = np . i n v e r t ( b i n a r y i m g h + b i n a r y i m g l )

# p l t . imshow ( b i n a r y i m g )

f i l i m g = ndimage . b i n a r y f i l l h o l e s ( b i n a r y i m g )

p l t . imshow ( f i l i m g )
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5.4 PCA from Hoggorm-package by Oliver Tomic

Listing 5.9: Code for Producing PCA-loadings plot based on Oliver Tomic’ lecture notes for PCA.

import pandas as pd

import numpy as np

import hoggorm as hogg

import hoggormplo t a s h p l o t

import m a t p l o t l i b . p y p l o t a s p l t

import m a t p l o t l i b

m a t p l o t l i b . r cPa rams [ ’ f i g u r e . f i g s i z e ’ ] = ( 1 2 , 8 )

import c od ec s

wi th c od ec s . open ( ’ 17 c m l g i 1 l s m V I . csv ’ , ” r ” , e n c o d i n g = ’ u t f−8 ’ ,

e r r o r s = ’ i g n o r e ’ ) a s f d a t a :

d a t a = pd . r e a d c s v ( f d a t a , h e a d e r = 0 , sep = ’ ; ’ )

names = s e t ( d a t a [ ’Name ’ ] )

d a t a = d a t a . d rop ( [ ’ Line ’ , ’Name ’ ] , a x i s =1)

d a t a . d ropna ( a x i s =1 , how= ’ any ’ , i n p l a c e =True )

# from : h t t p s : / / s t a c k o v e r f l o w . com / q u e s t i o n s / 1 2 5 2 5 7 2 2 / n o r m a l i z e−data−in−pandas

d a t a n o r m = ( da t a−d a t a . mean ( ) ) / ( d a t a . s t d ( ) )

d a t a a r r a y = np . a r r a y ( d a t a n o r m )

DATApca = hogg . nipalsPCA ( d a t a a r r a y , 4 , cvType = [ ” l o o ” ] )

h p l o t . l o a d i n g s ( DATApca , comp = [ 1 , 2 ] , XvarNames= d a t a . columns . t o l i s t ( ) )
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5.4.1 New Indices Using PH-1

Table 5.1: Least square means for indices gathered July 17th for cultivars given 8 kg/daa Nitrogen.

NDVI MTCI PH [cm] NDVI PH -1 [cm-1] MTCI PH -1[cm-1]

Bjarne 0.884 0.434 70.444 1.10E-02 5.32E-03
Zebra 0.877 0.473 85.209 1.14E-02 7.67E-03
Demonstrant 0.877 0.434 76.021 1.05E-02 5.58E-03
Krabat 0.883 0.481 83.613 1.10E-02 8.48E-03
Mirakel 0.886 0.420 85.247 1.03E-02 5.08E-03
Rabagast 0.868 0.460 67.658 1.07E-02 7.38E-03
Seniorita 0.903 0.439 83.678 1.12E-02 5.83E-03
GN11644 0.896 0.470 77.213 1.12E-02 8.27E-03
GN11542 0.882 0.405 78.215 1.04E-02 4.88E-03
GN13618 0.884 0.429 82.332 1.05E-02 7.38E-03
Arabella 0.879 0.399 79.853 1.16E-02 5.90E-03
GN10521 0.885 0.370 79.497 1.22E-02 8.87E-03
SW01074 0.885 0.417 79.981 1.16E-02 5.54E-03
GN10637 0.867 0.431 73.677 1.07E-02 7.12E-03
SW11230 0.873 0.436 80.085 1.12E-02 5.69E-03
PS-1 0.877 0.424 80.030 1.12E-02 7.31E-03
SW11011 0.862 0.428 83.310 1.11E-02 5.13E-03
SW21074 0.874 0.426 77.704 1.05E-02 6.77E-03
Tjalve 0.867 0.427 76.313 1.06E-02 4.99E-03
Avle 0.876 0.482 83.041 1.16E-02 8.41E-03
Bastian 0.886 0.405 77.214 9.55E-03 4.16E-03
Runar 0.884 0.401 89.521 1.08E-02 7.03E-03
Reno 0.871 0.373 90.129 1.07E-02 4.32E-03
Polkka 0.884 0.395 86.666 1.13E-02 6.85E-03
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Table 5.2: Least square means for indices gathered July 17th for cultivars given 15 kg/daa Nitro-
gen.

NDVI MTCI PH [cm] NDVI PH -1 [cm-1] MTCI PH -1[cm-1]

Bjarne 0.915 0.625 75.234 1.10E-02 5.01E-03
Zebra 0.913 0.710 88.433 1.12E-02 7.18E-03
Demonstrant 0.909 0.608 86.132 1.10E-02 5.49E-03
Krabat 0.904 0.667 81.251 1.16E-02 8.59E-03
Mirakel 0.914 0.641 91.540 1.15E-02 5.84E-03
Rabagast 0.913 0.662 81.813 1.03E-02 7.57E-03
Seniorita 0.920 0.592 91.509 1.15E-02 5.71E-03
GN11644 0.903 0.618 78.176 1.08E-02 7.66E-03
GN11542 0.910 0.598 86.942 9.16E-03 4.80E-03
GN13618 0.902 0.650 91.285 1.15E-02 7.66E-03
Arabella 0.904 0.599 84.397 1.07E-02 5.08E-03
GN10521 0.906 0.572 83.415 1.05E-02 7.55E-03
SW01074 0.915 0.596 79.327 1.02E-02 5.10E-03
GN10637 0.911 0.684 81.477 1.17E-02 7.16E-03
SW11230 0.909 0.644 83.640 9.88E-03 5.40E-03
PS-1 0.907 0.622 84.502 1.04E-02 7.05E-03
SW11011 0.892 0.600 86.476 1.10E-02 5.19E-03
SW21074 0.906 0.652 79.810 1.25E-02 8.16E-03
Tjalve 0.904 0.563 77.792 1.12E-02 5.05E-03
Avle 0.910 0.605 79.477 1.09E-02 7.27E-03
Bastian 0.909 0.609 80.493 1.00E-02 5.02E-03
Runar 0.909 0.581 91.360 1.03E-02 6.12E-03
Reno 0.906 0.530 97.997 1.14E-02 5.47E-03
Polkka 0.901 0.578 91.273 1.03E-02 6.67E-03
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5.5 Collected Data
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Table 5.3 continued from previous page

Rute Entry Name Plot N level [kg/daa] Rep Block PLT Col PH [cm] DH DM GY [kg/daa] TKW [g] HLW [g]

1709 16 PS-1 81 15 4 2 3 9 82.6 49 114 606.96 40.08 77.5

1710 17 SW11011 82 15 4 2 4 10 84.5 48 114 631.30 45.32 78.3

1711 18 SW21074 83 15 4 2 5 11 84.5 49 114 612.17 38.24 78.0

1712 10 GN13618 84 15 4 2 6 12 83.2 49 114 575.65 40.16 76.0

1801 11 Arabella 85 15 4 3 1 1 84.7 48 114 700.87 41.46 74.5

1802 2 Zebra 86 15 4 3 2 2 87.3 49 114 612.17 42.57 77.0

1803 15 SW11230 87 15 4 3 3 3 85.1 49 114 603.48 46.31 75.0

1804 22 Runar 88 15 4 3 4 4 94 48 114 560.00 40.56 77.0

1805 19 Tjalve 89 15 4 3 5 5 78.1 51 114 601.74 38.08 73.0

1806 3 Demonstrant 90 15 4 3 6 6 87.5 51 114 720.00 42.06 79.5

1807 4 Krabat 91 15 4 4 1 7 79.9 51 114 674.78 39.87 76.0

1808 14 GN10637 92 15 4 4 2 8 81.4 55 114 622.61 36.87 79.0

1809 7 Seniorita 93 15 4 4 3 9 90.4 53 114 530.43 35.04 78.0

1810 24 Polkka 94 15 4 4 4 10 88.4 53 114 586.09 38.43 76.0

1811 9 GN11542 95 15 4 4 5 11 86.1 51 114 591.30 35.34 75.5

1812 21 Bastian 96 15 4 4 6 12 77.9 48 114 547.83 33.12 75.0
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5.5.1 Least Square Means

Site B

Table 5.4: The least square means for traits for all cultivars

Entry Cultivar GY [kg/daa] TKW [g] HLW [g] DH DM PH [cm]
1 Bjarne 565.260 37.043 73.750 50.599 112.37 72.839
2 Zebra 548.180 40.581 76.625 49.427 111.98 86.821
3 Demonstrant 636.690 41.410 78.250 50.648 111 81.077
4 Krabat 592.690 38.481 76.125 51.121 111.9 82.432
5 Mirakel 526.390 39.630 75.688 52.248 111.55 88.393
6 Rabagast 571.210 34.203 75.688 50.382 112.03 74.735
7 Seniorita 522.480 34.734 77.813 52.453 112.05 87.593
8 GN11644 548.360 37.875 79.813 49.545 111.87 77.694
9 GN11542 548.860 34.503 76.750 50.460 112.99 82.578
10 GN13618 540.790 39.604 75.750 49.068 110.16 86.808
11 Arabella 649.670 40.306 75.625 48.529 112.63 82.125
12 GN10521 575.620 36.389 74.625 49.891 112.03 81.456
13 SW01074 599.280 37.997 76.750 50.861 112.12 79.654
14 GN10637 548.210 37.772 78.000 53.439 112.46 77.577
15 SW11230 551.130 42.939 74.750 49.663 112.2 81.862
16 PS-1 579.310 38.794 76.875 49.587 111.57 82.266
17 SW11011 566.260 45.440 77.188 48.960 111.81 84.893
18 SW21074 553.820 36.654 77.125 49.286 111.87 78.757
19 Tjalve 542.880 37.730 73.875 51.191 111.94 77.052
20 Avle 524.380 33.429 73.875 49.416 111.73 81.259
21 Bastian 502.220 33.909 75.625 48.849 110.54 78.854
22 Runar 522.170 39.132 76.875 48.563 111.89 90.441
23 Reno 510.840 39.340 77.500 48.754 110.76 94.063
24 Polkka 515.570 37.264 76.000 50.562 111.04 88.970
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Table 5.5: The least square means for traits for all cultivars given 8 kg/ha of Nitrogen

Entry Cultivar GY [kg/daa] TKW [g] HLW [g] DH DM PH [cm]
1 Bjarne 493.770 37.519 73.750 50.447 112.8 70.444
2 Zebra 484.790 39.286 76.500 49.894 111.99 85.209
3 Demonstrant 561.790 39.955 77.250 50.499 110.22 76.021
4 Krabat 538.440 37.435 76.750 51.011 111.95 83.613
5 Mirakel 465.400 38.517 75.500 52.535 111.71 85.247
6 Rabagast 510.750 34.288 75.750 49.873 112.1 67.658
7 Seniorita 457.490 33.916 77.875 52.637 112.13 83.678
8 GN11644 492.220 38.152 79.875 49.493 111.69 77.213
9 GN11542 492.720 34.380 77.500 50.801 112.45 78.215
10 GN13618 500.550 39.742 75.750 49.138 111.37 82.332
11 Arabella 574.400 40.330 76.250 49.211 111.67 79.853
12 GN10521 508.810 34.661 74.750 50.881 112.18 79.497
13 SW01074 504.100 38.170 77.000 51.047 112.23 79.981
14 GN10637 439.500 38.338 78.500 52.700 112.06 73.677
15 SW11230 446.830 41.468 75.000 49.428 112.35 80.085
16 PS-1 492.260 38.051 77.000 50.591 112.09 80.030
17 SW11011 479.310 45.350 77.000 49.969 111.74 83.310
18 SW21074 507.230 36.912 77.500 49.521 111.95 77.704
19 Tjalve 487.360 37.631 74.750 50.842 111.78 76.313
20 Avle 469.530 32.668 73.500 49.499 111.82 83.041
21 Bastian 466.410 33.942 76.000 50.234 111.7 77.214
22 Runar 465.160 38.215 77.000 49.106 111.79 89.521
23 Reno 454.120 37.012 77.250 48.574 110.14 90.129
24 Polkka 444.380 35.371 76.000 50.071 110.08 86.666
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Table 5.6: The least square means for traits for all cultivars given 15 kg/ha of Nitrogen

Entry Cultivar GY [kg/daa] TKW [g] HLW [g] DH DM PH [cm]
1 Bjarne 636.750 36.568 73.750 50.750 111.95 75.234
2 Zebra 611.560 41.875 76.750 48.960 111.97 88.433
3 Demonstrant 711.590 42.864 79.250 50.798 111.77 86.132
4 Krabat 646.930 39.526 75.500 51.231 111.85 81.251
5 Mirakel 587.380 40.744 75.875 51.960 111.38 91.540
6 Rabagast 631.680 34.119 75.625 50.891 111.96 81.813
7 Seniorita 587.460 35.552 77.750 52.270 111.97 91.509
8 GN11644 604.510 37.598 79.750 49.597 112.05 78.176
9 GN11542 605.000 34.626 76.000 50.118 113.53 86.942
10 GN13618 581.030 39.466 75.750 48.998 108.95 91.285
11 Arabella 724.930 40.281 75.000 47.846 113.59 84.397
12 GN10521 642.420 38.117 74.500 48.902 111.88 83.415
13 SW01074 694.450 37.824 76.500 50.674 112 79.327
14 GN10637 656.910 37.206 77.500 54.179 112.87 81.477
15 SW11230 655.430 44.411 74.500 49.897 112.06 83.640
16 PS-1 666.370 39.537 76.750 48.583 111.06 84.502
17 SW11011 653.210 45.530 77.375 47.952 111.88 86.476
18 SW21074 600.410 36.396 76.750 49.051 111.8 79.810
19 Tjalve 598.410 37.829 73.000 51.539 112.09 77.792
20 Avle 579.220 34.191 74.250 49.333 111.64 79.477
21 Bastian 538.040 33.876 75.250 47.464 109.37 80.493
22 Runar 579.180 40.048 76.750 48.020 111.99 91.360
23 Reno 567.550 41.667 77.750 48.934 111.37 97.997
24 Polkka 586.760 39.158 76.000 51.053 112.01 91.273
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5.6 DSM Images

(a) 14.06.2017
(b) 19.06.2017

(c) 29.06.2017 (d) 03.07.2017

(e) 13.07.2017
(f) 01.08.2017

Figure 5.5: DSM images: One can see anomalies from shear in the rayCloud in Pix4D in images
from June 14th and 19th.
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5.6.1 Collected

Parson correlation Matrix

Table 5.7: P-values for the Pearson correlation matrix of traits investigated for Site A.

PlantCover DH DM PH GY

DH <0.001
DM <0.001 <0.001
PH <0.001 0.008 0.001
GY <0.001 <0.001 0.005 0.214

NDVI 01062017 <0.001 <0.001 <0.001 <0.001 <0.001
NDVI 14072017 0.002 0.002 0.018 0.206 <0.001

MTCI 01062017 <0.001 <0.001 <0.001 0.024 0.032
MTCI 14072017 0.313 0.563 0.011 0.672 <0.001
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Table 5.8: Pearson correlation matrix for least square means of vegetation indices and manually
measured traits. Computed for cultivars given 8 kg/daa Nitrogen fertilizer.

GY TKW HLW DH DM PH

TKW 0.337
HLW 0.066 0.196
DH -0.023 -0.211 0.082
DM 0.335 -0.084 -0.069 0.292
PH -0.363 0.315 0.228 -0.198 -0.386
NDVI 14062017 0.009 0.065 -0.043 -0.153 0.116 -0.003
NDVI 19062017 -0.042 0.058 0.034 -0.057 0.111 -0.016
NDVI 29062017 0.054 -0.004 -0.138 0.021 0.047 -0.056
NDVI 03072017 -0.173 -0.124 0.096 0.018 -0.056 -0.007
NDVI 14072017 -0.169 -0.159 0.119 0.093 0.021 -0.109
NDVI 17072017 -0.134 -0.155 0.09 0.07 -0.003 -0.072
NDVI 25072017 -0.331 -0.038 0.142 -0.165 -0.191 0.168
NDVI 01082017 -0.25 -0.233 0.065 -0.156 -0.134 0.055
NDVI 07082017 -0.16 -0.207 0.307 -0.07 -0.116 0.058
NDVI 14082017 -0.146 -0.168 0.324 -0.017 -0.122 0.087
MTCI 14062017 -0.224 -0.151 0.229 -0.085 -0.154 0.095
MTCI 19062017 0.352 0.142 0.229 0.234 0.161 -0.178
MTCI 29062017 0.234 -0.076 -0.073 -0.063 0.096 -0.132
MTCI 03072017 0.184 -0.169 0.075 0.052 0.086 -0.246
MTCI 14072017 0.023 -0.226 0.125 -0.045 -0.022 -0.137
MTCI 17072017 0.049 -0.187 0.083 -0.033 -0.013 -0.084
MTCI 25072017 -0.035 -0.092 0.01 -0.149 -0.125 -0.044
MTCI 01082017 0.121 -0.082 0.166 0.023 0.056 -0.115
MTCI 07082017 0.171 -0.026 0.155 -0.035 0.251 -0.201
MTCI 14082017 0.041 0.241 -0.205 -0.062 0.107 0.033
NDVI×PH-1 -0.12 0.004 0.161 -0.004 -0.383 0.096
MTCI×PH-1 0.034 -0.013 0.09 0.013 -0.182 0.169
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Table 5.9: P-value for Pearson correlation matrix for least square means of vegetation indices and
manually measured traits. Computed for cultivars given 8 kg/daa Nitrogen fertilizer.

GY TKW HLW DH DM PH

TKW 0.19536
HLW 0.76935 0.5193
DH 0.68646 0.15965 0.81716
DM 0.28765 0.30418 0.65053 0.2906
PH 0.04375 0.20459 0.34453 0.27735 0.02066
NDVI 14062017 0.06835 0.02456 0.84981 0.45257 0.69019 0.28895
NDVI 19062017 0.14379 0.00974 0.64444 0.2925 0.88318 0.57155
NDVI 29062017 0.3946 0.01655 0.95245 0.41527 0.20983 0.82964
NDVI 03072017 0.65302 0.00616 0.57039 0.21944 0.51488 0.84077
NDVI 14072017 0.96069 0.03762 0.73449 0.05098 0.80383 0.95134
NDVI 17072017 0.58218 0.02782 0.55532 0.10235 0.51858 0.79087
NDVI 25072017 0.5784 0.61575 0.21554 0.46489 0.04781 0.71333
NDVI 01082017 0.51534 0.52082 0.27138 0.27773 0.8978 0.27359
NDVI 07082017 0.4984 0.29286 0.4009 0.00417 0.00316 0.41673
NDVI 14082017 0.28776 0.66855 0.58631 0.00221 0.01085 0.3566
MTCI 14062017 0.99187 0.03215 0.15712 0.01097 0.09342 0.89303
MTCI 19062017 0.34034 0.92698 0.30523 0.83492 0.99324 0.47095
MTCI 29062017 0.44655 0.22838 0.5147 0.56381 0.6463 0.04121
MTCI 03072017 0.67443 0.4629 0.30364 0.69844 0.56427 0.08877
MTCI 14072017 0.91745 0.99477 0.90996 0.47868 0.6713 0.23953
MTCI 17072017 0.51299 0.81344 0.91289 0.34494 0.42597 0.05183
MTCI 25072017 0.65863 0.37781 0.60373 0.02682 0.97988 0.94563
MTCI 01082017 0.5853 0.30853 0.61237 0.07092 0.19374 0.00753
MTCI 07082017 0.67676 0.78205 0.71663 0.99301 0.45146 0.17061
MTCI 14082017 0.44207 0.96249 0.47031 0.51538 0.61072 0.39468
NDVI×PH-1 0.85933 0.08946 0.79858 0.08818 0.46899 0.04153
MTCI×PH-1 0.93351 0.71242 0.99623 0.21257 0.77998 0.06276
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Table 5.10: Pearson correlation matrix for least square means of vegetation indices and manually
measured traits. Computed for cultivars given 15 kg/daa Nitrogen fertilizer.

GY TKW HLW DH DM PH

TKW 0.337
HLW 0.066 0.196
DH -0.023 -0.211 0.082
DM 0.335 -0.084 -0.069 0.292
PH -0.363 0.315 0.228 -0.198 -0.386
NDVI 14062017 -0.342 -0.019 0.067 -0.126 -0.26 0.127
NDVI 19062017 -0.272 0.006 0.156 -0.101 -0.203 0.107
NDVI 29062017 -0.255 -0.064 0.259 -0.14 -0.109 0.009
NDVI 03072017 -0.204 -0.118 0.149 -0.133 -0.147 -0.028
NDVI 14072017 -0.122 -0.131 0.06 -0.164 -0.077 -0.022
NDVI 17072017 -0.144 -0.122 0.035 -0.129 -0.01 -0.041
NDVI 25072017 -0.163 -0.189 -0.074 -0.167 -0.008 -0.124
NDVI 01082017 -0.192 -0.115 0.067 -0.173 -0.103 -0.026
NDVI 07082017 0.108 -0.115 0.019 -0.13 -0.024 -0.033
NDVI 14082017 0.12 -0.091 -0.017 -0.102 -0.069 -0.036
MTCI 14062017 -0.057 -0.119 0.047 -0.164 -0.101 0.004
MTCI 29062017 -0.005 -0.133 0.159 0.101 0.005 -0.001
MTCI 03072017 -0.016 -0.175 0.134 0.025 -0.003 0.002
MTCI 14072017 -0.001 -0.187 0.088 -0.071 -0.06 -0.011
MTCI 17072017 0.05 -0.171 0.063 -0.035 0.001 -0.1
MTCI 25072017 -0.106 -0.238 0.041 -0.107 -0.098 0.019
MTCI 01082017 0.081 -0.088 0.092 -0.037 -0.052 0.004
MTCI 07082017 0.015 -0.197 0.041 0.012 -0.276 -0.043
MTCI 14082017 0.154 0.096 -0.315 0.395 0.189 -0.227
NDVI×PH-1 -0.044 -0.079 -0.247 0.246 0.098 0.11
MTCI×PH-1 0.207 0.081 -0.089 0.084 0.061 0.089
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Table 5.11: P-value for Pearson correlation matrix for least square means of vegetation indices
and manually measured traits. Computed for cultivars given 15 kg/daa Nitrogen fertilizer.

GY TKW HLW DH DM PH

TKW 0.19536
HLW 0.76935 0.5193
DH 0.68646 0.15965 0.81716
DM 0.28765 0.30418 0.65053 0.2906
PH 0.04375 0.20459 0.34453 0.27735 0.02066
NDVI 14062017 0.06835 0.02456 0.84981 0.45257 0.69019 0.28895
NDVI 19062017 0.14379 0.00974 0.64444 0.2925 0.88318 0.57155
NDVI 29062017 0.3946 0.01655 0.95245 0.41527 0.20983 0.82964
NDVI 03072017 0.65302 0.00616 0.57039 0.21944 0.51488 0.84077
NDVI 14072017 0.96069 0.03762 0.73449 0.05098 0.80383 0.95134
NDVI 17072017 0.58218 0.02782 0.55532 0.10235 0.51858 0.79087
NDVI 25072017 0.5784 0.61575 0.21554 0.46489 0.04781 0.71333
NDVI 01082017 0.51534 0.52082 0.27138 0.27773 0.8978 0.27359
NDVI 07082017 0.4984 0.29286 0.4009 0.00417 0.00316 0.41673
NDVI 14082017 0.28776 0.66855 0.58631 0.00221 0.01085 0.3566
MTCI 14062017 0.99187 0.03215 0.15712 0.01097 0.09342 0.89303
MTCI 19062017 0.34034 0.92698 0.30523 0.83492 0.99324 0.47095
MTCI 29062017 0.44655 0.22838 0.5147 0.56381 0.6463 0.04121
MTCI 03072017 0.67443 0.4629 0.30364 0.69844 0.56427 0.08877
MTCI 14072017 0.91745 0.99477 0.90996 0.47868 0.6713 0.23953
MTCI 17072017 0.51299 0.81344 0.91289 0.34494 0.42597 0.05183
MTCI 25072017 0.65863 0.37781 0.60373 0.02682 0.97988 0.94563
MTCI 01082017 0.5853 0.30853 0.61237 0.07092 0.19374 0.00753
MTCI 07082017 0.67676 0.78205 0.71663 0.99301 0.45146 0.17061
MTCI 14082017 0.44207 0.96249 0.47031 0.51538 0.61072 0.39468
NDVI×PH-1 0.85933 0.08946 0.79858 0.08818 0.46899 0.04153
MTCI×PH-1 0.93351 0.71242 0.99623 0.21257 0.77998 0.06276
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Table 5.12: P-value for Pearson correlation matrix for least square means of vegetation indices
and manually measured traits. Computed for cultivars only.

GY TKW HLW DH DM PH

TKW 0.19536 TKW
HLW 0.76935 0.5193 HLW
DH 0.68646 0.15965 0.81716 DH
DM 0.28765 0.30418 0.65053 0.2906 DM
PH 0.04375 0.20459 0.34453 0.27735 0.02066 PH
NDVI 14062017 0.06835 0.02456 0.84981 0.45257 0.69019 0.28895
NDVI 19062017 0.14379 0.00974 0.64444 0.2925 0.88318 0.57155
NDVI 29062017 0.3946 0.01655 0.95245 0.41527 0.20983 0.82964
NDVI 03072017 0.65302 0.00616 0.57039 0.21944 0.51488 0.84077
NDVI 14072017 0.96069 0.03762 0.73449 0.05098 0.80383 0.95134
NDVI 17072017 0.58218 0.02782 0.55532 0.10235 0.51858 0.79087
NDVI 25072017 0.5784 0.61575 0.21554 0.46489 0.04781 0.71333
NDVI 01082017 0.51534 0.52082 0.27138 0.27773 0.8978 0.27359
NDVI 07082017 0.4984 0.29286 0.4009 0.00417 0.00316 0.41673
NDVI 14082017 0.28776 0.66855 0.58631 0.00221 0.01085 0.3566
MTCI 14062017 0.99187 0.03215 0.15712 0.01097 0.09342 0.89303
MTCI 19062017 0.34034 0.92698 0.30523 0.83492 0.99324 0.47095
MTCI 29062017 0.44655 0.22838 0.5147 0.56381 0.6463 0.04121
MTCI 03072017 0.67443 0.4629 0.30364 0.69844 0.56427 0.08877
MTCI 14072017 0.91745 0.99477 0.90996 0.47868 0.6713 0.23953
MTCI 17072017 0.51299 0.81344 0.91289 0.34494 0.42597 0.05183
MTCI 25072017 0.65863 0.37781 0.60373 0.02682 0.97988 0.94563
MTCI 01082017 0.5853 0.30853 0.61237 0.07092 0.19374 0.00753
MTCI 07082017 0.67676 0.78205 0.71663 0.99301 0.45146 0.17061
MTCI 14082017 0.44207 0.96249 0.47031 0.51538 0.61072 0.39468
NDVI×PH-1 0.85933 0.08946 0.79858 0.08818 0.46899 0.04153
MTCI×PH-1 0.93351 0.71242 0.99623 0.21257 0.77998 0.06276
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