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Abstract 2 

In this paper, we first provide an overview of the Mie type scattering at absorbing materials and 3 

existing correction methods, followed by a new method to obtain the pure absorbance spectra of 4 

biological systems with spherical symmetry. This method is a further development of the recently 5 

described iterative algorithm of van Dijk et al. [1]. The method is tested on FTIR synchrotron 6 

spectra of polymethyl methacrylate (PMMA) microspheres and pollen grains with approximately 7 

spherical shape. The imaginary part of the refractive index was successfully recovered for both 8 

systems. Good agreement was obtained between the pure absorbance spectra obtained by this 9 

method and the measured spectra.  10 

 11 

Key Words: Mie scattering, ripples, FTIR spectroscopy, recovery of pure absorbance, 12 

PMMA 13 

 14 

 15 

2 
 



1. Introduction 1 

For several decades, infrared (IR) spectroscopy has been extensively applied within biological 2 

sciences to investigate more or less intact biochemical structures [2-4]. The main advantage of 3 

IR spectroscopy is that biological materials can be investigated without any extraction steps or 4 

chemical sample pre-treatment. Biochemical information on biological samples is obtained 5 

via interpretation of highly specific chemical absorption bands. Following the invention of 6 

Fourier transform IR (FTIR) microscopes in the 1980s [5], infrared spectroscopy experienced 7 

a further boost. As a consequence of this development, FTIR microspectroscopy of thin tissue 8 

sections gained in popularity. Compared to traditional microscopy, the advantage of FTIR 9 

microspectroscopy is that chemical information from intact tissue can be obtained without 10 

using staining of the tissue sections [6, 7]. Thin tissue sections for FTIR microspectroscopy 11 

have typical thickness of 6-10 μm, and can be obtained by cryo-sectioning. The thin sections 12 

are placed on infrared-transparent material and measured in transmission by infrared 13 

microspectroscopy. In addition, FTIR microspectroscopy has been used successfully for the 14 

investigation of single cells such as plant and human cells [8, 9].  15 

Recently, synchrotron light sources have attracted considerable attention. While conventional 16 

light sources (black body radiators) have a higher total power in the infrared, synchrotron 17 

light sources are more strongly collimated, resulting in a higher brilliance in the infrared. This 18 

allows the use of aperture sizes down to a few microns. 19 

Since tissue sections, cells and other biological materials vary strongly in size and 20 

morphology, FTIR spectroscopy and microspectroscopy are strongly hampered by non-21 

chemical variations, such as scattering contributions, which often seriously distort pure 22 

chemical absorption spectra. The strongest non-chemical variations in the FTIR spectroscopy 23 

of thin dried films or tissue sections are due to differences in the sample thicknesses. When 24 
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the sample thickness changes the effective optical path length, a so-called multiplicative effect 1 

is present, which can effectively be estimated and suppressed by extended multiplicative 2 

signal correction (EMSC) [10]. Baseline variations, another non-chemical variation that are 3 

typical for FTIR microspectroscopy, arise when the light intensity varies, e.g. during the time 4 

interval between background and sample measurements. The resulting baseline variations are 5 

constant baseline shifts over the whole spectral region, and can equally well be estimated and 6 

suppressed by EMSC [10]. A third type of non-chemical variations, that are typical for the 7 

FTIR microspectroscopy of cells, are Mie-type scattering variations [11]. Scattering effects 8 

have been identified as a major obstacle for the reliable interpretation and further use of IR 9 

spectra in biological and biomedical science, and therefore methods for the recovery of pure 10 

absorbance spectra are needed. 11 

Analytical solutions for the scattering of light at spheres are known and have for the first time 12 

been provided by Gustav Mie [12]. Mie-type scattering at cells causes strong and broad 13 

background oscillations, which can be effectively suppressed by EMSC, applying a meta-14 

model of the analytical Mie solutions [13]. Subsequently, it has been pointed out that the 15 

broad oscillations caused by Mie scattering cannot be treated independently from chemical 16 

absorption in the FTIR microspectroscopy of single cells [14]. The real and the imaginary 17 

parts of the refractive index are determined by both optical and chemical properties of the 18 

material. Since the real and the imaginary parts of the refractive index are further related by 19 

the Kramers-Kronig relation [15, 16], they depend on each other and cannot be treated 20 

independently. Excellent reviews of the field of scattering in IR spectroscopy are available 21 

such as the recent review by Bhargava [17]. In this review the problem of the interdependence 22 

of sample geometry, optical properties of the FTIR spectrometer, and scattering and 23 

absorption is clearly outlined and the corresponding literature dealing with this complex issue 24 

is reviewed. The two additional papers of the Bhargava group, that include the optical 25 
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properties of the spectrometer, provide a general framework for scattering from layered 1 

samples [18] and spheres [19]. Therefore, while the general electromagnetic theory of the 2 

apparatus-sample interaction and its influence on the complex refractive index of the sample 3 

is known, the focus in this paper is on a concrete problem. Namely the question of whether 4 

scattering (real part of the refractive index) and absorption (imaginary part of the refractive 5 

index) may be treated independently in some geometries. The results of our study show that 6 

state-of-the-art models describing Mie-type scattering and absorption deviate considerably 7 

from the exact results. 8 

Several approximate models have been established to explain Mie-type scattering and 9 

absorption of FTIR spectroscopy of cells and tissues [14, 20-24]. As we will see, the problem 10 

is complicated, and existing modelling algorithms and software are not yet completely up to 11 

the task. Kohler et al. [13] and Bassan et al. [20-22] suggested an algorithm based on 12 

multiplicative signal correction [25]. They used the van de Hulst approximation formula for 13 

the calculation of the Mie scattering efficiency [26]. This equation is an approximation used 14 

instead of the full Mie theory. While the approach is very efficient, it represents only a rough 15 

estimate since it uses an approximation formula for the non-absorbing case and no numerical 16 

aperture is considered. 17 

Recently Van Dijck et al. [1] suggested a method for the recovery of the complex refractive 18 

index of materials with spherical shape. The effects of the sample morphology on the 19 

measured spectra can be removed, and using the imaginary part of the index, the shape-20 

independent IR absorption spectrum of the material is recovered. The authors have applied 21 

their algorithm to polymethyl methacrylate (PMMA) spheres. The size of the PMMA spheres 22 

is a required input parameter for their algorithm. In case the size of the spherical object is not 23 

known a priori, the authors have suggested using the spectral region 2000-2600 cm-1 to obtain 24 

an estimate of the size of the sphere. In the present paper we evaluate this strategy for 25 
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biological samples. We combine the method suggested by Van Dijck et al. with EMSC, and 1 

develop an algorithm that allows recovering the pure absorbance spectra of biological systems 2 

in the presence of Mie type scattering. Since the development of future inverse scattering 3 

algorithms will benefit from any simplifying property of the scattering system, we first 4 

investigate and answer the question to what extent scattering and absorption can be treated 5 

independently. We then investigate the recovery of spectra for two separate systems, PMMA 6 

spheres and pollen. Pollen grains are a very close approximation of biological Mie scatter 7 

systems since they may have spheroidal shapes. By investigating this relatively simple system 8 

we may, in the future, generalize the method for more complicated biological systems such as 9 

cells. 10 

Our paper is organized in the following way. In the section “Theory” we set the stage by 11 

introducing our notation and theoretical background used and applied in our paper. In section 12 

“Experiment” we provide the experimental details of the synchrotron FTIR measurements. In 13 

section “Results and Discussion” we show that in the case of absorbing spheres the 14 

assumption of independence of scattering and absorption is not justified. We find that current 15 

state-of-the art models [see e.g. Kohler et al. [13] and Bassan et al. [20]] may predict spurious 16 

line shifts of up to 12 cm-1. Therefore the models that employ independence of scattering and 17 

absorption need to be improved. We present our algorithm for the recovery of pure 18 

absorbance spectra of two systems: 1) a model system (PMMA spheres), and 2) a biological 19 

system (pollen grains with approximately spherical shapes). In some of our model 20 

calculations we need to model chemical absorption lines, and this we do by using the Lorentz 21 

model discussed in detail in Appendix A. There is an additional reason for presenting the 22 

Lorentz model in Appendix A: There is tremendous, as yet untapped, potential in the Lorentz 23 

model for extracting pure absorbance spectra. This is so, since (i) absorption bands, in 24 

principle, can be traced back to their molecular origins and (ii) the absorption lines described 25 
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in the Lorentz model automatically satisfy the Kramers Kronig relation [15, 16]. This may be 1 

put to use in the construction of forward models for scattering on isolated scatterers such as 2 

cells or other micron-sized biological samples. In Appendix B we provide the analytical 3 

solutions for Mie scattering that introduces the notation. It shows that the analytical scattering 4 

and extinction formulas for dielectric spheres can be stated in compact form. In addition, the 5 

formulas may be used as a basis for the extraction of pure absorbance spectra from 6 

(approximately) spherical scatterers of a biological or inanimate nature.   7 

 8 

2. Theory 9 

The purpose of this section is to present the theoretical concepts and algorithms used, applied, 10 

and referred to in our paper. In subsection ‘Basic definitions’ we start with some basic 11 

definitions to set the stage and to introduce our notation. In subsection ‘Mie scattering’ we 12 

discuss scattering at an absorbing sphere and we show a possible way to calculate the 13 

absorbance when the numerical aperture of the optical system is included. In subsection 14 

‘Iterative algorithm’ we present the steps of the algorithm proposed by van Dijck et al. 15 

Basic definitions 16 

In the infrared spectroscopy of biological materials, measurements are usually performed in 17 

forward direction. As illustrated in Fig. 1, infrared light impinges on a cell or a film of 18 

biological material representing a scatterer. The incident intensity is denoted by 𝐼𝐼0; it is 19 

usually referred to as the reference intensity and it is characteristic for the light source. It is 20 

experimentally obtained by moving the scatterer out of the light path. Part of the incident light 21 

𝐼𝐼0 may be scattered, as illustrated by the blue arrows in Fig. 1; it may be absorbed by the 22 

scatterer, as illustrated by the red area, which denotes a radiation sink; and it may be 23 

transmitted, as illustrated by the purple arrows. The transmitted beam is recorded by the 24 
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detector as the sample intensity I. The intensity I is directly proportional to the power ℘ 1 

measured by the detector. It is given by ℘ = 𝐼𝐼𝐼𝐼, where G is the area of the aperture in front of 2 

the detector (see Fig. 1). Along the same lines both the scattered power and the absorbed 3 

power can be expressed in the following way: The scattered power ℘𝑠𝑠𝑠𝑠𝑠𝑠 is given by ℘𝑠𝑠𝑠𝑠𝑠𝑠 =4 

𝐼𝐼0 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 and the absorbed power is given by ℘𝑠𝑠𝑎𝑎𝑠𝑠 = 𝐼𝐼0 𝜎𝜎𝑠𝑠𝑎𝑎𝑠𝑠, hereby defining the cross sections 5 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑎𝑎𝑠𝑠 for scattering and absorption, respectively. Denoting by ℘0 = 𝐼𝐼0𝐼𝐼 the power 6 

recorded by the detector in the absence of the scatterer, the balance of power requires 7 

℘0 = ℘ + ℘𝑠𝑠𝑠𝑠𝑠𝑠 + ℘𝑠𝑠𝑎𝑎𝑠𝑠 (1) 8 

With this equation, the transmission, defined as 9 

𝑇𝑇 = 𝐼𝐼
𝐼𝐼0

 (2) 10 

may also be written as  11 

𝑇𝑇 = 1 − 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
𝐺𝐺

 , (3) 12 

where 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎𝑠𝑠𝑎𝑎𝑠𝑠 is the extinction cross section. A commonly used quantity is the 13 

dimensionless extinction efficiency 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 , which is defined as 14 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
𝑔𝑔

 (4) 15 

where 𝑔𝑔 is the geometrical cross section of the scatterer. Conventionally, in chemistry, a 16 

quantity called absorbance A is defined as 17 

𝐴𝐴 = −log10(𝑇𝑇). (5) 18 

The following formulas are useful, since they allow us to go back and forth between A and 19 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. For given 𝐴𝐴 we obtain 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 according to 20 
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𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = [1 − 10−𝐴𝐴] 𝐺𝐺
𝑔𝑔
 (6) 1 

and for given 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 we obtain 𝐴𝐴 according to 2 

𝐴𝐴 = −log10 �1 −
𝑔𝑔
𝐺𝐺
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒� (7) 3 

Only in the case where 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 is very small compared to 𝜎𝜎𝑠𝑠𝑎𝑎𝑠𝑠, are A and T simply related to 4 

𝜎𝜎𝑠𝑠𝑎𝑎𝑠𝑠. In this case, with Eq. 3, we obtain  5 

𝑇𝑇 ≈ 1 − 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎
𝐺𝐺

. (8) 6 

As before, A is obtained according to Eq. 5. All these quantities are frequency dependent and 7 

usually given as a function of the wavenumber 𝜈𝜈�, which is the reciprocal of the wavelength 𝜆𝜆. 8 

Equation 3 is a ray-optical result and valid only if diffraction at the detector aperture is 9 

negligible. This requires that both dimensions of G are much larger than λ. In addition, G has 10 

to be large compared with 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒. This is readily apparent from Eq. 3, which predicts the 11 

nonsensical result T<0 for 𝐼𝐼 < 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒. Here, we are using the correct value of 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒, determined 12 

in an experiment with sufficiently large G. If, however, we measure 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 with a G that 13 

approaches 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 in size, and since T cannot be negative, the measured 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒, in this case, will 14 

differ from its asymptotic value obtained using a large G. This discussion acquires immediate 15 

relevance in the context of synchrotron light scattering, where the width of the incident beam 16 

may be of the order of, or narrower than, the size of the scattering particle, thus substantially 17 

modifying 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒. This may occur, e.g., when strongly focused synchrotron light is used in the 18 

study of single biological cells.  19 

A further important comment concerns the refractive index, which is an important quantity 20 

when considering the scattering of light at biological materials. Since biological materials 21 

absorb light, the refractive index, in general, has a non-zero imaginary part. We denote the 22 
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complex refractive index by 𝑚𝑚(𝑣𝑣�) = 𝑛𝑛(𝑣𝑣�) + 𝑖𝑖𝑛𝑛′(𝑣𝑣�), where 𝑛𝑛(𝑣𝑣�) is the real part of the 1 

refractive index, describing the refractive properties of the material, and 𝑛𝑛′(𝑣𝑣�) is the 2 

imaginary part of the refractive index, describing the absorptive properties of the material. 3 

In order to model chemical absorption lines we assume a medium of absorbing dipoles 4 

describing both absorption and scattering within the framework of the Lorentz model, briefly 5 

reviewed in Appendix A. In the IR spectroscopy the dipoles are the absorbing functional 6 

groups. The Lorentz model, providing the complex dielectric constant 𝜀𝜀�̃�𝑟 according to Eq. 7 

A18, then allows the computation of the complex refractive index m via Eq. A20. In principle, 8 

even complex biological materials containing many absorbing functional groups are exactly 9 

described by Eq. A18. However, in practice a parameterization of the Lorentz model 10 

according to Eq. A21 turns out to be very effective. The only input parameters to this 11 

effective model are the positions, widths and strength of the absorption bands. Because of the 12 

functional form of the effective Lorentz model, the real and the imaginary parts of the 13 

complex refractive index m automatically fulfil the Kramers-Kronig relation [15, 16].  14 

Mie scattering 15 

A rigorous Mie-type model for scattering of infrared light at cells 16 

The strong Mie-type scattering artifacts, that are often present in FTIR spectra of cells, have 17 

so far been approximated using analytical expressions derived from the Mie theory [13, 14, 18 

20]. The extinction cross section 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) for the scattering of light at a spherical particle is 19 

described by the Mie theory [26] and given by 20 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) = 𝜋𝜋𝑎𝑎2𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�), (9) 21 

where a is the radius of the scattering particle. Gustav Mie derived the exact solutions of this 22 

problem, which are expressed in terms of spherical Bessel functions. The interested reader is 23 

referred to the book by Van De Hulst [26]. It has been shown that for the case of |𝑚𝑚 − 1| ≪24 
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1, where m is the complex refractive index, 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) can be approximated by the following 1 

formula [26] 2 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) ≈ 2 − 4𝑒𝑒−𝜚𝜚 𝑒𝑒𝑠𝑠𝑡𝑡𝛽𝛽 𝑠𝑠𝑐𝑐𝑠𝑠𝛽𝛽
𝜌𝜌

𝑠𝑠𝑖𝑖𝑛𝑛(𝜌𝜌 − 𝛽𝛽) − 4𝑒𝑒−𝜚𝜚 𝑒𝑒𝑠𝑠𝑡𝑡𝛽𝛽 �𝑠𝑠𝑐𝑐𝑠𝑠𝛽𝛽
𝜚𝜚
�
2
𝑐𝑐𝑐𝑐𝑠𝑠(𝜚𝜚 − 2𝛽𝛽) +3 

4 �𝑠𝑠𝑐𝑐𝑠𝑠𝛽𝛽
𝜚𝜚
�
2
𝑐𝑐𝑐𝑐𝑠𝑠(2𝛽𝛽) (10) 4 

with  5 

𝜌𝜌 = 4𝜋𝜋𝑎𝑎𝜈𝜈�|𝑚𝑚− 1|  and   tan𝛽𝛽 = 𝑛𝑛′/(1 − 𝑛𝑛) (11) 6 

In the following study we will use the Van de Hulst approximation, since it provides a handy, 7 

analytical solution without noticeable loss of accuracy. All the previous and following 8 

considerations are valid by either applying the Van De Hulst approximation or the exact Mie 9 

solutions. With the help of either the Van De Hulst formula or the exact Mie solutions, the 10 

absorbance can be calculated via the extinction cross section 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) according to Eqs. 3 and 11 

5. The exact Mie solutions and formula 10 (since they contain 𝑛𝑛 and 𝑛𝑛′) are generally valid 12 

even if the complex refractive index m has a non-zero imaginary part. In case of a real 13 

refractive index, i.e. when absorption is neglected, the Van De Hulst solutions can be 14 

simplified to 15 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) ≈ 2 − 4
𝜌𝜌
𝑠𝑠𝑖𝑖𝑛𝑛 𝜌𝜌 + �4

𝜚𝜚
�
2

(1−𝑐𝑐𝑐𝑐𝑠𝑠 𝜚𝜚) (12) 16 

Several efforts have been made to treat the case of Mie scattering with absorption [14, 20, 21]. 17 

Although Eq. 10 represents the approximation formula for the case of a complex refractive 18 

index, describing precisely the problem of absorption, it has not yet been applied in the 19 

literature in connection with the interpretation and extraction of information from measured 20 

data. 21 

The extinction efficiency 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�), expressed by Eq. 12 with real index of refraction, is 22 

usually interpreted as the additive scatter contribution to the absorbance spectrum [11, 13, 23 
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20]. This is a very rough estimation as we will show in the following. When expanding the 1 

logarithm in Eq. 7 in powers of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�), it can be seen that to first order in 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) we obtain  2 

𝐴𝐴 ≈ 𝜋𝜋𝑠𝑠2

𝐺𝐺 𝑙𝑙𝑡𝑡(10)𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) (13) 3 

This shows that the absorbance and the extinction are only approximately proportional to each 4 

other. In order to investigate this further we model one absorption band at 1654 cm-1 applying 5 

the Lorentz model outlined in Appendix A. This band corresponds to the C=O stretching 6 

vibration of the peptide bond in proteins. We choose Λ = 104 cm−2, Γ = 30 cm−1, and 𝜀𝜀�̅�𝑟 =7 

1.44. Far away from the absorption band at 1654 cm-1 the real part of the refractive index is 8 

close to �𝜀𝜀�̅�𝑟 = 1.2, and changes considerably in the vicinity of the band position. In Figs. 2a 9 

and b the approximated absorbance for a complex refractive index, calculated according to 10 

Eqs. 10 and 7 is compared with the approximated absorbance for a real refractive index 11 

obtained from Eq. 10 and 13, using  𝜋𝜋𝑠𝑠
2

𝐺𝐺
= 0.05. The approximated absorbance for a complex 12 

refractive index is plotted in red, while the approximated absorbance for a real refractive 13 

index is plotted in blue. We see that the maximum value of the absorbance appears at the 14 

same shifted position 𝜈𝜈�𝑚𝑚𝑠𝑠𝑒𝑒 = 1648cm−1. This shows that the approximation with the real 15 

refractive index still reveals the approximation with complex refractive index shifted position 16 

of the maximum. This is immediately clear, since the derivative of the approximation with 17 

complex refractive index formula and the derivative of the approximated formula with the real 18 

refractive index are both proportional to the derivative of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�). Moreover, the maximum 19 

occurs at wavenumbers at which the derivative with respect to 𝜈𝜈� is zero. In the low frequency 20 

range (approx. below 2000 cm-1) the two curves in Figs. 2 agree very well, while they differ 21 

significantly in the high frequency regime. This observation may be important for fitting 22 

spectra of single cells, where so far only the approximated formula with the real refractive 23 

index has been used [13, 14, 20, 21]. 24 
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In addition, we point out that the formulas for 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) in Eqs. 10 and 12 are applicable only if 1 

the incident light is a plane wave, i.e. the size of the incident beam is infinite and the 2 

incoming light rays are parallel. When beam sizes are of the same order as the particle sizes, 3 

the computations of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) have to be modified and the expression for 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) may change 4 

significantly. This also shows that 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) can be taken only as a rough approximation for the 5 

scattering of infrared light at single cells when using highly focused infrared beams such as in 6 

synchrotron infrared spectroscopy. A further investigation of this topic has to show how well 7 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) in Eq. 10 describes the experimental situation [27]. In addition, the incident beam in 8 

synchrotron infrared spectroscopy has a high numerical aperture and the condition of parallel 9 

light rays is not exactly fulfilled [27].  10 

In order to take the numerical aperture into account when calculating the apparent 11 

absorbance, we calculate the light intensity I from the exact Mie solutions. Since synchrotron 12 

radiation is linearly polarized, the field vector 𝐸𝐸�⃗ 0 of the incident synchrotron light may be 13 

decomposed into a component 𝐸𝐸�⃗ 0r perpendicular to the scattering plane and a component 𝐸𝐸�⃗ 0l 14 

parallel to the scattering plane. Denoting by φ the (azimuthal) angle between 𝐸𝐸�⃗ 0 and the 15 

scattering plane ([26], section 9.3), the magnitudes of the perpendicular and parallel 16 

components of 𝐸𝐸�⃗ 0 are given by 𝐸𝐸0𝑟𝑟 = 𝐸𝐸0 sin(𝜑𝜑) and 𝐸𝐸0𝑙𝑙 = 𝐸𝐸0 cos(𝜑𝜑), respectively. Taking 17 

the detector aperture G and the geometrical cross section g into account, the scattered 18 

intensities Ir and Il are given explicitly by ([26], section 4.4)  19 

𝐼𝐼𝑟𝑟(𝜃𝜃,𝜑𝜑) = �𝐺𝐺
𝑔𝑔
� 𝑖𝑖1(𝜃𝜃)
4𝜋𝜋2𝜈𝜈�2𝑟𝑟2

|𝐸𝐸0𝑟𝑟|2 = �𝐺𝐺
𝑔𝑔
� 𝑖𝑖1(𝜃𝜃)
4𝜋𝜋2𝜈𝜈�2𝑟𝑟2

𝐼𝐼0𝑠𝑠𝑖𝑖𝑛𝑛2(𝜑𝜑) (14) 20 

and 21 

𝐼𝐼𝑙𝑙(𝜃𝜃,𝜑𝜑) = �𝐺𝐺
𝑔𝑔
� 𝑖𝑖2(𝜃𝜃)
4𝜋𝜋2𝜈𝜈�2𝑟𝑟2

|𝐸𝐸0𝑙𝑙|2 = �𝐺𝐺
𝑔𝑔
� 𝑖𝑖2(𝜃𝜃)
4𝜋𝜋2𝜈𝜈�2𝑟𝑟2

𝐼𝐼0𝑐𝑐𝑐𝑐𝑠𝑠2(𝜑𝜑) (15) 22 
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where 𝐼𝐼0 = |𝐸𝐸0|2, r is the distance between sample and detector, 𝑖𝑖1,2(𝜃𝜃) = �𝑆𝑆1,2(𝜃𝜃)�
2
, and 1 

𝑆𝑆1,2(𝜃𝜃) are the scattering amplitudes stated explicitly in Appendix B, Eqs. B1 and B2. In 2 

order to account for the numerical aperture, we integrate 3 

𝐼𝐼(𝜃𝜃,𝜑𝜑) = 𝐼𝐼𝑟𝑟(𝜃𝜃,𝜑𝜑) + 𝐼𝐼𝑙𝑙(𝜃𝜃,𝜑𝜑) (16) 4 

over the solid angle cone with opening angle θNA (the aperture angle) to obtain the intensity 5 

INA, corresponding to the given numerical aperture, according to 6 

𝐼𝐼𝑁𝑁𝐴𝐴 = ∫ ∫ 𝐼𝐼(𝜃𝜃,𝜑𝜑) sin(𝜃𝜃)𝑑𝑑𝜃𝜃 𝑑𝑑𝜑𝜑2𝜋𝜋
0 =𝜃𝜃𝑁𝑁𝑁𝑁

0 �𝐺𝐺
𝑔𝑔
� 𝐼𝐼0
4𝜋𝜋𝜈𝜈�2𝑟𝑟2 ∫ [𝑖𝑖1(𝜃𝜃) + 𝑖𝑖2(𝜃𝜃)] sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃𝑁𝑁𝑁𝑁

0 . (17) 7 

In our simulations we used r = 0.5 m. This turned out to be the optimal value resulting from 8 

our calculations and is a reasonable value for our optical setup as well. The parameter G was 9 

estimated with the EMSC model. Inserting the transmission 𝑇𝑇 = 𝐼𝐼𝑁𝑁𝐴𝐴 𝐼𝐼0⁄  into Eq. 5, we obtain 10 

the absorbance 11 

𝐴𝐴 = − log10 ��
𝐺𝐺
𝑔𝑔
� 1
4𝜋𝜋𝜈𝜈�2𝑟𝑟2 ∫ [𝑖𝑖1(𝜃𝜃) + 𝑖𝑖2(𝜃𝜃)] sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃𝑁𝑁𝑁𝑁

0 � (18) 12 

For the calculation of the exact Mie solutions the algorithm proposed by Bohren and Huffman 13 

[28] was implemented in MATLAB.  14 

 15 

Iterative algorithm 16 

We will follow the iterative algorithm proposed by van Dijck et al. [1], in order to recover the 17 

pure absorbance spectrum 𝐴𝐴 from measured and distorted absorbance spectra 𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚. The 18 

main steps of the algorithm are presented below.  19 

Initialization: For 𝑗𝑗 = 1, the complex refractive index 𝑚𝑚𝑗𝑗 = 𝑛𝑛𝑗𝑗 + 𝑖𝑖 𝑛𝑛′𝑗𝑗  is initialized, where j is 20 

the index of iteration. The real part of the refractive index, 𝑛𝑛𝑗𝑗 , is initialized with an estimated 21 

constant n0. The imaginary part, 𝑛𝑛′𝑗𝑗, is initialized with zero.  22 

Following initialization, the iteration proceeds as follows:  23 
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I. The formulas in appendix B together with Eq. 18 are used to predict the 1 

absorbance spectrum 𝐴𝐴(𝑗𝑗) from the complex refractive index 𝑚𝑚𝑗𝑗. 2 

II. The difference 𝐸𝐸(𝑗𝑗) between the measured spectrum 𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚 and the 3 

predicted spectrum 𝐴𝐴(𝑗𝑗) is calculated according to: 4 

𝐸𝐸(𝑗𝑗)(𝜈𝜈�) = 𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚(𝜈𝜈�) − 𝐴𝐴(𝑗𝑗)(𝜈𝜈�) (19) 5 

III. From the difference and using Eq. C19, the next value for n’ is calculated 6 

according to: 7 

𝑛𝑛′𝑗𝑗+1(𝜈𝜈�) = 𝑛𝑛′𝑗𝑗(𝜈𝜈�) + ln(10)
4𝜋𝜋𝜈𝜈�𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝐸𝐸(𝑗𝑗)(𝜈𝜈�), (20) 8 

where 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 = 4𝑠𝑠
3

 is the effective thickness of a sphere of radius a. 9 

IV. The negative values of n’(𝜈𝜈�) are set to zero.  10 

V. A new value for n (𝜈𝜈�) is predicted according to: 11 

𝑛𝑛𝑗𝑗+1(𝜈𝜈�) = 𝑛𝑛0 + 𝐾𝐾𝐾𝐾𝑎𝑎𝑚𝑚𝑒𝑒𝐾𝐾𝑠𝑠 𝐾𝐾𝐾𝐾𝑐𝑐𝑛𝑛𝑖𝑖𝑔𝑔�𝑛𝑛′𝑗𝑗+1(𝜈𝜈�)� (21) 12 

VI. The new complex refractive index is calculated according to:  13 

𝑚𝑚𝑗𝑗+1(𝜈𝜈�) = 𝑛𝑛𝑗𝑗+1(𝜈𝜈�) + 𝑖𝑖 𝑛𝑛′𝑗𝑗+1(𝜈𝜈�)  (22) 14 

The complex refractive index 𝑚𝑚𝑗𝑗+1(𝜈𝜈�) is updated and the next iteration 15 

with 𝑗𝑗 + 1 is started.  16 

 17 

Estimation of the radius and the constant part of the real part of the refractive index 18 

In order to estimate the constant part of the refractive index n0 and the radius of the sphere a, 19 

intervals of n0 and a may be considered. For every combination of these two parameters we 20 

calculate the Qext with Eq. 12. The absorbance, Apred, is predicted using Eq. 13. The parameter 21 

G is estimated using EMSC model. For direct comparison of the predicted spectrum with the 22 

spectrum measured at the discrete wavenumbers 𝜈𝜈�𝑖𝑖, we suggest to calculate the root mean 23 

square error (RMSE) according to 24 
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𝐸𝐸(𝑗𝑗)(𝜈𝜈�𝑖𝑖) = 𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚(𝜈𝜈�𝑖𝑖) − 𝐴𝐴𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚(𝜈𝜈�𝑖𝑖) (23) 1 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸(𝑗𝑗) = �∑ �𝐸𝐸(𝑗𝑗)(𝜈𝜈�𝑖𝑖)�
2𝐾𝐾

𝑖𝑖=1
𝐾𝐾

 (24) 2 

where K is the number of measured discrete wavenumbers 𝜈𝜈�𝑖𝑖. The iterative algorithm 3 

described in the previous section is very time-consuming when full Mie theory is applied and 4 

the integration over the numerical aperture is executed. Therefore, we suggest to use the van 5 

de Hulst approximation formula in Eq. 12 in order to obtain a first estimate of n0 and a. This 6 

result can then be entered into the iterative algorithm using the full Mie theory and integrating 7 

over the numerical aperture. Since the van de Hulst approximation formula in Eq. 12 depends 8 

on the size factor 9 

𝛼𝛼 = 𝑎𝑎(𝑛𝑛0 − 1). (25) 10 

and not on n0 and a, separately, it is sufficient to minimize the RMSE as a function of 𝛼𝛼. 11 

Thus, this first estimate results only in an estimate of 𝛼𝛼, but not in an estimate of n0 and a, 12 

separately. We emphasize that the size factor 𝛼𝛼 needs to be carefully distinguished from the 13 

size parameter 𝑥𝑥 = 𝑘𝑘 ∙ 𝑎𝑎 and from the parameter 𝜌𝜌 = 2𝑥𝑥|𝑚𝑚 − 1|, defined in Eq. 11.  14 

 15 

3. Experiment 16 

Samples of pollen were collected at the Botanical Garden of the Faculty of Science of the 17 

University of Zagreb during the 2012 pollination season. The following samples, belonging to 18 

the Cupressaceae plant family, were measured: Cunninghamia lanceolata, Juniperus 19 

chinensis, Juniperus communis, and Juniperus excels. The pollen samples, of approximately 20 

spherical morphology, varied in diameter between 10 to 40 μm. The samples were collected 21 

directly from plants at flowering time by shaking mature male cones. The samples were kept 22 

16 
 



in paper bags at room temperature for 24 hours, and afterwards transferred to vials and stored 1 

at -15 °C.  2 

 3 

In addition to the pollen samples, polymethyl methacrylate (PMMA) microspheres of assorted 4 

sizes were measured as well as a simple artificial system for modeling scattering from 5 

biological materials. The PMMA samples were purchased from Microspheres-Nanospheres 6 

(Corpuscular Inc, NY), and used without further modifications. The spheres had the following 7 

diameters as stated by the vendor: 5.5, 10.8, 15.7, 20.0, 30.0 and 40.0 µm.  8 

  9 

In order to obtain high-quality spectra of single particles, pollen and PMMA samples were 10 

recorded by using synchrotron radiation at the SOLEIL synchrotron facility. The synchrotron 11 

spectra were measured on the SMIS infrared beamline, details of which can be found 12 

elsewhere [29]. The transmission spectra of all the samples were recorded with a resolution of 13 

4 cm-1 by using the synchrotron radiation coupled to a Nicolet 5700 FTIR spectrometer with a 14 

Nicolet Continuum XL IR microscope (Thermo Scientific, CA), equipped with a liquid 15 

nitrogen cooled mercury cadmium telluride detector. The spectra were measured in the 8000-16 

650 cm-1 spectral range, with 128 scans each and using 15× and 32× objectives with different 17 

aperture sizes, depending on the size of the sample (10x10µm, 15x15µm and 20x20µm). The 18 

numerical aperture of the microscope was 0.65 [29]. For each measured sample an image was 19 

recorded with an optical microscope. 20 

 21 

4. Results and Discussion 22 

Comparison with existing Mie-type models for cells  23 

In the literature, the extinction 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) in Eq. 12, i.e. the Van De Hulst approximation for a 24 

real refractive index, has frequently been used as an approximation for the absorbance [13, 14, 25 
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20, 21]. In the paper by Bassan et al. [14], Mie scattering in the infrared spectroscopy of 1 

single cells is constructed theoretically, taking the chemical absorption of the scatterer into 2 

account. The case where absorption is considered was termed resonant Mie scattering. 3 

Starting from a practically scatter-free thin-film absorbance spectrum A, the imaginary part of 4 

the complex index of refraction, n’, is calculated, assuming proportionality between n’ and A. 5 

Because of the explicit frequency dependence, as discussed in [1] (see Eq. 8), this is only 6 

approximately valid. After determining n’, a Kramers-Kronig transformation [15, 16] 7 

according to 8 

𝑛𝑛(𝜈𝜈�) = 𝑛𝑛0 + 2
𝜋𝜋
𝑃𝑃 ∫ 𝑠𝑠∙𝑡𝑡′(𝑠𝑠)

𝑠𝑠2−𝜈𝜈�2
𝑑𝑑𝑠𝑠∞

0  (26) 9 

is applied to obtain the real part of the index of refraction m. At this point the real part is 10 

inserted into Eq. 12 in order to obtain the extinction efficiency 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�). It is important to note 11 

that this involves neglecting the imaginary part of the refractive index m, since Eq. 10 is 12 

equivalent to Eq. 12 only if the index of refraction is real. The result obtained was called 13 

apparent absorbance [14]. The approximation involved in calculating the apparent absorbance 14 

is not negligible, as we will see in the following. In Figs. 3a and 3b, using the same model 15 

absorption line as in Fig. 2 at 1654 cm−1, the apparent absorbance with real refractive index is 16 

plotted in blue, while the apparent absorbance result, obtained via Eqs. 3, 4 and 10, employing 17 

the complex refractive index, is plotted in red. It can be seen that the apparent absorbance is 18 

shifted to lower frequencies compared to the result with complex index of refraction. The 19 

apparent absorbance has a shifted maximum at 𝜈𝜈�𝑚𝑚𝑠𝑠𝑒𝑒 = 1641cm−1, which corresponds to a 20 

low-wavenumber shift of 7 wavenumbers with respect to its expected location at 𝜈𝜈�𝑚𝑚𝑠𝑠𝑒𝑒 =21 

1648cm−1 (see Fig. 2), a significant difference when interpreting spectral bands of biological 22 

materials. Concerning the system at hand, we have found that the shift is to the right (lower 23 

wavenumber region) if the band is located on the right wing of the associated Mie fringe, and 24 

the shift is to the left (higher wavenumber region) if the band is located on the left-hand side 25 
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of the associated Mie fringe. While this observation applies to our model and our current 1 

choice of parameters, it is an open question whether shift directions and band locations are 2 

correlated this way in general. 3 

A Mie-type model for a nucleus in a cell membrane 4 

It is important to note that the approximation expression with complex index of refraction for 5 

the extinction efficiency 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝜈𝜈�) (for the approximate version with real index of refraction 6 

see Eq. 10) takes absorption and scattering into account and thus it is expected that this 7 

expression can be used to obtain an expression for the absorbance of infrared light by a cell 8 

nucleus. However, if the nucleus is embedded in a medium, the absorbance of the cell plasma 9 

may add to the absorbance of the nucleus obtained via Eqs. 3, 4 and 10. In this case the 10 

absorbance spectrum for the nucleus 𝐴𝐴𝑡𝑡𝑚𝑚𝑠𝑠𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 can be obtained according to Eqs. 3, 4 and 10, 11 

considering the nucleus as a scattering and absorbing sphere. The absorbance spectrum of the 12 

plasma 𝐴𝐴𝑝𝑝𝑙𝑙𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 may be a relatively undistorted spectrum, since the plasma can be considered 13 

as a thin film, in which the nucleus is embedded. The measured spectrum 𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚 may 14 

therefore be simply written as the sum of the two contributions according to 15 

𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚 = 𝐴𝐴𝑡𝑡𝑚𝑚𝑠𝑠𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 + 𝐴𝐴𝑝𝑝𝑙𝑙𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 (27) 16 

The above findings may be used to improve the algorithm of Refs. [20, 21], which employs 17 

the model constructed by Bassan et al. [14]. 18 

Ripples 19 

The exact Mie extinction shows a rapidly fluctuating structure on top of the smooth wavelike 20 

underlying structure. The sharp narrow structures are called ripples, while the broader, 21 

smoother structures are called wiggles. The wiggles are always present in the extinction curve 22 

and if we increase the size factor, ripples start to appear on top of wiggles. We modelled an 23 

absorbance band at 1654 cm-1 using the Lorentz model presented in Appendix A. We 24 

calculated the Mie extinction, Qext, and the scattering efficiency, Qsca using the exact Mie 25 
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solutions (see Appendix B equations B3, B4, B7 and Eqs. 15-16) and the modelled complex 1 

index of refraction, according to the following equations: 2 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 2
𝑒𝑒2
∑ (2𝑛𝑛 + 1)ℜ(𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑡𝑡)∞
𝑡𝑡=1  (28) 3 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑒𝑒2 ∫ [𝑖𝑖1(𝜃𝜃) + 𝑖𝑖2(𝜃𝜃)] sin𝜃𝜃 𝑑𝑑𝜃𝜃𝜃𝜃𝑁𝑁𝑁𝑁

0 . (29) 4 

In Fig. 4 we plot the exact Mie extinction, Qext, and the scattering efficiency, Qsca, for an 5 

absorbing sphere, for two cases, n0=1.14, a=10µm and n0=1.24, a=10µm. In Fig. 4a, the case 6 

of n0=1.14, a=10µm, we see only the large oscillations (wiggles) in Qext and Qsca. In Fig. 4b, 7 

we see the ripples in Qext and Qsca when n0=1.24, a=10µm. The formal reason for the ripples 8 

in the Mie absorbance spectra is known: they correspond to partial-wave resonances in the 9 

Mie coefficients [30, 31]. However, the excitation mechanisms of these resonances and their 10 

consequences for the electromagnetic field distribution inside the scatterer have not been 11 

explored yet.  12 

The synchrotron FTIR spectrum of a PMMA sphere with 10 µm diameter is shown in Fig. 5a. 13 

In Figs. 5b and 5c, the spectrum has been divided into 1) the spectral region 7200-3600 cm-1 14 

and 2) the spectral region 3600-800 cm-1 respectively. While the spectrum in Fig. 5b shows 15 

only features caused by the Mie scattering of the sphere, the spectrum in Fig. 5c shows the 16 

additional features due to absorbance of the PMMA molecules. Zooming into the 17 

wavenumber region between about 6000 cm-1 and 7000 cm-1 (see Fig. 5d), we see sharp 18 

structures in the absorbance that may correspond to Mie ripples. To our knowledge, the 19 

observation of Mie ripples was not yet reported in the experimental FTIR literature. Thus, the 20 

features in Fig. 5d may constitute the first experimental observation of Mie ripples in an FTIR 21 

spectrum. Since the present paper does not focus on the ripple structure, but focuses instead 22 

on the extraction of pure absorbance spectra, we defer the discussion of ripples in absorbance 23 

spectra to a forthcoming paper. 24 

 25 
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Recovery of pure absorbance spectra of PMMA spheres 1 

In order to test the algorithms, we used PMMA spheres as a model system. The value of the 2 

constant part of refractive index, n0, for PMMA spheres is known approximately and thus a 3 

good estimate for the radius of the spheres, a, can be obtained. We used the measured 4 

spectrum from Fig. 5b to test the prediction method for the radius of the sphere and the 5 

constant part of the refractive index as described in the theory section. We considered the 6 

following intervals for n0 and for a (radius of the sphere): 7 

𝑛𝑛0  ∈ [1.1; 2.0] ∆𝑛𝑛0 = 0.05 8 

𝑎𝑎 ∈ [1𝜇𝜇𝑚𝑚; 10𝜇𝜇𝑚𝑚]    ∆𝑎𝑎 = 0.25𝜇𝜇𝑚𝑚 9 

We calculated the RMSE as a function of 𝛼𝛼. The result is shown in Fig. 6, where RMSE is 10 

plotted as a function of 𝛼𝛼 ∙ 106. We will refer to 𝛼𝛼 as the size factor, as frequently done in the 11 

literature. We find four major local minima in the RMSE function: at α=0.64µm, α=1.1µm, 12 

α=2.1µm and α=3.1µm (see inset of Fig. 6). The global minimum is located at approximately 13 

α=2.1µm. Figure 7 shows the predicted absorbance, calculated with Eqs. 12-13, together with 14 

the measured absorbance, for all four local minima. The best fit to the large oscillation in the 15 

measured absorbance spectrum in Fig. 5b is found for α = 2.1µm. We consider the value 16 

2.1µm a good solution. In the case of PMMA we know that the approximate value of n0 is 17 

1.48. Considering the minimum in the RMSE function around α=2.1µm, we obtain the radius 18 

𝑎𝑎 = 𝛼𝛼
𝑡𝑡0−1

= 4.4 µm.  19 

In our case we know the radius of the PMMA sphere and this helps to choose the correct n0. 20 

But if we do not have information about the radius or the refractive index, we can choose a 21 

and n0 values which satisfy the α=2.1µm condition. We will use these values (n0 and a) as 22 

initial parameters in the van Dijck iterative algorithm. If we can recover the pure absorbance 23 

spectra and if we have a good predicted absorbance, then the initial parameters are a good 24 
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choice. If we cannot recover the imaginary part of the refractive index, or the predicted 1 

absorbance is not good, we discard the n0 and a combination. 2 

Consider the measured spectrum in Fig. 5c. To test our initial parameters, n0=1.48 and 3 

a=4.4µm, we selected three different combinations of n0 and a as inputs for the the van Dijck 4 

iterative algorithm, i.e. (i) n0=1.7 and a=3µm, (ii) n0=1.48 and a=4.4µm and (iii) n0=1.3 and 5 

a=7µm. Following the choice of n0, all three values of a were obtained via 𝑎𝑎 = 2.1 𝜇𝜇𝑚𝑚
𝑡𝑡0−1

. The n0 6 

values were chosen such that the resulting a values box in and thereby test our initial 7 

parameter set n0=1.48 and a=4.4µm. Running the van Dijck iterative algorithm for the three 8 

selected values of n0 and a, we predicted our apparent absorbance using the exact Mie 9 

solutions from Eq. 18. This way we take into account the numerical aperture. After 12 10 

iteration steps the algorithm converged and the imaginary part, n’, of the refractive index and 11 

the predicted absorbance was obtained (Figures 8-9 respectively). As can be seen in Fig. 9, 12 

the predicted absorbance, for the values n0=1.7 and a=3µm does not provide a good fit. The 13 

solution n0=1.3 and a=7µm provides a better fit both for the imaginary part and the predicted 14 

absorbance. The best combination is n0=1.48 and a=4.4µm, as both the imaginary part of the 15 

refractive index and the predicted absorbance agree best. With this obtained n’ we calculate 16 

the pure absorbance spectrum of a PMMA thin film and consider the thickness to be 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 =17 

4𝑠𝑠
3

= 5.9𝜇𝜇𝑚𝑚: 18 

𝐴𝐴𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒 = 4𝜋𝜋𝑡𝑡′𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝜈𝜈�
𝑙𝑙𝑡𝑡 (10)

 (30) 19 

Figure 10 shows this calculated pure absorbance spectrum of a PMMA thin film computed 20 

with Eq. 30. The main absorbance peaks in the calculated spectrum are compared with other 21 

experimental measurements. The following bands were found in the calculated absorbance 22 

spectrum: 2987 cm-1, 2937 cm-1, 2839 cm-1, 1763 cm-1, 1724 cm-1, 1497 cm-1, 1466 cm-, 1441 23 

cm-1, 1394 cm-1, 1333 cm-1, 1261 cm-1, 1225 cm-1, 1182 cm-1, 1047 cm-1 and 951 cm-1. The 24 
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FTIR spectra of PMMA powder have been measured in the range of 4000 – 400 cm-1 by Haris 1 

et al. The following characteristic absorption bands were found: 3000 cm-1, 2953 cm-1, 2840 2 

cm-1, 1727 cm-1, 1483 cm-1, 1447 cm-1, 1437 cm-1, 1398 cm-1, 1367 cm-1, 1267 cm-1, 1239 cm-3 

1, 1197 cm-1, 1147 cm-1, 1050 cm-1, 990 cm-1, 967 cm-1, 913 cm-1, 840 cm-1, 807 cm-1 and 750 4 

cm-1 [32]. Our calculated absorbance is in good agreement with the experimental data. With 5 

this method it was possible to get the pure absorbance spectra and to give a realistic estimate 6 

of n0 and a. The method will now be tested on biological systems.  7 

 8 

Recovery of pure absorbance spectra of Pollen 9 

 10 

Pollen grains are an ideal real-world model system for characterization of scattering 11 

phenomena of biological samples. As opposed to the vast majority of cells and tissues that are 12 

easily deformed, pollen grains have stable and reproducible morphology because of their thick 13 

and shape-persistent grain walls. Moreover, the desiccated nature of the grains provides 14 

relatively stable biochemical composition, and thus enables simple manipulation and 15 

measurement. Finally, the diversity of pollen morphologies, with a variety of shapes, textures, 16 

and sizes (ranging from less than 5 µm to over 200 µm), enable a wide range of experimental 17 

conditions for the measurement of scattering phenomena. 18 

Pollen grains belonging to the Cupressaceae plant family were chosen due to their 19 

approximately spherical shape and appropriate range of radius sizes. The synchrotron 20 

spectrum of Juniperus chinensis pollen grain, with 27 µm diameter, is shown in Fig. 11a. In 21 

Fig. 11a we can distinguish three main parts of the spectrum. The first part, between 6300-22 

3600 cm-1, is shown in Fig. 11b. The second part, between 3600-1000 cm-1, is plotted in Fig. 23 

11c. In Fig. 11b we can see the large oscillations due to Mie scattering. In this interval Mie 24 

scattering is the main physical origin of the spectrum. Figure 11c shows the absorption part of 25 
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the spectrum. In this area the molecular absorption is very strong and together with the 1 

scattering is causing an FTIR spectrum. If we zoom into Fig. 11c, we see that for 2 

wavenumbers between 2771-1880 cm-1, absorption is not present and Mie scattering is again 3 

the guiding phenomenon. Figure 11d shows this zoomed-in spectrum. Within this region the 4 

chemical constituents of pollen do not show any absorbance. Thus, in this region n’ is zero. 5 

In all the spectral regions shown in Fig. 11, we can see the ripples caused by Mie scattering. 6 

To the best of our knowledge, this is the first time that Mie scattering ripples were observed in 7 

IR spectra of a biological system. As stated before, we do not focus on them in this paper. Our 8 

main purpose here is to recover the pure absorbance spectra of the pollen and make a good 9 

guess concerning the refractive index and the radius of the pollen grains. In order to achieve 10 

this, we use the scenario developed for the PMMA spheres. We will consider the spectrum 11 

from Fig. 11b as a measured absorbance and we will try to predict the radius of the pollen 12 

grain, a, and the constant part of the refractive index, n0. The following intervals were chosen 13 

for n0 and for a:  14 

𝑛𝑛0  ∈ [1.1; 2.0] ∆𝑛𝑛0 = 0.05 15 

𝑎𝑎 ∈ [5𝜇𝜇𝑚𝑚; 15𝜇𝜇𝑚𝑚]    ∆𝑎𝑎 = 0.25𝜇𝜇𝑚𝑚 16 

For every combination of these two parameters we predicted the absorbance spectrum with 17 

the van de Hulst approximation formula from Eq. 12. We scaled the prediction with EMSC 18 

and compared with the measured spectrum. We calculated the root mean square error (RMSE) 19 

function according to Eqs. 23-24. The same investigation is followed as in the case of 20 

PMMA: In Fig. 12 the resulting RSME function is plotted as a function of the size factor, 21 

clearly revealing four distinct minima at α=1µm, α=1.3µm, α=2.2µm and α=3.2µm (see inset 22 

of Fig. 12). Figure 13 shows the predicted absorbance for some selected values of the size 23 

factor. All combinations of n0 and a around the parameter value 𝛼𝛼 = 2.2µm give a good 24 

approximation to the large oscillation in the measured absorbance spectrum, and therefore we 25 
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consider the value 2.2 as the best solution. We took this value as the guiding value. From the 1 

optical image of the pollen grain we estimated the radius of the pollen grain, a=13.5µm. 2 

Choosing the size factor 2.2 for the constant part of the refractive index, we get n0=1.16. 3 

Considering that all the biological materials inside the pollen grain (cellulose, sporopollenin, 4 

etc.) have a constant part of the index of refraction of about 1.5 in the visible spectrum of 5 

light, this value is quite small. However, taking the porous structure of the outer part of the 6 

pollen grain into account, this value makes sense. Therefore, from biological point of view the 7 

smaller value of n0 is the better choice. 8 

We fed different values of n0 and a as initial parameters into the van Dijck iterative algorithm. 9 

If the pure absorbance spectrum is recovered, and if we get a good predicted absorbance, then 10 

the initial parameters were a good choice. If the imaginary part of the refractive index is not 11 

recovered, or the predicted absorbance is not good, the corresponding combination of n0 and a 12 

was discarded. 13 

Before running the iterative algorithm we tested the prediction method suggested by 14 

van Dijck et al.. To predict n0, these authors propose to use the region from the measured 15 

spectrum between 2600 cm-1 and 2100 cm-1, as here most organic materials do not show 16 

absorption. In the case of Juniperus chinensis pollen grains we used the region of the 17 

spectrum between 2771 cm-1 and 1880 cm-1, shown in Fig. 13c, to predict a and n0. If we use 18 

the same method presented above, with the same interval and resolution of n0 and a, we 19 

obtain for the RMSE function the values plotted in Fig. 14. Employing our prediction method 20 

only in this region results a size factor around 3.2. We conclude that in our case the region 21 

recommended by van Dijck et al. is not enough to predict n0 and a. 22 

We continue with our investigation to obtain the pure absorbance spectrum of the 23 

pollen grain in the following way. We considered the measured spectrum shown in Fig. 11c. 24 

Then, we ran the van Dijck iterative algorithm for two values of n0 and a (n0=1.16, 25 
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a=13.5µm; n0=1.5, a=13.5µm). Using the iterative process, we predicted the apparent 1 

absorbance using the exact Mie solutions according to Eq. 18 taking into account the 2 

numerical aperture. In the region from 2771 cm-1 to 1880 cm-1 n’ is kept zero. The imaginary 3 

part, n’, of the refractive index and the predicted absorbance converged after 20 iteration steps 4 

in each case. Figures 15-16 show the imaginary part of the refractive index and the predicted 5 

absorbance, respectively. For n0=1.16, a=13.5µm, the imaginary part of the refractive index 6 

shows vibrational bands at the expected positions. Yet, the obtained imaginary part of the 7 

refractive index does not resemble a scatter-free pollen spectrum. Especially the region from 8 

1800 cm-1 to 1000 cm-1 shows an unexpected signature. In case of n0=1.5, a=13.5µm no 9 

meaningful peaks in imaginary part could be reconstructed as can be seen in Fig. 15.  10 

The predicted spectrum obtained for the case n0=1.16, a=13.5µm represents a meaningful 11 

prediction. The regions with absorption bands were nicely predicted. The case n0=1.5, 12 

a=13.5µm does not reveal a meaningful prediction. 13 

 14 

5. Conclusions 15 

In recent years, infrared spectroscopy of biological materials has been challenged by samples 16 

of increasing morphological complexity, with the consequence that infrared spectra are 17 

strongly distorted by scattering. Several efforts have been made to explain the observed 18 

scattering phenomena, and approximate models for the different situations have been 19 

presented. All the models presented so far are ad hoc models. In this paper we have presented 20 

an exact description of the absorbance spectrum for the scattering and absorption of infrared 21 

light at spheres of absorbing materials.  22 

When dealing with Mie scattering, absorption and scattering cannot be treated as independent. 23 

In this paper we have shown that current models that treat absorption and scattering as 24 

dependent yield approximate absorption bands that are considerably shifted, as opposed to the 25 
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exact models presented in this paper. We therefore propose to implement the exact models in 1 

the existing EMSC algorithms for reconstructing absorbance spectra. Concerning the Mie 2 

formalism, both the approximate, analytical or the exact Mie formulas [26] may be used. 3 

Our method for the estimation of n0 and a works well in the case of homogeneous spheres, but 4 

may be too simple in the case of pollen. It may be necessary to take the layered structure of 5 

the pollen into account. 6 

The pure absorbance spectra were successfully recovered for PMMA spheres. For biological 7 

systems no satisfactory recovery of the pure absorbance spectrum could be obtained. As we 8 

demonstrated in this paper, good starting values for n0 may often be obtained on the basis of 9 

physical and biological considerations. Using these values of n0 as starting values, pure 10 

absorbance spectra can be obtained with a high level of confidence. Motivated by the need of 11 

accurate n0 values, we are currently developing new methods of extracting n0 from the 12 

scattering data themselves. Combining these new methods for determining n0 with the 13 

methods outlined and demonstrated above brings out the full power of the new techniques 14 

advanced in this paper and contributes decisively to the solution of extracting pure absorbance 15 

spectra from measured FTIR spectra.  16 

Appendix A: Lorentz Model 17 

The Lorentz model is a classical model for the computation of the dielectric constant of a material in 18 

the presence of absorption resonances. Although based on classical electrodynamics, including 19 

quantum effects only phenomenologically via the (measured) spectrum of discrete molecular 20 

frequencies, it is surprisingly effective in explaining the frequency dependence of the complex index 21 

of refraction m. In particular, it correctly predicts the Lorentz-type shape of the imaginary part of m, 22 

which closely resembles the line shape of an absorption resonance. For the derivation of the Lorentz 23 

model, we follow the excellent presentations by Griffiths [33] and Parson [34].  The Lorentz model in 24 

its simplest form assumes that an electron is bound to an atom or molecule with a harmonic binding 25 

force  26 
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𝐹𝐹𝑎𝑎 = −𝑅𝑅𝜔𝜔0
2𝑥𝑥 (A1) 1 

where M is the mass of the electron, 𝜔𝜔0  is the natural oscillation frequency of the electron in the 2 

harmonic binding potential and x is the amplitude of vibration of the electron in the direction of the 3 

external electric field 𝐸𝐸�⃗  which, in our case, is the infrared light field. It is not necessary to restrict 4 

ourselves to electrons. Any charged particle or active group of charged particles that may execute a 5 

vibration, such as, e.g., O-H or C=O stretches, are successfully described by the Lorentz model. 6 

Therefore, from now on, we imagine a "particle" with effective mass M and charge q subject to the 7 

binding force in Eq. A1, and substitute "electron", or "chemically active group" for "particle", as the 8 

case may be. For electrons, for instance, 𝑞𝑞 = −𝑒𝑒, where 𝑒𝑒 = 1.602 × 10−19 C is the elementary 9 

charge. For chemically active groups, q is substituted with the polarization charge δ𝑞𝑞 of the polar ends 10 

of the group. When the particle vibrates, it loses energy, for instance by electromagnetic dipole 11 

radiation or by energy transfer to the backbone molecule or the medium, via the long-range Coulomb 12 

force. We model this energy loss with a damping force  13 

𝐹𝐹𝛾𝛾 = −𝑅𝑅𝑀𝑀 𝑚𝑚𝑒𝑒
𝑚𝑚𝑒𝑒

 (A2) 14 

which depends linearly on the speed 𝑚𝑚𝑒𝑒
𝑚𝑚𝑒𝑒

 of the vibrating particle, and 𝑀𝑀 is the damping constant, which 15 

depends on the details of the energy dissipation processes. In addition to the binding force 𝐹𝐹𝑎𝑎 and the 16 

damping force 𝐹𝐹𝛾𝛾, the particle also experiences the driving force  17 

𝐹𝐹𝑚𝑚 = 𝑞𝑞𝐸𝐸(𝑡𝑡) + 𝑞𝑞𝑞𝑞(𝑒𝑒)
3𝜀𝜀0

 (A3) 18 

where  19 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸0 cos𝜔𝜔𝑡𝑡 (A4) 20 

is the field strength of the infrared light as a function of time , 𝜔𝜔 is its frequency and  21 

𝑃𝑃(𝑡𝑡) = 𝑁𝑁𝑞𝑞𝑥𝑥(𝑡𝑡) (A5) 22 

is the polarization induced by the external field and N is the number of particles per unit volume. We 23 

assume here a linear dielectric, in which the polarization of the medium is directly proportional to the 24 

radiation field. Newton's equation of motion for the particle,  25 

𝑅𝑅𝑚𝑚2𝑒𝑒
𝑚𝑚𝑒𝑒2

= 𝐹𝐹𝑎𝑎 + 𝐹𝐹𝛾𝛾+𝐹𝐹𝑚𝑚 (A6) 26 
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leads to the differential equation  1 

𝑅𝑅𝑚𝑚2𝑒𝑒
𝑚𝑚𝑒𝑒2

+ 𝑅𝑅𝑀𝑀 𝑚𝑚𝑒𝑒
𝑚𝑚𝑒𝑒

+ 𝑅𝑅𝜔𝜔0
2𝑥𝑥 = 𝑞𝑞𝐸𝐸0 cos𝜔𝜔𝑡𝑡 + 𝑞𝑞𝑞𝑞(𝑒𝑒)

3𝜀𝜀0
 (A7) 2 

for the position of the particle. The solution of Eq. A7 is greatly simplified if we consider Eq. A7 as 3 

the real part of the complex equation  4 

𝑚𝑚2𝑒𝑒�
𝑚𝑚𝑒𝑒2

+ 𝑀𝑀 𝑚𝑚𝑒𝑒�
𝑚𝑚𝑒𝑒

+ 𝜔𝜔0
2𝑥𝑥� = 𝑞𝑞

𝑀𝑀
𝐸𝐸� + 𝑞𝑞

3𝜀𝜀0𝑀𝑀
𝑃𝑃� (A8) 5 

where x is the real part of the complex quantity 𝑥𝑥�, 6 

𝐸𝐸� = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒 (A9) 7 

is the complex electric field and 8 

𝑃𝑃� = 𝑁𝑁𝑞𝑞𝑥𝑥� (A10) 9 

is the complex polarization. In infrared spectroscopy we are not interested in the transient solutions of 10 

Eq. A8, i.e. solutions which are generated by switch-on and switch-off of the infrared light. These 11 

solutions quickly decay exponentially in time. Once the transient solutions have decayed, the system 12 

settles into the steady-state solution  13 

𝑥𝑥� = 𝑥𝑥�0𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒 (A11) 14 

Inserting this into Eq. A8 and using Eq. A10, we obtain  15 

𝑥𝑥�0 = 𝑞𝑞/𝑀𝑀

𝑖𝑖0
2−𝑖𝑖2− 𝑞𝑞2𝑁𝑁

3𝜀𝜀0𝑀𝑀
−𝑖𝑖𝛾𝛾𝑖𝑖

𝐸𝐸0 (A12) 16 

The complex dipole moment of the particle is  17 

𝑝𝑝� = 𝑞𝑞𝑥𝑥� = 𝑞𝑞/𝑀𝑀

𝑖𝑖0
2−𝑖𝑖2− 𝑞𝑞2𝑁𝑁

3𝜀𝜀0𝑀𝑀
−𝑖𝑖𝛾𝛾𝑖𝑖

𝐸𝐸�  (A13) 18 

We now assume that we have Nm active molecules in our sample and each molecule consists of fs 19 

particles with masses Ms, charges qs, resonance frequencies 𝜔𝜔𝑠𝑠  and damping constants 𝑀𝑀𝑠𝑠. We define 20 

Ω𝑠𝑠2 = (𝜔𝜔𝑠𝑠)2 − �𝑞𝑞𝑎𝑎
2𝑁𝑁𝑚𝑚

3𝜀𝜀0𝑀𝑀𝑎𝑎
� 𝑓𝑓𝑠𝑠 (A14) 21 

The polarization 𝑃𝑃�, i.e. the dipole moment per unit volume, is given by  22 

𝑃𝑃� = 𝜀𝜀0𝜒𝜒�𝐸𝐸�  (A15) 23 

where 𝜀𝜀0 is the permittivity of the vacuum,  24 

𝜒𝜒� = 𝑁𝑁𝑚𝑚 ∑ 𝑞𝑞𝑎𝑎2𝑒𝑒𝑎𝑎/𝑀𝑀𝑎𝑎
Ω𝑎𝑎2−𝑖𝑖2−𝑖𝑖𝛾𝛾𝑎𝑎𝑖𝑖𝑠𝑠  (A16) 25 
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is the susceptibility and 𝐸𝐸�  is the complex electric field defined in Eq. A9. The dielectric constant is 1 

𝜀𝜀̃ = 𝜀𝜀0𝜀𝜀�̃�𝑟 (A17) 2 

where the relative dielectric constant 𝜀𝜀�̃�𝑟 depends on 𝜒𝜒� according to  3 

𝜀𝜀�̃�𝑟 = 1 + 𝜒𝜒� (A18) 4 

In Eq. A16 we have to sum over all resonances over the entire electromagnetic spectrum including the 5 

radio frequency region below the infrared frequency range, the infrared frequency region, and the 6 

spectral region above the infrared. We are interested in the infrared frequency region. Therefore, for 7 

frequencies larger than infrared frequencies, e.g. in the visible and UV, we may neglect 𝑀𝑀𝑠𝑠𝜔𝜔 with 8 

respect to 𝜔𝜔2 and Ω𝑠𝑠2, and expand Eq. A16 to first order in �𝑖𝑖
Ω𝑎𝑎
�
2
. As a consequence, the summation in 9 

this frequency range contributes approximately a real term  10 

𝛼𝛼(𝜔𝜔) = 𝑁𝑁𝑚𝑚 ∑ 𝑞𝑞𝑘𝑘
2𝑒𝑒𝑘𝑘/𝑀𝑀𝑘𝑘
Ω𝑘𝑘
2𝑘𝑘 �1 + � 𝑖𝑖

Ω𝑘𝑘
�
2
� (A19) 11 

to the susceptibility in Eq. A16, where the sum over k in Eq. A19 extends over all resonances with 12 

frequencies above the infrared range. In the case of the resonances below the infrared frequency range, 13 

i.e. the far infrared region and radio frequency region, we may neglect Ω𝑠𝑠2 and 𝑀𝑀𝑠𝑠𝜔𝜔  with respect to 𝜔𝜔2. 14 

Thus, this frequency range, approximately, contributes the frequency dependent term 15 

𝛽𝛽(𝜔𝜔) = −𝑁𝑁𝑚𝑚
𝑖𝑖2 ∑

𝑞𝑞𝑙𝑙
2𝑒𝑒𝑙𝑙
𝑀𝑀𝑙𝑙

𝑙𝑙  (A20) 16 

to the susceptibility in Eq. A16, where the sum over l in Eq. A20 is over all the resonances below the 17 

infrared frequency range. Thus, all together, we now obtain  18 

𝜀𝜀�̃�𝑟 = 𝜀𝜀�̅�𝑟 + 𝑁𝑁𝑚𝑚 ∑ 𝑞𝑞𝑎𝑎2𝑒𝑒𝑎𝑎/𝑀𝑀𝑎𝑎
Ω𝑎𝑎2−𝑖𝑖2−𝑖𝑖𝛾𝛾𝑎𝑎𝑖𝑖𝑠𝑠 𝜖𝜖 𝐼𝐼𝐼𝐼  (A21) 19 

where the sum in Eq. A21 extends only over the infrared (IR) resonances and 20 

𝜀𝜀�̅�𝑟 = 1 + 𝛼𝛼(𝜔𝜔) + 𝛽𝛽(𝜔𝜔) (A22) 21 

is the frequency dependent effective relative dielectric constant of the medium, i.e. the background 22 

dielectric constant, on which the infrared resonances are built. The complex index of refraction is now 23 

given by   24 

𝑚𝑚 = �𝜀𝜀�̃�𝑟 (A23) 25 
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At this point two important comments are in order: (1) In optics we are familiar with the phenomenon 1 

of dispersion, i.e. the change of the index of refraction with increasing wavelength. For glass, for 2 

instance, we know that the index of refraction decreases with increasing wavelength, which gives rise 3 

to the familiar observation of the splitting of white light into its constituent colours with the help of a 4 

prism. This decrease in the index of refraction is now easily explained. According to Eqs. 19 and 20, 5 

both 𝛼𝛼(𝜔𝜔) and 𝛽𝛽(𝜔𝜔) cause a decrease in 𝜀𝜀�̅�𝑟, and therefore, according to Eq. A23, they also cause a 6 

decrease in m, when the wavelength increases. Therefore the Lorentz model explains this basic 7 

observation. (2) Since the quantities Nm, 𝑞𝑞𝑠𝑠 , 𝑓𝑓𝑠𝑠, and  𝑀𝑀𝑠𝑠 are usually not readily available, we write 8 

𝜀𝜀�̃�𝑟 = 𝜀𝜀�̅�𝑟 + ∑ Λ𝑎𝑎
V�𝑎𝑎2−𝜈𝜈�2−𝑖𝑖Γ𝑎𝑎𝜈𝜈�𝑠𝑠 𝜖𝜖 𝐼𝐼𝐼𝐼  (A24) 9 

where 𝜀𝜀�̅�𝑟, 𝑉𝑉�𝑠𝑠, Λ𝑠𝑠, and Γ𝑠𝑠 are adjustable parameters and  10 

𝜈𝜈� = 1
𝜆𝜆

= 𝑖𝑖
2𝜋𝜋𝑠𝑠

 (A25) 11 

where 𝜆𝜆 is the wavelength and c is the vacuum speed of light. This is the microscopic basis for the 12 

usual practice in spectroscopy of fitting Lorentzian lines to resonance structures in the index of 13 

refraction.  14 

Instead of using quantum mechanics to solve for the quantized excitations of the molecule in 15 

the presence of the infrared radiation field, the Lorentz model uses classical mechanics to 16 

solve the forced, damped harmonic oscillator equation (A8). This, apparently, introduces two 17 

errors, (i) the oscillator (A8) is not quantized and (ii) neither is the radiation field, i.e. it is not 18 

treated as consisting of photons. The question is: how serious are these approximations? The 19 

answer is the following. (i) Quantum mechanics has been partially included by providing the 20 

Lorentz model with the discrete set of molecular frequencies Ω𝑠𝑠, a direct result of the 21 

quantization of the molecule via the many-body Schrödinger equation. (ii) Although the 22 

radiation field consists of photons, the light intensities in infrared spectroscopy are so high 23 

that we can safely neglect the quantization of the radiation field. Of course there remains the 24 

question of the quantization of the Ω𝑠𝑠 modes, whose amplitudes are treated as a classical, 25 

continuous variable, although, according to quantum mechanics, they should be quantized. 26 
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This, however, is not serious. As soon as the Ω𝑠𝑠 oscillators are appreciably excited, 1 

corresponding to a few absorbed photons, the classical approximation is practically 2 

indistinguishable from the exact quantum treatment, which is due to the Bosonic nature of the 3 

oscillator excitations. Thus, because of the relatively large intensities of the infrared light 4 

field, the classical approximation of both the molecular oscillators and the radiation field is 5 

justified. 6 

Appendix B: Mie Formulas 7 

The Mie scattering amplitudes are defined as: 8 

𝑆𝑆1(𝜃𝜃) = ∑ 2𝑡𝑡+1
𝑡𝑡(𝑡𝑡+1)

{𝑎𝑎𝑡𝑡𝜋𝜋𝑡𝑡(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) + 𝑏𝑏𝑡𝑡𝜏𝜏𝑡𝑡(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃)}∞
𝑡𝑡=1  (B1) 9 

𝑆𝑆2(𝜃𝜃) = ∑ 2𝑡𝑡+1
𝑡𝑡(𝑡𝑡+1)

{𝑏𝑏𝑡𝑡𝜋𝜋𝑡𝑡(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) + 𝑎𝑎𝑡𝑡𝜏𝜏𝑡𝑡(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃)}∞
𝑡𝑡=1  (B2) 10 

𝑎𝑎𝑡𝑡 = 𝜓𝜓𝑛𝑛′ (𝑦𝑦)𝜓𝜓𝑛𝑛(𝑒𝑒)−𝑚𝑚𝜓𝜓𝑛𝑛(𝑦𝑦)𝜓𝜓𝑛𝑛′ (𝑒𝑒)
𝜓𝜓𝑛𝑛′ (𝑦𝑦)𝜁𝜁𝑛𝑛(𝑒𝑒)−𝑚𝑚𝜓𝜓𝑛𝑛(𝑦𝑦)𝜁𝜁𝑛𝑛′ (𝑒𝑒)

 (B3) 11 

𝑏𝑏𝑡𝑡 = 𝑚𝑚𝜓𝜓𝑛𝑛′ (𝑦𝑦)𝜓𝜓𝑛𝑛(𝑒𝑒)−𝜓𝜓𝑛𝑛(𝑦𝑦)𝜓𝜓𝑛𝑛′ (𝑒𝑒)
𝑚𝑚𝜓𝜓𝑛𝑛′ (𝑦𝑦)𝜁𝜁𝑛𝑛(𝑒𝑒)−𝜓𝜓𝑛𝑛(𝑦𝑦)𝜁𝜁𝑛𝑛′ (𝑒𝑒)

 (B4) 12 

𝜓𝜓𝑡𝑡(𝑧𝑧) = �𝜋𝜋𝜋𝜋
2
𝐽𝐽𝑡𝑡+12(𝑧𝑧) (B5) 13 

𝜁𝜁𝑡𝑡(𝑧𝑧) = �
𝜋𝜋𝜋𝜋
2
𝐻𝐻
𝑡𝑡+12

(2) (𝑧𝑧) (B6) 14 

𝑥𝑥 = 2𝜋𝜋𝑎𝑎𝜈𝜈� (B7) 15 

𝑦𝑦 = 𝑚𝑚𝑥𝑥 (B8) 16 

𝑚𝑚 = 𝑛𝑛 + 𝑖𝑖𝑛𝑛′ (B9) 17 

𝜋𝜋𝑡𝑡(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) = 1
𝑠𝑠𝑖𝑖𝑡𝑡𝜃𝜃

𝑃𝑃𝑡𝑡1(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) (B10) 18 
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𝜏𝜏𝑡𝑡 = 𝑚𝑚
𝑚𝑚𝜃𝜃
𝑃𝑃𝑡𝑡1(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) (B11) 1 

where, m (complex in general) is the refractive index of the homogenous sphere, a is the 2 

radius of the sphere, J is the Bessel function of the 1st kind and H(2) denotes the Hankel 3 

functions. The argument z in Eqs. B5 and B6 is an arbitrary complex number; it may be equal 4 

to x or y. P1 denotes the first order associated Legendre polynomial.  5 

The purpose of listing these equations is twofold: It establishes our notation and shows that all 6 

aspects of Mie scattering may indeed be written down analytically. In this context we mention 7 

that m in this paper is defined according to B9, with negative n’ for positive absorbance. This 8 

is the opposite sign convention from the one used in the standard reference book of Van De 9 

Hulst [26]. 10 
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Figure captions: 1 

Figure 1 Illustration of the scattering of incident light with intensity I0 at an arbitrary-shaped absorbing 2 

scatterer. A plane wave is incident from the left. In general, part of the incident light is scattered into 3 

different directions, part of the light is chemically absorbed by the scatterer, and part of the incident light 4 

is transmitted to the detector. The part of the incident infrared light chemically absorbed by the scatterer is 5 

indicated by the red area, representing a radiation sink. 6 

Figure 2 (a) Apparent absorbance spectrum (red curve) for a sphere assuming a single absorption band 7 

located at 1654 cm-1, corresponding to the C=O stretching vibration of the peptide bond in proteins. As 8 

parameters for the calculation of the refractive index, according to the Lorentz model (see Appendix A), 9 

Λ = 104 cm−2, Γ = 30 cm−1 and 𝜀𝜀�̅�𝑟 = 1.44 were chosen (corresponding to a background refractive index 10 

of 1.2). The apparent absorbance spectrum with complex index of refraction is compared to an 11 

approximation of the absorbance with real index of refraction (blue curve) often found in the literature, 12 

assuming that absorbance and extinction are proportional. (b) Enlarged subfigure of (a) in the spectral 13 

range of the absorption band. 14 

Figure 3 Apparent absorbance spectrum of the absorbing sphere of Fig. 2 (red) is compared to the 15 

apparent absorbance (blue) according to Bassan et al. [14]. Compared with the result considering 16 

complex index of refraction, the apparent absorbance considering real index of refraction is shifted to a 17 

lower frequency.  18 

Figure 4 Extinction efficiency in the forward direction and scattering efficiency, including a numerical 19 

aperture, for a 10µm radius sphere assuming a single absorption band located at 1654 cm-1 for  two cases 20 

Λ = 104 cm−2, Γ = 30 cm−1 and 𝜀𝜀�̅�𝑟 = 1.3 (corresponding to an n0=1.14) (a) and Λ = 104 cm−2, Γ =21 

30 cm−1 and 𝜀𝜀�̅�𝑟 = 1.54 (corresponding to an n0=1.24) (b). 22 

Figure 5 Synchrotron spectrum of a PMMA sphere with radius 10µm (a), in the wavenumber range 3600-23 

7200 cm-1 (b); in the wavenumber range 800-3600 cm-1 (c) and zoomed in the wavenumber range 5850-24 

7000 cm-1 (d). 25 
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Figure 6 Root mean square error (RMSE) as a function of size factor α for the spectrum of a  PMMA 1 

sphere shown in Fig. 5b. Inset: RMSE function in the vicinity of the four main local minima.  2 

Figure 7 Measured absorbance and predicted absorbance for α = 0.64µm (a), α = 1.1µm (b), α =3 

2.1µm (c) and α = 3.1µm (d) . 4 

Figure 8 Imaginary part of the complex refractive index for three different values of n0 and a after 12 5 

iterations. 6 

Figure 9 Predicted absorbance for three different values of n0 and a after 12 iterations. 7 

Figure 10 Calculated pure absorbance spectrum of a PMMA thin film with thickness deff=5.9µm and the 8 

imaginary part of refractive index obtained with the van Dijck iterative algorithm. 9 

Figure 11 Juniperus chinensis pollen synchrotron FTIR spectrum (a). Synchrotron FTIR spectra of 10 

Juniperus chinensis pollen ranging from 3600 cm-1 to 6300 cm-1 (b); from 1000 cm-1 to 3600 cm-1 (c) and 11 

from 1880 cm-1 to 2771 cm-1(d).  12 

Figure 12 Root mean square error (RMSE) as a function of α for the spectrum of a Juniperus chinensis 13 

pollen grain shown in Fig. 11b. The inset shows the RMSE function in the vicinity of the four main local 14 

minima. 15 

Figure 13 Measured absorbance and predicted absorbance for α = 1.0µm (a), α = 1.3µm (b), α =16 

2.2µm (c) and α = 3.2µm (d) . 17 

Figure 14 Root mean square error as a function of size parameter for a Juniperus chinensis pollen grain, 18 

considering the measured spectrum in the range between 1880 cm-1 and 2771 cm-1. 19 

Figure 15 Imaginary part of the complex refractive index for two different values of n0 and a after 20 20 

iterations. 21 

Figure 16 Predicted absorbances for two different values of n0 and a after 20 iterations. 22 
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