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Abstract  

The objectives of the present study were i) to find the best fitted model for repeatedly measured 

daily dry matter intake (DMI) data obtained from different herds and experiments across 

lactations and ii) to get better estimates of the genetic parameters and better genetic evaluations. 

After editing, there were 572,512 daily DMI records of 3495 animals from 11 different herds 

across 13 lactations and the animals were under 110 different nutritional experiments. The fitted 

model for this dataset was a univariate repeated measure animal model in which additive genetic 

and permanent environmental (within and across lactations) effects were fitted as random. Two 

different models were fitted based on alternative fixed effects corrections. For unscaled data, 

each model was fitted as a homoscedastic (HOM) model first and then a heteroscedastic (HET) 

model. After that, data were scaled by multiplying with particular herd-scaling factors, which 

were calculated by accounting for heterogeneity of phenotypic within herd variances. Models 

were selected based on cross-validation and prediction accuracy results. Scaling factors were re-

estimated to determine the effectiveness of accounting for herd heterogeneity. Variance 

components and respective heritability and repeatability were estimated based on a pedigree 

based relationship matrix. Spearman’s rank correlations of estimated breeding values (EBVs) 

between scaled and unscaled DMI were also calculated. Results indicated that the model fitted 

for scaled data showed better fit than the models (HOM or HET) fitted for unscaled data. The 

heritability estimates of the model 2 and 3 fitted for scaled data were 0.30 and 0.08, respectively. 

The repeatability estimates of the model fitted for scaled data ranged from 0.51 to 0.63. The re-

estimated scaling factor after accounting for heterogeneity of residual variances was close to 1.0 

indicating the stabilization of residual variances and herd accounted for most of the 
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heterogeneity. The rank correlation of EBVs between scaled and unscaled data ranged from 0.96 

to 0.97. 

Keywords: Dry Matter Intake, Heterogeneity, Heritability, Repeatability, Genetic Evaluation, Dairy Cattle  

Introduction 

Feed cost is one of the major recurring costs of dairy farming. It comprises 43-67% of total 

farming cost in different countries (Simm et al., 1994; Shalloo et al., 2004; Ho et al., 2005). It is 

even higher (about 80% of the total recurring cost) if one considers only milk production cost 

(Board, 1990). Therefore, genetic improvement of feed efficiency traits could make dairy 

farming economically more profitable and viable. Moreover, the more efficient the cow is, the 

less methane she emits per kg milk (Hegarty et al., 2007). Although feed efficiency is a complex 

trait in almost all farm animals it can be considered in selection programs for beef cattle, pigs 

and poultry. But for dairy cattle, it is even more complex because many physiological processes 

such as milk production, reproduction, maintenance of health and body and growth in young 

cows happen simultaneously. More importantly, it is expensive and difficult to measure 

individual feed intake of dairy animals (Veerkamp & Emmans, 1995; Arthur et al., 2004) and 

feed intake data are not easily recorded in commercial dairy herds, therefore, most of the 

previous estimates of the genetic parameters for feed intake and feed efficiency traits were based 

on small datasets which has made the estimates unreliable due to large sampling errors (Pech et 

al., 2014). For this reason, the traits that were emphasized in selection strategy for dairy 

development in the past decades were mainly related to production and health of dairy cows.  

With the invention of the genomic selection (GS) (Meuwissen et al., 2001) tool, feed efficiency 

traits have become of research interest and been considered in selection programs. In GS, only 

the reference population (sometimes called the training population) needs to have both 

phenotypic and genotypic information, while genomic estimated breeding values (GEBVs) can 

be estimated for candidate animals  having only  genotypic information without phenotype 

(Meuwissen, 2007). Therefore, GS seems very suited to difficult and expensive to measure traits 

like feed intake and feed efficiency (Pryce et al., 2014). To achieve satisfactory genetic gain 

from GS, accuracy of GEBVs is very important. So far, much research have been conducted to 

evaluate the accuracy of GEBVs (Khansefid et al., 2013). Past research results and theories 
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reveal that the numbers of animals genotyped and precision of the phenotype measured are the 

most important factors affecting the reliability of GEBVs (VanRaden et al., 2009). One could 

increase accuracy of GEBVs by increasing the size of the reference population. Incorporation of 

multi-breed animals having genotypic and phenotypic information is one of the options to 

increase the size of reference population. However, multi-breed reference populations did not 

work well to increase the accuracy of GS (Khansefid et al., 2013) because of  i) breed × 

quantitative trait loci (QTL) interaction ii) variation of linkage disequilibrium (LD) between 

QTL and single nucleotide polymorphisms (SNPs) among breeds and iii) low LD across the 

breeds, and it is even  limited to SNPs that are close to QTL. Another way to increase reference 

population size is combining data from different populations from several countries because each 

country has a small reference population insufficient to achieve satisfactory level of accuracy 

(Verbyla et al., 2010). Major problems of combining phenotypic data from different countries are 

genotype × environment interaction and variation of trait’s definition among countries (De Haas 

et al., 2012). There are very limited opportunities to get enough and accurate phenotypic data for 

difficult-to-measure traits like feed intake, so, for feed intake, another option of increasing the 

reference population size might be the use of historical nutritional experimental data in which 

people have already recorded such difficult to measure and expensive trait on dairy animals  

(Banos et al., 2012; Pryce et al., 2012; Veerkamp et al., 2012). For example, the global Dry 

Matter Initiative (gDMI) was formed to increase the size of the reference population by 

combining international research animal’s phenotype and genotype (Berry, 2013; Veerkamp, 

2013). The main challenge of using experimental data is the wide variability of the phenotypes 

measured from different nutritional experiments, mainly due to different treatments used in those 

experiments and animals being from different herds and parities. An approach was developed by 

Banos et al. (2012) who described in detail how to combine phenotypic data of dairy cattle 

collected from experimental sources in three different countries. These data were successfully 

used for genome-wide association study (GWAS) by  Veerkamp et al. (2012) to detect the 

significant QTL of feed intake. For genomic prediction, De Haas et al. (2012) showed the 

reduction of prediction accuracy assuming feed intake was the same trait across populations. 

However, estimating genetic correlation between small populations is difficult and prone to large 

estimation errors. Therefore, looking for an alternative model particularly using within country 

but across different herds DMI data adjusted for different variances across herds would may be 
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feasible.The objectives of the present study were i) to find the best fitted model suitable for repeatedly 

measured DMI data originating from multiple nutritional experiments across experimental herds, years 

and parities in the Netherlands and ii) to obtain improved estimates of the genetic parameters and 

genetic evaluation of the animals. 

Materials and Methods 

Data Description and Editing 

The original dataset consisted of 637,471 records repeatedly measured on 3771 Holstein cows 

from 11 herds across 13 parities in Netherlands. Cows were from 110 different nutritional 

experiments subjected to different treatments in those experiments. Data were collected from 

1991 to 2015 on cows calved between 1990 to 2015. Cows having at least one daily DMI record 

were kept in the dataset for further analysis and cows without DMI records were removed from 

the dataset. In addition to feed intake data, other related information on individual cows such as 

daily milk yield, live weight and calving interval were also available but these data were not 

used. As data collection were not performed specifically for the present study, there were some 

extreme values in the dataset and some of the values were even beyond the biological limit. To 

remove extreme data, editing was performed manually by setting certain biological limits for the 

different variables or traits as proposed by Banos et al. (2012) (Table 1). 

After editing, there were 572,512 daily DMI records from 3495 cows across 11 herds and each 

cow has at least a single DMI record. After editing, there were 109 experiments retained 

subjected to 467 different treatments in those experiments. Data retained after editing have been 

summarized in Table 2. 

Pedigree Information  

A traditional relationship matrix (A-matrix) was generated based on the available pedigree data. 

The pedigree file consisted of 18,566 animals among which 15,867 animals were the parents.  

Model Fitting 

A univariate repeated measure animal model was fitted for this dataset and the model is given 

below in matrix notation. 
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� = �� + ��� + �	
 + �				…….……………………………………… 1(a) 

Where, y is a vector of n observations, b is a vector of fixed effects, p is a vector of permanent 

environmental effects, a is a vector of additive genetic effects, e is a vector of random residual 

variances, and X, Z1 and Z2 are incidence matrices which relate b, p and a to y, respectively. 

The assumptions of random effects of the model have shown below. 


��� = 	 ��σ�� 0 00 ��σ�� 00 0 ��σ��� = �� 00 ��  						� = �		�σ�� 00 ��σ�� ………………..1(b) 

where, σa
2 is the additive genetic variance, σc

2 is the variance due to permanent environment, and 

σe
2 is the residual variance, σp

2 is the phenotypic variance which is the sum of these three 

variance components, A is the pedigree based relationship matrix, Id is the identity matrix equal 

to the number of animals included in the pedigree and In is the identity matrix equal to the 

number of observations. 

Usually best fitted models have relatively more parameters but available data do not always 

support the estimation of all these parameters. There were a number of models tried from simple 

to complex by exploratory exercises but two models (called model 2 and 3) were compared and 

these are shown below in model terms. 

!"� = μ + a + p + Herd ∙ + !�"�,
�-. + TD + 	treatment	4567589:5;<= + parity@+ AB5_DAEF9;B��

�-. G + 	e	
……………………………...	2		
KLM = μ + N + O + PQRS ∙ ∑ KMLUVU-� + WX ∙ PQRS + YRQNYZQ[Y	4�\��]^_�U`= + ONRaYbc∑ 
d�_e
fg^UdU	U-� h + 	Q	
…………………..………..3		
 

Where, DMI is the daily DMI observations, µ is the overall mean, a is the random additive 

genetic effect, p is the random term for combined permanent environmental effect (within and 

across lactations), Herd ∙ ∑ !�"�		,�-. is fixed effect for interaction between Herd and third order 

polynomial of Days In Milk (DIM), TD is fixed effect of Test Day, treatment	4567589:5;<=		is 

the fixed effect of treatment nested within experiment, parity4∑ AB5_DAEF9;B���-. = is fixed 

effect of parity fitted as co-variate and nested in second order polynomial of age at calving 
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expressed in months, TD.Herd is fixed effect of herd and test day interaction; e is the random 

residual error.  

At first it was assumed that the residual variances for all the observations are homogeneous. So, 

the diagonal elements of matrix R in equation 1(b) was equal for all observations which is σe
2 

and the fitted model is called the homoscedastic model (HOM). As DMI was recorded on 

animals from 11 different herds across 13 lactations over 25 years (1991 to 2015) and animals 

were under different nutritional experiments, it was not realistic to assume the residual variances 

as homogeneous. That is why, the heteroscedastic model (HET) was also fitted assuming 

different diagonal elements of matrix R for different herds. For example, σei
2 is the residual 

variances of ith  herd. Based on homogeneity or heterogeneity of residual variances, we fitted 

model 2 as two distinct models namely 2A (HOM) and 2B (HET) model, respectively.  

In the second step, we fitted 2B model for herds but excluding additive and permanent 

environmental effect. From this model, we got the heterogeneous phenotypic variances for each 

herd. A weighting factor (fi) for each herd was calculated based on the estimated herd phenotypic 

variances as shown in Equation 4.  

jk = lmnolmp					………………………… ……………………4 

Where, fi is the weighting factor for observations of ith herd (i = 1, 2 ………….11); lqro is square 

root of average phenotypic variances for all herds, lqk is square root of phenotypic variances for 

the ith herd,  

Observations of each herd were then multiplied by their respective weighting factor fi to get 

scaled observations with homogeneous phenotypic variance. Scaled observations were fitted 

again in model 2 called model 2C. Finally, model 2A, 2B and 2C were compared based on model 

selection criteria (described below).  

The same procedure was followed for model 3 and fitted models were named as model 3A 

(HOM model), 3B (HET model) and 3C (scaled DMI data). 

Heterogeneous herd residual variances and scaling factors were re-estimated in a similar manner 

for the scaled data to see the effectiveness of scaling for herd heterogeneity. 
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Criteria for Model Comparisons 

Initially Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were 

used to compare the models. Then prediction accuracy (correlation between DMI observations or 

scaled DMI and predicted DMI) was used to assess the predictability of the model. Additionally, 

10-fold cross-validation was performed for comparing the models. For this purpose, the whole 

dataset was equally and randomly divided into 10-subsets (disjoint). Each time, 9-subsets were 

considered as training dataset and the remaining one was called testing set. After training the 

model in the training set, the model was validated using the testing set and mean squared error 

(MSE) of each testing fold were recorded for each model. Then, the MSE of the testing folds 

were averaged across all 10 testing sets. The model giving the lowest average MSE was 

considered as the best fitted model. 

Estimation of Variance Components and Genetic Parameters 

Additive genetic (σ̂��), permanent environmental (σ̂��) and residual (σ̂��) variance components 

were estimated for all the models using the pedigree based relationship matrix. Respective 

heritability (ℎu�) and repeatability (<̂) were calculated based on the estimated variance 

components. 

			ℎv � = ŵxy
ŵxyzŵ{y	z	ŵ|y = ŵA2

ŵ72								…………………………..........................5 

   <̂ = ŵxyz	ŵ{y
ŵxyzŵ{y	z	ŵ|y = ŵA2

ŵ72						……………………………………………..6 

Comparing Rankings of Animals based on EBVs 

Changes of the rankings of the animals based on their EBVs from different models were 

compared by Spearman’s rank correlation coefficients using the SPSS software package.  

All the data analyses performed were based on the REML method and the software package used 

for analysis was ASReml 4.1 (Gilmour et al., 2014) except for Spearman’s rank correlation. 

Heteroscedastic models were fitted by the ‘sat’ function of ASReml 4.1 package, for example, 

‘residual sat(Herd).idv(units)’ is a function used to partition heterogeneous residual variances by 

herd.  
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Results 

Model Comparison 

AIC, BIC, average MSE of prediction, and prediction accuracy for all fitted models are shown in 

Table 3. For unscaled data, the HET model showed a better fit than the HOM model according to 

AIC, BIC and average MSE criteria, and similar trend was found both for model 2 and 3 (Table 

3). However, the prediction accuracy of unscaled data was same for both the HOM and HET 

models. Although AIC and BIC criteria did not favour the model fitted for scaled data but based 

on average MSE and prediction accuracy, the model fitted for scaled data was found as best 

fitted model. Scaling of data improved prediction accuracy noticeably regardless of fitting either 

model 2 or model 3 but MSE and prediction accuracy did not differ due to fitting either model 2 

or model 3 for scaled data (Table 3).  

Variance Components 

Estimates of the variance components and respective standard errors (se) are presented in Table 

4. In the case of unscaled data, the estimate of the additive genetic variance (σ̂a
2) was slightly 

higher for the HET model than the HOM model (Table 4). In contrast, when the model 2 was 

fitted for scaled data, the estimate of the σ̂a
2 was approximately 2.5 times higher than for 

unscaled data. For model 3, there was also a substantial increase of σ̂a
2 but the increment was 

lower in comparison to model 2. On the other hand, permanent environmental variance (σ̂c
2) 

showed an opposite trend for both model 2 and 3. For unscaled data, the estimate of the σ̂c
2 was 

lower for the HET than the HOM model and it was even lower for scaled data (Table 4). 

Residual error variance (σ̂e
2) showed the similar trend to σ̂c

2. 

Heritability and Repeatability 

Both the heritability and repeatability estimates of model 2 were higher for the HET model than 

the HOM model in the case of unscaled data and it was even higher when the model 2 was fitted 

for scaled data (Figure 1). Model 3 showed a similar trend but the estimates of the heritability for 

model 3 were much lower compared to model 2. Estimates of the ĥ2(se) for model 2A, 2B and 

2C were 0.11 (0.009), 0.15 (0.01) and 0.30 (0.01), respectively. Heritability estimates were 0.05 

(0.07), 0.07 (0.008) and 0.08 (0.008), respectively for model 3A, 3B and 3C. Repeatability 

estimates were very similar between model 2 and 3 and ranged from 0.45 to 0.63.  
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From the HET model 2B and 3B, within herd ĥ2 and t̂ were obtained (Figure 2). Although the 

trend of ĥ2 and t̂ across herds were similar for both models, the estimates of model 2B was higher 

for both the heritability and repeatability. Estimates of ĥ2 ranged from 0.11- 0.21 and 0.05 -0.09 

for model 2B and 3B, respectively. Repeatability estimates ranged from 0.40 to 0.80.  

Rank Correlations of EBVs 

Table 5 shows the Spearman’s rank correlations of EBVs among different models. Rank 

correlation of EBVs between model 2A and 2B or model 3A and 3B was approximately 1.0 

indicating similar ranking of animals between the HOM and the HET models fitted for unscaled 

data (Table 5). However, EBV ranking of the animals changed after scaling data. Rank 

correlations for EBVs between scaled and unscaled data were 0.91-0.92 for model 2 and 0.96-

0.97 for model 3.  

Comparison of Heterogeneous Residual Herd Variance before and after Scaling Data 

Heterogeneous residual variances by herds before and after scaling the data are presented in 

Figure 3. Before scaling the data, there was a wide variability of residual variances across herds 

found for both models (Figure 3). For scaled data, although there was a little variability of 

residual variances but it seemed to be similar across herds for both models indicating the 

stabilization of heterogeneous herd residual  

Discussion 

Model Selection 

For unscaled data, the HET model fitted slightly better than the HOM model based on AIC, BIC 

and average MSE criteria but the prediction accuracy was same for both the HOM and the HET 

model (Table 3). Similar trends were noticed for both model 2 and 3. The findings of a previous 

study on body weight traits in beef cattle by Neves et al. (2012) disagree with our results i.e. they 

found a better fit for the HOM model than the HET model according to BIC and average MSE 

criteria. They also found a better fit of the HET model than the HOM model when considering 

AIC as selection criteria. Moreover, when fitting sex specific models they also found a higher 

predictive ability (lower average MSE) of the HET model than the HOM model for body weight 

in females. Although scaling slightly increased AIC and BIC values for the model 2 or 3 fitted 
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for scaled data but scaling of data decreased the average MSE and increased prediction accuracy 

of the model. Increase of prediction accuracy was not surprising, because it may be expected that 

scaled data will fit better than unscaled data. Clearly it indicates that the models fitted for scaled 

data were the best fitted models. From a past study with swine body weight and backfat 

thickness trait, it was concluded that the scaled data accounting for heterogeneous herd variances 

fit better than unscaled data which is consistent with our findings (Pujol et al., 1998).   

Estimation of Variance Components 

In the case of unscaled data, the estimates of variance components were very similar for the 

HOM and the HET model. Neves et al. (2012) also found similar estimates of variance 

components for HOM and HET models for body weight traits in Nellore beef cattle. After 

scaling data, there was a slight increase of additive genetic variances for model 3 but the 

increment was much bigger for model 2 (Table 4). In the case of model 2, the fixed effect of TD 

(Test Day) was fitted within herd which might be one of the reasons for getting higher estimates 

of additive genetic variance in this model. On the contrary, TD-by-Herd interaction effect was 

included as fixed term in model 3 which is more realistic because the TD effect may be expected 

to vary from herd to herd. Another reason for getting model sensitive estimates of heritability 

might be that models had difficulties in separating fixed effect, permanent environmental effect 

and additive genetic effect due to a lack of connectedness between TD and Herd. A previous 

study also pointed to a slight increase of variance components estimate for weight traits of swine 

after scaling the data which is in complete agreement with the results of model 3 (Pujol et al., 

1998). On the other hand, estimates of both permanent environmental and residual variance 

components decreased after accounting for heterogeneity of herd variances indicating a better fit 

of the model for scaled data (Table 4).  

Heritability and Repeatability 

Heritability was doubled to tripled for both model 2 and 3 after scaling the data but repeatability 

estimates were very similar for both scaled and unscaled data. For the final model (i.e. the model 

fitted with scaled data), the estimate of the heritability from model 3 (0.08) was much lower than 

model 2 (0.30). Explanations for this were provided in the previous section on estimates of 

additive genetic variances. The heritability estimates of model 2 are consistent with the estimates 

of 0.27 to 0.34 reported by Berry (2013). Although heritability estimates of model 3 were much 
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lower they fall still in the range of within country heritability estimates (0.08 to 0.52) which were 

also documented by Berry (2013). Banos et al. (2012) found the heritability ranging from 0.15 to 

0.22 for daily DMI in dairy cows however they used only first lactation DMI records. When only 

first lactation DMI data were included in our analysis, estimates of heritability increased slightly 

(result not shown). The heritability estimates for the final model (i.e. the model fitted for scaled 

data from first lactation cows only) were 0.39 and 0.10 for model 2 and model 3, respectively. 

Berry (2013) also reported a substantial increase of DMI heritability from 0.08 to 0.16 when 

pedigree based relationship matrix was replaced by a combined pedigree and genomic 

relationship matrix indicating the potentiality of using genomic information to improve 

heritability estimates.  

In our study, repeatability (within and across lactations) estimates ranged from 0.51 to 0.63 for 

the final model (i.e. the model with scaled DMI). When within and across lactations repeatability 

were separated, it did not affect the estimates of repeatability and heritability (data not shown). 

Although there is not much information available for across lactations DMI repeatability but our 

finding agrees with the previous repeatability (across lactations) estimate of 0.51 reported by 

Søndergaard et al. (2002) in Denmark for 293 dairy cows from three different breeds. Findings 

of Berry (2013) were also consistent to our results and they found across lactations repeatabilities 

ranging from 0.46 to 0.84 using experimental DMI data collated from 9 different countries of 

6,957 dairy cows. They also reported identical repeatability estimates using either only pedigree 

information or combined pedigree and genomic information for generating relationship matrix.  

 

Scaling of Data 

Estimates of scaling factors for 11 different herds varied from 0.68 to 1.29 for model 2 and 0.77 

to 1.22 for model 3 indicating a wide variability among herds. This signifies the necessity of 

taking into account the herd heterogeneity in consideration. Re-estimated within herd residual 

variances of scaled DMI were similar across herds and this is reflecting that the scaling stabilized 

the variability   (data not shown). In other words, one could say that most of the heterogeneity 

came from herds. In fact, re-estimated scaling factors using scaled DMI were close to 1.0 which 

proofs the effectiveness of data scaling. 
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Comparison of EBV Ranking of Cows  

For unscaled data, the spearman’s rank correlation between EBVs of the HOM and the HET 

model was 0.99 (close to 1.0). This indicates that there were limited changes of EBVs due to the 

heterogeneity of variance correction in the HET model. But, the rank correlations between EBVs 

before and after scaling the data were 0.92 for model 2 and 0.97 for model 3. This means that the 

EBV ranking of cows’ changes due to scaling of data and the change was more prominent in 

model 2 than in model 3.  The rank correlation of EBVs before and after scaling the data for 

swine production traits was 0.98 (Pujol et al., 1998) which is similar to the results of our study. 

The results also suggest that accounting for heterogeneity of within herd variances by scaling of 

the data improved the precision of the genetic evaluation of dairy cows.  

Conclusions 

Although the HET model fitted better than the HOM model in the case of unscaled data, the 

model models for scaled data showed the best fit. The heritability estimates of the model 2 and 3 

fitted for scaled data were 0.30 and 0.08, indicating that including a herd by test-date effect 

explained variance that otherwise was interpreted as genetic variance. The repeatability estimates 

of the model 2 and 3 fitted for scaled data ranged from 0.51 to 0.63 which is consistent with 

previous literature findings. The re-estimated scaling factor, after accounting for heterogeneity of 

residual variances, was close to 1.0 indicating that the stabilization of within herd variances and 

most of the heterogeneous variances originated from the herds. The rank correlation of EBVs 

between scaled and unscaled data ranged from 0.96 to 0.97, and the scaled data showed a 

considerable smaller mean square error of prediction. Thus, scaling data that accounted for the 

heterogeneity of herd variances, may improve the accuracy of genetic evaluations.  
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Table 1. Biological limits set for editing the original records 

Trait/Variable Unit of Measurement Acceptable Range 

DMI Kg/d 0.89 to 65 

Days in Milk (DIM) Days 1 to 400 

Live Weight Kg 400 to 1200 

Milk Yield Kg/d 3 to 100 

Lactation (Parity) Number 1 to 13 
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Table 2. Data summary after editing 

Variable Class Size/Range/Average 

Total number of DMI records 572,512 

Number of cows having at least single records 3495 

Average number of records per cow (Range) 168.80 (1 to 1076) 

Number of herds 11 

Number of experiments 109 

Number of treatments 467 

Number of Lactation (Parity) 1 to 13 

Year of recording 1991 to 2015 

Calving year 1990 to 2015 

Average DMI (SD
*
) Kg/d 17.95 (6.49) 

Average age at recording in months (Range) 52.64 (21 to 189) 

Average age at calving in months (Range) 47.76 (19 to 175) 

Average days in milk (DIM)  126.6  

* SD stands for standard deviation 
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Table 3. AIC, BIC, average MSE and prediction accuracy of the models 

Model 
Type of 

model 
Data type 

 

AIC
1
 

 

BIC
2
 

Average MSE
3
 

of prediction 

Prediction 

accuracy 

2A
4
 HOM

7
 Unscaled

9
 194518.2 194545 14.36 0.81 

2B
5
 HET

8
 unscaled 189020.6 189074.3 13.68 0.81 

2C
6
  Scaled

10
 192158.4 192185.2 10.46 0.85 

3A HOM unscaled 194466.4 194493.3 14.36 0.81 

3B HET unscaled 188995.6 189049.3 13.84 0.81 

3C  scaled 192019.5 192046.4 10.46 0.85 

1Akaike Information Criterion, 2Bayesian Information Criterion, 3Mean Squared Error, 4Homoscedastic model fitted for unscaled data, 

5Heteroscedastic model fitted for unscaled data, Model fitted for scaled data, 7Homoscedastic model, 8Heteroscedastic model, 9Data before 

adjusting for heterogeneity, 10Data after adjusting for heterogeneity 
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Table 4. Variance components and respective standard errors (within parenthesis) estimates of unscaled and scaled 

data for different HOM and HET models 

Model Type of model Data type σâ
2 
(se)

8
 σ̂c

2 
(se)

9
 σ̂e

2 
(se)

10
 σ̂p

2  
(se)

11
 

2A
1
 HOM

4
 Unscaled

6
 

3.22  

(0.30) 

11.53 

(0.26) 

14.68 

(0.02) 

29.43 

(0.30) 

2B
2
 HET

5
 Unscaled 

3.83 

(0.33) 

11.31 

(0.26) 

10.72 

(0.19) 

25.86 

(0.40) 

2C
3
  Scaled

7
 

8.42 

(0.46) 

9.42 

(0.23) 

10.69 

(0.02) 

28.53 

(0.43) 

3A HOM unscaled 
1.29 

(0.19) 

10.84 

(0.23) 

14.67 

(0.02) 

26.80 

(0.62) 

3B HET unscaled 
1.45 

(0.19) 

10.61 

(0.23) 

10.67 

(0.18) 

22.72 

(0.33) 

3C  scaled 
1.69  

(0.20) 

9.32 

(0.21) 

10.68 

(0.02) 

21.69 

(0.62) 

1Homoscedastic model fitted for unscaled data, 2Heteroscedastic model for unscaled data, 3Model fitted for scaled data, 4Homoscedastic model, 

5Heteroscedastic model, 6Data before adjusting for heterogeneity, 7Data after adjusting for heterogeneity, 8Additive genetic variance, 9Permanent 

environmental variance, 10Residual error variance, 11Phenotypic variance 
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Table 5. Spearman's rank correlation of EBVs 

 

 

Models 

Spearman's rank correlations 

2A 2B 2C 3A 3B 3C 

2A
1
 1.0 0.99

**
 0.92

**
 0.77

**
 0.73

**
 0.74

**
 

2B
2
 0.99

**
 1.0 0.91

**
 0.74

**
 0.72

**
 0.73

**
 

2C
3
 0.92

**
 0.91

**
 1.0 0.63

**
 0.61

**
 0.68

**
 

3A 0.77
**

 0.74
**

 0.63
**

 1.0 0.99
**

 0.96
**

 

3B 0.73
**

 0.72
**

 0.61
**

 0.99
**

 1.0 0.97
**

 

3C 0.74
**

 0.73
**

 0.68
**

 0.96
**

 0.97
**

 1.0 

1Homoscedastic model fitted for unscaled data, 2Heteroscedastic model for unscaled data, 3 Model fitted for scaled data, ** Level of 

significance at 1% 

 

 

Page 19 of 22

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

��

�

��������	
��
�����	������
��
�����������
����
��
	������
����������
��
��
�����
������
��


����
������


�������
��
�����
�����
�
�
��������
��� �����

�

���
!"
#"
$������

%



�
&��������
��
������
���
�'���������
(��������
)� �	���
���������
��
*���
(��������
����
)� ��


%
������
+�����	
���
,�������
-�����
.�	����	��
�!�
.�	����	���
���
)���������


-���������	
������
��������
��� ������
������
����"��� �����/��0�"��
�
-����
1
23
43%5%432�









#�	��
�"
6����0�����
���
������0�����
���������
���
��������
������
7��
6������������
�����
������
��
��������


�����
+�
6�������������
�����
��
��������
�����
-�
�����
������
��
������
�����
�%�
6����0������
��
!������0�����8�




�

���

���

���

���

���

��	

��


�� �� � �� �� �

6
�
��
�0
��
��
�

�
�
�


��
��
��
0
��
��
�

�
��
��
��
��



�
�


&
�
9


������

��

�

Page 20 of 22

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

��

�




#�	��
%"
.�����
���
�����0�����
���
������0�����
���������
���
��������
����
7�%:�����
%+
���
�%:�����
5+
��


�����0�����
���������
 ���
�����
%+
���
5+�
�����������;
 �:�����
%+
���
�:�����
5+
��
������0�����
���������


���
�����
%+
���
5+�
�����������8


�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

��	

��


���

���

�� �� � �� �� �� �� �� �� �� ��

.
��
�
��

�
�
�

�
�
��
�0
��
��
�

�
�
�


��
��
��
0
��
��
�

)���
��
6���

��������

��

��������

��

Page 21 of 22

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

��

�




#�	��
5
7�8"
6����	������
�������
��������
0�
���
0����
���
����
������	
��
����
��
�����
%
7���������


&���


0����
��������	
��
�����	�������
(������
&���
����
��������	
��
�����	������8












#�	��
25
708"
6����	������
�������
��������
0�
���
0����
���
����
������	
��
����
��
�����
5
7���������


&���


0����
��������	
��
�����	�������
(������
&���
����
��������	
��
�����	������8






�

�

�

��

��

��

��

��

��

��

��

�6 +< -& &� 6= �� �% �5 �2 $� <$

6
��
�
�
	
��
��
�
�

�
��
�
�
��

�
�
��
�
��
�

7�
	
%
8

)���
��
���
����

��� !���

" !���

�

�

��

��

��

��

��

�6 +< -& &� 6= �� �% �5 �2 $� <$

6
��
�
�
	
��
��
�
�

�
��
�
�
��

�
�
��
�
��
�

7�
	
%
8


)���
��
���
����

��� !���

" !���

Page 22 of 22

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


