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A B S T R A C T

Data science is generating enormous amounts of data, and new and advanced analytical methods are constantly
being developed to cope with the challenge of extracting information from such “big-data”. Researchers often use
simulated data to assess and document the properties of these new methods, and in this paper we present an
extension to the R-package simrel, which is a versatile and transparent tool for simulating linear model data with
an extensive range of adjustable properties. The method is based on the concept of relevant components, and is
equivalent to the newly developed envelope model. It is a multi-response extension of R-package simrel which is
available in R-package repository CRAN, and as simrel the new approach is essentially based on random rotations
of latent relevant components to obtain a predictor matrix X, but in addition we introduce random rotations of
latent components spanning a response space in order to obtain a multivariate response matrix Y. The properties
of the linear relation between X and Y are defined by a small set of input parameters which allow versatile and
adjustable simulations. Sub-space rotations also allow for generating data suitable for testing variable selection
methods in multi-response settings. The method is implemented as an update to the R-package simrel.

1. Introduction

Technological advancement has opened a door for complex and so-
phisticated scientific experiments that were not possible before. Due to
this change, enormous amounts of raw data are generated which contain
massive information but is difficult to excavate. Finding information and
performing scientific research on these raw data has now become another
problem. In order to tackle this situation new methods are being devel-
oped. However, before implementing any method, it is essential to test its
performance and explore its properties. Often, researchers use simulated
data for the purpose which itself is a time-consuming process. The main
focus of this paper is to present a simulation method, along with an
extension to the r-package called simrel, that is versatile in nature and yet
simple to use.

The simulation method we are presenting here is based on the prin-
ciple of relevant space for prediction [13] which assumes that there exists
a y-relevant subspace in the complete space of predictor variables that is
spanned by a subset of eigenvectors of these predictor variables. Our
extension to this principle is to introduce a subspace in y (material space)
which contains the information that predictor space is relevant for. The
concept of response reduction to the material space in response variable
was introduced by Cook et al. [6]. Our r-package based on this principle

lets the user specify various population properties such as; which latent
components in x are relevant for a latent subspace of the responses y and
the collinearity structure of x. This enables the possibility to construct
data for evaluating estimation methods and methods developed for
variable selection.

Among several publications on simulation, Johnson [16]; Ripley [17]
and Gamerman and Lopes [9] have exhaustively discussed the topic. In
particular, methods based on covariance structure has been discussed by
Arteaga and Ferrer [2]; Arteaga and Ferrer [3] and Camacho [4],
following approaches to find simulated data satisfying the desired cor-
relation structure. In addition, many publications have implemented
simulated data in order to investigate new estimation methods and pre-
diction strategies [see:8, 5, 14]. However, most of the simulations in
these studies were developed to address their specific problem. A sys-
tematic tool for simulating linear model data with single response, which
could serve as a general tool for all such comparisons, was presented in
Sæbøet al. [19] and as the r-package simrel. This paper extends simrel in
order to simulate linear model data with multivariate response. The
github repository of the package at http://github.com/simulatr/simrel
has rich documentation with many examples and cases along with
detailed descriptions of simulation parameters. In the following two
sections, the discussion encircle the mathematical framework behind. In
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addition, in section 4 and 5? we have also discussed the input parameters
needed for simrel function in brief. In section 4, an implementation is
presented as a case example and the final section introduces the shiny
web application for this tool.

2. Statistical model

In this section we describe the model and the model parameterization
which is assumed throughout this paper. We assume:
!
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where, y is a response vector with m response variables y1; y2;…ym with

mean vector μy , and x is vector of p predictor variables with mean vector
μx. Further,

Σyyðm# mÞis the variance-covariance matrix of y
Σxxðp# pÞis the variance-covariance matrix of variables x
Σyxðm# pÞis the matrix of covariance between x and y

Standard theory in multivariate statistics may be used to show that y
conditioned on x corresponds to the linear model,

y ¼ μy þ βtðx' μxÞ þ ε (2)

where, βt is a ðm# pÞ matrix of regression coefficients, and ε is an error
term such that ε ! Nð0;ΣyjxÞ. The properties of the linear model (2) can
be expressed in terms of covariance matrices in (1).

Regression Coefficients The matrix of regression coefficients is
given by

β ¼ Σ'1
xx Σxy

Coefficient of Determination Since, a matrix of coefficient-of-
determination represents the proportion of variation explained by the
predictors, we can write this matrix by its elements as,

Fig. 1. Simulation of predictor and response variables after orthogonal transformation of predictor and response components by rotation matrices Q and R shown as
the upper left and the lower right block matrices in (b).

Fig. 2. Simulated data before and after
rotation.

Table 1
Parameter setting of simulated data for comparison of estimation methods.

Decay of eigenvalues ðγÞ Coef. of Determination ðρ2wj
Þ

Design1 0.2 0.8, 0.8, 0.4
Design2 0.8 0.8, 0.8, 0.4
Design3 0.2 0.4, 0.4, 0.4
Design4 0.8 0.4, 0.4, 0.4
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where, σxyj , σxyj0 are covariances between x and yj, yj0 respectively. Also,
σ2yj and σ2yj0 are unconditional variances of yj and yj0 .Here the numerator is

equivalent to the covariance of fitted y in sample space. if j ¼ j0, it cor-
responds to a population version of the mean sum of squares of regres-
sion. The denominator gives the total unconditional variation in y. The
diagonal elements of this matrix is the proportion of variation in a
response yj; j ¼ 1;…m explained by the predictors.

Conditional variance The conditional variance-covariance matrix of
y given x is,

Σyjx ¼ Σyy ' ΣyxΣ'1
xx Σxy:

The diagonal elements of this matrix equals the minimum least
squared error of prediction ½Eðy ' byÞ2) for each of the response variables.

Let us define a transformation of x and y as, z ¼ Rx and w ¼ Qy.
Here, Rp#p and Qm#m are rotation matrices that rotate x and y to yield z
and w, respectively. The model (1) can be re-expressed in terms of these
transformed variables as:
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In addition, a linear model relatingw conditioned on z can be written
as,

w ¼ μw þ αt
(
z' μz

)
þ τ (4)

where α is the regression coefficient vector for the transformed model
and τ ! Nð0;ΣwjzÞ. Further, if both Q and R are orthonormal matrices,
i.e.,QtQ ¼ Im andRtR ¼ Ip, the inverse transformation can be defined as,

Σyy ¼ QtΣwwQ Σyx ¼ QtΣwzR
Σxy ¼ RtΣzwQ Σxx ¼ RtΣzzR

(5)

From this, we can find a direct connection between different popu-
lation properties of (2) and (4).

Regression Coefficients:

α ¼ ΣwzΣ'1
zz ¼ QΣyzRt½RΣxxRt)'1 ¼ Q

*
ΣyxΣ'1

xx

+
Rt ¼ QβRt

Conditional Variance Further, the conditional variance-covariance
matrix of w given z is,

Σwjz ¼ Σww ' ΣwzΣ'1
zz Σzw

¼ QΣyyQt 'QΣyxRt½RΣxxRt)'1RΣxyQt

¼ QΣyyQt 'QΣyxΣ'1
xx ΣxyQt

¼ Q
*
Σyy ' ΣyxΣ'1

xx Σxy
+
Qt ¼ QΣyjxQt

Coefficient of Determination The coefficient-of-determination ma-
trix corresponding to w can be written as,

(
ρ2w
)
jj' ¼ Σ'1=2
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ww
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σt
zwi
Σ'1
zz σzwj0ffiffiffiffiffiffiffiffiffiffiffiffiffi
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q 8j; j0 ¼ 1…m

where, σzwj and σzwj0 are covariances of z with wj and wj0 , respectively.
Also, σ2wj

and σ2wj0
are unconditional variances of wj and wj0 . For simplicity,

Fig. 3. Simulation of predictor and response variables for design one after orthogonal transformation of predictor and response components by rotation matrices Q
and R shown as the upper left and the lower right block matrices in (b). Here (a) is the covariance structure of the latent space, which is rotated by the block diagonal
rotation matrix in (b) resulting the covariance structure of simulated data in (c).

Table 2
Minimum average prediction error (number of components corresponding to
minimum prediction error, minimum prediction error) (For Yenv, the number of
response components is given).

Model Design: 1 Design: 2 Design: 3 Design: 4

CPLS (3, 3.24) (4, 3.22) (3, 4.09) (3, 4.05)
CPPLS (3, 3.21) (3, 3.17) (3, 4.11) (3, 4.04)
OLS (1, 3.60) (1, 3.58) (1, 4.57) (1, 4.50)
PCR (7, 3.28) (6, 3.19) (6, 4.08) (6, 4.04)
PLS1 (2, 3.32) (5, 3.20) (1, 4.16) (5, 4.07)
PLS2 (5, 3.29) (6, 3.19) (3, 4.11) (6, 4.06)
Senv (4, 3.17) (5, 3.14) (3, 4.35) (5, 4.28)
Xenv (5, 3.23) (6, 3.20) (5, 4.10) (6, 4.11)
Yenv (3, 3.24) (3, 3.23) (3, 4.29) (3, 4.24)

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10

3



we will denote σziwj by σij.
Since the rotation matrices give a direct connection between the

covariance of (1) and (3), a straight forward relationship can be worked
out between the terms in the above given matrix and their counterpart
covariance matrices of the xy-space.

From the eigenvalue decomposition principle, if Σxx ¼ RΛRt and
Σyy ¼ QΩQt then z and w can be interpreted as principal components of
x and y respectively. In this paper, these principal components will be
termed as predictor components and response components respectively.
Here, Λ and Ω are diagonal matrices of eigenvalues of Σxx and Σyy ,
respectively.

3. Relevant components

Consider a single response linear model with p predictors.

y ¼ μy þ βtðx' μxÞ þ ε

where, ε ! Nð0; σ2Þ and x is a vector of random predictors. Following the
concept of relevant space and irrelevant space which is discussed
extensively in Helland and Almøy [13], Helland [12], Helland et al. [14],
Cook et al. [5], and Sæbøet al. [19], we can assume that there exists a
subspace of the full predictor space which is relevant for y. An orthogonal
space to this space does not contain any information about y and is
considered as irrelevant. Here, the y' relevant subspace of x is spanned
by a subset of the principal components defined by the eigenvectors of
the covariance matrix of x, i.e. Σxx.

This concept can be extended tom responses so that the subspace of x
is relevant for a subspace of y. This corresponds to the concept of
simultaneous envelopes [8] where relevant (material) and irrelevant
(immaterial) space were discussed for both response and predictor
variables.

3.1. Model parameterization

In order to construct a fully specified and unrestricted covariance
matrix of z and w for the model in equation (3), we need to identify 1=
2ðpþmÞðpþmþ 1Þ unknown parameters. For the purpose of simula-
tion, we implement some assumptions to re-parameterize and simplify
the model. This enables us to construct a wide range of model properties
from only few key parameters.

Parameterization of ΣzzIf we let the rotation matrix R correspond to
the eigenvectors of Σxx, then z becomes the set of principal components
of x. In that case Σzz is a diagonal matrix with eigenvalues λ1;…; λp.
Further, we adopt the same parametric representation as Sæbøet al. [19]
for these eigenvalues:

λi ¼ e'γði'1Þ; γ > 0 and i ¼ 1; 2;…; p (6)

Fig. 4. Minimum of average prediction error.

Table 3
Simulation Design of second example.

η : 0:1 η : 0:8 Parameter Value

Single Informative Response Component
Design 1 Design 2 relpos 2, 3, 5, 7

q 1000
R2 0.8

Two Informative Response Components
Design 3 Design 4 relpos 2; 3

q 500; 500
R2 0.6; 0.6
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Here, as γ increases, the decline of eigenvalues becomes steeper,
hence the parameter γ controls the level of multicollinearity in x. We can
write Σzz ¼ Λ ¼ diagðλ1;…;λpÞ.

Parameterization of Σww In similar manner, a parametric represen-
tation of eigenvalues corresponding to Σww is adopted as,

κj ¼ e'ηðj'1Þ; η > 0 and j ¼ 1; 2;…;m (7)

Here, the decline of eigenvalues becomes steeper as η increases from
zero. At η ¼ 0, all w will have equal variance 1. Hence we can write
Σww ¼ diagðκ1;…; κmÞ.

Parameterization of Σzw After parameterization of Σzz and Σww, we
are left with m# p number of unknowns corresponding to Σzw. Some of
the elements ofΣzw may be equal to zero, which implies that the given z is
irrelevant for the given variable w. The non-zero elements define which
of the z that are relevant forw. We typically refer to the indices of these z
variables as the positions of relevant components. In order to re-
parameterize this covariance matrix, it is necessary to discuss the posi-
tion of relevant components in detail.

3.1.1. Position of relevant components
Let k1 components be relevant for w1, k2 components be relevant for

w2 and so on. Let the positions of these components be given by the index
setsP 1;P 2;…;P m respectively. Further, the covariance between wj and
zi is non-zero only if zi is relevant for wj. If σij is the covariance betweenwj

and zi then σij 6¼ 0 if i 2 P j where i ¼ 1;…; p and j ¼ 1;…;m and σij ¼ 0
otherwise.

In addition, the true regression coefficients α for wj (4) is given by:

αj ¼ Λ'1σij ¼
X

i2P j

σij

λi
; j ¼ 1; 2;…m

The positions of the relevant components have heavy impact on
prediction. Helland and Almøy [13] have shown that if the relevant
components have large eigenvalues (variances), which here implies small
index values in P j, prediction of y from x is relatively easy and if the

eigenvalues (variances) of relevant components are small, the prediction
becomes difficult, given that the coefficient of determination and other
model parameters are held constant. For example, if the first and second
components, z1 and z2, are relevant for w1 and fifth and sixth compo-
nents, z5 and z6, are relevant for w2, it is relatively easier to predict w1

thanw2, other properties being similar. This might be so, because the first
and second principal components have larger variances than the fifth and
sixth components.

Although the covariance matrix may depend on few relevant com-
ponents, we can not choose these covariances freely since we also need to
satisfy following two conditions:

* The covariance matrices Σzz, Σww and Σ must be positive definite
* The covariance σij must satisfy user defined coefficient of
determination

We have the relation,

ρ2w ¼ Σ'1=2
ww Σt

zwΣ'1
zz ΣzwΣ'1=2

ww

¼
σt
ijΛ

'1σij0ffiffiffiffiffiffiffiffiffiffi
σ2j σ

2
j0

q 8j; j0 ¼ 1…m

Applying our assumptions that, Σww ¼ diagðκ1;…; κmÞ (7) and Σzz ¼
Λ ¼ diagðλ1;…; λpÞ (6), we obtain,

ρ2w ¼ Σ'1=2
ww Σt

zwΛ
'1ΣzwΣ'1=2

ww ¼

2

6666664

Xp

i¼1

σ2i1
λiκ1

…
Pp

i¼1

σi1σim
λi

ffiffiffiffiffiffiffiffiffi
κ1κm

p
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Xp

i¼1

σi1σim

λi
ffiffiffiffiffiffiffiffiffi
κ1κm

p …
Pp

i¼1

σ2im
λiκm

3

7777775

Furthermore, we assume that there are no overlapping relevant
components for any two w, i.e, P j \P j* ¼ ∅ or σijσij+ ¼ 0 for j 6¼ j*. The
additional unknown parameters in the diagonal of ρ2w should agree with

Fig. 5. Root mean square of error of prediction of test observation averaged over all response variables.

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10

5



user specified coefficients of determination for w. i.e, ρ2wj
is,

ρ2wj
¼
Xp

i¼1

σ2ij
λiκj

Here, only the relevant components have non-zero covariances with
wj, so,

ρ2wj
¼
X

i2P j

σ2
ij

λiκj

For some user defined ρ2wj
the σ2

ij is determined as follows,

1. Sample kj values from a uniform distribution U ð'1; 1Þ distribution.
Let them be denoted S P 1 ;…;S P kj

.

2. Define,

σij ¼ SignðS iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2wj

,,,S i

,,,
P

k2P j

,,,S k

,,,
λiκj

vuuut

for i 2 P j and j ¼ 1;…m
This means that the covariances between the predictor components

and the response components are sampled randomly, but with restriction

Fig. 6. Web interface of shiny application of
simrel: (a) Buttons to trigger simulation, (b)
Parameters for simulation, (c) Visualization
of the true properties of simulated data
(regression coefficients, true and estimated
covariance between response and predictors
components) (d) Additional analysis (e)
Download option of simulated data.
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that the requested ρ2wj
values are satisfied. This also implies that the

regression coefficients α in (4) and β in (2) are sampled randomly under
the same restriction.

3.1.2. Data simulation
From the above given parameterizations and the user defined choices

of model parameters, a fully defined and known covariance matrix Σ of
ðw; zÞ is given. For the simulation of a single observation of ðw; zÞ let us
define g ¼ Σ'1=2u such that covðgÞ ¼ Σ. Here Σ'1=2 is obtained from
Choleskey decomposition of Σ, and u is simulated from independent
standard normal distribution.

Similarly, in order to simulate n observations, we define G
n#ðmþpÞ

¼

UΣ'1=2. Here the first m columns of G will serve as W and remaining p
columns will serve as Z. Further, each row of G will be a vector sampled
independently from the joint normal distribution of ðw;zÞ. Finally, these
simulated matricesW and Z are orthogonally rotated in order to obtain Y
and X, respectively. In the following section we discuss these rotation
matrices in more detail.

3.2. Rotation of predictor space

Initially, let us consider an example where a regression model with
p ¼ 10 predictors ðxÞ and m ¼ 4 responses ðyÞ. Let's assume that only
three response components ðw1;w2 and w3Þ are needed to describe all
four response variables. Further, let the index sets P 1 ¼ f1;2g;P 2 ¼
f3; 4g and P 3 ¼ f5; 6g define the positions of the predictor components
of x that are relevant for w1;w2 and w3, respectively. Let S 1, S 2 and S 3

be the orthogonal spaces spanned by each set of predictor components.
These spaces together span S k ¼ S 1 , S 2 , S 3, which is the mini-
mum relevant space and equivalent to the x-envelope as discussed by
Cook et al. [5].

Moreover, let q1 ¼ 3; q2 ¼ 3 and q3 ¼ 2 be the number of predictor
variables we want to have relevant for w1;w2 and w3 respectively. Then
q1 ¼ 3 predictors may be obtained by rotating the predictor components
in P 1 along with one more irrelevant component. Similarly, q2 ¼ 3
predictors, relevant for w2, can be obtained by rotating predictor com-
ponents in P 2 along with one more irrelevant component and finally,
q3 ¼ 2 predictors, relevant for w3, can be obtained by rotating the
components in P 3 without any additional irrelevant component. Let the

space spanned by the q1; q2 and q3 number of predictors be S q1 , S q2 and
S q3 . Together they span a space S q ¼ S q1 , S q2 , S q3 . This space is
bigger than S k since in the process two irrelevant components were
included in the rotations. Here, S k is orthogonal to S p'k and S q is
orthogonal to S p'q. Generally speaking, here we are splitting the com-
plete variable space S p into two orthogonal spaces – S k relevant for w
and S p'k irrelevant for w.

In the previous section, we discussed about the construction of a
covariance matrix for the latent structure. Fig. 1(a) shows a similar
structure resembling the example here. The three colors represent the
relevance with the three latent response components ðw1;w2 and w3Þ.
Here we can see that z1 and z2 (first and second predictor components of
x) have non-zero covariance with w1 (first latent component of response
y). In the similar manner other non-zero covariances are self-explanatory.

In order to simulate predictor variables ðxÞ, we construct matrix R
which then is used for orthogonal rotation of the predictor components z.
This defines a new basis for the same space as is spanned by the predictor
components. In principle, there are many possible options for defining a
rotation matrix. Among them, the eigenvector matrix of Σxx can be a
candidate. However, in this reverse engineering approach both rotation
matrices R and Q along with the covariance matrices Σxx are unknown.
So, we are free to choose any R that satisfies the properties of a real
valued rotation matrix, i.e R'1 ¼ Rt and detðRÞ ¼ - 1 so that R is
orthonormal. Here the rotation matrix R should be block diagonal as in
Fig. 1(b) in order to rotate spaces S 1;S 2… separately. Fig. 2(a) shows
the simulated predictor components z that we are following in our
example where we can see that the components z1 and z2 (relevant for
w1) is getting rotated together with an irrelevant component z8. The
resultant predictors (Fig. 2(b)) x1; x2 and x8 will hence also be relevant
for w1. In the figure, we can see that components z7; z8; z9 and z10 are not
relevant for any responses before rotation, however, the x8; x10 pre-
dictors become relevant after rotation keeping x7 and x9 still irrelevant.

Among several methods [1,11] for generating random orthogonal
matrix, in this paper we are using orthogonal matrix Q obtained from
QR-decomposition of a matrix filled with standard normal variates. The
rotation here can be a) restricted and b) unrestricted. The latter rotates all
components z together and makes all predictor variables somewhat
relevant for all response components. However, the former performs a
block-wise rotation so that it rotates certain selected predictor
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components together. This gives control for specifying certain predictors
as relevant for selected responses, which was discussed in our example
above. This also allows us to simulate irrelevant predictors such as x7 and
x9 which can be detected during variable selection procedures.

3.3. Rotation of response space

The previous example has four response variables with only three
informative components w1;w2 and w3. During the rotation procedure,
the response space is also rotated along with the predictor space. Fig. 1
shows that the informative response component w3 is rotated together
with the uninformative response component w4 so that the predictors
which were relevant for w3 will be relevant for response variables y3 and
y4. Similarly, response components w1 and w2 are rotated separately so
that predictors relevant for w1 and w2 will only be relevant for y1 and y2
respectively, which we can see in Fig. 2. Although the response compo-
nents have exclusive set of relevant predictors, the rotation of the
response space has the potential of creating several response variables
that depend on the same relevant predictor space. In the r-package simrel,
the combining of the response components is specified by a parameter
ypos.

4. Implementation

This section demonstrates an application of multi-response extension
of simrel with two examples in order to compare different estimation
methods on the basis of prediction error. These example are simply a
demonstration of the use of simrel package rather than an extensive
comparison of methods.

4.1. Example 1

For the comparison, we have considered four well established esti-
mation methods.

a) Ordinary Least Squares (OLS),
b) Principal Component Regression (PCR),
c) Partial Least Squares predicting individual response variable sepa-

rately (PLS1) and
d) Partial Least Squares predicting all response variables together

(PLS2).

We have also considered four relatively new estimation methods in
multi-response regression:

a) Canonically Powered Partial Least Squares regression (CPPLS) [15],
b) Canonical Partial Least Squares regression (CPLS) [15],
c) Envelope estimation in predictor space (Xenv) [6],
d) Envelope estimation in response space (Yenv) [7] and
e) Simultaneous estimation of x- and y-envelope (Senv) [8].

From the possible combinations of two levels of coefficient of deter-
mination ðρ2Þ and two levels of γ (6) (the factor that controls the multi-
collinearity in predictor variables), four simulation designs (design 1–4)
were prepared. Replicating each design 20 times, 80 datasets with five
response variables ðm ¼ 5Þ and 16 predictor variables ðp ¼ 16Þ were
simulated using the method discussed in this paper. It was also assumed
that three response components (w1;w2 and w3) completely describe the
variation present in five response variables (y1…y5). Here, in this
example we have assumed that all w's have equal variance, i.e. Σww ¼ Im,
that is, η ¼ 0 in (7). The four designs are presented in Table 1. All datasets
contained 100 sampled observations and out of 16 predictor variables,
three disjoint sets of five predictor variables each are relevant for
response components w1;w2 and w3. Although the simulation method is
well equipped to simulate data with p≫n, for incorporating envelope
estimation methods, which are based on maximization of likelihood, we

have chosen a n > p situation in the example. Further, predictor com-
ponents z1 and z6 were relevant for response component w1, predictor
components z2 and z5 were relevant for response component w2 and
predictor component z3 and z4 were relevant for response component w3.
In addition, following the discussion about rotation of response space
(section 3.3), w1 was rotated together with w4 and w2 was rotated
together with w5. Fig. 3 visualizes the covariance structure and rela-
tionship between the response and predictor variables for the first design.

For each method, we can write an expected squared prediction error
as,

ϑ
m#m

¼ E
h(bβ ' β

)tΣxx
(bβ ' β

)i
þ Σyjx (8)

where, bβ is an estimate of the true regression coefficient β and Σxx is the
true covariance structure of the predictor variables obtained from simrel.
Also, Σyjx is the true minimum error of the model. Here bβ varies across
different estimation methods while the remaining terms are the same for
each dataset design. The expression in (8) is estimated from 20 replicated
calibration sets. Further, an overall prediction error of all responses is
measured by the trace of ϑ (8).

The minimum prediction error (measured as discussed above) for
nine estimation methods averaged over 20 replications of four designs
are shown in Table 2. The table also gives the number of predictor
components (response components in case of Yenv), a method has used in
order to obtain the minimum of average prediction error.

Table 2 shows that the simultaneous envelope has prediction error of
3.17 and 3.14 in design 1 (with 4 components) and design 2 (with 5
components), respectively, which is smaller than other methods. How-
ever, the method was not able to show the same performance in design 3
and design 4. The PCR model has the smallest prediction error (4.08)
from 6 components in design 3 and Canonically Powered PLS has mini-
mum prediction error (4.04) from 3 components in design 4. In design 3,
we can also see that the Canonical PLS method has second best perfor-
mance with only three components. The number of components vary
across different replicated dataset, but the component corresponding to
minimum prediction error is discussed here. A detailed picture of pre-
diction error for each estimation method obtained for each additional
component is shown in Fig. 4. Although designs 2 and 4 have higher
levels of multicollinearity, the performance of the estimation methods is
indifferent to its effect. Since all methods, except OLS, are based on
shrinking of estimates, they are less influenced by the multicollinearity
problem.

The analysis presented in Fig. 4 has addressed some questions such as
how methods work when there exist a true reduced dimension in
response space, but also raised other questions like why they perform
differently. For example, what is the reason for the decreasing relative
performance of the simultaneous envelope method as the ρ2 values are
reduced? Does this depend on the dimensions and shape of the y enve-
lopes? Since the example is merely intended as a demonstration of how
simrel can be used in scientific study, a more elaborative studies would
be necessary to answer such questions, but for this purpose simrel would
be a powerful tool.

4.2. Example 2

In this second example, wide matrices with 100 observations and
1000 predictor variables were simulated. Since wide matrices are com-
mon in various fields such as genomics, spectroscopy and chemometrics,
we set up this second example to compare two variants of partial least
square regression – PLS1 and PLS2. While estimating regression co-
efficients PLS1 uses each response variable separately, while PLS2 uses
them all simultaneously. A simulation design was constructed as in
Table 3. With each design, 20 replicated datasets were simulated having
five response variables and a moderate level of multicollinearity within
the predictor variables (γ ¼ 0:5).
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The comparison were based on the prediction error measured by root
mean square error of prediction (RMSEP). In order to approximate the
error to theoretically computed error, 1000 extra test samples were
drawn from the same distribution as the training samples during
simulation.

One to ten components were used to fit the simulated data models.
The prediction error was recorded for each response variable and each
additional component. The first and second design in Table 3 has one
informative response component for which four predictor components
are relevant at positions 2, 3, 5 and 7, and the coefficient of determina-
tion is 0.8. Since the informative response component is rotated together
with four uninformative response components, the information is shared
among all five response variables after rotation.

The third and fourth design has two informative response compo-
nents. The first response component has one relevant predictor compo-
nent at position 2 and a coefficient of determination of 0.6. Similarly, the
second response component has one relevant predictor component at
position 3 and also here the coefficient of determination is 0.6.

In addition to having one and two response component models, two
levels of variance structure of the response components is considered and
defined by η parameters with values 0.1 and 0.8 respectively. In the first
and third design, all response components vary in similar manner (η ¼
0:1), while in the second and fourth design the informative response
components have higher variance (η ¼ 0:8) than the uninformative ones
as the eigenvalues of Σww drop faster in this case.

Fig. 5 shows the average prediction error of test observations
modelled by PLS1 and PLS2 for all four designs. The prediction errors are
averaged over all 20 replicated datasets.

In general, PLS2 dominates PLS1 with regard to minimum error
achieved for these simulated designs. The difference is largest for the
designs with η ¼ 0:1 in which case the response are moderately corre-
lated and prediction appears to be more difficult than for η ¼ 0:8. The
effect of number of relevant response and predictor components appears
to have less influence on the results than the covariance structure of Σyy .
This small example of the use of simrel indicates that a more elaborate
comparison study should be done on PLS1 and PLS2 in this respect.

5. Web interface

In order to give an alternative interface for simrel, we have created a
shiny app which allows users to provide the simulation parameters
through different input fields. Fig. 6 shows a screenshot of the applica-
tion. The application contains threemain sections throughwhich the user
can interact with this simulation approach. A random seed can be
selected using section Fig. 6 (a) so that a particular set of data can be re-
simulated if needed. Fig. 6 (b) has all the input panels where the user-
dependent parameters for simulation can be entered. Here the user also
has the option to simulate univariate, bivariate or multivariate response
data. In addition, a simulated R-object comprising the simulated data can
be downloaded in Rdata format (section (e) in Fig. 6). The object holds
the simulated data along with other properties such as coefficient of
determination for each response, true regression coefficients and rotation
matrices. Users can also download simulated data in JSON and CSV
format.

All simrel parameters can be entered using a simple user interface
where vector elements are separatedwith comma (,) and list elements are
separated with semicolon (;). For instance, the relevant position dis-
cussed in the implementation (section 4) of this paper can be entered as
1, 6; 2, 5; 3, 4 which is equivalent to R syntax list (c(1, 6), c (2, 5), c(3, 4)).
An R expression equivalent to the input parameters as shown in Fig. 5(b)
can be written as,

With the parameters for simulation in the screenshot (Fig. 6) 200
training sets (n) and 50 test sets (ntest) will be simulated with 15 pre-
dictor variables (p) and 4 response variables (m). The 4 response vari-
ables will have a true latent dimension of two, which is spanned by the
relevant response components. The first response component is rotated

together with the third (irrelevant) response component and the second
response component is rotated together with the fourth (irrelevant)
response component as set in ypos. Out of 15 predictors, 5 will be rele-
vant for the first response component and 4 will be relevant for the
second response component, as set by q. The 5 predictor variables, that
are relevant for the first response component, span the same space as the
predictor components at position 1 and 2. Similarly, the 4 predictor
variables that are relevant for the second response component, span the
same space as the predictor components at position 3, 4 and 6 (relpos).
The coefficient of determination for the first and second response com-
ponents are 0.8 and 0.7, respectively (R2). The eigenvalues of the pre-
dictor components decay exponentially by the factor of 0.6 (gamma),
whereas the eigenvalues of response components are constant (but can be
set to exponential decay) (eta).

The application not only allows users to simulate data, but also gives
some insight into simulated data properties. Section (c) in Fig. 6 contains
three plots – a) true regression coefficients b) relevant components and c)
estimated relevant components. In the first plot (Fig. 6(c) top) we can see
that predictor variables (1, 2, 8, 9 and 13) are relevant for the first and
third response variables (red and blue line) by their non-zero coefficients,
whereas predictor variables (3, 4, 6 and 15) are relevant for the second
and fourth response variables (purple and green line). The second plot
(Fig. 6(c) middle) shows the covariances between the response compo-
nents and the predictor components along with the corresponding ei-
genvalues in the background (bar plot). In the plot the absolute value of
the covariances after scaling with the largest covariance are shown. As in
our parameter setting, the plot shows that the first (red line) and second
(green line) predictor components have non-zero covariance with the
first and third response components, and the fourth and sixth predictor
components have non-zero covariance with the second response
component. The third plot (Fig. 6(c) bottom) is the estimated covariances
between the predictor components and the response variables, for the
simulated data. Since the first and third response components are rotated
together, in the plot, the covariance between the predictor components
and the first and third response variables (red and blue line) are following
similar patterns as the theoretical (6(c) middle). This also suggests that
the predictor components which were relevant for the first response
component, becomes relevant for the first and third response variables
after rotation.

Along with these main sections, section (d) in the same figure con-
tains additional analysis performed on the simulated data such as its
estimation with different methods. This section is intended for educa-
tional purposes to show how changing the data properties influences the
performances of different estimation and prediction methods. Beside this
application, for Rstudio users, a gadget will be available after installing
the r-package. This gadget provides an interface enabling users to input
simulation parameters and access some of the properties.

Many scientific studies [8,14,18] are using simulated data in order to
compare their findings with others or assess its properties. In many of
these situations, a user-friendly and versatile simulation tool like simrel
can play an important role. Gangsei et al. [10] and Sæbøet al. [19] are
some examples where the univariate and bivariate form of simrel have
been used for such purposes.

6. Conclusion

Whether comparing methods or assessing and understanding the
properties of any method, tool or procedure; simulated data allows for
controlled tests for researchers. However, researchers spend enormous
amount of time creating such simulation tools so that they can obtain a
particular nature of data. We believe that this tool along with the R-
package and the easy-to-use shiny web interface will become an assistive
tool for researchers in this respect.

R. Rimal et al. Chemometrics and Intelligent Laboratory Systems 176 (2018) 1–10

9



Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.chemolab.2018.02.009.
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