

Norges miljø- og biovitenskapelige universitet

Masteroppgave 2018 30 stp

Norges Miljø og biovitenskapelige universitet Geir Terjesen, hovedveileder NMBU

Estimering av utmattingslevetid med "forenklet metode med maksimal tillatt spenningsvidde" og med "Weibullfordeling for S-N kurver med to helninger"

Fatigue life using «Fatigue design charts with allowable extreme stressrange» and «Weibull distribution based on S-N curves with two slopes»

Ingeborg Ugland Kjendlie Industriell økonomi Norges miljø og biovitenskapelige universitet

Forord

Denne masteroppgaven er skrevet våren 2018 ved Norges miljø- og biovitenskapelige universitet (NMBU) og markerer avslutningen av min utdannelse innen Industriell økonomi med fordypning i Maskin og produktutvikling. Masteroppgaven omhandler beregning av utmattingslevetiden til offshorekonstruksjoner i stål, ved bruk av tre metoder nevnt i DNVGL-RP-C203. Metodene som skal belyses er Forenklet metode og Weibullfordeling når S-N kurven har en og to helninger, metodene skal også kontrolleres opp mot Miner-Palmgrens delskadehypotese.

Oppgaven starter med grunnleggende informasjon om utmatting, deretter blir metodene forklart. Til slutt er det utarbeidet fem caser som sammenligner de tre metodene.

Oppgaven kan brukes som en veiledning for ingeniører som ønsker å bruke utmattingsberegninger med forenklet metode etter DNVGL-RP-C203.

Utmattingsproblematikken er et omfattende fagområde, og det har vært veldig spennende å få et innblikk i og mer forståelse av et lite område innenfor beregning av utmattingslevetiden. Dette har vært en utfordrende og lærerik periode med både opp og nedturer. Jeg vil derfor takke hovedveilederen min, førsteamanuensis Geir Terjesen, for god støtte og veiledning underveis. Han har også bidratt med relevant litteratur og dokumenter.

Jeg vil også takke Aurora Rosvoll Grøndahl for hjelp til korrekturlesing. En stor takk rettes også til Petter Kjendlie, Ellen Ugland, Helle Kjendlie og Nina Solløst Bratteteig for god støtte og motivasjon underveis.

Ingeborg Ugland Kjendlie

Ås, 14.03.2018

Sammendrag

Skips- og offshorekonstruksjoner er utsatt for mange varierende amplitudebelastninger. Det er derfor viktig med gode analyser av alle utmattingspåkjente forbindelser, for å forsikre seg om at ønsket designlevetid er oppnådd. Det finnes flere metoder for å beregne utmattingslevetiden til slike konstruksjoner. I denne masteroppgaven anvendes (1) forenklet metode med én helning og (2) Weibullfordelingen når S-N kurver har to helninger for å beregne utmattingslevetiden. Videre sammenlignes resultatene av de to metodene med Miner-Palmgrens delskadehypotese.

Oppgaven tar for seg fem caser for forskjellige utmattingspåkjente stålforbindelser, hvor resultatene fra forenklet metode med én helning og Weibullfordelingen med S-N kurver med to helninger er kontrollert opp mot Miner-Palmgrens delskadehypotese med 100 blokker i Excel regneark. Beregningene viser at de to metodene gir tilnærmet like resultater. Det kan derfor være fornuftig å anvende de to metodene samtidig, siden det gir en ekstra sikkerhetsmargin at resultatene kan sjekkes opp mot hverandre.

Metodene er enkle å bruke, men er veldig konservative i forhold til andre beregningsmetoder. De egner seg derfor best til en screeningsprosess for å sjekke hvilke komponenter som trenger ytterligere analyser.

Abstract

Ship and offshore structures are exposed to many varying amplitude loads. Therefore, it is important to perform thorough analyses of all fatigue parts to ensure that the desired design life is approved. There are several methods to calculate the fatigue life. In this Master's thesis the simplified method of one slope and the Weibull distribution when the S-N curves have two slopes have been investigated and subsequently compared to the Miner-Palmgren hypothesis.

The thesis investigates five cases for different fatigue steel joints, where the results from the simplified method with one slope and the Weibull distribution for S-N curves with two slopes is controlled against the Miner-Palmgren hypothesis with 100 blocks in Excel spreadsheets. The calculations show that the two methods yield approximately equal results. It may therefore be sensible to apply the two methods at the same time as it provides an additional margin of safety that results can be checked against each other.

Both the investigated methods are easy to implement and apply. However, they are very conservative compared to other calculation methods, so they are best suited for a screening process to check which components require further analysis.

Symboler

Symbol	Navn	Enhet
N _{total}	Total levetid	-
Ni	Sprekkiniteringsperiode	-
N _{pi}	Antall sykler for å drive en sprekk frem til brudd	-
N _f	Antall sykler til Restbrudd	
F	Kraft	N
σnom	Nominell spenning	MPa
σκ	Kjervspenning	MPa
σ_{max}	Hot spot spenning	MPa
N	Forventet antall lastsykler før brudd	-
С	Materialparameter	-
m	Negativ invers helning til S-N kurven	-
A	Areal	mm ²
SCF	Spenningskonsentrasjonsfaktoren	
Δσω	Spenningsvidde i sveisen	MPa
t	Tykkelse på platen i sprekkvekstretning	mm
t _{ref}	Referansetykkelse (25mm i DNV-RP-C203)	mm
k	Tykkelseskoeffisient, tabellverdi	-
logā	S-N kurvens krysning med log N-aksen	-
	S-N kurvens krysning med log N-aksen	
h	Formparameter	
q	Skalaparameter	
Q	Sannsynligheten for å overgå	
	spenningsrekkevidde $\Delta\sigma$	
D	Akkumulert utmattingsskade	
k	Antall spenningsblokker	
n _i	antall spenningssykler i spenningsblokker	
T _d	Designlevetid I sekunder	S
η	utnyttelsesfaktor = 1/DFF	
DFF	Utmattingsfaktor	
Vo	Gjennomsnittlig zero-crossing frekvens	
$\gamma\left(1+\frac{m}{h}\right)$	Gammafunksjonen	

Innholdsfortegnelse

Forord	i
Sammendrag	ii
Abstract	iii
Symboler	iv
1. Innledning	1
1.1 Bakgrunn	1
1.2 Formål og omfang	1
1.3 Metode	2
1.4 Litteratur	2
2. Generelt om utmatting og metoder	3
2.1 Historikk	3
2.2 Utmatting i Offshorekonstruksjoner	5
2.3 Sprekkinitiering, sprekkvekst og restbrudd	6
2.4 Nominal stress, hot-spot stress og notch stress	7
2.4.1 Nominal stress	7
2.4.2 Hot-spot stress og Notch stress/Kjervspenning	7
2.5 S-N kurver	8
2.6 Høy-syklus og Lav-syklus utmatting	9
2.7 Miner-Palmgren	10
2.7.1 eksempel på bruk av miner Palmgrens delskadehypotese	11
2.8 Kumulative blokkdiagrammer og lastspekter basert på Weibullfordelingen	13
2.8.1 Lukkede uttrykk for utmattingsskader basert på Weibullfordeling av spenningsvidden	15
3. Forenklet metode og Weibullfordeling etter DNVGL RP-C203	19
3.1 Forenklet metode	19
3.1.1 Prosedyre ved bruk av designdiagrammer	23
3.2 Eksempler på bruk av forenklet metode med DNV-GL-RP-C203	24
3.2.1 Eksempel 1	24
3.2.2 Eksempel 2	28
3.3 Weibullfordeling når S-N kurven har to helninger	28
4. Forenklet metode versus blokkdiagrammer i Miner- Palmgren og formelverket basert på Weibullford	Jelingen
· · · · · · · · · · · · · · · · · · ·	
4.1 Eksempel 1	
4.1.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven	30
4.1.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det sa Weibullfordelte lastspekteret	mme 30
4.1.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Pal delskadehypotese i regneark	mgrens

4	.2 Eksempel 2	.32
	4.2.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven	.33
	4.2.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret	e .34
	4.2.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgre delskadehypotese i regneark	ens .34
4	.3 Eksempel 3	.35
	4.3.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven	.37
	4.3.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret	e .37
	4.3.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgre delskadehypotese i regneark	ens . 38
4	.4 Eksempel 4	.38
	4.4.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven	.40
	4.4.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret	e .40
	4.4.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgre delskadehypotese i regneark	ens .41
4	.5 Eksempel 5	.41
	4.5.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven	.42
	4.5.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret	e .42
	4.5.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgre delskadehypotese i regneark	ens .43
5. D	iskusjon	.44
6.	Konklusjon	.45
6	1 Videre arbeid	.46
7. R	eferanser	.47
VED	LEGG	.48
V	edlegg 1	.48
V	edlegg 2	.53
V	edlegg 3	.58
V	edlegg 4	.63
V	edlegg 5	.68

1. Innledning

1.1 Bakgrunn

Skips- og offshorekonstruksjoner er særlig utsatt for utmattingsskader. Bølger, vind, korrosjon, strømninger og stadig av- og pålessinger gjør at konstruksjonene blir utsatt for store amplitudespenninger. Utmatting skjer selv om spenningene er lavere enn flytspenningen, da det er summen av disse som kan føre til et utmattingsbrudd. Dette er derfor et område som krever kontinuerlig kontroll og oppfølging, i tillegg til nøyaktige beregninger og analyser før nye konstruksjoner skal bygges (Fines and Veritec, 1999).

Det finnes flere måter å beregne utmatting på, og ved utmattingsberegninger etter DNVGL-RP-C203 (DNV GL AS, 2016) kan man bruke *nominal stress, hot spot stress, notch stress* eller bruddmekanikk (sprekkvekst) for å beregne utmattingslevetiden. Fakultet for realfag og teknologi (REALTEK) ved NMBU ønsker å styrke fagkunnskapen innenfor utmattingsberegninger med forenklet metode samt Weibullfordeling for S-N kurver med to helninger og ville derfor initiere denne masteroppgaven. Forenklet metode, og Weibullfordeling for S-N kurver med en og to helninger, skal sammenlignes med Miner-Palmgrens delskadehypotese og se på fordeler og ulemper ved disse metodene.

1.2 Formål og omfang

Hovedformålet med denne masteroppgaven er å få mer kunnskap om forenklet metode, Weibullfordeling når S-N kurven har en og to helninger og Miner-Palmgrens delskadehypotese. Oppgaven tar også for seg når det kan være mer hensiktsmessig å bruke disse metodene, kontra andre eksisterende metoder for utmattingsberegninger. Et videre mål med oppgaven er at den skal gi en oversiktlig, norskspråklig innføring i de to ovennevnte beregningsteknikkene, samt kontrollere de to metodene opp mot med Miner-Palmgrens delskadehypotese.

Oppgavens kapittel 2 inneholder en kort innføring i utmattingsproblematikken og mulige følger av utmatting. I kapittel 3 og 4 illustreres bruken av formelverket for forenklet metode og Weibullfordeling når S-N kurven har to helninger, basert på DNVGL-RP-C203(DNV GL AS, 2016) samt relevante artikler skrevet av Dr. Inge Lotsberg og annen kjent relevant litteratur innen fagområdet. I kapittel 5 diskuteres resultatene, mens konklusjonene er gitt i kapittel 6.

1.3 Metode

Metodikken i oppgaven baserer seg på litteratur om beregningsmetodene forenklet metode og Weibullfordeling når S-N kurven har to helninger. For å forstå metodene utarbeides regneeksempler (caser) som anvendes for å kunne sammenligne resultatene av de to metodene med Miner-Palmgrens delskadehypotese. Resultatene dobbeltsjekkes ved å bruke regnearkmodeller i Excel.

1.4 Litteratur

Av litteratur som er blitt benyttet i denne masteroppgaven så har det vært tre hovedkilder, hvor DNVGL-RP-C203 har vært den mest sentrale. Alle metodene som er brukt er basert på dataen i denne standarden(DNV GL AS, 2016). Standarden er oversiktlig, og fremgangsmåten for Miner-Palmgrens delskadehypotese og forenklet metode har vært forståelig. Det hadde vært enda enklere å forstå forenklet metode om eksempel 5.3 som er vist i DNVGL-RP-C203 hadde vært uten interpolering, det kan gjøre det unødvendig komplisert for en som ser på metoden for første gang. Det er også henvisninger til annen god litteratur om man ønsker å se nærmere på områder som ikke er redegjort for i denne standarden.

Fatigue design of marine structure av Inge Lotsberg(Lotsberg, 2016) har vært veldig viktig for å forstå metodene enda bedre. Lotsberg redegjør metodene grundigere enn DNVGL-RP-C203 og gjør det enklere å forstå.

Fatigue Handbook av Almar-Næss har også vært veldig nyttig, særlig kapittel 2 og 10 som tar for seg Belastning på offshore konstruksjoner og utmatting (Fines and Veritec, 1999) (Lotsberg et al., 1999). kapittel 2(Fines and Veritec, 1999) gir en bra innføring i de ulike påkjenningene offshore konstruksjoner er utsatt for, som også gjør det enklere å til en viss grad forstå formparameteren, h, i Weibullfordelingen for en og to helninger. Hvilken verdi formparameteren, h, skal ha har blitt enkelt forklart i både «Fatigue handbook»(Lotsberg et al., 1999) og «Fatigue designe of marine structures»(Lotsberg, 2016).

Sammen med de andre kildene som det er henvist til i denne masteroppgaven har det vært mulig å få til god evaluering og innsikt av de tre metodene.

2. Generelt om utmatting og metoder

2.1 Historikk

Fenomenet utmatting ble oppdaget allerede før 1850 ved observasjon av hjulaksler på jernbaner som feilet uten åpenbar grunn. Togulykken i Versailles i 1842 hvor mer enn 100 døde etter at en av togets akslinger røk, satte i gang mer forskning på dette området. August Wøhler, som var en av de første som forsket på utmatting, publiserte i 1870 en rapport hvor resultatene fra forskningen viste at materialet kan ødelegges ved mange gjentakende spenninger og at det ikke bare er den maksimale spenningen som kan forårsake brudd. Wøhler plottet resultatene sine i tabeller som ble til Wøhler-kurven eller S/N-kurven, som vi kjenner den i dag, og som anvendes for å beregne utmattingslevetiden (Schütz, 1996). Høye lokale spenningskonsentrasjoner kan føre til utmatting, og sprekkdannelse og sprekkvekst oppstår ved vekslende belasting. Når sprekken vokser vil tverrsnittet som opptar kreftene reduseres og det vil da føre til et utmattingsbrudd (Lotsberg, 2016).

Et utmattingsbrudd skjer momentant og kan skape store skader, Alexander Kielland-ulykken og helikopterulykken på Turøy er to eksempler på ulykker forårsaket av utmatting som fikk fatale konsekvenser.

Figur 1::Alexander Kielland-plattformen, med tillatelse Foto: Bjørn Sigurdsøn, Scanpix, NTB (Sigurdsøn, 1980)

Den mest alvorlige ulykken I Norge forårsaket av utmatting, etter 2. verdenskrig, skjedde på Alexander Kielland-plattformen 27.mars 1980. Et støttestag til plattformens bærende konstruksjon røk og en av de fem søylene brakk og plattformen kantret. 123 mennesker mistet livet i denne ulykken (NOU, 1983).

Figur 2: Foto: Rune Nilsen, Bergens Tidende, med tillatelse Kilde: (Nilsen, 2016)

I 2016 styrtet et helikopter på en holme like ved Turøy i Hordaland. Helikopteret var på vei fra oljeplattformen Gullfaks B på Gullfaksfeltet i Nordsjøen til Bergen lufthavn Flesland med 13 personer om bord. Når de nærmet seg Flesland løsnet helikopterets hovedrotor uten forvarsel. Ifølge Statens havarikommisjon var det et utmattingsbrudd i et av de åtte planetgirene i andre og siste trinn av girkassen som forårsaket ulykken. Alle om bord mistet livet (AIBN, 2017).

2.2 Utmatting i Offshorekonstruksjoner

Hoveddelen i dette underkapittelet er hentet fra Fatigue Handbook kapittel 2(Fines and Veritec, 1999)

Skip og offshorekonstruksjoner er utsatt for mange forskjellige belastninger under deres livssyklus og utmattingsskader er derfor av stor betydning for den endelige levetiden. Alle belastninger som varier i størrelse kan føre til spenningsvariasjoner som leder til utmatting. Miljø og store varierende belastninger på konstruksjonene er særlig av stor betydning, da det er her de største amplitudespenningene oppstår, men også permanent belastning og deformasjonsbelastning må tas hensyn til.

Miljøet til havs kan være ganske røft, og det er mange store påkjenninger offshorekonstruksjonene blir utsatt for. Vind, bølger, snø, is, havstrømmer og jordskjelv er eksempler på slike påkjenninger.

Varierende belasting om bord på konstruksjonene skjer blant annet når det er av- og pålessing av gods, helikopterlandinger, bruk av kraner og ved ankring.

Permanent belastning, er laster som er fast på konstruksjonen og påvirket av tyngdekraften. Eksempler er vekten på selve konstruksjonen, vekten på ballast og utstyr om bord og hydrostatisk trykk fra permanente naturomgivelser.

2.3 Sprekkinitiering, sprekkvekst og restbrudd

Utmatting er en lokalisert og progressiv svikt som oppstår når materialet er utsatt for sykliske belastninger. Bølger, havstrømmer, vindbelastninger, laster og vortex-indusert oscillasjon er typiske eksempler på syklisk belastning som kan føre til utmattingsbrudd. Kraftpåkjenningene fra en belastning er gjerne ikke høy nok til å påføre brudd, men det er den samlede og varierende påkjenningen fra en eller flere av belastingene som samlet kan føre til brudd.

Figur 3 To deler som viser utmattingsbrudd, hvor origin er der sprekken oppsto og final rupture er der hvor det endelige bruddet oppsto(Terjesen, 2017)

Når man estimerer utmattingslevetiden kan man dele den inn i en sprekkinitieringsperiode (N_i) og en sprekkvekstperiode (N_{pi}) , som til sammen fører til restbrudd (N_f), uttrykt som følger:

$$N_f = N_i + N_p$$
 (2.3.1)(Lotsberg, 2016)

Når arealet som opptar spenningene blir for lite vil det skje et restbrudd. Ved restbrudd vil materialet oppføre seg sprøtt selv om det er duktilt, derfor er det viktig å ha gode sikkerhetsrutiner slik at man kan oppdage sprekker og gjøre de nødvendige oppgraderingene for å unngå restbrudd.

2.4 Nominal stress, hot-spot stress og notch stress

2.4.1 Nominal stress

Nominal stress er spenningene i en komponent som kan utledes fra klassisk fasthetslære. I en enkel plateprøve med ett feste er den nominelle spenningen ganske enkelt membranspenningen, som brukes til å plotte S-N dataene fra utmattingstesting (Lotsberg, 2016). Nominell spenning kan derfor uttrykkes som:

$$\Delta \sigma_{nom} = \frac{F}{A}$$

Der:

F= Kraft

A= Areal

2.4.2 Hot-spot stress og Notch stress/Kjervspenning

Områdene hvor de høyeste spenningene forekommer kalles *hot spots*. Kjervspenningen er den totale spenningen ved roten av et kjerv, oppnådd under antatt lineær elastisk materialeadferd. Ved spenninger i *hot spots* og kjerv kan man ikke lenger bruke klassisk fasthetslære, og det er nødvendig å multiplisere med en spenningskonsenstrasjonsfaktor, SCF,(Terjesen, 2017)

2.5 S-N kurver

SN-kurver brukes for å estimere utmattingslevetid ved å ta i bruk en logaritmisk skala som ser på spenning/syklus-forholdet.

$$\log N = \log a_d - m \log \left(\Delta \sigma \left(\frac{T}{t_{ref}} \right)^k \right)$$
 (3.5.1) (Lotsberg, 2016)

```
Figur: 4 S-N kurve
```

Design for å få ønsket utmattingslevetid er basert på bruk av S-N-kurver, som igjen er basert på utmattelsestester. S-N kurver er basert på relevante eksperimentelle data og gjennomsnittlig minus to standardavvik, S-N-kurvene er dermed forbundet med en 97,7% sannsynlighet for overlevelse fra utmatting (DNV GL AS, 2016).

For å gjøre analysene overkommelige, deler en ulike typer forbindelser opp i klasser, der en bruker en SN-kurve for hver klasse. DNVGL-RP-C203 gir forbindelsen et navn, først i hovedgrupper der en bruker bokstaver B, C, D og så videre. Hovedgruppene deles også i en del tilfeller i undergrupper der en bruker tall – for eksempel B1. Klassifiseringen avhenger blant annet av type last (for eksempel strekklast eller skjær), metoder for kutting av plater, materialtype og tidligere reparasjoner. I gruppene vil det være en del variasjon, men en har valgt grupper som en forventer vil oppføre seg likt eller bedre enn en referansegeometri som det gjøres forsøk med. En slik klassifisering finner man i DNVGL-RP-C203, som bruker 14 ulike klasser (DNV GL AS, 2016).

2.6 Høy-syklus og Lav-syklus utmatting

Skipskonstruksjoner opplever både statisk og dynamiske belastning under designlevetiden. Vanligvis har man sett på høy-syklus utmattingen på delene man beregner utmattingskapasiteten til, men siden det har blitt påvist sprekker få år etter ferdigstillelse, som kan være tegn på lav-syklus utmatting, må lav-syklus utmatting også vurderes ved utmattingsanalyser. Signifikant deformasjon er observert i områder med statiske påkjenninger og Lotsberg har vurdert at den lineære elastiske spenningsvidde er mer enn tre ganger så høy som flytegrensen til materialet (Lotsberg, 2016). Den lavsykliske utmattingsstyrken, hvor høye spenninger oppstår, og som er under gjentatte sykliske belastning, hovedsakelig på grunn av av/pålessing av gods, må sjekkes siden deformasjon eller sprekker kan oppstå selv om den dynamiske spenningen av bølger er lav. De mest sårbare områdene for hot-spot stress på grunn av lav-syklus utmatting er forskjellige steder på stiverne, særlig på topp og bunn i lengderetningene siden det er stor rammeavstand. Utmattingslevetiden i områder med lav-syklus og høye spenninger er vanligvis uttrykt som den totale strekkrekkevidde og ikke spenningsrekkevidden. Signifikant plastisitet kan oppstå på et kjervområde på grunn av høye spenninger på områder med gjentatte av- og pålessinger, som leder til at strekkrekkevide-tilnærmingen passer bedre (Lotsberg, 2016).

2.7 Miner-Palmgren

Miner-Palmgrens delskadehypotese er hyppig brukt til utmattingsanalyser, og da spesielt til sveisede konstruksjoner med varierende amplitudebelastning. Miner-Palmgrens delskadehypotese er ikke en perfekt beskrivelse av virkeligheten, men den er veldig enkel å bruke og sammen med S-N kurver er hypotesen generelt akseptert for skip og offshorekonstruksjoner (Lotsberg, 2016)

Miner-Palmgren delskadehypotese er uttrykt ved:

$$D = \sum_{i=1}^{k} \frac{n_i}{N_i} = \frac{1}{a_d} \sum_{i=1}^{k} n_i \cdot (\Delta \sigma_i)^m \le \eta$$
 (3.7.1) (Lotsberg, 2016)

der

D = akkumulert utmattingsskade

 a_d = avskjære design S-N-kurven med log N-aksen

m= negative invers helning av S-N kurven

k= antall spenningsblokker

 n_i = antall spenningssykler i spenningsblokker i

 N_i = antall sykler til brudd med konstant spenningsvidde $\Delta \sigma_i$

 η = utnyttelsesfaktor = 1/DFF

Figur 5

Alle bidragene til delskade av betydning må tas med i analysene. Det gjelder også laster i byggefaser. I praksis lager en intervaller av spenninger og fastsetter antall spenningssykler i hvert intervall for konstruksjonens levetid, og summerer opp alle bidragene. Ved å bruke et histogram for å uttrykke spredningsfordelingen, bør antall spenningsblokker, k, være stort nok til å sikre rimelig numerisk nøyaktighet, og antallet bør ikke være mindre enn 20, se figur 5,(Lotsberg, 2016).

2.7.1 eksempel på bruk av miner Palmgrens delskadehypotese

For å vise hvordan man kan ta i bruk Miner-Palmgrens delskadehypotese er det utarbeidet et eksempel. Konstruksjonen og tilhørende data som anvendes i eksempelet er hentet fra Utmatting 2 (Terjesen, 2017).

En buttsveist plateforbindelse av konstruksjonsstål er sveiset fra én side, som vist i figuren under. Tykkelsen av platen er t = 40 mm. Forbindelsen er en del av en konstruksjon plassert i sjøvann. Vi antar at den katodiske beskyttelsen fungerer.

Figur 6: Buttsveist plateforbindelse av konstruksjonsstål, som er sveiset fra en side som vist i figuren under.

Det skal undersøkes om den sveiste forbindelsen holder, det vil si at delskaden må være mindre eller lik 1. Den sveiste forbindelsen faller inn under kurveklasse W3 og skal belastes med spenningsvidde og antall lastsykler (n) som vist i tabell 1 på neste side.

Tabell 1 viser de oppgitte lastsyklene og spenningsviddene i hver enkelt blokk

Blokk nr.	n	$\Delta \sigma$	Ν	n/N
1	700	130		
2	3000	90		
3	7000	55		
4	30000	30		

$$\log N = \log \bar{a} - m \times k \times \log \left(\frac{t}{t_{ref}}\right) - m \log \nabla \sigma$$

De nødvendige dataene er hentet fra tabell 5.2 i DNVGL-RP-C203 og er som følger:

 $\log \bar{a} = 10,417$

m = 3

k = 0,25

Videre er hver enkelt blokk regnet ut før alle delskadene summeres, som vist i tabell 2.

Blokk nr.	n	$\Delta \sigma$	Ν	n/N
1	700	130	$1,939 \times 10^{4}$	$5,86 \times 10^{-2}$
2	3000	90	$3,606 \times 10^{4}$	$8,319 \times 10^{-2}$
3	7000	55	$1,581 \times 10^{5}$	$4,428 \times 10^{-2}$
4	30000	30	$9,705 \times 10^{5}$	3.090×10^{-2}
D				0.22

Tabell 2 Viser delskaden, D.

Delskaden er mindre enn 1, og det vil si at den buttsveiste forbindelsen vil holde, og ingen nærmere analyse behøves i dette tilfellet.

2.8 Kumulative blokkdiagrammer og lastspekter basert på Weibullfordelingen.

Hoveddelen av dette kapittelet er basert på *Fatigue Designe of marine structures* (Lotsberg, 2016). For utmattelsesvurdering av flytende konstruksjoner antas det ofte at den langsiktige spenningsdistribusjonsfordelingen kan representeres på en tilstrekkelig måte ved hjelp av en toparameter Weibullfordeling. Sannsynlighetstetthetsfunksjonen for toparameter Weibullfordeling er gitt ved:

$$f(\Delta\sigma) = \frac{h}{q} \left(\frac{\Delta\sigma}{q}\right)^{h-1} e^{-\left(\frac{\Delta\sigma}{q}\right)^{h}} \qquad (2.8.1)$$

hvor

h = formparameter

q = skalaparameter

Formparameteren er relatert til hvordan miljøet, som bølger, vanndybder og konstruksjonsoppbyggingen, bidrar til utmatting. For eksempel i Mexicogulfen, hvor det er roligere sjø enn i Nordsjøen, så vil det ikke være nødvendig med en like høy h-verdi (Lotsberg et al., 1999). For mer informasjon om formparameter kan man se *Fatigue assessment of offshore structures*(DNV, 2014).

Skalaparameteren q er relatert til maks spenningsvidde $\Delta \sigma$ under n_0 spenningssykler og er gitt ved:

$$q = \frac{\Delta \nabla \sigma_0}{(lnn_0)^{\frac{1}{h}}} \qquad (2.8.2)$$

Følgende kumulative fordeling for spenningsvidde er tatt ved integrasjon av funksjon (2.8.1) fra 0 til $\Delta \sigma$:

$$F(\Delta\sigma) = \int_0^{\Delta\sigma} f(\Delta\sigma) d\Delta\sigma$$

$$= \int_0^{\Delta\sigma} \frac{h}{q} \left(\frac{\Delta\sigma}{q}\right)^{h-1} e^{-\left(\frac{\Delta\sigma}{q}\right)^h} d\Delta\sigma$$
 (2.8.3)

13

$$= \left| -e^{-\left(\frac{\Delta\sigma}{q}\right)^{h}} \right|_{0}^{\Delta\sigma}$$
$$= 1 - e^{-\left(\frac{\Delta\sigma}{q}\right)^{h}}$$

For ingeniørgrunner kan skalaparameteren q elimineres ved å tilføye maks spenningsvidde, $\Delta \sigma$, under n_0 sykler. Dette kan man gjøre ved å bruke komplementærfunksjonen, Q, som uttrykker sannsynligheten for at spenningsvidden, $\Delta \sigma$, er overskredet:

$$Q(\Delta\sigma) = 1 - F(\Delta\sigma) \quad (2.8.4)$$

Den største spenningsvidden oppstår bare en gang under n_0 sykler, og sannsynligheten for at dette skjer er gitt ved:

$$Q(\Delta \sigma_0) = \frac{1}{n_0} = e^{-\left(\frac{\Delta \sigma}{q}\right)^h}$$
 (2.8.5)

Antall sykler (n) som overskrider spenningsvidden $\Delta\sigma_0$, kan uttrykkes ved:

$$Q(\Delta\sigma) = \frac{n}{n_0} = e^{-\left(\frac{\Delta\sigma}{q}\right)^h}$$
(2.8.6)

Tar man logaritmen på begge sider av ligning (2.4.6) får man:

$$ln\frac{n}{n_0} = -\left(\frac{\Delta\sigma}{q}\right)^h \quad (2.8.7)$$

Ved å innsette q fra ligning (2.4.2) får man videre:

$$\ln \frac{n}{n_0} = \ln n - \ln n_0 = -\left(\frac{\Delta \sigma}{\Delta \sigma_0}\right)^h \ln n_0$$
 (2.8.8)

14

Ved å omformulere ligning (2.4.8) får man følgende uttrykk:

$$\frac{\Delta\sigma}{\Delta\sigma_0} = \left(1 - \frac{\log n}{\log n_0}\right)^{\frac{1}{h}} = \left(1 - \frac{\ln n}{\ln n_0}\right)^{\frac{1}{h}} \quad (2.8.9)$$

Relasjonen Log n= konstant x ln n er brukt ovenfor (2.8.9)

2.8.1 Lukkede uttrykk for utmattingsskader basert på Weibullfordeling av spenningsvidden

Gammafunskjonen(Abramowitz and Stegun, 1972) er definert som:

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$
 (2.8.10)

Videre er den ufullstendige gammafunksjonen gitt ved:

$$\gamma(a, x) = \int_0^x e^{-t} t^{a-1} dt$$
 (2.8.11)

(Merk at a ikke er samme parameter som er brukt i S-N kurver)

Den komplementære ufullstendige gammafunskjonen er definert som:

$$\Gamma(a, x) = \Gamma(a) - \gamma(a, x) = \int_{x}^{\infty} e^{-t} t^{a-1} dt$$
 (2.8.12)

Toparameter Weibullfordeling er presentert i ligning (2.8.1). For S-N kurver med én helning, kan utmattingsskaden bli kalkulert basert på integrasjon av Miner-Palmgrenregelen og S-N kurve-ligningen:

$$D = \int_0^\infty \frac{dn}{N(\Delta\sigma)} d\Delta\sigma$$
$$= n_0 \int_0^\infty \frac{f(\Delta\sigma)}{N(\Delta\sigma)} d\Delta\sigma \quad (2.8.13)$$
$$= \frac{n_0}{a_d} \int_0^\infty \Delta\sigma^m \frac{h}{q} \left(\frac{\Delta\sigma}{q}\right)^{h-1} e^{-\left(\frac{\Delta\sigma}{q}\right)^h} d\Delta\sigma$$

Deretter introduserer vi følgende variabel:

$$t = \left(\frac{\Delta\sigma}{q}\right)^h \quad (2.8.14)$$

Resultatet nedenfor er utledet ved ytterligere differensiering av ligning (2.8.14):

$$\frac{dt}{d\Delta\sigma} = \frac{h}{q} \left(\frac{\Delta\sigma}{q}\right)^{h-1} \quad (2.8.15)$$

Ved å kombinere ligningene 2.8.13, 2.8.14 og 2.8.15 får vi følgende uttrykk for kalkulering av delskaden:

$$D = \frac{n_0}{a_d} q^m \int_0^\infty e^{-t \left(1 + \frac{m}{h}\right) - 1} dt \quad (2.8.16)$$

Nå er ligningen for D kompatibel med ligning 2.8.10, og ved å sammenligne ligning 2.8.16 og ligning 2.8.10 ser vi at delskaden kan kalkuleres som følger:

$$D = \frac{n_0}{a_d} q^m \Gamma \left(1 + \frac{m}{h} \right)$$
(2.8.17)

Deretter setter vi inn for q fra ligning 2.8.2:

$$D = \frac{n_0}{a_d} \frac{\Delta \sigma_0^m}{(\ln n_0)^{\frac{m}{h}}} \Gamma\left(1 + \frac{m}{h}\right) \quad (2.8.18)$$

Det er praktisk å utlede et tilsvarende konstant spenningsområde med samme beregnede delskade som fra Weibulls langsiktige spenningsdistribusjonsfordeling for det samme antall spenningssykluser. Dette gjelder for beregning av sprekkvekst ved bruddmekanikk når man ser bort fra terskelverdier. Ved å kreve at Miner-Palmgrens delskadehypotese gir samme delskade som ligning 2.8.17, når delskaden er under konstant amplitudebelastning med en blokk med n_0 sykluser, kan dette oppnås som følger:

$$D = \frac{n_0}{a_d} \Delta \sigma_{eq}^m = \frac{\Delta \sigma_0^m}{(\ln n_0)^{\frac{m}{h}}} \Gamma\left(1 + \frac{m}{h}\right) \quad (2.8.19)$$

Dersom ligningen løses med hensyn på konstant ekvivalent spenningsvidde får man følgende uttrykk:

$$\Delta \sigma_{eq} = \frac{\Delta \sigma_0}{(\ln n_0)^{\frac{1}{h}}} \sqrt[m]{\Gamma\left(1 + \frac{m}{h}\right)}$$
(2.8.20)

Med q fra ligning 2.8.2, kan ligningen over også skrives slik:

$$\Delta \sigma_{eq} = \sqrt[m]{\Gamma\left(1 + \frac{m}{h}\right)} \quad (2.8.21)$$

For S-N kurver med to helninger kan delskaden også kalkuleres ved å integrere Miner-Palmgrenregelen for hver helning (m1 og m2) presentert i ligning (2.5.1).

Antall sykluser i telleren til delskaderegelen er hentet fra uttrykket for Weibulls langsiktige spenningsdistribusjon. Dermed er delskaden beregnet som følger:

$$D = \frac{n_0}{a_{d1}} \int_{S_1}^{\infty} \Delta \sigma^{m_1} \frac{h}{q} \left(\frac{\Delta \sigma}{q}\right)^{h-1} e^{-\left(\frac{\Delta \sigma}{q}\right)^h} d\Delta \sigma + \frac{n_0}{a_{d2}} \int_0^{S_1} \Delta \sigma^{m_2} \frac{h}{q} \left(\frac{\Delta \sigma}{q}\right)^{h-1} e^{-\left(\frac{\Delta \sigma}{q}\right)^h} d\Delta \sigma \quad (2.8.22)$$

Variablene i ligning 2.4.14 og 2.4.15 tas med og delskaden blir kalkulert ved:

$$D = \frac{n_0}{a_{d1}} \int_{\left(\frac{S_1}{q}\right)^h}^{\infty} q^{m_1} t^{\frac{m_1}{h}} \frac{dt}{d\Delta\sigma} e^{-t} d\Delta\sigma + \frac{n_0}{a_{d2}} \int_0^{\left(\frac{S_1}{q}\right)^h} q^{m_2} t^{\frac{m_2}{h}} \frac{dt}{d\Delta\sigma} e^{-t} d\Delta\sigma$$

$$= \frac{n_0}{a_{d1}} q^{m_1} \int_{\left(\frac{S_1}{q}\right)^h}^{\infty} e^{-t} t^{\frac{m_1}{h}} dt + \frac{n_0}{a_{d2}} q^{m_2} \int_0^{\left(\frac{S_1}{q}\right)^h} e^{-t} t^{\frac{m_2}{h}} dt \quad (2.4.23)$$
$$= \frac{n_0}{a_{d1}} q^{m_1} \int_{\left(\frac{S_1}{q}\right)^h}^{\infty} e^{-t} t^{\left(1+\frac{m_1}{h}\right)-1} dt + \frac{n_0}{a_{d2}} q^{m_2} \int_0^{\left(\frac{S_1}{q}\right)^h} e^{-t} t^{\left(1+\frac{m_2}{h}\right)-1} dt$$

Hvor S1 er spenning ved overgangen fra venstre til høyre del av S-N kurven. Ved å sammenligne dette uttrykket for delskader med definisjonen av de ufullstendige gammafunksjonene 2.8.11 og 2.8.12, utledes følgende likning med lukket form ved bruk av en S-N-kurve med to helninger:

$$D = \frac{n_0}{a_{d1}} q^{m_1} \Gamma\left(1 + \frac{m_1}{h}; \left(\frac{s_1}{q}\right)^h\right) + \frac{n_0}{a_{d2}} q^{m_2} \gamma\left(1 + \frac{m_2}{h}; \left(\frac{s_1}{q}\right)^h\right)$$
(2.8.24)

3. Forenklet metode og Weibullfordeling etter DNVGL RP-C203

3.1 Forenklet metode

Forenklet metode blir ofte brukt i et tidlig stadium i et prosjekt som en screening, hvor man er på jakt etter en rask beregning og konservativ sjekk av de strukturelle egenskapene. Hvis designkriteriene er oppfylt trengs ingen ytterligere analyse. Å bruke forenklet metode i en screeningprosess vil også kunne være med på å identifisere utmattingssensitive områder på konstruksjonen. Forenklet metode bruker Weibullfordelingen til å modellere en langsiktig distribusjon av utmattelsespåkjenninger(ABS, 2014).

Den langsiktige spenningsrekkeviddefordelingen kan presenteres som en toparameter Weibullfordeling:

$$Q(\Delta\sigma) = exp\left[-\left(\frac{\Delta\sigma}{q}\right)\right]^{h}$$
(3.1.1) (DNV GL AS, 2016)

hvor

Q = sannsynligheten for å overgå spenningsrekkevidde $\Delta \sigma$

h = Weibull formparameter

q = Weibull skalaparameter

Videre er Weibull skalaparameter q definert fra spenningsrekkeviddenivået $\Delta \sigma$:

$$q = \frac{\Delta \sigma_0}{(\ln n_0)^{1/h}}$$
 (2.8.2)

der $\Delta \sigma$ er den største spenningsrekkevidde etter n_0 sykler

Når den langsiktige spenningsrekkeviddefordelingen er definert ved Weibull-fordelingen for forskjellige laster, og en S/N-kurve med en helning er brukt, er utmattingsskaden gitt ved:

$$D = \frac{V_o T_d}{\bar{a}} q^m \gamma \left(1 + \frac{m}{h}\right) \le \eta$$
 (3.1.2)(DNV GL AS, 2016)

hvor

 T_d = design levetid i sekunder

h= Weibull spenningsrekkevidde Shape parameter

q = Weibull spenningsrekkevidde skalaparameter

V_o = gjennomsnittlig zero-crossing frekvens

 $\gamma\left(1+\frac{m}{h}\right)$ = gammafunksjonen.

Verdier for gammafunksjonen er listet i *Tabell 3*. Bruk av S/N-kurver med én helning gir et resultat på den sikre siden av kalkulert utmattingslevetid (med en kurve hvor N< $10^6 - 10^7$ sykler).

Designdiagrammer for stålkomponenter i luft og sjøvann med katodisk beskyttelse er vist i Tabell 3 og Tabell 4. Disse diagrammene har blitt utledet basert på S/N-kurver med to helninger gitt i DNVGL-RP-C203. De tilsvarende verdiene er gitt i Tabell 4 og Tabell 5

Numeriske verdier for γ (1+ m/h)									
h	m=3.0	h	m=3.0	h	m=3.0				
0.60	120,000	0,77	20,548	0,94	7,671				
0.61	104,403	0,78	19,057	0,95	7,342				
0.62	91,350	0,79	17,772	0,96	7,035				
0,63	80,358	0,80	16,586	0,97	6,750				
0.64	71,048	0,81	15,514	0,98	6,483				
0.65	63,119	0,82	14,542	0,99	6,234				
0.66	56,331	0,83	13,658	1,00	6,000				
0.67	40,491	0,84	12,853	1,01	5,781				
0.68	45,442	0,85	12,118	1,02	5,575				
0.69	41,058	0,86	11,446	1,03	5,382				
0.70	37,234	0,87	10,829	1,04	5,200				
0.71	33 <i>,</i> 886	0,88	10,263	1,05	5,029				
0.72	30,942	0,89	8,741	1,06	4,868				
0.73	28,344	0,90	9,261	1,07	4,715				
0,74	26,044	0,91	8,816	1,08	4,571				
0.75	24,000	0,92	8,405	1,09	4,435				
0.76	22,178	0,93	8,204	1,10	4,306				

Tabell 3 Kilde: tabell 5.1(DNV GL AS, 2016)

	Tillatt maksimal spenningsvidde i MPa for 10 ⁸ sykluser for komponenter I luft										
S-N curves	curves Weibull shape parameter h										
	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20			
B1	1449.3	1092.2	861.2	704.7	594.1	512.9	451.4	403.6			
B2	1268.1	955.7	753.6	616.6	519.7	448.7	394.9	353.1			
С	1319.3	919.6	688.1	542.8	445.5	377.2	326.9	289.0			
C1	1182.0	824.0	616.5	486.2	399.2	337.8	292.9	258.9			
C2	1055.3	735.6	550.3	434.1	356.3	301.6	261.5	231.1			
D and T	949.9	662.1	495.4	390.7	320.8	271.5	235.4	208.1			
E	843.9	588.3	440.2	347.2	284.9	241.2	209.2	184.9			
F	749.2	522.3	390.8	308.2	253.0	214.1	185.6	164.1			
F1	664.8	463.4	346.7	273.5	224.5	190.0	164.7	145.6			
F3	591.1	412.0	308.3	243.2	199.6	169.0	146.5	129.4			
G	527.6	367.8	275.2	217.1	178.2	150.8	130.8	115.6			
W1	475.0	331.0	247.8	195.4	160.4	135.8	117.7	104.0			
W2	422.1	294.1	220.1	173.6	142.5	120.6	104.6	92.5			
W3	379.9	264.8	198.2	156.0	128.2	108.6	94.2	83.2			

Tabell 4: kilde: Tabell 5.2 (DNV GL AS, 2016)

Tabell 5: kilde: Tabell 5.3 (DNV GL AS, 2016)

Tillatt maksimal spenningsvidde i MPa for 10 ⁸ sykluser for komponenter I sjøvann med katodisk beskyttelse										
S-N curves	Weibull shape parameter h									
	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20		
B1	1309.8	996.0	793.0	655.2	557.4	485.3	430.5	387.6		
B2	1146.0	871.5	693.9	573.3	487.7	424.7	376.6	339.1		
С	1038.5	745.5	573.6	464.3	389.8	336.7	297.0	266.5		
C1	930.5	668.0	513.9	415.8	349.3	301.5	266.1	238.7		
C2	830.7	596.3	458.7	371.3	311.7	269.2	237.6	213.1		
D and T	747.8	536.7	413.0	334.2	280.7	242.4	213.9	191.9		
E	664.3	476.9	367.0	297.0	249.3	215.3	190.1	170.5		
F	589.8	423.4	325.8	263.6	221.4	191.1	168.6	151.3		
F1	523.3	375.7	289.0	233.9	196.4	169.6	149.6	134.3		
F3	465.3	334.0	257.0	208.0	174.6	150.9	133.1	119.3		
G	415.3	298.2	229.4	185.7	155.9	134.6	118.8	106.6		
W1	373.9	268.3	206.6	167.1	140.3	121.2	106.9	95.9		
W2	332.3	238.4	183.5	148.5	124.7	107.7	95.0	85.3		
W3	299.1	214.7	165.2	133.4	112.2	96.9	85.6	76.7		

Designdiagrammene har blitt utledet basert på en antagelse om tillatt utnyttelsesgrad $\eta =$ 1.0 under 10⁸ sykler (20 års service levetid som tilsvarer en gjennomsnittlig periode på 6,3sekunder). For design med andre tillatte utnyttelsesgrad, η , burde den tillatte spenningen

fra designdiagrammet bli redusert med en faktor utledet fra tabell 5-5(DNVGL-RP-C203) for forhold i luft, og tabell 5-6 og tabell 5-7 (DNVGL-RP-C203) for forhold i sjøvann med katodisk beskyttelse

Utnyttelsesgraden, η , for utmatting som en funksjon av designlevetiden og utmattingsfaktoren (DFF-design fatigue factor) er gitt i *tabell 5.8*.

Spenningen utledet her tilsvarer referansetykkelsen. For tykkelse større en referansetykkelse vil en tillatt ekstrem spenningsrekkevidde under 10^8 sykler være gitt ved:

$$\sigma_{0,t} = \sigma_{0,tref} \left(\frac{t_{ref}}{t}\right)^k$$

hvor

k = tykkelseskomponent

 $\sigma_{0,tref}$ = tillatt spenning utledet fra tabell 4 og tabell 5

Tabell 6: kilde: Tabell 5.8 (DNV GL AS, 2016)

iyttelsesfaktoren som en funksjons av designlevetiden og utmattingsfaktoren DFF											
DFF		Designlevetid I år									
	5	10	15	20	25	30	50				
1	4.0	2.0	1.33	1.00	0.80	0.67	0.40				
2	2.0	1.0	0.67	0.50	0.40	0.33	0.20				
3	1.33	0.67	0.44	0.33	0.27	0.22	0.13				
5	0.80	0.40	0.27	0.20	0.16	0.13	0.08				
10	0.40	0.20	0.13	0.10	0.08	0.07	0.04				

3.1.1 Prosedyre ved bruk av designdiagrammer

For lettere å finne ut hvordan man skal gå fram for å finne største tillatte spenning til en forbindelse er det utarbeidet en prosedyre under for hvert steg i analysen. Tabellene i DNVGL-RP-C203 må benyttes(DNV GL AS, 2016)

- 1. Bestem S-N kurve, Weibullparameter (h), tykkelse (t), levetid og DFF
- Bruk tabell 5-2 for komponenter i luft eller tabell 5-3 for komponenter i sjøvann med katodisk beskyttelse iog finn tillatt spenning for 20års levetid, interpoler om nødvendig
- 3. Bruk tabell 5-8 og finn η -faktoren for den gitte levetiden med den gitte DFF.
- 4. Bruk tabell 5-4 eller 5-5 for komponenter i luft, og tabell 5-6 og 5-7 for komponenter i sjøvann for å finne reduksjonsfaktoren ved hjelp av η -faktoren. Interpoler om nødvendig.
- 5. Multipliser sammen verdiene med eventuelle tykkelseskorrigeringer for å finne største tillatte spenning.

3.2 Eksempler på bruk av forenklet metode med DNV-GL-RP-C203

3.2.1 Eksempel 1

Det tillatte spenningsområde i en dekkstruktur av en FPSO (*Floating Production Storage and Offloading*) skal bestemmes. Maksimal tykkelse på stålplatene er 30,0 mm.

Sveiseforbindelsen vi skal se på er en langsgående plate (se detalj 1 i A.7 (DNV GL AS, 2016))

på 200mm og er sveiset 20cm fra kanten til platen den er sveiset på. Utmattingsfaktoren (DFF) er satt til 2 og designlevetiden skal være 25 år.

Ved å se på detalj 1 i vedlegg A i DNVGL-RP-C203 (DNV GL AS, 2016) finner vi at kurve F1 bør brukes fordi l=200 og avstanden til kanten til platen den er sveiset på er 20 mm.

+									
Table A-	7 Welded attachments on the surface or the edg	ge of a stressed member							
Detail	Constructional details	Description	Requirement						
category									
Notes on	potential modes of failure								
When the	weld is parallel to the direction of the applied stre	ess, fatigue cracks normally ini	itiate at the weld ends. When						
the weld i	s transverse to direction of stressing, cracks usually	initiate at the weld toe; for att	achments involving a single,						
member.	When the welds are on or adjacent to the edge of the	ie stressed member the stress c	oncentration is increased and						
the fatigu	e strength is reduced; this is the reason for specify	ing an "edge distance" in som	e of this joints (see also note						
on edge d	istance in Table A-3).	1							
	1.	1. Waldad longitudinal	1. and 2. The detail category						
		attachment	is given for:						
			— Edge distance ≥ 10mm						
			 For edge distance < 10 						
			mm the detail category						
			with one S-N-curve						
		2.							
		Doubling plate welded to a							
		plate.							
	2.								
	~ ~								
	\sim								
Е	<i>l</i> ≤ 50 mm	1							
F	$50 < l \le 120 \text{ mm}$]							
F1	120 < <i>l</i> ≤ 300 mm]							
F3	l > 300 mm]							

A.7 Welded attachments on the surface or the edge of a stressed member $\frac{1}{1+1}$

Figur 7 kilde: Appendix A.7(DNV GL AS, 2016)

Weibulls formparameter (h) er satt til å være 1,0. Utnyttelsesfaktoren *n* når DFF=2 og designlevetiden skal være 25 år er på 0,4, se uthevet celle i tabell 7 under.

Fa tabell 8 finner vi videre tillatt spenning ved 20 års levetid med DFF lik 1 til å være 190Mpa (se uthevet celle i tabell 8).

nyttelsesfaktoren som en funksjons av designlevetiden og utmattingsfaktoren DFF										
DFF	Designlevetid I år									
	5	10	15	20	25	30	50			
1	4.0	2.0	1.33	1.00	0.80	0.67	0.40			
2	2.0	1.0	0.67	0.50	<mark>0.40</mark>	0.33	0.20			
3	1.33	0.67	0.44	0.33	0.27	0.22	0.13			
5	0.80	0.40	0.27	0.20	0.16	0.13	0.08			
10	0.40	0.20	0.13	0.10	0.08	0.07	0.04			

Tabell 7 kilde: tabell 5.8(DNV GL AS, 2016)

Tabell 8 kilde: tabell 5.2(DNV GL AS, 2016)

Tillatt maksimal spenningsvidde i MPa for 10 ⁸ sykluser for komponenter I luft										
S-N curves			W	eibull shape	parameter h					
	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20		
B1	1449.3	1092.2	861.2	704.7	594.1	512.9	451.4	403.6		
B2	1268.1	955.7	753.6	616.6	519.7	448.7	394.9	353.1		
С	1319.3	919.6	688.1	542.8	445.5	377.2	326.9	289.0		
C1	1182.0	824.0	616.5	486.2	399.2	337.8	292.9	258.9		
C2	1055.3	735.6	550.3	434.1	356.3	301.6	261.5	231.1		
D and T	949.9	662.1	495.4	390.7	320.8	271.5	235.4	208.1		
E	843.9	588.3	440.2	347.2	284.9	241.2	209.2	184.9		
F	749.2	522.3	390.8	308.2	253.0	214.1	185.6	164.1		
F1	664.8	463.4	346.7	273.5	224.5	<mark>190.0</mark>	164.7	145.6		
F3	591.1	412.0	308.3	243.2	199.6	169.0	146.5	129.4		
G	527.6	367.8	275.2	217.1	178.2	150.8	130.8	115.6		
W1	475.0	331.0	247.8	195.4	160.4	135.8	117.7	104.0		
W2	422.1	294.1	220.1	173.6	142.5	120.6	104.6	92.5		
W3	379.9	264.8	198.2	156.0	128.2	108.6	94.2	83.2		

Reduksjonsfaktor på spenningen som korresponderer med utnyttelsesfaktoren for C - W3 kurver I luft												
Fatigue	Weibull shape parameter h											
damage	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20				
utilisation 🛛												
0.10	0.497	0.511	0.526	0.540	0.552	0.563	0.573	0.582				
0.20	0.609	0.620	0.632	0.642	0.652	0.661	0.670	0.677				
0.22	0.627	0.638	0.648	0.659	0.668	0.677	0.685	0.692				
0.27	0.661	0.676	0.686	0.695	0.703	0.711	0.719	0.725				
0.30	0.688	0.697	0.706	0.715	0.723	0.730	0.737	0.743				
0.33	0.708	0.717	0.725	0.733	0.741	0.748	0.754	0.760				
0.40	0.751	0.758	0.765	0.772	0.779	<mark>0.785</mark>	0.790	0.795				
0.50	0.805	0.810	0.816	0.821	0.826	0.831	0.835	0.839				
0.60	0.852	0.856	0.860	0.864	0.868	0.871	0.875	0.878				
0.67	0.882	0.885	0.888	0.891	0.894	0.897	0.900	0.902				
0.70	0.894	0.897	0.900	0.902	0.905	0.908	0.910	0.912				
0.80	0.932	0.934	0.936	0.938	0.939	0.941	0.942	0.944				
1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000				

Tabell 9 kilde: tabell 5.5(DNV GL AS, 2016)

Ettersom S-N kurven er basert på 20års levetid må en reduksjonsfaktor benyttes. Denne finnes i tabellen ovenfor ved å se på h-verdien og utnyttelsesfaktoren vi fikk høyere opp.

190*0,785=155,43Mpa, som er foreløpig tillatt spenning når reduksjonsfaktor er tatt med i beregningen.

S-N kurver I luft									
S-N curve	S-N curve N 2 10 ⁷ cycles		N > 10 ⁷ cycles	Fatigue limit at	Thickness exponent k	Structural stress			
m	m₁	1	$\log a_2$	10 ⁷ cycles *)		concentration			
1		$\log a_1$	$m_{2} = 5.0$			embedded in the detail			
			1112 - 310			(S-N class),			
						ref. also equation (2.3.2)			
B1	4.0	15.117	17.146	106.97	0				
B2	4.0	14.885	16.856	93.59	0				
С	3.0	12.592	16.320	73.10	0.15				
C1	3.0	12.449	16.081	65.50	0.15				
C2	3.0	12.301	15.835	58.48	0.15				
D	3.0	12.164	15.606	52.63	0.20	1.00			
E	3.0	12.010	15.350	46.78	0.20	1.13			
F	3.0	11.855	15.091	41.52	0.25	1.27			
F1	3.0	11.699	14.832	36.84	<mark>0.25</mark>	1.43			
F3	3.0	11.546	14.576	32.75	0.25	1.61			
G	3.0	11.398	14.330	29.24	0.25	1.80			
W1	3.0	11.261	14.101	26.32	0.25	2.00			
W2	3.0	11.107	13.845	23.39	0.25	2.25			
W3	3.0	10.970	13.617	21.05	0.25	2.50			
Т	3.0	12.164	15.606	52.63	0.25 for SCF 🛛 10.0	1.00			
					0.30 for SCF >10.0				
*) see also section 2.11									

Tabell 10 kilde tabell 2.1(DNV GL AS, 2016)

Siden tykkelsen er større enn referansetykkelsen må dette tas med i beregning for endelig tillatt spenningsvidde.vi finner tykkelseskoeffisienten til Kurve F1 uthevet i tabell 10.

$$\sigma_{tillatt} = 155,43 \times (\frac{t_{ref}}{t})^k = 155,43 \times (\frac{25}{35})^{0.25} = 142,9$$
Mpa

For en FPSO med 25 års levetid vil den sveisede detaljen ha en maksimal tillatt spenning på 142,9Mpa.

3.2.2 Eksempel 2

Dette eksempelet er hentet fra DNVGL-RP-C203 (DNV GL AS, 2016). Den tillatte spenningsrekkevidde i dekkstrukturen til en FPSO skal fastslås. Maksimum ståltykkelse er 35,0mm.

Fra *DNVGL classification Note No.30.7* (DNV, 2014)er en Weibull-parameter lik 0,97 bestemt. Det er antatt at detaljer med en klassifisering F3 vil bli sveiset på dekkstrukturen. Designlevetiden til FPSO er 25 år og operatørene ønsker å bruke en design utmattingsfaktor på 2. Detaljene er i et luftmiljø.

Deretter med en lineær interpolering av spenningen i området for h-verdiene 0,90 og 1,0, er S-N kurve F3 i tabell 5-2(DNVGL-RP-C203) innhentet.

199,6-(199,6-169,0) ((0,97-0,90)/(1,0-0,90)) = 178,18 MPa

Dette tilsvarer en tillatt spenning for 20 års designlevetid og DFF =1. Fra tabell 5-8 (DNVGL-RP-C203) er en utnyttelsesfaktor η =0,40 innhentet for 25 år servicelevetid og DFF=2,0

Deretter er en reduksjonsfaktor innhentet fra tabell 5-5(DNVGL-RP-C203) med lineær interpolasjon mellom faktoren for h-verdier 0,90 og 1,0 med η =0,40. Følgende reduskjonsfaktor er beregnet:

0,779+(0,785-0,779) ((0,97-0,90)) =0,783

Tillatt spenningsvidde for en 25mm tykk plate: $178,18 \cdot 0,783 = 139,55$. Tykkelseskomponenten for en F3 detalj er gikk ved k=0,25 fra tabell 2.1 i DNVGL-RP-C203 Da blir tillatt spenningsvidde for en 35mm tykk plate: 139,55-(25/35)0,25=128,29 MPa.

3.3 Weibullfordeling når S-N kurven har to helninger

Om designkriteriene ikke oppfylles ved bruk av forenklet metode må ytterligere undersøkelser gjøres for å estimere utmattingslevetiden. En screeningprosess ved forenklet metode kan ha avslørt hvilke områder som er mest sensitive for utmattingsskader og man kan da ta i bruk Weibullfordelingen når S-N kurven har to helninger. Denne metoden er en
litt mer omfattende utmattingsanalyse som utnytter utmattingskurvene bedre enn forenklet metode og kan da estimere en mer nøyaktig utmattingslevetid (Lotsberg, 2016).

Når en bi-lineær eller to-helninger S-N-kurve brukes, er Utmattings-delskadefunksjonen gitt ved:

$$D = V_0 T_d \left[\frac{q^{m_1}}{\overline{a_1}} \Gamma\left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q}\right)^h\right) + \frac{q^2}{\overline{a_2}} \gamma\left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q}\right)^h\right) \right] \le \eta$$
(4.2.1)
$$S_1 = \frac{\overline{a_1}}{N}$$

der

 S_1 = Spenningsvidden hvor endringen av helling på S-N kurven forekommer

 m_1 = S-N Utmattingsparameter for N < 10^7 sykler (luft),

 m_2 = S-N Utmattingsparameter for N > 10^7 sykler (luft)

γ() = ufullstendig Gamma-funksjon, som finnes i standardtabeller, Excel og på internettadressen <http://keisan.casio.com/exec/system/1180573447>

Γ(;) = Komplementær Ufullstendig Gamma-funksjon, som finnes i standardtabeller, Excel og internettadressen http://keisan.casio.com/exec/system/1180573447
 Se figur 8.

Figur 8 S-N kurve med to helninger

4. Forenklet metode versus blokkdiagrammer i Miner-Palmgren og formelverket basert på Weibullfordelingen

4.1 Eksempel 1

-

En utmattingspåkjent stålforbindelse i luft blir utsatt for et Weibullfordelt lastspekter. Vi kan sette: h = 1,1, n₀=10⁸ og største spenningsvidde $\Delta\sigma$ =185,6 MPa. Anta at kurve F i DNVGL-RP C203 gjelder for forbindelsen og at delskaden, D ≤ 1.

4.1.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven Fra kurve F(DNV GL AS, 2016) finner vi at m=3 , C=10^{11,855} og fra tabell 12 $\Gamma\left(1+\frac{3}{1}\right) = 4.306$

$$D = \frac{n_0}{C} \cdot \frac{\Delta \sigma_0^m}{\left(\ln n_0\right)^{m/h}} \cdot \Gamma\left(1 + \frac{m}{h}\right) = \frac{10^8}{10^{11,855}} \cdot \frac{185,6^3}{\left(\ln 10^8\right)^{3/1,1}} \cdot \Gamma\left(1 + \frac{3}{1,1}\right) \approx 1,36$$

Delskaden er større enn 1 så ved bruk av Forenklet metode så vil ikke stålforbindelsen holde, nærmere analyser må gjennomføres.

4.1.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret

ς Π

$$D = v_0 T_d \left[\frac{q^{m_1}}{\overline{a}_1} \Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) + \frac{q^{m_2}}{\overline{a}_2} \gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) \right] \le \eta$$

$$D = 10^8 \left[\frac{13,131^3}{10^{11,855}} \Gamma \left(1 + \frac{3}{1,1}; \left(\frac{41,52}{13,131} \right)^{1,1} \right) + \frac{13,131^5}{10^{15,091}} \gamma \left(1 + \frac{5}{1,1}; \left(\frac{41,52}{13,131} \right)^{1,1} \right) \right]$$

$$\Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) = \Gamma \left(3,727; 3,548 \right) = 2,02$$

$$\gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) = \gamma \left(5,545; 3,548 \right) = 11,42$$

$$D = 10^8 \left[\frac{13,131^3}{10^{11,855}} \cdot 2,02 + \frac{13,131^5}{10^{15,091}} \cdot 11,42 \right] = 1,0$$

For å finne verdiene til Gamma- og kappafuksjonene har jeg brukt Keisan online kalkulator: http://keisan.casio.com/exec/system/1180573447

Med forenklet metode 2 ble delskaden akkurat 1 så da holder stålforbindelsen likevel akkurat og nærmere analyser er derfor ikke nødvendig

4.1.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgrens delskadehypotese i regneark.

Fra Vedlegg 1 ser vi at Miner-Palmgrens delskadehypotese ved en og to helninger på S-N kurver får samme resultat som forenklet metode og Weibullfordeling med S-N kurver med to helninger og det bekrefter at stålforbindelsen vil tåle utmattingspåkjennelsen den er utsatt for.

4.2 Eksempel 2

To utmattingspåkjent H-bjelker i luft, som er boltefestet på alle sider blir utsatt for et Weibullfordelt lastspekter. Ettersom bjelkene er i en kontruksjon på sjøen kan vi sette: h = 1,1 og $n_0=10^7$. Største spenningsvidde $\Delta \sigma = 175$ MPa og $D \le 1$.

Fra figur 8 ser vi at vi skal bruke SN-kurve C1.

A.2 Bolted connections

Table A-2 Bolted connections

Detail category	Constructional details	Description	Requirement
C1		 Unsupported one-sided connections shall be <u>avoided</u> or else effects of eccentricities shall be taken into account when calculating stresses. Beam splices or bolted cover plates. 	 and 2. Stresses to be calculated in the gross section. Bolts subjected to reversal forces in shear shall be designed as a slip resistant connection and only the members need to be checked for fatigue.

Figur 9 kilde: Apåendix A.2(DNV GL AS, 2016)

Fra tabell 11 finner vi verdiene til C1 uthevet, hvor m=3 C= $10^{12,449}$

Tabell 11 kilde: fra tabell 2.1 (DNV GL AS, 2016)

S-N	N 2 10 ⁷ cycles		N > 10 ⁷	Fatigue limit at 10 ⁷ cycles (MPa) *)	Thickness	Structural stress concentration embedded in the detail (S-N class),
curve	<i>m</i> 1	$\log \overline{a}_1$	$\log a_2$ $m_2 =$ 5.0		exponent k	see also equation (2.3.2)
B1	4.0	15.117	17.146	106.97	0	
B2	4.0	14.885	16.856	93.59	0	
С	3.0	12.592	16.320	73.10	0.05	
C1	<mark>3.0</mark>	<mark>12.449</mark>	<mark>16.081</mark>	<mark>65.50</mark>	<mark>0.10</mark>	
C2	3.0	12.301	15.835	58.48	0.15	
D	3.0	12.164	15.606	52.63	0.20	1.00
E	3.0	12.010	15.350	46.78	0.20	1.13
F	3.0	11.855	15.091	41.52	0.25	1.27
F1	3.0	11.699	14.832	36.84	0.25	1.43
F3	3.0	11.546	14.576	32.75	0.25	1.61
G	3.0	11.398	14.330	29.24	0.25	1.80
W1	3.0	11.261	14.101	26.32	0.25	2.00
W2	3.0	11.107	13.845	23.39	0.25	2.25
W3	3.0	10.970	13.617	21.05	0.25	2.50
*) see also [2.11]					

h	m = 3.0	h	m = 3.0	h	m = 3.0
0.60	120.000	0.77	20.548	0.94	7.671
0.61	104.403	0.78	19.087	0.95	7.342
0.62	91.350	0.79	17.772	0.96	7.035
0,63	80.358	0.80	16.586	0.97	6.750
0.64	71.048	0.81	15.514	0.98	6.483
0.65	63.119	0.82	14.542	0.99	6.234
0.66	56.331	0.83	13.658	1.00	6.000
0.67	50.491	0.84	12.853	1.01	5.781
0.68	45.442	0.85	12.118	1.02	5.575
0.69	41.058	0.86	11.446	1.03	5.382
0.70	37.234	0.87	10.829	1.04	5.200
0.71	33.886	0.88	10.263	1.05	5.029
0.72	30.942	0.89	9.741	1.06	4.868
0.73	28.344	0.90	9.261	1.07	4.715
0,74	26.044	0.91	8.816	1.08	4.571
0.75	24.000	0.92	8.405	1.09	4.435
0.76	22.178	0.93	8.024	<mark>1.10</mark>	<mark>4.306</mark>

Tabell 12 Verdier for $\Gamma\left(1+\frac{m}{h}\right)$ kilde: tabell 5.1(DNV GL AS, 2016)

Vi finner $\Gamma\left(1+\frac{m}{h}\right)$ i tabell 12 uthevet, $\Gamma\left(1+\frac{m}{h}\right) = 4.306$.

4.2.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven.

$$D = \frac{n_0}{C} \times \frac{\Delta \sigma_0^m}{\left(\ln n_0\right)^{m/h}} \times \Gamma\left(1 + \frac{m}{h}\right) = \frac{10^7}{10^{12,449}} \times \frac{175^3}{\left(\ln 10^7\right)^{3/1,1}} \times 4,306 \approx 0,042$$

Delskaden er mindre enn 1 så ved bruk av Forenklet metode 1 finner vi at stålforbindelsen vil holde og da trengs det ikke nærmere analyser.

4.2.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret.

Verdiene til variablene er tatt fra tabell 11 uthevet og tabell 12 uthevet

$$D = V_0 T_0 \left[\frac{q^{m_1}}{\bar{a}_1} \Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) + \frac{q^{m_2}}{\bar{a}_2} \gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) \right]$$

$$q = \frac{\Delta \nabla \sigma_0}{(lnn_0)^{\frac{1}{h}}} = \frac{175}{(\ln 10^7)^{1/1,1}} = 13,979$$

$$D = 10^7 \left[\frac{13,979^3}{10^{12,449}} \Gamma \left(1 + \frac{3}{1,1}; \left(\frac{65,5}{13,979} \right)^{1,1} \right) + \frac{13,979^5}{10^{16,081}} \gamma \left(1 + \frac{5}{1.1}; \left(\frac{65,5}{13,979} \right)^{1,1} \right) \right]$$

$$\Gamma \left(1 + \frac{3}{1,1}; \left(\frac{65,5}{13,979} \right)^{1,1} \right) = \Gamma(3,727; 5,468) = 0,73$$

$$\gamma \left(1 + \frac{5}{1.1}; \left(\frac{65,5}{13,979} \right)^{1,1} \right) = \gamma(5,545; 5,468) = 30,60$$

$$D = 10^7 \left[\frac{13,979^3}{10^{12,449}} \times 0,73 + \frac{13,979^5}{10^{16,081}} \times 30,60 \right] = 0,02$$

Med Weibullfordeling for S-N kurven med to helninger ble delskaden mindre enn 1 og også mindre enn ved forenklet metode, så det bekrefter at stålforbindelsen holder og nærmere analyser er ikke nødvendig.

4.2.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgrens delskadehypotese i regneark.

Fra Vedlegg 2 ser vi at Miner-Palmgrens delskadehypotese ved en og to helninger på S-N kurver gir samme resultat som forenklet metode og Weibullfordeling med S-N kurver med to helninger og det bekrefter at stålforbindelsen vil tåle utmattingspåkjennelsen.

4.3 Eksempel 3

En korsformet stålforbindelse med full gjennomtrengings buttsveis er utmattingspåkjent med et Weibullfordelt lastspekter, der maks spenningsvidde er på 220MPa. Avstanden fra sveisen til enden av stålforbindelsen er 50mm og stålplatene er 25mm tykke. Stålforbindelsen er i sjøvann med katodisk beskyttelse og $n_0 = 10^8$ samt h=0,9.

Vi ser fra figur 9 at Kurve E skal benyttes. Videre finner vi at knekkpunktet til kurven er ved 10^6 sykler uthevet i gult, øverste rad.

A.8 Welded joints with load carrying welds

Table A-8 Welded joints with load carrying welds

Figur 10, kilde: Appendix A.9(DNV GL AS, 2016)

S-N	N 2 10 ⁶ cycles		N > 10 ⁶ cycles	Fatigue limit at 10 ⁷ cycles (MPa) *)	Thickness	Structural stress concentration embedded in the detail (S-N class), see also equation (2,3,2)
curve	<i>m</i> 1	log <i>a</i> 1	m ₂ = 5.0		exponent k	
B1	4.0	14.917	17.146	106.97	0	
B2	4.0	14.685	16.856	93.59	0	
С	3.0	12.192	16.320	73.10	0.05	
C1	3.0	12.049	16.081	65.50	0.10	
C2	3.0	11.901	15.835	58.48	0.15	
D	3.0	11.764	15.606	52.63	0.20	1.00
E	<mark>3.0</mark>	<mark>11.610</mark>	<mark>15.350</mark>	<mark>46.78</mark>	<mark>0.20</mark>	<mark>1.13</mark>
F	3.0	11.455	15.091	41.52	0.25	1.27
F1	3.0	11.299	14.832	36.84	0.25	1.43
F3	3.0	11.146	14.576	32.75	0.25	1.61
G	3.0	10.998	14.330	29.24	0.25	1.80
W1	3.0	10.861	14.101	26.32	0.25	2.00
W2	3.0	10.707	13.845	23.39	0.25	2.25
W3	3.0	10.570	13.617	21.05	0.25	2.50
*) see also [2.11]					

Tabell 13 S-N kurve for sjøvann med katodisk beskyttelse, Kilde: tabell 2.2(DNV GL AS, 2016)

Tabell 14, kilde: Tabell 5.1(DNV GL AS, 2016)

h	m = 3.0	h	m = 3.0	h	m = 3.0
0.60	120.000	0.77	20.548	0.94	7.671
0.61	104.403	0.78	19.087	0.95	7.342
0.62	91.350	0.79	17.772	0.96	7.035
0,63	80.358	0.80	16.586	0.97	6.750
0.64	71.048	0.81	15.514	0.98	6.483
0.65	63.119	0.82	14.542	0.99	6.234
0.66	56.331	0.83	13.658	1.00	6.000
0.67	50.491	0.84	12.853	1.01	5.781
0.68	45.442	0.85	12.118	1.02	5.575
0.69	41.058	0.86	11.446	1.03	5.382
0.70	37.234	0.87	10.829	1.04	5.200
0.71	33.886	0.88	10.263	1.05	5.029
0.72	30.942	0.89	9.741	1.06	4.868
0.73	28.344	<mark>0.90</mark>	<mark>9.261</mark>	1.07	4.715
0,74	26.044	0.91	8.816	1.08	4.571
0.75	24.000	0.92	8.405	1.09	4.435
0.76	22.178	0.93	8.024	1.10	4.306

Vi finner $\Gamma\left(1+\frac{m}{h}\right)$ i tabell 12 uthevet, $\Gamma\left(1+\frac{m}{h}\right) = 9.261$.

4.3.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven.

$$D = \frac{n_0}{c} \times \frac{\Delta \sigma_0^m}{(\ln n_0)^m / h} \times \Gamma\left(1 + \frac{m}{h}\right) = \frac{10^8}{10^{11,610}} \times \frac{220^3}{(\ln 10^8)^3 / 0.9} \times 9,261 \approx 1,47$$

Delskaden er større enn 1 så ved bruk av Forenklet metode så ser det ikke ut til at stålforbindelsen vil holde, det er derfor nødvendig med videre analyser.

4.3.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret.Verdiene til variablene hentes fra tabell 13

$$D = V_0 T_0 \left[\frac{q^{m_1}}{\bar{a}_1} \Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) + \frac{q^{m_2}}{\bar{a}_2} \gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) \right]$$
$$q = \frac{\Delta \nabla \sigma_0}{(lnn_0)^{\frac{1}{h}}} = \frac{220}{(ln \ 10^8)^{1/0.9}} = 8,64$$
$$S_1 = \left(\frac{\bar{a}_1}{N} \right)^{\frac{1}{3}} = \left(\frac{10^{11,61}}{10^6} \right)^{\frac{1}{3}} = 74,13$$

$$D = 10^{8} \left[\frac{8,64^{3}}{10^{11,610}} \Gamma \left(1 + \frac{3}{0,9}; \left(\frac{74,13}{8,64} \right)^{0,9} \right) + \frac{8,64^{5}}{10^{15,350}} \gamma \left(1 + \frac{5}{0,9}; \left(\frac{74,13}{8,64} \right)^{0,9} \right) \right]$$
$$\Gamma \left(1 + \frac{3}{0,9}; \left(\frac{74,13}{8,64} \right)^{0,9} \right) = \Gamma(4,333;6,920) = 1,05$$
$$\gamma \left(1 + \frac{5}{0,9}; \left(\frac{74,13}{8,64} \right)^{0,9} \right) = \gamma(6,556;6,920) = 193,03$$
$$D = 10^{8} \left[\frac{8,64^{3}}{10^{11,610}} \times 1,05 + \frac{8,64^{5}}{10^{15,350}} \times 193,03 \right] = 0,58$$

Med Weibullfordeling for S-N kurver med to helninger ble delskaden 0,58 så da viser den at stålforbindelsen holdt likevel.

4.3.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgrens delskadehypotese i regneark.

Fra Vedlegg 3 ser vi at Miner-Palmgrens delskadehypotese ved en og to helninger på S-N kurver får samme resultat som Forenklet metode og Weibullfordeling med S-N kurver med to helninger og det bekrefter at stålforbindelsen holder.

4.4 Eksempel 4

En utmattingspåkjent stålforbindelse hvor en flens sveiset til en annen flens ved kryssende ledd, er utsatt for et Weibullfordelt lastspekter på 10^8 sykler. I= 300mm, maks spenningsvidde er 350 Mpa og stålforbindelsen er på en FPSO i Mexicogulfen.

Table A-7 Welded attachments on the surface or the edge of a stressed member (Continued)

Fra figur 11 ser vi at kurve W1 skal benyttes ettersom I=300mm

S-N	N 2 1 S-N		N > 10 ⁷	Fatigue limit at 10 ⁷ cycles (MPa)	Thickness	Structural stress concentration embeddedin the detail (S-N
curve	<i>m</i> 1	$\log \overline{a}_1$	log	*)	ехропент к	see also equation (2.3.2)
			<i>a</i> ₂			
			m ₂ =			
			5.0			
B1	4.0	15.117	17.146	106.97	0	
B2	4.0	14.885	16.856	93.59	0	
С	3.0	12.592	16.320	73.10	0.05	
C1	3.0	12.449	16.081	65.50	0.10	
C2	3.0	12.301	15.835	58.48	0.15	
D	3.0	12.164	15.606	52.63	0.20	1.00
E	3.0	12.010	15.350	46.78	0.20	1.13
F	3.0	11.855	15.091	41.52	0.25	1.27
F1	3.0	11.699	14.832	36.84	0.25	1.43
F3	3.0	11.546	14.576	32.75	0.25	1.61
G	3.0	11.398	14.330	29.24	0.25	1.80
<mark>W1</mark>	<mark>3.0</mark>	<mark>11.261</mark>	<mark>14.101</mark>	<mark>26.32</mark>	<mark>0.25</mark>	<mark>2.00</mark>
W2	3.0	11.107	13.845	23.39	0.25	2.25
W3	3.0	10.970	13.617	21.05	0.25	2.50
*) see also	2.11]					

Tabell 15 S-N kurver i luft, kilde: tabell 2.1(DNV GL AS, 2016)

Tabell 16, Verdier for gamma, kilde: tabell 5.1(DNV GL AS, 2016)

h	m = 3.0	h	m = 3.0	h	m = 3.0
0.60	120.000	0.77	20.548	0.94	7.671
0.61	104.403	0.78	19.087	0.95	7.342
0.62	91.350	0.79	17.772	0.96	7.035
0,63	80.358	0.80	16.586	0.97	6.750
0.64	71.048	0.81	15.514	0.98	6.483
0.65	63.119	0.82	14.542	0.99	6.234
0.66	56.331	0.83	13.658	1.00	6.000
0.67	50.491	0.84	12.853	1.01	5.781
0.68	45.442	0.85	12.118	1.02	5.575
0.69	41.058	0.86	11.446	1.03	5.382
<mark>0.70</mark>	<mark>37.234</mark>	0.87	10.829	1.04	5.200
0.71	33.886	0.88	10.263	1.05	5.029
0.72	30.942	0.89	9.741	1.06	4.868
0.73	28.344	0.90	9.261	1.07	4.715
0,74	26.044	0.91	8.816	1.08	4.571
0.75	24.000	0.92	8.405	1.09	4.435
0.76	22.178	0.93	8.024	1.10	4.306

Vi finner $\Gamma\left(1+\frac{m}{h}\right)$ i tabell 16 uthevet, $\Gamma\left(1+\frac{m}{h}\right)=37,234$

4.4.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven.

Verdiene for variablene i formelen er hentet fra tabell 15 og tabell 16

$$D = \frac{n_0}{C} \times \frac{\Delta \sigma_0^m}{\left(\ln n_0\right)^m / h} \times \Gamma\left(1 + \frac{m}{h}\right) = \frac{10^7}{10^{11,261}} \times \frac{350^3}{\left(\ln 10^7\right)^3 / 0.7} \times 37,234 \approx 0,58$$

Delskaden er mindre enn 1 så forenklet metode viser at stålforbindelsen holder og det trengs ingen nærmere analyse.

4.4.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret.

$$D = V_0 T_0 \left[\frac{q^{m_1}}{\bar{a}_1} \Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) + \frac{q^{m_2}}{\bar{a}_2} \gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) \right]$$

$$q = \frac{\Delta \nabla \sigma_0}{(lnn_0)^{\frac{1}{h}}} = \frac{350}{(\ln 10^7)^{\frac{1}{0.7}}} = 6,59$$

$$D = 10^7 \left[\frac{6,59^3}{10^{\frac{11}{261}}} \Gamma \left(1 + \frac{3}{0,7}; \left(\frac{26,32}{6,59} \right)^{0,7} \right) + \frac{8,25^5}{10^{\frac{14}{101}}} \gamma \left(1 + \frac{5}{0,7}; \left(\frac{26,32}{6,59} \right)^{0,7} \right) \right]$$

$$\Gamma \left(1 + \frac{3}{0,7}; \left(\frac{26,32}{6,59} \right)^{0,7} \right) = \Gamma(5,286;2,63) = 33,55$$

$$\gamma \left(1 + \frac{5}{0,7}; \left(\frac{26,32}{6,59} \right)^{0,7} \right) = \gamma(8,143;2,63) = 32,214$$

$$D = 10^7 \left[\frac{6,59^3}{10^{\frac{11}{261}}} \times 33,55 + \frac{6,59^5}{10^{\frac{14}{101}}} \times 32.217 \right] = 0,55$$

Weibullfordelingen for S-N kurver med to helninger bekrefter at stålforbindelsen holder da delskaden også er er mindre enn 1. 4.4.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgrens delskadehypotese i regneark.

Fra Vedlegg 4 så ser vi at Miner-Palmgrens delskadehypotese ved en og to helninger på S-N kurven får samme resultat som Forenklet metode og Weibullfordeling med S-N kurver med to helninger og det bekrefter at stålforbindelsen er ok.

4.5 Eksempel 5

En rørformet stålforbindelse er utmattingspåkjent med et Weibullfordelt lastspekter på 10^8 sykler. Stålforbindelsen er i sjøvann og vi antar katodisk beskyttelse. Maks spenningsvidde er 295 Mpa og h-verdien er satt til 1,1 og $D \le 1$. Knekkpunktet på kurven er ved 1.8x10⁶ sykluser, uthevet i grønt i tabell 17.

Environment	<i>m</i> ₁	log a ₁	<i>m</i> ₂	log a ₂	Fatigue limit at 10 ⁷ cycles (MPa)*)	Thickness exponent k
Δir	N 🛛 10	⁷ cycles	N > 10 ⁷	cycles		
	3.0	12.48	5.0	16.13	67.09	0.25
Seawater with cathodic	N 🛛 1.8 [.] 10 ⁶ cycles		N > 1.8 [.] 10	⁶ cycles		
protection	<mark>3.0</mark>	<mark>12.18</mark>	<mark>5.0</mark>	<mark>16.13</mark>	<mark>67.09</mark>	<mark>0.25</mark>
Seawater free corrosion	3.0	12.03	3.0	12.03	0	0.25
*) see also [2.11]			•	•		

Tabell 17, S-N kurve for rørformede forbindelser, kilde: tabell 2.3(DNV GL AS, 2016)

Tabell 18 Verdier for gammafunkjsonen,kilde: Tabell 5.1(DNV GL AS, 2016)

h	m = 3.0	h	m = 3.0	h	m = 3.0
0.60	120.000	0.77	20.548	0.94	7.671
0.61	104.403	0.78	19.087	0.95	7.342
0.62	91.350	0.79	17.772	0.96	7.035
0,63	80.358	0.80	16.586	0.97	6.750
0.64	71.048	0.81	15.514	0.98	6.483
0.65	63.119	0.82	14.542	0.99	6.234
0.66	56.331	0.83	13.658	1.00	6.000
0.67	50.491	0.84	12.853	1.01	5.781
0.68	45.442	0.85	12.118	1.02	5.575
0.69	41.058	0.86	11.446	1.03	5.382
0.70	37.234	0.87	10.829	1.04	5.200
0.71	33.886	0.88	10.263	1.05	5.029
0.72	30.942	0.89	9.741	1.06	4.868
0.73	28.344	0.90	9.261	1.07	4.715
0,74	26.044	0.91	8.816	1.08	4.571
0.75	24.000	0.92	8.405	1.09	4.435
0.76	22.178	0.93	8.024	<mark>1.10</mark>	<mark>4.306</mark>

Vi finner $\Gamma\left(1+\frac{m}{h}\right)$ i tabell 18 uthevet, $\Gamma\left(1+\frac{m}{h}\right) = 4.306$.

4.5.1 Kontrollere om delskaden er akseptabel når vi antar en helning på S-N kurven Verdiene for variablene i formelen er hentet fra tabell 17 og tabell 18

$$D = \frac{n_0}{C} \times \frac{\Delta \sigma_0^m}{\left(\ln n_0\right)^{m/h}} \times \Gamma\left(1 + \frac{m}{h}\right) = \frac{10^8}{10^{12,18}} \times \frac{200^3}{\left(\ln 10^8\right)^{3/1,1}} \times 4,306 \approx 0,806$$

Delskaden er mindre enn 1 så ved bruk av Forenklet metode 1 så vil den rørformede stålforbindelsen holde og ingen nærmere analyser er nødvendig.

4.5.2 Kontrollere om delskaden er akseptabel når vi benytter to helninger på S-N kurven på det samme Weibullfordelte lastspekteret

Verdiene i formelen er hentet fra tabell 17 og 18

$$D = V_0 T_0 \left[\frac{q^{m_1}}{\bar{a}_1} \Gamma \left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q} \right)^h \right) + \frac{q^{m_2}}{\bar{a}_2} \gamma \left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q} \right)^h \right) \right]$$
$$q = \frac{\Delta \nabla \sigma_0}{(lnn_0)^{\frac{1}{h}}} = \frac{200}{(ln \ 10^8)^{1/1,1}} = 14,15$$
$$S_1 = \left(\frac{\overline{a}_1}{N} \right)^{\frac{1}{3}} = \left(\frac{10^{12,18}}{1,8 \times 10^6} \right)^{\frac{1}{3}} = 94,39$$

$$D = 10^{8} \left[\frac{11,943^{3}}{10^{12,18}} \Gamma \left(1 + \frac{3}{1,1}; \left(\frac{94,39}{11,943} \right)^{1,1} \right) + \frac{11,943^{5}}{10^{16,13}} \gamma \left(1 + \frac{5}{1,1}; \left(\frac{94,39}{11,943} \right)^{1,1} \right) \right]$$
$$\Gamma \left(1 + \frac{3}{1,1}; \left(\frac{94,39}{14,15} \right)^{1,1} \right) = \Gamma(3,727; 8.065) = 0,132$$
$$\gamma \left(1 + \frac{5}{1,1}; \left(\frac{94,39}{14,15} \right)^{1,1} \right) = \gamma(5,545; 8.065) = 48,32$$
$$D = 10^{8} \left[\frac{11,943^{3}}{10^{12,18}} \times 0,04 + \frac{11,943^{5}}{10^{16,13}} \times 53,16 \right] = 0,23$$

Med Weibullfordeling når S-N kurven har to helninger ble delskaden 0,10 så da holder stålforbindelsen med god margin.

4.5.3 Kontrollerer om delskaden er akseptabel ved å dele opp i 100 blokker og benytter Miner-Palmgrens delskadehypotese i regneark.

Fra Vedlegg 5 så ser vi at Miner-Palmgrens delskadehypotese ved en og to helninger på S-N kurver får samme resultat som Forenklet metode og Weibullfordeling med S-N kurver med to helninger og det bekrefter at stålforbindelsen vil holde.

5. Diskusjon

Skips- og offshorekonstruksjoner er utsatt for store variable spenninger, og i mye større grad enn konstruksjoner på land. Det trengs derfor nøyaktige utmattingsanalyser for å sikre designlevetiden. Det er ofte høy usikkerhet knyttet til evaluering av utmattingslevetid for denne typen konstruksjoner, og det er umulig å ta med absolutt alle detaljer og man kan ikke forutse om det vil oppstå feil under produksjon, montering eller under servicetiden.

I S-N-tilnærmingen presenteres utmattingsstyrken til vanlige strukturelle detaljer som en tabell, kurve eller ligning som representerer data om antall sykluser med konstant spenningsvidde som vil føre til utmatting. Dataene som brukes til å konstruere publiserte S-N kurver er hentet fra samlinger av eksperimentelle data.

Når man sammenligner faktiske strukturelle detaljer med laboratorieprøver som brukes til å bestemme de anbefalte design-S-N-kurvene, oppstår det imidlertid spørsmål om hvilke justeringer som må gjøres for å gjenspeile forventet ytelse av faktiske strukturelle detaljer. Det er spesielt to hensyn som må tas og det er effekten av tykkelse samt korrosjon av miljøet der de strukturelle detaljer blir utsatt for variabel spenning (ABS, 2014).

Weibull-parameteren h, er en essensiell parameter når det arbeides med maks tillatt spenning. Fra eksempel i *Forenklet utmattingsberegning 4 (Borgund, 1993)*, ser det ut til at en detalj skal holde med en h-verdi på 1,0 mens den ikke holder når h-verdien er 1.1. Vi ser således hvor sensitiv denne parameteren er. Man må derfor være forsiktig med å velge en for optimistisk Weibull-parameter. I *Fatigue handbook for offshore steel structure* (Lotsberg et al., 1999) er det nevnt to metoder for å bestemme h-verdien:

- 1. Velge en passende verdi basert på tidligere erfaringer fra utmattingsanalyser på lignende konstruksjoner
- 2. Utføre numeriske analyser som er beskrevet i seksjon 10.5.3 i *Fatigue handbook of offshore steel structures* (Lotsberg et al., 1999)

Gjennom casene i denne oppgaven kan man se at forenklet metode og Weibullfordelingen for S-N kurver med to helninger får tilnærmet like resultater med Miner-Palmgrens delskadehypotese. Ved at metodene samsvarer så bra øker det sikkerhetsmarginen til analysene, i og med at svarene kan kontrolleres opp mot hverandre. Metodene var også enkle å bruke og det trengtes ikke mye forkunnskaper for å kunne foreta en utregning. Miner-Palmgren er kanskje den enkleste, da utregningene er mindre kompliserte å forstå enn de øvrige to metodene. Forenklet metode og Weibullfordeling når S-N kurver har to helninger har blant annet gammafunksjoner som ikke mange har et forhold til og det kan virke litt avskrekkende med tanke på bruk av metoden.

Det oppsto likevel noen utfordringer underveis i arbeidet med oppgaven. I arbeidet med Miner-Palmgrens delskadehypotese i regneark, hvor man brukte S-N kurver med to helninger, så måtte man endre m-verdien fra 5 til 3 der knekkpunktet var og det kunne være litt uoversiktlig. Man må også se nøye på hva som er knekkpunktet i tabellene fra S-N kurvene. Det er samme antall sykluser ved knekkpunktet som ved utmattingsgrensene på tabellen for detaljer i luft, mens den er forskjellig på tabellene for detaljer i sjøvann med katodisk beskyttelse og i tabellen for detaljer sjøvann uten korrosjon. I de siste to tilfellene vil ikke S-verdien være den samme som knekkpunktet som er oppgitt i tabellen, derfor må Sverdien regnes ut før man kan sette den inn i formelen.

S-N kurvene er laget for 20 års levetid, men det er også utarbeidet tabeller med utnyttelsesfaktor og reduksjonsfaktorer som gjør det enkelt å analysere detaljer som trenger kortere eller lengre levetid. Alle de tre metodene som er testet ut i denne masteroppgaven er basert på konservative utmattingstester, så når man får resultater ved bruk av disse metodene som sier at en detalj ikke holder så kan likevel mer kompliserte utmattingsanalyser vise det motsatte.

6. Konklusjon

Forenklet metode og Weibullfordelingen for S-N kurver med to helninger er sammen med Miner-Palmgrens delskadehypotese best egnet som en screeningmetode. Siden metodene er enkle og raske å bruke kan man spare tid på omfattende utmattingsanalyser ved å screene ut de områdene som faktisk trenger videre analyser.

Da resultatene til forenklet metode, Weibullfordeling for S-N kurver og Miner-Palmgrens delskadehypotese samsvarer så bra bør de alltid benyttes sammen for å gi økt sikkerhetsmargin på analysene.

6.1 Videre arbeid

- Ettersom formparameteren, h, er så sensitiv for utregning av utmattingslevetiden hadde det vært interessant å se nærmere på dette og sammenligne med resultatene fra testene som utarbeidet h-verdiene.
- Det kan også være hensiktsmessig å videreutvikle Excel regnearket for å gjøre utregningene enda enklere og mer oversiktlig.

7. Referanser

- ABRAMOWITZ, M. & STEGUN, I. A. 1972. Handbook of Mathematical Functions With Formulas, Graphs, and Matematical Tables. Washington: United States Department of Commerce.
- ABS, A. B. O. S. 2014. Fatigue assessment of offshore structures. Houston, TExas: American Bureau of shipping, ABS Plaza.
- AIBN, A. I. B. N. 2017. PRELIMINARY REPORT ON THE AIR ACCIDENT NEAR TURØY, ØYGARDEN MUNICIPALITY, HORDALAND COUNTY, NORWAY 29 APRIL 2016 WITH AIRBUS HELICOPTERS EC 225 LP, LN-OJF, OPERATED BY CHC HELIKOPTER SERVICE AS. Lillestrøm: Accident Investigation Board Norway.
- BORGUND, S. Å. 1993. Forenklet utmattingsberegning. *Dimensjonering av stålkonstruksjoner mot utmatting*. Storefjell høyfjellshotell: Norske sivilingeniørers forening studiesenteret.
- DNV, D. N. V. 2014. Fatigue assessment of ship structures. *Classification notes No. 30.7.* Høvik: Det Norske Veritas.
- DNV GL AS 2016. DNVGL-RP-C203 Fatigue Design of Offshore Steel Structures. https://www.dnvgl.com: DNV GL AS.
- FINES, S. & VERITEC, A. S. 1999. Loads on Ocean structures. *In:* ALMAR-NÆSS, A. (ed.) *Fatigue handbook offshore steel structures.* 3 ed. Trondheim: Tapir akademiske forlag.
- LOTSBERG, I. 2016. Fatigue designe of marine structures, Cambridge university press.
- LOTSBERG, I., ALMAR-NÆSS, A., VERITEC, A. & NTH, N. T. H. 1999. Fatigue life calculations. *In:* ALMAR-NÆSS, A. (ed.) *Fatigue Handbook of offshore steel structures.* 3 ed. Trondheim: Tapir akademiske forlag.
- NILSEN, R. 2016. Helikopterulykke Turøy. Bergen: Bergens Tidende.
- NOU, N. O. U. 1983. Aleksander L. Kielland-ulykken / Tilleggsuttalelse/. Oslo: Norges offentlige utredninger.
- SCHÜTZ, W. 1996. A history of fatigue. Engineering Fracture Mechanics, 54, 263-300.
- SIGURDSØN, B. 1980. Alexander Kielland-plattformen. Nrk: Scanpix NTB.
- TERJESEN, G. 2017. RE: Forelesningshefte TMP301 Bruk av standarder ved utmattingsberegninger Fokus: DNVGL RP-C203.

VEDLEGG

Vedlegg 1

	Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi		ni		Ni		ni/Ni	m	
	1	1,856	0	0,928	89027343,1		10000000		10972656,9	8,9	5099E+11	1,2245E-05		3
	2	3,712	1,856	2,784	77947298,1		89027343,1		11080044,9	3318	88857864	0,00033385		3
	3	5,568	3,712	4,64	67761924,6		77947298,1		10185373,5	716	58793299	0,00142079		3
	4	7,424	5,568	6,496	58623333,2		67761924,6		9138591,46	263	12534001	0,00349798		3
	5	9,28	7,424	8,352	50529641,9		58623333,2		8093691,27	122	29216958	0,00658443		3
	6	11,136	9,28	10,208	43422016,4		50529641,9		7107625,5	673	252563,7	0,01055715		3
	7	12,992	11,136	12,064	37218796,7		43422016,4		6203219,71	407	873992,9	0,01520867		3
	8	14,848	12,992	13,92	31830851		37218796,7		5387945,66	265	510862,9	0,02029275		3
	9	16,704	14,848	15,776	27169258		31830851		4661592,98	18	32393479	0,02555789		3
	10	18,56	16,704	17,632	23149276		27169258		4019982,07	130	645744,6	0,0307701		3
	11	20,416	18,56	19,488	19692326,9		23149276		3456949,03	967	60518,55	0,03572686		3
	12	22,272	20,416	21,344	16726857,5		19692326,9		2965469,46	736	49968,14	0,04026437		3
	13	24,128	22,272	23,2	14188545		16726857,5		2538312,48	573	50346,39	0,04425976		3
	14	25,984	24,128	25,056	12020122,9		14188545		2168422,11	4	45526554	0,04762983		3
	15	27,84	25,984	26,912	10170989,3		12020122,9		1849133,53	367	41939,49	0,0503276		3
	16	29,696	27,84	28,768	8596702,44		10170989,3		1574286,91	300	79526,11	0,05233749		3
	17	31,552	29,696	30,624	7258425,61		8596702,44		1338276,83	249	35280,14	0,05367001		3
	18	33,408	31,552	32,48	6122364,22		7258425,61		1136061,39	209	00272,01	0,0543563		3
	19	35,264	33,408	34,336	5159217,82		6122364,22		963146,394	176	90939,58	0,05444292		3
	20	37,12	35,264	36,192	4343663,01		5159217,82		815554,818	151	06444,18	0,05398721		3
	21	38,976	37,12	38,048	3653874,79		4343663,01		689788,219	130	01830,54	0,05305316		3
	22	40,832	38,976	39,904	3071090,29		3653874,79		582784,5	112	70695,19	0,05170795		3
	23	42,688	40,832	41,76	2579215,38		3071090,29		491874,907	983	3735,663	0,05001913		3
	24	44,544	42,688	43,616	2164473,29		2579215,38		414742,086	863	1027,444	0,04805246		3
	25	46,4	44,544	45,472	1815092,96		2164473,29		349380,33	761	6717,204	0,0458702		3
	26	48,256	46,4	47,328	1521034,31		1815092,96		294058,652	675	5314,037	0,04352998		3
	27	50,112	48,256	49,184	1273747,31		1521034,31		247286,999	60	19057,09	0,04108401		3
	28	51,968	50,112	51,04	1065961,62		1273747,31		207785,694	53	86020,51	0,0385787		3
	29	53,824	51,968	52,896	891503,566		1065961,62		174458,054	483	8731,282	0,0360545		3
	30	55,68	53,824	54,752	745137,531		891503,566		146366,034	436	3148,921	0,03354596		3
	31	57,536	55,68	56,608	622428,817		745137,531		122708,714	394	7903,844	0,03108199		3
	32	59,392	57,536	58,464	519625,445		622428,817		102803,372	358	3722,909	0,02868619		3
	33	61,248	59,392	60,32	433556,507		519625,445		86068,9383	326	2991,943	0,02637731		3
	34	63,104	61,248	62,176	361544,945		433556,507		72011,5617	297	9419,551	0,02416966		3
	35	64,96	63,104	64,032	301332,861		361544,945		60212,0835	272	7776,598	0,02207369		3
	36	66,816	64,96	65,888	251017,673		301332,861		50315,188	250	3692,712	0,02009639		3
	37	68,672	66,816	67,744	208997,637		251017,673		42020,0364	230	3496,151	0,01824185		3
	38	70,528	68,672	69,6	173925,436		208997,637		35072,2009	212	4086,903	0,01651166		3
	39	72,384	70,528	71,456	144668,702		173925,436		29256,7345	196	2835,463	0,01490534		3
	40	74,24	72,384	73,312	120276,473		144668,702		24392,2289	181	7501,582	0,01342075		3
	41	76,096	74,24	75,168	99950,743		120276,473		20325,7296	168	6168,667	0,01205439		3
	42	77,952	76,096	77,024	83022,3512		99950,743		16928,3918	156	7190,514	0,01080174		3
	43	79,808	77,952	78,88	68930,5749		83022,3512		14091,7763	145	9147,832	0,00965754		3
	44	81,664	79,808	80,736	57205,88		68930,5749		11724,6949	136	0812,574	0,00861595		3
	45	83,52	81,664	82,592	47455,3511		57205,88		9750,52892	127	1118,535	0,00767083		3
	46	85,376	83,52	84,448	39350,3999		47455,3511		8104,95116	118	9137,005	0,00681583		3
	47	87,232	85,376	86,304	32616,4047		39350,3999		6733,99522	111	4056,523	0,00604457		3
L	48	89,088	87,232	88,16	27023,9852		32616,4047		5592,41948	104	5165,957	0,00535075		3

	49	90,944	89,088	90,016	22381,662	27023,9852	4642,32324	981840,3331	0,00472819	3
	50	92,8	90,944	91,872	18529,6849	22381,662	3851,97711	923528,894	0,00417093	3
	51	94,656	92,8	93,728	15334,8493	18529,6849	3194,83561	869745,0185	0,0036733	3
	52	96,512	94,656	95,584	12686,1449	15334,8493	2648,70437	820057,6744	0,0032299	3
	53	98,368	96,512	97,44	10491,1065	12686,1449	2195,03838	774084,1484	0,00283566	3
	54	100,22	98,368	99,296	8672,75532	10491,1065	1818,3512	731483,8437	0,00248584	3
	55	102,08	100,22	101,152	7167,03721	8672,75532	1505,71811	691952,9696	0,00217604	3
	56	103,94	102,08	103,008	5920,67882	7167,03721	1246,35839	655219,9843	0,0019022	3
	57	105,79	103,94	104,864	4889,39415	5920,67882	1031,28467	621041,6699	0,00166057	3
	58	107,65	105,79	106,72	4036,38554	4889,39415	853,008616	589199,7451	0,00144774	3
	59	109,5	107,65	108,576	3331,09139	4036,38554	705,294151	559497,9326	0,00126058	3
	60	111,36	109,5	110,432	2748,14068	3331,09139	582,950706	531759,414	0,00109627	3
	61	113,22	111,36	112,288	2266,4806	2748,14068	481,660079	505824,6159	0,00095223	3
	62	115,07	113,22	114,144	1868,64904	2266,4806	397,831564	481549,2791	0,00082615	3
	63	116,93	115,07	116	1540,16823	1868,64904	328,480804	458802,7711	0,00071595	3
	64	118,78	116,93	117,856	1269,03968	1540,16823	271,128554	437466,6077	0,00061977	3
	65	120,64	118,78	119,712	1045,32356	1269,03968	223,716121	417433,1551	0,00053593	3
	66	122,5	120,64	121,568	860,788773	1045,32356	184,534785	398604,4881	0,00046295	3
	67	124,35	122,5	123,424	708,621849	860,788773	152,166923	380891,3837	0,0003995	3
	68	126,21	124,35	125,28	583,18493	708,621849	125,436919	364212,432	0,00034441	3
	69	128,06	126,21	127,136	479,814676	583,18493	103,370254	348493,2494	0,00029662	3
	70	129,92	128,06	128,992	394,655234	479,814676	85,1594413	333665,7815	0,00025522	3
	71	131,78	129,92	130,848	324,519572	394,655234	70,1356625	319667,6831	0,0002194	3
	72	133,63	131,78	132,704	266,774397	324,519572	57,7451745	306441,7677	0,00018844	3
	73	135,49	133,63	134,56	219,244711	266,774397	47,5296865	293935,516	0,0001617	3
	74	137,34	135,49	136,416	180,134661	219,244711	39,11005	282100,6372	0,00013864	3
	75	139,2	137,34	138,272	147,961952	180,134661	32,1727086	270892,6777	0,00011877	3
	76	141,06	139,2	140,128	121,503506	147,961952	26,458446	260270,6696	0,00010166	3
	77	142,91	141,06	141,984	99,7504608	121,503506	21,7530455	250196,8162	8,6944E-05	3
	78	144,77	142,91	143,84	81,8709199	99,7504608	17,8795408	240636,2089	7,4301E-05	3
	79	146,62	144,77	145,696	67,1791301	81,8709199	14,6917899	231556,5734	6,3448E-05	3
	80	148,48	146,62	147,552	55,1099835	67,1791301	12,0691465	222928,0404	5,4139E-05	3
	81	150,34	148,48	149,408	45,1979369	55,1099835	9,9120466	214722,9392	4,6162E-05	3
	82	152,19	150,34	151,264	37,059586	45,1979369	8,13835093	206915,6112	3,9332E-05	3
	83	154,05	152,19	153,12	30,379268	37,059586	6,68031805	199482,2411	3,3488E-05	3
	84	155,9	154,05	154,976	24,8971695	30,379268	5,48209842	192400,7045	2,8493E-05	3
	85	157,76	155,9	156,832	20,3995081	24,8971695	4,49766143	185650,4292	2,4227E-05	3
	86	159,62	157,76	158,688	16,7104272	20,3995081	3,68908094	179212,2697	2,0585E-05	3
	87	161,47	159,62	160,544	13,6853091	16,7104272	3,02511802	173068,3933	1,7479E-05	3
	88	163,33	161,47	162,4	11,2052595	13,6853091	2,4800496	167202,1761	1,4833E-05	3
	89	165,18	163,33	164,256	9,17255864	11,2052595	2,0327009	161598,1082	1,2579E-05	3
	90	167,04	165,18	166,112	7,50691228	9,17255864	1,66564637	156241,7082	1,0661E-05	3
	91	168,9	167,04	167,968	6,14236231	7,50691228	1,36454996	151119,4439	9,0296E-06	3
	92	170,75	168,9	169,824	5,02474148	6,14236231	1,11762084	146218,6609	7,6435E-06	3
	93	172,61	170,75	171,68	4,10957731	5,02474148	0,91516417	141527,5166	6,4663E-06	3
	94	174,46	172,61	173,536	3,3603665	4,10957731	0,74921081	137034,9204	5,4673E-06	3
	95	176,32	174,46	175,392	2,74715457	3,3603665	0,61321192	132730,4781	4,62E-06	3
1	96	178,18	176,32	177,248	2,24536727	2,74715457	0,5017873	128604,4421	3,9018E-06	3
	97	180,03	178,18	179,104	1,83484923	2,24536727	0,41051804	124647,6641	3,2934E-06	3
	98	181,89	180,03	180,96	1,49907352	1,83484923	0,33577571	120851,5534	2,7784E-06	3
	99	183,74	181,89	182,816	1,22449176	1,49907352	0,27458176	117208,0371	2,3427E-06	3
L	100	185,6	183,74	184,672	1	1,22449176	0,22449176	113709,5242	1,9743E-06	3

999999999

1,363

D =

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi		ni		Ni	ni/Ni	m
1	1,856	0	0,928	89027343,1		10000000		10972656,9	1,79168E+15	6,1242E-09	5
2	3,712	1,856	2,784	77947298,1		89027343,1		11080044,9	7,37316E+12	1,5028E-06	5
3	5,568	3,712	4,64	67761924,6		77947298,1		10185373,5	5,73337E+11	1,7765E-05	5
4	7,424	5,568	6,496	58623333,2		67761924,6		9138591,46	1,06603E+11	8,5725E-05	5
5	9,28	7,424	8,352	50529641,9		58623333,2		8093691,27	30342235285	0,00026675	5
6	11,136	9,28	10,21	43422016,4		50529641,9		7107625,5	11124914787	0,00063889	5
7	12,992	11,136	12,06	37218796,7		43422016,4		6203219,71	4825511527	0,00128551	5
8	14,848	12,992	13,92	31830851		37218796,7		5387945,66	2359412216	0,0022836	5
9	16,704	14,848	15,78	27169258		31830851		4661592,98	1261872605	0,00369419	5
10	18,56	16,704	17,63	23149276		27169258		4019982,07	723589263,3	0,00555561	5
11	20.416	18.56	19.49	19692326.9		23149276		3456949.03	438695970.4	0.00788006	5
12	22.272	20.416	21.34	16726857.5		19692326.9		2965469.46	278369044.6	0.01065301	5
13	24.128	22.272	23.2	14188545		16726857.5		2538312.48	183467893.9	0.01383519	5
14	25 984	24 128	25.06	12020122.9		14188545		2168422 11	124865165.8	0.01736611	5
15	25,504	25,120	25,00	10170989 3		12020122 9		1849133 53	87351452.2	0.02116889	5
16	27,04	23,304	20,51	8596702 11		10170989 3		157/286 01	62582318 68	0.02515546	5
17	21,050	27,04	20,77	7259/25 61		8506702 11		1220276 02	15791512 22	0,02010040	5
10	22 400	29,090	20,02	610006420,01		7750175 61		1126061 20	2/112009 66	0,0232318	5
10	25,400	22,002	52,40	6122304,22		(1220425,01		062146 204	34112996,00	0,03330289	5
19	35,264	33,408	34,34	5159217,82		6122364,22		963146,394	25837560,02	0,03727699	5
20	37,12	35,264	36,19	4343663,01		5159217,82		815554,818	19858072,13	0,04106918	5
21	38,976	37,12	38,05	3653874,79		4343663,01		689788,219	15464676,35	0,04460412	5
22	40,832	38,976	39,9	3071090,29		3653874,79		582784,5	12187590,15	0,04781786	5
23	42,688	40,832	41,76	2579215,38		3071090,29		491874,907	9833735,663	0,05001913	3
24	44,544	42,688	43,62	2164473,29		2579215,38		414742,086	8631027,444	0,04805246	3
25	46,4	44,544	45,47	1815092,96		2164473,29		349380,33	7616717,204	0,0458702	3
26	48,256	46,4	47,33	1521034,31		1815092,96		294058,652	6755314,037	0,04352998	3
27	50,112	48,256	49,18	1273747,31		1521034,31		247286,999	6019057,09	0,04108401	3
28	51,968	50,112	51,04	1065961,62		1273747,31		207785,694	5386020,51	0,0385787	3
29	53,824	51,968	52,9	891503,566		1065961,62		174458,054	4838731,282	0,0360545	3
30	55,68	53,824	54,75	745137,531		891503,566		146366,034	4363148,921	0,03354596	3
31	57,536	55,68	56,61	622428,817		745137,531		122708,714	3947903,844	0,03108199	3
32	59,392	57,536	58,46	519625,445		622428,817		102803,372	3583722,909	0,02868619	3
33	61,248	59,392	60,32	433556,507		519625,445		86068,9383	3262991,943	0,02637731	3
34	63,104	61,248	62,18	361544,945		433556,507		72011,5617	2979419,551	0,02416966	3
35	64,96	63,104	64,03	301332,861		361544,945		60212,0835	2727776,598	0,02207369	3
36	66,816	64,96	65,89	251017,673		301332,861		50315,188	2503692,712	0,02009639	3
37	68,672	66,816	67,74	208997,637		251017,673		42020,0364	2303496,151	0,01824185	3
38	70,528	68,672	69,6	173925,436		208997,637		35072,2009	2124086,903	0,01651166	3
39	72,384	70,528	71,46	144668,702		173925,436		29256,7345	1962835,463	0,01490534	3
40	74,24	72,384	73,31	120276,473		144668,702		24392,2289	1817501,582	0,01342075	3
41	76,096	74,24	75,17	99950,743		120276,473		20325,7296	1686168,667	0,01205439	3
42	77,952	76,096	77,02	83022,3512		99950,743		16928,3918	1567190,514	0,01080174	3
43	79,808	77,952	78,88	68930,5749		83022,3512		14091,7763	1459147,832	0,00965754	3
44	81,664	79,808	80,74	57205,88		68930,5749		11724,6949	1360812,574	0,00861595	3
45	83,52	81,664	82,59	47455,3511		57205,88		9750,52892	1271118,535	0,00767083	3
46	85,376	83,52	84,45	39350,3999		47455,3511		8104,95116	1189137,005	0,00681583	3
47	87,232	85,376	86,3	32616,4047		39350,3999		6733,99522	1114056,523	0,00604457	3

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har to helninger

48	89,088	87,232	88,16	27023,9852	32616,4047	5592,41948	1045165,957	0,00535075	3
49	90,944	89,088	90,02	22381,662	27023,9852	4642,32324	981840,3331	0,00472819	3
50	92,8	90,944	91,87	18529,6849	22381,662	3851,97711	923528,894	0,00417093	3
51	94,656	92,8	93,73	15334,8493	18529,6849	3194,83561	869745,0185	0,0036733	3
52	96,512	94,656	95,58	12686,1449	15334,8493	2648,70437	820057,6744	0,0032299	3
53	98,368	96,512	97,44	10491,1065	12686,1449	2195,03838	774084,1484	0,00283566	3
54	100,22	98,368	99,3	8672,75532	10491,1065	1818,3512	731483,8437	0,00248584	3
55	102,08	100,22	101,2	7167,03721	8672,75532	1505,71811	691952,9696	0,00217604	3
56	103,94	102,08	103	5920,67882	7167,03721	1246,35839	655219,9843	0,0019022	3
57	105,79	103,94	104,9	4889,39415	5920,67882	1031,28467	621041,6699	0,00166057	3
58	107,65	105,79	106,7	4036,38554	4889,39415	853,008616	589199,7451	0,00144774	3
59	109,5	107,65	108,6	3331,09139	4036,38554	705,294151	559497,9326	0,00126058	3
60	111,36	109,5	110,4	2748,14068	3331,09139	582,950706	531759,414	0,00109627	3
61	113,22	111,36	112,3	2266,4806	2748,14068	481,660079	505824,6159	0,00095223	3
62	115,07	113,22	114,1	1868,64904	2266,4806	397,831564	481549,2791	0,00082615	3
63	116.93	115.07	116	1540.16823	1868.64904	328,480804	458802.7711	0.00071595	3
64	118.78	116.93	117.9	1269.03968	1540.16823	271.128554	437466.6077	0.00061977	3
65	120.64	118.78	119.7	1045.32356	1269.03968	223.716121	417433.1551	0.00053593	3
66	122.5	120.64	121.6	860.788773	1045.32356	184.534785	398604.4881	0.00046295	3
67	124 35	122 5	123.4	708 621849	860 788773	152 166923	380891 3837	0.0003995	3
68	126.21	124 35	125 3	583 18493	708 621849	125 436919	364212 432	0.00034441	3
69	128.06	124,55	123,3	479 814676	583 18493	103 370254	348493 2494	0.00029662	3
70	120,00	120,21	127,1	394 655234	479 814676	85 159//13	333665 7815	0,00025002	3
70	131 78	120,00	120 8	324,033234	394 655234	70 1356625	319667 6831	0,00023322	3
71	122 62	121 70	122.7	266 774207	224 510572	57 7461746	206441 7677	0,0002134	2
72	135,05	131,78	132,7	200,774397	324,519572	37,7431745	300441,7077	0,00018844	3
73	135,49	135,05	134,0	219,244711	200,774397	47,5290805	293935,510	0,0001017	3
74	137,34	135,49	136,4	180,134661	219,244711	39,11005	282100,6372	0,00013864	3
75	139,2	137,34	138,3	147,961952	180,134661	32,1727086	2/0892,6777	0,00011877	3
76	141,06	139,2	140,1	121,503506	147,961952	26,458446	260270,6696	0,00010166	3
77	142,91	141,06	142	99,7504608	121,503506	21,7530455	250196,8162	8,6944E-05	3
78	144,77	142,91	143,8	81,8709199	99,7504608	17,8795408	240636,2089	7,4301E-05	3
79	146,62	144,77	145,7	67,1791301	81,8709199	14,6917899	231556,5734	6,3448E-05	3
80	148,48	146,62	147,6	55,1099835	67,1791301	12,0691465	222928,0404	5,4139E-05	3
81	150,34	148,48	149,4	45,1979369	55,1099835	9,9120466	214722,9392	4,6162E-05	3
82	152,19	150,34	151,3	37,059586	45,1979369	8,13835093	206915,6112	3,9332E-05	3
83	154,05	152,19	153,1	30,379268	37,059586	6,68031805	199482,2411	3,3488E-05	3
84	155,9	154,05	155	24,8971695	30,379268	5,48209842	192400,7045	2,8493E-05	3
85	157,76	155,9	156,8	20,3995081	24,8971695	4,49766143	185650,4292	2,4227E-05	3
86	159,62	157,76	158,7	16,7104272	20,3995081	3,68908094	179212,2697	2,0585E-05	3
87	161,47	159,62	160,5	13,6853091	16,7104272	3,02511802	173068,3933	1,7479E-05	3
88	163,33	161,47	162,4	11,2052595	13,6853091	2,4800496	167202,1761	1,4833E-05	3
89	165,18	163,33	164,3	9,17255864	11,2052595	2,0327009	161598,1082	1,2579E-05	3
90	167,04	165,18	166,1	7,50691228	9,17255864	1,66564637	156241,7082	1,0661E-05	3
91	168,9	167,04	168	6,14236231	7,50691228	1,36454996	151119,4439	9,0296E-06	3
92	170,75	168,9	169,8	5,02474148	6,14236231	1,11762084	146218,6609	7,6435E-06	3
93	172,61	170,75	171,7	4,10957731	5,02474148	0,91516417	141527,5166	6,4663E-06	3
94	174,46	172,61	173,5	3,3603665	4,10957731	0,74921081	137034,9204	5,4673E-06	3
95	176,32	174,46	175,4	2,74715457	3,3603665	0,61321192	132730,4781	4,62E-06	3
96	178,18	176,32	177,2	2,24536727	2,74715457	0,5017873	128604,4421	3,9018E-06	3
97	180,03	178,18	179,1	1,83484923	2,24536727	0,41051804	124647,6641	3,2934E-06	3
98	181,89	180,03	181	1,49907352	1,83484923	0,33577571	120851,5534	2,7784E-06	3
99	183,74	181,89	182,8	1,22449176	1,49907352	0,27458176	117208,0371	2,3427E-06	3
100	185,6	183,74	184,7	1	1,22449176	0,22449176	113709,5242	1,9743E-06	3

D=	1,00

Vedlegg 2

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har en helning

Diakk	A = 1	٨	٥	11: 1	:				NI:		~; /N;	
ыокк	Δ0I+1 1 75	201	Δ0IIII 0 975	0035030 203 LI+T	пі	1000000	m	066070 7071	INI	/ 10726E±12	2 20278E-07	۱۱۱ د
2	1,75	1 75	2 625	80/1293 851		9033020 293		991726 1122		1 55/58F±11	6 3794E-06	3
2	5.25	35	4 375	7113977 972		8041293 851		927315 8792		33578850733	2 76161E-05	3
1	5,25	5.25	6 1 2 5	6267028 853		7113077 072		8/69/9 1186		12237190500	6 92111E-05	3
5	, 8 75	5,25	7 875	5503043 462		6267028 853		763985 3909		5757690455	0,921112-05	3
6	10 5	, 8 75	9.625	4819436 235		5503043 462		683607 2276		3153535944	0.000216775	3
7	12 25	10 5	11 375	4211308 305		4819436 235		608127 9294		1910494466	0.000318309	3
8	14	12.25	13.125	3672757.198		4211308.305		538551.1072		1243661138	0.000433037	3
9	15.75	14	14.875	3197555.241		3672757.198		475201.9572		854336727.4	0.000556223	3
10	17,5	15,75	16,625	2779522,767		3197555,241		418032,4738		611948730,4	0,000683117	3
11	19,25	17,5	18,375	2412736,574		2779522,767		366786,1926		453229277,8	0,000809273	3
12	21	19,25	20,125	2091643,002		2412736,574		321093,5724		344978741	0,000930763	3
13	22,75	21	21,875	1811113,338		2091643,002		280529,6635		268630805,9	0,001044294	3
14	24,5	22,75	23,625	1566463,551		1811113,338		244649,7871		213247794,6	0,001147256	3
15	26,25	24,5	25,375	1353451,817		1566463,551		213011,734		172100387,1	0,001237718	3
16	28	26,25	27,125	1168262,422		1353451,817		185189,3949		140893435,7	0,001314393	3
17	29,75	28	28,875	1007481,607		1168262,422		160780,8155		116797627,6	0,001376576	3
18	31,5	29,75	30,625	868069,039		1007481,607		139412,568		97897524	0,001424066	3
19	33,25	31,5	32,375	747327,3581		868069,039		120741,6809		82864911,09	0,001457091	3
20	35	33,25	34,125	642871,4046		747327,3581		104455,9535		70759054,29	0,00147622	3
21	36,75	35	35,875	552598,1835		642871,4046		90273,22109		60900978,53	0,001482295	3
22	38,5	36,75	37,625	474658,2256		552598,1835		77939,95796		52792286,74	0,001476351	3
23	40,25	38,5	39,375	407428,7379		474658,2256		67229,48769		46061523,64	0,001459558	3
24	42	40,25	41,125	349488,7519		407428,7379		57939,98602		40428000,94	0,001433165	3
25	43,75	42	42,875	299596,3474		349488,7519		49892,40449		35676940,23	0,00139845	3
26	45,5	43,75	44,625	256667,9459		299596,3474		42928,40149		31642101,01	0,001356686	3
27	47,25	45,5	46,375	219759,6077		256667,9459		36908,33823		28193450,58	0,00130911	3
28	49	47,25	48,125	188050,2313		219759,6077		31709,37632		25228287,55	0,001256898	3
29	50,75	49	49,875	160826,5327		188050,2313		27223,69862		22664767,79	0,001201146	3
30	52,5	50,75	51,625	137469,668		160826,5327		23356,86472		20437125,23	0,001142864	3
31	54,25	52,5	53,375	117443,3633		137469,668		20026,30466		18492104,37	0,001082965	3
32	56	54,25	55,125	100283,4135		117443,3633		17159,94986		16786269,55	0,001022261	3
33	57,75	56	56,875	85588,41715		100283,4135		14694,99633		15283955,73	0,000961466	3
34	59,5	57,75	58,625	73011,62372		85588,41715		12576,79343		13955693,82	0,000901194	3
35	61,25	59,5	60,375	62253,77384		73011,62372		10757,84988		12776990,41	0,000841971	3
36	63	61,25	62,125	53056,82558		62253,77384		9196,94826		11727374,52	0,000784229	3
37	64,75	63	63,875	45198,46686		53056,82558		7858,358719		10789647,6	0,000728324	3
38	66,5	64,75	65,625	38487,32376		45198,46686		6711,143099		9949289,106	0,000674535	3
39	68,25	66,5	67,375	32758,78311		38487,32376		5728,540654		9193982,344	0,000623075	3
40	70	68,25	69,125	27871,35594		32758,78311		4887,427169		8513233,926	0,000574098	3
41	71,75	70	70,875	23703,51616		27871,35594		4167,839785		7898066,468	0,000527704	3
42	73,5	71,75	72,625	20150,95578		23703,51616		3552,560376		7340769,1	0,000483949	3
43	75,25	73,5	74,375	17124,2048		20150,95578		3026,750976		6834693,819	0,000442851	3

44	77	75,25	76,125	14546,56952	17124,2048	2577,63528	6374088,412	0,000404393	3
45	78,75	77	77,875	12352,34867	14546,56952	2194,220855	5953958,744	0,000368531	3
46	80,5	78,75	79,625	10485,29145	12352,34867	1867,057215	5569954,711	0,000335202	3
47	82,25	80,5	81,375	8897,266034	10485,29145	1588,025419	5218275,395	0,00030432	3
48	84	82,25	83,125	7547,110706	8897,266034	1350,155327	4895589,843	0,00027579	3
49	85,75	84	84,875	6399,64364	7547,110706	1147,467067	4598970,652	0,000249505	3
50	87,5	85,75	86,625	5424,809971	6399,64364	974,8336686	4325838,058	0,000225351	3
51	89,25	87,5	88,375	4596,947806	5424,809971	827,8621653	4073912,712	0,000203211	3
52	91	89,25	90,125	3894,157021	4596,947806	702,790785	3841175,647	0,000182962	3
53	92,75	91	91,875	3297,756878	3894,157021	596,4001429	3625834,222	0,000164486	3
54	94,5	92,75	93,625	2791,820278	3297,756878	505,9365995	3426293,07	0,000147663	3
55	96,25	94,5	95,375	2362,774102	2791,820278	429,046176	3241129,227	0,000132376	3
56	98	96,25	97,125	1999,056481	2362,774102	363,7176208	3069070,781	0,000118511	3
57	99,75	98	98,875	1690,823081	1999,056481	308,2334006	2908978,494	0,000105959	3
58	101,5	99,75	100,625	1429,695536	1690,823081	261,1275452	2759829,928	9,46173E-05	3
59	103,25	101,5	102,375	1208,546121	1429,695536	221,1494144	2620705,715	8,43854E-05	3
60	105	103,25	104,125	1021,313543	1208,546121	187,2325787	2490777,631	7,51703E-05	3
61	106,75	105	105,875	862,8454341	1021,313543	158,4681085	2369298,23	6,6884E-05	3
62	108,5	106,75	107,625	728,7637695	862,8454341	134,0816645	2255591,798	5,94441E-05	3
63	110,25	108,5	109,375	615,3499096	728,7637695	113,4138599	2149046,447	5,2774E-05	3
64	112	110,25	111,125	519,446472	615,3499096	95,90343764	2049107,194	4,68025E-05	3
65	113,75	112	112,875	438,3736037	519,446472	81,0728683	1955269,879	4,14638E-05	3
66	115,5	113,75	114,625	369,8575765	438,3736037	68,5160272	1867075,817	3,6697E-05	3
67	117,25	115,5	116,375	311,9699201	369,8575765	57,88765643	1784107,086	3,24463E-05	3
68	119	117,25	118,125	263,0755617	311,9699201	48,89435835	1705982,357	2,86605E-05	3
69	120,75	119	119,875	221,7886597	263,0755617	41,28690204	1632353,217	2,52929E-05	3
70	122,5	120,75	121,625	186,935005	221,7886597	34,85365468	1562900,896	2,23006E-05	3
71	124,25	122,5	123,375	157,5200288	186,935005	29,41497615	1497333,368	1,96449E-05	3
72	126	124,25	125,125	132,7015908	157,5200288	24,81843803	1435382,769	1,72905E-05	3
73	127,75	126	126,875	111,7668432	132,7015908	20,93474766	1376803,097	1,52053E-05	3
74	129,5	127,75	128,625	94,11256833	111,7668432	17,65427482	1321368,157	1,33606E-05	3
75	131,25	129,5	130,375	79,22847492	94,11256833	14,88409341	1268869,726	1,17302E-05	3
76	133	131,25	132,125	66,68301215	79,22847492	12,54546277	1219115,91	1,02906E-05	3
77	134,75	133	133,875	56,11132791	66,68301215	10,57168425	1171929,667	9,02075E-06	3
78	136,5	134,75	135,625	47,20504995	56,11132791	8,906277954	1127147,485	7,90161E-06	3
79	138,25	136,5	137,375	39,70361755	47,20504995	7,501432407	1084618,19	6,9162E-06	3
80	140	138,25	139,125	33,38693074	39,70361755	6,31668681	1044201,873	6,0493E-06	3
81	141,75	140	140,875	28,06911924	33,38693074	5,317811499	1005768,924	5,28731E-06	3
82	143,5	141,75	142,625	23,59326214	28,06911924	4,475857097	969199,157	4,6181E-06	3
83	145,25	143,5	144,375	19,82691485	23,59326214	3,766347286	934381,0205	4,03085E-06	3
84	147	145,25	146,125	16,65832112	19,82691485	3,168593737	901210,8827	3,51593E-06	3
85	148,75	147	147,875	13,99320619	16,65832112	2,665114926	869592,3832	3,06479E-06	3
86	150,5	148,75	149,625	11,75206292	13,99320619	2,241143275	839435,8441	2,66982E-06	3
87	152,25	150,5	151,375	9,867855605	11,75206292	1,884207313	810657,7361	2,32429E-06	3
88	154	152,25	153,125	8,28407802	9,867855605	1,583777584	783180,192	2,02224E-06	3
89	155,75	154	154,875	6,953111358	8,28407802	1,330966662	756930,5639	1,75837E-06	3
90	157,5	155,75	156,625	5,834836262	6,953111358	1,118275096	731841,0196	1,52803E-06	3
91	159,25	157,5	158,375	4,895459943	5,834836262	0,939376318	707848,1744	1,32709E-06	3

92	161	159,25	160,125	4,106525338	4,895459943	0,788934606	684892,7544	1,15191E-06	3
93	162,75	161	161,875	3,444074285	4,106525338	0,662451052	662919,2887	9,99294E-07	3
94	164,5	162,75	163,625	2,887940992	3,444074285	0,556133294	641875,8282	8,66419E-07	3
95	166,25	164,5	165,375	2,421155646	2,887940992	0,466785346	621713,687	7,50804E-07	3
96	168	166,25	167,125	2,02944116	2,421155646	0,391714486	602387,2057	6,5027E-07	3
97	169,75	168	168,875	1,7007886	2,02944116	0,32865256	583853,5348	5,62902E-07	3
98	171,5	169,75	170,625	1,425099104	1,7007886	0,275689496	566072,4343	4,87022E-07	3
99	173,25	171,5	172,375	1,193881944	1,425099104	0,231217161	549006,0906	4,21156E-07	3
100	175	173,25	174,125	1	1,193881944	0,193881944	532618,9471	3,64016E-07	3
						9999999	D =	0,042	

Miner-Palmgrens delskadehypotese i regnark når S_N kurven har to helninger

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi	ni	Ni	ni/Ni	m
1	1,75	0	0,875	9033020,293	10000000	966979,7071	2,34941E+16	4,11583E-11	5
2	3,5	1,75	2,625	8041293,851	9033020,293	991726,4422	9,66837E+13	1,02574E-08	5
3	5,25	3,5	4,375	7113977,972	8041293,851	927315,8792	7,51813E+12	1,23344E-07	5
4	7	5,25	6,125	6267028,853	7113977,972	846949,1186	1,39788E+12	6,05882E-07	5
5	8,75	7	7,875	5503043,462	6267028,853	763985,3909	3,97875E+11	1,92016E-06	5
6	10,5	8,75	9,625	4819436,235	5503043,462	683607,2276	1,4588E+11	4,68609E-06	5
7	12,25	10,5	11,375	4211308,305	4819436,235	608127,9294	63276576382	9,61063E-06	5
8	14	12,25	13,125	3672757,198	4211308,305	538551,1072	30938798189	1,7407E-05	5
9	15,75	14	14,875	3197555,241	3672757,198	475201,9572	16546842305	2,87186E-05	5
10	17,5	15,75	16,625	2779522,767	3197555,241	418032,4738	9488372587	4,40573E-05	5
11	19,25	17,5	18,375	2412736,574	2779522,767	366786,1926	5752587871	6,37602E-05	5
12	21	19,25	20,125	2091643,002	2412736,574	321093,5724	3650232729	8,79652E-05	5
13	22,75	21	21,875	1811113,338	2091643,002	280529,6635	2405800947	0,000116606	5
14	24,5	22,75	23,625	1566463,551	1811113,338	244649,7871	1637347700	0,000149418	5
15	26,25	24,5	25,375	1353451,817	1566463,551	213011,734	1145433143	0,000185966	5
16	28	26,25	27,125	1168262,422	1353451,817	185189,3949	820637324,3	0,000225665	5
17	29,75	28	28,875	1007481,607	1168262,422	160780,8155	600329984,5	0,000267821	5
18	31,5	29,75	30,625	868069,039	1007481,607	139412,568	447321232,8	0,000311661	5
19	33,25	31,5	32,375	747327,3581	868069,039	120741,6809	338806017	0,000356374	5
20	35	33,25	34,125	642871,4046	747327,3581	104455,9535	260397433,7	0,00040114	5
21	36,75	35	35,875	552598,1835	642871,4046	90273,22109	202787159,2	0,000445162	5
22	38,5	36,75	37,625	474658,2256	552598,1835	77939,95796	159814969,8	0,000487689	5
23	40,25	38,5	39,375	407428,7379	474658,2256	67229,48769	46061523,64	0,001459558	3
24	42	40,25	41,125	349488,7519	407428,7379	57939,98602	40428000,94	0,001433165	3
25	43,75	42	42,875	299596,3474	349488,7519	49892,40449	35676940,23	0,00139845	3
26	45,5	43,75	44,625	256667,9459	299596,3474	42928,40149	31642101,01	0,001356686	3
27	47,25	45,5	46,375	219759,6077	256667,9459	36908,33823	28193450,58	0,00130911	3
28	49	47,25	48,125	188050,2313	219759,6077	31709,37632	25228287,55	0,001256898	3
29	50,75	49	49,875	160826,5327	188050,2313	27223,69862	22664767,79	0,001201146	3
30	52,5	50,75	51,625	137469,668	160826,5327	23356,86472	20437125,23	0,001142864	3
31	54,25	52,5	53,375	117443,3633	137469,668	20026,30466	18492104,37	0,001082965	3
32	56	54,25	55,125	100283,4135	117443,3633	17159,94986	16786269,55	0,001022261	3

33	57,75	56	56,875	85588,41715	100283,4135	14694,99633	15283955,73	0,000961466	3
34	59,5	57,75	58,625	73011,62372	85588,41715	12576,79343	13955693,82	0,000901194	3
35	61,25	59,5	60,375	62253,77384	73011,62372	10757,84988	12776990,41	0,000841971	3
36	63	61,25	62,125	53056,82558	62253,77384	9196,94826	11727374,52	0,000784229	3
37	64,75	63	63,875	45198,46686	53056,82558	7858,358719	10789647,6	0,000728324	3
38	66,5	64,75	65,625	38487,32376	45198,46686	6711,143099	9949289,106	0,000674535	3
39	68,25	66,5	67,375	32758,78311	38487,32376	5728,540654	9193982,344	0,000623075	3
40	70	68,25	69,125	27871,35594	32758,78311	4887,427169	8513233,926	0,000574098	3
41	71,75	70	70,875	23703,51616	27871,35594	4167,839785	7898066,468	0,000527704	3
42	73,5	71,75	72,625	20150,95578	23703,51616	3552,560376	7340769,1	0,000483949	3
43	75,25	73,5	74,375	17124,2048	20150,95578	3026,750976	6834693,819	0,000442851	3
44	77	75,25	76,125	14546,56952	17124,2048	2577,63528	6374088,412	0,000404393	3
45	78,75	77	, 77,875	12352,34867	14546,56952	2194,220855	5953958,744	0,000368531	3
46	80,5	78,75	79,625	10485,29145	12352,34867	1867,057215	5569954,711	0,000335202	3
47	82,25	80,5	81,375	8897,266034	10485,29145	1588,025419	5218275,395	0,00030432	3
48		, 82,25	83,125	7547,110706	8897,266034	1350,155327	4895589,843	0,00027579	3
49	85.75		, 84.875	6399.64364	7547.110706	1147.467067	4598970.652	0.000249505	3
50	87,5	85,75	86,625	5424,809971	6399,64364	974,8336686	4325838,058	0,000225351	3
51	89,25	87,5	88,375	4596,947806	5424,809971	827,8621653	4073912,712	0,000203211	3
52	91	89.25	90.125	3894.157021	4596.947806	702.790785	3841175.647	0.000182962	3
53	92.75	91	91.875	3297.756878	3894.157021	596.4001429	3625834.222	0.000164486	3
54	94.5	92.75	93.625	2791.820278	3297.756878	505.9365995	3426293.07	0.000147663	3
55	96.25	94.5	95.375	2362.774102	2791.820278	429.046176	3241129.227	0.000132376	3
56	98	96.25	97,125	1999.056481	2362.774102	363,7176208	3069070.781	0.000118511	3
57	99.75	98	98.875	1690.823081	1999.056481	308,2334006	2908978,494	0.000105959	3
58	101.5	99.75	100.625	1429.695536	1690.823081	261.1275452	2759829.928	9.46173F-05	3
59	103.25	101.5	102.375	1208.546121	1429.695536	221.1494144	2620705.715	8.43854F-05	3
60	105	103.25	104,125	1021.313543	1208.546121	187.2325787	2490777.631	7.51703E-05	3
61	106 75	105	105 875	862 8454341	1021 313543	158 4681085	2369298 23	6 6884F-05	3
62	108 5	106 75	107 625	728 7637695	862 8454341	134 0816645	2255591 798	5 94441F-05	3
63	110 25	108 5	109 375	615 3499096	728 7637695	113 4138599	2149046 447	5 2774E-05	3
64	112	110 25	111 125	519 446472	615 3499096	95 90343764	2049107 194	4 68025E-05	3
65	113 75	112	112 875	438 3736037	519 446472	81 0728683	1955269 879	4 14638F-05	3
66	115 5	113 75	114 625	369 8575765	438 3736037	68 5160272	1867075 817	3 6697E-05	3
67	117 25	115 5	116 375	311 9699201	369 8575765	57 88765643	1784107 086	3 24463E-05	3
68	119	117 25	118 125	263 0755617	311 9699201	18 89/35835	1705982 357	2 86605E-05	3
69	120.75	110	119 875	203,0735017	263 0755617	41 28690204	1632353 217	2,500005E 05	3
70	120,75	120.75	121 625	186 935005	203,0735017	34 85365468	1562900 896	2,323252 05	3
71	122,5	120,75	121,025	157 5200288	186 935005	29 /1/97615	1/97333 368	1 96449E-05	3
72	124,25	122,5	125,575	132 7015908	157 5200288	23,41437013	1/35382 769	1,304432-05	3
73	127 75	124,25	126 875	111 7668432	132 7015908	29,01043005	1376803.097	1,72909E 05	3
74	127,75	120	120,075	0/ 11256833	111 7668/32	17 65/27/82	1321368 157	1,320332-05	3
75	123,5	127,75	120,025	70 22847402	04 1126022	14 99400241	1321308,137	1,330000-05	2
76	101,20 100	121 JE	120,5/5	13,2204/492	79,112,000,00 70,000,7100	19 51516077	1210115 01	1,17302E-03	ר ג
70	13/ 75	122 122	132,123	56 11122701	66 68201215	10 57169/25	1171020 667	1,02900E-03	2
78	126 5	12/ 75	135 675	AT 2050/00F	56 11122701	2 0062770E1	11271/7 /05	7 901615 06	ר ג
70 70	129 7F	124,/J	127 275	47,20004993	AZ 20504005	7 501/22/1924	108/619 10	6 0167E 06	2
20 20	130,25	120.25	120 125	22,10301/55	47,20004995	6.21669694	1044201 072	0,91025-00	с 2
00	140	138,25	139,125	33,38093U/4	39,70301755	0,31008681	1044201,873	0,0493E-06	3

81	141,75	140	140,875	28,06911924	33,38693074	5,317811499	1005768,924	5,28731E-06	3
82	143,5	141,75	142,625	23,59326214	28,06911924	4,475857097	969199,157	4,6181E-06	3
83	145,25	143,5	144,375	19,82691485	23,59326214	3,766347286	934381,0205	4,03085E-06	3
84	147	145,25	146,125	16,65832112	19,82691485	3,168593737	901210,8827	3,51593E-06	3
85	148,75	147	147,875	13,99320619	16,65832112	2,665114926	869592,3832	3,06479E-06	3
86	150,5	148,75	149,625	11,75206292	13,99320619	2,241143275	839435,8441	2,66982E-06	3
87	152,25	150,5	151,375	9,867855605	11,75206292	1,884207313	810657,7361	2,32429E-06	3
88	154	152,25	153,125	8,28407802	9,867855605	1,583777584	783180,192	2,02224E-06	3
89	155,75	154	154,875	6,953111358	8,28407802	1,330966662	756930,5639	1,75837E-06	3
90	157,5	155,75	156,625	5,834836262	6,953111358	1,118275096	731841,0196	1,52803E-06	3
91	159,25	157,5	158,375	4,895459943	5,834836262	0,939376318	707848,1744	1,32709E-06	3
92	161	159,25	160,125	4,106525338	4,895459943	0,788934606	684892,7544	1,15191E-06	3
93	162,75	161	161,875	3,444074285	4,106525338	0,662451052	662919,2887	9,99294E-07	3
94	164,5	162,75	163,625	2,887940992	3,444074285	0,556133294	641875,8282	8,66419E-07	3
95	166,25	164,5	165,375	2,421155646	2,887940992	0,466785346	621713,687	7,50804E-07	3
96	168	166,25	167,125	2,02944116	2,421155646	0,391714486	602387,2057	6,5027E-07	3
97	169,75	168	168,875	1,7007886	2,02944116	0,32865256	583853,5348	5,62902E-07	3
98	171,5	169,75	170,625	1,425099104	1,7007886	0,275689496	566072,4343	4,87022E-07	3
99	173,25	171,5	172,375	1,193881944	1,425099104	0,231217161	549006,0906	4,21156E-07	3
100	175	173,25	174,125	1	1,193881944	0,193881944	532618,9471	3,64016E-07	3
						9999999	D =	0,02745388	

Vedlegg 3

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har en helning

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi	ni		Ni	ni/Ni	m
1	2,22	0	1,11	74502634,46	10000000	2	25497365,54	2,97873E+11	8,55981E-05	3
2	4,44	2,22	3,33	57738277,96	74502634,46		16764356,5	11032331409	0,001519566	3
3	6,66	4,44	5,55	45332875,89	57738277,96	1	12405402,07	2382983584	0,005205828	3
4	8,88	6,66	7,77	35881927,29	45332875,89	ç	9450948,606	868434250,9	0,010882745	3
5	11,1	8,88	9,99	28567552,01	35881927,29	7	7314375,277	408604867	0,017900852	3
6	13,32	11,1	12,21	22847805,52	28567552,01		5719746,49	223796354,7	0,025557818	3
7	15,54	13,32	14,43	18341190,53	22847805,52	4	4506614,993	135581678,7	0,033239115	3
8	17,76	15,54	16,65	14769602,28	18341190,53	3	3571588,241	88258651,27	0,040467288	3
9	19,98	17,76	18,87	11925639,89	14769602,28	2	2843962,391	60629543,67	0,046907204	3
10	22,2	19,98	21,09	9652130,046	11925639,89	2	2273509,847	43428043,16	0,052351192	3
11	24,42	22,2	23,31	7828530,426	9652130,046		1823599,62	32164231,51	0,056696508	3
12	26,64	24,42	25,53	6361529,116	7828530,426		1467001,31	24482037,32	0,059921537	3
13	28,86	26,64	27,75	5178352,034	6361529,116	1	1183177,082	19063868,67	0,06206385	3
14	31,08	28,86	29,97	4221892,348	5178352,034		956459,686	15133513,59	0,063201429	3
15	33,3	31,08	32,19	3447104,942	4221892,348	7	774787,4054	12213413,75	0,063437416	3
16	35,52	33,3	34,41	2818301	3447104,942		628803,943	9998756,27	0,062888216	3
17	37,74	35,52	36,63	2307095,547	2818301	5	511205,4524	8288753,876	0,061674585	3
18	39,96	37,74	38,85	1890836,161	2307095,547	2	416259,3862	6947474,007	0,059915213	3
19	42,18	39,96	41,07	1551390,793	1890836,161	3	339445,3682	5880657,573	0,057722349	3
20	44,4	42,18	43,29	1274206,533	1551390,793	2	277184,2594	5021543,655	0,055199014	3
21	46,62	44,4	45,51	1047574,629	1274206,533	2	226631,9041	4321947,564	0,052437449	3
22	48,84	46,62	47,73	862053,7325	1047574,629	1	185520,8966	3746499,655	0,049518461	3
23	51,06	48,84	49,95	710015,3573	862053,7325	1	152038,3752	3268838,936	0,046511431	3
24	53,28	51,06	52,17	585284,2672	710015,3573	1	124731,0901	2869045,857	0,043474763	3
25	55,5	53,28	54,39	482852,9883	585284,2672	1	102431,2789	2531878,282	0,040456636	3
26	57,72	55,5	56,61	398654,4629	482852,9883	8	84198,52541	2245538,654	0,037495915	3
27	59,94	57,72	58,83	329380,4931	398654,4629		69273,9698	2000798,969	0,034623153	3
28	62,16	59,94	61,05	272336,3788	329380,4931	5	57044,11431	1790370,837	0,031861619	3
29	64,38	62,16	63,27	225324,2599	272336,3788	2	47012,11891	1608446,043	0,029228285	3
30	66,6	64,38	65,49	186549,2912	225324,2599	3	38774,96864	1450357,379	0,026734768	3
31	68,82	66,6	67,71	154544,0298	186549,2912	3	32005,26142	1312325,472	0,024388204	3
32	71,04	68,82	69,93	128107,3851	154544,0298	2	26436,64471	1191267,834	0,022192024	3
33	73,26	71,04	72,15	106255,2422	128107,3851	2	21852,14291	1084653,429	0,020146659	3
34	75,48	73,26	74,37	88180,46083	106255,2422	1	18074,78136	990390,9325	0,018250148	3
35	77,7	75,48	76,59	73220,42062	88180,46083	1	14960,04021	906742,1229	0,016498671	3
36	79,92	77,7	78,81	60830,65102	73220,42062		12389,7696	832254,2421	0,014887001	3
37	82,14	79,92	81,03	50563,3765	60830,65102	1	10267,27452	765706,7636	0,013408886	3
38	84,36	82,14	83,25	42050,03827	50563,3765	8	8513,338232	706069,2102	0,012057371	3
39	86,58	84,36	85,47	34987,03839	42050,03827	7	7062,999882	652467,5063	0,01082506	3
40	88,8	86,58	87,69	29124,09883	34987,03839	5	5862,939562	604156,9694	0,009704332	3
41	91,02	88,8	89,91	24254,74541	29124,09883		4869,35342	560500,5034	0,008687509	3
42	93,24	91,02	92,13	20208,52068	24254,74541	2	4046,224723	520950,8926	0,007766998	3
43	95.46	93.24	94.35	16844.60533	20208.52068	2	3363.915359	485036.3493	0.006935388	3

44	97,68	95,46	96,57	14046,58826	16844,60533	2798,017067	452348,6575	0,006185532	3
45	99,9	97,68	98,79	11718,17482	14046,58826	2328,413437	422533,3994	0,005510602	3
46	102,12	99,9	101,01	9779,6616	11718,17482	1938,513222	395281,862	0,004904129	3
47	104,34	102,12	103,23	8165,038583	9779,6616	1614,623016	370324,3063	0,004360024	3
48	106,56	104,34	105,45	6819,605093	8165,038583	1345,43349	347424,3453	0,003872594	3
49	108,78	106,56	107,67	5698,006875	6819,605093	1121,598218	326374,2305	0,00343654	3
50	111	108,78	109,89	4762,61876	5698,006875	935,3881156	306990,8843	0,003046957	3
51	113,22	111	112,11	3982,211087	4762,61876	780,4076724	289112,5487	0,002699321	3
52	115,44	113,22	114,33	3330,849362	3982,211087	651,3617247	272595,9439	0,002389477	3
53	117,66	115,44	116,55	2786,985731	3330,849362	543,8636315	257313,8521	0,00211362	3
54	119,88	117,66	118,77	2332,708358	2786,985731	454,2773727	243153,0551	0,001868277	3
55	122,1	119,88	120,99	1953,120878	2332,708358	379,5874802	230012,5696	0,00165029	3
56	124,32	122,1	123,21	1635,82906	1953,120878	317,2918184	217802,1323	0,001456789	3
57	126,54	124,32	125,43	1370,51592	1635,82906	265,3131397	206440,895	0,001285177	3
58	128,76	126,54	127,65	1148,589841	1370,51592	221,9260789	195856,2985	0,001133107	3
59	130,98	128,76	129,87	962,892988	1148,589841	185,6968531	185983,0983	0,000998461	3
60	133,2	130,98	132,09	807,4595629	962,892988	155,4334251	176762,518	0,000879335	3
61	135,42	133,2	134,31	677,315274	807,4595629	130,1442889	168141,5136	0,000774016	3
62	137,64	135,42	136,53	568,3109067	677,315274	109,0043673	160072,132	0,00068097	3
63	139,86	137,64	138,75	476,9841303	568,3109067	91,3267764	152510,9494	0,000598821	3
64	142,08	139,86	140,97	400,4446941	476,9841303	76,53943618	145418,5804	0,000526339	3
65	144,3	142,08	143,19	336,2790094	400,4446941	64,1656847	138759,2465	0,000462425	3
66	146,52	144,3	145,41	282,4708075	336,2790094	53,80820185	132500,3961	0,000406098	3
67	148,74	146,52	147,63	237,3351362	282,4708075	45,13567131	126612,3707	0,000356487	3
68	150,96	148,74	149,85	199,4634276	237,3351362	37,87170862	121068,1087	0,000312813	3
69	153,18	150,96	152,07	167,6777616	199,4634276	31,78566604	115842,8843	0,000274386	3
70	155.4	153.18	154.29	140.9927691	167.6777616	26.68499246	110914.0753	0.000240592	3
71	157.62	155.4	156.51	118.5838867	140.9927691	22.40888241	106260.9577	0.000210885	3
72	159,84	157,62	158,73	99,76089232	118,5838867	18,82299436	101864,5219	0,000184785	3
73	162.06	159.84	160.95	83.94583592	99.76089232	15.8150564	97707.31003	0.000161862	3
74	164.28	162.06	163.17	70.65462745	83.94583592	13.29120847	93773.26972	0.000141738	3
75	166.5	164.28	165.39	59.48167073	70.65462745	11.17295672	90047.62408	0.000124078	3
76	168.72	166.5	167.61	50.08703454	59.48167073	9.394636185	86516.75497	0.000108587	3
77	170.94	168.72	169.83	42.18573818	50.08703454	7.901296358	83168.09831	9.50039E-05	3
78	173.16	170.94	172.05	35.53879982	42.18573818	6.646938367	79990.05016	8.30971E-05	3
79	175.38	173.16	174.27	29.94575507	35,53879982	5,593044748	76971.88218	7.26635E-05	3
80	177.6	175 38	176 49	25 23840227	29 94575507	4 707352798	74103 6655	6 35239E-05	3
81	179.82	177.6	178 71	21 27557149	25,31373307	3 962830781	71376 20209	5 55203E-05	3
82	182 04	179.82	180.93	17 93874837	21 27557149	3 336823119	68780 96274	4 85138F-05	3
83	184.26	182 04	183 15	15 12841192	17 93874837	2 810336446	66310 03101	4 23818F-05	3
84	186.48	184.26	185 37	12 76096884	15 12841192	2 367443086	63956 05248	3 70167E-05	3
85	188 7	186.48	187 59	10 76618635	12 76096884	1 994782489	61712 18874	3 2324E-05	2
86	190.92	188 7	189 81	9 085041956	10 76618635	1 681144393	59572 07567	2 82203E-05	י 2
87	193,52	190.92	102,01	7 667921753	9.0850/1956	1,001144355	57529 785/3	2,02203E 05	2
۵ <i>۲</i>	195 26	192 1/	19/ 25	6 473110/10	7 667021752	1 194811334	55579 70205	2,70320L-03	с 2
80	107 50	105.26	106 /7	5 465575707	6 472110/10	1 007585122	53716 02005	1 875725-05	د د
00	100 0	107 50	108 60	2,703323237	5 465525207	0.840820400	51926 /1527	1 626275-05	3 2
Q1	202 02	100 0	200.03	3 808667007	Δ 615651707	0 71609690	50222 71002	1 /10725-05	د د
71	202,02	1,0,0	200,01	5,050007507	7,01007/07	0,71000000	JU233,/1303	1,72/JL-UJ	3

92	204,24	202,02	203,13	3,29366702	3,898667907	0,605000887	48604,64712	1,24474E-05	3
93	206,46	204,24	205,35	2,783060853	3,29366702	0,510606167	47045,26058	1,08535E-05	3
94	208,68	206,46	207,57	2,352038015	2,783060853	0,431022839	45551,87353	9,46224E-06	3
95	210,9	208,68	209,79	1,988124943	2,352038015	0,363913072	44121,03088	8,24806E-06	3
96	213,12	210,9	212,01	1,680814613	1,988124943	0,30731033	42749,49235	7,18863E-06	3
97	215,34	213,12	214,23	1,421254591	1,680814613	0,259560022	41434,21704	6,26439E-06	3
98	217,56	215,34	216,45	1,201984894	1,421254591	0,219269697	40172,34924	5,45822E-06	3
99	219,78	217,56	218,67	1,016717644	1,201984894	0,18526725	38961,20543	4,75517E-06	3
100	222	219,78	220,89	0,860151811	1,016717644	0,156565833	37798,26229	4,14214E-06	3
						[D=	1,47	

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har to helninger

Blokk		Δσi+1	Δσί	Δσmi	Hi+1	Hi	ni	Ni	ni/Ni	m
	1	2,2	0	1,1	74680728,3	10000000	25319271,7	1,39007E+15	1,82144E-08	5
	2	4,4	2,22	3,31	57996098,41	74502634,46	16506536,05	5,63456E+12	2,92952E-06	5
	3	6,6	4,44	5,52	45624736,44	57738277,96	12113541,52	4,36822E+11	2,77311E-05	5
	4	8,8	6,66	7,73	36181495,05	45332875,89	9151380,839	81115253619	0,000112819	5
	5	11	8,88	9,94	28859370,98	35881927,29	7022556,307	23071088122	0,000304388	5
	6	13,2	11,1	12,15	23123065,05	28567552,01	5444486,955	8455097311	0,00064393	5
	7	15,4	13,32	14,36	18595267,52	22847805,52	4252538	3666298326	0,0011599	5
	8	17,6	15,54	16,57	15000533,05	18341190,53	3340657,476	1792204064	0,001863994	5
	9	19,8	17,76	18,78	12133135,89	14769602,28	2636466,394	958345395	0,002751061	5
	10	22	19,98	20,99	9836932,03	11925639,89	2088707,863	549462182,8	0,003801368	5
	11	24,2	22,2	23,2	7991981,282	9652130,046	1660148,764	333088835	0,004984102	5
	12	26,4	24,42	25,41	6505291,411	7828530,426	1323239,015	211337553,1	0,006261258	5
	13	28,6	26,64	27,62	5304222,784	6361529,116	1057306,331	139277713,6	0,007591353	5
	14	30,8	28,86	29,83	4331683,617	5178352,034	846668,4171	94783716,43	0,008932636	5
	15	33	31,08	32,04	3542569,192	4221892,348	679323,1556	66303653,98	0,010245637	5
	16	35,2	33,3	34,25	2901086,81	3447104,942	546018,1325	47500384,03	0,011495026	5
	17	37,4	35,52	36,46	2378723,815	2818301	439577,1844	34746949,13	0,012650814	5
	18	39,6	37,74	38,67	1952689,949	2307095,547	354405,5981	25889826,48	0,013688991	5
	19	41,8	39,96	40,88	1604714,096	1890836,161	286122,0645	19608553,81	0,014591696	5
	20	44	42,18	43,09	1320108,693	1551390,793	231282,0993	15070148,42	0,015347035	5
	21	46,2	44,4	45,3	1087038,137	1274206,533	187168,396	11735699,75	0,015948635	5
	22	48,4	46,62	47,51	895943,8908	1047574,629	151630,7384	9248575,535	0,016395037	5
	23	50,6	48,84	49,72	739090,7547	862053,7325	122962,9778	7367911,491	0,016688987	5
	24	52,8	51,06	51,93	610207,3893	710015,3573	99807,96801	5928002,621	0,016836694	5
	25	55	53,28	54,14	504200,5209	585284,2672	81083,74632	4812921,107	0,016847096	5
	26	57,2	55,5	56,35	416927,023	482852,9883	65925,96533	3940310,066	0,016731162	5
	27	59,4	57,72	58,56	345011,6384	398654,4629	53642,82448	3250833	0,016501255	5
	28	61,6	59,94	60,77	285700,8272	329380,4931	43679,66585	2701181,821	0,016170576	5
	29	63,8	62,16	62,98	236745,3038	272336,3788	35591,07495	2259366,674	0,015752678	5
	30	66	64,38	65,19	196305,4264	225324,2599	29018,83347	1901494,593	0,015261065	5
	31	68,2	66,6	67,4	162874,8397	186549,2912	23674,45149	1609535,342	0,014708873	5
	32	70,4	68,82	69,61	135218,7345	154544,0298	19325,29535	1369751,647	0,014108613	5
	33	72,6	71,04	71,82	112323,8381	128107,3851	15783,54697	1171582,824	0,013471986	5
	34	74,8	73,26	74,03	93357,84294	106255,2422	12897,39924	1006841,836	0,012809757	5

35	77	75,48	76,24	77636,43945	88180,46083	10544,02138	919287,4625	0,011469776	3
36	79,2	77,7	78,45	64596,49167	73220,42062	8623,92895	843764,3194	0,010220779	3
37	81,4	79,92	80,66	53774,18036	60830,65102	7056,470663	776292,4225	0,009089965	3
38	83,6	82,14	82,87	44787,17136	50563,3765	5776,205143	715826,8486	0,008069277	3
39	85,8	84,36	85,08	37320,05029	42050,03827	4729,98798	661481,2773	0,0071506	3
40	88	86,58	87,29	31112,41159	34987,03839	3874,626796	612500,6015	0,006325915	3
41	90,2	88,8	89,5	25949,10761	29124,09883	3174,991219	568238,8125	0,005587424	3
42	92,4	91,02	91,71	21652,25767	24254,74541	2602,487734	528141,0441	0,004927638	3
43	94,6	93,24	93,92	18074,69307	20208,52068	2133,827619	491728,9168	0,004339439	3
44	96,8	95,46	96,13	15094,57471	16844,60533	1750,030616	458588,5141	0,003816124	3
45	99	97,68	98,34	12610,96983	14046,58826	1435,618432	428360,4717	0,003351426	3
46	101,2	99,9	100,55	10540,21351	11718,17482	1177,961309	400731,7705	0,002939526	3
47	103,4	102,12	102,76	8812,913473	9779,6616	966,7481268	375428,9106	0,00257505	3
48	105,6	104,34	104,97	7371,482246	8165,038583	793,5563371	352212,2108	0,002253063	3
49	107,8	106,56	107,18	6168,102453	6819,605093	651,5026402	330871,0288	0,001969053	3
50	110	108,78	109,39	5163,047848	5698,006875	534,9590271	311219,7382	0,001718911	3
51	112,2	111	111,6	4323,296967	4762,61876	439,3217926	293094,3295	0,001498909	3
52	114,4	113,22	113,81	3621,387579	3982,211087	360,8235087	276349,5298	0,001305678	3
53	116,6	115,44	116,02	3034,469496	3330,849362	296,3798669	260856,3521	0,00113618	3
54	118,8	117,66	118,23	2543,520884	2786,985731	243,4648467	246500,0043	0,000987687	3
55	121	119,88	120,44	2132,699448	2332,708358	200,0089098	233178,1001	0,000857752	3
56	123,2	122,1	122,65	1788,804951	1953,120878	164,3159272	220799,1221	0,000744187	3
57	125,4	124,32	124,86	1500,833707	1635,82906	134,9953531	209281,0995	0,000645043	3
58	127,6	126,54	127,07	1259,609098	1370,51592	110,9068219	198550,4658	0,000558583	3
59	129,8	128,76	129,28	1057,474974	1148,589841	91,11486751	188541,071	0,000483263	3
60	132	130,98	131,49	888,0410877	962,892988	74,85190028	179193,3233	0,000417716	3
61	134,2	133,2	133,7	745,9716418	807,4595629	61,48792111	170453,4431	0,000360731	3
62	136,4	135,42	135,91	626,8095376	677,315274	50,50573642	162272,8122	0,00031124	3
63	138,6	137,64	138,12	526,8302401	568,3109067	41,4806666	154607,405	0,000268297	3
64	140,8	139,86	140,33	442,9202035	476,9841303	34,0639268	147417,2904	0,000231071	3
65	143	142,08	142,54	372,4756836	400,4446941	27,96901043	140666,1939	0,000198832	3
66	145,2	144,3	144,75	313,3184805	336,2790094	22,96052889	134321,1133	0,000170938	3
67	147,4	146,52	146,96	263,625746	282,4708075	18,84506153	128351,9793	0,000146823	3
68	149,6	148,74	149,17	221,871485	237,3351362	15,46365118	122731,3555	0,000125996	3
69	151,8	150,96	151,38	186,7777799	199,4634276	12,68564771	117434,174	0,000108023	3
70	154	153,18	153,59	157,2741058	167,6777616	10,4036558	112437,4995	9,25283E-05	3
71	156,2	155,4	155,8	132,4633812	140,9927691	8,52938794	107720,3213	7,91809E-05	3
72	158,4	157,62	158,01	111,5936272	118,5838867	6,990259511	103263,3668	6,76935E-05	3
73	160,6	159,84	160,22	94,03429975	99,76089232	5,726592563	99048,93672	5,78158E-05	3
74	162,8	162,06	162,43	79,25651701	83,94583592	4,689318912	95060,75671	4,93297E-05	3
75	165	164,28	164,64	66,81653441	70,65462745	3,838093041	91283,8456	4,20457E-05	3
76	167,2	166,5	166,85	56,34192934	59,48167073	3,139741384	87704,39701	3,57991E-05	3
77	169,4	168,72	169,06	47,52004674	50,08703454	2,566987804	84309,67324	3,04471E-05	3
78	171,6	170,94	171,27	40,08833227	42,18573818	2,097405917	81087,91	2,58658E-05	3
79	173,8	173,16	173,48	33,82624207	35,53879982	1,712557747	78028,23074	2,19479E-05	3
80	176	175,38	175,69	28,54846958	29,94575507	1,397285492	75120,56946	1,86006E-05	3
81	178,2	177,6	177,9	24,09927316	25,23840227	1,13912911	72355,60109	1,57435E-05	3
82	180,4	179,82	180,11	20,34772416	21,27557149	0,927847327	69724,67865	1,33073E-05	3

83	182,6	182,04	182,32	17,1837247	17,93874837	0,755023672	67219,7764	1,12322E-05	3
84	184,8	184,26	184,53	14,51466951	15,12841192	0,61374241	64833,4384	9,46645E-06	3
85	187	186,48	186,74	12,26264686	12,76096884	0,498321979	62558,73188	7,96567E-06	3
86	189,2	188,7	188,95	10,36209065	10,76618635	0,404095696	60389,20485	6,69152E-06	3
87	191,4	190,92	191,16	8,757810599	9,085041956	0,327231357	58318,84772	5,61107E-06	3
88	193,6	193,14	193,37	7,403338915	7,667921753	0,264582837	56342,05825	4,69601E-06	3
89	195,8	195,36	195,58	6,259542417	6,473110419	0,213568001	54453,60975	3,92202E-06	3
90	198	197,58	197,79	5,293457022	5,465525297	0,172068275	52648,62199	3,26824E-06	3
91	200,2	199,8	200	4,477308764	4,615654797	0,138346034	50922,53473	2,71679E-06	3
92	202,4	202,02	202,21	3,787691257	3,898667907	0,11097665	49271,08346	2,25237E-06	3
93	204,6	204,24	204,42	3,204874412	3,29366702	0,088792607	47690,27735	1,86186E-06	3
94	206,8	206,46	206,63	2,712223315	2,783060853	0,070837538	46176,37889	1,53406E-06	3
95	209	208,68	208,84	2,295709583	2,352038015	0,056328432	44725,88537	1,25941E-06	3
96	211,2	210,9	211,05	1,94350038	1,988124943	0,044624563	43335,51185	1,02975E-06	3
97	213,4	213,12	213,26	1,645612665	1,680814613	0,035201948	42002,17551	8,38098E-07	3
98	215,6	215,34	215,47	1,393622236	1,421254591	0,027632354	40722,98131	6,78544E-07	3
99	217,8	217,56	217,68	1,180418841	1,201984894	0,021566053	39495,20876	5,46042E-07	3
100	220	219,78	219,89	1	1,016717644	0,016717644	38316,29976	4,36306E-07	3
							D=	0,4317	

Vedlegg 4 Miner-Palmgrens delskadehypotese i regneark når S-N kurven har en helning

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi		ni		Ni	ni/Ni	m	
1	3,5	0	1,75	5264110,301		1000000		4735889,699	34031873163	0,00013916	3	3
2	7	3,5	5,25	3526071,345		5264110,301		1738038,955	1260439747	0,001378915	3	3
3	10,5	7	8,75	2504444,844		3526071,345		1021626,501	272254985,3	0,003752462	3	3
4	14	10,5	12,25	1838959,712		2504444,844		665485,1322	99218289,1	0,006707283	3	3
5	17,5	14	15,75	1381148,518		1838959,712		457811,194	46682953,58	0,009806817	3	3
6	21	17,5	19,25	1054882,053		1381148,518		326266,4645	25568650,01	0,01276041	3	3
7	24,5	21	22,75	816404,4576		1054882,053		238477,5957	15490156,2	0,015395429	3	3
8	28	24,5	26,25	638695,7675		816404,4576		177708,6901	10083517,97	0,01762368	3	3
9	31,5	28	29,75	504217,8472		638695,7675		134477,9203	6926902,74	0,01941386	3	3
10	35	31,5	33,25	401158,8517		504217,8472		103058,9955	4961637,726	0,020771165	3	3
11	38,5	35	36,75	321332,7004		401158,8517		79826,15132	3674751,448	0,021722871	3	3
12	42	38,5	40,25	258934,5842		321332,7004		62398,11622	2797063,628	0,022308436	3	3
13	45,5	42	43,75	209769,9679		258934,5842		49164,61629	2178039,882	0,022572872	3	3
14	49	45,5	47,25	170759,5707		209769,9679		39010,39719	1728998,281	0,022562427	3	3
15	52,5	49	50,75	139612,1077		170759,5707		31147,46305	1395377,964	0,022321883	3	3
16	56	52,5	54,25	114602,5917		139612,1077		25009,51596	1142354,173	0,021892962	3	3
17	59,5	56	57,75	94419,00389		114602,5917		20183,58781	946987,0374	0,021313478	3	3
18	63	59,5	61,25	78054,34261		94419,00389		16364,66128	793746,3128	0,020616992	3	3
19	66,5	63	64,75	64729,43517		78054,34261		13324,90744	671862,9333	0,019832777	3	3
20	70	66,5	68,25	53836,98925		64729,43517		10892,44592	573709,4887	0,018985996	3	3
21	73,5	70	71,75	44900,54758		53836,98925		8936,441671	493780,8964	0,01809799	3	3
22	77	73,5	75,25	37544,04986		44900,54758		7356,497721	428036,1875	0,017186626	3	3
23	80,5	77	78,75	31469,04107		37544,04986		6075,008783	373463,6287	0,016266668	3	3
24	84	80,5	82,25	26437,45513		31469,04107		5031,585943	327787,4186	0,01535015	3	3
25	87,5	84	85,75	22258,50588		26437,45513		4178,949249	289266,149	0,014446728	3	3
26	91	87,5	89,25	18778,63266		22258,50588		3479,87322	256551,9533	0,01356401	3	3
27	94,5	91	92,75	15873,73682		18778,63266		2904,895842	228590,5356	0,012707857	3	3
28	98	94,5	96,25	13443,15014		15873,73682		2430,586678	204549,2001	0,011882651	3	3
29	101,5	98	99,75	11404,92198		13443,15014		2038,228158	183764,3602	0,011091531	3	3
30	105	101,5	103,25	9692,117225		11404,92198		1712,804756	165702,7893	0,010336608	3	3
31	108,5	105	106,75	8249,893869		9692,117225		1442,223357	149932,6955	0,009619138	3	3
32	112	108,5	110,25	7033,185381		8249,893869		1216,708488	136101,9055	0,008939687	3	3
33	115,5	112	113,75	6004,85473		7033,185381		1028,330651	123921,2496	0,008298259	3	3
34	119	115,5	117,25	5134,218103		6004,85473		870,6366272	113151,7945	0,007694413	3	3
35	122,5	119	120,75	4395,859762		5134,218103		738,3583406	103594,9492	0,007127358	3	3
36	126	122,5	124,25	3768,677195		4395,859762		627,1825674	95084,7366	0,006596038	3	3
37	129,5	126	127,75	3235,109174		3768,677195		533,5680211	87481,71201	0,006099195	3	3
38	133	129,5	131,25	2780,509681		3235,109174		454,5994928	80668,14379	0,005635428	3	3
39	136,5	133	134,75	2392,638572		2780,509681		387,8711087	74544,16912	0,005203239	3	3
40	140	136,5	138,25	2061,246009		2392,638572		331,3925629	69024,70831	0,004801072	3	3
41	143,5	140	141,75	1777,732457		2061,246009		283,5135521	64036,97337	0,004427342	3	3
42	147	143,5	145,25	1534,869771		1777,732457		242,8626862	59518,44509	0,004080461	3	3
43	150,5	147	148,75	1326,571819		1534,869771		208,2979517	55415,22192	0,003758858	3	3
44	154	150,5	152,25	1147,705391		1326,571819		178,8664287	51680,66533	0,003460993	3	3

1									
45	157,5	154	155,75	993,9339502	1147,705391	153,7714406	48274,28321	0,00318537	3
46	161	157,5	159,25	861,5882525	993,9339502	132,3456977	45160,80524	0,002930543	3
47	164,5	161	162,75	747,5589692	861,5882525	114,0292833	42309,41381	0,002695128	3
48	168	164,5	166,25	649,2074022	747,5589692	98,35156699	39693,10181	0,0024778	3
49	171,5	168	169,75	564,2910921	649,2074022	84,91631015	37288,13404	0,002277301	3
50	175	171,5	173,25	490,9017195	564,2910921	73,38937261	35073,59398	0,002092439	3
51	178,5	175	176,75	427,4131745	490,9017195	63,48854502	33031,00081	0,00192209	3
52	182	178,5	180,25	372,4380525	427,4131745	54,97512192	31143,98488	0,001765192	3
53	185,5	182	183,75	324,7911487	372,4380525	47,64690381	29398,01159	0,001620753	3
54	189	185,5	187,25	283,4587739	324,7911487	41,33237478	27780,14581	0,001487839	3
55	192,5	189	190,75	247,5729245	283,4587739	35,88584939	26278,85025	0,001365579	3
56	196	192,5	194,25	216,3895042	247,5729245	31,1834203	24883,81235	0,001253161	3
57	199,5	196	197,75	189,2699356	216,3895042	27,11956867	23585,79522	0,001149826	3
58	203	199,5	201,25	165,6656112	189,2699356	23,60432434	22376,50902	0,001054871	3
59	206,5	203	204,75	145,1047285	165,6656112	20,56088275	21248,49958	0,000967639	3
60	210	206,5	208,25	127,1811264	145,1047285	17,92360207	20195,05172	0,000887524	3
61	213,5	210	211,75	111,5448091	127,1811264	15,63631735	19210,10519	0,000813963	3
62	217	213,5	215,25	97,89388964	111,5448091	13,65091942	18288,18135	0,000746434	3
63	220,5	217	218,75	85,96773429	97,89388964	11,92615536	17424,31906	0,000684455	3
64	224	220,5	222,25	75,5411198	85,96773429	10,42661449	16614,01855	0,000627579	3
65	227,5	224	225,75	66,41924966	75,5411198	9,121870145	15853,19213	0,000575396	3
66	231	227,5	229,25	58,43349733	66,41924966	7,985752323	15138,12082	0,000527526	3
67	234,5	231	232,75	51,43776688	58,43349733	6,995730453	14465,41611	0,000483618	3
68	238	234,5	236,25	45,30537785	51,43776688	6,13238903	13831,98625	0,000443348	3
69	241,5	238	239,75	39,92639628	45,30537785	5,378981566	13235,0063	0,000406421	3
70	245	241,5	243,25	35,20534554	39,92639628	4,721050741	12671,89172	0,000372561	3
71	248,5	245	246,75	31,05924098	35,20534554	4,146104565	12140,27476	0,000341517	3
72	252	248,5	250,25	27,415901	31,05924098	3,64333998	11637,98362	0,000313056	3
73	255,5	252	253,75	24,21249428	27,415901	3,203406713	11163,02371	0,000286966	3
74	259	255.5	257.25	21.39428899	24.21249428	2.818205294	10713.56107	0.00026305	3
75	262.5	259	260.75	18.91357486	21.39428899	2.480714128	10287.90745	0.000241129	3
76	266	262.5	264.25	16.72873356	18.91357486	2.184841299	9884.506972	0.000221037	3
77	269.5	266	267.75	14.80343613	16.72873356	1.925297431	9501.924198	0.000202622	3
78	273	269.5	271.25	13.10594961	14.80343613	1.697486526	9138.833383	0.000185744	3
79	276.5	273	274.75	11.60853747	13.10594961	1.49741214	8794.008817	0.000170276	3
80	280	276.5	278.25	10.28694079	11.60853747	1.321596676	8466.316132	0.000156101	3
81	283.5	280	281.75	9.119928894	10.28694079	1.167011894	8154,704455	0.000143109	3
82	287	283.5	285.25	8.088909869	9.119928894	1.031019026	7858.199327	0.000131203	3
83	290.5	287	288.75	7,177592738	8.088909869	0.91131713	7575,896299	0.000120292	3
84	290,5	290.5	292.25	6 371694226	7 177592738	0.805898512	7306 95513	0.000110292	3
85	297 5	294	295 75	5 658684015	6 371694226	0 713010211	7050 594536	0.000101128	3
86	301	297 5	299.25	5,027563317	5 658684015	0.631120698	6806 087416	9 27289F-05	3
87	304 5	301	302 75	4 468672242	5 027563317	0 558891075	6572 756519	8 50315E-05	3
88	308	304 5	306.25	3 97352212	4 468672242	0.495150117	6349 970503	7 79768E-05	3
89	311 5	308	309.75	3.534649464	3.973522126	0.438872661	6137,140344	7.15109F-05	2 2
90	315	311 5	313.25	3.145488605	3.534649464	0.38916086	5933,716065	6.55847F-05	२ २
91	318.5	315	316.75	2,800260699	3,145488605	0,345227905	5739.183746	6,01528E-05	3
92	322	318.5	320,25	2,493876791	2,800260699	0,306383908	5553.062797	5,51739E-05	3
-	-	- / -	-, -	=					-
ľ									
-----	-------	-------	--------	-------------	-------------	-------------	-------------	-------------	---
93	325,5	322	323,75	2,221853176	2,493876791	0,272023616	5374,903467	5,061E-05	3
94	329	325,5	327,25	1,980237441	2,221853176	0,241615734	5204,284553	4,64263E-05	3
95	332,5	329	330,75	1,765543801	1,980237441	0,214693641	5040,811315	4,25911E-05	3
96	336	332,5	334,25	1,574696512	1,765543801	0,190847289	4884,11355	3,90751E-05	3
97	339,5	336	337,75	1,404980352	1,574696512	0,16971616	4733,843836	3,58517E-05	3
98	343	339,5	341,25	1,253997232	1,404980352	0,15098312	4589,67591	3,28962E-05	3
99	346,5	343	344,75	1,119628179	1,253997232	0,134369052	4451,303182	3,01865E-05	3
100	350	346,5	348,25	1	1,119628179	0,119628179	4318,437363	2,77017E-05	3
						D=		0,5872	

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har to helninger

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi	ni		Ni	ni/Ni	m
1	3,5	0	1,75	5264110,301	10000000		4735889,699	7,68794E+12	6,16016E-07	5
2	7	3,5	5,25	3526071,345	5264110,301		1738038,955	31637596510	5,49359E-05	5
3	10,5	7	8,75	2504444,844	3526071,345		1021626,501	2460139505	0,000415272	5
4	14	10,5	12,25	1838959,712	2504444,844		665485,1322	457424641,6	0,001454852	5
5	17,5	14	15,75	1381148,518	1838959,712		457811,194	130195870,4	0,003516327	5
6	21	17,5	19,25	1054882,053	1381148,518		326266,4645	47736033,63	0,006834805	5
7	24,5	21	22,75	816404,4576	1054882,053		238477,5957	20705846,74	0,011517404	5
8	28	24,5	26,25	638695,7675	816404,4576		177708,6901	10083517,97	0,01762368	3
9	31,5	28	29,75	504217,8472	638695,7675		134477,9203	6926902,74	0,01941386	3
10	35	31,5	33,25	401158,8517	504217,8472		103058,9955	4961637,726	0,020771165	3
11	38,5	35	36,75	321332,7004	401158,8517		79826,15132	3674751,448	0,021722871	3
12	42	38,5	40,25	258934,5842	321332,7004		62398,11622	2797063,628	0,022308436	3
13	45,5	42	43,75	209769,9679	258934,5842		49164,61629	2178039,882	0,022572872	3
14	49	45,5	47,25	170759,5707	209769,9679		39010,39719	1728998,281	0,022562427	3
15	52,5	49	50,75	139612,1077	170759,5707		31147,46305	1395377,964	0,022321883	3
16	56	52,5	54,25	114602,5917	139612,1077		25009,51596	1142354,173	0,021892962	3
17	59,5	56	57,75	94419,00389	114602,5917		20183,58781	946987,0374	0,021313478	3
18	63	59,5	61,25	78054,34261	94419,00389		16364,66128	793746,3128	0,020616992	3
19	66,5	63	64,75	64729,43517	78054,34261		13324,90744	671862,9333	0,019832777	3
20	70	66,5	68,25	53836,98925	64729,43517		10892,44592	573709,4887	0,018985996	3
21	73,5	70	71,75	44900,54758	53836,98925		8936,441671	493780,8964	0,01809799	3
22	77	73,5	75,25	37544,04986	44900,54758		7356,497721	428036,1875	0,017186626	3
23	80,5	77	78,75	31469,04107	37544,04986		6075,008783	373463,6287	0,016266668	3
24	84	80,5	82,25	26437,45513	31469,04107		5031,585943	327787,4186	0,01535015	3
25	87,5	84	85,75	22258,50588	26437,45513		4178,949249	289266,149	0,014446728	3
26	91	87,5	89,25	18778,63266	22258,50588		3479,87322	256551,9533	0,01356401	3
27	94,5	91	92,75	15873,73682	18778,63266		2904,895842	228590,5356	0,012707857	3
28	98	94,5	96,25	13443,15014	15873,73682		2430,586678	204549,2001	0,011882651	3
29	101,5	98	99,75	11404,92198	13443,15014		2038,228158	183764,3602	0,011091531	3
30	105	101,5	103,25	9692,117225	11404,92198		1712,804756	165702,7893	0,010336608	3
31	108,5	105	106,75	8249,893869	9692,117225		1442,223357	149932,6955	0,009619138	3
32	112	108,5	110,25	7033,185381	8249,893869		1216,708488	136101,9055	0,008939687	3
33	115,5	112	113,75	6004,85473	7033,185381		1028,330651	123921,2496	0,008298259	3
34	119	115,5	117,25	5134,218103	6004,85473		870,6366272	113151,7945	0,007694413	3
35	122,5	119	120,75	4395,859762	5134,218103		738,3583406	103594,9492	0,007127358	3

36	126	122,5	124,25	3768,677195	4395,859762	627,1825674	95084,7366	0,006596038	3
37	129,5	126	127,75	3235,109174	3768,677195	533,5680211	87481,71201	0,006099195	3
38	133	129,5	131,25	2780,509681	3235,109174	454,5994928	80668,14379	0,005635428	3
39	136,5	133	134,75	2392,638572	2780,509681	387,8711087	74544,16912	0,005203239	3
40	140	136,5	138,25	2061,246009	2392,638572	331,3925629	69024,70831	0,004801072	3
41	143,5	140	141,75	1777,732457	2061,246009	283,5135521	64036,97337	0,004427342	3
42	147	143,5	145,25	1534,869771	1777,732457	242,8626862	59518,44509	0,004080461	3
43	150,5	147	148,75	1326,571819	1534,869771	208,2979517	55415,22192	0,003758858	3
44	154	150,5	152,25	1147,705391	1326,571819	178,8664287	51680,66533	0,003460993	3
45	157,5	154	155,75	993,9339502	1147,705391	153,7714406	48274,28321	0,00318537	3
46	161	157,5	159,25	861,5882525	993,9339502	132,3456977	45160,80524	0,002930543	3
47	164,5	161	162,75	747,5589692	861,5882525	114,0292833	42309,41381	0,002695128	3
48	168	164,5	166,25	649,2074022	747,5589692	98,35156699	39693,10181	0,0024778	3
49	171,5	168	169,75	564,2910921	649,2074022	84,91631015	37288,13404	0,002277301	3
50	175	171,5	173,25	490,9017195	564,2910921	73,38937261	35073,59398	0,002092439	3
51	178,5	175	176,75	427,4131745	490,9017195	63,48854502	33031,00081	0,00192209	3
52	182	178,5	180,25	372,4380525	427,4131745	54,97512192	31143,98488	0,001765192	3
53	185,5	182	183,75	324,7911487	372,4380525	47,64690381	29398,01159	0,001620753	3
54	189	185,5	187,25	283,4587739	324,7911487	41,33237478	27780,14581	0,001487839	3
55	192,5	189	190,75	247,5729245	283,4587739	35,88584939	26278,85025	0,001365579	3
56	196	192,5	194,25	216,3895042	247,5729245	31,1834203	24883,81235	0,001253161	3
57	199,5	196	197,75	189,2699356	216,3895042	27,11956867	23585,79522	0,001149826	3
58	203	199,5	201,25	165,6656112	189,2699356	23,60432434	22376,50902	0,001054871	3
59	206,5	203	204,75	145,1047285	165,6656112	20,56088275	21248,49958	0,000967639	3
60	210	206,5	208,25	127,1811264	145,1047285	17,92360207	20195,05172	0,000887524	3
61	213,5	210	211,75	111,5448091	127,1811264	15,63631735	19210,10519	0,000813963	3
62	217	213,5	215,25	97,89388964	111,5448091	13,65091942	18288,18135	0,000746434	3
63	220,5	217	218,75	85,96773429	97,89388964	11,92615536	17424,31906	0,000684455	3
64	224	220,5	222,25	75,5411198	85,96773429	10,42661449	16614,01855	0,000627579	3
65	227,5	224	225,75	66,41924966	75,5411198	9,121870145	15853,19213	0,000575396	3
66	231	227,5	229,25	58,43349733	66,41924966	7,985752323	15138,12082	0,000527526	3
67	234,5	231	232,75	51,43776688	58,43349733	6,995730453	14465,41611	0,000483618	3
68	238	234,5	236,25	45,30537785	51,43776688	6,13238903	13831,98625	0,000443348	3
69	241,5	238	239,75	39,92639628	45,30537785	5,378981566	13235,0063	0,000406421	3
70	245	241,5	243,25	35,20534554	39,92639628	4,721050741	12671,89172	0,000372561	3
71	248,5	245	246,75	31,05924098	35,20534554	4,146104565	12140,27476	0,000341517	3
72	252	248,5	250,25	27,415901	31,05924098	3,64333998	11637,98362	0,000313056	3
73	255,5	252	253,75	24,21249428	27,415901	3,203406713	11163,02371	0,000286966	3
74	259	255,5	257,25	21,39428899	24,21249428	2,818205294	10713,56107	0,00026305	3
75	262,5	259	260,75	18,91357486	21,39428899	2,480714128	10287,90745	0,000241129	3
76	266	262,5	264,25	16,72873356	18,91357486	2,184841299	9884,506972	0,000221037	3
77	269,5	266	267,75	14,80343613	16,72873356	1,925297431	9501,924198	0,000202622	3
78	273	269,5	271,25	13,10594961	14,80343613	1,697486526	9138,833383	0,000185744	3
79	276,5	273	274,75	11,60853747	13,10594961	1,49741214	8794,008817	0,000170276	3
80	280	276,5	278,25	10,28694079	11,60853747	1,321596676	8466,316132	0,000156101	3
81	283,5	280	281,75	9,119928894	10,28694079	1,167011894	8154,704455	0,000143109	3
82	287	283,5	285,25	8,088909869	9,119928894	1,031019026	7858,199327	0,000131203	3
83	290,5	287	288,75	7,177592738	8,088909869	0,91131713	7575,896299	0,000120292	3

84	294	290,5	292,25	6,371694226	7,177592738	0,805898512	7306,95513	0,000110292	3
85	297,5	294	295,75	5,658684015	6,371694226 0,713010211		7050,594536	0,000101128	3
86	301	297,5	299,25	5,027563317	5,658684015 0,631120698		6806,087416	9,27289E-05	3
87	304,5	301	302,75	4,468672242	5,027563317	0,558891075	6572,756519	8,50315E-05	3
88	308	304,5	306,25	3,973522126	4,468672242	0,495150117	6349,970503	7,79768E-05	3
89	311,5	308	309,75	3,534649464	3,973522126	0,438872661	6137,140344	7,15109E-05	3
90	315	311,5	313,25	3,145488605	3,534649464	0,38916086	5933,716065	6,55847E-05	3
91	318,5	315	316,75	2,800260699	3,145488605	0,345227905	5739,183746	6,01528E-05	3
92	322	318,5	320,25	2,493876791	2,800260699 0,306383908		5553,062797	5,51739E-05	3
93	325,5	322	323,75	2,221853176	2,493876791	0,272023616	5374,903467	5,061E-05	3
94	329	325,5	327,25	1,980237441	2,221853176	0,241615734	5204,284553	4,64263E-05	3
95	332,5	329	330,75	1,765543801	1,980237441	0,214693641	5040,811315	4,25911E-05	3
96	336	332,5	334,25	1,574696512	1,765543801	0,190847289	4884,11355	3,90751E-05	3
97	339,5	336	337,75	1,404980352	1,574696512	0,16971616	4733,843836	3,58517E-05	3
98	343	339,5	341,25	1,253997232	1,404980352	0,15098312	4589,67591	3,28962E-05	3
99	346,5	343	344,75	1,119628179	1,253997232	0,134369052	4451,303182	3,01865E-05	3
100	350	346,5	348,25	1	1,119628179	0,119628179	4318,437363	2,77017E-05	3
							D=	0,5610	

Vedlegg 5

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har en helning

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi	ni	Ni	ni/Ni	m
1	2	0	1	89027343,06	10000000	10972656,94	1,51356E+12	7,24956E-06	5
2	4	2	3	77947298,13	89027343,06	11080044,93	56057824016	0,000197654	5
3	6	4	5	67761924,62	77947298,13	10185373,51	12108489987	0,000841176	5
4	8	6	7	58623333,17	67761924,62	9138591,457	4412715010	0,002070968	5
5	10	8	9	50529641,89	58623333,17	8093691,274	2076215704	0,00389829	5
6	12	10	11	43422016,39	50529641,89	7107625,504	1137160968	0,006250325	5
7	14	12	13	37218796,67	43422016,39	6203219,714	688921824,5	0,009004243	5
8	16	14	15	31830851,01	37218796,67	5387945,664	448462592,1	0,012014259	5
9	18	16	17	27169258,03	31830851,01	4661592,977	308072714,9	0,01513147	5
10	20	18	19	23149275,96	27169258,03	4019982,066	220667917,8	0,018217338	5
11	22	20	21	19692326,93	23149275,96	3456949,03	163433889,3	0,021151972	5
12	24	22	23	16726857,48	19692326,93	2965469,458	124398886,2	0,023838392	5
13	26	24	25	14188545	16726857,48	2538312,48	96867919,9	0,02620385	5
14	28	26	27	12020122,88	14188545	2168422,112	76896877,94	0,028199092	5
15	30	28	29	10170989,35	12020122,88	1849133,535	62059176,2	0,029796295	5
16	32	30	31	8596702,438	10170989,35	1574286,912	50805990,01	0,030986246	5
17	34	32	33	7258425,607	8596702,438	1338276,831	42117072,89	0,031775162	5
18	36	34	35	6122364,216	7258425,607	1136061,39	35301720,08	0,032181474	5
19	38	36	37	5159217,823	6122364,216	963146,3937	29880979,38	0,032232759	5
20	40	38	39	4343663,005	5159217,823	815554,8177	25515623,13	0,031962959	5
21	42	40	41	3653874,787	4343663,005	689788,2185	21960813,81	0,031409957	5
22	44	42	43	3071090,287	3653874,787	582784,4998	19036830,07	0,030613526	5
23	46	44	45	2579215,38	3071090,287	491874,9069	16609725,63	0,029613668	3
24	48	46	47	2164473,294	2579215,38	414742,0859	14578284,66	0,028449306	3
25	50	48	49	1815092,964	2164473,294	349380,3295	12865058,34	0,027157306	3
26	52	50	51	1521034,313	1815092,964	294058,6515	11410100,55	0,025771784	3
27	54	52	53	1273747,314	1521034,313	247286,9989	10166521,68	0,024323658	3
28	56	54	55	1065961,62	1273747,314	207785,6944	9097287,744	0,0228404	3
29	58	56	57	891503,5658	1065961,62	174458,0538	8172885,846	0,021345955	3
30	60	58	59	745137,5313	891503,5658	146366,0345	7369600,828	0,019860782	3
31	62	60	61	622428,8173	745137,5313	122708,714	6668228,832	0,018401995	3
32	64	62	63	519625,4449	622428,8173	102803,3724	6053107,01	0,016983571	3
33	66	64	65	433556,5066	519625,4449	86068,93835	5511374,596	0,015616601	3
34	68	66	67	361544,9449	433556,5066	72011,56166	5032405,078	0,014309572	3
35	70	68	69	301332,8614	361544,9449	60212,08351	4607366,156	0,013068656	3
36	72	70	71	251017,6733	301332,8614	50315,18805	4228876,029	0,011898005	3
37	74	72	73	208997,6369	251017,6733	42020,03642	3890732,92	0,010800031	3
38	76	74	75	173925,4361	208997,6369	35072,20088	3587700,737	0,009775676	3
39	78	76	77	144668,7016	173925,4361	29256,73448	3315338,099	0,008824661	3
40	80	78	79	120276,4726	144668,7016	24392,22893	3069861,103	0,007945711	3
41	82	80	81	99950,74302	120276,4726	20325,72962	2848032,516	0,007136762	3
42	84	82	83	83022,35122	99950,74302	16928,39181	2647071,809	0,006395139	3
43	86	84	85	68930,57494	83022,35122	14091,77627	2464581,719	0,005717715	3

44	88	86	87	57205,88001	68930,57494	11724,69494	2298488,008	0,005101047	3
45	90	88	89	47455,35109	57205,88001	9750,528916	2146989,794	0,004541488	3
46	92	90	91	39350,39993	47455,35109	8104,951158	2008518,439	0,004035288	3
47	94	92	93	32616,40472	39350,39993	6733,995217	1881703,334	0,00357867	3
48	96	94	95	27023,98524	32616,40472	5592,41948	1765343,343	0,003167893	3
49	98	96	97	22381,662	27023,98524	4642,323239	1658382,847	0,002799307	3
50	100	98	99	18529,68489	22381,662	3851,977109	1559891,589	0,002469388	3
51	102	100	101	15334,84928	18529,68489	3194,835612	1469047,636	0,002174767	3
52	104	102	103	12686,1449	15334,84928	2648,704372	1385122,952	0,001912252	3
53	106	104	105	10491,10653	12686,1449	2195,038376	1307471,114	0,001678843	3
54	108	106	107	8672,755323	10491,10653	1818,351204	1235516,834	0,001471733	3
55	110	108	109	7167,037213	8672,755323	1505,71811	1168746,992	0,001288318	3
56	112	110	111	5920,678823	7167,037213	1246,35839	1106702,94	0,001126191	3
57	114	112	113	4889,394151	5920,678823	1031,284672	1048973,869	0,000983137	3
58	116	114	115	4036,385536	4889,394151	853,0086157	995191,0896	0,00085713	3
59	118	116	117	3331,091385	4036,385536	705,2941506	945023,0789	0,000746325	3
60	120	118	119	2748,140679	3331,091385	582,950706	898171,1805	0,000649042	3
61	122	120	121	2266,4806	2748,140679	481,6600792	854365,8663	0,000563763	3
62	124	122	123	1868,649036	2266,4806	397,8315637	813363,4744	0,000489119	3
63	126	124	125	1540,168232	1868,649036	328,4808041	774943,3592	0,000423877	3
64	128	126	127	1269,039678	1540,168232	271,1285541	738905,3944	0,000366933	3
65	130	128	129	1045,323557	1269,039678	223,7161207	705067,7804	0,000317297	3
66	132	130	131	860,7887727	1045,323557	184,5347848	673265,1162	0,000274089	3
67	134	132	133	708,6218493	860,7887727	152,1669234	643346,6992	0,000236524	3
68	136	134	135	583,1849301	708,6218493	125,4369192	615175,0235	0,000203904	3
69	138	136	137	479,8146757	583,1849301	103,3702544	588624,4512	0,000175613	3
70	140	138	139	394,6552344	479,8146757	85,15944133	563580,0344	0,000151104	3
71	142	140	141	324,519572	394,6552344	70,13566245	539936,469	0,000129896	3
72	144	142	143	266,7743974	324,519572	57,74517452	517597,1634	0,000111564	3
73	146	144	145	219,2447109	266,7743974	47,52968654	496473,4096	9,57346E-05	3
74	148	146	147	180,1346609	219,2447109	39,11005001	476483,6422	8,20806E-05	3
75	150	148	149	147,9619522	180,1346609	32,17270864	457552,7762	7,03147E-05	3
76	152	150	151	121,5035062	147,9619522	26,45844601	439611,6147	6,0186E-05	3
77	154	152	153	99,75046077	121,5035062	21,75304545	422596,3168	5,14748E-05	3
78	156	154	155	81,87091994	99,75046077	17,87954083	406447,9201	4,39897E-05	3
79	158	156	157	67,17913008	81,87091994	14,69178986	391111,9115	3,75642E-05	3
80	160	158	159	55,10998354	67,17913008	12,06914654	376537,8401	3,20529E-05	3
81	162	160	161	45,19793694	55,10998354	9,912046601	362678,9685	2,73301E-05	3
82	164	162	163	37,05958601	45,19793694	8,13835093	349491,958	2,32862E-05	3
83	166	164	165	30,37926796	37,05958601	6,680318049	336936,5831	1,98266E-05	3
84	168	166	167	24,89716954	30,37926796	5,482098422	324975,4745	1,68693E-05	3
85	170	168	169	20,39950811	24,89716954	4,497661429	313573,8846	1,43432E-05	3
86	172	170	171	16,71042717	20,39950811	3,689080945	302699,4758	1,21873E-05	3
87	174	172	173	13,68530915	16,71042717	3,025118021	292322,1274	1,03486E-05	3
88	176	174	175	11,20525955	13,68530915	2,4800496	282413,7606	8,78162E-06	3
89	178	176	177	9,172558643	11,20525955	2,032700904	272948,1788	7,4472E-06	3
90	180	178	179	7,506912277	9,172558643	1,665646366	263900,9217	6,31164E-06	3
91	182	180	181	6,142362313	7,506912277	1,364549965	255249,1329	5,34595E-06	3

92	184	182	183	5,024741475	6,142362313	1,117620837	246971,4382	4,5253E-06	3
93	186	184	185	4,109577307	5,024741475	0,915164169	239047,835	3,82837E-06	3
94	188	186	187	3,360366496	4,109577307	0,749210811	231459,5905	3,2369E-06	3
95	190	188	189	2,747154573	3,360366496	0,613211923	224189,1485	2,73524E-06	3
96	192	190	191	2,245367269	2,747154573	0,501787304	217220,0445	2,31004E-06	3
97	194	192	193	1,834849231	2,245367269	0,410518038	210536,8268	1,94986E-06	3
98	196	194	195	1,499073524	1,834849231	0,335775708	204124,985	1,64495E-06	3
99	198	196	197	1,224491761	1,499073524	0,274581763	197970,8836	1,38698E-06	3
100	200	198	199	1	1,224491761	0,224491761	0,224491761 192061,7009		3
							D=	0,8069	

Miner-Palmgrens delskadehypotese i regneark når S-N kurven har to helninger

Blokk	Δσi+1	Δσί	Δσmi	Hi+1	Hi ni		Ni	ni/Ni	m	
1	2	0	1	89027343,06	10000000		10972656,94	1,34896E+16	8,13414E-10	5
2	4	2	3	77947298,13	89027343,06		11080044,93	5,55129E+13	1,99594E-07	5
3	6	4	5	67761924,62	77947298,13		10185373,51	4,31668E+12	2,35954E-06	5
4	8	6	7	58623333,17	67761924,62		9138591,457	8,0262E+11	1,1386E-05	5
5	10	8	9	50529641,89	58623333,17		8093691,274	2,28448E+11	3,5429E-05	5
6	12	10	11	43422016,39	50529641,89		7107625,504	83759981782	8,48571E-05	5
7	14	12	13	37218796,67	43422016,39		6203219,714	36331492449	0,000170739	5
8	16	14	15	31830851,01	37218796,67		5387945,664	17764120265	0,000303305	5
9	18	16	17	27169258,03	31830851,01		4661592,977	9500695370	0,000490658	5
10	20	18	19	23149275,96	27169258,03		4019982,066	5447935977	0,000737891	5
11	22	20	21	19692326,93	23149275,96		3456949,03	3302961613	0,001046621	5
12	24	22	23	16726857,48	19692326,93		2965469,458	2095853006	0,001414922	5
13	26	24	25	14188545	16726857,48		2538312,48	1381337992	0,001837575	5
14	28	26	27	12020122,88	14188545		2168422,112	940115426,6	0,002306549	5
15	30	28	29	10170989,35	12020122,88		1849133,535	657672996,6	0,002811631	5
16	32	30	31	8596702,438	10170989,35		1574286,912	471185080,8	0,003341122	5
17	34	32	33	7258425,607	8596702,438		1338276,831	344691283,1	0,003882537	5
18	36	34	35	6122364,216	7258425,607		1136061,39	256838295	0,004423255	5
19	38	36	37	5159217,823	6122364,216		963146,3937	194532146,8	0,004951091	5
20	40	38	39	4343663,005	5159217,823		815554,8177	149512314,6	0,005454767	5
21	42	40	41	3653874,787	4343663,005		689788,2185	116434241	0,005924273	5
22	44	42	43	3071090,287	3653874,787		582784,4998	91760912,17	0,006351119	5
23	46	44	45	2579215,38	3071090,287		491874,9069	73103375,57	0,006728484	5
24	48	46	47	2164473,294	2579215,38		414742,0859	58818061,93	0,007051271	5
25	50	48	49	1815092,964	2164473,294		349380,3295	47755082,52	0,007316087	5
26	52	50	51	1521034,313	1815092,964		294058,6515	39097511,81	0,00752116	5
27	54	52	53	1273747,314	1521034,313		247286,9989	32256753,25	0,007666209	5
28	56	54	55	1065961,62	1273747,314		207785,6944	26803194,17	0,007752274	5
29	58	56	57	891503,5658	1065961,62		174458,0538	22419489,62	0,007781535	5
30	60	58	59	745137,5313	891503,5658		146366,0345	18868611,47	0,007757117	5
31	62	60	61	622428,8173	745137,5313		122708,714	15971688,26	0,007682889	5
32	64	62	63	519625,4449	622428,8173		102803,3724	13592434,62	0,007563279	5
33	66	64	65	433556,5066	519625,4449		86068,93835	11626077,58	0,007403093	5
34	68	66	67	361544,9449	433556,5066		72011,56166	9991391,728	0,00720736	5

	35	70	68	69	301332,8614	361544,9449	60212,08351	8624909,491	0,006981184	5
	36	72	70	71	251017,6733	301332,8614	50315,18805	7476670,756	0,006729625	5
	37	74	72	73	208997,6369	251017,6733	42020,03642	6507073,307	0,006457594	5
	38	76	74	75	173925,4361	208997,6369	35072,20088	5684518,485	0,006169775	5
	39	78	76	77	144668,7016	173925,4361	29256,73448	4983636,686	0,005870559	5
	40	80	78	79	120276,4726	144668,7016	24392,22893	4383939,414	0,005563998	5
	41	82	80	81	99950,74302	120276,4726	20325,72962	3868787,764	0,005253772	5
	42	84	82	83	83022,35122	99950,74302	16928,39181	3424597,522	0,004943177	5
	43	86	84	85	68930,57494	83022,35122	14091,77627	3040222,518	0,004635113	5
	44	88	86	87	57205,88001	68930,57494	11724,69494	2706473,237	0,004332093	5
	45	90	88	89	47455,35109	57205,88001	9750,528916	2415738,756	0,004036251	5
	46	92	90	91	39350,39993	47455,35109	8104,951158	2161688,133	0,003749362	5
	47	94	92	93	32616,40472	39350,39993	6733,995217	1939033,254	0,003472862	5
	48	96	94	95	27023,98524	32616,40472	5592,41948	1765343,343	0,003167893	3
	49	98	96	97	22381,662	27023,98524	4642,323239	1658382,847	0,002799307	3
	50	100	98	99	18529,68489	22381,662	3851,977109	1559891,589	0,002469388	3
	51	102	100	101	15334,84928	18529,68489	3194,835612	1469047,636	0,002174767	3
	52	104	102	103	12686,1449	15334,84928	2648,704372	1385122,952	0,001912252	3
	53	106	104	105	10491,10653	12686,1449	2195,038376	1307471,114	0,001678843	3
	54	108	106	107	8672,755323	10491,10653	1818,351204	1235516,834	0,001471733	3
	55	110	108	109	7167,037213	8672,755323	1505,71811	1168746,992	0,001288318	3
	56	112	110	111	5920,678823	7167,037213	1246,35839	1106702,94	0,001126191	3
	57	114	112	113	4889,394151	5920,678823	1031,284672	1048973,869	0,000983137	3
	58	116	114	115	4036,385536	4889,394151	853,0086157	995191,0896	0,00085713	3
	59	118	116	117	3331,091385	4036,385536	705,2941506	945023,0789	0,000746325	3
	60	120	118	119	2748,140679	3331,091385	582,950706	898171,1805	0,000649042	3
	61	122	120	121	2266,4806	2748,140679	481,6600792	854365,8663	0,000563763	3
	62	124	122	123	1868,649036	2266,4806	397,8315637	813363,4744	0,000489119	3
	63	126	124	125	1540,168232	1868,649036	328,4808041	774943,3592	0,000423877	3
	64	128	126	127	1269,039678	1540,168232	271,1285541	738905,3944	0,000366933	3
	65	130	128	129	1045,323557	1269,039678	223,7161207	705067,7804	0,000317297	3
	66	132	130	131	860,7887727	1045,323557	184,5347848	673265,1162	0,000274089	3
	67	134	132	133	708,6218493	860,7887727	152,1669234	643346,6992	0,000236524	3
	68	136	134	135	583,1849301	708,6218493	125,4369192	615175,0235	0,000203904	3
	69	138	136	137	479,8146757	583,1849301	103,3702544	588624,4512	0,000175613	3
	70	140	138	139	394,6552344	479,8146757	85,15944133	563580,0344	0,000151104	3
	71	142	140	141	324,519572	394,6552344	70,13566245	539936,469	0,000129896	3
	72	144	142	143	266,7743974	324,519572	57,74517452	517597,1634	0,000111564	3
	73	146	144	145	219,2447109	266,7743974	47,52968654	496473,4096	9,57346E-05	3
	74	148	146	147	180,1346609	219,2447109	39,11005001	476483,6422	8,20806E-05	3
	75	150	148	149	147,9619522	180,1346609	32,17270864	457552,7762	7,03147E-05	3
	76	152	150	151	121,5035062	147,9619522	26,45844601	439611,6147	6,0186E-05	3
	77	154	152	153	99,75046077	121,5035062	21,75304545	422596,3168	5,14748E-05	3
	78	156	154	155	81,87091994	99,75046077	17,87954083	406447,9201	4,39897E-05	3
	79	158	156	157	67,17913008	81,87091994	14,69178986	391111,9115	3,75642E-05	3
	80	160	158	159	55,10998354	67,17913008	12,06914654	376537,8401	3,20529E-05	3
	81	162	160	161	45,19793694	55,10998354	9,912046601	362678,9685	2,73301E-05	3
	82	164	162	163	37,05958601	45,19793694	8,13835093	349491,958	2,32862E-05	3
٠								-		

0	165	30,37926796	37,05958601	(6,680318049		336936,5831	1,98266E-05	3
4	167	24,89716954	30,37926796	ļ	5,482098422		324975,4745	1,68693E-05	3
20,39950811		20,39950811	24,89716954	4	4,497661429		313573,8846	1,43432E-05	3
16,71042717		16,71042717	20,39950811	3	3,689080945		302699,4758	1,21873E-05	3
3	173	13,68530915	16,71042717		3,025118021		292322,1274	1,03486E-05	3
1	175	11,20525955	13,68530915		2,4800496		282413,7606	8,78162E-06	3
,1	177	9,172558643	11,20525955	i	2,032700904		272948,1788	7,4472E-06	3
,5	179	7,506912277	9,172558643	-	1,665646366		263900,9217	6,31164E-06	3
,1	181	6,142362313	7,506912277	2	1,364549965		255249,1329	5,34595E-06	3
,C	183	5,024741475	6,142362313	-	1,117620837		246971,4382	4,5253E-06	3
,1	185	4,109577307	5,024741475	(0,915164169		239047,835	3,82837E-06	3
,З	187	3,360366496	4,109577307	(0,749210811		231459,5905	3,2369E-06	3
,7	189	2,747154573	3,360366496	(0,613211923		224189,1485	2,73524E-06	3
,2	191	2,245367269	2,747154573	(0,501787304		217220,0445	2,31004E-06	3
,8	193	1,834849231	2,245367269	(0,410518038		210536,8268	1,94986E-06	3
,4	195	1,499073524	1,834849231	(0,335775708		204124,985	1,64495E-06	3
,2	197	1,224491761	1,499073524	(0,274581763		197970,8836	1,38698E-06	3
	199	1	1,224491761	(0,224491761		192061,7009	1,16885E-06	3
				D=			0,2286		

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway