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Abstract

House prices vary with location. At the same time the border between two neigh-
boring housing markets tends to be fuzzy. When we seek to explain or predict house
prices we need to correct for spatial price variation. A much used way is to include
neighborhood dummy variables. In general, it is not clear how to choose a spatial
subdivision in the vast space of all possible spatial aggregations. We take a biologi-
cally inspired approach, where different spatial aggregations mutate and recombine
according to their explanatory power in a standard hedonic housing market model.
We find that the genetic algorithm consistently finds aggregations that outperform
conventional aggregation both in and out of sample. A comparison of best aggrega-
tions of different runs of the genetic algorithm shows that even though they converge
to a similar high explanatory power, they tend to be genetically and economically
different. Differences tend to be largely confined to areas with few housing market
transactions.

Keywords: House price prediction, Machine learning, Genetic algorithm, Spatial
aggregation

JEL: R31, R21, C45

1. Introduction

House price prediction is hard. Every house is essentially unique and a given
house may be sold just few times during the course of a century. In addition, houses
tend to vary in characteristics and amenities. The housing market affects the wider
economy through multiple channels, and house price movements are therefore closely

watched by banks, policy makers and the general public.
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A wide array of house price prediction models is in commercial and academic
use. The models can be divided into two groups, hedonic models (|[Ros74],|GT03])
and repeat sales models ([BMNG3],[CS89]). There are also hybrid models that seek
to utilize the combined strength of hedonic and repeat sales models ([EQR9S]).
Whether or not the aim of the house price model is to satisfy academic or commercial
needs, model selection is a delicate task. Schooled professionals combine housing
market insight with sophisticated statistical tools and typically pit different models
against each other to find the most attractive.

The rapid advancement of machine learning has created intriguing scenarios for
model selection. In fact, the future may already be here in the sense that machine
learning is already on it’s way into commercial house price prediction.? Machine
learning is also making an entry in academic research [AI17]. In some ways, the
shift has actually been pretty slow given that machine learning technology oftentimes
outperforms traditional econometric approaches by a wide margin when it comes to
predictive power. Part of this econometric inertia may be due to the "black box"
nature of some machine learning methods which may fail the academic transparency
requirements.® Moreover, some machine learning algorithms are known to have both
poor asymptotics and biases ([CCD*17]).

A third potential reason is that machine learning represents a paradigm shift,
one that comes with a new vocabulary. In particular, taking the model to the data
is learning, and the data set is routinely divided into three parts the training set,
the validation set and test set.* This learning tends to be an overt data mining, and
the role of the validation set is to pinpoint when in-sample prediction comes at the
expense of out-of-sample prediction (measured on the validation set).

Apart from relabeling data sets and potentially dividing the data set into three
(usually unequal) parts, one big difference between traditional econometric ap-
proaches and machine learning is the change in viewpoint. Often the goal is not
one good model, but an ensemble of models. Each of these models may be far
from impressive (weak learners), but in aggregate outperforming a single carefully
selected model. The quiz show analog to this is instead of searching for the ultimate
know-it-all quiz expert, we select two hundred good quizzers and select answers by
way of majority vote.

The aim of this paper is twofold. First, to contribute to the house price modeling

literature regarding spatial aggregation and in particular how to identify submarkets

2As of spring 2017 Zillow the online real estate database company, has launched a machine
learning competition for house price prediction with a prize fund of 1.2 million USD.

3 Some of the machine learning approaches that are close to much used econometric tools, like
LASSO and Ridge- regression, already staples of most econometricians’ tool boxes, and method-
ological advances warrant publication in top journals ([Koz17]).

4This is only true given enough data to warrant a division into three disjoint parts.



that are similar though potentially spatially separated. Second, to attempt to bridge
the gap between standard econometric methods and machine learning by considering
a hybrid approach. We rely on standard hedonic house price prediction models, but
use a machine learning algorithm, a genetic algorithm, to help us find a good spatial
aggregation. We show that the genetic algorithm (GA) consistently finds models
with surprisingly good in- and out-of-sample properties (measured by R?). We find
the genetic variation between best models in the same GA run to be low. This
is to be expected as all these models are close to (local) maximum in terms of fit
measured by R?. More intriguing, the genetic variation across different runs of the
GA is high even though the best models across runs have strikingly similar fits
measured by R?. In biological terms, different genotypes lead to similar phenotypes.
This is virgin land in econometrics, and we explore to what extent these different
genotypes lead to economically different models. They do, and some clusters of
observations which tend to get statistically and economically different estimates for
different population runs. This insight may be of importance not only for machine
learning in urban economics but for machine learning in econometrics in general.

We are not the first to consider machine learning algorithms for house price
prediction. The lion’s share of academic contributions within computer science
regarding house price prediction is artificial neural network approaches

(|CS13],[LWJ01|[CCMO14][QTNH]|[KTTT],|Lim04],|[LGLO04]).

It is puzzling that artificial network approaches have been a favorite in machine
learning and real estate pricing. As location is a key house price factor, other
machine learning techniques which are good at finding spatial clusters would in
some sense be more likely first attempts.[|[OS16] and [AP12] are papers that con-
sider explicitly geometric machine learning constructions like k-NN (the k nearest
neighbors).

The papers cited thus far are computer science papers, where in some sense the
application, house price prediction, is not interesting in itself. It is the performance
of the algorithm that’s the focus point. In contrast to this, and more ambitious
from an economist’s point of view, is [CCLT08], where a spatio-temporal closeness
of observations lies at the heart of the machine learning algorithm. Self-organizing
maps (SOM), another promising machine learning technique, have been applied to
housing markets (|[KHH02],[Kau03]).

Other approaches seek to address the sparse nature of housing market data, by
using machine learning algorithms that tend to perform well under such optimation
constraints. [WWZW14]|,[PGGP15] and [WH15| are examples that utilize support
vector machines (SVM) and particle swarm optimation to forecast real estate prices.
[AP12] uses a random forest approach and ensembles of weak learners. In a similar

vein is [PB15| where a wide array of different machine learning algorithms is put to



the test of predicting house prices.

We use a genetic algorithm (GA) on housing market data. Earlier contributions
regarding GAs and housing markets are [NSW08] and [SF13]. Our machine learn-
ing approach most resembles [PGGP15], as population of regression models evolve
according to a fitness measure given by the models explanatory power. However,
our approach is transversal in two ways. First, whereas [PGGP15]|, take the spatial
division as given, our models differ only according to spatial aggregation. Second,
[PGGP15] are less concerned with the different models’ in- and out-of-sample prop-
erties. For us, however, this is a key point.

We also seek to contribute to the growing literature on non-spatially connected
submarkets. Recently, both theoretic and empirically based research has challenged
the legitimacy of spatially connected submarkets [Pry13]. Our genetic algorithm
has no priors regarding spatial connectedness. The only objective is house price
prediction. Spatially disconnected submarkets arise and they resemble submarket
structures found in [RT13] for the Sydney market.

The paper is organized as follows. Section 2 describes the data set and gives the
baseline hedonic regressions, which have spatial dummies for Oslo’s 12 urban areas,
commonly known as Oslo 1 to Oslo 12. Moreover, we give aggregate neighborhoods
defined by postcode based on square meter prices into 12 "prize zones". In section
3 we describe a genetic algorithm for aggregating these three-digit postcodes into
12 areas. This algorithm uses only the fit (measured by R?) of the hedonic model
with a given spatial aggregation. Section 4 considers spatial aggregation in Oslo by
rectangular cells. This approach is more flexible than postcode aggregation as we
may vary cell size. Section 5 concludes. Details regarding data set preparation and

supplementary tables and figures are found in the appendix.

2. Data description and baseline hedonic regression models

We consider all arms length market transactions of apartments in Oslo 2014 and
2015. The data set consists of 14,036 observations. Table 1 gives summary statistics
of variables used in the subsequent analysis. Details regarding data preparation are

given in table 12 in the appendix.

Table 1: Summary Statistics of transactions of apartments in Oslo 2014-2015

Statistic N Mean  St. Dev. Min Max
Value 14,036 3.86 1.63 1.33 11.50
LivingArea 14,036  69.31 28.69 24 271
Floor 14,036 3.03 1.70 1 13

BuildYear 14,036 1957 42.61 1800 2015
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Figure 1: Heat map of median square meter prices for Oslo 1 to Oslo 12.

This data set is divided into three: a training set (8,400 observations), a valida-
tion set (2,836) and a test set (2,800).

A standard hedonic regression model for house prices is given by:

14 11

24
pi = a+BlogAreaLogArea+ﬂlogAgeLogAge+Z 0;Floor;+ VZ»Monthi—i—Z ~v; Nbhoods; ¢,
=2 =2 i=1

1)
where LogArea is log(Area in sqm.), logAge is the log(2017-construction year),
Floor;, Month;, and Nbhoods; are dummy variables.

The neighborhoods in this baseline model are defined according to a commonly
used division of the metropolitan area of Oslo, where the last two digits of the four
digit postcode removed.®. This is our default division of Oslo into 12 neighborhoods
as displayed in figure 1. In this paper we keep the number of spatial dummies fixed
and equal to 12.°

Table 2 gives regression results for the baseline model used on the training and
validation sets. Of particular interest is the explained price variation,77.42 and
77.01 percent respectively. In the next section we discuss the extent to which the
explanatory power of a model derived from a machine learning algorithm translates
to the validation set. There are two different interpretations of out-of-sample perfor-
mance. The classical one is to use the coefficient estimates on the validation sample
to compute the explanatory power (R?). This is the second column (TrainValida-

tion). However, the litmus test is not whether the given regression coefficients have

5 Postcode 1236, is in Oslo 12.

6This number is in some sense arbitrary (though it originates from Oslos 12 areas defined by
postcodes). To find the best or a good number of spatial controls is depends on the analysis at
hand. We do not address this problem, as we take spatial aggregation into 12 neighborhood as
given.



good out-of-sample properties, but whether the hedonic model with a given spatial
aggregation has good out-of-sample properties. This is given in the third column
under the label "ValidationValidation". The fourth column is the regression model
without spatial controls. This implies that the difference 77.42 — 65.70 = 11.72
is directly interpretable as the added benefit of introducing 12 neighborhood dum-
mies. A roughly 12 percent gain in explanatory power in a model that already has
substantial explanatory power, may be taken as a sign that these neighborhoods
defined by postcodes capture a substantial amount of the price variation driven by
location. Still there is little reason to believe house prices closely mirror this broad

brush postcodes selections.

Table 2: Baseline regression ¢

Dependent variable:

Transaction price

TrainTrain ~ TrainValidation  ValidationValidation = No Spatial Controls

logLiving 3.19** 3.19** 3.05"* 3.317
(0.02) (0.02) (0.04) (0.03)
logAge —0.16"* —0.16"* —0.14™ —0.04™
(0.01) (0.01) (0.01) (0.01)
Observations 8,400 8,400 2,836 8,400
RZ%in percent 77.42 75.82 77.03 65.70
Note: *p<0.1; *p<0.05; ***p<0.01

*TrainTrain and ValidationValidation are OLS estimates of the regression model. TrainValidation
uses the TrainTrain coefficients to predict on the validation set.

We proceed to construct partitions of Oslo into 12 neighborhoods, which are
likely to correlate with high explanatory power when used to define spatial dummies

in a hedonic regression model.

2.1. A human approach to alternative spatial aggregations

We intuitively understand that there are many ways to choose partitions of the
metropolitan area of Oslo. At the same time our intuition fails us when it comes
to comprehend the immensity of all possible aggregations. In the data set at hand
there are 385 distinct postcodes. The number of possible partitions is given by the

Bell number Bsgs ~ 1.0 - 1026, 7 In comparison the number of elementary particles

"The generating function for Bell numbers is given by > o0, Bya™ = e ~1 [Rot64].



in the universe in believed to be around 10%°. ® Most of these aggregations will
naturally be poor candidates for neighborhoods for house price prediction purposes.

In the following we will limit the number of aggregations we to consider so that
we in principle can pit models against each other. There are essentially two ways
to do this. One is to impose some apriori constraints. The other is to have some
data driven aggregation rules. We will do both. A natural a priori constraint is to
let the spatial building blocks be larger, reducing the ways to combine them. The
Oslo postcodes are constructed in such a way that numerically close postcodes are
also geographically close. This means that skipping the last digit, creates larger
(spatially connected) building blocks for aggregations. In our data set there are 53
such three-digit postcodes. If we take them as the basis for further aggregation we're

left with Bssz ~ 1.0 - 10°° possible aggregations.”.

This number is small compared
to our original 1.0 - 10225, but still far from a list of models we can run through to
find the best one. If we want to pit a given model against the benchmark model
above, it makes sense to consider only aggregations into 12 neighborhoods. In this
way we compare models with the same number of explanatory variables, but where
the spatial dummies differ in the underlying aggregation.

The number of possible aggregations into 12 neighborhoods is of the order of
108,10 All of these aggregations will improve the explanatory power of the hedonic
model without spatial controls (R? = 65.70). Table 3 gives summary statistics of
1,000 random aggregations into 12 groups, and shows that on average a random
aggregation gives an R? of 69.69. The span, however, is considerable ranging from
66.55 to 75.36. It is interesting to note that all models have significantly lower
explanatory power than the baseline model, the reason being the systematic price
variation across Oslo 1 to 12, and the probability that a random aggregation should
be better is discouragingly low.

A data driven and less random approach is to aggregate by some observable
summary statistics that is likely to correlate with price level. One such variable is
average square meter price. Figure 2 gives a heat chart of square meter prices for
the three-digit postcodes.

It makes sense to assume that good candidates for spatial aggregation tend to
aggregate postcodes with comparable square meter prices. If true, partitions that

respect the ordering with respect to square meter prices is a good option. The

8Not only is the magnitude of these numbers hard to comprehend. It is hard fathom how much
larger 10226 is compared to 108°. If we glue a copy of our universe onto every elementary particle
in our universe, and count elementary particles in this "augmented" universe, we get 1010, This
is still dwarfed by the staggering order of magnitude of 10%26.

9 This is astronomically comprehensible in the sense that is higher than the number of stars in
our universe (1022), but lower than the number of elementary particles in the universe (1089).

107t is of the same order as (12)53/12!.



Table 3: Summary Statistics of 1000 random spatial aggregations into 12 neighborhoods

Statistic N Mean St. Dev. Min Max
R? in percent 1,000  69.69 1.3 66.55  75.36
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Figure 2: Heat map of median square meter prices neighborhoods defined by three-digit postcodes.
Postcodes with no transaction excluded (white).



number of such partitions is (ﬁ) = 60,403, 728, 840. This is still a daunting number
but maybe within the realm of what is computable by a supercomputer.!

Further natural limitations are to divide the 53 postcodes into 12 roughly equally
sized groups. Here 4 or 5 postcodes in each group or more refined, choose 12 groups
in such a way that the within group variance is minimized. In table 4 we pit these

two variants against the in sample!?.

Table 4: Comparison of selected spatial aggregations.

Model R? in percent
Baseline without spatial controls 65.70
Baseline with spatial controls, Oslo 1- Oslo 12 77.42
Aggregation by sqm. (4-5 three-digit post code in each neighborhood) 78.73
Aggregation by sqm. (Minimal within neighorhood sqm. variance) 78.74
Model with 53 postcode dummies 80.27

The explanatory power of these two models is virtually identical and 1.3 percent
higher than the baseline model with spatial controls. To determine whether this is
a substantial improvement the "full model" with 53 spatial controls is tabulated.
This serves as an upper bound for aggregation improvement as any aggregation of
the 53 postcodes necessarily would have a lower R2. The R? of the model with 53
spatial controls is 80.27 percent. So not only do these square meter models yield
1.3 percent higher explanatory power than the baseline model, they are also just 1.5
percent away from the full model with 41 degrees of freedom more. In other words
the improvement is close to half way to the theoretical upper bound.

In the next section we use a genetic algorithm (GA) to this problem of spatial
aggregation. In light of the discussion above, the question is whether it can surpass
the square meter models and get (even) closer to the theoretical upper bound defined

by the model with 53 time dummies.

3. Three-digit postcode spatial aggregation and GA-algorithm

In this section we use a genetic algorithm (GA) to find spatial aggregations of the
53 three-digit postcodes into 12 neighborhoods which give high R?’s when used in
regression model 1. Before we go into specifics regarding the genetic algorithm we use
here, we will briefly discuss the mathematical intuition behind genetic algorithms.

A search for maxima for a function (here R?) tends to rely on some kind of gradient

HWith a standard laptop and standard run times checking all alternatives would take in the
ballpark of 6.6 - 10® seconds or a little more than 21 years.

12 A5 there is no training or data mining apart from working out square meter prices, there is no
significant difference between in- and out-of-sample properties.



ascent.'® That is, we evaluate the function to be maximized at two points, work
out a proxy for the derivative and "head uphill". A genetic algorithm is a variant
of gradient ascent, where we rely on random variation but non-random selection.
We can picture it as a herd of points corresponding to regression models, where the
points highest up the hill, are used to create new models, by random variation. These
replace the points/models with the lowest R?s. The result is a new "generation"
of points/models which is further up the hill, and as generations pass, the herd of
models/points moves to higher elevations.

This picture of a herd slowly moving up a hill, is a little misleading. The strength
of a genetic algorithm is that the herd does not concentrate in one area. If it
did, a more classical version of gradient ascent would be equivalent or better. The
strong suit of the genetic algorithm is genetic diversity, which in our herd picture
corresponds to a widely dispersed herd, which in principle glides up multiple hill
sides, and by recombination can suddenly stumble on even higher hills and start

climbing.

3.1. Genetic Algorithm (GA) for spatial aggregation

A genetic algorithm mimics natural selection. The key is random variation and
non random selection. We consider a population of hedonic models that differ only
in their spatial aggregation.

An aggregation of 53 neighborhoods to 12, is naturally represented by a 53-
dimensional vector (1,12,3,3,...) indicating which neighborhoods belong to the
same group, where the group is naturally identified by its number. We will refer to
this vector of integers as the genome or genotype of a given model.

Every generation consists of 50 models, and the first generation is 50 random
draws of 12 neighborhoods. The fitness of each model is defined to be R? of the he-
donic regression model corresponding to the spatial aggregation defined by genotype
(the 53-dimensional vector coding for the neighborhood aggregation). This means
that the first generation average fitness is likely to be close to the average random
fitness (69.69) given in 3. Any model is uniquely defined by it is spatial aggregation
and easily visualized as a map. Figure 3 is an example of such a model.

The next generation is created in the following way. The population is ranked
according to R?. The 24 highest ranked models are divided into two according to
rank. Parent pairs are formed by pairing according to rank. That is, the highest
ranked model is paired with the 13th rank (since it is the highest ranked in the

second group), the second with the 14th et cetera. Each parent pair gives rise to a

13Tn the literature [Mar09] it is more common to use the notion of gradient decent, as the
objective is usually to minimize some kind of loss function.
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Figure 3: Example of a model represented as a map with borders. Areas with the same colors
aggregated to one neighborhood. Blue line defines the Oslo Fjord.

one offspring. These 12 offspring replace the highest ranked models without offspring
in this generation.!4
The offspring is formed by genetic crossover. Let us illustrate genetic crossover

by a genome only 6 integers long and only four groups:
Parent one: (1,2,1,3,3,4)
Parent two: (1,3,3,3,4,4)
Offspring: (1,2,1,3,4,4)

It is customary to allow for mutations in order to preserve genetic diversity. A
mutation tends to be just a random draw of a place in the genome, and a random
replacement of the integer by another integer. In this example, say a random draw

gave position 5, and group 1, then the resulting offspring would be:
Offspring: (1,2,1,3,1,4)

We have 53 different three-digit postcodes, so the genome does not allow for an even
split of genetic inheritance between parents. We choose the first 26 elements of the
DNA-strain from the most fit parent and 27 from the least fit parent. The offspring
are also mutated on three randomly drawn places of the genome.!?
Table 5 summarize the genetic algorithm.

The global R? maximum for aggregation into 12 groups is unknown. We have an

14 As the 24 first models gets offspring, the offspring replace ranks 25 to 36.

15 Both choices are semi random in the sense that the GA tends not to be supersensitive to
details of recombination or mutation rates. In other words we have some leeway in the choice
of these parameters. The important thing is to strike a balance between R? reward and genetic
diversity. The probability of getting stuck on some potentially low local maximum decreases with
genetic diversity.

One technical detail: We have assigned 12 groups centers, they are left untouched by mutations.

11



Table 5: Specification of the GA

population size (N)  Crossover  Mutations Number of generations

50 Yes 3 3,000

upper bound (80.29) and our prime concern is comparison with the baseline model
(77.42) and the more refined model where we aggregated into groups by square meter
prices (78.7).

Figure 7 displays a typical run of the GA-algorithm presented in table 5. It is
important to note that randomly drawn spatial aggregations are expected to per-
form significantly worse than the baseline model, as the baseline spatial aggregation
captures some known price difference patterns in the metropolitan area of Oslo. We
highlight this by the coloring of the plot. The pink region is where random draws
are likely to fall. The green region is where the baseline model and square meter
models fall. We can view this region as associated to models that tend to capture
spatial price variation. The blue region is of special interest since it can be seen as
associated with nontrivial (and inhumanly good) spatial aggregations. The question
is whether or to what extent natural selection can find models with higher R?s. We
see that both the in-sample and the out-of-sample R?, surpass the benchmark and
models based on square meter prices after a few hundred generations. The fitness
continues to improve for another 1,000 generations.

Thus far the best model of 12 groups had an R? of 80.06' percent compared to
the full model (80.27). In other words going from 11 spatial dummies to 52 improve
explanatory power by 0.21 percent. This impressive in-sample performance is likely
driven in part by overfitting, so the real test is out-of-sample performance (measured
by R?). The R? of the fittest model on the validation set is 79.40 (blue line in 7).'7

The models we presented in the previous section, i.e. the baseline model and
square meter models, are based on "natural criteria", political boundaries and square
meter prices. They have essentially equal in- and out-of-sample properties. The GA
algorithm, in contrast, gives models with better in-sample properties compared to
out-of-sample properties. More importantly, the best GA model arises from a herd of
models that evolve by random variation and nonrandom selection. This randomness
raises new questions and concerns. One of them concerns the extent to which two

different runs of the GA algorithm generate different models. This is a question of

16This is certainly not the global max. Longer runs with combinations of best models from
different runs indicate that there is still room for improvement.The highest in these combined runs
is 80.09.

"Note that this is the ValidationValidation out of sample. In other words, the aggregation of
the fittest model is used, and the model parameters are estimated on the validation set.
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the baseline model and the models based on square meter prices of the preceding section. The
blue region has very high R?’s. Out-of-sample is the ValidationValidation model, i.e., the model
corresponding to the fittest model estimated on the validation set.

potential genetic diversity between GA runs, and how far such diversity translates

into economically different models.

3.2. Genetic diversity and economically different models

There are essentially two ways to address how different two spatial aggregations
are. One is to compute the extent to which two three-digit postcodes that are
aggregated to the same group in aggregation A also are aggregated to the same group
in aggregation B. The second is see whether the estimated neighborhood price effect
is statistically and economically different. It might be beneficial to draw on notions
from biology. The first measure will essentially be a question of genotype. That is,
to what extent the two genomes differ. The latter is how the gene is expressed, that
is, to what extent differences in genotype translate into different phenotypes. For
us, the different price levels can be viewed as different phenotypes.

Let us look at the question of genotypes first. We are not concerned with the
actual numbering of the groups, only with which postcodes are grouped together.
Consider parent one given above:

Parent one: (1,2,1,3,3,4)

An equivalent representation of parent one is (3,2,3,1,1,4), as we just have
switched the label of group 1 to group 3 and vice versa. To give a measure of genetic

similarity, it is better to have a unique representation of a given aggregation.

13



Table 6 gives a unique the matrix representation of parent one with rows and
column labels in italics. This matrix contains the aggregation information. It is
symmetric, since if area ¢ is in the same neighborhood as area j, then j is in the
same as ¢. Moreover, it has 1 on the diagonal as every area is necessarily in the

same neighborhood as itself.

Table 6: Matrix representation of Parent one

1 2 3 4 5 6
{1 0 1 0 0 0
2 0 1 0 0 0 0
3 1 0 1 0 0 0
/0 0 0 1 1 0
5 0 0 0 1 1 0
6 0 0 0 0 0 1

We denote this matrix by G. The rows and columns correspond to a pregiven
ordering of geographical areas, and two areas are aggregated to the same neighbor-
hood if and only if G;; = 1. All other elements in the matrix G are equal to zero.
Note that two matrices of this kind G* and G® are equal if and only if they define
the same partition into neighborhoods.

We define the similarity of G* and G® to be given by:

S(G*,G" = Z I(GY =GY),
i<j
where 1() is an indicator function which is 1 if the equality is true, and 0 other-
wise.
Note that we only sum over matrix the upper triangle and exclude the main
diagonal. This similarity measure satisfies that max L = L(G* G*) for all z. The

following measure normalizes the max to be one:
S(Ge, Gb)
(S(G2,G*)S(G", G"))

Furthermore, by construction it is a nonnegative number less than or equal to
8

NS(G*, G =100 *

one. We view this as a percentage similarity measure.!
It is evident that the lower bound of normalized similarity varies with the number
of neighborhoods and the number of groups, and that it is decreasing in the number

groups. With our genome of 53 postcodes that are aggregated into 12 groups the

cov(z,y)

18This measure is a close analogue of the (Pearson’s) correlation coefficient r =
0.0y
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average similarity of 100 random models was 8.3 percent.'’

We expect that genetic variation will be lost in the fittest half of the population

as the improvement in R? level off. Table 7 confirms this.

Table 7: Genetic similarity for upper half according to fitness (R2) in last generation for 4 different
populations

Population  Min  Mean  Max

1 79.75  79.87  79.90
2 79.56  79.69 79.73
3 79.97  80.06  80.07
4 79.90  80.03  80.04

More interesting is to what extent different runs converge toward (essentially)
the same aggregation or not. Table 8 shows four different runs and the genetic

similarity varies considerably.

Table 8: Genetic similarity of the fittest models of different populations.

1 2 3 4

1 100 552 39.6 50.7
2 100 33.7 48.6
3 100 36.5
4 100

We see that the genetic similarity between the best models in different popula-
tions, is roughly midway between the similarity between two randomly drawn model
and the within population similarity of the upper half of the last generation.?”

We now turn to the question of whether the differences in genotype translate
to differences into price levels for the areas defined by 53 three-digit postcodes.
Figure 3.2 displays the heatmaps for the coefficient dummies where all coefficients
are relative to the lowest priced neighborhood set to zero. We see unsurprisingly
that high and low price areas are consistently identified as high and low priced. More
interestingly, there seem to be statistically and economically significant differences

between these models, as the price level of the same areas defined by the dummy

19The chance of two random draws of numbers 1 to 12 to be equal, is 1—12, or 8.3 percent. In
other words the normalized similarity measure gives this degree of similarity (on average) for two
random draws, though it is not obvious from the definition.

20 This result is in line with the famous experiment by Lensky et al. [LT94]. They considered a
controlled lab experiment of twelve different populations of Escherichia coli bacteria. They followed
thousands of generations and observed that all twelve populations evolved towards larger cell size.
However, the twelve respective gene pools achieved this by different genetic mutations.

15



— 3000000

2500000

2000000

1500000

1000000

500000

Figure 5: Spatial aggregations into 12 neighborhoods given by fittest model in last generation of
four different runs. Colors defined by estimated neighborhood price level dummy in NOK.
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regression coefficient may vary by several hundred thousand NOK. 2!

Table 9: Percentage of statistically insignificant differences dummy coefficient estimates by three-
digit postcode. Significance measure: zero not within two standard deviations for the coefficient
difference.

2 3 4
1 712 692 711
2 63.5 73.1
3 63.5

Table 9 shows that for most postcodes the difference in price level across models
is not statistically different from zero. At the same, about a third are statistically
different from zero. In other words, the models differ statistically and economically
for a substantial number of three-digit postcodes.

It is puzzling that models that are less than 0.57 percent away from the theoret-
ical R? bound differ significantly economically in a third of the postcodes. At first
glance, this is arguably even counterintuitive as these models only differ on spatial
aggregation of postcodes.

The solution to this puzzle lies with the differing number of transactions in each
postcode. They range from 15 to 128 transactions, where the first quartile is 27.
Postcodes with few transactions have a noisy price level, and a modest impact on
R?. The first may be viewed as a general uncertainty. The latter implies that the
evolutionary pressure is weaker for postcodes that have few transactions.

Table 10 illustrates this point. Few observations tend to be consistently mis-
placed in the sense that a new run is likely to give a statistically different price

level.

Table 10: Number of observations in the training set sorted by the number statistically significant
differences of three-digit postcode levels of the 4 different runs.

Significant ~ No. of obs.

0 3,847
1 1,575
2 1,313
3 1,252
4 156
5 257
6 0
Sum 8,400

211 NOK= 0.13 USD.
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4. Spatial aggregation based on grids and geocoordinates

A potential strength of the approach described in the preceding section is that
the aggregation respects administrative boundaries. For example it is well known
that school districts (|[Bla99]) can create sharp price boundaries. In other words,
it is likely that choosing spatial aggregations in hedonic regression models that
respect administrative boundaries correlates with higher explanatory power ceteris
paribus. At the same time, it is also a straight jacket that limits the possible spatial
aggregations. We will now consider the more flexible approach and use a grid to
partition Oslo into rectangular cells. As these cells can vary in size, we can address
the question of optimal cell size for aggregation.

Figure 4 displays 33 by 33 grid. The coloring indicates an aggregation of the 58

cells with housing market transactions into 12 neighborhoods.

N !
Price level :

0

500,000
1,000,000
1.500.000
2.000.000

2,500,000 |
-3.000.000

Figure 6: Heat map of 12 neighborhood partition with in sample R? = 83.50 arising from 33 by 33
grid of the metropolitan area of Oslo. Color defined by estimated neighborhood coefficent dummy.

4.1. Genetic Algorithm

The basic construction of the GA algorithm resembles closely the approach de-
scribed in section 3. The regression model considered is 1. The only thing that is
different is the definition of the 12 neighborhoods. Consider an n x m grid. This grid
partitions Oslo into nm cells. An aggregation into 12 groups may be represented
by assigning a number in {—1,0,1,2,3,4,5,6,7,8,9,10, 11} for each cell. Here —1
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is included for cells with no housing market transactions.?> Any such aggregation
may be represented as a matrix, M, of size n x m, where m;; is the corresponding
neighborhood number. We view this matrix as a model’s genome in the same way
that we represented the genome in the post code GA as a 53 dimensional vector.

The population size, N, remains fixed from generation to generation.The next
generation is created in the following way:

The population is sorted according to their fitness measured by R2. The upper
third of the population is paired with the middle third according to fitness. Each
pair gives rise to one offspring. The offspring and their parents constitute the next
generation. In other words the lower third ranked by fitness dies in every generation.
23

The offspring are constructed by letting the six neighborhoods (aggregated groups)
be inherited from one of the parents by random draw. These 6 groups may or may
not be the lion’s share of entries in the offspring’s genome. In any case the entries
of the offspring’s genome matrix M corresponding to these six groups are inherited
from this parent. The other matrix entries are inherited from the other parent.?*

Mutations may occur at any element, m;; in the genome the n X m, matrix.
A mutation is a replacement of the integer m;; by a random draw of a number in
{0,1,...,11}. For every element in the matrix is the mutation probability 0.005. In
other words for a 10 x 10 genome the expected value of the probability of a mutation
is 50 percent.

The GA algorithm is summarized in table 11.

Table 11: Specification of the GA

population size (N)  Crossover — Mutation probability =~ N. of generations

20 Yes 0.005 15,000

Figure 7 shows a typical run. We see that both the in-sample and out-of-sample
R? climbs above the 80 percent line after around 1,000 generations. In this case we
do not have a theoretical bound for the R?, but if we view the grid approach as

an alternative to aggregation over postcodes, we see that this GA surpasses even

22The actual grid is constructed by defining the longitude and latitude step size individually.
In other words Ing step size = (max(longitude) — min(longitude))/n and lat _step size =
(mazx(latitude) — min(latitude)) /m.

Z3Note that this implies that the evolutionary pressure is a bit higher in this GA-model compared
to GA-postcode model (% in contrast to %)

24 Note that this crossover algorithm allows for the contingency that one or more aggregation
groups are lost, as it is no preassigned groups centers as in the postcode GA. That such models
are going to dominate in the gene pool, is highly unlikely, as these models are likely to have lower
fitness (R?) compared to models with more groups.
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Figure 7: The explanatory power (R? in percent) by generation number. A run of the 33 by 33
grid.

the theoretical bound for postcodes not only in sample, but also out-of-sample. In
other words, the increased flexibility of the grid GA, comes with the potential to

find models with much higher explanatory power.

4.2. Grid size and in- and out-of-sample properties

The grid size defines the building blocks of the spatial aggregation.They are
likely to have a bearing on the R? of the fittest models in the final generation. Too
crude a grid will gloss over systematic spatial price variation, and too fine a grid will
pick up transaction noise.?> The latter will manifest as a good in-sample fit at the
expense of out-of-sample fit. In machine learning this is called overfitting, and the
most common way to deal with it, is to use a validation set to pinpoint the point at
which the in-sample fit comes at the expense of out-of-sample fit. We will use this
technique to pinpoint the best grid size with respect to out-of-sample properties.

To allow for the contingency of misleading runs, we compare the distribution
and averages of 10 runs. We consider only n x n grids. This will result in n? close
to quadratic grid cells. Due to the clustered nature of housing market transactions
the number of cells with housing market transactions does not grow quadratically
with n. 26

Figure 8 is a notch plot showing that the in-sample fit increases up to grid size

25This is the common bias variance trade off in statistics.
26 The number of cells with housing transactions grows close to linearly with n. See appendix
for details.
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70 to 80, whereas the two out-of-sample measures level off and fall around 30. In
other words, somewhere around n = 30, the in-sample improvement starts to come
at the expense of out-of-sample performance. In order to pinpoint the grid size with
the best out-of-sample properties, we run all grid sizes from 25 to 35. Figure 9
displays the results. The figure shows a steady increase of in-sample fit with grid
size. The out-of-sample R? (red notches) has no particular trend. Some grid sizes
perform significantly worse than their nearest neighbors. The best is the 33 by 33
grid with the 29 by 29 a close second. The significant differences of close neighbors
with respect to grid size is most likely driven by the clustered nature of housing
market transactions. Some grids turn out to be unfortunate as clusters are divided
or joined in such a way that the in-sample fit is more likely to come at the expense
of out-of-sample fit.%”

At a higher level, fewer observations per cell make the actual price level in the
cell hard to assess both for man and machine. The 33 by 33 grid has 367 cells
with housing market transactions giving on average 23 observations per cell. This
number may be taken as a crude proxy for the number of observations per cell, and
may give the best out-of-sample properties of the aggregation. But as this number
is likely to be driven by the spatial clustering of housing market transactions, it may

at best serve as a natural starting point when choosing grid size.

27 Though the large out-of-sample differences between neighboring grid sizes are not driven by
the particulars of a given run, it still makes sense to ask whether the within genetic variation and
genetic variation across runs resemble the results found for post code aggregation. It does. There
is high within population genetic similarity and considerably lower across populations. See table
13 and table 14 in the Appendix.
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Figure 8: Notch plot of R? for the best model training set (blue), the best model used on the
validation set (green) and the spatial aggregation of the best model on the training set used for
estimating the hedonic model (red). Note that the notch plot notches give the 95 confidence
interval for the median and the colored box corresponds to the observations between the 25th and
the 75th percentile. Outliers are represented by small circles.
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Figure 9: Notch plot of R? for the best model training set (blue), the best model used on the
validation set (green) and the spatial aggregation of the best model on the training set used for
estimating the hedonic model (red). Note that the notch plot notches give the 95 confidence
interval for the median and the colored box corresponds to the observations between the 25th and
the 75th percentile. Outliers are represented by small circles.
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5. Conclusion

Model selection tends to be hard. In the case of hedonic housing market models
the analyst wants to follow prices closely in time and across neighborhoods. As
houses are seldom transacted, compromises need to be made in order to achieve a
robust housing market model. One key ingredient may be to identify spatial sub-
markets. There are infinitely many ways to aggregate and even when one aggregate
using predefined building blocks like postcodes or a grid partition, the number of
possible aggregations remains incomprehensibly large. We used a genetic algorithm
to search for spatial aggregations with good in- and out-of-sample properties with
regard to explained price variation measured by k2. The GA runs found consistently
models with high explanatory power both in and out of sample.

The genetic algorithm works through random variation and non-random selec-
tion, and thus it is not necessarily so that the best models across GA runs give
economically similar models. We found that genetic variation across runs remained
high, though the runs converged to models of similar explanatory power. The genetic
differences also lead to statistically and economically different models. However, the
economic differences were largely confined to areas with few housing market trans-
actions.

The grid approach allowed us to address the question of a good choice of aggre-
gation building blocks. We found that the 33 by 33 grid gave the best out-of-sample
performance. This amounts to ,on average, 23 observations per cell with housing
market transactions. It is not obvious that this insight translates over to other hous-
ing markets, as the degree of transaction clustering is likely to play a major role.
Future research may shed light on this interplay between genetic algorithms and
spatial clustering. Thus far, the main take away from the grid analysis, is that it
can be easily implemented and tailored to any housing market provided the individ-
ual transactions are geocoded. Moreover, the genetic algorithm consistently finds

models with high in- and out-of-sample explanatory power.
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6. Appendix

6.1. Preparation of the data set

The data set of all realtor mediated housing market transactions in the metropoli-

tan area of Oslo, were acquired from Eiendomsverdi, a Norwegian firm that collect

housing market data, and produce house price indices. Preparation of the data set

is summarized in table 12.%8

6.2. Grid size and number of cells with housing market transactions

6.3. Genetic variation tables grid approach

2Zero floor recoded to first floor (corresponding to English ground floor (11 cases). Missing
floor recoded to median floor (3) (2359 cases).
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Table 12: Dataset Preparation

Data operation Number of sales
All transactions 98,599
Postcode between 100-1299 98, 580
Observations with sale date 92,933
Living area 1-99th percentile 91,095
Observations with build year 90, 889
Transaction price 1-99th percentile 89,115
Apartments 72 464
Observations in year 2014 or 2015 14,036
Observations in train set 8,400
Observations in validation set 2,836
Observations in test set 2,800

Table 13: Genetic similarity for upper half according to fitness (R2) in last generation for 4 different
populations.

Population Min Mean Max

1 934  97.1 100
2 95.5  97.1 100
3 95.1  97.7 100
4 93.4 993 100

Table 14: Genetic similarity of the fittest models of four different populations runs. The 33 times
33 grid.

1 2 3 4

1 100 342 357 28.6
2 100 34.6 29.2
3 100 324
4 100
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Figure 10: The number of squares with housing market transactions. Regression line without
constant term, coefficient 11.4 and R? = 99.8 percent.

29



	CLTS_WP_04_front page
	learning-man-machine_Sommervoll_CLTS
	Introduction
	Data description and baseline hedonic regression models
	A human approach to alternative spatial aggregations

	Three-digit postcode spatial aggregation and GA-algorithm
	Genetic Algorithm (GA) for spatial aggregation
	Genetic diversity and economically different models

	Spatial aggregation based on grids and geocoordinates
	Genetic Algorithm
	Grid size and in- and out-of-sample properties

	Conclusion
	Appendix
	Preparation of the data set
	Grid size and number of cells with housing market transactions
	Genetic variation tables grid approach



