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• A novel solid phase extraction device
for chemical and effect-based analysis
was developed

• Good recoveries for organic contami-
nants in a large log D range were ob-
tained for 159 out of 251 compounds

• Samples were successfully evaluated
using a set of seven different bioassays
for ten endpoints

• The device is applicable of sampling of
up to 50 L of water
⁎ Corresponding author.
E-mail address: tobias.schulze@ufz.de (T. Schulze).

http://dx.doi.org/10.1016/j.scitotenv.2016.12.140
0048-9697/© 2016 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 19 November 2016
Received in revised form 20 December 2016
Accepted 20 December 2016
Available online 4 January 2017
The implementation of targeted and nontargeted chemical screening analysis in combination with in vitro and
organism-level bioassays is a prerequisite for a more holisticmonitoring of water quality in the future. For chem-
ical analysis, little or no sample enrichment is often sufficient, while bioanalysis often requires larger sample vol-
umes at a certain enrichment factor for conducting comprehensive bioassays on different endpoints or further
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effect-directed analysis (EDA). To avoid logistic and technical issues related to the storage and transport of large
volumes ofwater, samplingwould benefit greatly from onsite extraction. This study presents a novel onsite large
volume solid phase extraction (LVSPE) device tailored to fulfill the requirements for the successful effect-based
and chemical screening of water resources and complies with available international standards for automated
sampling devices. Laboratory recovery experiments using 251 organic compounds in the log D range from
−3.6 to 9.4 (at pH 7.0) spiked into pristine water resulted in acceptable recoveries and from 60 to 123% for
159 out of 251 substances. Within a European-wide demonstration program, the LVSPE was able to enrich com-
pounds in concentration ranges over three orders of magnitude (1 ng L−1 to 2400 ng L−1). It was possible to dis-
criminate responsive samples from samples with no or only low effects in a set of six different bioassays (i.e.
acetylcholinesterase and algal growth inhibition, androgenicity, estrogenicity, fish embryo toxicity, glucocorti-
coid activity). The LVSPE thus proved applicable for onsite extraction of sufficient amounts ofwater to investigate
water quality thoroughly by means of chemical analysis and effect-based tools without the common limitations
due to small sample volumes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In Europe, the protection of natural water resources is regulated by
the Water Framework Directive (WFD; European Union, 2000) and
the Groundwater Daughter Directive to WFD (GWD; European Union,
2006) that are implemented in European member states' legislations
and international river basin management. The monitoring and regula-
tion of the chemical status of surface and groundwaters refer to the pri-
ority substances listed in WFD and amended by the GWD and the
Environmental Quality Standards (EQS) Directive (European Union,
2008, 2013). However, it has been demonstrated thatmonitoring of pri-
ority pollutants is not sufficient, becausemixtures ofmanymore known
and unknown chemicals contribute to adverse environmental effects
(Malaj et al., 2014; Moschet et al., 2014; Neale et al., 2015; von der
Ohe et al., 2009).

The combination of targeted and nontargeted chemical screening
analysis with in vitro and organism-level bioassays has been recom-
mended for the identification of (eco-)toxicologically active compounds
and mixtures by a number of more recent studies to supplement the
existing concepts towards a holistic effect-based and chemical analyses
approach (Altenburger et al., 2012; Brack et al., 2015; Creusot et al.,
2013; Di Paolo et al., 2016; Krauss et al., 2010; Silva et al., 2002;
Wernersson et al., 2015). Generally, the amount of sample enrichment
required for chemical analyses and bioassay depends on the sensitivity
of individual methods as well as the physicochemical properties, bio-
availability, exposure concentrations, toxic potentials and mixture tox-
icity effects of the compounds contained in the sample. Modern
chemical analytical instrumentation allows for the analysis of small
water volumes with no or only low sample enrichment for most of the
typical water pollutants (Bahlmann et al., 2015; Berset et al., 2010;
Brack et al., 2015, 2016; Dyer et al., 2004; Fernández-Ramos et al.,
2014; Seitz et al., 2006), while the analysis of some priority substances
with very lowEQSvalues aswell as in vivo and in vitro testsmay require
greater enrichment and larger water volumes (Neale et al., 2015; OECD,
2004; OECD, 2012).

The implementation of integrated chemical and effect-based moni-
toring strategies (Brack et al., 2017) would greatly benefit from auto-
mated onsite sampling techniques for efficient and successful real-
time collection and extraction of large water volumes. Such techniques
can prevent logistic, technical, economic and scientific issues related to
the storage and transport of large volumes of water to the laboratory.
Furthermore, this approach allows time-integrated sampling of a
water body over days or weeks to yield representative samples (Roll
and Halden, 2016).

The most powerful sampling and enrichment approach for complex
mixtures of known and unknown contaminants is solid phase extrac-
tion (SPE). Several well-tested and widely used solid phases that trap
organic compounds with a broad range of properties (nonpolar to
polar, neutral to charged) based on C18 or polystyrene-divinylbenzene
(co-)polymers are commercially available (Fontanals et al., 2007;
Fontanals et al., 2011; Hennion, 1999). A combination of complementa-
ry sorbents to cover a broad range of compounds with different proper-
ties has been successfully applied to surface water samples (Kern et al.,
2009). It is an advantage of SPE to capture and stabilize the compounds
on the sorbents when sampled (Hillebrand et al., 2013). Different ap-
proaches and devices for the sampling of large volumes of water have
been developed since the 1970s (CIAgent, 2012; Coes et al., 2014;
Dawson et al., 1976; de Lappe et al., 1983; Dean et al., 2009; Ehrhardt
and Bums, 1990; Ellis et al., 2008; Gomez-Belinchon et al., 1988;
Green et al., 1986; Hanke et al., 2012; Lakshmanan et al., 2010;
McKenzie-Smith et al., 1994; Petrick et al., 1996; Reineke et al., 2002;
Roll et al., 2016; Sarkar and Sen, 1989; SEASTAR INSTRUMENTS, 1984;
Sturm et al., 1998; Suarez et al., 2006; Supowit et al., 2016; Thomas et
al., 2004; Thomas et al., 2001; Weigel et al., 2001; Yunker et al., 1989).
Briefly, many of the devices were best suited for low water volumes
(for analytical purposes), are not (anymore) commercially available or
do not operate in a fully automated mode (see Supporting material for
detailed information).

Since none of the existing devices and approaches satisfies all of the
above-mentioned requirements, a novel device for the onsite large-vol-
ume SPE (LVSPE) was developed. It fulfills the following technical
characteristics:

• Automated device for theunattended and representative sampling ac-
cording to international standards (e.g., ISO 5667-1, 2006);

• Combination of SPE with a pre-filtration cartridge to separate
suspended particulate matter (SPM) from the water phase;

• Tailor-made columns that allow customizable selection and combina-
tion of sorbents to focus on chemical properties and quantities as de-
termined by the goals of the research question;

• Implementation of a pressurized system to force the water through
the extraction columns;

• Usage of 12 V electronic components (controller, pumps, valves) and
low energy consumption, in such a way that the device can runwith a
car battery or a battery-buffered fuel cell, solar panel or wind turbine.

The successful implementation and application of sampling ap-
proaches in the chemical and biological assessment of complex environ-
mental mixtures requires the assurance of the representativeness and
integrity of the samples with minimized alteration and bias (Brack et
al., 2016; Schulze et al., 2011). The aim was to assess whether the
LVSPE device:

1. Is able to capture a wide-ranging set of known organic water con-
taminants (among them pesticides, biocides, pharmaceuticals, and
artificial sweeteners) with good recoveries and high repeatability?

2. Can enrich a sufficient volume of water to perform a set of different
bioassays even for minimally contaminated waters?

http://creativecommons.org/licenses/by/4.0/
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3. Does provide blank samples containing no or very low contamina-
tion and deriving no orminimal toxicological effects to be able to un-
equivocal distinguish the chemical and effect signals from
background levels?

2. Material and methods

2.1. Technical description of the LVSPE device

The design of the LVSPE device allows for the collection of up to 50 L
water (Fig. 1, LVSPE50). The main parts of the devices are the pre-filter,
the sampling and dosing chamber, the ball valve, the pressure chamber
and the controller. The devices are built into a Storm Case iM 2750
(L ×W× D: 62.5 × 50 × 36.6 cm) purchased from Peli Products (Barce-
lona, Spain). An apparatus following the same principle but designed for
the extraction of up to 1000 L is presented in SM.

Briefly, water is sucked by vacuum into the borosilicate glass dosing
system (1). The water enters the Sartopure GF+ MidiCap pre-filter
(Sartorius) (2) in the inflow pipe to remove suspended particulatemat-
ter. A conductivity sensor controls the maximal water level in the glass
tube (volume: 600mL) and a dip tube allows exact dosing of the sample
volume (500 mL). The ball valve (3) keeps the water in the dosing sys-
tem and releases it into the pressure chamber (4) when opened. After
release, the ball valve closes and the water is pumped with a positive
pressure of approximately 100 kPa through one cartridge (5) or a se-
quence of cartridges with different sorbents (Fig. 1a). The cartridges
are filled from the bottom to avoid preferential flow paths through the
solid phase bed.

The controller allows a customized programming of the sampling fre-
quency and the total number of sub-samples of 500mL each until the de-
sired total volume is reached (e.g., 50 L). The extraction cartridge of the
LVSPE50 device is built of polyvinylidene fluoride (PVDF) (Fig. 1b). Car-
tridges made of stainless steel can also be used, but fine threads in such
parts are prone to malfunctions due to the brittleness of this material.
The cartridges are available in different sizes (4 to 10 g of sorbent). The
solid phases are packed between the glass filter plates, and the cartridges
are closed with two screw caps with O-ring type silicone tights.

2.2. Preparation, conditioning and extraction of sampler cartridges and pro-
cessing of samples

The quantity of sorbents usedwas up-scaled from an amount of 0.2 g
of sorbent, which is commonly used to extract 1–2 L of water in case of
Chromabond® HR-X (Macherey Nagel). Since the cartridges with ion
exchange sorbents Chromabond® HR-XAW and Chromabond® HR-
XCW were grouped in flow direction behind the column with HR-X,
Fig. 1. (a) Picture of the LVSPE50 device; (1): Dosing system (500 mL), (2): pre-filter (3): ball
MAXXGmbH); (b) Scheme of the LVSPE50 cartridge, body and screw caps, made of polyvinylid
(3) silicone tights (O-rings), (4) outlet fitting, (5) glass filter disc, (6) body containing the sorb
thehalf quantity thosewere considered. The cartridgeswere assembled,
filled with the solid phase sorbents and conditioned separately accord-
ing to Table 1. To account for a swelling of the sorbents, the amounts
were slightly reduced to fit into the columns.

After conditioning and sampling, the openings were covered with
aluminum foil to avoid contamination and drying of the wet sorbent.
The columns were stored and transported at 4 °C before and after sam-
pling. Later, the cartridges were connected separately to a nitrogen gas
stream for 1 h to purge residual water and subsequently subjected to
freeze drying for around 8 h. The extraction was carried out according
to Table 1. The extracts of the different cartridges were kept separate
for further analysis with HR-XAW and HR-XCW extracts being neutral-
ized by adding formic acid or 7 N ammonia inmethanol (MeOH) before
storage. All extracts were reduced in volume using rotary evaporation
and adjusted to a final enrichment factor of 1:250 (HR-X) and 1:500
(HR-XAW, HR-XCW) using a mixture of MeOH:ethyl acetate
(EtAc;1:1,v:v) before preparation of aliquots for chemical and biological
analyses.

2.3. Laboratory and field performance of the LVSPE50 device

Recoveries were tested under laboratory conditions. A 60 L grab
water sample of a pristine creek (Wormsgraben, Harz Mountains, Ger-
many; N 51.770167, E 10.696444) was collected on 14 January 2014
and stored in a clean stainless steel drum at 4 °C. The sample was divid-
ed into 6 × 10 L sub-samples in 10-L borosilicate glass beakers. Three
out of six samples were spiked using a mixture of 251 organic com-
pounds (500 ng each; Table S1) in the log D range of −3.6 to 9.7
(pH 7). The substances in the spikemix cover different compounds clas-
ses such as pharmaceuticals, pesticides, industrial chemicals and other
chemicals of emerging concern which are typically analyzed in surface
waters and wastewater treatment plant effluents (e.g., Hug et al.,
2014; Loos et al., 2013a, 2013b; Richardson and Ternes, 2014; Ruff et
al., 2015). The recoveries were calculated as the ratio between the
amount of substance found in the extracts and the amount of substance
spiked to the water samples. Beakers were coated and wrapped with
aluminum foil to protect from light and contamination. The remaining
three samples were used as unspiked ambient field controls in order
to check for background concentrations of the targeted analytes. The
samples were extracted using the LVSPE50 with the HR-X, HR-XAW
and HR-XCW sorbents in sequence (Table 1). The beakers were rinsed
with 1 L of original Wormsgraben water, which was extracted using
the same cartridges to remove residual compounds from the glasswalls.

Subsequently, the LVSPE50 device was applied on 35–50 L surface
water samples collected at 18 sampling sites in six European countries
(Croatia, Czech Republic, Germany, Hungary, Slovakia, Switzerland;
valve, (4): pressure chamber (550 mL), (5): extraction cartridge, (6): controller (Photo by
ene fluoride; (1): inlet fitting, (2) lower and upper screw caps withmortises to take in the
ent.



Table 1
Settings for sampler preparation, conditioning and extraction; MeOH: methanol, EtAc:
ethyl acetate, LC-MS: liquid chromatography–mass spectrometry; HR-X: hydrophobic
polystyrene-divinylbenzene copolymer; HR-XAW: weakly basic secondary and tertiary
ammonium polymeric anion exchanger based on HR-X; HR-XCW: weak carboxylic acid
modifiedpolymeric cation exchanger for SPE; during sampling the sorbents are assembled
in the order HR-X, HR-XAW and HR-XCW.

LVSPE50

Solid phases HR-X (10 g)
HR-XAW (4 g)
HR-XCW (4 g)

Conditioning HR-X
−200 mL EtAc
−200 mL MeOH
−100 mL water (LC-MS grade)
HR-XAW
−200 mL MeOH
−100 mL water (LC-MS grade)
HR-XCW
−200 mL MeOH
−100 mL water (LC-MS grade)

Extraction HR-X
−100 mL EtAc
−100 mL MeOH
HR-XAW
−100 mL MeOH with 2% 7 N ammonia in MeOH
HR-XCW
−100 mL MeOH with 1% formic acid
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Table S2) as part of the European Demonstration Program (EDP) of the
EDA-EMERGE project (Brack et al., 2013).

2.4. Ambient unspiked field control and laboratory blank

Unspiked ambient field controls and a laboratory blank were proc-
essed in parallel to the laboratory recovery test and the field sampling
campaign in the Saale river basin, respectively. The control samples
were subjected to thewhole preparation and elution procedurewithout
any enrichment step. For the ambient unspiked control related to the re-
covery test, three sub-samples of each 10 L of a 60 L pristinewater from
Wormsgraben were assessed by chemical analysis to account for possi-
ble interference with spiked compounds. For the blank sample related
to the field sampling during the EDP, the concept of a circulation blanks
was used to evaluate leaching of compounds from the sampling device,
filters, tubing and sorbents and to reduce the efforts of regular process-
ing of control samples. Typically, the extraction of larger volumes of
water to obtain blank samples is very expensive with regards to obtain
large amounts of clean laboratory water or may be affected by back-
ground contamination and artifacts originating from the water sample
itself, even of high quality such as LC-MS grade. To check for background
contamination or leaching form the machine, one circulation blank
(sample EDP4091) was processed using 5 L of liquid LC-MS grade
water (Chromasolv, Sigma-Aldrich) mineralized with analytical grade
sodium chloride (0.2 g L−1, Merck) to avoid problemswith the conduc-
tivity-based dosing system. The water was stored in a 5 L brown glass
bottle as a reservoir. From this reservoir, LVSPE50 extracted a 500 mL
sub-sample per cycle and discharged the extracted water back into
the reservoir. Overall, 100 cycles resulted in a blank sample
representing 50 L of water.

2.5. Chemical and biological analysis

Briefly, liquid chromatography high-resolution mass spectrometry
(LC-HRMS) analysis was carried out using an Agilent 1200 LC coupled
to a Thermo LTQ Orbitrap XL mass spectrometer with electrospray ion-
ization (ESI) according to Hug et al. (2015). A Kinetex™ core-shell C18
column (100 mm× 3.0 mm; 2.6 μm; Phenomex) with a linear gradient
with water and methanol (both containing 0.1% formic acid to account
for anionic species) at a flow rate of 0.2 mLmin−1 for chromatographic
separation was used. To account for compound losses, we used matrix-
matched calibration and processed calibration standards using a down-
scaled SPE method corresponding to that for the LVSPE samples. To
demonstrate the applicability of the LVSPE approach for the effect-
based analysis of surface water samples, aliquots of the LVSPE samples
were subjected to a set of in vitro and organism-level bioassays (Table
2). The results of the bioassays were reported as relative enrichment
factors (REF) which express the enrichment of the mixture of organic
pollutants in a sample to achieve a specific effects in a bioassay
(Escher and Leusch, 2011; Escher et al., 2006; Escher et al., 2014). The
methods for chemical and biological analysis are detailed in the Supple-
mentary data (Section S2.4).
2.6. Data analysis

Log D values at pH 7.0 and other physicochemical descriptors were
calculated using the PhysChem Profiler of ACD/Percepta (ACD, 2015).
Open Babel v2.3.2 (O'Boyle et al., 2011) was used to generate InChIKey
for the compound identification. Statistical analysiswas performedwith
R 3.3.0 (R Core Team, 2016). The Venn diagram was drawn with the R
package VennDiagram (Chen, 2016). The elbow method retrieved the
optimal number of clusters used in k-means clustering (Ketchen and
Shook, 1996). Descriptive curve functions were calculated using the R
package e1071 (Meyer et al., 2015). Processing of the bioassay
data and calculation of concentration-response curves was performed
with GraphPad Prism v6.07 (2015). The estrogenic assay data was
assessed using the REGTOX Excel™ Macro (http://www.normalesup.
org/~vindimian/fr_index.html) as previously described (Kinani et al.,
2010).
3. Results and discussion

3.1. Chemical and biological analysis of the circulation blank

The extraction procedure was tested for any undesired chemical
contamination as well as toxicological effects to exclude false positives
during monitoring. This step included the recovery and the circulation
blanks. None of the targeted compounds (N=251) were detected in ei-
ther blank. For the HR-X extract of the circulation blank, the lowest ob-
served effect concentrations (LOEC) elicited a REF of 100 for the ER- and
AR-mediated activity (expressed as cytotoxicity at this LOEC) and a
LOEC at REF 250 and REF 500, respectively, for the AChE inhibition
and the (sub-)lethal endpoints in FET. For the algal growth inhibition
assay, the no observed effect concentration (NOEC) was at REF 100 for
all three sorbents used. The (sub-)lethal effects in the FET showed a
LOEC and NOEC of REF 500, respectively, for the HR-XAW and HR-
XCW. These minor effects of the circulation blank appeared only at
high REFs and hence they are unlikely to interfere with the evaluation
of effects of environmental water samples. However, a thorough
cleaning and conditioning (Table 1) of the sorbents used is highly rec-
ommended to remove production residues and contamination due to
absorption of background air contaminants.

The concept of the circulation blank was based on the assumption
that contamination originates from the device, filters, sorbent or tubing
and not from the “pure” high-gradewater used for the processing of the
blank. This approach allowed testing the potentialmobilization of prob-
lematic contamination from filters, sorbents and tubing under realistic
conditions. As a compromise, the circulation blank allowed simulating
the extraction of for instance, 50 L of water by pumping 5 L of LC-MS
grade water ten times through the instrument. Nevertheless, the circu-
lation blank of 5 L is a simulation rather than an actual extraction of a
50 L “pure” water sample. If contamination results from the enriched
water, it may mask the contaminants leached from the device and
consumables.

http://www.normalesup.org/~vindimian/fr_index.html
http://www.normalesup.org/~vindimian/fr_index.html


Table 2
Bioassays used for assessment of LVSPE samples; AChE: inhibition of acetylcholinesterase, AR: androgen receptor-mediated activity, ER: estrogen receptor-mediated activity, GR: gluco-
corticoid receptor mediated activity.

Bioassay Type Target compound groups Endpoint Reference

AChE inhibition Enzymatic
reaction

Insecticides, miscellaneous Inhibition of AChE enzyme activity (Ellman et al., 1961; Froment et al., 2016; Galgani
and Bocquene, 1991)

Algal growth inhibition with
Raphidocelis subcapitata

Organism-level Herbicides, disinfectants,
miscellaneous

Inhibition of algal growth (OECD, 2011; Rojíčková et al., 1998)

Ames fluctuation assay with TA98 In vitro Natural and synthetic
mutagenic compounds

Induction of reverse mutations (Ames et al., 1975; Reifferscheid et al., 2011;
Reifferscheid et al., 2012)

AR-mediated activity - MDA-kb2
cells

In vitro Natural and synthetic
(anti)androgens

(Anti-) androgenic response (Creusot et al., 2015; Wilson et al., 2002)

ER-mediated activity - MELN cells In vitro Natural and synthetic
(anti)estrogens

(Anti-) estrogenic response (Balaguer et al., 1999; Creusot et al., 2015; Kinani
et al., 2010)

GR-CALUX® In vitro Natural and synthetic
(anti)glucocorticoids

(Anti-) glucocorticoid receptor
mediated response

(Sonneveld et al., 2005)

Zebrafish embryo acute toxicity Organism-level Biocides, pharmaceuticals,
miscellaneous

Survival, sublethal responses (e.g.,
heartbeat)

(ISO 15088, 2007; OECD, 2013)

354 T. Schulze et al. / Science of the Total Environment 581–582 (2017) 350–358
3.2. Chemical assessment of spiked water samples

In the recovery test, three replicates of each 10 L of a pristine natural
water sample spikedwith 251 compoundswere subjected to extraction
with LVSPE50 and analysis with LC-HRMS, to assess the extraction effi-
ciency and accuracy of LVSPE.

The Venn diagram in Fig. 2 shows the distribution of the compounds
between the three different solid phases. The majority of compounds
were recovered from the HR-X (98%; 246 out of 251), the first material
in flow direction. For most chemicals in the intersection of the three
solid phases, the main part of spiked substances was found in the HR-
X (N = 48 out of 69) with b10% of recovery in HR-XAW and HR-XCW,
respectively, the second and third material in flow direction. Only few
substances recovered mainly in the HR-XAW (e.g., benzenesulfonic
acid, chloridazon-desphenyl, perfluorobutanoic acid, salicylic acid) or
in the HR-XCW (e.g., gabapentin, metformin). The average recoveries
of the spiked compounds were 88 ± 43% (average and standard devia-
tion; median: 96%; N=246 out of 251) for the HR-X, 9 ± 21% (N=59
out of 251) for the HR-XAWand 4± 6% (N=49 out of 251) for the HR-
Fig. 2. Venn diagram of spiked compounds recovered in the three different sorbents in
flow direction: HR-X: neutral solid phase material, HR-XAW: anionic exchanger solid
phase material, HR-XCW: cationic exchanger solid phase material.
XCW (Fig. 2, Table S4). The entire repeatability of the recoveries was
11%, 3% and 2%, respectively, for the HR-X, HR-XAW, and HR-XCW sor-
bents (withN=3 replicates of spikedwater samples). Two compounds,
ethion and triclocarbanwere not found in any of the three fractions. The
reason was maybe a strong irreversible adsorption to surfaces or the
sorbents for which the solvation power of the solvents used was not
sufficient.

Fig. 3 depicts the distribution of recoveries for the HR-X sorbent. The
recoveries exceeded 50% for 204 out of 251 spiked chemicals. The den-
sity function retrieved a slightly super Gaussian (kurtosity = 0.3) and
left-skewed (skewness = −0.3) distribution (see insert in Fig. 3). The
calculation of the distribution and density functions for the HR-XAW
and HR-XCW sorbents was impossible due to many observations with
tiny recoveries and thus low variances of the values.

To evaluate the relationship between the recoveries and the physi-
cochemical properties of the compounds, regression analysis and k-
means clustering (with k=3 centers) was performed (Fig. 4, Fig. S5,
Table S4). Regression analysis did not resolve any systematic dependen-
cy between the recoveries and the log D and other descriptors (e.g., pKa,
Kd, log P; data not shown). Since other analytical factors such as chro-
matography, ionization or irreversible adsorption to the sorbents or sur-
faces may affect the recoveries, this result might be different in another
experimental setting.
Fig. 3. Histogram of the recoveries (in %) of compounds (N = 251) spiked in a pristine
water sample of Wormsgraben (Harz Mountains, Germany) and extracted with the
LVSPE50 device using the neutral HR-X sorbent; the insert shows the density function of
the distribution.



Fig. 4. Scatterplot of the total recoveries (in %) of compounds (N = 251) spiked in a
pristine water sample of Wormsgraben (Harz Mountains, Germany) and extracted with
the LVSPE50 device versus the water-octanol partition coefficient at pH 7.0 corrected for
the speciation (log D); the dashed lines express the limits of the clusters derived from k-
means cluster analysis (k = 3); the plot shows only the data for HR-X.

Fig. 5. Occurrence of responses in bioassays to 18 LVSPE samples collected during the
European demonstration program; most samples were tested in most bioassays up to a
REF of 100, except AChE (up to REF 500); REF: relative enrichment factor; AChE:
acetylcholinesterase enzymatic inhibition, AR: androgenic mediated activity, ER:
estrogenic mediated activity, GR: glucocorticoid receptor mediated signalling, FET:
zebrafish embryo test (Tousova et al., unpublished data).
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The resulting three groups of k-means clustering include (1) one
group of compounds with low recoveries in HR-X (b60%) and a larger
overlap with HR-XAW and HR-XCW (56 out of 251 compounds), (2)
one group with recoveries in HR-X in the range of 60% to 123% with
only small overlap with both other sorbents (159 out of 251 com-
pounds), and (3) one group with recoveries in HR-X N123% with only
very small overlap with the ion exchanging phases (36 out 251 com-
pounds, Fig. 4, Fig. S5, Table S4).

Among the causes for recoveries assigned to thefirst or third group are
chromatographic reasons such as elution during dead time andmatrix ef-
fects in ESI-MS analysis. The matrix effect is caused by co-extracted dis-
solved organic matter (DOM). The DOM is a heterogeneous mixture of
compounds with a wide range of different structures and hence a higher
load of DOM related compounds with affinity to polystyrene-
divinylbenzene co-polymers can be expected (Raeke et al., 2016;
Swenson et al., 2014) that co-elutewith similar compounds in LC. Howev-
er, correctionwith spiked internal standards andmatrix-matched calibra-
tion often cannot compensate matrix effects. In the case of very nonpolar
or hydrophilic compounds, an irreversible adsorption to surfaces and the
sorbents or breakthrough is reasonable, respectively. The latter was ob-
served for 4-aminobenzamide, acetaminophen, chloridazon-desphenyl,
chlormequat,mepiquat, andN,N-dimethylsulfamide,whichwere qualita-
tively detected in the effluent water after extraction.

The chemical assessment of spiked water samples revealed that the
LVSPE approach using the hydrophobic sorbent HR-X was suitable to
capture a larger number of the spiked compounds with good recoveries
between 60% and 123%without apparent dependency on their physico-
chemical properties. The usage of any other general purpose solid phase
(e.g., Oasis® HLB or Amberlite® XAD) or resins with specific functional
groups such as ionic exchangers might be an opportunity for tailored
applications. However, in this study, the latter considerably enhanced
the recoveries of only a few compounds (e.g., benzenesulfonic
acid, benzothiazole, gabapentin, metformin, N-nitrosomorpholine,
perfluorobutanoic acid, salicylic acid). Certainly, in the setting of the re-
covery experiment using a relative low volume of spiked water (10 L)
and a low expected content of dissolved organic carbon (DOC), the
amount of 10 g of HR-X (or similar sorbents) as the first sorbent in
flow direction could be enough to trap large amounts of spiked com-
pounds. In another setting with larger volumes of spiked water with
higher content of DOC, a larger breakthrough and distribution over the
three phases is possible.

In marine applications, the salt content of the water can be an issue
to be considered. Higher salinity caused by co-extracted inorganic salts
can effect (1) the extraction of charged organic compounds due to
competitive ionic interactions of the ionic exchangers with inorganic
cations (Li+bNa+bNH4

+bK+bMg2+bCa2+) and anions (Cl−bBr−b

NO3
−bSO4

2−bClO4
2−) (Bäuerlein et al., 2012), (2) the chemical analysis

due to matrix effects (Mallet et al., 2004; Wu et al., 2010), and (3) the
results of bioassays due to salinity intolerances of the test species
(Gonçalves et al., 2007; Dinnel et al., 1987; Haque et al., 2014; Sawant
et al., 2001). Therefore, proper washing of the cartridges with ultra-
clean water after extraction is recommended to avoid the carryover of
a higher load of inorganic salts to the organic extract (Loos et al.,
2013a, 2013b; Wu et al., 2010).
3.3. Biological assessment of field samples

A major reason for developing the LVSPE approach was the lack of
appropriate sampling equipment for the effect-based screening analysis
and monitoring of water resources. Enrichment of a larger volume of
water is required to deliver enough extract for the subsequent testing
in a set of different bioassays or even to performeffect-directed analysis.
To investigate whether the LVSPE approach is applicable for effect-
based analysis, extracts of samples collected during the EDP were
assessed using seven in vitro and organism-level bioassays representing
diverse modes of action (MOA) and adverse effects of pollutants (Table
2). Since HR-XAW and HR-XCW extracts of those samples were only ef-
fective in a few assays and endpoints, only the results for the HR-X ex-
tracts are represented in this study (Tousova et al., unpublished data).
Using the observation of a biological response at a REF of 100 as a crite-
rion of decision, 8 out of 10 toxic endpoints (Table 2) allowed a discrim-
ination of active from non-active surface water samples with 5%
(endpoint mutagenicity) to 77% (endpoint estrogen receptor mediated
activity) of the samples exhibiting significant responses. A REF of 100
is an enrichment level that can be easily achieved in effect-based and
chemical monitoring using LVSPE in a reasonable period and without
any problems of blank toxicity (Fig. 5). Anti-AR activity and AChE inhi-
bition did not respond to any of the samples, the latter up to a REF of
500. For range finding and avoidance of masking effects of the targeted
specific endpoints, the occurrence of cytotoxicity was tested in all cell-
based tests beforehand.
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3.4. Chemical assessment of field samples

Fig. 6 shows a selection of concentrations of chemicals analyzed in
the EDP water samples extracted using the HR-X sorbent. The analytes
cover a wide range of substance classes such as pesticides, pharmaceu-
ticals or industrial chemicals and their transformation products. The
concentration levels were in the range from 0.2 ng L−1 to
2360 ng L−1. The minimal and maximal concentration levels span
over one to two orders of magnitude for most compounds. Once widely
used legacy pesticides such as atrazine or simazine were among the
identified substances. The overall concentration levelswere comparable
to those found frequently in European surfacewaters (Loos et al., 2013a,
2013b; Ruff et al., 2015; ter Laak et al., 2010). The chemical assessment
of real water samples showed that the LVSPE approach was applicable
to water samples containing compounds in a wide span of
concentrations.

4. Conclusions

This studydemonstrated LVSPE as a promising tool for thehigh qual-
ity sampling and extraction of pollutants for chemical and effect-based
screening of water resources in field applications. LVSPE allows for
onsite extraction of large volumes ofwater up to 50 L fromnatural or ar-
tificialwater sources and thus provides sufficient sample volumes at the
required enrichment factors for biological screening in a set of different
bioassays and for chemical screening. Unequivocal distinction between
likely effects of a blank sample and the effects of even only marginally
polluted surface water samples was possible in this investigation. Fur-
thermore, LVSPE appears to be suitable for the enrichment of complex
mixtures of known water contaminants with no or only low systematic
dependence from physicochemical properties with “good” recoveries.
The flexible concept of the device allows for tailoring the configuration
to the user's needs to reach the goals of a particular study. The device
will facilitate the development of holistic effect-based and chemical as-
sessment strategies to supplement the existing concepts of water qual-
ity assessment manifested in, e.g., the European Union Water
Framework Directive. For example, the samples can be subjected to a
Fig. 6. Concentrations of frequently found organic compounds in 18 samples collected
during the European demonstration program with the LVSPE50 device (in ng L−1)
grouped by occurrence of findings given in brackets; HR-X: neutral solid phase; data
shown as box and whisker plot (box: median, 5th/95th-percentiles; whiskers: minimum
and maximum; dot in box: mean), pluses represent outliers.
first screening in a broad set of bioassays and afterwards used for ef-
fect-directed analysis in specific assays to unravel cause-effect relation-
ships for the prioritization of effects and pollutants.
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