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Summary
Geodesy can contribute to a quantitative understanding of ocean circulation variability
at northern high latitudes, which is crucial to environmental and climate-related studies.
Coastal ocean dynamics has gained recent interest due to its importance for shipping, fish-
ery, coastal ecosystem processes, other on- and offshore activities, and sea-level change. If
the oceans were at rest, the ocean surface would be in hydrostatic equilibrium and coincide
with the geoid. Dynamical processes in the ocean cause deviations of the sea surface from
the geoid, and the steady-state component of the dynamical processes is known as the mean
dynamic topography (MDT). It may be determined by the ocean approach, using numerical
ocean circulation models, or by the geodetic approach, where MDT is the height of the
mean sea surface (MSS) observed by satellite altimetry, or mean sea level (MSL) observed
by tide gauges, above the geoid. This thesis is an investigation of geodetic topics related
to geoid and MDT determination in the Norwegian coastal zone: Optimal combination
of recent satellite and regional gravity data, dedicated coastal altimetry products, modern
regional geoid computation techniques, and temporal gravity field variations due to vertical
land motion.

A suite of regional geoid models were validated in terms of standard deviations of differences
to GNSS/leveling. In addition to existing regional geoid models, new GOCE-based geoid
models were computed by a filtering approach, whereby an already existing regional geoid
model was taken as terrestrial information, and combined with GOCE-based global gravity
models by filtering in the spatial domain. GRACE and GOCE have substantially improved
the geoid over the last decade, with a drop from 8.5 cm (pre-GRACE) through 4.6 cm
(GRACE) to ∼3 cm (GOCE). There is a tendency that filter-combinations that put more
weight on GOCE than on the terrestrial gravity data are the best. The formal geoid errors
are lower and show larger variations depending on the relative weighting of satellite and
terrestrial data than the empirical errors from the GNSS/leveling validation, which suggests
that the empirical error is dominated by the quality of the GNSS/leveling data.

In a benchmark study, the level of agreement between new geodetic and recent ocean MDTs
along the Norwegian coast was investigated. New GOCE-based geoids, conventional altime-
try as well as dedicated coastal altimetry products Envisat/CTOH and Jason-2/PISTACH
were used. Geodetic and ocean MDTs agree on the ∼3-7 cm level at the tide gauges, and
on the ∼5-11 cm on the altimetry sites. The contributions to the error budget are estimated
as follows; ocean MDT: ≤5 cm, altimetric MSS: ≤7 cm, tide-gauge MSL: ≤3 cm, and
geoid: ≤4 cm. The coastal altimetry products generally do not offer an improvement over
the conventional products they are based on.

The SAR altimetry satellite CryoSat-2 observes the sea surface in areas previously uncov-
ered by conventional altimetry. Compared with 10-minute sea level observations at 22 tide
gauges, the standard deviations of differences are between 7-20 cm, with the largest values at
tide gauges well inside fjords with relatively few altimetry observations. When replacing the
standard ocean tide and atmospheric corrections with local corrections derived from ocean
tide predictions and pressure observations, a 2-5 cm improvement in standard deviations of
differences is observed at 19 out of 22 tide gauges.
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Using CryoSat-2 and new GOCE-based regional geoid models, three geodetic MDT sur-
faces were determined. In addition, geostrophic surface currents were derived from the
MDT surfaces, and compared with the coastal numerical ocean model NorKyst800. At the
tide gauges, the CryoSat-2 MDTs agree on the ∼3-5 cm level with both tide-gauge and
ocean MDTs. The CryoSat-2 MDT surfaces show standard deviations of differences of 6-
8 cm to NorKyst800. The general pattern of the Norwegian Sea circulation is evident in
the CryoSat-2 MDTs, but variations are seen depending on the geoid used. The CryoSat-2
MDT surfaces use regional geoid models which are all based on the latest release of GOCE
global gravity models. Thus, the observed variation emphasizes the importance of terrestrial
gravity information for the geodetic MDT. The quality of regional geoid models is higher
on land than over the ocean, which may be due to the fact that geoid models are often tuned
to fit validation data on land, where the bulk of terrestrial gravity observations are.

Furthermore, three methods for regional geoid computation were compared theoretically
and numerically in a unified framework. Stokes’s formula, least-squares collocation (LSC)
and radial base functions using the spline kernel (SK) are theoretically equivalent methods
in the global case. LSC and SKs need a modification to provide the same results as Stokes’s
formula in regional applications, where the Stokes integration is restricted to a spherical
cap around the computation point. The methods are also equal in practice, as shown in
numerical examples. At the 5 arcmin resolution, all methods agree within 2×10−2 mm to
5.9 mm in the target areas, where the largest RMS differences are due to the discretization
of Stokes’s formula. At the 2.5 arcmin resolution, all methods agree within 6×10−2 mm
to 2.4 mm. The SKs are shown to depend on the signal resolution rather than the number
of observations, while the opposite holds true for LSC, as the size of the auto-covariance
matrix to be inverted corresponds to the number of observations, independent of the signal
resolution. It is important to note that the modification of LSC and SKs is not a general
necessity when applying these methods, but it is critical in direct comparison with Stokes’s
formula.

The main source of temporal variations of the gravity field in Fennoscandia is glacial iso-
static adjustment (GIA). The extent to which secular gravity trends derived from absolute
gravity observations are applicable for GIA studies was investigated. All Norwegian FG5-
type absolute gravity observations (1993-2014) were compiled and analyzed, raw observa-
tions consistently reprocessed, and adopted observations carefully incorporated into the data
set with updated uncertainties. In comparison with a GIA model, empirical gravity rates
based on a refined modeling of ocean tide loading, non-tidal ocean loading, atmospheric,
and global hydrological gravitational effects mainly impact sites where GIA is not the dom-
inant signal. This suggests that a refined modeling is meaningful at sites that are affected
by various unmodeled or insufficiently modeled effects. From a subset of 10 rates mainly
reflecting GIA, estimated gravity-to-height rate of change ratios are within −0.133 (±0.030)
to −0.167 (±0.045) µGal mm−1, in agreement with previous estimates (−0.154 to −0.217
µGal mm−1).

Keywords: absolute gravity · geoid · GIA · gravity change · mean dynamic topography ·
ocean currents · ocean model · physical heights · SAR altimetry · satellite altimetry · tide
gauges



vii

Sammenfatning
Geodesi kan bidra til en kvantitativ forståelse av variabiliteten i havsirkulasjon på nordlige
breddegrader, som er avgjørende for miljø- og klimarelaterte studier. I de senere år har vi
sett en økt interesse for havdynamikk i kystsonen på grunn av dennes betydning for sjø-
fart, fiskeri, kystnære økosystemprosesser, andre on- og offshoreaktiviteter samt havnivåen-
dringer. Dersom havet var i ro, ville havoverflaten vært i hydrostatisk likevekt og dermed
parallell med geoiden. Dynamiske prosesser i havet forårsaker derimot avvik i havover-
flaten fra geoiden, og den stasjonære komponenten til de dynamiske prosessene er kjent
som midlere dynamisk topografi (MDT). Den kan bestemmes ved numeriske havmodeller
i en såkalt oseanografisk tilnærming, eller ved en geodetisk tilnærming, der MDT enten er
midlere havoverflates (MSS) høyde bestemt ved satellittaltimetri, eller middelvanns (MSL)
høyde bestemt i vannstandsmålere, over geoiden. Denne avhandlingen undersøker geode-
tiske emner relatert til bestemmelse av geoide og MDT den norske kystsonen: Optimal kom-
binasjon av nye satellitt- og regionale tyngdedata, dedikerte kystaltimetriprodukter, moderne
regionale geoideberegningsteknikker, og tids-variasjoner i tyngdefeltet grunnet landhevn-
ing.

Et knippe regionale geoidemodeller ble validert i form av standardavvik til differanser mot
GNSS/nivellement. I tillegg til eksisterende regionale geoidemodeller, ble nye GOCE-
baserte geoidemodeller beregnet ved en filtreringsteknikk, der en eksisterende regional
geoidemodell ble benyttet som terrestrisk informasjon og kombinert med GOCE-baserte
globale geoidemodeller ved filtrering i det romlige domenet. I løpet av det siste tiåret har
GRACE og GOCE forbedret geoiden betraktelig, fra 8.5 cm før GRACE, til 4.6 cm med
GRACE, og til ∼3 cm med GOCE. Det er en tendens til at filtrerte løsninger som legger
mer vekt på GOCE enn på terrestriske tyngdedata er de beste. De formelle geoidefeilene
er små og varierer langt mer avhengig av den relative vektingen av satellitt- og terrestriske
data enn de empiriske feilene fra valideringen mot GNSS/nivellement. Dette tyder på at den
empiriske feilen domineres av kvaliteten til sistnevnte.

I en benchmark-studie ble samsvaret mellom nye geodetiske og oseanografiske MDTer un-
dersøkt. Nye GOCE-baserte geoidemodeller, konvensjonell altimetri samt dedikerte kys-
taltimetriprodukter Envisat/CTOH og Jason-2/PISTACH ble benyttet. Geodetiske og os-
eanografiske MDTer stemmer overens på ∼3-7 cm nivå i vannstandsmålerne og på ∼5-11 cm
nivå i altimetripunktene. Bidragene til det totale feilbudsjettet estimeres til; oseanografisk
MDT: ≤5 cm, MSS fra altimetri: ≤7 cm, MSL fra vannstandsmåler: ≤3 cm, samt geoide:
≤4 cm. De dedikerte kystaltimetriproduktene gir ingen forbedring sammenlignet med de
konvensjonelle produktene de er basert på.

SAR-altimetrisatelliten CryoSat-2 observerer havoverflaten i områder som tidligere ikke var
tilgjengelige for konvensjonell altimetri. Sammenlignet med 10-minutters vannstandsob-
servasjoner i 22 vannstandsmålere, er standardavvik til differanser mellom 7-20 cm, med
de største verdiene i vannstandsmålere langt inne i fjorder, med relativt få altimetriobser-
vasjoner. Når standardkorreksjoner for tidevann og atmosfære byttes ut med lokale korrek-
sjoner bestemt fra predikert tidevann og lufttrykksobservasjoner, forbedrer dette standard-
avviket til differansene med 2-5 cm i 19 av 22 vannstandsmålere.
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Ved bruk av CryoSat-2 og nye GOCE-baserte regionale geoidemodeller ble tre geodetiske
MDT-flater bestemt. I tillegg ble geostrofiske overflatestrømmer avledet fra MDT-flatene og
sammenlignet med den kystnære numeriske havmodellen NorKyst800. I vannstandsmåler-
punktene stemmer CryoSat-2 MDTer overens med vannstandsmåler-MDT og oseanografisk
MDT på ∼3-5 cm nivå. CryoSat-2 MDT-flatene viser standardavvik til differanser mot
NorKyst800 på 6-8 cm. Det overordnete sirkulasjonsmønsteret i Norskehavet fremkom-
mer i CryoSat-2 MDTene. Likevel er det variasjoner i mønsteret avhengig av hvilken geoide
som ligger til grunn. CryoSat-2 MDTene benytter regionale geoidemodeller som alle er
basert på den siste utgivelsen av GOCE globale tyngdemodeller. Derfor understreker den ob-
serverte variasjonen betydningen av terrestrisk tyngdeinformasjon for den geodetiske MDT.
Kvaliteten til de regionale geoidene er bedre på land enn til sjøs, hvilket kan skyldes at
geoidene ofte tilpasses valideringsdata på land, hvor også brorparten av terrestriske tyngde-
data befinner seg.

Videre ble tre metoder for regional geoideberegning sammenlignet teoretisk og numerisk
i et enhetlig rammeverk. Stokes’ formel, minste kvadraters kollokasjon (LSC) og radielle
basisfunksjoner med splinekjerne (SK) er teoretisk ekvivalente metoder i det globale til-
fellet. LSC og SKer trenger en modifikasjon for å gi resultater tilsvarende Stokes’ formel
i regionale anvendelser, der integrasjonen er avgrenset til en sfærisk kappe rundt bereg-
ningspunktet. Metodene er like også i praksis, som vist i numeriske eksempler. Med 5
minutters oppløsning, samsvarer alle metoder innenfor 2×10−2 mm til 5.9 mm i målom-
rådene, hvor de største RMS-differansene skyldes diskretiseringen av Stokes’ formel. Med
2.5 minutters oppløsning, samsvarer alle metoder innenfor 6×10−2 mm til 2.4 mm. SKene
avhenger av signalets oppløsning heller enn antallet observasjoner, mens det motsatte gjelder
for LSC, der størrelsen til autokovariansmatrisen som skal inverteres korresponderer til an-
tallet observasjoner, uavhengig av signalets oppløsning. Det er viktig å merke seg at mod-
ifiseringen av LSC og SKene ikke er en generell nødvendighet i den praktiske anvendelsen
av metodene, men er avgjørende i direkte sammenligning med Stokes’ formel.

Hovedårsaken til tids-variasjoner i tyngdefeltet i Fennoskandia er postglasial landhevning
(GIA). I hvilken grad tyngdekraftens endringsrate, bestemt fra absolutte tyngdemålinger,
kan anvendes i GIA-studier, ble undersøkt. Alle norske absolutte tyngdemålinger utført
med instrumenter av FG5-typen (1993-2014) ble samlet og analysert, råobservasjoner ble
enhetlig reprosessert og observasjoner fra andre kilder inkludert i datasettet med oppdaterte
usikkerhetsmål. I sammenligning med en GIA-modell påvirker empiriske tyngderater basert
på en foredlet modellering av ocean tide loading, non-tidal ocean loading, atmosfærisk
samt global hydrologisk gravitasjonseffekt i hovedsak tyngdestasjoner der GIA ikke er det
dominerende signal. Dette tyder på at en foredlet modellering er meningsfylt i stasjoner
som er påvirket av forskjellige umodellerte eller utilstrekkelig modellerte effekter. Forhold
mellom tyngderate og høyderate ble bestemt fra en delmengde på 10 tyngderater som i hov-
edsak reflekterer GIA, og er mellom −0.133 (±0.030) og −0.167 (±0.045) µGal mm−1, i
samsvar med tidligere estimater (−0.154 til −0.217 µGal mm−1).

Nøkkelord: absolutt tyngde · fysiske høyder · geoide · GIA · havmodell · havstrømmer ·
midlere dynamisk topografi · SAR-altimetri · satellittaltimetri · tyngdekraftens endringsrate
· vannstandsmålere
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Chapter 1

Introduction

1.1 Background and motivation

Earth science is highly interdisciplinary, comprising studies of the solid Earth, at-
mosphere, hydrosphere, and biosphere (Tarbuck and Lutgens, 2015). All branches
of Earth science change with time, interact, and depend on each other. Therefore,
a common way to view Earth is by the systems approach, see Figure 1.1. This ap-
proach offers a deeper understanding of the interactions that determine past, present
and future states of the dynamical Earth. As such, Earth science is environmental
science. Monitoring changes in the Earth system is highly motivated by the ambition
to unveil the anthropogenic dimension of global environmental change.

The ocean is an important part of the Earth system due to its large heat storage and
heat transport capacity. The study of its physical properties and dynamics is known
as physical oceanography (Stewart, 2008). Moreover, physical oceanography com-
prises the interaction between ocean and atmosphere, the oceanic heat budget, water
mass formation, currents and coastal dynamics. Precise knowledge of ocean currents
and sea-level change is crucial to environmental and climate-related studies (Vallis,
2012). The deep ocean comprises 90% of the total ocean mass. It is dominated
by the meridional overturning circulation (MOC), which is due to the formation of
deep water in the North Atlantic Ocean between Greenland and Norway, and in the
Weddell Sea in Antarctica.

Between the Arctic Ocean to the north and the North Atlantic Ocean to the south
are the Nordic Seas, a common designation for the Iceland, Greenland, Norwegian,
and Barents seas. The major currents in the Nordic Seas are characterized by a
southward flow of relatively fresh and cold Arctic Water in the west (East Greenland
Current), and a northward flow of relatively salty and warm Atlantic Water in the east
(Norwegian Atlantic Current), see Figure 1.2. The poleward heat transport results in
a convective overturning of the water column known as North Atlantic Deep Water
formation, sustaining the MOC (Rhines et al., 2008).
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Figure 1.1: The simplified Bretherton diagram. It illustrates the Earth system and subsys-
tems, all of them of equal value as they act and react on each other. Adapted from NASA
Earth System Sciences Committee (1988).

The Norwegian Atlantic Current splits into several branches (Orvik et al., 2001;
Skagseth et al., 2008), partly recirculating in the Nordic Seas, partly flowing west of
Spitsbergen as the West Spitsbergen Current into the Arctic Ocean through the Fram
Strait, and partly flowing into the Barents Sea. The Norwegian Coastal Current
(NCC) transports warm and relatively fresh water along the Norwegian coast and
into the Barents Sea, with its origin in Baltic Water entering Skagerrak (Skagseth
et al., 2011). Along its way northward, it is fed by additional freshwater discharge.
The NCC is important for the regional marine ecosystem and contributes to the
poleward transport of warm Atlantic Water. It is of particular interest to studies of
sea-level variations in the Norwegian coastal zone.

Ocean circulation in the Nordic Seas is influenced, among other factors, by winds,
variations in the upper ocean and sea-ice interaction, ice sheet mass changes and
their effect on regional sea level, changes in freshwater fluxes, and variability in
both large-scale and regional atmospheric pressure (Chafik et al., 2015). Changes
in the Arctic-Subarctic ocean flux, i.e., the exchange of water between the Arctic
and the surrounding seas have far-reaching influences on regional and global en-
vironment and climate variability. Therefore, a quantitative understanding of high-
latitude ocean currents and their variations is of high importance (Johannessen et al.,
2014; Hattermann et al., 2016).
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Figure 1.2: Schematic of the Nordic Seas with major ocean currents. Inflowing Atlantic
Water is shown in red, where the Norwegian Atlantic Front Current (NwAFC), the Nor-
wegian Atlantic Slope Current (NwASC), and the West Spitsbergen Current (WSC) are
prominent. Outflowing Arctic Water is shown in blue, such as the prominent East Green-
land Current (EGC). Fresh coastal water is shown in green, where the Norwegian Coastal
Current (NCC) is of particular interest for this thesis. In addition, the repeated hydro-
graphic sections Svinøy, Barents Sea Opening (BSO), Kola, and Sørkapp are shown.
Adapted from Skagseth et al. (2008).
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A quantitative understanding of ocean parameters, or, indeed, any Earth system pa-
rameter, is closely linked to the science of geodesy. Geodesy has traditionally been
concerned with the determination of static Earth’s size, shape, rotation and gravity
field, also known as the “pillars of geodesy” (Rummel et al., 2005). However, the
interaction of the Earth system components, i.e., their dynamics, influence the pil-
lars of geodesy. Today, advances in geodetic observational techniques allow global
monitoring of the whole Earth system in time. This, for example, has led to the
establishment of the Global Geodetic Observing System, which aims to integrate
the pillars of geodesy through monitoring geodetic parameters and their temporal
variations, and thus monitoring the Earth system (Plag and Pearlman, 2009).

Global navigation satellite systems (GNSS) are important geodetic techniques for
navigation and surveying, providing point coordinates in east, north and vertical di-
rections on Earth’s surface to centimeter accuracy (Rothacher, 2002; Tegedor et al.,
2014). The vertical component is the height above a conventional reference ellip-
soid, referred to a global geodetic reference frame. All geodetic data must be related
to a common geodetic reference frame (e.g., ITRF2008) prior to comparison or com-
bination.

While positioning and reference frames form the basis of what may be termed ge-
ometrical geodesy, physical geodesy aims at determining Earth’s external gravity
field (Hofmann-Wellenhof and Moritz, 2006). Gravity is a fundamental force de-
scribing the physics of the Earth. The gravity vector defines the direction of “up”
and “down”, making it indispensable for the definition of physical heights, and a key
observable within physical geodesy.

If the oceans were at rest, the ocean surface would be in hydrostatic equilibrium.
It would coincide with the one equipotential surface of Earth’s gravity field which
geodesists call the geoid. The geoid is close to mean sea level, and horizontal in the
physical sense, which is important in many science and engineering applications,
since it is gravity and not height which governs fluid flow (Torge and Müller, 2012).
It acts as a reference surface for orthometric heights (i.e., physical heights above sea
level) and the definition of vertical reference systems (height systems). We cannot
observe the geoid directly, but rather derive it from gravity observations by solving
the geodetic boundary value problem.

The gravimetric satellite mission GOCE (Gravity and steady-state Ocean Circulation
Explorer) (Drinkwater et al., 2003) aims at the derivation of a global mean geoid
with homogeneous accuracy of about 1 cm, but limited to spatial resolutions of about
100 km. Higher spatial resolutions may be obtained with additional air- or shipborne
as well as terrestrial gravity information (Denker, 2013). Today, a regional geoid on
land can be determined to the centimeter level, provided that the quality and density
of the gravity data are sufficiently high.
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Satellite altimeters have been measuring sea surface heights (SSHs) above a refer-
ence ellipsoid for several decades, leading to the knowledge of the global mean sea
surface (MSS) with approximately 2 cm accuracy, averaged over a time period (Pugh
and Woodworth, 2014). Satellite altimetry has extensively improved our knowledge
of ocean dynamics, ocean mass redistribution, and the marine gravity field. It plays
a key role in determining sea-level rise, a major indicator of climate change. Con-
ventional altimeters send pulse-limited radar signals to the surface and derive the
satellite height above the surface from the round-trip travel time of the returned
radar echoes. Depending on the surface properties (open ocean, land, sea ice, etc.)
the echoes generate different waveforms, from which the travel time must be esti-
mated. Numerous retracking algorithms exist to take care of the different waveform
characteristics (Gommenginger et al., 2011). Conventional altimeters have an al-
most circular footprint of several kilometers in diameter. Sea surface heights can be
derived from range observations if the satellite orbit is known and after application
of instrumental and geophysical corrections.

For a long time, satellite altimetry was restricted to the open ocean, several tens
of kilometers off the coast, due to the contamination of the radar footprint by land
masses, degradation of the tropospheric corrections due to increased atmospheric
variability and imperfections of global ocean tide models in the coastal zone (Vi-
gnudelli et al., 2011). In recent years, coastal altimetry has gained interest due to its
high relevance for monitoring the coastal environment and assessing the impact of
sea-level rise and variability along the coast. Consequently, there have been attempts
by the European Space Agency (ESA) and the French Space Agency (CNES) to pro-
vide operational coastal altimetry products for the users (COASTALT respectively
PISTACH), based on conventional altimetry.

CryoSat-2 is the first of a new generation of satellite altimeter missions which carry a
Synthetic Aperture Radar (SAR) altimeter instead of the conventional pulse-limited
system (Wingham et al., 2006). The SAR altimeter provides higher range precision
and a higher along-track resolution of ∼300 m as opposed to several kilometers, al-
lowing to track finer structures of the sea surface and obtain observations closer to
the coast. In favorable conditions, CryoSat-2 may deliver dense observations even
in deep, narrow fjords, where conventional altimeters fail to provide data. SAR
altimeters of CryoSat-2 heritage are also found on the Sentinel-3 series of the Eu-
ropean Copernicus program (Sentinel-3A was launched on February 16, 2016, and
Sentinel-3B is expected to be launched in 2017) and on the Jason-CS/Sentinel-6
series (the first of which is planned to launch in 2020).

In light of the above it is clear that geoid and MSS form important physical quan-
tities within both physical oceanography and geodesy. For an undisturbed ocean at
rest, the sea surface would be closely parallel to the geoid (Pugh and Woodworth,
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2014). Dynamical processes in the ocean cause deviations from hydrostatic equi-
librium, leading to deviations of the sea surface from the geoid, known as dynamic
ocean topography (DOT). The DOT can be separated into a time-variable and a time-
averaged, steady-state component. The latter is known as the mean dynamic topog-
raphy (MDT), see Figure 1.3. It describes the average transport rate in the ocean,
while the time-variable component is driven, e.g., by winds, increased flux of fresh-
water, or warming of the oceans, and is an indicator of climate change. The slope of
the MDT reveals the magnitude and direction of ocean surface geostrophic currents
(Wunsch and Stammer, 1998). Thus, if the MDT is known accurately, we know the
mean surface circulation of the ocean. Furthermore, with additional hydrographic
information and models, ocean circulation at all depths may be determined. This
important Earth system constituent may in turn be included in numerical climate
models.

Historically, the global ocean circulation was determined by means of hydrographic
measurements of temperature and salinity (in situ data) from ships only (Pugh and
Woodworth, 2014). Today, the ocean flow is determined from numerical ocean cir-
culation models, which employ a set of dynamical equations and driving forces pro-
vided by in situ data sets and meteorological wind and air pressure information. One
outcome of a model run is the SSH that arises from the ocean’s circulation, i.e., sea
level relative to an implicit geopotential surface. Thus, an average of such heights
over a given time period will be equivalent to oceanographic MDT.

A precise geoid in combination with observations of the MSS by means of satel-
lite altimetry allows a geodetic approach to determine the MDT (Woodworth et al.,
2012), see Figure 1.4. Altimetric observations yield ellipsoidal heights of the MSS,
and together with ellipsoidal heights of the geoid, the MDT may be derived through
a purely geometrical approach based on geodetic observations. Yet another alterna-
tive to the altimetric determination of the sea surface are ellipsoidal heights of MSL
observed by tide gauges connected to GNSS receivers. As a result, we have two
computational approaches to the geodetic MDT supplementing the oceanographic
MDT.

The geodetic MDT is given by

MDT = h − N, (1.1)

where the MSS/MSL is expressed as height h above a conventional reference el-
lipsoid, N is the geoid height above a conventional reference ellipsoid and their
difference yields the MDT, at height H above the geoid. Although the computation
of a geodetic MDT is conceptually simple, there are important issues to consider.
The MSS and geoid must be consistent in terms of reference system and perma-
nent tide system. In addition, the geoid heights are often the result of a globally
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Figure 1.3: MDT for the 1996-2000 period from the 0.1◦ Oceanic general circulation model
For the Earth Simulator (OFES) numerical model (Sasaki et al., 2008). We observe that
the MDT varies up to a few meters globally. The large-scale ocean circulation follows the
contours of the dynamical topography. We observe features such as the world’s largest
current, the Antarctic Circumpolar Current, as well as the Gulf Stream (off the east coast
of North America), Kuroshio Current (off the east coast of Japan), and the Agulhas Cur-
rent (off the east coast of South Africa). These features have amplitudes on the level of
a meter or more. Upon closer inspection, we can also observe smaller decimeter-level
current systems, such as the NwASC.
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Figure 1.4: Schematic showing techniques and geometrical quantities h and N involved in
the geodetic approach to determine H = MDT. Inspired from Tapley and Kim (2001).

defined band-limited spherical harmonic expansion, while the heights of MSS/MSL
are given point-wise along satellite ground tracks or at tide gauges and are essen-
tially non band-limited. That is, the MSS/MSL contains short-scale features that a
satellite-only based geoid lacks. Consequently, the MSS and geoid surfaces must be
made spectrally consistent, usually by applying a suitable filter to the MSS, before
they can be subtracted (Albertella and Rummel, 2014). Using a pure satellite-based
geoid from GOCE and state-of-the-art altimetry-based MSS models, the MDT can
be resolved with centimetric accuracy for spatial scales down to ∼130 km (Bingham
et al., 2014). At this spatial scale and beyond, the geoid accounts for most of the
MDT error. In order to resolve the smallest spatial scales of the gravity field and
thus reduce the geoid error, a regional geoid model must be used, which will make
the geoid and MSS spectrally consistent and lessen the need to filter the MSS.

In addition to the purely oceanographic and geodetic MDTs, there exist assimilated
numerical models incorporating a range of oceanographic and geodetic observa-
tions constraining ocean flow. Disregarding the assimilated ocean models, we have
multiple independent MDT computation schemes which should provide the same
quantity. These MDT models may then act as each other’s buddy check, increas-
ing confidence in the ocean and geoid models in use. However, both geodetic and
oceanographic approaches contain different error sources and have their limitations
in resolving the geophysical signal they want to describe. These error contributions
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and limitations can be quantified by setting up the following MDT budget equa-
tion,

ε = MDT − (h − N ), (1.2)

where MDT is derived from an ocean model, and the parenthesis represents the
geodetic approach (Paper A). ε is the misfit between the two and contains errors
of tide-gauge or altimetry observations, geoid errors, imperfections of the numer-
ical ocean models, and generally also effects due to different spatial or temporal
resolutions. The misfit is an empirical error estimate that should reflect the formal
error budget of MDT, h, and N . If we assume that these errors are uncorrelated, the
following MDT error budget equation can be set up,

σtot =

√
σ2
MDT + σ2

h
+ σ2

N , (1.3)

where σ indicates formal error standard deviations. If the error estimates of the
different components are realistic, then formal error propagation should allow σtot
to reflect the empirical misfit ε. Discrepancies between ε and σtot may arise from
unmodeled correlations between the different quantities and from systematic error
contributions not covered by formal error propagation.

Traditionally, national vertical reference systems have referred to an official MSL
value at a specific tide gauge (e.g., Lysaker et al., 2007). The datum (reference
level) MSL value would be transferred to other locations by means of geometric
leveling, yielding networks of “heights above sea level”. The problem with this
approach is that different leveling networks not referring to the same tide gauge will
be related to different equipotential surfaces due to the spatial variation of the MDT.
This leads to height offsets between national vertical reference systems, which need
to be quantified, e.g., when a bridge spanning the systems is to be built. The problem
could be avoided if the different vertical reference systems would refer to the same
geoid (e.g., Rummel, 2012; Gerlach and Rummel, 2013).

Determination of a geodetic MDT by Eq. (1.1) is the ocean analogue to combining
GNSS and leveling on land, where heights H above sea level are determined from
GNSS measurements h if geoid heights N are available. The improved quality of
regional geoid models based on GOCE data allows this method to detect systematic
distortions in national leveling networks (Rülke et al., 2012; Amjadiparvar et al.,
2016). Consequently, the current leveling-based vertical reference frame can be
controlled and the possibility of a future geoid-based vertical reference frame inves-
tigated. In, e.g., North America, the leveling-based vertical reference frame is being
abandoned in favor of a geoid-based vertical reference frame (Li et al., 2016).
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Earth’s gravity field changes with time. For example, Fennoscandia is strongly af-
fected by land uplift due to glacial isostatic adjustment (GIA) (Milne et al., 2001;
Steffen and Wu, 2011). GIA is the response of solid Earth to past changes in sur-
face loading by ice and water (glaciation and deglaciation). Thereby, GIA distorts
the vertical reference frame. Furthermore, GIA is important for relative sea-level
change studies, as relative sea-level rates must be adjusted for both land uplift and
geoid changes (Simpson et al., 2015). In Fennoscandia, most of the time-variable
change in the geoid is due to GIA. A future geoid-based frame for Norway would
strongly depend on the monitoring of the dynamic component of the vertical refer-
ence frame, i.e., its temporal evolution due to GIA.

Long-term monitoring by GNSS of positions on Earth’s surface reveals both hori-
zontal and vertical land motion, due to plate tectonics and land uplift, respectively.
Absolute gravimetry is an alternative technique for deriving vertical land motion,
and is independent of the geodetic reference frame. Thus, time series of GNSS and
absolute gravity observations together form a powerful tool for studying land uplift
processes (Steffen and Wu, 2011) and monitoring the reference frame (Collilieux
et al., 2014). Ideally, the observation of long-term gravity changes requires a decade
of annual measurements (Van Camp et al., 2016). As many absolute gravity time
series are shorter than this, their further extension is important to exploit the full
potential of this technique.

The coastal zone implies a multitude of challenges when it comes to geoid and MDT
determination. Both satellite altimetry (for geodetic MDT) and oceanographic MDT
models show irregularities close to the coast (Woodworth et al., 2012; Featherstone
and Filmer, 2012; Filmer, 2014). As mentioned, land contaminates coastal altimetry
observations (Gommenginger et al., 2011) and tide-gauge observations are affected
by vertical land motion (Wöppelmann and Marcos, 2016). Tides become more com-
plex along the coast (Ray et al., 2011), and global tide models loose validity there.
Furthermore, it is generally challenging to make observations from land, open sea
and coast consistent with each other (Woodworth et al., 2012). Only a few coastal
ocean models and selected coastal altimetry products have been developed for pilot
studies or for specific areas. A thorough validation of the quality of coastal prod-
ucts, specifically for the Norwegian coast, does not exist. The Norwegian coast adds
further complications, not only due to land uplift as described in the above, but also
due to the extreme topography manifested by many islands, mountains and deep,
narrow fjords. Also, the semi-diurnal tidal range is considerable. Some of the data
products do not cover the entire Norwegian coast.
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1.2 Research objectives and rationale

With Section 1.1 as backdrop, this thesis investigates the deemed remedial effect
of recent developments within geodesy on Norwegian geoid and MDT determina-
tion: Optimal combination of GOCE and regional gravity data, retracked and novel
coastal altimetry data, improved geophysical corrections, modern regional geoid
computation techniques, and temporal gravity field variations due to vertical land
motion. Consequently, the following overarching research question was formed:

• Can recent developments within geodesy improve our understanding of sea
level, ocean dynamics, and gravity field in the Norwegian coastal zone?

With an aim of contributing to answering this question, the thesis considers the
following four objectives:

1. Compute and quality-assess a regional geoid model in optimal combination
with the GOCE geoid

2. Determine the geodetic MDT and associated currents using tide-gauge data,
coastal altimetry data, and a regional GOCE-based geoid, and assess its qual-
ity by comparison with independent oceanographic data

3. Review and compare methods for regional geoid computation

4. Map temporal variations of the gravity field

The objectives resulted in six papers listed below.

Paper A A comparative assessment of coastal mean dynamic topography in Nor-
way by geodetic and ocean approaches

Paper B Absolute gravity observations in Norway (1993-2014) for glacial isostatic
adjustment studies: The influence of gravitational loading effects

Paper C On the equivalence of spherical splines with least-squares collocation and
Stokes’s formula for regional geoid computation

Paper D Coastal sea level from CryoSat-2 SAR altimetry in Norway

Paper E The Norwegian Coastal Current observed by CryoSat-2 and GOCE

Paper F Accuracy of Regional Geoid Modelling with GOCE
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Objectives 1 and 2 are treated in Paper A, which is a benchmark study for the
Norwegian coast. In this paper we exploit GOCE and conventional radar altime-
ter data (Envisat and Jason-2) and provide a comprehensive quality assessment of
state-of-the-art oceanographic and geodetic MDTs. Standard altimetric geophysi-
cal data records as well as dedicated coastal altimetry products Envisat/CTOH and
Jason-2/PISTACH are used. Paper A explores the level of agreement between new
geodetic and recent ocean MDTs along the Norwegian coast, investigates whether
new GOCE-based geoids offer an improvement over existing models, whether dedi-
cated coastal altimetry products offer an improvement over the conventional altime-
try products they are based on, and also reveals subtle differences between using
data from different Norwegian height systems. The paper gives a first estimate of
the MDT budget for the Norwegian coastal zone.

In Paper A, the new GOCE-based geoid models are computed by a filtering ap-
proach, whereby an already existing regional geoid model is taken as terrestrial in-
formation (rather than performing the conventional field transformation from gravity
observations to geoid heights), and combined with recent GOCE-based global grav-
ity models by filtering in the spatial domain using a basic Gaussian kernel. Con-
cerning objective 1 in particular, an extended study of the filter-combined approach
using a stochastically optimal filter (taking the errors of both regional and global
geoid into account) is found in Paper F.

Paper A considers conventional radar altimeter data, and the MDT is determined
pointwise at 19 tide gauges and at Envisat and Jason-2 observation sites. The advent
of new-generation SAR altimetry data in the Norwegian coastal zone as observed by
CryoSat-2 motivated a new study of the geodetic MDT. Paper D and Paper E also
focus on objectives 1 and 2, and explore CryoSat-2 SAR altimetry in the Norwegian
coastal zone. Specifically, Paper D evaluates the performance of SAR altimetry by
comparing CryoSat-2 SSHs with sea-level observations at 22 tide gauges. In par-
ticular, we explore whether the substitution of the two major standard geophysical
corrections of ocean tide and dynamic atmosphere with locally determined correc-
tions improve the SSHs. With increased confidence in CryoSat-2 observations in
the Norwegian coastal zone, we use a suite of state-of-the-art regional geoid mod-
els and determine geodetic MDT surfaces for Norway in Paper E. In this paper we
also determine geostrophic surface currents, and compare current patterns with one
derived from an independent operational high-resolution coastal numerical ocean
model. For the first time, the NCC is revealed by geodetic techniques.

The regional geoid models determined within the frame of this thesis are of the filter-
combined type (Section 2.3.5). A consequence of the filter-combined approach is
that there is little room for optimization and error assessment of the regional geoid
model used (as it is already determined). As mentioned in Section 1.1, and indeed
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also in Paper A, ideally, a regional marine geoid model should be determined from
scratch using the latest GOCE geoid in combination with existing and recently ac-
quired airborne, marine, and terrestrial gravity data. Regional geoid computation
is time-consuming, and unfortunately outside the scope of this work. However, if
a regional geoid model is to be computed in the future, there are different methods
available. The two classic methods of Stokes integration and least-squares collo-
cation (LSC), as well as the increasingly used radial base functions (RBFs) should
all be equivalent methods, which is the concern of objective 3. This objective is
explored in Paper C, which reviews the three methods for regional geoid computa-
tion.

Objective 4 is a decisive element for long-term monitoring of a geoid-based vertical
reference frame. Furthermore, it is important to note that, while altimeter observa-
tions are absolute, tide gauges observe sea level relative to the land on which they
are located. They must therefore be corrected for vertical land uplift or subsidence.
We have seen that in Fennoscandia, the main component of vertical land movement
is GIA, which is addressed by Paper B. In this paper we explore to what extent secu-
lar gravity trends derived from absolute gravity observations are applicable for GIA
studies. All Norwegian FG5-type absolute gravity observations from the 1993-2014
period are compiled and analyzed. Raw observations have been reprocessed using
a common scheme, and adopted observations by other agencies have been carefully
incorporated in the data set, with updated uncertainties. A particular focus of Paper
B is on whether it is possible to improve the separation of the different gravity rate
signal contributors by computing refined corrections for geophysical processes other
than GIA. Specifically, refined gravitational corrections due to ocean tide loading
(OTL), non-tidal ocean loading (NTL), as well as atmospheric and global hydrolog-
ical mass variations are computed. Secular gravity trends are computed using both
standard and refined corrections and subsequently compared with modeled gravity
rates based on a GIA model.

1.3 Thesis outline

The thesis is organized as follows. Chapter 2 describes the theory and methods
used in the appended papers. The findings of this research are discussed, as well as
some limitations identified, in Chapter 3, while Chapter 4 concludes the thesis with
recommendations for future work.
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Chapter 2

Theory and methods

The investigations in this thesis span a range of topics and methods within both
geodesy and oceanography. Figure 2.1 summarizes the theoretical background, con-
cepts and techniques, including their relations to the objectives of this thesis. The
gray elements in the figure serve as a reference for the topics of this chapter.

The theory behind objectives 1 and 3 comprises

• Earth’s gravity field (Section 2.1), as well as

• gravimetry (Section 2.2), and

• regional geoid computation (Section 2.3).

Objective 2 is linked to the theory behind objective 1, as well as

• satellite altimetry (Section 2.5) and

• ocean dynamics (Section 2.6).

Objective 4 relies on

• terrestrial gravimetry (Section 2.2.1).

Different aspects of heights (Section 2.4) are relevant to all objectives.

2.1 Earth’s gravity field

Gravitation is described by Newton’s law of universal gravitation, which can be
written as follows:

F = G
mm0

r2
, (2.1)

where F is a mutual force between a particle of mass m and a particle of mass m0,
separated by a distance r (Blakely, 1996). G is Newton’s gravitational constant,
G =6.6742· 10−11m3kg−1s−2.
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Figure 2.1: Schematic showing the relationship between different research elements: Fun-
damentals (gray), data (blue), methods (green), and objectives (red). The dashed arrows
denote steps that were not within the scope of this thesis, but are considered natural next
steps in future work. Considered, in particular, are the computation of a regional marine
geoid model for Norway, with special attention to the coastal zone, and investigations
of the quality of the current leveling-based and feasability of future geoid-based height
systems in Norway.
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In this context we are interested in the gravitational field generated by the single
mass m. We let m0 be an arbitrary mass at point P by dividing Eq. (2.1) by m0 and
obtain

a = G
m
r2
, (2.2)

where a is the gravitational attraction of m at P, at a distance r from m.

The gravitational field is a conservative vector force field which can be represented
as the gradient of the scalar gravitational potential V ,

a = ∇V, (2.3)

where
V = G

m
r
. (2.4)

The gravitational potential of a system of n point masses is given by the sum of the
gravitational potential due to the individual masses,

V =

n∑

i=1

Gmi

ri
. (2.5)

If we let the point masses be continuously distributed over a volume v with den-
sity ρ = dm/dv, where dm is a mass element, and dv is a volume element, the
gravitational potential is given by Newton’s integral,

V = G
$

v

1
r
dm = G

$
v

1
r
ρ dv, (2.6)

where r is the distance between the mass element dm = ρ dv and the attracted point
P.

Inside the masses, the gravitational potential satisfies Poisson’s differential equa-
tion,

∆V = −4πGρ, (2.7)

where ∆ = ∇2 is the Laplacian operator.

Outside the masses, ρ = 0, and the gravitational potential satisfies the simpler
Laplace differential equation,

∆V = 0. (2.8)

Solutions to Laplace’s equation are called harmonic, i.e., the gravitational potential
is harmonic outside the masses.
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Expressed in geocentric spherical coordinates (r, θ, λ), where θ = 90◦ − ϕ is the
colatitude, and solved by separation of variables, it can be shown that the solution
of Eq. (2.8) is a convergent spherical harmonic series (Hofmann-Wellenhof and
Moritz, 2006), given by

V (r, θ, λ) =
GM

R

∞∑

n=0

(
R
r

)n+1 n∑

m=0
P̄nm (cos θ)

[
C̄nm cosmλ + S̄nm sinmλ

]
, (2.9)

where P̄nm (cos θ) are the fully normalized associated Legendre functions of degree
n and order m, and C̄nm and S̄nm are the fully normalized and dimensionless poten-
tial coefficients, containing the spectral amplitudes of the signal. GM is the product
of Newton’s gravitational constant and Earth’s mass, R a mean Earth radius and r
the distance from Earth’s center of mass to the computation point P.

Eq. (2.9) corresponds to a Fourier expansion of V with spherical harmonic base
functions YC

nm (θ, λ) = P̄nm (cos θ) cosmλ and Y S
nm (θ, λ) = P̄nm (cos θ) sinmλ

(Schmidt, 2001). Moreover, Eq. (2.9) is a continuous function in theory, but the
number of potential coefficients will be finite in practice, requiring a truncation at a
maximum degree Nmax (Section 2.2.2).

Earth’s gravity field is due to the sum of gravitation, or the attraction of Earth’s mass,
and the centrifugal force due to Earth’s rotation. If we assume that Earth is rotating
with constant angular velocity ω about its spin axis, the centrifugal potential Π can
be written as

Π =
1
2
ω2r2 (sin θ)2 . (2.10)

Consequently, the gravity potential is given by

W = V + Π = G
$

v

ρ

r
dv +

1
2
ω2r2 (sin θ)2 , (2.11)

or, in terms of Eq. (2.9),

W =
GM

R

∞∑

n=0

(
R
r

)n+1 n∑

m=0
P̄nm (cos θ)

[
C̄nm cosmλ + S̄nm sinmλ

]

+
1
2
ω2r2 (sin θ)2 . (2.12)

The gravity acceleration is given by the gradient of the gravity potential, expressed
in cartesian coordinates (x, y, z) as

g = ∇W =

[
∂W
∂x

,
∂W
∂y

,
∂W
∂z

]
, (2.13)
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where the magnitude of g is generally known as gravity, and measured in Gal, where
1Gal = 0.01ms−2.

The coordinates of a point P may be represented in natural coordinates (Φ,Λ,H),
which depend on the gravity field. The astronomical latitude and longitude, Φ,Λ,
describe the direction of the plumb line in P. Thus, for the gravity vector, we may
write

g = ∇W = −g


cosΦ cosΛ
cosΦ sinΛ

sinΦ


 . (2.14)

A surface on which W = const. is termed an equipotential or level surface, to which
the gravity vector is always perpendicular. Thus, we have no acceleration along an
equipotential surface, and fluids will not flow along it. The particular equipotential
surface corresponding to the mean ocean surface level has become known as the
geoid, defined by W = W0 = const. (Hofmann-Wellenhof and Moritz, 2006). The
properties of the geoid make it a suitable reference surface for heights. The plumb
lines that intersect every equipotential surface at right angles, are slightly curved, and
the gravity vector is tangent to the plumb line at the same point. The orthometric
height, or height above sea level, H , is measured along the plumb line, starting on
the geoid. Figure 2.2 summarizes the constituents of Earth’s gravity field.

All gravity field observations l are functions of the gravity potential W and their
location P, which conceptually can be formulated as (Rummel and Pail, 2011)

l = l (P,W ). (2.15)

The determination of P and W from observations l, i.e., the inversion of Eq. (2.15),
is a nonlinear task, and in general, linearization requires approximate values for both
P and W . These approximate values are found from an Earth model.

A better approximation of Earth’s shape than a sphere would be a slightly flattened
ellipsoid, where its mass is set equal to Earth’s actual mass, and its semi-minor axis
coincides with Earth’s mean rotational axis. This ellipsoid will generate a gravita-
tional potential V N . Moreover, if we let this ellipsoid rotate with the same angular
velocity as the Earth, it will generate a gravity potential U similar to Earth’s actual
potential,

U = V N + Π, (2.16)

which is known as the normal potential. It is defined by two geometrical parameters
a, f , together with two physical parameters GM ,ω, and forms a geodetic reference
system. See Table 2.1 for three commonly used geodetic reference systems.
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Figure 2.2: Earth’s gravity field is generated by the gravitational potential V due to all mass
elements dm of Earth’s body as well as the centrifugal potential Π due to Earth’s rotation.
The gravity vector g is the gradient of the gravity potential W = V + Π. Surfaces on
which the gravity potential remains constant are termed equipotential or level surfaces.
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Table 2.1: Three common geodetic reference systems

GM (109m3 s−2) a (m) f ω (10−5 rad3 s−1)

GRS80 398600.5 6378137 1/298.257222101 7.292115
WGS84 398600.4418 6378137 1/298.257223563 7.292115167
TOPEX 398600.4415 6378136.3 1/298.25765 7.292115

The appropriate coordinate system in such a geodetic Earth model is ellipsoidal,
using geodetic coordinates of ellipsoidal height h along the ellipsoidal normal and
ellipsoidal latitude, longitude ϕ, λ. The connection between the purely geometrical
geodetic coordinates, and the gravity-dependent physical natural coordinates, is the
difference between the direction of the plumb line and the direction of the ellipsoidal
normal, termed the deflection of the vertical.

The normal potential has the following spherical harmonic expansion (Hofmann-
Wellenhof and Moritz, 2006),

U (r, θ) =
GM

R

∞∑

n=0

(
R
r

)n+1

C̄N
n0P̄n0(cos θ) +

1
2
ω2r2(sin θ)2. (2.17)

From Eq. (2.17) we note that the normal gravity field is rotationally symmetric, and
therefore independent of λ, such that only zonal terms (m = 0) remain. Furthermore,
the normal gravity field is symmetric about the equator, which results in even zonal
terms only. The main contribution to the ellipsoidal shape of the Earth is governed
by the zonal C̄20 coefficient, also known as the dynamical form factor, with smaller
contributions from the higher degree coefficients. Thus, for the normal gravity field
we can safely truncate the summation in Eq. (2.17) at a low degree, e.g., Nmax =

10.

In accordance with the definition of gravity g, normal gravity γ is the gradient of the
normal potential,

γ = ∇U =

[
∂U
∂x

,
∂U
∂y

,
∂U
∂z

]
. (2.18)

We are now in the position to consider the remaining deviation between the actual
gravity field and the normal gravity field, which is small enough to be considered
linear (Sansò and Sideris, 2013). We return to Eq. (2.15), and introduce approximate
values for the geometric position and the physical gravity potential, i.e., P = P0+∆P
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and W = U + T . In classical physical geodesy, both position and gravity potential
are linearized, giving the anomaly of l,

∆l = l (P,W ) − l (P0,U). (2.19)

With the advent of GNSS, the position of the observation can be determined, and we
only need to linearize the physical quantity, giving the disturbance of l,

δl = l (P,W ) − l (P,U). (2.20)

Subtracting Eq. (2.17) from Eq. (2.12), the centrifugal term vanishes and we get the
disturbing (or anomalous) potential T , which also fulfills Laplace’s equation, i.e.,
∆T = 0. We get the following spherical harmonic expansion of T :

T (r, θ, λ) =
GM

R

∞∑

n=2

(
R
r

)n+1 n∑

m=0
P̄nm (cos θ)

[
∆C̄nm cosmλ + ∆S̄nm sinmλ

]
,

(2.21)
where

∆C̄nm =


C̄nm − C̄N

nm m = 0 ∧ n ∈ {2,4,6,8, . . . ,Nmax}
C̄nm else.

(2.22)

∆S̄nm = S̄nm . (2.23)

The summation in Eq. (2.21) begins at n = 2. The zero-degree coefficient represents
GM/R, and cancels if the mass and radius of both Earth and ellipsoid is equal. The
first-degree coefficients are proportional to the coordinates of Earth’s center of mass,
and vanish if Earth’s center of mass coincides with the origin of the ellipsoid.

A number of functionals of the disturbing potential may be formed. In accordance
with Eq. (2.20), the gravity disturbance is given by

δgP = gP − γP , (2.24)

where g is observed gravity in point P, and γ in the same point can be computed by
a closed formula. The difference in direction of the gravity vector g and the normal
gravity vector γ is given by the deflection of the vertical, which has a north-south
component ξ and an east-west component η, i.e.:

ξ = Φ − ϕ, (2.25)

η = (Λ − λ) cos ϕ. (2.26)
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The disturbing potential describes the unknown remaining part of Earth’s gravity
field, and it is the determination of T which remains the main task of physical
geodesy (Sansò and Sideris, 2013). In order to compute it, a boundary value problem
(BVP) is solved, whereby a function’s exterior value is determined from its value on
a bounding surface as well as its behavior in space (Torge and Müller, 2012). Its
behavior in space is governed by Laplace’s equation, while different boundary con-
ditions exist depending on the functional. The geodetic boundary value problem
(GBVP) uses the fundamental equation of physical geodesy, in spherical approxi-
mation, as boundary condition,

∆g = −∂T
∂r
− 2

R
T, (2.27)

which is a linear combination of T and the partial derivative of T with respect to a
surface normal. It relates observable gravity to the non-observable potential.

The classical Stokes approach uses the geoid as boundary surface, where the gravity
anomalies must refer to the geoid (Hofmann-Wellenhof and Moritz, 2006). If the
point P = P0 is on the geoid, and thus has the potential W = W0, the geoid height N
is determined by Bruns’s formula, see Figure 2.14

NP0 =
TP0

γQ0

. (2.28)

Similar to Eq. (2.24), and in accordance with Eq. (2.19), the gravity anomaly is
given by

∆gP0 = gP0 − γQ0 . (2.29)

It is important to note that Eq. (2.28) and Eq. (2.29) suppose that the geoid is the
boundary surface, and that gravity is measured on it (Torge and Müller, 2012). This,
however, is not the case in practice due to the topographic and atmospheric masses
outside the geoid and the fact that we observe gravity on Earth’s surface. By this
approach, the masses outside the geoid must be shifted inside Earth’s interior, and
the gravity observations must be reduced to the geoid surface. Both the shifting
of masses and reduction requires knowledge of the density of the masses, which
normally is not known to sufficient accuracy. Consequently, hypotheses are always
used in this approach.

In order to reduce gravity to the geoid, we theoretically need to know the gravity
gradient. It is generally unknown, and the free-air anomaly is approximated by the
free-air gradient of normal gravity (Hofmann-Wellenhof and Moritz, 2006),

∆gP0 =

(
gP − ∂g

∂h
H

)
− γQ0 ≈

gP0︷          ︸︸          ︷(
gP − ∂γ

∂h
H

)
−γQ0 . (2.30)
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In addition, we must correct gravity for the effect of the topography, which can be
approximated by an infinite horizontal layer of density ρ and thickness H called a
Bouguer plate, giving the simple Bouguer correction (Torge and Müller, 2012),

AB = 2πGρH. (2.31)

We may further take the deviation of the Bouguer plate from the actual topography
into account, by forming a refined Bouguer correction,

AT = AB − cP , (2.32)

with the terrain correction cP given by (Torge and Müller, 2012)

cP = Gρ

"
σ



h∫

HP

h − HP

r3
dH


dσ. (2.33)

In 1945, the Russian geodesist M. S. Molodensky suggested an alternative approach
using Earth’s surface as boundary surface, and thereby avoiding topographic reduc-
tions (Hofmann-Wellenhof and Moritz, 2006). Then, a different reference point Q
can be chosen for the normal gravity. The point Q is situated on the ellipsoidal nor-
mal through P and satisfies UQ = WP , see Figure 2.15. The pointwise projection of
points P to points Q gives a surface called the telluroid, which is not an equipoten-
tial surface. The distance along the ellipsoidal normal from the telluroid to Earth’s
surface is called the height anomaly, ζ , and is given by Eq. (2.28),

ζP =
TP

γQ
. (2.34)

Moreover, on Earth’s surface, the gravity anomaly is given by

∆gP = gP − γQ, (2.35)

where g is observed gravity in point P, and γ in Q can be computed by a closed
formula.

If the height anomaly is taken from the surface of the ellipsoid, the quasigeoid is
obtained, and their relation is shown in Figure 2.15. Although the quasigeoid takes
the role of the geoid, the quasigeoid is rougher and not an equipotential surface. An
approximation to the quasigeoid to geoid separation is given by

N − ζ ≈ ∆gB
γ0

H, (2.36)
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where ∆gB is the simple Bouguer anomaly, cf. Eq. (2.31). Eq. (2.36) shows that
quasigeoid and geoid can be assumed to coincide over the oceans, where H = 0.

The focus of this thesis is mainly on the coastal zone where the quasigeoid to geoid
separation is assumed to be negligible, and often throughout the thesis the term geoid
is used in a loose fashion. However, the geoid and quasigeoid are strictly different
vertical reference surfaces, and differences in their determination are pointed out
when necessary. The theory in Section 2.3 can be equally applied to geoid and
quasigeoid determination. Regarding the data sets, all the geoid models used in
this thesis and appended papers are strictly quasigeoids, with the exception of the
numerical examples in Paper C, where synthetic geoids determined from the same
GGM are compared in a closed-loop environment.

2.2 Gravimetry

2.2.1 Terrestrial gravimetry

Terrestrial gravimetry concerns the measurement of gravity and the gravity gradi-
ent on or close to Earth’s surface (Timmen, 2010). Absolute gravity measurements
refer directly to length and time standards, while relative measurements rely on a
counterweight principle to determine gravity differences. The increased precision of
terrestrial gravimeters during the last decades has enabled the detection of a range
of geophysical phenomena which affect gravity (Crossley et al., 2013), see Figure
2.3. Consequently, terrestrial gravimetry is an important tool for monitoring global
change. Many time-variable gravity signals show amplitudes in the 0.1-10 µGal
range, and some, such as GIA, require monitoring over several decades to be de-
scribed sufficiently.

The forerunner of today’s gravimeters is the pendulum gravimeter, which ruled
gravimetry for ∼300 years, before being abandoned in favor of ballistic absolute
gravimeters (Crossley et al., 2013). The latter applies the free-fall principle, where
a test mass is dropped in vacuum (Timmen, 2010). A laser interferometer as length
standard, and an atomic clock as time standard are used to obtain time-distance pairs,
and Newton’s equations of motion are solved to obtain the acceleration, i.e.,

mz̈ = mg(z), (2.37)

where m is the mass, z is taken along the local vertical, and z̈ = d2z/dt2 = g. If
we assume a homogeneous gravity field along the fall distance, double integration
of Eq. (2.37) will give

z = z0 + ż0t +
g

2
t2, (2.38)
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Figure 2.3: Schematic showing the spectrum of terrestrial gravity signal contributors. FCN
and FICN denote the Free Core Nutation and Free Inner Core Nutation, respectively. CW
denotes the Chandler Wobble. Taken from Crossley et al. (2013).

which relates the position z of the free-falling test mass at time t to the gravity ac-
celeration. The integration constants z0 and ż0 represent z and ż = dz/dt at the
beginning of the experiment (t = 0). If the time-distance pairs are plotted, we get
an almost parabolic curve. In practice, through the precise length and time measure-
ments, hundreds of time-distance pairs are recorded and adjusted to the fitting curve
in a least-squares sense, giving an estimate of z0, ż0, and g (Timmen, 2010). A more
realistic approach is to assume that the gravity field is not homogeneous over the
length of the drop, but changes slightly (according to Newton’s law, Eq. (2.1)). Be-
cause the length of the drop is small (∼20 cm) we can assume that the gravity change
over this distance is linear. If we can determine this vertical gradient ∂g/∂z (e.g.,
by relative gravity measurements (see below) at different heights above the ground),
and refer the measurement of g to a reference height at the observation site, we get
an unambigous description. Eq. (2.37) is extended by the linear approximation of
gravity change,

z̈ = g0 +
∂g

∂z
(z − z0), (2.39)
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which has the following solution (Micro-g LaCoste, 2012),

z(t) = z0 + ż0

(
t +

1
6
∂g

∂z
t3

)
+

1
2
g0

(
t2 +

∂g

∂z
t4

12

)
. (2.40)

The most common absolute gravimeter today is the FG5 (Niebauer et al., 1995;
Micro-g LaCoste, 2012), see Figure 2.4. It has an accuracy of ∼2 µGal. The FG5
system comprises a vacuum chamber, interferometer, superspring, laser, computer,
and controlling electronics. The test mass is dropped in the vacuum chamber, the in-
terferometer monitors the position of the test mass, and the superspring compensates
for external vibrations due to, e.g., microseismics. The computer runs a software
which allows for monitoring the system, collecting data, analyzing and storing the
results.

The FG5 uses a helium neon (HeNe) laser (λ =633 nm) as length standard, and a
rubidium atomic frequency as time standard (Niebauer et al., 1995). The test mass
is dropped in vacuum (10−4 Pa), and inteference patterns are detected in a Mach-
Zehnder interferometer. The time is recorded at every minimum (destructive inter-
ference), giving time-distance pairs at every λ/2, see Figure 2.5. From the ∼700,000
interference fringes which are obtained, around 700 time-distance pairs are inserted
into Eq (2.40) for the determination of g. A typical observation campaign lasts 1-2
days, including several hourly data sets where a set consists of 50-100 drops of the
test mass.

Relative gravimeters are smaller and easier to transport than absolute gravimeters
(Timmen, 2010). They can only observe gravity differences, and are therefore typi-
cally used to densify gravity networks with known absolute gravity values, monitor
temporal gravity changes, and support absolute gravity campaigns by observing the
gravity gradient. The expected accuracy of relative gravity measurements is ∼10-15
µGal. The most widely used relative gravimeters are the spring gravimeters, which
are based on the principle of counterbalancing a change in gravity by a change in the
length of a spring system, keeping a test mass in equilibrium (Crossley et al., 2013).
If the test mass hangs vertically by the spring, a gravity change will give only small
changes in the length of the spring. Consequently, the typical design is a general
lever spring balance, see Figure 2.6, where the spring is inclined. This design makes
the spring length more sensitive to changing gravity. The lever spring design princi-
ple is applied in the widely-used LaCoste and Romberg inclined zero-length spring
gravimeters, where the spring is specifically designed such that it has zero length in
the unstretched condition. The balance of torques is given by (Torge and Müller,
2012)

mga sin (α + δ) − kbd
l − l0

l
sin α = 0, (2.41)
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Figure 2.4: Schematic showing the FG5 system. Taken from Micro-g LaCoste (2012).
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Figure 2.5: FG5 principle of operation, modified from Micro-g LaCoste (2012); (a) a freely
falling reflective test mass is dropped in vacuum, (b) causing optical interference fringes
to be detected by an interferometer. Time is recorded at each minimum giving time-
distance pairs at every λ/2, giving ∼700,000 fringes, from which typically 700 time-
distance pairs are inserted into Eq (2.40) for the determination of g.

with the quantities shown in Figure 2.6.

The test mass will deviate from its equilibrium position due to a change in gravity,
and the equilibrium position is found by adjusting a dial on the gravimeter (Timmen,
2010). This adjustment can be transformed to a gravity change by a calibration func-
tion. The biggest challenge with spring gravimeters is that the equilibrium position
may change with time due to environmental disturbances (e.g., temperature and air
pressure changes). The spring will drift due to aging and short-term changes in the
field due to small vibrations and shocks, typically by a few tens of µGal per hour.
The drift is usually determined by repeated site occupations during one day and
subsequent modeling.

As mentioned in the beginning of this section, observed gravity includes a range of
time-variable gravity effects which it is typically corrected for using different models
(Timmen, 2010). Which effects we need to correct for will depend on the duration
of the measurement campaign and the sensitivity of the gravimeter. Table 2.2 shows
the magnitude of some constituents of gravity.

Relative gravity observations are typically corrected for the solid Earth tide, which
has an amplitude larger than the measurement uncertainty (Timmen, 2010). In ad-
dition, the gravity observations are corrected for the measurement height. During
a typical relative gravity campaign, although possibly larger than the measurement
uncertainty, gravitational effects due to ocean tide loading, atmospheric loading, po-
lar motion, and hydrology will be close to constant and need not be corrected for.
Absolute gravity measurements are much more precise and measure over a longer
time, and are corrected for these effects, which is typically done in the absolute



32 Chapter 2 Theory and methods

Table 2.2: Order of magnitude of some gravity signal contributors. 1Gal = 0.01ms−2.
Taken from Breili (2009) and Paper B.

Amplitude Signal

10 ms−2 Gravitation of the Earth
10−2 ms−2 Earth’s flattening and rotation
10−3 ms−2 Mountains and ocean trenches
10−4 ms−2 Internal mass distribution of the Earth
10−5 ms−2 Large reservoirs

Gravity anomalies due to, e.g., a salt dome
10−6 ms−2 Tidal acceleration due to the Sun and the Moon

Distant earthquakes
10−7 ms−2 Cryospheric changes

Local hydrological changes
Ocean tide loading at coastal sites

10−8 ms−2 Ocean tide loading at inland sites
Non-tidal ocean loading
Global hydrological changes
Nearby large buildings
GIA
Pole tide
Atmospheric loading

10−11 − 10−20 ms−2 Tidal acceleration due to other planets
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Figure 2.6: Principle of the general lever spring balance (a), and its implementation in the
LaCoste and Romberg relative gravimeter (b). Adapted from Torge and Müller (2012)
and Crossley et al. (2013).

gravity processing software. More elaborate methods to determine the gravitational
effects due to atmospheric and ocean loading, as well as effects often unaccounted
for such as the hydrological effect on gravity, form an important part of Paper B.

Gravimetry is also performed from moving platforms such as ships and airplanes,
which are particularly efficient methods in regions that are difficult to reach by foot,
e.g., oceans, extreme topography, thick forests, and polar regions (Torge and Müller,
2012). These instruments are also relative, i.e., what is measured are gravity differ-
ences to a fixed value in the harbor or at the airport. The main additional challenges
when observing gravity from such platforms are gravity sensor orientation and cor-
rections due to the fact that the observations are performed on a moving platform in a
rotating Earth system (see Section 2.6.2). The typical accuracy that can be obtained
with airborne gravimetry is ±1 mGal to ±3 mGal at a 5-7 km resolution. With
shipborne gravimetry the accuracy is typically between ±0.5 mGal to ±2 mGal at
∼1 km resolution.

2.2.2 Satellite gravimetry

Because of the rapid attenuation of Earth’s gravity signal with increasing height,
high-resolution gravity observation from space requires satellites in low orbits and
with highly sensitive sensors (Torge and Müller, 2012). This has been achieved
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by the practical realization of the satellite-to-satellite tracking (SST) and satellite
gravity gradiometry (SGG) principles.

Up till now, SST has used microwave systems to measure range and range rates
between satellites (Torge and Müller, 2012). It is realized either in high-low mode
(Figure 2.7a), with several high and one low-flying satellite, or in low-low mode
(Figure 2.7b), with two low-flying satellites at the same altitude. A combination of
both is also possible. The CHAllenging Minisatellite Payload (CHAMP, 2000-2010)
mission used the high-low mode, with the satellite itself being the sensor (Reigber
et al., 2002). Precise orbit determination of the low-flying (∼450 km) CHAMP
satellite was done by high-flying GNSS satellites. The satellite orbit is perturbed
by the gravity field, and with an onboard accelerometer measuring non-gravitational
forces acting on the satellite (e.g., atmospheric drag), the gravity field can be in-
ferred from orbit analysis. The CHAMP global gravity field could be determined to
roughly degree and order 70 (∼280 km). The Gravity Recovery And Climate Ex-
periment (GRACE, 2002-) mission uses SST in low-low mode, where, in addition to
GNSS satellites, the distance and its rate of change between two low-flying (∼500
km) CHAMP-type satellites are measured very accurately (Tapley et al., 2004). The
ranges are strongly influenced by variations in the gravity field, allowing for the de-
termination of the global gravity field to roughly degree and order 150 (∼130 km).

SST allows for the precise determination of the long-wavelength part of the gravity
field, because the satellite orbit gives almost global coverage. However, the short-
wavelength part of the gravity field cannot be observed because of the attenuation
of the gravity signal with increased orbit height. By SGG, differences in gravity
acceleration, i.e., the second derivatives of the gravitational potential, are measured
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GNSS

P
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SAT   B
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3D GRADIOMETER

Figure 2.7: Schematic showing the satellite-to-satellite tracking principle in (a) high-low
mode, and (b) low-low mode, as well as (c) the satellite gravity gradiometry principle.
Adapted from Torge and Müller (2012).
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in three dimensions, see Figure 2.7c. Thereby the attenuation of the gravity field is
counteracted by measuring its finer structures. The GOCE (Drinkwater et al., 2003)
mission (2009-2013) was the first to employ SGG. The GOCE gradiometer con-
sists of six accelerometers, placed pairwise on three orthogonal axes. They observe
different gravitational gradient components, which are combined in the Marussi ten-
sor

V′′ =



Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz ,


, (2.42)

where the x-axis is in flight direction, the y-axis in cross-track direction, and the
z-axis in the outward radial direction (Torge and Müller, 2012). Due to the sym-
metry Vxy = Vyx , Vxz = Vzx , Vzy = Vyz as well as the Laplace equation, ∆V =

Vxx +Vyy +Vzz = 0, only five of the nine elements in Eq. (2.42) are mutually inde-
pendent. The accelerometers register the forces necessary to keep each test mass in
their center position. The measurement accuracy of the second derivatives as well as
the accuracy of the orbit determination must be high, and the latter is usually based
on GNSS tracking. In addition, a drag-free system accounts for the considerable air
drag due to the low altitude (∼280 km). GOCE has observed the global gravity field
up to roughly degree and order 250 (∼80 km).

Classic gravity field recovery from satellite data was based on analysis of accu-
mulated orbit perturbations of different satellites, starting from an initial orbit deter-
mined from models and independent observation of the satellite’s motion (Torge and
Müller, 2012). Prior to onboard tracking systems such as GNSS, the independent
tracking of the satellite was performed on Earth’s surface, e.g., by precise satellite
laser ranging (SLR). The advent of dedicated satellite gravimetry missions, which
all give almost continuous, precise observation of their orbits, opened up a range of
different approaches to gravity field analysis, see, e.g., Liu (2008) or Yi (2012) for
an overview.

Eq. (2.9) is a convenient means to compute a disturbing gravity quantity in arbitrary
points on or outside the Earth surface. Only a set of spherical harmonic potential
coefficients {C̄nm , S̄nm } is needed. The coefficients refer to a sphere with radius R,
and are scaled by GM . These three quantities define a global gravity model (GGM).
In practice, the number of coefficients is finite, where the maximum degree n of the
GGM is termed Nmax.

Satellite gravimetry gives the global gravity field, and is the predominant data source
for GGMs. In addition to being created from independent satellite tracking tech-
niques (e.g., GNSS and SLR), satellite orbit perturbations, inter-satellite links, or
gravity gradiometry, a GGM can be enhanced (i.e., its resolution increased) by in-
cluding terrestrial gravity and altimetry-derived gravity over the oceans, giving com-
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Table 2.3: GGMs used in this thesis.

Model Nmax Data sources Reference

GOCO05s 280 GOCE, GRACE, (Mayer-Gürr et al., 2015)
GPS-tracked orbits, SLR

GOCE TIM5 280 GOCE (Brockmann et al., 2014)
GOCE DIR5 300 GOCE, GRACE, SLR (Bruinsma et al., 2013)
EGM2008 2190 GRACE, terrestrial gravity, (Pavlis et al., 2012)

altimetry

bined GGMs as opposed to the satellite-only GGMs. See Table 2.3 for the GGMs
considered in this thesis. The spherical harmonic degree of a GGM is related to the
spatial resolution ∆ on the sphere according to (Rummel and Pail, 2011)

∆ =
πR
n
≈ 20000 km

n
. (2.43)

The relations between T and other gravity field functionals allow spherical harmonic
expansions of, e.g., the geoid height, the height anomaly, the gravity disturbance,
and the gravity anomaly . We can generalize Eq. (2.21) as follows,

f (r, θ, λ) =
∑

n

f upwλn
∑

m

P̄nm (cos θ)
[
∆C̄nm cosmλ + ∆S̄nm sinmλ

]
, (2.44)

where f is a quantity of the disturbing gravity field, related to T by λn , which here
includes the spectral eigenvalue as well as dimensioning. The spectral eigenvalues
allow easy transfer between the different functionals in the spectral domain (e.g.,
Meissl, 1971; Rummel and Pail, 2011). f upw is the upward continuation operator.
Table 2.4 lists some relations for different disturbing gravity field quantities.

A GGM can only provide the potential on Earth’s surface; hence, the geoid is not
directly computable from a GGM (Section 2.1), but can be computed by first deter-
mining ζ from a GGM, and then consider the geoid to quasigeoid separation (Eq.
(2.36)).

The signal degree variance represents the contribution of each spherical harmonic
degree to the total signal variance, and thus gives information on the signal content
of a gravity field functional (Torge and Müller, 2012). The dimensionless signal
degree variances may be calculated from a set of spherical harmonic coefficients
{∆C̄nm ,∆S̄nm },

cn =

n∑

m=0

(
∆C̄2

nm + ∆S̄2nm
)
, (2.45)
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Table 2.4: Relations for different gravity field quantities.

f f upw λn

T
(
R
r

)n+1 GM
R

ζ
(
R
r

)n+1
R

∆g
(
R
r

)n+2 GM
R2 (n − 1)

δg
(
R
r

)n+2 GM
R2 (n + 1)

Trr

(
R
r

)n+3 GM
R3 (n + 1)(n + 2)

as obtained from a global gravity model (GGM), or by different empirical degree-
variance models. The signal covariance function for arbitrary gravity field function-
als can be computed using signal degree variances, see Eq. (2.56).

The coefficients of a GGM also have uncertainties, and the degree variances com-
puted from the errors of the coefficients are termed error degree variances (Rummel
and Pail, 2011). They are part of the GGM, and constitute the commission error. The
signal content above Nmax, on the other hand, is known as the omission error, and
must be computed from an empirical degree variance model. If the signal degree
variances of a GGM is plotted together with the error degree variances, the point
where the curves cross defines the resolution of the GGM.

Finally, it should be noted that there are different ways of dealing with the tides
(Torge and Müller, 2012). The tidal gravitational attraction is included in every grav-
ity observation, making Laplace’s equation problematic, as the Sun and the Moon
are outside the Earth. The tidal effect is split into a direct effect due to the actual
change in the potential due to the attraction from the Sun and the Moon, and an
indirect effect due to the tidal forces causing Earth deformation, which also changes
the potential.

Furthermore, the tidal forces affecting every gravity observation can be split into
time-dependent and time-independent parts, where the time-dependent periodic part
is caused by Earth’s rotation and the orbits of Sun and Moon, and evens out over
time (Torge and Müller, 2012). The time-indepedent part, however, must be con-
sidered in gravity field determination, and is known as the permanent tide. In the
mean-tide (MT) system, the time-dependent part of the tidal forces is removed from
the observed gravity field quantity. In the zero-tide (ZT) system, the direct effect
of the permanent part is also removed. For geometry-related quantities such as site
positions on Earth’s surface, ZT is synonymous with MT. If the indirect effect is
removed as well, we are in the tide-free (TF) system, supposing no Sun and Moon
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exists and consequently no tidal forces. This theoretical condition can only be deter-
mined through a conventional model, giving a conventional TF system. As different
geodetic data sets are often given in different tidal systems, we must make sure they
are brought into a unified tidal system before their combination.

2.3 Regional geoid computation

The global gravity field is typically modeled using well-suited spherical harmonics
(Section 2.2.2). When using a satellite-only GGM for gravity field determination,
small-scale structures of the gravity field are lost, which typically amount to ∼30 cm
in terms of geoid heights. In order to increase the resolution of the geoid, the GGMs
are combined with terrestrial data, usually restricted to an area of interest. Modeling
the high-resolution structure of the geoid on local to regional scales is the topic of
regional geoid computation (Denker, 2013).

The solution of the GBVP typically consists of two steps, namely the spherical har-
monic synthesis of a GGM using Eq. (2.21), and the field transformation of residual
gravity anomalies (subsequent to the subtraction of the part of the signal covered by
the GGM), see Section 2.3.4. There exist several methods for computing the residual
gravity field, where integral formula solutions to the GBVP and least-squares tech-
niques can be seen as classical methods. Radial base functions form a more modern
approach.

2.3.1 Integral formulae

The geoid height N at point P can be obtained from gravity anomalies at point q by
the integral formula of Stokes (1849). It globally integrates the gravity anomalies
over the whole sphere σ, using Stokes function S as integration kernel (or weight),

N (P) =
R

4πγ

"
σ

S(ψPq )∆gq dσ, (2.46)

where R is the spherical Earth radius, γ is normal gravity evaluated on the surface
of the reference ellipsoid, and ψPq is the spherical distance between computation
point P and data point q.

The integral formulae are spherical convolutions of a signal function with a kernel,
and can be solved exactly by either numerical integration or by a one-dimensional
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Fast Fourier Transform (1D-FFT), as described by Haagmans et al. (1993). Thereby,
the FFT is performed along parallels only, according to

N (ϕP ) =
R∆ϕ∆λ
4πγ

F −11


∑

ϕ

F1 {S(∆λ)} · F1
{
∆gq cos ϕ

} , (2.47)

where F1 denotes the 1D-FFT operator and F −11 its inverse, and ∆ϕ and ∆λ are the
latitudinal and longitudinal spacing of the computation grid, respectively.

The Stokes function has the following closed-form expression (Torge and Müller,
2012),

S(ψPq ) =
1

sin ψPq

2

+1−5 cosψPq−6 sin
ψPq

2
−3 cosψPq ln


sin

ψPq

2
+

(
sin

ψPq

2

)2
,

(2.48)
and ψPq is given by

cosψPq = sin ϕP sin ϕq + cos ϕP cos ϕq cos (λq − λP ). (2.49)

The Stokes function can also be expressed as a Legendre series,

S(ψPq ) =

∞∑

n=2

2n + 1
n − 1

Pn

(
cosψPq

)
. (2.50)

Molodensky’s formula is given by

ζ (P) =
R

4πγ

"
σ

S(ψPq )
(
∆gq + g1 + g2 + · · ·

)
dσ, (2.51)

where the higher-order Molodensky terms (g1,g2, . . .) all depend on the terrain in-
clination, which means they can be neglected in flat areas (Hofmann-Wellenhof and
Moritz, 2006). The g1 term can be approximated by the terrain correction (Eq.
(2.33)).

2.3.2 Least-squares collocation

Least-squares collocation (LSC) is an optimal estimation method which allows the
estimation of arbitrary gravity field quantities from inhomogeneously distributed
point observations (Moritz, 1980). LSC combines parameter estimation, prediction,
and filtering. It takes advantage of the known signal characteristics, described by the
signal covariance function.
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l

Ax+ s

Ax

s

Figure 2.8: Schematic of the LSC model. The top solid curve is to be determined from
observations (dots), which, in turn, are affected by errors n. The curve which we seek to
interpolate consists of a systematic part Ax and a random part s. Adapted from Moritz
(1980).

The standard linear model of standard least-squares adjustment is extended accord-
ing to

l = Ax + s + n, (2.52)

where l is the observation vector, n the noise or residual vector, x is the vector
of unknown parameters, and A is the design matrix, characterizing the effect of the
parameters x on the observations l. The linear model has been extended by the signal
vector s. Thereby, the observation l is made up of a systematic part Ax, and two
random parts s and n. Typically, the systematic part is non-linear and is linearized by
Taylor’s theorem. The signal may exist at points other than the observation points,
and may in fact vary continuously although l is observed at discrete points only.
Thereby, this linear model is applicable for interpolation, see Figure 2.8.

The signal s is unknown, and, unlike for the parameters, the connection between
known and unknown quantities is not given through a functional relation, but rather
in terms of covariance matrices. It may be shown that the linear minimum unbiased
parameter and signal estimates are given by (Moritz, 1980)

x̂ =
(
AT C̄−1ll A

)−1
AT C̄−1ll l, (2.53a)

ŝ = Csl C̄−1ll (l − Ax̂) , (2.53b)
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respectively, where we have set C̄ = Ct t + Cnn , such that the covariance matrix
of l is obtained by adding the covariance matrices of its signal and noise parts. Csl

is a matrix containing the signal cross-covariances between the functionals between
computation point and observations, and Cll is the auto-covariance matrix between
all combinations of observations.

The error covariance matrix of the estimated signals is given by (Moritz, 1980)

Ess = Css − Csl C̄−1ll Cl s , (2.54)

where its diagonal terms are the error variances of the estimated signals.

All covariances Csl , Cll are obtained from the same covariance function C(ψ), as-
sumed to depend only on the horizontal distance ψ between the considered points
(Moritz, 1980). In physical geodesy, we typically take the covariance function of
the disturbing potential T to be the basic covariance function, from which all co-
variances are computed by covariance propagation. The covariance function can be
written as

C(ψPq ) =
1

8π2

2π∫

λ=0

π∫

θ=0

2π∫

α=0

T (θP , λP )T (θq , λq ) sin θdθdλdα, (2.55)

where (θ, λ) are spherical coordinates, and the points P(θ, λ), q(θ, λ) are on the
surface of the unit sphere.

The global integral in Eq. (2.55) can also be expressed as a Legendre series,

C(ψPq ) =

∞∑

n=2
(λTn )2cnPn (cosψPq ), (2.56)

where Pn (cosψPq ) are the Legendre polynomials, and cn are the dimensionless
signal degree variances (Eq. (2.45)), with λTn = GM/R.

Several gravity field functionals are related to T by isotropic spectral eigenvalues,
such as gravity anomalies, gravity disturbances, geoid heights, or height anomalies
(Rummel and Pail, 2011). The upward continuation operator can be expressed as
a spectral eigenvalue as well, see Section 2.2.2. However, some functionals, such
as the deflections of the vertical, do not have the isotropic link, and more complex
differential operations must be performed to determine the covariance (Hofmann-
Wellenhof and Moritz, 2006).

If we restrict LSC to the case of geoid computation from gravity anomalies, making
it directly comparable with Stokes’s formula (Eq. (2.46)), it can be written as

N (P) = CNg
Pq

(
Cgg
qq

)−1
∆gq . (2.57)
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2.3.3 Radial base functions

Spherical harmonics are global base functions, which means they are different from
zero everywhere on the globe. The associated spherical harmonic coefficients have
optimal frequency localization (they are directly related to the frequency values de-
gree n and order m) (Schmidt, 2001). Localization refers to the area in the frequency
or spatial domain in which a function does not vanish, and the function localizes
better as this area shrinks. Dirac functions represent the direct opposite of spheri-
cal harmonics as they are different from zero at a single point only, i.e., they have
optimal space localization. Due to the uncertainty principle it is not possible for a
function to have both perfect frequency and space localization (Freeden et al., 1998).
A good compromise between ideal frequency localization and ideal space localiza-
tion is given by the kernel functions known as radial base functions (RBFs).

RBFs are limited to a certain spatial region, making them suitable for regional grav-
ity field modeling due to their space-localizing properties. There is a vast amount
of RBFs to choose from, as long as they represent harmonic kernel functions. They
are versatile in that their approximation characteristics and spatial distribution can
be adjusted, making it possible to use them for all kinds of data sets and for com-
bining different types of observations (Lieb et al., 2016). In addition to considering
a suitable size for the target area (which should correspond to the signal bandwith),
as well as a suitable margin to avoid boundary effects, an appropriate point grid for
the placement of the RBFs (network design), the actual RBF itself with its band-
width, and a suitable regularization method must be chosen. This versatility makes
the establishment of a standard RBF modeling method challenging, and, in practice,
different RBF modeling groups have adopted different frameworks (Eicker, 2008;
Wittwer, 2009; Bentel, 2013; Naeimi, 2013).

Regional gravity field modeling with RBFs can be done using numerical integration
or least-squares estimation approaches, and this thesis focuses on the latter, which
is the common geodetic approach facilitating error analysis and propagation.

As spherical isotropic functions, the RBF can be written as a Legendre series (Ben-
tel, 2013),

B(ψPk ) =

∞∑

n=2

2n + 1
4πR2 λnBnPn (cosψPk ), (2.58)

where ψPk is the spherical distance between computation point P and the origin of
the RBF at grid point k, and λn are the spectral eigenvalues including dimensioning.
As mentioned, there are many choices of the RBF itself, and its bandwidth must
be chosen properly such that the RBF approximates the signal in an optimal way
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Figure 2.9: Schematic showing the RBF using the SK (upper left) as well as the covariance
function of LSC (upper right) in the spatial and frequency domains. The lower panel
shows the RBF using the SK in 3D, as well as its placement on the equidistributed Reuter
grid in the global case.

(Wittwer, 2009). The spectral characteristics of the RBF depends on the choice of
Legendre coefficients Bn . In this thesis, we let Bn take the frequency response of the
signal into account, characterized by the signal degree variances. These RBFs are
known as spherical splines (Freeden et al., 1998; Jekeli, 2005; Eicker, 2008), with
the spline kernel (SK) defined by

BSK
n =

σn√
2n + 1

, (2.59)

where σn =
√

cn are the degree standard deviations.

An example of a band-limited SK is shown in Figure 2.9, together with the covari-
ance function of LSC, to show their similar behavior. One of the objectives of this
thesis is to demonstrate the equivalence of SKs and LSC, addressed in Paper C.
The synthesis of a gravity signal from known point-specific spline coefficients d̂k is
given by

s(P) =

K∑

k=1

d̂k B(ψPk ). (2.60)
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In matrix notation, Eq. (2.60), can be written as

s(P) = Ad, (2.61)

where d contains the spline coefficients d̂k according to Eq. (2.60), and A represents
the design matrix according to Eq. (2.58). The spline coefficients are derived from
observations in an analysis step, by inversion of the linear model

l + v = Ad. (2.62)

Thereby, l is the observation vector and v is the error vector. By inversion of Eq.
(2.62), one coefficient for each SK needs to be determined. This is typically an ill-
conditioned linear inverse problem, for which a regularization of the normal matrix
is necessary. Numerous regularization methods exist (Bentel, 2013; Naeimi, 2013).
In this thesis we have used Tikhonov regularization (Tikhonov, 1963), where the
regularized solution is given by

d̂k =
[
(A)TA + αR

]−1
(A)T l, (2.63)

where α is the regularization parameter, balancing the contribution of observations
and prior information to the solution. We determine the regularization parameter α
by the L-curve method of Hansen and O’Leary (1993). Regardless of the regular-
ization method, an initial guess of the regularization parameter, α0, must be made.
Here, we make an initial guess based on the condition number of the normal matrix
and the maximum SH degree Nmax, i.e., α0 = 8‖N‖/N3

max (Naeimi, 2013). Fur-
thermore, Eicker (2008) has shown that the approximation R = I holds, for which a
small discussion is found in Paper C.

If we restrict ourselves to the case of geoid computation from gravity anomalies, the
analysis step is given by

∆g + v = Agd, (2.64)

where the elements of Ag are given by

Ag
kq

=

∞∑

n=2

√
2n + 1/(4πR2)λgnBSK

n Pn

(
cosψkq

)
, (2.65)

and with λgn = GM/R2(n − 1). The synthesis step is given by

N (P) = ANd, (2.66)

with design matrix elements

AN
Pk =

∞∑

n=2

√
2n + 1/(4πR2)λN

n BSK
n Pn (cosψPk ) , (2.67)
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and with λN
n = GM/(Rγ).

In Paper C we consider an extended grid area for the RBF positions, with outer
margin widths w ≈ 4 · 180◦/(Nmax + 1) (Bentel, 2013). As a result, the number
of RBFs will typically be slightly larger than the number of observations, but prac-
tically equal. Several point grids are available for the RBF positions, and we have
chosen to use the equidistributed Reuter grid, shown in Figure 2.9. A Reuter grid is
defined by points expressed in spherical coordinates (θ, λ) for a chosen level γ (to
define the number of points), and may be constructed as follows (Reuter, 1982):

θ0 = 0, λ0,1 = 0, North Pole

∆θ = π/γ,

θi = i∆θ, 1 ≤ i ≤ γ − 1

γi = 2π/ cos
(
(cos∆θ − (cos θi )2)/(sin θi )2

)−1
,

λi, j =

(
j − 1

2

)
(2π/γi ), 1 ≤ j ≤ γi

θ0 = π, λγ,1 = 0. South Pole (2.68)

2.3.4 Remove-compute-restore technique

We have seen that GGMs have global coverage, but lack the short wavelengths of
the gravity field. Terrestrial data have higher resolution, but are not available glob-
ally. As a result, both data sources are combined in practical geoid computation
(Denker, 2013). The long-wavelength part of the gravity signal is determined from
a GGM, and removed from the terrestrial data. In addition, the short wavelengths
of the gravity signal, represented by the topography, are also removed by aid of
a digital elevation model (DEM). The residual gravity data then become relatively
smooth and get small signal amplitudes, which make them easy to grid. In turn, a
regional geoid computation method is applied to the residual gravity data in a lim-
ited area where terrestrial data are available only. The modeling results are residual
geoid heights. Finally, the long-wavelength part of the GGM and the effect of to-
pography are restored to obtain the final geoid. This procedure is known as the
remove-compute-restore technique, and is schematically shown in Figure 2.10.

There are many advantages to the remove-compute-restore technique. The computa-
tionally intensive integral formulae can be restricted to consider available terrestrial
gravity data in a spherical cap σ0 with radius ψ0 around the computation point only.
The omitted gravity signal outside the cap is taken care of by the GGM, and the
error due to the spherical approximation of the regional methods is reduced as the
residual gravity signal is only a small part of the total signal.
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Figure 2.10: The remove-compute-restore regional geoid computation scheme. NSTI
res ,

NLSC
res , and NRBF

res , denote geoid heights computed from Stokes integration, Least-squares
collocation, and radial base functions, respectively. Adapted from Rummel et al. (2015).

Typically ψ0 is chosen such that the resulting omission error is negligible, which de-
pends on Nmax of the GGM. The cap is typically called the inner zone, and denoted
by σ0. Stokes’s formula applied to the near zone only gives

N (P) =
R

4πγ

"
σ

S̄(ψPq )∆ḡq dσ, (2.69)

with

S̄(ψPq ) =


S(ψPq ), 0◦ ≤ ψ < ψ0

0, ψ0 ≤ ψ ≤ π
. (2.70)

The spectral form of S̄(ψPq ) can be written as (de Min, 1995)

S̄(ψPq ) =

∞∑

n=2

[ 2
n − 1

− Qn (ψ0)
] 2n + 1

2
Pn (cosψPq ), (2.71)
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where Qn (ψ0) are the Molodensky coefficients, which can be computed by the re-
currence relation of Paul (1973).

Two basic methods for the combination of gravity data exist; combination in the
frequency (or spectral) domain, which is the classical remove-compute-restore ap-
proach, and combination in the spatial domain (Šprlák, 2010). Both approaches can
be modified to include different kernel modifications (or weighting schemes for the
GGM and terrestrial data). We will restrict ourselves to the combination in the fre-
quency domain in the following, in the case of regional geoid computation using
Stokes’s formula.

We introduce a spectral weight function wn in the Stokes kernel (Eq. (2.50)), giving
(Rummel et al., 2015)

S1(ψPq ) =

∞∑

n=2

2n + 1
n − 1

wnPn

(
cosψPq

)
, (2.72)

and

S2(ψPq ) =

∞∑

n=2

2n + 1
n − 1

(1 − wn ) Pn

(
cosψPq

)
. (2.73)

The geoid height can be computed by either a GGM or by Stokes’s formula, accord-
ing to

N (P) =
R
2γ

∞∑

n=2

2
n − 1

wn∆g
GGM
n +

R
2γ

∞∑

n=2

2
n − 1

(1 − wn ) ∆gGGM
n

=
R

4πγ

"
σ

S1(ψPq )∆gq dσ +
R

4πγ

"
σ

S2(ψPq )∆gq dσ

= N1 + N2. (2.74)

If we use a GGM for N1 and Stokes’s formula for N2, we can write

N (P) =
R
2γ

∞∑

n=2

2
n − 1

wn∆g
GGM
n +

R
4πγ

"
σ

S2(ψPq )∆gq dσ. (2.75)
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In practice, the summation in the first term of Eq. (2.75) is performed to the maxi-
mum degree of the GGM, and Stokes’s formula is limited to the spherical cap σ0. If
we separate the two terms, we get

N (P) =
R
2γ

Nmax∑

n=2

2
n − 1

wn∆g
GGM
n +

R
2γ

∞∑

n=Nmax+1

2
n − 1

wn∆g
GGM
n

+
R

4πγ

"
σ0

S2(ψPq )∆gq dσ +
R

4πγ

"
σ−σ0

S2(ψPq )∆gq dσ

= N11 + N12 + N21 + N22. (2.76)

Here, N12 is the contribution above the maximum degree of the GGM, and N22 is the
contribution from terrestrial gravity data outside the spherical cap. Both represent
truncation (or omission) errors and are neglected in practical geoid computation.
The goal of kernel modifications is then to reduce the truncation error, either by
deterministic modifications which aim to minimize the truncation error and provide
faster convergence, or by stochastic modifications which aim to reduce the trunca-
tion error, the GGM error, as well as the terrestrial error in a least-squares sense.

The Wenzel kernel modification (Wenzel, 1981, 1982; Wichiencharoen, 1984) is a
stochastic approach for optimal data weighting, whereby the error degree variances
of the GGM (σGGM

n ) and the terrestrial data (σ∆gn ) are combined in a Wiener-type
filtering, according to

wn =

(
σGGM
n

)2
(
σGGM
n

)2
+

(
σ
∆g
n

)2 , (2.77)

where wn are the spectral filter weights for the satellite data and (1 − wn ) are the
complementary weights for the terrestrial data.

The isotropic spatial filter functions are computed by

W (ψ) =

∞∑

n=2
wnPn (cosψ) , (2.78)

where, in practice, the summation is carried out to a high spherical harmonic de-
gree (e.g., n = 10,000), and the integration is limited to a spherical cap around the
computation point.

A simple deterministic weighting scheme is given by the Gaussian mean kernel
(Jekeli, 1981),

G(ψ,b) = exp [−b(1 − cosψ)], (2.79)
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with the spatial filter function

W (ψ,b) =
2b G(ψ,b)

1 − exp (−2b)
, (2.80)

where b is given by

b =
ln 2

1 − cosψHM
(2.81)

and ψHM is the spherical distance at half-maximum.

For the computation of the regional geoid model in Norway, NMA2014, the deter-
ministic kernel modification of Wong and Gore (1969) is used. It removes the low-
degree Legendre polynomials n < K from the Stokes kernel. The idea is that when
only high frequencies are present in the kernel, the lower frequencies will never be
multiplied by the terrestrial ∆gq data. The lower frequencies are readily available
in the harmonic coefficients of ∆gGGM

n . Wong and Gore’s kernel modification thus
acts as a high-pass filter. The modified Stokes kernel is given by

S(ψPq )WG =

∞∑

n=2

2n + 1
n − 1

Pn

(
cosψPq

)
−

K−1∑

n=2

2n + 1
n − 1

Pn

(
cosψPq

)

=

∞∑

n=K

2n + 1
n − 1

Pn

(
cosψPq

)
. (2.82)

2.3.5 Filter-combined regional geoid model

To minimize the computational burden, the classic field transformation from gravity
anomalies to geoid heights can be avoided altogether by using an already existing
recent regional geoid model to represent the terrestrial gravity information (Rülke
et al., 2012). Thereby geoid heights are computed on the spatial grid of the existing
regional geoid model using a GGM, and low-pass filtered using a suitable weight-
ing scheme (Šprlák et al., 2012), as described in Section 2.3.4. The regional geoid
model is high-pass filtered with the complementary filter, and the two filtered geoids
are added to form a filter-combined geoid model, see Figure 2.11 and Rülke et al.
(2012).
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Figure 2.11: Schematic showing the concept of combining geoid heights computed from a
GGM with an already existing regional geoid model, thus effectively replacing the GGM
which was used for determining the regional model.
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Figure 2.12: Principle of combining a GGM-based geoid NGGM and an existing regional
geoid model Nreg by a suitable filter W (ψ) in the spatial domain.

In this thesis the Wong and Gore kernel, the simple Gaussian mean kernel as well
as the Wenzel kernel have been tested. The filter-combined solutions are computed
according to

Ncomb =
1
4π

"
σ

W (ψ)NGGM dσ +


N reg − 1

4π

"
σ

W (ψ)N reg dσ




= NGGM
LP + N reg

HP = Ncomb, (2.83)

see Figure 2.12.

2.4 Heights

Three fundamental vertical reference surfaces (vertical datums) are considered in
geodesy: the reference ellipsoid, the geoid, and the quasigeoid. The height of a
point forms a one-dimensional coordinate system, and is the metric distance to the
point from a reference surface along a well-defined path (Featherstone and Kuhn,
2006). Although a simple definition at first glance, height systems can be defined
in different ways, giving different height values for the same point. The reference
surface has the largest influence on the height value, but also the path along which
we measure the height contributes significantly. The ellipsoidal height is a verti-
cal reference for geometric (nonphysical) heights, while the geoid and quasigeoid
are vertical references for physical heights (orthometric and normal heights, respec-
tively).
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2.4.1 Ellipsoidal height

The ellipsoidal height is the straight-line distance measured along the ellipsoidal
normal from the geometrical surface of the reference ellipsoid to a point P on Earth’s
surface, see Figure 2.13. Together with geodetic latitude and longitude it forms the
geodetic coordinates (Hofmann-Wellenhof and Moritz, 2006). Ellipsoidal heights
will necessarily depend on how the ellipsoid is defined, i.e., one must always specify
the geodetic reference system associated with the geodetic coordinates.

reference ellipsoid

Earth's surface

h: ellipsoidal height

Q

P

0

ellipsoid normal

Figure 2.13: The ellipsoidal height h is the straight-line distance measured along the ellip-
soidal normal from the point Q0 on the surface of the reference ellipsoid to a point P on
Earth’s surface. Adapted from Featherstone and Kuhn (2006).

2.4.2 Orthometric height

The orthometric height was already introduced in Section 2.1 as a physical height
related to Earth’s gravity potential, see Figure 2.14. As any physical height system
it is based on the geopotential number C, which is the difference between the poten-
tial at a reference level and at the point of interest (Hofmann-Wellenhof and Moritz,
2006). We cannot observe the potential directly, but rather derive it from the combi-
nation of leveling and gravity measurements. In the case of orthometric heights, the
reference surface is the geoid. The orthometric height is given by

CP = W0 −W =

HP∫

0

g dH, (2.84)
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or, alternatively,

H = −
WP∫

W0

dW
g

=

CP∫

0

dC
g
. (2.85)

P

H

W=WP

W=W
P

plum
b line

Earth's surface

geoid W=W0

reference ellipsoid U=UQ0

0P

0QN

equipotential surfaces W=const.

Figure 2.14: The orthometric height H is the curved-line distance measured along the plumb
line from the point P0 on the geoid to a point P on Earth’s surface. The geoid height N
is the straight-line distance along the ellipsoidal normal from the point Q0 on the surface
of the reference ellipsoid to a point P0 on the geoid. The curvatures of the equipotential
surfaces and the plumb line are exaggerated in the figure. Adapted from Featherstone and
Kuhn (2006).

A pure orthometric height system is difficult to realize, because we must know the
course of the pumb line inside the topographic masses between the geoid and P. In
addition, we need to know gravity along the plumb line, for which the internal den-
sity distribution within the topography needs to be known to an accuracy not avail-
able today. In practice, an orthometric height system is almost exclusively based
on Helmert heights, which are an approximation to the pure orthometric heights
(Hofmann-Wellenhof and Moritz, 2006):

H =
CP

ḡ
, (2.86)

where ḡ is mean gravity along the plumb line, which relies on density information.
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2.4.3 Normal height

Molodensky proposed to use “orthometric heights” in the normal gravity field,
termed normal heights, see Figure 2.15 (Hofmann-Wellenhof and Moritz, 2006).
Normal heights are based on assuming that the actual gravity potential is equal
to the normal potential of the reference ellipsoid, W = U. Thereby, the physical
Earth surface can be determined solely by geodetic measurements, without density
hypothesis.

H*

Earth's surface

telluroid

U = U  = WP  Q

0

0

U = U  = W
P

  Q

P

Q

QQ

ζ

ζ

P

0*

quasigeoid

reference ellipsoid

normal equipotential surfaces U=const.

normal 
plumb line
through P normal 

plumb line 
through Q

U=UQ0

Figure 2.15: The normal height H∗ is the curved-line distance measured along the normal
plumb line from the point Q0 on the surface of the reference ellipsoid to a point Q on
the telluroid. The quasigeoid height ζ is the straight-line distance along the ellipsoidal
normal from the point Q∗0 on the surface of the reference ellipsoid to a point P0 on the
quasigeoid. The quasigeoid height equals the height anomaly ζ , which is the straight-line
distance along the ellipsoidal normal from a point P on Earth’s surface to a point Q on
the telluroid. Adapted from Featherstone and Kuhn (2006).

Geometrically, the normal heights are the distance from the reference ellipsoid to a
surface which is called the telluroid. The telluroid is found by pointwise projection
of points P on Earth’s surface along the straight ellipsoidal normal to points Q with
equal potential in the normal gravity field UQ as the original points in Earth’s gravity
field WP . As a result, the telluroid is not an equipotential surface, but rather an
approximation of the actual Earth surface, or the topography of a “normal Earth”.
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Normal heights are defined in the same way as the orthometric heights, but are scaled
according to the normal gravity field of the reference ellipsoid,

CP =

H ∗P∫

0

γ dH∗, (2.87)

H∗ =
CP

γ̄
. (2.88)

In eqs. (2.87) and (2.88), CP is the geopotential number (difference in gravity poten-
tial on the reference ellipsoid and the telluroid), H∗ is the normal height, γ is normal
gravity, and γ̄ is the mean normal gravity along the ellipsoidal normal, which may
be computed by closed formulas without having to know the density distribution
within the topography.

2.4.4 Dynamic height

The dynamic height is closely related to the geopotential number (Hofmann-
Wellenhof and Moritz, 2006). If we divide the geopotential number with a constant
gravity value, we obtain a dynamical height. Typically, the normal gravity at ± 45◦

latitude is used, and we get

Hdyn =
CP

γ45◦
. (2.89)

Note that the dynamic height has no geometrical interpretation as it is simply a
scaled geopotential number such that a length unit is obtained. Although not used
much in geodesy, dynamic heights have an interesting connection to the mean dy-
namic topography (Section 2.6.5).

2.4.5 Physical heights with GNSS

The combination of GNSS-derived ellipsoidal height and a precise regional geoid
makes it possible to derive orthometric heights without the need for leveling. Com-
paring figures 2.13 and 2.14 we see that, if the plumb lines were straight and per-
pendicular to the reference ellipsoid, we would get the following exact relationship
(Hofmann-Wellenhof and Moritz, 2006):

H = h − N. (2.90)
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Although Eq. (2.90) is an approximation, it is applicable in practice, and one of the
main motivations of the national mapping authorities for computing a regional geoid
model. Comparing figures 2.13 and 2.15 we easily see that the same relationship
holds in Molodensky’s theory:

H∗ = h − ζ, (2.91)

which then gives us normal heights if a precise quasigeoid is available.

2.4.6 Ellipsoidal height of MSL

While altimeters give the ellipsoidal (absolute) height of the sea surface directly
(Section 2.5), tide gauges (TGs) give sea-level measurements relative to the land
they reside on (and are thus subject to vertical land motion). Typically, TG measure-
ments are referred to a TG benchmark (TGBM). Ideally, the absolute height of MSL
should be determined directly by GNSS, either continuously or by precise campaign
measurements at the TG itself or a nearby benchmark with a leveled connection to
a TGBM (Woodworth et al., 2017).

Unfortunately, a TGBM often has not been observed by GNSS with sufficient accu-
racy, or, while some TGs have GNSS receivers mounted on them, they lack the
necessary connection between the antenna reference point and the TG zero, be-
cause they were installed with the aim of monitoring vertical site displacements only
(Santamaría-Gómez et al., 2012). An alternative approach is to derive the ellipsoidal
height of MSL by using a height reference conversion surface (HRCS). This surface
is typically a geoid fitted to benchmarks with known heights in both the national
height system by means of leveling, and ellipsoidal heights h observed by GNSS,
enabling the conversion of heights H in the national height system into ellipsoidal
ones by the simple relation shown in Eq. (2.90),

h = H +HRCS. (2.92)

Using Eq. (2.92) to determine the absolute height of MSL is not the ideal solution as
it is a derived and not an observed quantity. The total error budget is complicated by
additional errors in the geoid on which the conversion surface is based, errors from
GNSS/leveling benchmark interpolation, as well as errors in the national leveling
network (Featherstone, 2008).

2.5 Satellite altimetry

The principle of satellite altimetry is that the altimeter onboard the satellite measures
its own height above Earth’s surface by observing the two-way travel time of a radar



2.5 Satellite altimetry 57

pulse that is transmitted from the altimeter, and partly reflected back from Earth’s
surface (Chelton et al., 2001). The distance, or range, R, between the satellite and
the surface is derived when the two-way travel time ∆t is multiplied with the speed
of light c, and divided by two (to get the one-way range),

R = c · ∆t
2
. (2.93)

If the satellite’s height h in a particular reference frame is known (i.e., its precise
orbit), the sea surface height (SSH) may be found in the same reference frame by
subtracting the measured distance R from the height of the satellite,

SSH = h − R. (2.94)

Today, satellite altimetry is our foremost technique for observing sea-level change
and ocean topography (Pugh and Woodworth, 2014). Satellite altimetry was first
given a try from the American space station Skylab early in the 1970s, while the
first dedicated altimeter satellite, GEOS-3, was launched in 1975, see Table 2.5. The
first missions gave data of rather poor quality compared with today’s observations.
The altimeter onboard GEOS-3 had an accuracy of about 25 cm, and the satellite
orbit was determined within roughly 10 m. In addition, the satellite had no ability
to measure the atmospheric effects on the observations. Still, the observations from
these early systems mapped previously unknown details in the geoid and the ocean
surface. In the 1990s satellite altimetry became an established technique; especially
with the launch of TOPEX/Poseidon and ERS-1.

Altimetry satellites of today can measure the distance to Earth’s surface with an ac-
curacy of around 2 cm (Pugh and Woodworth, 2014). This accuracy is achieved
by using a two-frequency radar, such that the effect of the ionosphere on the range
observation can be eliminated. In addition, the latest altimetry satellites have a ra-
diometer on board, measuring the effect of the troposphere. Today we also have
global observational networks monitoring the atmosphere such that both the effects
of ionosphere and troposphere can be computed from models. Most important is
the fact that altimetry satellites of today are equipped with satellite tracking systems
for precise orbit determination (POD); primarily GNSS, DORIS and SLR. These
systems allow orbit determination with an accuracy of 2 cm. All these improve-
ments together make altimetry satellites precise and effective tools for observing the
Earth system. Future altimetry missions will give higher spatial and temporal res-
olution, but should also overlap previous missions, in order to get as long a time
series as possible, with few observational gaps, see Table 2.5. For example, Jason-
CS/Sentinel-6 will be the fifth TOPEX/Poseidon-type satellite altimeter, aiming for
the continuation of the time series started in 1992 (Scharroo et al., 2016).
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2.5.1 Orbit considerations

Equator plane

Orbital plane
Φ̇

Z

Y

X
(Vernal Equinox γ)

ωe

Gr.

ω

Λ

Θ

Ωk
i

Ascending Node Ω

ν

Perigee

Figure 2.16: The Kepler elements of an elliptic satellite orbit: semi-major axis a, inclina-
tion i, longitude of the ascending node Ωk , argument of perigee ω, and true anomaly ν.
Adapted from Sneeuw (2000).

Kepler’s first law states that all planets move in elliptical orbits, with the Sun at one
focus. The law also applies for satellites orbiting the Earth. Six orbital elements are
used to describe the Kepler orbit around a body (Seeber, 2003), see Figure 2.16.

The actual satellite orbit deviates from the perfect elliptical Kepler orbit due to

• the non-uniform gravity field of the Earth,

• the gravitational attraction from the Sun and the Moon,

• atmospheric drag,

• direct and reflected radiation pressure from the Sun, as well as

• Earth and oceanic tidal forces (indirect gravitational attraction from the Sun
and the Moon).
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These forces, gravitational and non-gravitational, perturb the satellite orbit, and must
be taken into account.

The orbit height is one of several important factors when choosing the satellite orbit
(Chelton et al., 2001). The main source of error in the dynamical models mentioned
in the previous paragraph are gravitational perturbations of the satellite orbit, which
decrease substantially with increased orbit height, as does the perturbation from air
drag. On the other hand, the power of the radar echo decreases with increased height,
and the radiation environment becomes less favorable. The orbit height determines
the orbit period T . An altimeter satellite is in a near-circular orbit (an orbit with
small eccentricity), and the time between every subsequent ascending crossing of
the equatorial plane is given by

T = 2π

√
a3

GM


1 − 3J2

2

(
Re

a

)2
(4(cos i)2 − 1)


, (2.95)

where a is the semi-major axis of the elliptical satellite orbit, GM is the product of
the universal gravitational constant and Earth’s mass, Re =6378 km is Earth’s equa-
torial radius, i the inclination of the satellite orbit, and J2 = −C20 is the dynamical
form factor.

The projection of the satellite’s position along the ellipsoidal normal on Earth’s sur-
face is called the sub-satellite point. The path of successive sub-satellite points is
the projection of the satellite orbit on the surface, and is known as the groundtrack.
Because the Earth is rotating at 0.25◦min−1 relative to the orbital plane, the ground-
track with successive orbits is translated westwards, see Figure 2.17 (Chelton et al.,
2001). The track separation depends on the period T .

It is also important to consider the ability of the altimeter electronics to track the
radar echo from mean sea level (Chelton et al., 2001). The tracking unit has lim-
ited ability to lock on a point when the distance between the altimeter and the sea
surface varies from one radar pulse to the next. The Earth flattening can give rise to
changes in the vertical velocity component, up to 30ms−1 (or more, if the orbit is
elliptical), which causes the distance to change. Thus, for altimetry, the orbit eccen-
tricity must not exceed 0.001 (near-circular orbits). Furthermore, the ground speed
should be practically constant, such that the range observations are as evenly spaced
along the groundtrack as possible, and variations in the ground speed increases when
eccentricity increases.

If the satellite moves eastward in the same manner as the Sun, it is termed sun-
synchronous (Chelton et al., 2001). In addition to deciding the approximate orbit
height, and whether the satellite should be sun-synchronous, the orbit inclination
must be chosen. Satellites orbiting in the direction of Earth’s rotation, with i <90◦,
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Figure 2.17: Theoretical altimeter groundtracks in the Norwegian coastal zone for
TOPEX/Poseidon-type orbits (left), Envisat-type orbits (middle), and the interleaved
twin-satellite Sentinel-type orbit (right). See also Figure 2.25.

are called prograde, while orbits with i >90◦ are called retrograde. The resulting
maximum latitude becomes

|ϕmax | = i, (2.96)

|ϕmax | = 180◦ − i (2.97)

for prograde and retrograde orbits, respectively. The TOPEX/Poseidon-type orbit is
prograde, with i = 66◦, while the ERS-type orbit is retrograde and sun-synchronous,
with i = 98◦, thus covering ϕ = ±82◦.
If the groundtrack is periodic, i.e., repeats after a given number of days, α, and
revolutions, β, the orbit is called a repeat orbit (Chelton et al., 2001). The repeat
configuration has proven itself very useful, because it allows a satellite to pass the
same area on Earth’s surface after a given time interval. The periodicity allows a
comparison of observations at specific observation sites, for calibration and valida-
tion purposes, as well as monitoring time-variable geophysical and climate-related
phenomena. Satellite altimeters in repeat orbits monitor variations in sea surface
height. In the following we will see that there is always a trade-off between high
temporal and spatial resolutions. A satellite may also be set in a so-called geodetic
orbit with a long repeat period, which increases the spatial resolution considerably
(e.g., CryoSat-2, see Section 2.5.3).
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The duration of one cycle is called the repeat period (Chelton et al., 2001). The
repeat period of a satellite is expressed using the nodal day, α, defined to be the time
needed for Earth to rotate one complete revolution, relative to the orbital plane of the
satellite. Exact repeat orbits consist of a groundtrack which is repeated an integer
number of revolutions, β, during an integer number of nodal days, α. For a repeat
period of α nodal days, the exact repeat period, in solar days, is given by

Trep =
2πα
ω − Ω̇ , (2.98)

where

Ω̇ = −3
2

GM
a3

J2

[
Re

a(1 − e2)

]2
cos i (2.99)

is the motion of the longitude of the ascending node in the equatorial plane, and ωe

is Earth’s rotation velocity.

Thus, a 10-day TOPEX/Poseidon-type orbit will give a repeat period of 9.9156 solar
days. The ERS-type orbit is sun-synchronous with Ω̇ =2π/365.2422, such that the
orbital plane rotates eastwards with the exact same motion as Earth orbits the Sun.
For sun-synchronous orbits the repeat period is the same in solar days as in nodal
days, since ω − Ω̇ = 2π.

The satellite groundtrack pattern depends on i, α, and β. The longitudinal distance
between two groundtracks, in radians, is given by 2π/β (Sneeuw, 2000). In kilome-
ters, the distance may be expressed as

∆x =
222.4π
β

cos ϕ. (2.100)

We get a repeat orbit if
β

α
=
Φ̇

|Λ̇| (2.101)

is the ratio of two integers.

When choosing a satellite orbit, we choose i, α, and an approximate orbit height
h (Chelton et al., 2001). The number of orbit revolutions per repeat period, β, is
chosen to get an orbit height close to h. In the case of the TOPEX/Poseidon-type
orbit, an inclination of i =66◦, and α =10 days, have been chosen. Odd integers
between β =143 and β =129 gives orbits between h =700-1400 km. NASA/CNES
wanted an orbit height of around 1300 km, where β = 127 gives h =1336 km, and
β = 129 gives h =1254 km.

β = Φ̇T/2π depends more on the repeat period than the orbit height. From Eq.
(2.100) it is clear that the groundtrack spacing decreases with increased period.
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Around a particular orbit height h, β increases with increased repeat period; there-
fore, a satellite orbit configuration will always be a compromise between spatial and
temporal resolution.

2.5.2 Conventional altimetry

Due to the physical properties of the sea surface and the atmosphere, the frequency
band of 2-18 GHz suits the altimeter best (Chelton et al., 2001). This includes the S
(1.55-4.20 GHz), C (4.20-5.75 GHz), X (5.75-10.9 GHz) and Ku (10.9-22.0 GHz)
bands. In the Ku band, emitted radiation from the sea surface is low, and the wa-
ter reflectivity large. This makes it easier to distinguish between the actual radar
return and natural radiation. When frequencies become higher than 18 GHz, atmo-
spheric attenuation increases, and the power of the transmitted and received signal
decreases. For lower frequencies, refraction of electromagnetic (EM) radiation in
the ionosphere increases; interference from ground-based civil or military sources
of EM radiation also increases. The recent SARAL/AltiKa mission (Verron et al.,
2015) is the first to test a single frequency in the Ka (26.5-40 GHz) band, which is
less affected by the ionosphere, and eliminates the need of a dual-frequency altimeter
(Section 2.5.5).

The radar altimeter will radiate an area on the Earth surface which is known as
the footprint. The footprint size must be large enough such that the effect of small
waves and other irregularities are averaged out. However, the footprint must be
small enough to give a precise observation of the wave height. In other words, the
footprint size is a compromise between

• spatial resolution (must be high enough to uncover mesoscale variations, ed-
dies etc.),

• averaging (large enough to average out irregularities and small waves), as well
as

• homogenization (wave and wind fields as homogeneous as possible over the
footprint).

With a footprint size of 1-10 km, the above criteria are fulfilled (Chelton et al.,
2001).

There are two methods for controlling the footprint size. In a beam-width limited
system, the opening angle of the radar pulse γ controls the footprint size (Chelton
et al., 2001),

γ = k
λ

d
, (2.102)
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where λ is the radar wavelength, k is an antenna constant, and d is the radar antenna
diameter.

The size of the antenna footprint on the sea surface is proportional to the wavelength
of the EM radiation, and inversely proportional to the antenna size. Thus, a 5 km
footprint will demand an unpractically big antenna diameter of 7.7 m for the Ku
frequency of 13.6 GHz in a TOPEX/Poseidon-type orbit. Therefore, we rather use
systems where the footprint size is controlled by the duration of the radar pulse,
termed pulse-length limited systems. The pulse duration τ of TOPEX/Poseidon was
3.125 ns, with a relatively large opening angle of 1-2 degrees. This pulse is transmit-
ted vertically towards the sea surface. Note that we do not always measure directly
towards nadir. Out on the open sea, the shortest distance R0 will be practically equal
to the nadir distance; however, in the coastal zone, if a part of the footprint contains
a mountain, the shortest distnace will be to the mountain, and not the sea surface in
nadir.

The backscattered signal as measured by the altimeter, consists of the total return
from all facets perpendicular to the incoming radiation within the footprint. These
facets are reflecting scatterers, usually called specular scatterers, see Figure 2.18.

In the satellite, the power of the backscattered signal is registered as a function of
time (Chelton et al., 2001). Different parts of the radar pulse will be backscattered
to the satellite at different times, and from different parts of the footprint. Therefore,
the task of measuring the travel time of the radar pulse is neither unambiguous nor
trivial. Furthermore, it is not obvious which distance the measured travel time actu-
ally represents, because the distance between the satellite and different parts of the
footprint varies. To overcome these issues, we will have to introduce three different
travel times. We assume the crest-to-trough wave height Hw to be uniform within
the footprint, defining a plane intersecting the wave crests, and a plane intersecting
the wave troughs. It is from these planes we imagine the radar pulse is reflected, see
Figure 2.19.

In Figure 2.19a, the first radar echo comes from the part of the leading edge of
the radar pulse that is backscattered to the satellite from the wave crests in nadir
(Chelton et al., 2001). The time t0, when it arrives, is given by

t0 =
2R0

c
, (2.103)

where R0 is the distance between satellite and wave crests in nadir.

In Figure 2.19b, the last part of the satellite’s radar pulse will have to move a distance
equal to R0 plus the wave height Hw , before hitting the wave troughs in nadir (Chel-
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Figure 2.18: Backscattered signal, as measured by the satellite, consists of the total return
from all facets that are perpendicular to the incoming radiation within the footprint.

ton et al., 2001). This travel time of the trailing edge of the radar pulse, reflected
from wave troughs in nadir, is given by:

t1 =
2(R0 + Hw )

c
+ τ. (2.104)

Because the time is measured with respect to the point in time when the radar pulse
left the satellite, we must add the pulse duration τ.

The radius, r f , of the footprint on the sea surface is controlled through τ, but is
dependent on Hw and R0 (Chelton et al., 2001). At two-way travel time t1, when the
footprint takes the shape of an annulus, r f is given by

r f =

[
(cτ + 2Hw ) R0

1 + R0/Re

] 1
2

. (2.105)

From Eq. (2.105) we observe that the footprint size increases as time increases. The
corresponding area of the footprint is given by:

Af = πr2f =
π (cτ + 2Hw ) R0

1 + R0/Re
. (2.106)

Due to waves, the ocean surface is not flat, and the signal is backscattered first from
the wave crests, then from the wave troughs (Chelton et al., 2001), see Figure 2.19.
As time passes, the footprint evolves into a growing circle, and the received power
increases linearly. As soon as the trailing edge of the radar pulse has reached the
wave troughs, the circle turns into an annulus, which circumference increases with
time, but the area of the footprint remains constant. Thus, the received power in the
satellite is also constant, although it is not practically constant due to bearing devi-
ations from nadir. Rather, the backscattered power will decrease after reaching its
maximum, forming a slightly inclined plateau. We want to determine the mean sea
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level ; thus, the actual signal travel time is determined from the time of transmission,
and the time when the signal has reached half of its maximum effect, t1/2, which cor-
responds to backscattering from mean sea level in nadir. Illustrated in Figure 2.19d
is the travel time for the middle of the radar pulse, t1/2, given by:

t1/2 =
2
(
R0 + Hw

2

)

c
+
τ

2
. (2.107)

R0 +
Hw
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Figure 2.19: Different parts of the radar pulse will be backscattered to the satellite at dif-
ferent times, and from different parts of the footprint. (a) Initially, the signal is reflected
from wave crests in nadir at t0, (b) the footprint is an ever growing circle until the trail-
ing edge of the radar pulse has reached the wave troughs in nadir at t1. (c) Beyond t1,
the footprint will take the shape of an annulus with growing circumference (but constant
area). The middle part of the radar pulse reflected from mean sea level in nadir at t1/2
is shown in (d). The lower part of the figure shows the time-variable signal strength of
the radar echo. The echo takes a characteristic ramp shape, where the signal strength
increases linearly up to a plateau, where it slowly decreases. The travel time t1/2 corre-
sponds to the time when the signal reaches half of its strength (the middle of the linear
slope of the ramp function). This is a schematic of the returned waveform, and in practice,
for the real ocean surface, it will be very noisy. Adapted from Chelton et al. (2001) and
http://aviso.altimetry.fr

http://aviso.altimetry.fr
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Figure 2.20: Received chirp from mean sea level in nadir (transmitted at t1/2) at td (a) is
mixed with a corresponding deramping chirp (b). The deramped chirp has a frequency
offset f I F , and a new signal with frequency f0 is formed. Received chirp δt later (c).
Adapted from Chelton et al. (2001).

To achieve acceptable signal-to-noise ratio (SNR) when the pulse is very short, the
transmitted power must be unpractically large (Chelton et al., 2001). Therefore a
pulse of longer duration is transmitted, but is analyzed as a short pulse. This tech-
nique is known as pulse compression. A signal with a linear frequency shift ∆F with
duration τ′ is transmitted. This pulse is called a chirp, and can be passed through
a dispersive filter, giving a time delay. The time delay increases linearly with fre-
quency, thus compressing the chirp to a pulse duration τ, by delaying the early part
of the chirp more than the last. As the start frequency of the chirp is higher than the
stop frequency, the product is a new signal with shorter duration and larger power.

We now consider the ideal condition with a backscattered signal from one facet on
a flat sea surface. The received chirp is enhanced and mixed with a deramping chirp
onboard the satellite, see Figure 2.20. The deramping chirp is, with the exception of
its intermediate frequency f I F , identical to the transmitted pulse, and must be made
at the exact same time as the chirp reflected from the sea surface is received by the
satellite. The time delay td of the deramping chirp is determined by an adaptive
tracking unit (ATU) in the altimeter electronics.
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A new signal with frequency f0 is formed when the signals are mixed (Chelton et al.,
2001):

f0 = f I F − Q(td − t1/2), (2.108)

where Q = ( f1 − f2)/τ′ = ∆F/τ′. Furthermore, observing Figure 2.20 we see that
the frequency shift of the deramped signal becomes:

δ f = Qδt . (2.109)

A

ff0 fmax

Figure 2.21: Schematic of the discrete sampling of the returned waveform in the frequency
domain. The number of samples is not shown in this figure; it is only shown that discrete
samplings are made (dotted line). The frequency f0 corresponds to the frequency of
the deramped chirp, backscattered from mean sea level in nadir. Only the part of the
waveform below fmax is used. The great decline of the curve for frequencies near fmax
is a result of the anti-aliasing filter that is used. Adapted from Chelton et al. (2001).

The relationship in Eq. (2.109) is exploited as the signal is analyzed in the frequency
domain, by a discrete Fourier transformation onboard the satellite, see Figure 2.21.
For TOPEX/Poseidon, ∆F = 320 MHz, and after the frequency domain analysis, an
effective pulse duration of τ = ∆F−1 =3.125 ns is found.

The smooth ramp shape of the waveform will become evident only after averaging
multiple returns (Chelton et al., 2001). The time t1/2 corresponds to frequency f0.
The discrete sampling interval δt′ can in principle be chosen arbitrarily, yet it is
important to avoid aliasing effects due to frequencies above the Nyquist frequency,
and, in practice, the signal is low-pass filtered.
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2.5.3 SAR altimetry

∆XDop

Burst a b c d e

Figure 2.22: The principle of SAR altimetry. The schematic shows beams from five bursts
a-e, which all illuminate the same small area on the surface. Adapted from Stenseng
(2011).

The delay-Doppler or synthetic aperture radar (SAR) altimeter differs from the con-
ventional pulse-limited systems in that multiple radar pulses are coherent within a
number of pulses, known as a burst (Stenseng, 2011). Figure 2.22 illustrates the
principle, where a small area on the surface, ∆XDop, is seen from five directions.
The returned pulses are correlated, and the entire returned burst is processed simul-
taneously, giving higher return power, smaller footprints, and self-noise reduction.

The SAR altimeter considers smaller along-track slices of the pulse-limited altimeter
footprint, but emits far more pulses, such that effectively the same footprint as the
pulse-limited altimeter is covered, but with increased resolution, see Figure 2.23.
The same pulse compression technique as described in Section 2.5.2 is used also for
SAR altimetry.

The result of a small along-track footprint and multiple looks is a waveform with a
steep leading edge, a fast-decaying trailing edge, and a response much stronger at
the peak power when compared with conventional altimetry (Stenseng, 2011), see
Figure 2.24.

The ESA CryoSat-2 (CS2) mission, launched on April 8th 2010, is the first
new-generation altimetry satellite carrying a SAR altimeter (ESA and MSSL-UCL,
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Figure 2.23: Schematic showing the footprint geometry of the conventional pulse-limited
altimeter and the SAR altimeter. Adapted from Stenseng (2011).
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Figure 2.24: Schematic showing the idealized shape of (a) a conventional altimeter echo,
and (b) a SAR altimeter echo. The vertical dashed lines correspond to the position related
to the surface, cf. Figure 2.19. Note that the return power from the SAR echo is more
than 10 dB stronger than from the conventional altimetry echo. Adapted from Stenseng
(2011).

2012), see Table 2.5. The SAR altimeter onboard CryoSat-2 emits 18,000 pulses
per second and has a ground speed of 6800 ms−1; thus, the satellite moves 0.38
m between pulses, much less than half of the antenna diameter (Wingham et al.,
2006). The high sampling rate allows for collocating the pulses, forming a bigger
synthetic antenna. The two-way travel time of a single pulse is 5.3 ms. To avoid
emitting new pulses at the same time as previous ones are received, the pulses are
emitted through short bursts less than the two-way travel time, typically 64 pulses
in one burst. The collocation of all radar echoes over the burst interval forms a
synthetic antenna with a diameter of 48 m.

Due to its geodetic orbit configuration, CS2 has a high spatial resolution, with a
groundtrack spacing of 5-7 km at high latitudes, see Figure 2.25. CS2 carries a syn-
thetic aperture interferometric radar altimeter (SIRAL) using a single Ku band fre-
quency of 13.575 GHz, which can operate in synthetic aperture radar (SAR) mode,
SAR interferometric (SARIn) mode, as well as conventional low resolution (LR)
modes.

CS2 uses a geographical mode mask to decide which mode to operate in (ESA and
MSSL-UCL, 2012), see Figure 2.26. CS2 is in LR mode (LRM) over flat surfaces
and the open ocean, where it operates as a conventional altimeter with an almost
circular footprint. The SAR mode improves the along-track resolution to ∼300 m,
and is typically used over sea ice. Over regions with significant topography, CS2
operates in SARIn mode, which also has an along-track resolution of ∼300 m. In
addition, the altimeter measures the phase difference of the backscattered signal at
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Figure 2.25: Theoretical CS2 tracks in the Norwegian coastal zone; one 30-day subcycle
(left), and a whole 369-day cycle (right). See also Figure 2.17.

two antennas, from which the position of any backscattered point may be derived.
Thus, the SARIn mode may help discriminating and mitigating land contamination
signals from off-nadir land targets (e.g., steep cliffs) (Armitage and Davidson, 2014;
Abulaitijiang et al., 2015).

The next SAR altimetry mission has already begun with the launch of ESA’s
Sentinel-3A satellite on February 16, 2016. It is part of the European Commission’s
Corpernicus environmental monitoring program. The Sentinel-3 mission is based
on two identical satellites placed in an interleaved orbit for optimal spatial coverage
(Table 2.5 and Figure 2.17), and will continue the time series started with ERS-1
in 1991. The SAR Radar Altimeter (SRAL) onboard the Sentinel satellites is a
dual-frequency type operating at Ku and C bands, and in LR and SAR modes. As
with CS2, a geographical mode mask is used to determine the SRAL operating
mode.
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Figure 2.26: An example of a CS2 geographical mode mask. It has changed throughout
time according to user needs, with the most recent version 3.8 released in March 2016.
Taken from ESA and MSSL-UCL (2012)
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2.5.4 Retracking

There exist different analytical functions that may be used for waveform tracking,
and several methods for fitting these to the form of the radar echo (Gommengin-
ger et al., 2011). The returned waveform from open sea is characterized by the
ramp function (e.g., Figure 2.24). The actual tracking is done by identifying the
half-effect point in the leading edge of the radar pulse. The ramp function can be de-
scribed analytically by the Brown model (Chelton et al., 2001). From the somewhat
complicated shape of the Brown model, several physical parameters (including the
sea surface height) may be derived by comparing true (averaged) waveforms with a
theoretical curve.

The shape of the returned waveform depends on the surface it is reflected from, and
will depart considerably from the typical ramp shape if, e.g., the target contains land
areas, which often is the case in coastal altimetry (Gommenginger et al., 2011). Re-
turned waveforms from coastal and land areas are characterized by several isolated
peaks, and the standard analytical Brown model cannot be used. In addition, the
SAR waveform is significantly different from the conventional altimeter waveform
(Stenseng, 2011). Consequently, alternative waveform analysis methods must be
used, known as retrackers. A vast amount of retrackers exist, and they are classified
in two categories; physical and empirical retrackers (Jain, 2015).

The SAMOSA3 physical retracker uses the Brown approach to analytically describe
the returned waveform from the SAR altimetry footprint (Jain, 2015). Because it is
a physical retracker, other parameters than the sea surface height can be determined
from it, e.g., significant wave height and antenna mispointing.

Empirical retrackers do not take the physics of the reflected waveform into account
(Jain, 2015). They can either be based on fitting of empirical functions, typically
developed over many years of empirical observations and practical experiences, or
use waveform statistics to determine the retracking point. In this thesis the latter
type of empirical retrackers have been used, as they form an important research area
at DTU Space, by which the experimental CS2 data used in Paper D and Paper
E were supplied. The empirical retrackers only give the range, but provide a sea
surface height estimate for all kinds of waveforms and are computationally efficient.
A study by Villadsen et al. (2016) shows that empirical retrackers perform as well
as physical retrackers if only the sea surface height is wanted.

The range is determined by finding the point in time when the signal from the surface
in nadir was observed. The waveform is received in a number of bins, where each
bin contains a power value corresponding to a certain distance from the satellite
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Figure 2.27: Schematic showing the Narrow Primary Peak COG and Threshold retrackers.
COG is the center of gravity of the primary peak (red part of curve), Crtrk_pp_cog is the
retracked position for the COG retracker, and Crtrk_pp_thres is the retracked position for
the Threshold retracker. Modified from Jain (2015).

(Chelton et al., 2001). CS2 SAR waveforms have 128 bins with a bin width of 23.42
cm, corresponding to a range window of ∼30 m (Villadsen et al., 2016).

In Paper D, the simple threshold retracker is used (Nielsen et al., 2015). It is an
extension of the Offset Center of Gravity (OCOG) retracker, which draws a rectangle
width around the center of gravity of the waveform (Jain, 2015). The magnitude M
and width W of the rectangle is computed from the different bin power levels. The
simple threshold retracker uses a threshold percentage (80%) of M . The retracking
position is determined by interpolation between adjoining bins where the threshold
value is first reached on the leading edge of the waveform. The simple threshold
retracker works on the complete waveform.

In Paper E, the Narrow Primary Peak Threshold retracker (NPPT) is used. It is
similar to the simple threshold retracker, but only the primary peak of the waveform
is considered, see Figure 2.27. The primary peak is the first high peak including the
leading edge of the radar pulse, containing most of the reflections from nadir (Jain,
2015). As coastal waveforms may be complex and contain multiple peaks due to
reflections from other sufaces than the ocean, considering only the primary peak of
the waveform will give the most precise information about the sea surface.
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The primary peak COG retracker is much like the traditional COG retracker, but
only power levels Pi of the bins in the primary peak, Npp are considered (Jain,
2015). The magnitude of the rectangle is given by

M =

√√√∑Npp

i=1 P4
i

∑Npp

i=1 P2
i

, (2.110)

and its width

W =

(∑Npp

i=1 P2
i

)2

∑Npp

i=1 P4
i

. (2.111)

The COG is given by

COG =

∑Npp

i=1 iP2
i

∑Npp

i=1 P2
i

, (2.112)

and
Crtrk_pp_cog = COG − W

2
. (2.113)

The NPPT uses Eq. (2.110) and identifies the first bin location where the power of
the bin exceeds an optimal 50% threshold percentage (Jain, 2015),

Pthres = 0.5M. (2.114)

The first bin where the power is greater than Pthres is found through a loop, and
Crtrk_pp_thres is obtained by interpolation between this first bin and the preceding
bin (Jain, 2015).

Today, many altimetry data sets contain data from more than one retracker, working
in parallel over all areas (Gommenginger et al., 2011). This enables the user to
choose the best determined range depending on the reflecting surface. Most of the
radar returns form the open sea are of the Brown type, while in the coastal zone, the
radar pulses tend to vary between multiple types. Choosing a retracking algorithm in
an adaptive way introduces new challenges as the different mathematical functions
include systematic effects that can give constant biases between range observations
based on different algorithms.

2.5.5 Mean dynamic topography from altimetry

Eqs. (2.93) and (2.94) are quite simplified. A number of corrections must be applied
to R in order to achieve the geometrical distance between the satellite and Earth’s
surface. Some concern the behavior of the radar pulse on its journey through the
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atmosphere, while other concern local wind and wave conditions (known as the sea
state), and yet other geophysical signals (Andersen and Scharroo, 2011). Several of
these corrections need special attention in the coastal zone.

According to Andersen and Scharroo (2011), the corrections may be divided into
two groups:

1. Range corrections, which concern the change of radar propagation speed and
the actual scattering surface of the radar pulse.

2. Geophysical corrections, which adjust the observed sea surface due to time-
variable effects such as tides and atmospheric pressure.

Eq. (2.93) would have sufficed if the atmosphere was replaced by perfect vacuum,
and the distribution of ocean waves was adequately known. The existence of dry
gases, water vapor, as well as free electrons in the atmosphere decelerates the speed
of the radar pulse, increasing the length of the observed range, giving an ocean
surface that is too low, if these effects are not accounted for (Chelton et al., 2001).
The corrections that aims to model the refraction and delay of the radar signal in the
atmosphere, are usually divided into three components:

1. The dry tropospheric correction (∆Rdry), considering dry gases (mainly oxy-
gen and nitrogen). The refractivity for the dry part of the troposphere depends
on the air pressure at sea level, which is typically obtained from meteorologi-
cal models.

2. The wet tropospheric correction (∆Rwet), considering water vapor. The cor-
rection can be estimated from measurements with a microwave radiometer
onboard the altimetry satellite, or from a meteorological model, with the cor-
rection based on the radiometer being preferred, because it is considered more
accurate.

3. The ionospheric correction (∆Riono) takes the existence of free electrons in
the upper layers of the atmosphere into account. Due to the ionospheric delay
being dispersive, it will vary depending on which frequency band is used. The
correction may be computed for the primary Ku band, if, e.g. a Ku and C dual-
frequency altimeter is used. Alternatively, the ionospheric correction may be
computed from models.

The wave distribution, as well as the scattering of the radar pulse by the sea surface,
is not gaussian; wave troughs reflect more of the signal back to the satellite, than
wave crests, which gives rise to a bias (Chelton et al., 2001). It is a result of three
interrelated effects; an EM bias physically related to the distribution of specular
facets, a skewness bias due to the use of a median tracker when it is the mean which
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is desired, and an instrument bias related to the specific tracker. The total bias is
related to the local sea state, and is therefore known as the sea-state bias (∆Rssb).

The corrected range Rcorrected is related to the observed range R = Robs through

Rcorrected = Robs − ∆Rdry − ∆Rwet − ∆Riono − ∆Rssb. (2.115)

The ellipsoidal height of the sea surface, SSH, is given by:

SSH = h − Rcorrected = h −
(
Robs − ∆Rdry − ∆Rwet − ∆Riono − ∆Rssb

)
. (2.116)

All observations must be related to the same reference system (Andersen and Schar-
roo, 2011). Most altimetry products are processed in the ITRF. Typically, altimeter
observations refer to the TOPEX ellipsoid, but CryoSat-2 uses WGS84 as standard
(ESA and MSSL-UCL, 2012) (Table 2.1). In addition, one must consider how the
tides have been treated (Section 2.2.2) in the product. Typically, altimetry observa-
tions are given in the MT system.

The main focus of satellite altimetry is the study of dynamical sea surface signals
related to oceanographic processes, normally on the submeter scale (Andersen and
Scharroo, 2011). In order to isolate these signals, the dominant geophysical signals
due to the geoid, the tides, and the dynamic atmosphere must be removed. Conse-
quently, the actual sea surface height is a combination of the mentioned geophysical
signals and the dynamic ocean topography (DOT), such that

DOT = SSH − N + ∆Rtides + ∆Ratm. (2.117)

Note that these corrections are actual geophysical signals, but here they act as cor-
rections to the observed range.

A summary of all range and geophysical corrections is shown in Table 2.6. For each
correction, several models exist, and the international science community decides
and updates its standards continuously. Most range and geophysical corrections
need special attention in the coastal zone; either because the signal is much larger
there, or the correction less accurate.

Local observations of the SSH where the geoid has been removed, will rarely present
a zero time mean (Andersen and Scharroo, 2011). This is due to the DOT having
both a steady-state and a time-variable component. The steady-state component is
the mean dynamic topography (MDT), which reflects the steric expansion of sea
water (volume changes of sea water due to changing temperatures and salinities),
as well as ocean currents in geostrophic balance (Section 2.6). Depending on the
application, either the geoid or the MSS may be removed from the SSH. If we want
to study large-scale ocean currents, the geoid must be removed, see Eq. (2.117).
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Table 2.6: Typical mean and standard deviation (σ,) values of all time-variable corrections
which must be applied to the sea surface height observed by the satellite altimeter. The
values are computed from six years of Jason-1 data. The geoid correction is presumed
to have negligible time variability, and is therefore not shown in this table. Taken from
Andersen and Scharroo (2011).

Mean (cm) Time-variable Time-variable
deep ocean (σ) (cm) coast (σ) (cm)

Dry troposphere -231 0-2 0-2
Wet troposphere -16 5-6 5-8
Ionosphere -8 2-5 2-5
Sea-state bias -5 1-4 2-5
Tidal corrections ∼ 0-2 0-80 0-500
Dynamic atmosphere ∼ 0-2 5-15 5-15

From the MDT derived by altimetry, geostrophic surface currents can be derived
(Section 2.6.4).

In most regions, the ocean tide (OT) amounts to more than 80% of the SSH signal
variability (Andersen and Scharroo, 2011). In addition to the dominating OT signal,
the tidal correction comprises corrections due to several smaller tidal signals; ocean
tide loading (OTL), solid earth tides (SET), and the pole tide (PT). The sum of these
corrections may be written as follows:

∆Rtides = ∆ROT + ∆ROTL + ∆RSET + ∆RPT. (2.118)

The satellite altimeter observes the total geocentric (elastic) tidal forces, which is
the sum of OT, OTL, and SET. This contrasts with tide gauges on the ground, which
only observe the OT and PT.

Determining the OT has dramatically improved since the launch of TOPEX/Posei-
don, and now global OT models have an accuracy of about 1-2 cm (Andersen and
Scharroo, 2011). However, the tidal correction needs special attention in the coastal
zone, where both OT height and complexity increases. In some cases, errors exceed
20 cm in those areas, or the correction is not provided at all. A local modeling of
the OT in the coastal zone may be rewarding, which is the subject of Paper D. Solid
earth tides and pole tides, however, are unaffected by the coastal zones, and may be
modeled with the usual accuracy.

As a first approximation, the response of the sea surface to air pressure is like an
inverted barometer; it rises when pressure is low, and sinks when pressure is high
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(Pugh and Woodworth, 2014). A change in air pressure of 1 hPa (= 1 mbar) gives
a change in sea surface of around 1 cm. The correction for atmospheric variation
is typically divided into a low-frequency contribution (periods longer than 20 days),
and a high-frequency contribution (periods shorter than 20 days).

For the modeling of the low-frequency contribution, the classic inverted barometer
correction is used, taking into account the assumed hydrostatic response of the ocean
to changes in atmospheric pressure (Andersen and Scharroo, 2011). The instanta-
neous correction can be directly computed from the surface pressure, in centime-
ters:

∆Rib
atm ≈ 0.99484(P0 − Pref ), (2.119)

where P0 may be derived from the dry tropospheric correction. Pref is the global
mean reference pressure; traditionally it has had a value of 1013.3 hPa. However,
the mean global pressure is not equal to the mean pressure above the ocean, which is
closer to 1011 hPa. The global mean pressure is not constant either, but has an an-
nual amplitude of around 0.6 hPa. If a correction taking this variation into account
is used, we get a better correction for the low-frequency contribution. The correction
for the low-frequency contribution should be combined with a high-frequency con-
tribution (short-periodic changes in air pressure and wind effects), normally avail-
able from a model.

2.6 Ocean dynamics

2.6.1 Ocean and atmosphere

The Sun, together with Earth’s rotation, ultimately drive the ocean currents (Vallis,
2012). The Sun supplies the energy needed to keep the currents in motion. However,
the amount of energy that is received by the Earth is unevenly distributed on its
surface: it is lower in the polar regions, and higher at the equator, see Figure 2.28.
Also, as the Earth’s spin axis is tilted by 23.45◦, the amount of received energy
will vary seasonally, see Figure 2.29. This differential distribution of heat happens
through winds (75%) and ocean currents (25%); thus it sets both atmosphere and
ocean in motion. The wind is caused by differences in atmospheric pressure, because
air moves from higher to lower pressure, see Figure 2.30. The atmosphere and
the ocean have different characteristics, and respond at different time scales. The
atmosphere responds quickly to any disturbance it is subject to, while the ocean
responds much slower, supplying some of its energy back to the atmosphere, and
distributing the rest by circulation. However, even if the ocean dampens climate
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Figure 2.28: The same amount of incoming solar radiation is distributed over a larger area
A′ at higher latitudes ϕ. Adapted from Vallis (2012).

variations, the effects will be returned to the atmosphere some decades or hundreds
of years later.

Salinity is the concentration of dissolved salts in the ocean water (Stewart, 2008).
Although salinity varies spatially due to the aforementioned reasons, the ratio among
various dissolved salts remains practically constant. Salinity has been difficult to
define and measure accurately enough. The current definition of salinity, called the
Practical Salinity Scale of 1978, defines salinity in terms of a conductivity ratio,
and renders salinity, S, dimensionless. The salinity distribution of the ocean tends
to be zonal, with less salty water near the equator and in polar regions, and the
saltiest water at mid-latitudes, where evaporation is high. The general range of ocean
salinities is between 32 and 37, but may locally be lower or higher.

Temperature is important for many physical processes, some of which can be used
to define an absolute temperature T (in unit Kelvin, K) (Stewart, 2008). Absolute
temperature measurements are used to define a practical temperature scale, where
the temperature scale in Kelvin is related to another known temperature scale in
Celsius by T [◦C] = T [K−273.15]. The temperature distribution of the ocean also
tends to be zonal, with the warmest water near the equator, and the coldest water
near the poles. Ocean temperature ranges from -2◦C to 30◦C, with local variations
exceeding this range.

Pressure in the ocean, denoted p, is a function of depth, density, and gravity (Stewart,
2008). The SI unit of pressure is Pascal (Pa), but oceanographers often use the unit
bar, or, rather, mbar, where 1 mbar = 1 hPa. Pressure is often used as a vertical
coordinate instead of depth, and pressure in dbars ≈ depth in meters. Conductivity
and temperature are often measured digitally as a function of pressure, using CTDs.
They are electronic instruments measuring conductivity, temperature, and depth,
and recording the measurements digitally. CTDs are a collection of sensors, usually
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Figure 2.29: Earth’s orbit around the Sun is slightly elliptical; thus, the closest approach to
the Sun occurs in January, and the farthest distance occurs in July. Due to the eccentricity,
maximum insolation averaged over Earth’s surface occurs in January. Due to the inclina-
tion of Earth’s rotation axis, maximum insolation at any point outside the tropics occurs in
June in the Northern Hemisphere, and in December in the Southern Hemisphere. Thus, in
this figure, the winter and summer solstices apply to the Northern Hemisphere. Adapted
from Stewart (2008).

lowered from ships. CTD may also be measured on drifters and sub-surface floats,
such as the ARGO system.

The density, ρ (in kg · m−3, or g · cm−3), of sea water is a function of tempera-
ture, salinity, and pressure (Stewart, 2008). It increases with increasing salinity and
pressure, and decreases with increasing temperature. Density is rarely measured,
rather, we compute density from measurements of temperature, conductivity (salin-
ity), and pressure, using the equation of state of sea water. The equation of state,
ρ = f (T,S,p), is an equation that empirically relates density to temperature, salin-
ity, and pressure, and consists of three polynomials with 41 constants.

When surface water cools, density increases, and the water sinks to a depth governed
by its density relative to the density of the deeper water (Vallis, 2012). Next, the
water is transported to other parts of the ocean by the aid of currents, at all times
staying above denser water and below less dense water. Interior ocean currents
depend on the pressure distribution, which depends on the density variations of the
ocean interior. Thus, to follow water movement within the ocean, we must know the
ocean’s interior density distribution.
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Figure 2.30: Schematic of the atmospheric circulation. The sun warms the ocean in the
tropics, transferring heat from the ocean to the atmosphere through the evaporation of sea
water. When the water vapor condenses and falls down as rain, heat is released. Adapted
from Stewart (2008).

The large-scale ocean circulation comprises basin-wide wind-driven circulating wa-
ter masses known as gyres, as well as other quasi-horizontal currents, and a merid-
ional overturning circulation (Vallis, 2012). In addition come mesoscale (50 to 300
km) eddies, containing around 50% of the kinetic energy of the ocean, the ocean’s
weather analogue. In a nutshell:

• Gyres are mainly wind-driven, and due to meridional variations of zonal
winds.

• Wind stress affects the upper few tens of meters of the ocean, where it induces
a perpendicular Ekman flow; consequently, the ocean surface slopes and gives
rise to a geostrophic flow.

• All the main gyres have intense western boundary currents, caused by the
latitudinal variation of the Coriolis force.

• The meridional overturning circulation is due to buoyancy effects, i.e., the
sinking of dense water at high latitudes. To keep the MOC in motion, both
mixing (warming of water at low latitudes) and wind (strong westerlies in the
Antarctic Circumpolar Current) bring the deep water back up to the surface.
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2.6.2 Equations of motion

Ocean dynamics concerns how the ocean reacts to internal and external forces, and
is commonly described by Newtonian fluid mechanics (Vallis, 2006). The equation
of motion for a fluid forms a basic description of ocean dynamics. Even though
classical solid and fluid media are governed by the same physical laws (of Newton
and thermodynamics), their equations look differently. To be able to describe fluid
flow, we exploit the theory of conservation of mass, energy and momentum, which
amount to five equations: the thermodynamic equation (1), the continuity equation
(1), and the Navier-Stokes equation (3, in x, y, and z directions).

If the equation of state of a fluid not only involves density and pressure, but also
temperature (cf. Section 2.6.1), the thermodynamic equation is necessary to secure
the conservation of energy and obtain a closed system of equations, see Vallis (2006)
for more details.

Within classical mechanics, mass is conserved, and normally it is not needed to for-
mulate a separate equation describing the effect. Within fluid dynamics it is different,
as fluids flow in and out of regions and the fluid density may change (Vallis, 2006).
Therefore, we need an equation explicitly describing the mass flow. The continuity
equation can be formulated as follows:

∂ρ

∂t
+ ∇ · ρu = 0, (2.120)

where u is the fluid velocity u = u(x, t), and x, t are the position vector and time,
respectively.

Ocean currents are assumed to be incompressible except when describing the prop-
erty of sound (Stewart, 2008). The density is assumed to be constant except in the
case when it is multiplied with gravity. This approximation is known as the Boussi-
nesq approximation. For an incompressible fluid, ρ = const. (where the given
density of the fluid does not change), Eq. (2.120) simplifies to:

∇ · u = 0. (2.121)

The Navier-Stokes equation has its origin in Newton’s second law, (Σ)F = ma,
which in fluid mechanics is commonly expressed as (Vallis, 2006)

ρa = f , (2.122)

where the acceleration is written on the left-hand side, and we consider the force
density f in N/m3, as well as m → ρ.
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There are three main contributors to f ; pressure force fP due to the spatially varying
pressure around the fluid element (where the fluid element is an infinitesimal part of
the fluid), gravity fG, and friction fV due to the viscosity of the fluid (Vallis, 2006).
Thus Eq. (2.122) can be written as

ρa = fP + fG + fV, (2.123)

where

fP = −∇p,

fG = ρg,

fV = ν∇2u, (2.124)

where g = [0,0,gz ]T , ν = µ/ρ is the kinematic viscosity, and µ is the molecular
viscosity.

As a fluid is typically characterized by its velocity field u = u(x, t), we express the
acceleration a as the derivative of the fluid velocity (Vallis, 2006). Thereby, we must
relate a fluid element’s acceleration to the derivative of the velocity field at a given
point within the fluid. This connection is termed the total derivative,

a =
Du
Dt

=
∂u
∂t

+ (u · ∇) u. (2.125)

Taking Eq. (2.125) into account, Eq. (2.123) can be written out as

Du
Dt

= − 1
ρ
∇p + g + ν∇2u. (2.126)

Eq. (2.126) incorporates two additional forces, namely the Coriolis and centrifugal
forces, both of which arise as a consequence of Earth’s rotation (Vallis, 2012). The
centrifugal force is an apparent force pulling a rotating body away from the rotation
axis, caused by the body’s inertia. The Coriolis force causes a deflection of moving
bodies, as seen in a rotating reference system. If this rotating system is Earth, the
Coriolis force causes clockwise deflection (with respect to the direction of motion)
in the Northern Hemisphere, and counter-clockwise in the Southern Hemisphere.
The relationship between an inertial reference system I, and a rotating system R
(assuming a constant angular velocity ω) can be expressed as (Vallis, 2006)

(
dvI

dt

)

R

=

(
dvR

dt

)

I

− 2ω × vR − ω × (ω × r) , (2.127)

where vR and vI are relative and inertial velocities, respectively. The term on the
left-hand side is the rate of change of the relative velocity observed in the rotating
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system, while the first term on the right-hand side is the rate of change of the inertial
velocity observed in the inertial system. The second and third terms on the right-
hand side (signs inclusive) are the Coriolis and centrifugal forces per unit mass.
Usually these terms are written on the left-hand side of the equation and the terms
+2ω × vR and +ω × (ω × r) are called the Coriolis and centrifugal accelerations,
respectively. We note that there is no Coriolis force acting on a body at rest in the
rotating system.

Eq. (2.126) is a non-linear partial differential equation. The equations of motion of a
fluid developed from a simple first-order differential equation for velocity (Newton’s
second law) into a non-linear partial differential equation that is nearly impossible
to solve (Stewart, 2008). Within fluid dynamics, several boundary conditions are
considered, e.g., that there is no velocity perpendicular to a boundary (i.e., no flow
through the boundary), and that there is no flow parallel to a solid boundary (no-
slip condition; near a solid surface the fluid’s velocity with respect to the surface
equals zero). Even when boundary conditions are introduced, the equations are
challenging to solve. If we consider viscosity, no exact solution exists to this day.
When neglecting friction, some exact solutions exist. Because the equations are so
difficult to solve, they are usually simplified. Analytical solutions may be found for
very simplified versions of the equations and may be used to study ocean processes,
including waves. Solutions for ocean currents including realistic coastal areas with
bathymetry can only be achieved by numerical computations.

2.6.3 Numerical ocean models

Numerical ocean models attempt to simulate the ocean as realistically as possible
(Stewart, 2008). The computer effort needed to run such models is considerable,
and several approximations and discretizations must be made to the initially chal-
lenging continuous equations describing ocean dynamics. Numerical ocean models
have several areas of use. They may be used in scientific applications, e.g., to study
changes due to altering one of the model parameters or decide which approximations
hold. Further, they are useful for interpolation and allows a dynamically consistent
interpretation in areas where actual observations are scarce. Another decisive ap-
plication of numerical ocean models lies within prediction or forecasting. There
will never be a one-model-fits-all ocean model covering all kinds of ocean dynam-
ics. One important reason is that ocean dynamics spans temporal scales from sec-
onds to centuries and spatial scales from meters to kilometers. Instead, application-
dependent requirements need to be set.
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Figure 2.31: Still view of NASA’s Perpetual Ocean ocean flow visualization, based on
the ECCO model, taken from http://www.nasa.gov/topics/earth/features/
perpetual-ocean.html. Additional stills and videos are available at their web page.

As mentioned, numerical ocean models solve approximations of the equations of
motion, and the fluid is assumed to be incompressible. In addition come the follow-
ing important physical approximations (Stewart, 2008):

• The Boussinesq approximation; ocean density variations are small (less than
3%), thus the density ρ is replaced with ρ0 ≈1035 kgm−3 except in terms
involving gravity g. This results in a Boussinesq approximation in the hor-
izontal equations of motion only. In essence, the Boussinesq approximation
implies that because density variations are small, their effect on the mass of
the fluid is negligible, but not their effect on the weight of the fluid (mass
multiplied with gravity).

• Hydrostatic approximation; the hydrostatic approximation holds when verti-
cal accelerations are small compared to gravity. Since the width of the ocean
is much larger than its depth, this approximations often holds.

Considering the approximations above, a mathematical description of the ocean cir-
culation is given by a set of seven equations, known as the primitive equations:

• 3 equations represent the time derivative of horizontal and vertical velocity
(equations of motion).

http://www.nasa.gov/topics/earth/features/perpetual-ocean.html
http://www.nasa.gov/topics/earth/features/perpetual-ocean.html
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• 1 equation represents the conservation of mass (continuity equation).

• 2 equations represent the rate of change of temperature and salinity with time.

• 1 equation to compute density from salinity and temperature (equation of
state).

Ocean general circulation models based on the above equations are often termed
“Primitive Equation Models”. Examples of such models are the Parallel Ocean Pro-
gram Model (POP), the Miami Isopycnic Coordinate Ocean Model (MICOM), the
Hybrid Coordinate Ocean Model (HYCOM), the Ocean Circulation and Climate
Advanced Modelling (OCCAM) global model, the Estimating the Circulation and
Climate of the Ocean (ECCO) ocean model, the MIT/Liverpool model, and the Re-
gional Oceanic Modeling System (ROMS), see Figure 2.31. These models are quite
computationally intensive and complex, but, in return, provide an extensive now-
casting and forecasting of the ocean’s development in time.

Numerical ocean models give the part of the SSH that arises from the ocean’s circu-
lation, i.e., sea level relative to an implicit geopotential surface. Thus, an average of
such heights over a given time period will be equivalent to MDT (Section 2.5.5).

2.6.4 Geostrophic currents

We have seen that ocean currents are a result of fluid motion due to internal pressure
and Coriolis forces, external gravity force and friction. Near the ocean surface,
friction is almost exclusively due to steady winds pushing the water (Vallis, 2012).
This horizontal, wind-driven boundary layer is only a few tens of meters thick and
is called the Ekman layer, after Swedish oceanographer V. W. Ekman.

Although the ocean surface is exposed to steady winds, the ocean current velocity
will not increase infinitely with time (Stewart, 2008). Starting from an ocean at rest
and no wind, an increasing wind will force the water to start moving (due to wind
stress). The water will accelerate until a constant velocity is reached, and when it
does, the net force acting on the water will be zero and we will have a force balance.
The force needed to oppose the current flow is mainly due to friction. However, the
Coriolis force also affects the force balance, aiming to deflect the flow. F. Nansen
observed that ice bergs would tend to flow at an angle of 20◦ - 40◦ to the wind
direction, and argued that the three forces wind stress W, friction F, and the Coriolis
force C were important constituents of this effect, see Figure 2.32. Not only must
friction be in the opposite direction of the flow velocity, but the Coriolis force must
be perpendicular to the flow, and the forces must balance for a steady flow, i.e.,
W + F + C = 0.
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Ekman did the theoretical study on Nansen’s observations, and formulated the equa-
tions of motion in zonal (east-west) and meridional (north-south) directions, termed
u and v, respectively, assuming a steady, homogeneous, horizontal flow on a rotat-
ing Earth, and with constant Eddy viscosity Az , which is a parametrization of the
mixing of momentum. Assuming a north-blowing wind, the solutions to the Ekman
equations are (Stewart, 2008)

u = V0 exp (az) cos (π/4 + az), (2.128)

v = V0 exp (az) sin (π/4 + az), (2.129)

with constants
V0 =

T√
ρ2w f Az

, (2.130)

a =

√
f

2Az
, (2.131)

where V0 is the velocity at the sea surface, and T is the wind stress. At the sea
surface, z = 0, and we get

u(0) = V0 cos (π/4), (2.132)

v(0) = V0 sin (π/4). (2.133)

We observe that in the Northern Hemisphere, the surface current is 45◦ to the right
of the wind. In the Southern Hemisphere, the surface current is 45◦ to the left of
the wind. This angle increases with increasing depth. Further, the current velocity
decays exponentially with depth. Thus we get the famous Ekman spiral, describing
near-surface current flow, see Figure 2.33.

W

F

v

C

Coriolis

Friction

Wind

Figure 2.32: Steady flow v of an ice berg on a rotating Earth due to the balance of wind
stress W, friction F, and the Coriolis C forces acting on it while a steady wind blows.
Adapted from Stewart (2008).
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Summarizing, stress initiates an Ekman current with increasing velocity until we
have a force balance between wind stress and the Coriolis force and the velocity is
constant (Vallis, 2012). If we now consider flow below the Ekman layer, or, rather,
a flow not affected by wind stress, another force balance becomes prominent. It
is a balance between the pressure gradient force and the Coriolis force, known as
geostrophic balance.

Conceptually, the way a flow reaches geostrophic balance is very similar to the way
Ekman balance occurs in Figure 2.32. We begin with assuming there is a hori-
zontal pressure gradient force P present in a fluid, generating a flow from higher
to lower pressure, see Figure 2.34. As the fluid is set in motion on a rotating
Earth, it is deflected by the Coriolis force C. When these forces are in equilib-
rium, the fluid’s flow direction v is perpendicular to both Coriolis and pressure
gradient forces. Geostrophic currents flow clockwise around high-pressure centers
and counter-clockwise around low-pressure centers in the Northern Hemisphere. On
spatial scales of several tens of kilometers and temporal scales of several days, ocean
flow is largely in geostrophic balance.

Assuming an ocean at rest, the pressure field of the ocean practically equals the
hydrostatic pressure (Stewart, 2008). However, it is not easy to measure pressure
directly, since small changes in depth give large changes in pressure. Pressure may
therefore be computed from other observables, such as the weight and density of the
water column above the point of interest. The volume, and thereby the density, de-
pends on temperature, conductivity, and, to a lesser degree, on pressure itself (since
water is considerably incompressible). Density is computed by the conventional

WIND

SURFACE CURRENT

NET TRANSPORT

45◦

Figure 2.33: Schematic Ekman spiral in the Northern Hemisphere. Adapted from Vallis
(2012).
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Figure 2.34: Schematic showing (a) how a geostrophic flow v is initiated by a force balance
between the pressure gradient force P and the Coriolis force C, and (b) how geostrophic
surface currents are directly related to the slope of the sea surface above the geoid. Both
gravity g and the pressure gradient P affect the point of interest. In the Northern Hemi-
sphere, geostrophic balance is achieved if the corresponding flow vs is directed into the
page. Adapted from Segar (2012) and Stewart (2008).

equation of state, ρ = f (T,S,p). Next, the pressure at any depth h is determined
from the hydrostatic equation:

p =

0∫

−h
g(ϕ, z)ρ(z) dz, (2.134)

where g is gravity and ϕ is the geodetic latitude.

When considering geostrophic flow, we neglect non-linear terms as well as friction
in the equations of motion (Stewart, 2008). This simplification is reasonable, since
the dominating horizontal forces are the horizontal pressure gradient force and the
Coriolis force, balancing within a few parts per thousand for space and time di-
mensions larger than 50 km and a few days, respectively. In the vertical, the only
important balance is hydrostatic. Thus, the geostrophic equations may be written as
follows:

∂p
∂y

= −ρ f u, (2.135)

∂p
∂x

= ρ f v, (2.136)

∂p
∂z

= ρg(ϕ, z), (2.137)
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where, as before, v is the meridional component, u is the zonal component, and
f =2ω sin ϕ ≈ 10−4 is the Coriolis parameter. Using Eq. (2.134), the geostrophic
equations may be reformulated as follows:

u = − 1
f ρ

∂p
∂y
, (2.138)

v =
1
f ρ

∂p
∂x
, (2.139)

p = p0 +
H∫

−h
g(ϕ, z)ρ(z) dz, (2.140)

where p0 is the atmospheric pressure at a level surface z = 0 (usually the geoid)
below the sea surface, and H is the height of the sea surface above the geoid, i.e.,
the dynamic ocean topography.

Further, using the Boussinesq approximation, and substituting the vertical
geostrophic component into the horizontal components, yields:

u =

ud︷                             ︸︸                             ︷
− 1

f ρ
∂

∂y

H∫

−h
g(ϕ, z)ρ(z) dz −

us︷︸︸︷
g

f
∂H
∂y

, (2.141)

v =

vd︷                           ︸︸                           ︷
1
f ρ

∂

∂x

H∫

−h
g(ϕ, z)ρ(z) dz +

vs︷︸︸︷
g

f
∂H
∂x

, (2.142)

where the geostrophic currents have been divided into a deeper current ud , vd depen-
dent on density structure, and a surface current us , vs . We observe that the surface
geostrophic currents are dependent on the slope of the sea surface, see Figure 2.34.
The slope of the MDT, as measured by altimetry (Section 2.5.5), will give surface
geostrophic currents, which, in terms of geodetic coordinates, can be formulated
as:

us = − g

f R
∂H
∂ϕ

, (2.143)

vs =
g

f R cos ϕ
∂H
∂λ

, (2.144)

where R is Earth’s mean radius.

What we have so far is that wind stress causes an Ekman flow in the uppermost part
of the ocean, which, in turn, causes the sea surface to slope, inducing a geostrophic
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Figure 2.35: Global 1◦× 1◦ map of the baroclinic Rossby radius of deformation in km.
Taken from Chelton et al. (1998).

flow that drives the major ocean circulation patterns. The reason why wind stress can
produce large-scale oceanic circulation is that only a small change in the slope of the
sea surface is needed in order to induce a considerable current flow (Stewart, 2008).
If we suppose that the sea surface varies with only ∆H =1 m across a distance of
around L = 1000 km (a slope that is measurable by satellite altimeters in space, see
Section 2.5), the magnitude of the current that is produced is

us ≈ g

f
∆H
L

=
9.8
10−4

1
106
≈ 10 cms−1, (2.145)

which is a significant and measurable current velocity. In fact, the typical dynamic
topography varies between ±1 m, which is one part-per-hundred of the geoid varia-
tion (see Figure 1.3).

In the beginning of this section, it was mentioned that the geostrophic balance is
relevant on spatial scales of several tens of kilometers and temporal scales of several
days. We have seen that the geostrophic flow is not in the direction of the pressure
gradient, but rather at right angles to it, along contours of constant pressure. This,
however, does not happen instantly in time, but rather the flow will initially be di-
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rected toward the pressure gradient, and as the velocity increases, the Coriolis force
will increasingly deflect the velocity vector until it is perpendicular to the pressure
gradient. Then we have geostrophic equilibrium. The distance traveled to reach this
equilibrium is known as the Rossby radius of deformation (Rossby, 1938). In other
words, the Rossby radius is the length scale at which geostrophic currents become
important. Generally, for a one-layered ocean, the Rossby radius is large >1000 km,
and not suitable for small-scale geostrophic flows. If we consider a more realistic
baroclinic, two-layer stratified ocean instead, with, e.g., relatively warm water lying
over colder (and denser) water, we get a baroclinic Rossby radius of

R =

√
g′h
f

, (2.146)

where g′ is the reduced gravity g′ = gδρ/ρ, δρ is the density difference between
the two layers, and h is the thickness of the upper layer. The Rossby radius of defor-
mation is thus reduced to about 1/50 of its original value (Rossby, 1938). We also
note that Eq. (2.146) includes the Coriolis parameter and thus varies with latitude,
which was studied in detail by Chelton et al. (1998), see Figure 2.35. Note that
for the study area of this research, the baroclinic Rossby radius is < 10 km. This
spatial scale is far less than that of any satellite-based geoid, suggesting the use of a
higher-resolution regional geoid model instead.

2.6.5 Mean dynamic topography from hydrography

Until the MDT could be determined by satellite altimetry, the only way to describe
the general ocean circulation was through hydrographic measurements of temper-
ature and salinity from ships (Pugh and Woodworth, 2014). Returning to Section
2.6.4, the first terms in the geostrophic eqs. (2.141), (2.142), represent the deeper
geostrophic flow. We know that density varies with depth, and so they form the baro-
clinic component of the flow. To compute them, we must turn to hydrographic mea-
surements and use the equation of state. Pressure is then computed by Eq. (2.140),
but in order to do this, we need to know the pressure at the reference surface z =0. It
is impossible to measure pressure on the geoid surface, but we can measure the dis-
tance between two surfaces of constant pressure, thus the relative deeper geostrophic
current may be computed.

In oceanography, calculation of pressure gradients is done along geopotential sur-
faces (Stewart, 2008). For example, the geoid is a level surface of Earth’s gravity
field, and a surface of constant potential. The work required to move a mass m a
vertical distance z is mgz. The change of potential per unit mass is gz. Geopotential
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surfaces are not at fixed heights in the atmosphere since gravity is not constant, and
therefore the geopotential meter Z was introduced,

Z =
Φ

9.80
, Φ =

z∫

0

g dz, (2.147)

where Φ is the geopotential. The geopotential meter is defined analogous to the
dynamic height in geodesy, see Section 2.4.4.

The steric height is the distance a column of water between depth z1 and z2 would
rise if temperature and salinity were changed from their standard values (T =0◦ C,
S =35) to the observed ones (Stewart, 2008). The weight of the water remains the
same during the expansion, so ∆p remains the same. Thus it is the distance between
two surfaces of constant pressure:

h(z1, z2) =

z2∫

z1

δ(T,S,p)ρ0 dz, (2.148)

where ρ0 is a reference density and δ(T,S,p) the specific volume anomaly:

δ(T,S,p) =
1
ρ
− 1
ρ0

=
1

ρ(T,S,p)
− 1
ρ(0,35,p)

≈ ρ0 − ρ(T,S,p)
ρ20

, (2.149)

where ρ and ρ0 are determined from the equation of state. The geopotential anomaly
between two surfaces of constant pressure is

∆Φ =

p2∫

p1

δ(T,S,p) dp. (2.150)

The geostrophic surface currents are then proportional to the gradients of the geopo-
tential anomaly (or the steric height) (Stewart, 2008). At any point in the ocean the
dynamic height relative to a given pressure surface can be computed. However, we
need a reference surface with known pressure in order to perform the integration
in the above equation. Deep ocean observations have revealed that, at depths of
1000 to 2000 km (≈1000 to 2000 dbar), the ocean flow is mostly barotropic. This
means that a level surface at 2000 km can be treated as a level of no motion; there
is no pressure gradient, thus we have a surface of constant pressure, and u,v = 0.
Geostrophic currents may then be computed relative to a level of no motion. How-
ever, if we know the currents at some level, e.g., the surface geostrophic currents
from satellite altimetry, it is better to compute geostrophic currents at depth relative
to this level.
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2.6.6 In situ observation of ocean currents

Both Lagrangian and Eulerian methods exist for observing ocean currents (Stewart,
2008). Lagrangian methods measure the position of a water parcel, while Eulearian
methods measure the flow velocity past a fixed point.

Lagrangian observation of ocean currents is done with the aid of:

• Surface drifters, computing a time-mean of the current velocity over some
traveled distance divided by the specified time period. Typically the position-
ing of the drifters is done by satellite systems like ARGOS or GNSS. Errors
are due to the drifter failing to follow the expected flow along a parcel of wa-
ter (due to, e.g., wind), drifter positioning error, and the sampling error (as
drifters tend to go towards convergent zones.

• Sub-surface floats, where the widely used ARGO floats are the best examples,
see Figure 2.36. The float positions alter between the ocean surface and some
preset depth, usually of about 1 km. They stay below the surface for some
10 days, and then rise to the surface. While rising, they measure profiles of
salinity and temperature as a function of pressure, and when they reach the
surface, the data are relayed to the shore via the ARGOS system.

• Tracers for measuring the deep ocean currents. These are molecules (e.g.,
the chemical tracer tritium) not normally present in the water parcel, and are
tracked by measuring their concentration in water samples collected in hydro-
graphic surveys.

Figure 2.36: Distribution of ARGO floats as of November 26, 2016. Taken from http:
//www.argo.ucsd.edu/.

http://www.argo.ucsd.edu/
http://www.argo.ucsd.edu/
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Eulerian observation of ocean currents is usually done by instruments moored (an-
chored by wire) to the sea floor, where the mooring is kept straight by some kind
of float. The instruments may be current meters or CTDs, attached to the wire at
multiple depths. The moorings are deployed and recovered by ships, and are usu-
ally operative for a few months to over a year. Unfortunately, moorings are quite
expensive, and are easily destroyed, e.g., when strong currents affect the floats.





Chapter 3

Results and discussion

3.1 Regional geoids based on GOCE

In Paper A, two of the fifth release (R5) of GOCE satellite-only GGMs, TIM5 and
DIR5, were combined with the already existing NMA2014 regional geoid model for
Norway using the filter-combined approach with the Gaussian mean kernel (Section
2.3). NMA2014 is based on the fourth-release GOCE DIR4 GGM and was com-
puted using the Wong and Gore kernel modification (Wong and Gore, 1969), with a
linear transition of the weighting between spherical harmonic degrees 130 and 140.
Eight filter-combined solutions were computed for filter radii between 40 and 110
km at 10 km intervals, and validated externally in terms of standard deviations of
differences to a set of 1,344 GNSS/leveling points. An optimal filter radius of 80 km
was found for both TIM5+NMA2014 and DIR5+NMA2014, see Figure 3.1. Table
3.1 shows the validation results. Effectively “replacing” DIR4 with TIM5/DIR5 in
NMA2014 reduces the standard deviation of differences to GNSS/leveling from 3.5
cm to 3.1 cm. The improvement due to the advent of GOCE is seen by comparison
with the pre-GOCE EGM2008 GGM at 4.6 cm.

The Gaussian kernel is a basic way of weighting terrestrial and satellite data, as
it does not take the data quality into account. Paper F extends the investigation
of the filter-combined approach to regional geoid enhancement. Several regional
geoid models were computed by applying different kernel modifications for the op-
timal combination of GOCE and terrestrial gravity data. In this study the DIR5 and
GOCO05s R5 GGMs were used, and the terrestrial information was still represented
by NMA2014. In addition to the Wong and Gore and Gaussian deterministic ker-
nels, the stochastically optimal Wenzel kernel (Eq. (2.77)) was used. In addition, a
few older pre-GRACE and pre-GOCE geoid models, as well as the recent European
geoid model EGG2015 were included in the validation with GNSS/leveling.

The spectral combination technique requires knowledge of the error degree vari-
ances of both the GGM and the terrestrial data. It is further assumed that both data
sets have homogeneous and isotropic error characteristics, and that the errors of both
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Table 3.1: Validation of different geoid models with respect to GNSS/leveling data in Nor-
way. The pure GOCE DIR5 and TIM5 geoid model results are shown to quantify the
omission error due to their limited spatial resolution. All modified solutions are combi-
nations of either TIM5, DIR5 or GOCO05s with NMA2014. Results from Paper A and
Paper F are combined in this table, bearing in mind that a slightly smaller subset of the
original 1,344 GNSS/leveling points was used in the latter analysis.

Geoid model type of modification σ̂ (cm)

Paper A
TIM5 − 28.23
DIR5 − 27.37
EGM2008 − 4.64
NMA2014 − 3.49
TIM5 Gauss (80 km) 3.07
DIR5 Gauss (80 km) 3.07

Paper F
NKG96 − 8.48
NKG2004 − 5.91
EGG2015 − 3.43
NMA2014 − 3.41
DIR5 Gauss (80 km) 2.98
DIR5 mbm (2.0 mGal) 2.93
DIR5 mbm (1.0 mGal) 2.94
DIR5 mbm (0.2 mGal) 3.10
DIR5 Wong and Gore 3.11
GOCO05s Gauss (80 km) 3.00
GOCO05s mbm (2.0 mGal) 2.94
GOCO05s mbm (1.0 mGal) 3.01
GOCO05s mbm (0.2 mGal) 3.12
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Figure 3.1: Validation of pure and combined geoid models using varying filter radii, by
comparison with observed geoid heights at 1,344 GNSS/leveling benchmarks in Norway.

are uncorrelated. Realistic error descriptions for the terrestrial data are unfortunately
often not available. In Paper F, the error of NMA2014 was approximated by the
error covariance function of EGG2008 (noting that, as EGG2008 and NMA2014 are
already combined models, the assumption of no correlation is not strictly met). The
error degree variances of the GOCE GGMs were obtained by scaling the m-block
approximated (Gerlach and Fecher, 2012) error variance-covariance matrix (mbm)
to fit the average variance in the region of interest.

Figure 3.2 shows the cumulative geoid height errors for a selection of the geoid
models, which reflect their formal errors. Table 3.1 shows the empirical errors in
the form of validation results to GNSS/leveling. Although the different stochasti-
cally filtered GOCE-based geoids vary only slightly around 3 cm, there is a ten-
dency that filter-combinations that put more weight on GOCE than on the terrestrial
gravity data are the best. Considering the older geoid models, the results show that
GRACE and GOCE have substantially improved the geoid over the last decade, with
a drop from 8.5 cm (pre-GRACE) to about 3 cm (GOCE) in terms of standard de-
viations of differences to GNSS/leveling. However, part of the improvement is also
due to upgraded terrestrial databases. The formal geoid errors are lower and show
larger variations depending on the filter-combination method than the empirical er-
rors from the GNSS/leveling validation, which suggests that the empirical error is
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Figure 3.2: Cumulative geoid height errors for different geoid solutions in units of m.

dominated by the quality of the GNSS/leveling data. Our formal error budget in-
dicates that EGG2015 has been optimized to a different validation data set than the
Norwegian one. EGG2015 assumes a rather optimistic terrestrial data error of 0.2
mGal, whereas for the Norwegian data set, an error of around 2.0 mGal seems more
realistic.

3.2 Geodetic MDT and geostrophic surface currents

Paper A is a benchmark study which compared geodetic and ocean MDTs point-
wise using a suite of regional geoid models, altimetry data sets, numerical ocean
models, as well as TG data. The analysis concerned point values because the study
focused on TGs and along-track altimetry data (which are point values). Instead of
interpolating along-track altimetry to the TGs, altimetry observations “close to” the
TGs were chosen, but still within the altimetry track. Two altimetry sites per TG
were chosen by plotting each TG and nearby altimetry tracks, and choosing sites
where all tracks cross, thus containing observations from all altimetry products (at
VIKE, only one such altimetry site could be found). All model grids used were in-
terpolated to the TG and altimetry sites. The data sets are summarized in Table 3.2,
and the TG and altimetry sites are shown in Figure 3.3.
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Table 3.2: Overview of data sets used in Paper A, Paper D and Paper E. TIM5 and DIR5
are combined with the DIR4-based NMA2014. TG data have been obtained from PSMSL
(Section 2.4.6) and the Norwegian Mapping Authority (NMA).

Paper Data set Coverage Time Period Note

Geoid

A TIM5 Regional − Gauss (80 km)
DIR5 Regional − Gauss (80 km)

NMA2014 Regional − Based on DIR4
EGM2008 Global −

E NMA2014 Regional − Based on DIR5
NKG2015 Regional −
EGG2015 Regional −

TG

A PSMSL and NMA 19 TGs 1996-2000 Annual/hourly, NN1954
Annual/hourly, NN2000

D NMA 22 TGs 2010-2014 10-minute, relative

E PSMSL 19 TGs 2012-2015 Monthly, NN2000

Altimetry

A Jason-2 21 sites 1996-2000 Only south of 66◦N
PISTACH Red3 21 sites 1996-2000 Only south of 66◦N

PISTACH Ocean3 21 sites 1996-2000 Only south of 66◦N
Envisat 37 sites 1996-2000
CTOH 37 sites 1996-2000

DTU13MSS Global 1993-2012

D CryoSat-2 45 km around TG 2010-2014 SARIn
SARAL/AltiKa Tracks 85 and 360 2013-2016

Envisat Tracks 775 and 390 2010-2012 Phase C
Jason-2 Tracks 163 and 246 2010-2016

DTU15MSS Global 1993-2014

E CryoSat-2 Regional 2012-2015 LRM, SAR, SARIn

Ocean

A Nemo12 Global 1996-2000
NemoQ Global 1996-2000
L-MITf Global 1996-2000
L-MITc Global 1996-2000

OCCAM12 Global 1996-2000
POLCOMS Regional 1996-2000 Only south of 65◦N

E NorKyst800 Regional 2012-2015
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Figure 3.3: TG MSL (dots) and altimetric MSS (plus signs) (a) south of 66◦N and (b) north
of 66◦N.

We find that geodetic and ocean MDTs agree on the ∼3-7 cm level at the TGs, and
on the ∼5-11 cm level at the altimetry sites. Figure 3.4 shows ocean and geodetic
MDT profiles at the TGs, where we observe a characteristic pattern of a 10 cm rise
of MDT towards Kabelvåg, a flattening towards Stavanger, and another 10 cm rise
towards Viker. Considering the TG geodetic MDTs, where the ellipsoidal height of
MSL is derived using the alternative approach (Section 2.4.6), results improve when
using data based on the new national height system NN2000.

Figure 3.5 shows Taylor diagrams, where the best-performing ocean MDT based
on Nemo12 was chosen as reference model against which all other MDTs were
compared. They nicely summarize the results. The pointwise monomission al-
timetry products (Jason-2 and Envisat) give results comparable with the multimis-
sion DTU13MSS grid on the ∼5 cm level. However, the coastal altimetry products
(Jason-2/PISTACH and Envisat/CTOH) generally do not offer an improvement over
the conventional products they are based on. In general, geodetic MDTs correlate
with the Nemo12 ocean model on a similar level as the other ocean models, suggest-
ing a convergence of approaches.

Furthermore, error estimates for both geodetic and ocean MDTs were derived, re-
lating the empirical standard deviation of the MDT budget (Eq. (1.2)) to the MDT
error budget (Eq. (1.3)). Depending on whether or not we assume equal error con-
tributions from ocean MDT, ellipsoidal height of MSS/MSL, and geoid, we get the
following error estimates:

• Ocean MDT: ≤5 cm
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Figure 3.4: TG MDT profiles: (a) ocean, (b) geodetic, using NN1954-originated ellipsoidal
heights of MSL, (c) geodetic, using NN2000-originated ellipsoidal heights of MSL, and
(d) the difference between NN1954-originated and NN2000-originated MDT. In Figures
3.4b and 3.4c, Nemo12 is included. The horizontal dashed line denotes 66◦N. In all cases,
the profile mean has been removed.

• Altimetric MSS: ≤7 cm

• TG MSL: ≤3 cm

• Geoid: ≤4 cm

The results of Paper A are shown to be statistically significant. From Figure 3.5b
we can infer signal standard deviations of the altimetric MDTs of ∼7 cm, which
together with our altimetry error estimates gives a signal-to-noise ratio (SNR) of 1-
3. At the TGs (Figure 3.5a), the signal standard deviation is ∼6 cm, which together
with the TG error estimates again gives a SNR of 1-3. In addition, the correlations in
Figure 3.5 are significant on the 99% level, as confirmed by a correlation significance
test.

Paper D can be seen as an interlude between Paper A and Paper E. It evaluates
the performance of new-generation SAR altimetry in the Norwegian coastal zone,
where CS2 delivers new coastal altimetry data over areas previously uncovered by
conventional altimetry. Relative sea level observed by CS2 in a 45 × 45 km area
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Figure 3.6: TGs on the Norwegian mainland used in Paper D, with the exception of NARV,
which was left out due to few altimeter observations.

around each TG was compared with TG observations with a high 10-minute tempo-
ral resolution. The data sets used in this study are listed in Table 3.2, and the 23 TGs
on the Norwegian mainland shown in Figure 3.6. Generally, CS2 agrees well with
the TGs. We observe larger standard deviations of differences at TGs well inside
fjords with relatively few CS2 observations (∼20 cm or more), and smaller differ-
ences at TGs close to the open ocean with dense CS2 observations (∼7 cm). When
replacing the standard ocean tide and atmospheric corrections with local corrections
derived from ocean tide predictions and pressure observations, we observe a 2-5 cm
improvement in standard deviations of differences at 19 out of 22 TGs. In terms of
standard deviations of differences to the STAV TG, CS2 shows an improvement of
∼3 cm over conventional altimeters.

Paper E is a natural extension of Paper A, and builds upon the experiences with
CS2 in Paper D. Table 3.2 summarizes the data sets that are used in this study; three
new GOCE-based regional geoid models NKG2015, EGG2015, and NMA2014
(now an updated version of NMA2014 based on DIR5) as well as CS2 data were
used to determine coastal MDT surfaces (C2NKG, C2EGG, and C2NMA) and asso-
ciated geostrophic surface currents. In turn, these were compared with TG MDT
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Figure 3.7: Coastal MDTs in Norway; (a) ocean, based on NorKyst800 and geodetic, based
on (b) C2NKG, (c) C2EGG, and (d) C2NMA. The mean value has been removed in all
cases. The TGs considered in Paper E are shown in (a), for which a code is given in
Figure 3.8. In all (a-d), 400 m isobaths from the 2014 General Bathymetric Charts of the
Oceans (GEBCO) (Weatherall et al., 2015) grid are shown.
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Figure 3.8: Tide-gauge MDT profiles using geodetic and ocean estimates, arranged from
north to south. For all profiles the mean value has been removed. TG codes and IDs are
given on the bottom and top x-axis, respectively.

estimates and the independent high-resolution numerical ocean model NorKyst800.
The coastal MDTs are shown in Figure 3.7, where we observe that the CS2 MDTs
are generally consistent with NorKyst800. The general pattern of the Norwegian Sea
circulation (Figure 1.2) is evident in all MDTs; we can trace the NwASC northward
and observe its branching at the BSO around 72◦N, as well as the NCC originating
in the Baltic Sea around 58◦N flowing northwards along the coast all the way to its
final destination in the Barents Sea.

C2NKG and C2NMA show standard deviations of differences of ∼6 cm to
NorKyst800, while the C2EGG shows a slightly larger difference of ∼8 cm. All the
geodetic MDTs have areas along the coast where the MDT shows smaller values
than expected. The most striking coastal features of C2EGG and C2NMA are MDT
lows seen in the area between the Lofoten-Vesterålen area and Senja island, roughly
at 69◦N, between 15-20◦E. The lows are at slightly different locations. These
features are much less visible in C2NKG, which suggests that they are related to the
geoid and not CS2.

Figure 3.8 shows the ocean and geodetic MDT profiles at the TGs. Much in ac-
cordance with the findings in Paper A, the profile obtained from the ocean MDT
is smoother compared to the geodetic MDT profiles obtained from TGs and CS2.
The same general pattern of a 10 cm rise towards Kabelvåg, a flattening towards
Stavanger, and another 10 cm rise towards Viker can be observed. Moreover, we ob-
serve the largest differences in the Lofoten-Vesterålen area. The CS2 MDTs agree
on the ∼3-5 cm level with both TG and ocean MDTs. Figure 3.8 also reveals a
polarization of TG and CS2 MDTs at some sites, which can hint on whether the
observed discrepancy to NorKyst800 is due to errors in the geoid or in the CS2 ob-
servations. For example, at HONN, MAUS, and STAV, the TG MDTs agree more
with NorKyst800 than the CS2 MDTs, while the converse holds true at BERG. The
first case suggests that the CS2 MDTs are off due to errors in the CS2 observations
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Figure 3.9: Geostrophic ocean surface currents derived from (a) NorKyst800, (b) C2NKG,
(c) C2EGG, and (d) C2NMA. Areas not relevant to the geostrophic assumption, at the
coast or inside fjords, have been masked out.
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and rather than geoid errors, while the latter case suggests there could be an error in
the ellipsoidal height of MSL. Notably, at BODO, all geodetic MDTs show a ∼10
cm disagreement with NorKyst800, which suggests there could be a geoid-related
error.

Figure 3.9 shows the geostrophic velocity fields, derived by applying Eqs. (2.143)
and (2.144) to all MDTs. Prior to the differentiation, the MDTs were filtered using
a Gaussian kernel with a filter with of 12 km. The general pattern of the Norwe-
gian Sea circulation is evident in NorKyst800, C2NKG, and C2NMA. We can trace
the NwASC northward and observe its branching at the BSO, as well as the hot
spots at Svinøy around 62.5◦N and the Lofoten-Vesterålen area, and continuing to-
wards its final destination in the Barents Sea. We observe the strongest currents in
NorKyst800, which is highly correlated with the bathymetry. C2NMA and C2NKG
both show reasonable current patterns and reveal the NCC, albeit the less visible nar-
row jet along the south-eastern coast. Apart from the Lofoten-Vesterålen hot spot,
the circulation pattern is more or less absent in C2EGG.

3.3 Comparison of methods for regional geoid computation

LSC and the more modern RBF approaches offer a higher degree of versatility and
data adaptation possibility than the classical Stokes approach. Paper C presents
a theoretical and numerical comparison of the three methods, demonstrating their
equivalence. It does not present new theory, but is a first attempt to compare the
three methods both theoretically and numerically in a unified framework. The theo-
retical equivalence of Stokes’s formula, LSC, and RBFs was reviewed in the global
case, where it was seen that the SKs are equivalent with the covariance function of
LSC in the theoretical limit case where the distribution of SKs becomes continuous.
Their theoretical equivalence was also investigated in regional applications, where
the Stokes integration is restricted to a spherical cap around the computation point
(Section 2.3.4). de Min (1995) has shown that if LSC is not applied globally, its
result will be different from Stokes’s formula, because an unwanted extrapolation
outside the cap takes place. If the cross-covariance function is modified by intro-
ducing the Molodensky truncation coefficients,

C̄Ng
Pi =

∞∑

n=2

R
2γ

[ 2
n − 1

− Qn (ψ0)
]

cgn Pn (cosψPi ), (3.1)

LSC and Stokes’s formula are again equal. As SKs are equivalent to LSC, they
have to be modified correspondingly to give equal results as Stokes’s formula. The
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Figure 3.10: Schematic of the closed-loop simulation. Stokes’s formula, LSC, and SKs are
compared with a reference solution, to which they all should be equal. Thereby, we check
not only whether the methods are internally consistent, but also whether the methods are
actually correct.

Molodensky truncation coefficients were introduced in the SKs in the synthesis step
(Eq. (2.66)). Then, the elements of AN are given as follows,

AN
Pk =

∞∑

n=2

√
2n + 1/(4πR2)λN

n

[
1 − n − 1

2
Qn (ψ0)

]
BSK
n Pn (cosψPk ) . (3.2)

For more details regarding the theoretical equivalence of the methods, the reader is
referred to Paper C.

Paper C also includes a few numerical examples. SKs, LSC, and Stokes’s formula
were compared in a closed-loop environment using synthetic data, see Figure 3.10.
Both noise-free synthetic observations (in the form of gravity anomalies ∆g) and
the true validation geoid were computed by spherical harmonic synthesis using the
EGM2008 GGM. To simulate the remove-compute-restore technique, the synthesis
was performed for degrees 251 ≤ n ≤ 2190, assuming that the long wavelength part
of the gravity signal has been removed using a GOCE-based GGM. The Moloden-
sky truncation coefficents were also introduced in the spherical harmonic validation
geoid, such that it is equivalent to the geoids computed by the regional methods,
which are restricted to a spherical cap with radius ψ0. For practical computational
reasons, the input and output resolutions were set to 5 arcmin, which corresponds
to the maximum resolution of EGM2008. The integration cap was set to ψ0 =1◦.
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Two regions were considered, the North Sea coastal region of East Frisia, with
smooth topography, as well as the mountainous Alpine region, with rough topog-
raphy. Geoid heights by Stokes’s formula were computed using Eq. (2.69), im-
plemented according to Eq. (2.47) using the closed formula for computing Stokes
kernel. Geoid heights by LSC were computed using Eq. (3.1) and Eq. (2.57). Con-
sidering the SKs, dimensionless spline coefficients were estimated using Eq. (2.63)
with Eq. (2.65) and R = I. Subsequently, the spline coefficients were used to
compute geoid heights using Eq. (2.66) with Eq. (3.2). The SKs were developed
to degree 2190, corresponding to the maximum resolution of the observations (5
arcmin).

At the 5 arcmin resolution, all methods agree within 2 ×10−2 mm to 5.9 mm in
the target areas. The largest RMS differences were obtained with Stokes’s formula,
suggesting the error could be due to the discretization of Stokes’s formula. This was
confirmed by setting up the closed-loop simulation at the 2.5 arcmin resolution,
where all methods agree within 6 ×10−2 mm to 2.4 mm. Furthermore, because
EGM2008 does not contain signal at resolutions beyond 5 arcmin, the discretiza-
tion error is attributed to the Stokes function and not the gravity data. The Stokes
function is evaluated only at each grid point of the input data, instead of evaluating
its surface integral over the corresponding blocks. If the resolution increases and
the block size decreases, the function value at the grid nodes gives an increasingly
better representation of the surface integral.

Finally we investigated what role the number of SKs play in the equivalence of SKs
with the other methods. Figure 3.11 shows the RMS difference between spherical
harmonic synthesis and SKs for varying number of SKs in the Alpine target area.
They have been computed from observations provided on the original 5 arcmin grid.
The vertical dotted lines represent the number of observations corresponding to the
5 arcmin and 2.5 arcmin resolutions, while the horizontal dotted line represents the
1-m difference with respect to the spherical harmonic solution. The regularization
parameter is kept constant, securing that the only variable in the test is the number
of SKs.

We see that in practice, we do not need to reach the theoretical limit case for the
SKs to correspond to LSC, as they tend to be identical already for moderate point
densities. As we have placed the observations on a 5 arcmin grid, the SKs converge
towards LSC when setting the number of SKs equal to the number of observations,
because the number of observations is equal to their maximum signal resolution.
Consequently there is nothing to gain from increasing the number of SKs beyond
5 arcmin, as seen in Figure 3.11. Our numerical examples thus suggest that the
RBF method is similar to spherical harmonics or LSC in case the number of SKs
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Figure 3.11: Difference between SHS and SKs for varying number of SKs in the Alpine
target area, with the regularization parameter kept constant. The signal resolution is 5
arcmin.

corresponds to the signal resolution of the data, independent of the number of ob-
servations. By contrast, the size of the auto-covariance matrix to be inverted in LSC
corresponds directly to the number of observations and is independent of the signal
resolution.

3.4 Temporal variations of the gravity field in Norway

Paper B addresses temporal gravity variations in Norway by compiling and analyz-
ing all FG5 AG observations between 1993 and 2014 at 21 gravity sites in Norway.
As the main component of secular vertical land motion in Fennoscandia is due to
GIA, we explore to what extent the Norwegian AG observations are applicable for
GIA studies. In addition, refined gravitational corrections due to ocean tide loading,
non-tidal ocean loading, as well as atmospheric and global hydrological mass vari-
ations were computed. Secular gravity trends using both standard (ġ0) and refined
(ġ) corrections were compared with modeled gravity rates (ġM ) based on a GIA
model.

The Norwegian AG network is shown in Figure 3.12, together with a recent GIA
model. It should be noted that this Fennoscandian GIA pattern is not strictly correct
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Figure 3.12: AG sites in Norway. Blue sites have been observed more than once.
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NKG2016GIA_prel0306 GIA model; note that while this method of computing ġ is oc-
casionally seen in the literature, it is not strictly correct (P.-A. Olsson and H. Steffen,
personal communication, 2016), see text for details.
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(P.-A. Olsson and H. Steffen, personal communication, 2016). This is because the
gravity rate has been computed with the direct attraction term of Green’s function for
gravity represented as an internal series (Olsson et al., 2012). Thereby it is assumed
that the observation site is located below the attracting masses, giving the direct
attraction from the sea with a wrong sign (compare Figure 3.12 herein with Figure 4
of Olsson et al. (2012)). If instead an external series is used for the direct attraction
term, a more correct pattern is obtained, see Figure 5 of Olsson et al. (2012), but they
recommend to rather compute ġ from height rates of change ḣ and a fixed relation
between them.

All the FG5-226 observations (∼180) were consistently reprocessed using the g9
software (Micro-g LaCoste, 2012), where we aspired to use campaigns from roughly
the same time of the year to reduce seasonal effects (e.g., the influence of surface
snow cover on gravity). To minimize computational biases, a common processing
scheme was adopted, ensuring consistency with respect to model and setup param-
eters (official site coordinates, polar coordinates, etc.). The Rb frequency standard
has been calibrated (compared with a stable reference signal) throughout, and the
frequency value closest in time to each observation was used. All gravity gradi-
ents measured by NMBU were recomputed and adopted as official gradients. In
addition, AG observations by other agencies and FG5 instruments were carefully
included into the data set with updated uncertainties.

In addition, refined gravitational corrections due to ocean tide loading (OTL), non-
tidal ocean loading (NTL), as well as atmospheric (ATM) and global hydrological
(GH) mass variations were computed. The majority of the Norwegian AG sites
are located within 2 km of the coast, and may be strongly influenced by OTL and
NTL. Standard g9 processing considers OTL only, and uses a global OT model.
The spatial resolution of the OT model is gradually refined towards the observation
point. A web-service called the OTL provider (http://holt.oso.chalmers.se/
loading/) does the same gradual refinement, but also checks whether the new grid
cell is on land or on sea. A further refinement of the OTL effect was achieved by
an in-house software where a higher-resolution coastline is used and an option to
replace the OT model with local TG observations. NTL is also computed by the in-
house software, by considering actual minus predicted sea level at the nearest TG.
For a suite of OT models we identified corrections (OTL+NTL) that reduce the AG
set to set scatter the most. Choosing a best-performing model is challenging, as their
performance depends on the gravity site, but the NAO99b and FES2012 OT models
in combination with a more accurate coastline perform best at 9 out of 14 sites.

If the gravity observation has been reduced for the time-variable tidal and polar
motion components, it remains influenced by atmosphere and hydrology. AG obser-
vations are typically not corrected for hydrology (Timmen, 2010), but standard g9

http://holt.oso.chalmers.se/loading/
http://holt.oso.chalmers.se/loading/
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Figure 3.13: Linear rates of change in gravity. ġ0 and ġ are empirical linear gravity rates
based on standard and refined gravity corrections, respectively. ġM are modeled rates
using a recent empirical land uplift model together with a theoretical relation between the
gravity and height rate of change for GIA.

processing includes the single-admittance ATM correction, ∆gATM = A(P0 − Pn ),
where A = 0.30 µGal/hPa is the conventional admittance factor, P0 is in situ pres-
sure as observed by the FG5 barometer, and Pn is the nominal barometric pressure
in accordance with DIN Standard #5450. A refined ATM or GH effect is typically
computed by incorporating attraction and load from zones of increasing distance to
the gravity site. This is implemented in the novel matlab R© tool mGlobe (Mikolaj
et al., 2016), which was used here. mGlobe relies on global meteorological and hy-
drological models, but does not include local hydrology because it is not captured
by the latter models.

Next, secular gravity trends using both standard and refined corrections were com-
pared with modeled gravity rates based on a GIA model. The modeled gravity rates
were computed using ḣ from a recent empirical absolute land uplift model (given in
ITRF2008) of the NMA, based on a combination of GNSS and leveling (O. Vestøl,
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personal communication, 2015), together with a recent modeled relation between
gravity and height rates of change

(
ġ/ḣ

)
M

of -0.163 µGal mm−1 for GIA (Olsson

et al., 2015). The uncertainty of
(
ġ/ḣ

)
M

was taken to be 0.016 µGal mm−1 (H.

Steffen, personal communication, 2016), and the uncertainties of ḣ were determined
as a sum of the observation error and systematic errors due to the reference frame.
In turn, the uncertainties of ġM were determined by formal error propagation.

Figure 3.13 shows the linear gravity rates ġ0, ġ, and ġM for all gravity sites, com-
puted by ordinary linear regression (OLR) without weights. With the exception of
HONC and TROM, the observed gravity rates are larger than the modeled ones, par-
ticularly BODA, KAUT, and TRDA. ġ performs better than ġ0 at 9 out of 20 gravity
sites. For the remaining sites, the refined gravity corrections give no significant
improvement or even degrade the trend.

Based on the results presented in Figure 3.13, a subset of reliable rates was formed,
where a reliable rate is defined as within the uncertainty of ġM . Thereby, an agree-
ment of ġ0 or ġ with ġM gives us confidence in that the empirical rates mainly re-
flect GIA. The subset contains empirical gravity rates from 10 sites, namely BODB,
HONN, HONA, HONB, KOL1, STVA, TRYB, TRYC, ALES, and NMBU. These
rates were used in the following comparison of gravity and height rates of change.

The considerable variation in the uncertainties of the empirical gravity rates suggests
a weighted linear regression (WLR) approach rather than OLR. This poses a chal-
lenge, however, as it is not possible to derive reliable uncertainties for HONA and
KOL1, which are only based on two observations. Due to the large error estimates
at HONA and KOL1, we investigated both WLR and OLR approaches.

Figure 3.14 shows gravity versus height rates of change using the standard grav-
ity rates ġ0, which yields a WLR of ġ0 = −0.135 (±0.100) − 0.142ḣ (±0.018)
µGal yr−1 and an OLR of ġ0 = −0.175 (±0.137) − 0.143ḣ (±0.032) µGal yr−1.
Using ġ, Figure 3.15 shows a WLR of ġ = −0.210 (±0.183) − 0.133ḣ (±0.030)
µGal yr−1 and an OLR of ġ = −0.097 (±0.196) − 0.167ḣ (±0.045) µGal yr−1.
We first note that WLR and OLR based on ġ0 are quite similar, while WLR and
OLR based on ġ differ considerably. Considering the constant terms and their
relatively large uncertainties, only OLR based on ġ is statistically equal to zero.
The regression slopes based on OLR (

(
ġ/ḣ

)
0

= −0.143 (±0.032) µGal mm−1,(
ġ/ḣ

)
= −0.167(±0.045) µGal mm−1) and WLR (

(
ġ/ḣ

)
0

= −0.142 (±0.018)

µGal mm−1,
(
ġ/ḣ

)
= −0.133 (±0.030) µGal mm−1) are all in agreement with(

ġ/ḣ
)
M

and the reported range. However, in general, ġ gives a more uncertain
regression than ġ0.
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Figure 3.14: Gravity versus height rates of change based on standard gravity rates ġ0. Height
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Figure 3.15: Same as Figure 3.14, but based on refined gravity rates ġ.

3.5 Limitations of the research

From Paper A it becomes clear that the geoid models used give somewhat contradic-
tory results, which we try to expand upon by considering the different data sources
of the models. The GOCE R5 filter-combined models offer an improvement over
NMA2014 and EGM2008 in comparison with GNSS/leveling (Section 3.1), but the
geodetic MDTs based on EGM2008 outperform the NMA2014-based geoids on av-
erage. This could be owing to the different quality of terrestrial gravity data over
land and ocean. NMA2014 is largely based on terrestrial gravity information over
the oceans, and undetected systematics in shipborne gravity may degrade its quality
over the ocean. EGM2008, on the other hand, relies heavily on altimetry-derived
gravity, and should be less affected. We note that the dependence of EGM2008
on altimetry might eliminate short-scale MDT signal in the geodetic MDT, which
would lead to the EGM2008-based geodetic MDTs being more similar to the smooth
ocean MDTs.

Our findings in Paper E further nuances the picture, as the geodetic MDT surfaces
determined using three different regional geoid models show different patterns de-
pending on the geoid. All three geoid models NKG2015, NMA2014, and EGG2015
are based on GOCE R5 GGMs, with some variation in the terrestrial gravity data
sets. NKG2015 and NMA2014 are mostly free of altimetry-derived gravity, while
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EGG2015 relies heavily on altimetry-derived gravity, much like EGM2008. Here,
the geodetic MDTs based on NKG2015 and NMA2014 outperform those based on
EGG2015, both as a CS2 MDT surface and as TG MDT. C2EGG performs worse in
comparison with NorKyst800, and the finer details of the Norwegian Sea circulation
are missing. All CS2 MDTs show different artifacts along the coast, where the MDT
lows could in part be due to geoid determination issues related to data weigthing and
interpolation because of the lack of marine gravity data.

The bottom line regarding the geodetic MDTs is that even though we get a notable
improvement with the inclusion of the latest GOCE data, there is still room for
improving the marine geoid in the Norwegian coastal zone. Although it is clear
that terrestrial gravity data are important for the geodetic MDT, it is not possible to
reach unanimous conclusions regarding the inclusion of altimetry-derived gravity or
inaccurate shipborne gravity. It is important to remember that the regional geoids are
tuned to fit validation data on land, where also the bulk of gravimetric observations
are found, and might not necessarily be the best option for describing the short-scale
marine gravity field off the coast.

The TG geodetic MDTs in this thesis are based on derived ellipsoidal heights of
MSL. Although we see an improvement when using data from the new Norwegian
height system, the error analysis and interpretation of results are significantly more
challenging when the TG MDTs are dependent on the height system.

For the determination of CS2 MDTs in particular, the geographical mode mask poses
another challenge (Figure 2.26). The border between the SARIn mode and LR-
M/SAR modes along the Norwegian coast often coincides with the NCC, requiring
special attention when combining CS2 data from the different modes. In addition,
the CS2 observations are more sparse exactly at this border, and more uncertain.
This is seen in particular along the south-eastern coast of Norway, where the border
between SARIn and SAR modes coincides with the narrow jet of the NCC, making
it highly dependent on the CS2 data weighting and interpolation methods. The jet is
not a distinct feature in the current CS2 MDTs.

The CS2 observations are based on novel SARIn processing and crude data editing.
Only ∼60% of the raw CS2 data (omitting points on land) are used in Paper E. This
not only suggests that a considerable amount of valid data points did not pass the
editing, but also reveals that the CS2 targets along the Norwegian coast are generally
noisy. Also, a large amount of CS2 observations inside fjords do not have a valid
ocean tide (OT) correction, as they are outside the coverage of the standard global
OT model. These observations have been disregarded in Paper E, but could be
included in the future by considering local ocean tide corrections (Paper D).
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Our comparison of regional geoid computation methods in Paper C is a synthetic
closed-loop simulation which only serves the direct comparison of SKs, LSC and
Stokes’s formula in a regional application. It is not possible to reach general con-
clusions regarding the performance or practical implementation of the individual
methods, as computation requirements of all three methods must be fulfilled at the
same time, where Stokes’s formula poses the strictest requirements. One of the main
advantages of RBFs is the possibility to use more RBFs where the signal is rough,
and less where the signal is smoother (also, the maximum degree of the expansion
of the RBFs can be adapted accordingly). This advantage cannot be assessed by
the numerical examples in Paper C. Another advantage of RBFs and LSC is that
the input data can be irregularly distributed, while our numerical implementation of
Stokes’s formula requires regularly distributed data. In addition, Paper C does not
compare the formal errors of the three methods.

In Paper B we identify some limitations in our refined modeling of ATM and GH
gravitational effects through mGlobe, partly due to using a coarse orography rather
than a DEM in the local zone, and partly due to approximating in-situ pressure
observations at sites where these were not available. A further obvious limitation
is that local hydrology is completely left out, when it is predominantely the lo-
cal hydrology in the local zone which is expected to impact on the observations.
The GLDAS/NOAH global hydrological model explicitly does not include the ef-
fect of groundwater variations, these have not been considered neither globally nor
locally. Regressions based on two gravity campaigns only, i.e., HAMM, HONA,
JON2, KOL1 and KOL2 are inherently uncertain, and although HONA and KOL1
present reasonable trends, they are obviously not reliable. Because of the larger
gravity rate uncertainties that were estimated for HONA and KOL1, the WLR is
similar to a linear regression where both are left out. Thus, the WLR underlines the
difficulty of using these rates. This consolidates the need for extending the gravity
time series, but this depends on funding and operator availability.

Figure 3.12 shows that the majority of the Norwegian AG sites are located along
the coast, relatively close to the zero-line of present GIA-induced rebound in
Fennoscandia. Consequently, at these sites, the signal we aim to describe (GIA)
is weak, and other site-specific unmodeled processes or observation noise may
dominate the rates. For almost all gravity rates of the reliable subset, ġ0 agrees more
with ġM than ġ. This suggests that ġM is not an optimal choice for assessing the
refined corrections. Rather, our refined gravity rates mainly impact sites where GIA
is not the dominant signal, which suggests that a refined modeling is meaningful at
sites that are affected by various unmodeled or insufficiently modeled effects.

Regarding the discussion of the empirical and modeled gravity trends in Paper B,
some of the Norwegian AG sites and observations have known limitations which
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did not make it into the final paper, but are worth mentioning here. At TROM, a
tunnel was built beneath the gravity site between 2005 and 2008, severly impacting
the time series. Subsequent observations have been corrected by a rough estimate
of the gravity shift due to the excavation, i.e., -20.27± 3.59 µGal, and are there-
fore quite uncertain. In later years, we observe a gravity increase at HONC which
does not show up as a corresponding height decrease in the co-located GNSS ob-
servations. This suggests some kind of mass redistribution going on at this gravity
site, which, until known, renders the HONC rate unreliable. We suspect something
similar for the TRDA 1995.666/1998.474 campaigns as they give large values that
strongly constrain the time series. The home site of FG5-226, NMBU, seems to be
relatively stable, although there have been some disturbances. Due to the establish-
ment of a calibration line in the neighboring surveying laboratory at the university
between 2005-2006, a concrete beam was constructed stretching into the gravity
laboratory and situated directly above the gravimeter. We have modeled the attrac-
tion of the beam to 3.00± 0.25 µGal, where the uncertainty was found by varying
the beam density between 2200 and 2600 kg m−3. This gravity decrease has been
applied to the 2004.609 and 2005.605 campaigns, rendering them more uncertain.
As mentioned in the above, it remains a question what underlies the anomalous
rates at ANDO, BODA/BODB, KAUT, and VAGA. These sites have not been vis-
ited more than 4-5 times, but we consider them quite stable. Furthermore, when
comparing rates that are expected to be similar (KOL1/KOL2, TRYB/TRYC), they
show discrepancies of ∼0.5 µGal yr−1, pointing in favor of observation uncertain-
ties or small-scale geophysical processes. The continued observation of these sites
is expected to shed more light on these questions.

BODA/BODB, TRYB/TRYC, KOL1/KOL2, HONA/HONB/HONC are groups of
gravity sites which, at times, have been visited more or less simultaneously, thus
allowing their combination. As pointed out by Timmen et al. (2015), however, indi-
vidual gravity trends should be reliable before any combination of them is consid-
ered. Consequently, only TRYB/TRYC remains a possible combination candidate,
cf. Paper B Table 5. The combined TRYB/TRYC trend (24 observations) yields
-1.06± 0.12 µGal yr−1 (using refined corrections), equal to the stand-alone TRYC
trend (17 observations) and slightly more uncertain. This suggests the TRYB series
might not yet be suitable for combination with TRYC, as it is based on few obser-
vations in comparison with TRYC, and strongly constrained by the more uncertain
adopted campaigns of the early-to-mid 1990s.





Chapter 4

Conclusions, recommendations, and
outlook

4.1 Conclusions

This thesis has revolved around the question of whether recent developments within
geodesy can improve our understanding of sea level, dynamics, and gravity field
in the Norwegian coastal zone. In a nutshell the answer is positive. We draw the
following conclusions for the new GOCE-based regional geoid models:

• GRACE and GOCE have substantially improved the geoid over the last
decade, with a drop from 8.5 cm (pre-GRACE) through 4.6 cm (GRACE) to
∼3 cm (GOCE) in terms of standard deviations of differences to GNSS/level-
ing.

• Part of the improvement is also due to upgraded terrestrial gravity databases.

• Although the different stochastically filtered GOCE-based geoids vary only
slightly around 3 cm, there is a tendency that filter-combinations that put more
weight on GOCE than on the terrestrial gravity data are the best.

• The formal geoid errors are lower and show larger variations depending on the
filter-combination method than the empirical errors from the GNSS/leveling
validation, which suggests that the empirical error is dominated by the quality
of the GNSS/leveling data.

• Our formal geoid error budget indicates that EGG2015 has been optimized to
a different validation data set than the Norwegian one. EGG2015 assumes a
rather optimistic terrestrial data error of 0.2 mGal, whereas for the Norwegian
data set, an error of around 2.0 mGal seems more realistic.

As for the geodetic MDT and associated ocean currents in the Norwegian coastal
zone,
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• geodetic and ocean MDTs agree on the ∼3-7 cm level at the tide gauges, and
on the ∼5-11 cm level on the altimetry sites.

• The contributions to the error budget are estimated as follows:

– Ocean MDT: ≤5 cm

– Altimetric MSS: ≤7 cm

– TG MSL: ≤3 cm

– Geoid: ≤4 cm

• For most TGs, better absolute sea-level observations are obtained using the
new national height system, NN2000. However, we stress the importance of
directly observing ellipsoidal heights at TGs by GNSS, thus ruling out possi-
ble distortions from leveling and geoid errors.

• Geodetic MDTs correlate with the Nemo12 ocean model on a similar level as
the other ocean models, suggesting a convergence of approaches.

• The coastal altimetry products generally do not offer an improvement over the
conventional products they are based on.

• CS2 provides observations of SSH in areas previously not monitored by con-
ventional altimetry.

• In comparison with 10-minute sea level observations at 22 TGs, we observe
larger standard deviations of differences at TGs well inside fjords with rela-
tively few CS2 observations (∼20 cm or more), and smaller differences at TGs
close to the open ocean with dense CS2 observations (∼7 cm).

• When replacing the standard ocean tide and atmospheric corrections with lo-
cal corrections derived from ocean tide predictions and pressure observations,
we observe a 2-5 cm improvement in standard deviations of differences at 19
out of 22 TGs.

• At the TGs, the CS2 MDTs agree on the ∼3-5 cm level with both TG and
ocean MDTs.

• The CS2 MDT surfaces based on NKG2015 and NMA2014 show standard de-
viations of differences of ∼6 cm to NorKyst800, while the CS2 MDT surface
based on EGG2015 shows a slightly larger difference of ∼8 cm.

• The general pattern of the Norwegian Sea circulation is evident in the CS2
MDTs, but variations are seen depending on the geoid.



4.1 Conclusions 127

• The NCC is revealed in the geostrophic current patterns of the CS2 MDTs
based on NKG2015 and NMA2014.

• The CS2 MDT surfaces use recent regional geoid models which are all based
on GOCE R5 GGMs; the observed variation emphasizes the importance of
terrestrial gravity information for the geodetic MDT.

• Considering the geoid contribution to the MDT budget, and recognizing the
substantial contribution of GOCE, still, short-scale geoid structures not cov-
ered by GOCE are of high relevance for coastal areas.

• The quality of regional geoid models is higher on land than over the ocean,
which may be due to the fact that geoid models are often tuned to fit validation
data on land, and due to the data situation.

Our comparison of regional geoid computation methods shows that

• Stokes’s formula, LSC and RBFs using the SK are theoretically equivalent
methods in the global case.

• LSC and SKs need a modification to provide the same results as Stokes’s
formula in regional applications, where the Stokes integration is restricted to
a spherical cap around the computation point.

• The methods are also equal in practice, as shown in numerical examples. At
the 5 arcmin resolution, all methods agree within 2×10−2 mm to 5.9 mm in
the target areas, where the largest RMS differences are due to the discretiza-
tion of Stokes’s formula.

• At the 2.5 arcmin resolution, all methods agree within 6×10−2 mm to 2.4
mm.

• Little is gained by using more SKs than the corresponding resolution of the
observations, as there is hardly any signal variability between the original grid
nodes. Thus, the SKs are dependent on the signal resolution rather than the
number of observations.

• The opposite holds true for LSC, as the size of the auto-covariance matrix
to be inverted corresponds to the number of observations, independent of the
signal resolution.

• Although we have demonstrated that the three methods give equal results in
applications, we stress that the modification of LSC and SKs is not a gen-
eral necessity when applying these methods; however, it is critical in direct
comparison with Stokes’s formula.
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This research has also contributed to a better understanding of different effects that
affect temporal gravity changes in Fennoscandia, and provides new independent
gravity rates based on AG.

• All Norwegian FG5 AG observations 1993-2014 have been compiled and an-
alyzed, raw observations consistently reprocessed, and adopted observations
carefully incorporated into the data set with updated uncertainties.

• Gravity rates based on a refined modeling of OTL, NTL, ATM, and GH grav-
itational effects mainly impact sites where GIA is not the dominant signal.

• This suggests that a refined modeling is meaningful at sites that are affected
by various unmodeled or insufficiently modeled effects.

• Compared to the modeled gravity rates, the refined gravity rates agree bet-
ter than standard rates at 9 out of 20 sites. This reveals the need for further
improvement of refined corrections as well as consideration of unmodeled ef-
fects.

• From a subset of 10 rates mainly reflecting GIA, estimated gravity-to-height
rate of change ratios are within −0.133 (±0.030) to −0.167 (±0.045) µGal
mm−1, in agreement with previous estimates (−0.154 to −0.217 µGal mm−1)

• Regressions of the gravity-to-height rate of change ratio based on refined grav-
ity rates are slightly more uncertain than those based on the standard rates.

• WLR reveals the challenge of incorporating rates based on few observations,
and other sites with a sufficient number of campaigns show artifacts which are
yet to be explained.

• This emphasizes the need for extending the gravity time series at all sites.

4.2 Recommendations and outlook

The benchmark study shows a fair agreement between geodetic and oceanographic
estimates of MDT and coastal ocean currents. The employed data sets do, however,
not allow deriving lower bounds for the error estimates of the individual compo-
nents, which would be necessary to further investigate remaining discrepancies. For
example, geodetic MDTs do in general show higher variability than oceanographic
ones. It remains unclear to what extent this must be attributed to noise of the geode-
tic observations or an important signal which is not represented in the ocean models.
More precise answers to these questions would obviously be of high relevance for
oceanographers and geodesists.
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In the future, more research is necessary on the short spatial scales of the marine
and coastal gravity field. The NMA has recently established a gravimetric test field
in the Norwegian coastal area of Sunnmøre (roughly bounded by 62◦-62.5◦N and
5◦-6.2◦E), where a large amount of new terrestrial, shipborne and airborne gravity
data have been collected, and almost 30 intermediate tide gauges have been installed
(O. C. D. Omang, personal communication, 2016). It is therefore a good candidate
for the study of the short spatial scales of the geoid. From an optimized local geoid
model, with formal and empirical error estimates, and an altimetric MSS or other
absolute sea level information, a thorough signal and error assessment of the coastal
gravity field, MSS, and MDT could be derived. By taking the signal characteristics
of the test field into account, i.e., the smoothness properties of MSS, MDT, and
geoid, the results could then be transferred to other areas in the Nordic Seas with a
less favorable data situation.

For the Norwegian coastal zone in general, gravity data are sparse in a small coastal
gap between terrestrial and marine gravity observations. Such gravity observation
gaps could be filled efficiently with airborne gravimetry in a future regional geoid
realization with particular focus on the coastal zone (Jiang and Wang, 2016). Alter-
natively, SSHs as determined from ships equipped with GNSS (and possibly an iner-
tial navigation system) can be used to fill gaps directly at the coast and inside fjords
(Reinking et al., 2012). Shipborne SSHs with GNSS could also be used for valida-
tion of coastal altimetry, and even regional geoid models (Lavrov et al., 2015).

The continued application of SAR altimetry is an obvious next step in improving the
MDT budget. Paper D gave a first comparison of CS2 and TG data along the Norwe-
gian coast. The study shows an improvement of standard deviations of differences in
the order of 25-50% between TG and CS2 altimetry in comparison conventional sys-
tems (Envisat, Jason-2, SARAL/AltiKa). Further improvement was seen when the
standard altimetric geophysical correction was replaced with locally predicted tides
and pressure data. The tide and sea level web service of the NMA has the possibility
to spatially interpolate ocean tides using nearby TGs and ROMS. This gives the op-
portunity to remediate all CS2 observations near the coast and inside fjords that do
not have a valid ocean tide correction, and improve existing corrections. After early
initiatives like CTOH or PISTACH (validated in Paper A), several initiatives have
recently tested new altimetry standards and developed a set of optimized retrackers
and corrections for different satellite missions. These are available, e.g., through
the PEACHI project of CNES (Valladeau et al., 2015), ESA’s Grid Processing-On-
Demand service SARvatore (http://gpod.eo.esa.int) or through the different
altimetry databases (AVISO, RADS, etc.). Updated gridded products such as the
DTU15MSS (Andersen et al., 2015) have become available. These altimetry prod-
ucts, in addition to experimental retrackers if made available, are natural candidates
for future validation studies.

http://gpod.eo.esa.int
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In case of experimental altimetry data, these are often provided as-is, with no editing
or quality assessment. This was the case of the experimentally retracked data used in
Paper E, provided by the DTU Space retracker system. The present editing is quite
crude, and a more elaborate and robust statistical editing of the data may remediate
a larger amount of valid observations. For example, Nielsen et al. (2015) present
a more sophisticated method for outlier detection, employing a statistical mixture
distribution to describe the observation noise.

Due to the use of derived ellipsoidal height of MSL, the error budget is complicated.
In general, an observed quantity is cleaner than a derived quantity, and with this in
mind we recommend that MSL at all Norwegian TGs should be observed directly
by GNSS. Although the Norwegian HRCS is of quite good quality due to the large
amount of GNSS/leveling points, the leveling accuracy is worse along the coast,
especially where height transfers over fjords have been made (O. Vestøl, personal
communication, 2014). Furthermore, GNSS-determined ellipsoidal height of MSL
would provide a nice control and validation of the HRCS at the coast. For Norway,
the easiest place to start would be to measure the difference between antenna refer-
ence point and TG zero at the TGs that are already equipped with a GNSS receiver.
In addition, campaign measurements of TGBMs could be performed. Filmer (2014)
explores the potential of MDT models to identify and detect blunders in coastal lev-
eling. This of course requires the blunder to be larger than the MDT uncertainty,
but could be interesting to investigate for the Norwegian leveling data in and around
fjords and on islands.

With better knowledge of the quality of the leveling-based height system, and in-
creased quality of the available regional geoid models, the question whether a future
height system should be based on the geoid rather than on leveling is timely, and pos-
sibilities for and consequences of a geoid-based height system for Norway should
be subject to future studies.

With new and more accurate geodetic observations the global ocean models will
be too coarse, and only high-resolution coastal numerical ocean models should be
considered for validation purposes (Lin et al., 2015). Furthermore, the closer we
get to the shore, away from the cross-shelf region, the geostrophic assumption will
break down, as the underlying physics controlling circulations and tilts of sea level is
fundamentally different. Lin et al. (2015) explore the Pacific coastal alongshore mo-
mentum balance of wind stress, friction and density, all contributing to the coastal
tilt of sea level. A similar investigation along the Norwegian coast could be interest-
ing. In addition, other independent means for validating the geodetic results, such
as drifters, moorings, and volume transport estimates should be considered in the
future.
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What remains an important issue for solving ill-conditioned linear inverse problems
by Tikhonov regularization (as applied in Paper C), is the determination of the reg-
ularization parameter α. It may be considered a weight, balancing the contribution
of observations and prior information to the solution. If it is too large, the solution is
over-regularized, or smoothed too much. If it is too small, no physically meaningful
solution is obtained. Many existing algorithms for the determination of α are com-
putationally intensive, requiring numerous solutions for a range of α. In addition,
the failure of the algorithms to provide a unique α is problematic. Such ambiguity
gives rise to questions about how important the choice of α is, and whether a best
α exists. For applications within regional gravity modeling in particular, there have
been attempts to compare different common approaches to determining α, resulting
in the recommendation of different algorithms depending on the base function used
(Naeimi et al., 2015). An interesting next step within this topic would be to explore
the applicability of general and computationally efficient approaches to determine α
in regional gravity modeling, i.e., where no assumption on the regularization matrix
is made (Mead and Renaut, 2009; Renaut et al., 2010).

One of the advantages of LSC is the estimation of formal errors. In the comparison
of different geoid computation methods of Paper C, there is no comparison of the
formal errors of the different methods, which would be a natural next step within
this topic.

The quality of terrestrial gravity data is not necessarily constant over the area of in-
terest. This gives rise to the question as to whether the Stokes approach is a viable
option in future regional geoid computation with demands of centimeter or even
sub-centimeter accuracy, as a single weighting scheme for the whole area is used,
i.e., the modified Stokes function. Thus, the Stokes approach will always be a com-
promise between the subareas with highest and lowest terrestrial data quality. LSC
or spherical RBFs allow taking the spatial variations in data quality into account,
and may give better results. Paper C is a simulation study where this versatility of
LSC or RBFs cannot be assessed. A comparison of the methods using real data is a
natural next step in future studies.

In 1990, the Nordic Geodetic Commission (NKG) began establishing a geodetic
network for monitoring crustal deformations and sea-level changes in Fennoscandia
and Svalbard. The subset of presented gravity values in Paper B mainly reflect-
ing GIA will serve as a Norwegian contribution to the Fennoscandian AG project
of the Working Group on Geodynamics of the NKG, which aims to combine all
Fennoscandian AG data in a joint analysis on postglacial gravity change for the re-
gion. We expect the subset to be augmented with additional sites in the future, as
they become suitable for GIA studies through improved corrections for remaining
geophysical effects and/or additional observations.
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The obvious next step in the refined modeling of gravitational effects is the inclu-
sion of local hydrology. This, unfortunately, was outside the scope of the current
research. Local hydrology can be described by considering groundwater variations.
The GLDAS/NOAH model employed here does not include groundwater, but other
global models could be tested, e.g., a GRACE-based model which includes ground-
water. However, the smallest spatial scales of groundwater variations can only be
unveiled through measurements of groundwater level directly at the AG site during
each campaign. This, in turn, is limited by the infrastructure at the AG site, and in
Norway only a few sites include a bore hole for measuring the groundwater level.
A different approach could be to test the regional HBV hydrological model for Nor-
way, run by the Norwegian Water Resources and Energy Directorate (NVE). It has
a spatial resolution of 1 km2 and provides groundwater volume values. Using the
Bouguer-plate approximation, the groundwater volume change could be transformed
to gravity change (Timmen, 2010). With the HBV model, groundwater variations
in the past are also available, such that the 1993-2014 AG data set could still be
considered.
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A comparative assessment of coastal mean dynamic
topography in Norway by geodetic and ocean approaches
Vegard Ophaug1, Kristian Breili1,2, and Christian Gerlach1,3

1Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences (NMBU), Ås, Norway,
2Geodetic Institute, Norwegian Mapping Authority, Hønefoss, Norway, 3Commission of Geodesy and Glaciology, Bavarian
Academy of Sciences and Humanities, Munich, Germany

Abstract The ocean’s mean dynamic topography (MDT) is the surface representation of ocean circula-
tion. It may be determined by the ocean approach, using numerical ocean circulation models, or by the geo-
detic approach, where MDT is the height of the mean sea surface (MSS), or mean sea level (MSL), above the
geoid. Using new geoid models, geodetic MDT profiles based on tide gauges, dedicated coastal altimetry
products, and conventional altimetry are compared with six ocean MDT estimates independent of geodetic
data. Emphasis is put on the determination of high-resolution geoid models, combining ESA’s fifth release
(R5) of GOCE satellite-only global gravity models (GGMs) with a regional geoid model for Norway by a filter-
ing technique. Differences between MDT profiles along the Norwegian coast together with Taylor diagrams
confirm that geodetic and ocean MDTs agree on the �3–7 cm level at the tide gauges, and on the �5–11 cm
level at the altimetry sites. Some geodetic MDTs correlate more with the best-performing ocean MDT than do
other ocean MDTs, suggesting a convergence of the methods. While the GOCE R5 geoids are shown to be
more accurate over land, they do not necessarily show the best agreement over the ocean. Pointwise mono-
mission altimetry products give results comparable with the multimission DTU13MSS grid on the �5 cm level.
However, dedicated coastal altimetry products generally do not offer an improvement over conventional
altimetry along the Norwegian coast.

1. Introduction

The mean dynamic topography (MDT) is the height of the time-mean sea surface above the geoid. Its slope
reveals the magnitude and direction of ocean surface geostrophic currents; hence, it is a surface representa-
tion of the ocean’s mean circulation. Historically, oceanographers have determined the global ocean circula-
tion by means of hydrographic measurements of temperature and salinity (in situ data) from ships [Pugh
and Woodworth, 2014]. Today, the oceanographic MDT is determined from numerical ocean models, which
employ a set of dynamical equations and are driven by in situ data sets, meteorological wind and air pres-
sure information, and hydrological information. This may be termed the ocean approach to MDT
computation.

A precise geoid model in combination with observations of the mean sea surface (MSS) by means of satel-
lite altimetry allows a geodetic approach to determine the MDT. Altimetric observations yield ellipsoidal
heights of the MSS. With geoid heights above the same ellipsoid, the MDT may be derived through a purely
geometrical approach based on geodetic observations. The same principle can be applied if ellipsoidal
heights of mean sea level (MSL), as observed by tide gauges connected to a geodetic reference frame, are
available.

The rapid development of geodetic measurement techniques and models has rendered them sufficiently
accurate to complement and validate traditional oceanographic results. The European Space Agency (ESA)
gravimetric satellite mission Gravity and steady-state Ocean Circulation Explorer (GOCE) [Drinkwater et al.,
2003] provides a global geoid with unprecedented detail and has significantly improved geodetic MDT
determination. Presently, ocean and geodetic MDTs show an average agreement on subdecimetric level,
with better agreement in the open ocean than along coastlines [e.g., Bingham et al., 2011; Albertella et al.,
2012; Griesel et al., 2012; Johannessen et al., 2014; Higginson et al., 2015; Hughes et al., 2015; Woodworth
et al., 2015].

Key Points:
� First comprehensive validation of

coastal MDT by geodetic and ocean
approaches in Norway
� Along the Norwegian coast, geodetic

and ocean MDTs agree on the 3–11 cm
level
� Dedicated coastal altimetry products

generally do not offer improvements
over conventional products
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The circulation of the Norwegian Sea incorporates a poleward transport of warm surface water from the
North Atlantic Ocean (Norwegian Atlantic Current) as well as the Baltic Sea (Norwegian Coastal Current),
with implications for the Norwegian coastal ecosystem [e.g., Mork and Skagseth, 2010; Skagseth et al., 2011].
This heat transport maintains a relatively mild climate in northwest Europe, as well as North Atlantic Deep
Water formation, sustaining the Atlantic Meridional Overturning Circulation [Rhines et al., 2008]. Conse-
quently, a quantitative understanding of ocean circulation variability at northern high latitudes is crucial to
environmental and climate-related studies.

Coastal ocean dynamics has gained recent interest due to its importance for shipping, fishery, coastal eco-
system processes, other on-shore and offshore activities, and sea-level rise [Pugh and Woodworth, 2014]. In
geodesy, coastal MDT remains an important implement for height system unification, wherein a precise
geoid represents the reference surface for heights [Rummel, 2012]. However, the coastal zone presents a
multitude of challenges regarding geoid and MDT computation. Both geodetic and ocean approaches to
MDT computation show irregularities close to the coast [e.g., Woodworth et al., 2012; Featherstone and
Filmer, 2012; Filmer, 2014]. Land contaminates coastal altimetry observations [e.g., Gommenginger et al.,
2011] and tide-gauge observations are affected by vertical land motion [e.g., Pugh and Woodworth, 2014].
Tides become more complex along the coast, and global tide models loose validity there [e.g., Ray et al.,
2011]. It is generally challenging to make observations from land, open sea, and coast consistent with each
other [e.g., Woodworth et al., 2012]. Only a few numerical ocean models and selected coastal altimetry prod-
ucts have been developed for pilot studies or for specific areas. The Norwegian coast adds further complica-
tions, due to the many islands, mountains, and deep, narrow fjords.

A thorough validation of the quality of coastal products, specifically for the Norwegian coast, does not
exist. The main goal of this work is to explore the level of agreement between novel geodetic and recent
ocean MDT estimates along the Norwegian coast. A secondary goal is to assess whether geodetic MDTs
using new GOCE geoid models offer an improvement over existing models. Finally, we investigate
whether two dedicated coastal altimetry products perform better than the pure altimetry observations
they are based on, and how pointwise altimetry compares with a state-of-the-art global gridded altimetry
product.

Three fundamental vertical reference surfaces (or vertical datums) are considered in geodesy: the reference
ellipsoid, the geoid, and the quasigeoid. While the reference ellipsoid is a vertical reference for nonphysical
heights, the geoid and quasigeoid are vertical references for physical heights (orthometric and normal
heights, respectively), incorporating gravity. The distinction between the geoid and the quasigeoid is not
important in this work, as the geoid and the quasigeoid coincide over the oceans, with assumed negligible
differences at the coast. However, all geoid models in this work are strictly quasigeoids, in the form of quasi-
geoid heights (better known as height anomalies in geodesy).

Geodetic MDTs have been determined using four quasigeoid models (see Table 6), two of which have been
determined specifically for this work by a filtering approach, combining a regional quasigeoid model for
Norway with the fifth release (R5) of ESA’s GOCE satellite-only global gravity models (GGMs). The remaining
two are the original Norwegian regional quasigeoid model and a quasigeoid model based on the GGM
EGM2008.

Both tide-gauge and altimetry observations have been employed in this work. We aim to compare coastal
geodetic MDTs based on these different observational methods. We have selected six ocean MDTs inde-
pendent of geodetic data, primarily for validating our geodetic MDTs, but also to reveal their consistency
along the coast. Section 2 describes the data sets in detail, with focus on data consistency. In section 3, we
make a comparison of geodetic and ocean MDTs, before discussing the results in section 4. Conclusions are
presented in section 5.

2. Data and Methods

2.1. Geodetic Approach
2.1.1. Regional Quasigeoids Based on GOCE
We investigate the performance of regional quasigeoids based on GOCE R5 GGMs, specifically the TIM5 and
DIR5 models, based on the time-wise [Brockmann et al., 2014] and direct [Bruinsma et al., 2013] approaches,
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respectively. These GGMs are given as sets of spherical
harmonic coefficients to degree and order (d/o) 280
(TIM5) and 300 (DIR5), thus limited to a spatial resolution
of �80–100 km, and with an accuracy of �1–4 cm (at d/o
220) [Gruber, 2014]. As the smallest spatial scales of the
gravity field are not resolved, an omission error of �30 cm
is introduced, if the GGMs are used alone [e.g., Haines
et al., 2011]. This is demonstrated in Table 1, described
below. Such an omission error is not negligible for our
detailed studies of MDT along the Norwegian coast. Com-
puting a regional gravimetric quasigeoid using the new
GGMs in combination with terrestrial gravity data would

be the optimal solution to this problem; this, however, is a time-consuming and computationally intensive
task outside the scope of this work.

Instead, we have increased the resolution of the GGMs by combining them with the latest regional quasi-
geoid model for Norway, NMA2014, provided by the Norwegian Mapping Authority (NMA) (O. C. D. Omang,
personal communication, 2014). It is based on the remove-compute-restore method [e.g., Denker, 2013],
and the Wong and Gore kernel modification of Stokes’s formula [Wong and Gore, 1969], evaluated by the
2-D multiband spherical FFT method [e.g., Sideris, 2013]. The DIR4 GGM was used as a global reference
model. The Wong and Gore degree of modification is 140, with a linear transition from degree 130 to 140 to
reduce edge effects, reflecting the best agreement in comparison with GNSS/leveling based on trial runs
[e.g., Forsberg and Featherstone, 1998; Omang and Forsberg, 2002]. Consequently, above d/o 140, NMA2014
is solely based on terrestrial data. Bearing in mind that GOCE delivers accuracy improvements mainly in the
medium wavelengths between d/o 100 and 200 in Norway [e.g., �Sprl�ak et al., 2015], we expect an improve-
ment in the accuracy of our combined quasigeoid model.

As NMA2014 is given on a regular grid with 0:01�30:02� spacing, within an area delimited by
53� � u � 77:99� , and 215� � k � 40�, GOCE TIM5 and DIR5 height anomalies have been computed on
the NMA2014 grid points by spherical harmonic synthesis (SHS). Height anomalies are defined as f 5 T/c
[Hofmann-Wellenhof and Moritz, 2005, equation (8–26)], where T is the disturbing potential on Earth’s sur-
face, and c is the normal gravity acceleration on the telluroid (an approximation of Earth’s surface). Natu-
rally, we have neither ellipsoidal nor normal heights for each NMA2014 grid point; instead, we have used
topographic heights (excluding bathymetry) from the global ACE2 300033000 digital elevation model [Berry
et al., 2010], bilinearly interpolated to the NMA2014 grid points. ACE2 topographic heights are a fusion of
orthometric height data from the Shuttle Radar Topography Mission (SRTM) and altimetry (ERS-1, ERS-2,
and Envisat). For our purposes, these heights are assumed to be a sufficient approximation to normal
heights. The effect of this approximation was investigated by initially computing height anomalies using
topographic heights from ACE2, then adding them to the topographic heights, yielding approximated ellip-
soidal heights, before finally computing height anomalies using both approximated normal and ellipsoidal
heights. The difference between computed height anomalies using the simple approach (based on approxi-
mated normal heights only), and the more rigorous two-step approach (based on both approximated nor-
mal and ellipsoidal heights), was found to be insignificant at the mm level. Therefore, we used the simple
approach for quasigeoid computation by SHS. Finally, we also considered the GGM EGM2008 [Pavlis et al.,
2012], given as a set of spherical harmonic coefficients to d/o 2190, corresponding to a spatial resolution of
5 arc min. The EGM2008 quasigeoid was computed by SHS to its maximum d/o in the same manner as the
TIM5 and DIR5 GGMs (Table 1).

Closely following the approach of R€ulke et al. [2012], the TIM5 and DIR5 quasigeoids were low-pass filtered
using the Gaussian mean kernel [Jekeli, 1981, equation (61)], and NMA2014 high-pass filtered with the com-
plementary filter. Filtering was done by a convolution in the spatial domain, evaluated by the 1D-FFT
method of Haagmans et al. [1993]. We used an integration radius of 48, ensuring filter weights close to zero
at the domain edges. Ultimately, the filtered quasigeoids were added, giving combined quasigeoids
TIM51NMA2014 and DIR51NMA2014, delimited by 57� � u � 73:99� and 211� � k � 36� . Eight filter-
combined solutions were computed for filter radii between 40 and 110 km at 10 km intervals, and validated
externally by comparison with observed height anomalies, determined at sites observed both by GNSS and

Table 1. Validation of Best Combined and Pure Quasi-
geoid Models

Quasigeoid Model r̂ (cm)

TIM5 1 NMA2014 filtered @ 80 km 3.07
DIR5 1 NMA2014 filtered @ 80 km 3.07
NMA2014 3.49
EGM2008a 4.64
GOCE TIM5b 28.23
GOCE DIR5b 27.37

aDeveloped to d/o 2190.
bDeveloped to d/o 280 (TIM5) and 300 (DIR5), and

including omission errors.
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leveling. For this, we have used a set of 1344
GNSS/leveling points in Norway, provided by
NMA (Omang, personal communication, 2014).
We acknowledge that the Gaussian kernel is a
basic way of weighting terrestrial and satellite
data, because it does not take data quality into
account. Better results may be obtained using a
stochastic kernel, weighting the data more
correctly.

Table 1 shows validation results from pure and
combined quasigeoids, in the form of standard
deviations of differences between modeled and
observed height anomalies. A greater filter radius
means that more of the regional quasigeoid is
incorporated into the combined model. We
found an optimum filter radius of 80 km for both
TIM51NMA2014 and DIR51NMA2014, where
the combined quasigeoids perform better than
NMA2014. In addition to the four high-resolution

quasigeoids used in this work, the pure GOCE DIR5 and TIM5 model results are shown in Table 1, to quantify
the omission error.

All height anomalies in this work refer to the GRS80 ellipsoid, with a semimajor axis of 6,378,137 m and an
inverse flattening of 1/298.2572 (and practically equal to the WGS84 ellipsoid). With regard to the treatment
of the permanent tides, we have decided to standardize all our data sets in the mean tide (MT) system,
which retains the permanent tide effects from external bodies (mainly the Sun and the Moon). As the quasi-
geoids are given in the conventional tide free system (TF, where direct and indirect effects of the Sun and
the Moon are removed), they were converted to the MT system using Ekman [1989, equation (17)].

Jayne [2006] as well as Woodworth et al. [2015] underline the importance of not mixing altimetry-derived
gravity information in a quasigeoid model for MDT estimation purposes, as some of the dynamic topogra-
phy will blend into the quasigeoid model, corrupting the MDT estimate when combined with the ocean’s
time-mean surface from altimetry or tide gauges. In this respect, there is a considerable difference between
NMA2014 and EGM2008. EGM2008 incorporates a 50350 gravity anomaly data set, which relies heavily on
altimetry-derived gravity information over the oceans. Only a small amount of altimetry-derived gravity
data are included in NMA2014, in areas sparsely covered with shipborne and airborne gravity data, more
than �500 km off the Norwegian coast (Omang, personal communication, 2014). Therefore, we regard
NMA2014 as a purely gravimetric quasigeoid for our purposes. The distributions of terrestrial and altimetry-
derived gravity data in NMA2014 are provided in supporting information Figures S1 and S2.
2.1.2. Tide-Gauge MSL
The Norwegian tide-gauge network comprises 24 tide gauges. Not all have been considered in our work.
We have omitted the tide gauge in Ny-Ålesund due to its location on the Svalbard archipelago in the Arctic
Ocean, outside our study area. Also, we have not considered the tide gauges in Oslo, Oscarsborg, Trond-
heim, and Narvik, located well inside fjords not covered by the coastal altimetry data. At these tide gauges,
complex local dynamics not resolved by the ocean models are expected to considerably contribute to
observed MSL, thus unnecessarily complicating our comparative assessment. Consequently, we have
included MSL observations from 19 tide gauges along the Norwegian coast (Table 2 and Figure 1), averaged
over the epoch 1996–2000 inclusive, so as to be in the same epoch as the ocean models.

With the exception of the tide gauge in Mausund, we have used annual values of MSL from the Perma-
nent Service for Mean Sea Level (PSMSL) [Holgate et al., 2013] at http://www.psmsl.org/data/obtaining/.
Mausund was recently transferred to the official Norwegian tide-gauge network, which is maintained by
NMA. Mausund data are not yet available at PSMSL, but its inclusion is planned (A. Voldsund, NMA, per-
sonal communication, 2015). In this work, we have used hourly MSL values for Mausund from the NMA
database, averaged to monthly values. These values are given in the former national height system,
NN1954.

Table 2. Tide Gauges in Our Work

Tide Gauge Code u (8) k (8)

Vardø VARD 70.375 31.104
Honningsvåg HONN 70.980 25.973
Hammerfest HAMM 70.665 23.683
Tromsø TROM 69.647 18.961
Andenes ANDE 69.326 16.135
Harstad HARS 68.801 16.548
Kabelvåg KABE 68.213 14.482
Bodø BODO 67.288 14.391
Rørvik RORV 64.860 11.230
Mausunda

MAUS 63.869 8.666
Heimsjø HEIM 63.425 9.102
Kristiansund KRIN 63.114 7.734
Ålesund ALES 62.469 6.152
Måløy MALO 61.934 5.113
Bergen BERG 60.398 5.321
Stavanger STAV 58.974 5.730
Tregde TREG 58.006 7.555
Helgeroa HELG 58.995 9.856
Viker VIKE 59.036 10.950

aMausund is not part of the PSMSL database.
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Horizontal tide-gauge coordinates have been obtained using the tide and sea level web service of the NMA
at http://www.kartverket.no/en/sehavniva/(with an uncertainty of �30 m) and have been compared with
the cruder ones at PSMSL (with an uncertainty of �100 m), discovering no significant difference.

All PSMSL data in this work are within the Revised Local Reference (RLR) data subset, meaning that MSL is
given relative to a tide-gauge benchmark (TGBM) at each tide gauge. Ideally, the absolute height of MSL
should be determined directly by Global Navigation Satellite Systems (GNSS), either continuously or by pre-
cise campaign measurements at the tide gauge itself or a nearby benchmark with a leveled connection to a
TGBM. By these approaches, the vertical uncertainty is within �1–2 cm [Rothacher, 2002].

Unfortunately, none of the TGBMs in our work have been observed by GNSS with sufficient accuracy. Some
of the tide gauges have GNSS receivers mounted on them, but lack the necessary connection between the
antenna reference point and the tide gauge zero, because they were installed with the aim of monitoring
relative vertical site displacements only.

A solution for the interim is to derive ellipsoidal heights of MSL by using a height reference conversion sur-
face (HRCS). This surface is typically a geoid fitted to benchmarks with known heights both in the national
height system by means of leveling, and ellipsoidal heights h observed by GNSS, enabling the conversion of
heights H in the national height system into ellipsoidal ones by the simple relation:

h5H1HRCS: (1)

We have used the Norwegian height reference surface HREF [Solheim, 2000], necessarily aggravating the
total error budget due to possible errors in the quasigeoid on which the conversion surface is based, errors
from GNSS/leveling benchmark interpolation, as well as errors in the national leveling network [Feather-
stone, 2008]. Mysen [2014] derived a formal HREF uncertainty map using least squares collocation, covering
Norway south of 658N, with coastal uncertainties ranging from �1 to �3 cm. Although they conclude that
these uncertainties may be too optimistic, and uncertainties for Northern Norway have yet to be estimated,
we reckon these as best present estimates for error budgeting purposes.

Currently, Norway is in the process of changing its height system. The former spheroidal-orthometric height
system of Norway, NN1954, refers to a benchmark close to the tide gauge in Tregde, and was based on an
adjustment of MSL determined at seven tide gauges along the coast [Lysaker et al., 2007]. The new normal
height system, NN2000, refers to the Normaal Amsterdams Peil, and is based on a common Nordic adjust-
ment with reference epoch 2000.0, taking vertical land motion [Vestøl, 2006; Ågren and Svensson, 2007] into
account. Further deviations of NN2000 from NN1954 are due to different treatment of the permanent tides,
which will be discussed below. Featherstone and Filmer [2012] showed that a tilt in the Australian Height
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Datum, a height system established in a similar manner as NN1954, constrained to MSL at multiple tide
gauges, was almost completely due to neglecting MDT effects at these tide gauges. NN2000, on the other
hand, should be free of any MDT effects. In order to explore whether possible artifacts in the height systems
significantly affect final MDT estimates, tide-gauge MSL was computed using both the former NN1954-
constrained conversion surface HREF2008a, as well as the current NN2000-constrained conversion surface
HREF2014c.

For all tide gauges except Mausund, the ellipsoidal heights of the TGBMs were computed according to
equation (1) (using either NN1954-related or NN2000-related quantities H and HRCS). Next, the ellipsoidal
height of MSL was computed by subtracting the height difference between TGBM and MSL (given by the
RLR) from the ellipsoidal height of the TGBM.

For Mausund, the ellipsoidal height of MSL could be computed without going via the TGBM, using equation
(1) as well as NN1954-related quantities H and HRCS. The height of MSL in NN1954 was transferred to NN2000
by forming a height difference between NN1954 and NN2000 at Mausund TGBM, and adding it to MSL.

The standard deviation of the differences between derived ellipsoidal heights of MSL using either NN1954
heights with HREF2008a or NN2000 heights with HREF2014c, amounts to 2.8 cm, with discrepancies ranging
from 27.9 cm (Andenes) to 4.4 cm (Hammerfest) (Figure 2d).

HREF is derived from ellipsoidal heights given in the TF system. Therefore, ellipsoidal heights of MSL derived
from HREF are also given in the TF system, and we converted them to the MT system using Petit and Luzum
[2010, equation (7.14a)]. This latitude-dependent conversion ranges from �27 cm in Southern Norway, to
�210 cm in Northern Norway. The ellipsoidal heights of MSL refer to the GRS80 ellipsoid.

MSL was corrected for the ocean’s inverted barometer (IB) response (static atmospheric loading effect)
using Wunsch and Stammer [1997, equation (1)], and local monthly sea level pressure data obtained from
the eKlima database of the Norwegian Meteorological Institute at http://eklima.met.no, with respect to a ref-
erence value of 1011.4 mbar [Woodworth et al., 2012]. The mean distance between tide gauge and pressure
data sites is �16 km, and the IB correction ranges from 247 to 14 mm.

Furthermore, a correction for the nodal tide, a long-period (18.61 years) astronomical tide, was applied to
the MSL values using Woodworth [2012, equation (1), scaled by 0.44 according to Pugh and Woodworth,
2014]. For our range of latitudes, the nodal tide correction varies between �7 and �10 mm.
2.1.3. Altimetric MSS
We have employed six satellite altimetry data sets in this work; two basic monomission Envisat and Jason-2
data sets, three dedicated coastal products based on Envisat and Jason-2, and one multimission gridded
product.

Dedicated coastal along-track monomission data have been produced by the Centre de Topographie des
Oc�eans et de l’Hydrosphère (CTOH) [Roblou et al., 2011], and the Collecte Localisation Satellites (CLS)
through the Prototype Innovant de Système de Traitement pour l’Altim�etrie Côtière et l’Hydrologie (PIS-
TACH) project [Mercier et al., 2008], funded by the Centre National d’Etudes Spaciales (CNES). Both are dis-
tributed through the Archivage, Validation et Interpr�etation de donn�ees des Satellites Oc�eanographiques
(AVISO) project at http://www.aviso.altimetry.fr.

Processed on a regional basis using the X-TRACK software [Roblou et al., 2011], we have used the Envisat
CTOH product covering the entire Norwegian coast. It is based on a two-step procedure. First, Geophysical
Data Record (GDR) sea surface heights (SSH) have been analyzed applying stricter data validity criteria than
normal. If a sudden change in a single range correction term occurs, it implies that the whole altimeter mea-
surement is flagged as erroneous. This first step causes considerable data rejection, which, in a second step,
is remedied by data recovery using correction terms interpolated from the valid data. Finally, the SSH values
are resampled to reference tracks, producing 1 Hz observations at the same points for each cycle, with
�6 km spacing between the points.

In order to assess whether coastal tuning of Envisat data gives better results along the Norwegian coast, we
have also used standard along-track Envisat RA-2 GDR version 2.1 data provided by the European Space
Agency (ESA) and downloaded from ESA’s Earth Online portal at http://earth.esa.int. Corrections were
applied due to an anomaly identified in the flight time delay calibration factor (PTR), estimated as part of
the Envisat RA-2 GDR v2.1 reprocessing. The anomalies have a significant effect on mean sea level trend
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estimates but are not crucial for the mean sea level itself [Ollivier and Guibbaud, 2012]. No PTR corrections
are applied in the Envisat CTOH product (CTOH Team, personal communication, 2015). Only the Envisat
GDR and CTOH cycles 10–92 were considered, which implies preclusion of the Envisat geodetic mission
(cycles 93–113). The Envisat GDR data have a similar along-track spatial resolution as the Envisat CTOH-
product (�6 km), but the observations were not resampled to reference tracks. For the remainder of this
work, standard Envisat GDR data will simply be referred to as Envisat, and Envisat CTOH as CTOH.

In addition to the two Envisat-based altimetry products described above, we have considered three prod-
ucts based on Jason-2 observations: one basic Jason-2 product and two PISTACH products. PISTACH is dedi-
cated to the reprocessing of 20 Hz (�300 m) Jason-2 I-GDR data along coasts and over inland waters, and
covers all oceans. Due to the orbit configuration of Jason-2, PISTACH is limited to areas south of 66�N. It
employs retracking [Gommenginger et al., 2011] schemes, which restrict the analysis window to consider
only the coastal waveform gates contaminated by land effects, and filters the waveforms. Again, in order to
assess the retracked Jason-2 data, we have used the standard Jason-2 Ku band corrected range measure-
ment with no retracking applied, together with the Red3 and Ocean3 retrackers, dedicated to reduce instru-
mental noise and improve coastal approach, respectively. Our analysis of the PISTACH data revealed a shift
in the sea surface heights around 1 September 2012. Data after this epoch were transformed to the initial
mean level by estimating a step function at this epoch by least squares adjustment. We used all Jason-2 PIS-
TACH data available at the time of writing, i.e., cycles 1–228, covering the 2008–2014 period. For the remain-
der of this work, standard Jason-2 I-GDR data will simply be referred to as Jason-2, and the PISTACH trackers
Ocean3 and Red3 will be termed Ocean3 and Red3, respectively.

In general, we have employed standard range and geophysical corrections (ionosphere, troposphere,
dynamic atmosphere, sea-state bias, and tides) as provided in the (I-)GDR files. However, there are some
exceptions: The wet tropospheric corrections based on radiometer observations have been replaced by
ECMWF model corrections within about 50 km of the coastline (which practically includes all MSS sites). In
addition, the ionospheric corrections were subject to special attention. For Envisat observations prior to the
S-band failure at 17 January 2008, and passing the editing criteria recommended in the Envisat User Manual
[Soussi et al., 2009], smoothed ionospheric corrections calculated by combining range measurements on
the Ku and S bands were used. For other epochs, corrections computed from global ionospheric maps
(GIM) were used. We followed a similar approach for the Jason-2 and Ocean3 ranges, while GIMs were used
for all Red3 and CTOH ranges. Parametric sea-state bias corrections were applied to all sets of ranges except
for Red3, as sea-state bias corrections are presently only available for ocean trackers. For ocean tidal correc-
tions, a mix of models have been used due to different processing standards. The CTOH sea surface heights
have been corrected using the FES2012 model, while the FES2004 model was used for the Envisat and
Jason-2 data. A third model, GOT4.7, was applied to the Jason-2/PISTACH trackers. Table 3 gives an overview
of the applied corrections.

We have chosen 37 MSS sites along the Norwegian coast (Tables 4 and 5 and Figure 1). The MSS sites were
chosen using a semiautonomous script, by consecutively plotting each tide gauge and nearby altimetry
tracks, and choosing sites where all tracks cross, thus containing observations from all altimetry products.
Because only the CTOH data were resampled to reference tracks, we included all sea surface heights within
a spherical distance of 5 km from each MSS site (roughly corresponding to an altimetry footprint). To suffi-
ciently represent the Norwegian coast, and also to increase confidence in the MSS observations, we have
striven to find two MSS sites per tide gauge fulfilling the above criterion, which was possible for all tide
gauges but Viker. The average distances between MSS sites and the coast, and between MSS sites and the
associated tide gauges, are 23.1 and 54.1 km, respectively.

To explore whether the chosen MSS sites experience similar temporal variations as the tide gauges, the cor-
relation of the altimetry time series with the associated tide-gauge time series was computed for each MSS
site. Also, formal accuracies of the MSS observations were computed from the along-track observation vari-
ability. Envisat and CTOH observations have an average standard deviation of �1 cm (Tables 4 and 5), with
slightly improved numbers south of 668N (Table 5). On the whole, CTOH presents the lower standard devia-
tion of the two. Observations from Jason-2, Ocean3, and Red3 have an average standard deviation of
�0.5 cm (Table 5), but here the pure Jason-2 observation accuracy is better than the retrackers. The average
correlation of altimetric MSS with tide-gauge MSL is higher north of 668N, where Envisat on average corre-
lates slightly better (0.74) than CTOH (0.70) (Table 4). Correlation deteriorates for the data south of 668N, but
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still Envisat correlates better (0.57) than CTOH (0.53) (Table 5). Jason-2 observations have an average correla-
tion of 0.52, similar to Envisat and CTOH. Furthermore, the Ocean3 and Red3 average correlations (0.39 and
0.32, respectively) are notably lower than the other altimetry data.

Temporal means of observed SSH were formed, where SSH is the difference between the ellipsoidal height
of the spacecraft and the observed range between altimeter and sea surface, corrected for atmospheric and
sea surface scattering effects as well as tides and atmospheric loading. Consequently, SSH is automatically
given in the MT system. In accordance with the standardization of MSL (section 2.1.2), all altimetry observa-
tions were first adjusted to the mean epoch (1998.5) of the 1996–2000 period covered by the ocean models
(section 2.2). This was done by applying corrections for regional sea level change,

SSH1998:5ðtÞ5SSHðtÞ1bð1998:52tÞ; (2)

where SSH1998.5(t) is the sea surface height observed at epoch t (SSH(t)), transformed back to the mean
epoch (1998.5). The local sea level rate (b) was estimated by using records from the associated tide gauges.
We have chosen to use tide-gauge records instead of altimetry data because suitable multimission time
series are restricted to areas south of 668N. In addition, regional altimetric sea level rates are quite uncertain
(Prandi et al. [2012] adopt a total error of 1.3 mm/yr [90% confidence interval] for the Arctic Ocean), espe-
cially in the coastal zone. We used monthly tide-gauge records from the PSMSL (see section 2.1.2). Relative
sea level rates were estimated by fitting equation (3) to the tide-gauge records by least squares adjustment:

Table 3. Applied Range and Geophysical Corrections

Correction Envisat CTOH Jason-2 Ocean3 Red3 DTU13MSS

Dry ECMWF ECMWF ECMWF ECMWF ECMWF ECMWF
Wet Composite Radiometer Composite Composite Composite Radiometer
Iono IFC1GIMa GIM IFC1GIM IFC1GIM GIM IFC
LFb IB w/ECMWF IB w/ECMWF IB w/ECMWF IB w/ECMWF IB w/ECMWF MOG2D_IB
HFc MOG2D MOG2D MOG2D MOG2D MOG2D MOG2D
Sea-State Bias Non-param Non-param Non-param Non-param No SSB Non-param
Ocean Tide FES2004 FES2012 FES2004 GOT4.7 GOT4.7 GOT4.7
Solid Earth Tide CTd CTd CTd CTd CTd CTd

Pole Tide Wahr [1985] Wahr [1985] Wahr [1985] Wahr [1985] Wahr [1985] Wahr [1985]
Range bias (m) 0.433 0.433 0.174 0.174 0.174
Cycles 10–92 10–92 1–228 1–228 1–228
Period 2002–2010 2002–2010 2008–2014 2008–2014 2008–2014 1993–2012

aIFC: ionospheric-free combination; GIM: global ionosphere map.
bLow-frequency contribution with periods> 20 days.
cHigh-frequency contribution with periods< 20 days.
dCT: tidal potential from Cartwright and Tayler [1971] and Cartwright and Edden [1973].

Table 4. MSS Observations From Altimetry North of 66�N (1996–2000)a

Site u (8) k (8) dTG dc r̂envi r̂ctoh renvi
TG rctoh

TG

VARD1 70.219 31.168 12.9 8.6 1.2 0.9 0.59 0.75
VARD2 70.561 31.711 34.1 28.0 0.9 0.8 0.70 0.60
HONN1 71.127 26.181 17.6 5.2 1.1 1.0 0.73 0.54
HONN2 71.461 26.021 53.3 33.3 0.8 0.8 0.75 0.73
HAMM1 70.948 23.699 31.3 2.9 1.0 0.8 0.80 0.73
HAMM2 71.266 23.481 67.2 26.3 0.7 0.7 0.70 0.60
TROM1 70.280 18.610 71.5 8.4 1.3 1.4 0.70 0.61
TROM2 70.112 18.114 61.1 12.0 0.8 0.8 0.85 0.77
ANDE1 69.383 16.305 9.6 8.5 0.9 1.0 0.79 0.74
ANDE2 69.391 15.598 23.2 16.9 0.7 1.0 0.87 0.63
HARS1 69.232 16.535 48.2 4.0 1.1 1.1 0.78 0.78
HARS2 69.642 16.683 94.1 25.6 0.8 0.8 0.82 0.75
KABE1 67.723 13.435 70.4 24.5 1.5 0.9 0.63 0.67
KABE2 67.686 14.185 60.5 8.9 1.3 1.1 0.74 0.76
BODO1 67.511 14.380 25.4 3.8 1.8 1.4 0.74 0.70
BODO2 67.685 14.173 45.7 9.4 1.3 1.1 0.72 0.76

aChosen MSS observation sites contain Envisat and CTOH data. dTG is the distance (in km) to the associated tide gauge, dc is the dis-
tance (in km) to the coastline. r̂ is the estimated accuracy computed from the along-track altimetry data (in cm), and rTG is the correla-
tion of the altimetry data time series with the associated tide-gauge time series.
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zðtÞ5a1b � t1A1sin ð2pt2u1Þ1A2sin ð2pt=18:62u2Þ; (3)

where z(t) is tide-gauge observation at epoch t, a is the intersect of the model, A1;u1 are the amplitude and
phase of the annual periodic variation, and A2;u2 are the amplitude and phase of the nodal periodic varia-
tion [Baart et al., 2012]. At most stations, the rate was estimated from a record covering the 1983–2013
period, but due to significant data gaps and short time series, the rates at Andenes and Mausund were esti-
mated for the 1992–2013 period. As tide gauges provide relative observations of sea level, estimated rates
need to be corrected for vertical land motion before they can be used to correct geocentric sea surface
heights observed by altimetry. This was done by estimating vertical land motion from time series recorded
at nearby permanent GNSS stations [Kierulf et al., 2013].

With sea surface heights referenced to the mean epoch, cycle averages (SSH1998:5) were formed, and the
mean sea surface was estimated by fitting equation (4) to the series of cycle averages (35 days for Envisat
and 10 days for Jason-2):

SSH1998:5ðtÞ5MSS1998:51A1sin ð2pt2u1Þ; (4)

where the annual term was included in order to reduce the variance of the adjustment and by that improve
the possibility of detecting outliers. We note that ellipsoidal heights of MSS from Envisat refer to the WGS84
ellipsoid, likewise the Envisat-originated CTOH data. Jason-2/PISTACH, on the other hand gives MSS values
above the TOPEX ellipsoid (with a semimajor axis of 6,378,136.3 m, and an inverse flattening of 1/
298.25765). The ellipsoidal heights referenced to the TOPEX ellipsoid were transformed to WGS84 by first
transforming the heights to Cartesian coordinates and then back to ellipsoidal heights above the WGS84
ellipsoid. The transformations were realized by standard formulas [e.g., Hofmann-Wellenhof et al., 2001,
chapter 10].

Finally, in addition to the five monomission along-track data sets, we have considered the Technical Univer-
sity of Denmark (DTU) multimission MSS model DTU13MSS [Andersen et al., 2013], available at ftp://ftp.
space.dtu.dk/pub/DTU13/. It is given on a global 10310 grid and is a development of the former DNSC08
MSS model [Andersen and Knudsen, 2009], with standard range corrections applied (Table 3). DTU13MSS is
averaged over the period 1993–2012 and offers an increased amount of retracked coastal satellite altimetry
data, data from the Jason-1 geodetic mission, as well as a combination of ERS-1/ERS-2/Envisat and Cryosat-
2 altimetry data in the northern high latitudes. DTU13MSS is also referred to the TOPEX ellipsoid and was
referenced to WGS84 by computing an average difference of 0.686 m between regional geoids synthesized

Table 5. MSS Observations From Altimetry South of 66�N (1996–2000)a

Site u (8) k (8) dTG dc r̂envi r̂ctoh r̂ jas2 r̂oce3 r̂ red3 renvi
TG rctoh

TG rjas2
TG roce3

TG rred3
TG

RORV1 65.029 10.579 36.2 4.7 0.9 0.8 0.6 0.6 0.6 0.85 0.67 0.67 0.57 0.46
RORV2 65.639 10.474 93.9 36.4 0.7 0.8 0.5 0.5 0.5 0.62 0.49 0.56 0.37 0.19
MAUS1 64.031 8.249 27.2 20.7 1.2 0.9 0.5 0.6 0.6 0.56 0.50 0.34 0.22 0.16
MAUS2 64.138 7.775 52.9 44.1 1.1 1.0 0.4 0.5 0.5 0.50 0.53 0.37 0.25 0.12
HEIM1 64.017 8.620 70.2 9.9 0.9 0.8 0.5 0.6 0.6 0.79 0.80 0.80 0.71 0.64
HEIM2 63.778 7.382 93.9 38.7 0.9 0.9 0.4 0.5 0.5 0.55 0.54 0.62 0.35 0.20
KRIN1 63.625 7.522 58.0 20.5 1.1 1.0 0.5 0.6 0.5 0.56 0.64 0.59 0.47 0.33
KRIN2 63.652 6.768 77.0 52.8 0.9 0.8 0.4 0.5 0.4 0.61 0.56 0.56 0.28 0.07
ALES1 62.846 6.015 42.6 12.4 1.1 1.1 0.6 0.6 0.6 0.73 0.81 0.64 0.55 0.49
ALES2 63.312 6.150 94.0 50.5 0.8 0.8 0.4 0.4 0.4 0.68 0.54 0.54 0.30 0.30
MALO1 62.266 4.591 45.9 27.5 0.8 0.8 0.5 0.6 0.6 0.65 0.64 0.66 0.45 0.43
MALO2 62.266 3.868 74.8 63.5 0.7 0.8 0.4 0.5 0.5 0.58 0.67 0.52 0.24 0.24
BERG1 60.470 4.669 36.7 8.9 0.9 0.9 0.5 0.6 0.6 0.66 0.61 0.60 0.45 0.45
BERG2 60.667 4.095 73.6 33.0 0.5 0.8 0.5 0.6 0.6 0.44 0.25 0.42 0.34 0.24
STAV1 59.384 4.640 77.2 14.8 0.8 0.9 0.6 0.6 0.6 0.43 0.41 0.51 0.46 0.39
STAV2 59.734 4.753 101.4 18.2 1.4 0.9 0.6 0.6 0.6 0.55 0.38 0.54 0.46 0.43
TREG1 57.898 7.992 28.5 16.3 1.3 1.2 0.7 0.7 0.8 0.48 0.52 0.50 0.45 0.48
TREG2 57.271 7.762 83.0 49.9 1.0 1.0 0.7 0.7 0.7 0.53 0.47 0.45 0.39 0.38
HELG1 58.394 9.734 67.4 43.2 1.0 0.9 0.6 0.7 0.6 0.37 0.33 0.34 0.33 0.23
HELG2 58.340 9.978 73.4 58.0 1.4 1.1 0.5 0.6 0.5 0.30 0.32 0.33 0.24 0.18
VIKE1 58.602 10.534 54.1 29.4 1.0 1.1 0.6 0.7 0.7 0.53 0.47 0.41 0.33 0.28

aChosen MSS observation sites contain Envisat/CTOH and Jason-2/PISTACH data. dTG is the distance (in km) to the associated tide
gauge, dc is the distance (in km) to the coastline. r̂ is the estimated accuracy computed from the along-track altimetry data (in cm), and
rTG is the correlation of the altimetry data time series with the associated tide-gauge time series.
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with WGS84 and TOPEX ellipsoidal parameters, and subtracting this difference from the MSS values.
DTU13MSS was adjusted to the 1996–2000 period using equation (2).
2.1.4. Geodetic MDT
Determining the geodetic MDT is closely related to the method of combining GNSS and leveling on land, cf.
equation (1):

MDT5h2f; (5)

where h is the ellipsoidal height of MSS or MSL at altimetry or tide-gauge sites, respectively, and f is the
height anomaly, all referring to the same reference ellipsoid.

Height anomalies from the four quasigeoid model grids (Table 6) were linearly interpolated to the altimetry
and tide-gauge sites (Tables 2, 4, and 5) by nearest neighbor, before subtraction by equation (5).

2.2. Ocean Approach
The geodetic MDT estimates were validated using numerical ocean models independent of geodetic data
(as opposed to assimilated models incorporating geodetic data). Such models employ forcings in the form
of in situ hydrographic data sets (salinities and temperatures) and meteorological information, where the
MDT reflects the mean dynamical response of the ocean model to these forcings, determined by the equa-
tions of motion. In this work, six numerical ocean models have been used (Table 6).

Five of the ocean models were provided by the National Oceanography Centre (C. W. Hughes, personal
communication, 2014). In particular, there are two Nemo (Nucleus for European Modelling of the Ocean)
ORCA [Madec, 2008] model integrations, one at a resolution of 1=4� (NemoQ), and one at a resolution of
1=12� (Nemo12). Then come two Liverpool University implementations of the Massachusetts Institute of
Technology (MIT) global ocean circulation model [Marshall et al., 1997a, 1997b], assimilating hydrographic
information provided by the UK Met Office [Smith and Murphy, 2007]; one in a coarse form (L-MITc), with a
global resolution of 1�, and a finer version (L-MITf) with an increased resolution of 1=5�31=6� in the North
Atlantic. Finally, there is the Ocean Circulation and Climate Advanced Modeling (OCCAM) 1=12� global
ocean circulation model [Marsh et al., 2009]. The ocean models incorporate a climatology for their initiation,
as well as wind and atmospheric forcing from meteorological reanalyses. All models are averaged over the
period 1996–2000 inclusive, which set the standardization epoch for all data sets.

The five mentioned ocean models have their primary application in deep ocean studies, rather than in stud-
ies of the coastal zone, and their spatial resolutions are insufficient to resolve many coastal processes (e.g.,
river runoff) [Woodworth et al., 2012]. Therefore, we have also considered the Proudman Oceanographic
Laboratory Coastal Modelling System (POLCOMS) coastal model [Holt and James, 2001], distributed by the
British Oceanographic Data Centre at http://www.bodc.ac.uk. Yearly model runs were averaged over the
1996–2000 period. With a 1=9�31=6� resolution, this model is used for studies of continental shelf proc-
esses, and takes river runoff into account. Regrettably, the model does not cover the entire Norwegian coast
(see Table 6) but has been included in the analysis for tide-gauge and altimetry sites south of 65�N.

As part of earlier work, the global ocean models provided to us have been resampled to common 1=4�31=
4� grids by nearest-neighbor linear interpolation to facilitate intercomparison studies (C. W. Hughes, perso-
nal communication, 2015). In the present work, these grids were further linearly interpolated to the altime-
try and tide-gauge sites (Tables 2, 4, and 5) by nearest neighbor.

We investigated how the intermediate 1=4�31=4� interpolation might affect the final MDT values by resam-
pling POLCOMS in the same manner, and comparing values at the altimetry and tide-gauge sites with the
ones directly interpolated from the native POLCOMS grid. The standard deviation of differences between
native and resampled POLCOMS values was found to be �1 cm. This impacts the final results (Tables 7 and
8) on the submillimeter level; thus, we do not expect a significant error due to the intermediate
interpolation.

We further compared linearly interpolated with bicubically interpolated ocean MDTs, and observed an
improvement (reaching 9 mm with Nemo12) with the bicubically interpolated values at the altimetry sites.
Simultaneously, however, a degradation was observed (reaching 12 mm, again with Nemo12) with the
bicubically interpolated values at the tide gauges. Due to this ambiguity, we decided to retain the linearly
interpolated values for all altimetry and tide-gauge sites.
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Any ocean model including air pressure forcing was corrected for it before being provided to us (Hughes, per-
sonal communication, 2015). POLCOMS also includes an IB correction as described in section 2.1.2, with a ref-
erence pressure of 1012 mbar (J. T. Holt, personal communication, 2015). We used a simple approach to
revert the interpolated MDTPOLCOMS values. At each tide-gauge site with associated altimetry sites, the IB cor-
rection was subtracted. For this we used the single pressure value that was used to correct tide-gauge MSL.

3. Comparative Assessment

We have focused our analysis on the entire Norwegian coast, because it yields the most robust statistics.
However, due to the limited spatial coverage of the Jason-2/PISTACH and POLCOMS data sets (sections
2.1.3 and 2.2), we also present results from the regions south and north of 668N.

3.1. Tide-Gauge MDT
Table 7 shows standard deviations of differences between tide-gauge geodetic and ocean MDTs, using
ellipsoidal heights of MSL determined from NN2000 and NN1954 data. We first note that geodetic and
ocean MDTs agree on the �3–7 cm level. This is an encouraging observation, as similar studies for tide
gauges along other coasts have shown an agreement between geodetic and ocean MDTs on the �6–14 cm
level [e.g., Woodworth et al., 2012, 2015]. Higginson et al. [2015] got an agreement between geodetic and
ocean MDTs of 2.3 cm along the east coast of North America; however, this number resulted from mean
geodetic and ocean MDTs based on 7 geoid models and 11 ocean models, respectively.

On average, NN2000-based geodetic MDTs score better than NN1954-based geodetic MDTs for all ocean
models. The lowest standard deviations are found when geodetic MDTs are compared with MDTNemo12, and
the highest when compared with MDTL-MITc. The GOCE R5 models outperform NMA2014.

The along-shore tide-gauge geodetic and ocean MDT profiles are shown in Figure 2. All MDTs show similar
general traits; MDT rises 10 cm from Vardø to Kabelvåg, then flattens out to Stavanger, and rises another
10 cm toward Viker. The geodetic profiles present a greater variation in MDT than the ocean models. The
ocean profiles (Figure 2a) have an average standard deviation of 5.7 cm, while the average standard devia-
tions of the NN1954-based and NN2000-based geodetic profiles (Figures 2b and 2c) are 7.0 and 5.9 cm,
respectively. MDTNemo12 is plotted together with the geodetic MDTs to allow for easier comparison, as it is

Table 6. Model Grids Used in Our Work

Model Coverage Time Period
Grid Spacing

(8) or d/o Reference

Quasigeoida

TIM51NMA2014 57� � u � 73:99� 0:0130:02 This work
211� � k � 36�

DIR51NMA2014 57� � u � 73:99� 0:0130:02 This work
211� � k � 36�

NMA2014 53� � u � 77:99� 0:0130:02 NMA
215� � k � 40�

EGM2008 Global 2190 Pavlis et al. [2012]

MSSb

DTU13MSS Global 1993–2012 1=6031=60 Andersen and Knudsen [2009],
Andersen et al. [2013]

Oceanc

Nemo12 Global 1996–2000 1=1231=12 Blaker et al. [2015] ,
NemoQ Global 1996–2000 1=431=4 Madec [2008]
L-MITfd Global 1996–2000 1=531=6 Marshall et al. [1997a],
L-MITc Global 1996–2000 131 Marshall et al. [1997b],

Smith and Murphy [2007]
OCC12 Global 1996–2000 1=1231=12 Marsh et al. [2009],

Webb et al. [1997]
POLCOMS 40:0556� � u � 64:8889� 1996–2000 1=931=6 Holt and James [2001]

219:9167� � k � 13�

aAll quasigeoid models were equally arranged on the grid delimited by 57� � u � 73:99�; 211� � k � 36� , and with 0:01�3 0:02�

spacing. Next, the geoid values were linearly interpolated to the altimetry and tide-gauge sites (Tables 2, 4, and 5) by nearest neighbor.
bDTU13MSS was linearly interpolated to the altimetry sites (Tables 4 and 5).
cAll ocean models were linearly interpolated to the altimetry and tide-gauge sites (Tables 2, 4, and 5) by nearest neighbor.
dThis grid spacing covers the North Atlantic, and gradually spreads to 1�3 1� elsewhere.
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the best-performing ocean model.
As concluded from Table 7, the gen-
eral agreement between geodetic
and ocean MDTs increases when
using NN2000-based geodetic esti-
mates. We further note that MDTPOL-

COMS performs on the same level as
the remaining ocean MDTs, although
it does not observe the 10 cm rise
from Stavanger toward Viker.

3.2. Altimetric MDT
Table 8 shows standard deviations
between altimetric geodetic and ocean
MDTs. Geodetic and ocean MDTs agree
on the �5–11 cm level. To our knowl-
edge, no comparisons of geodetic
MDTs based on pointwise altimetry
with pure ocean MDTs have been
made. However, Thompson et al. [2009]
compared zonal and meridional sec-
tions of ocean and geodetic (computed
by subtracting a GRACE-based regional
geoid model from an altimetric MSS
product) MDT grids in the North Atlan-
tic Ocean, and obtained an agreement

Table 7. Standard Deviations of Differences Between Tide-Gauge Geodetic and
Ocean MDTs (cm)

Nemo12 NemoQ L-MITf L-MITc OCC12 POLCOMSa

Entire Coast
NN2000
DIR51NMA2014 3.8 4.1 4.2 4.9 4.9
NN2000
TIM51NMA2014 3.8 4.2 4.3 5.0 5.0
NN2000
NMA2014 4.4 4.8 4.6 5.5 5.6
NN2000
EGM2008 3.7 3.5 5.0 4.9 4.5

NN1954
DIR51NMA2014 4.2 4.5 5.2 5.4 5.2
NN1954
TIM51NMA2014 4.3 4.5 5.3 5.5 5.3
NN1954
NMA2014 4.6 5.0 5.3 5.8 5.7
NN1954
EGM2008 5.1 5.0 6.6 6.2 5.7

North of 668N
NN2000
DIR51NMA2014 5.1 5.1 4.0 5.4 5.9
NN2000
TIM51NMA2014 5.1 5.2 4.1 5.6 6.0
NN2000
NMA2014 5.8 5.9 4.8 6.3 6.7
NN2000
EGM2008 4.5 4.3 4.3 5.4 5.8

NN1954
DIR51NMA2014 4.7 5.0 4.3 4.7 5.5
NN1954
TIM51NMA2014 4.8 5.0 4.4 4.8 5.6
NN1954
NMA2014 5.2 5.4 4.7 5.3 6.1
NN1954
EGM2008 5.9 5.9 6.2 6.3 6.8

South of 668N
NN2000
DIR51NMA2014 2.8 2.7 3.7 4.6 3.8 4.2
NN2000
TIM51NMA2014 2.8 2.7 3.7 4.7 3.9 4.2
NN2000
NMA2014 3.1 3.1 4.1 4.9 4.1 4.5
NN2000
EGM2008 3.1 2.9 3.5 4.7 3.4 4.8

NN1954
DIR51NMA2014 4.0 4.2 4.8 6.2 5.2 5.1
NN1954
TIM51NMA2014 4.0 4.3 4.9 6.2 5.2 5.1
NN1954
NMA2014 4.3 4.5 5.1 6.4 5.4 5.4
NN1954
EGM2008 4.3 4.4 4.7 6.3 5.0 5.7

aFor POLCOMS, the analysis covers the Norwegian coast south of 658N.

Table 8. Standard Deviations of Differences Between Altimetric Geodetic and Ocean MDTs (cm)

Nemo12 NemoQ L-MITf L-MITc OCC12 Nemo12 NemoQ L-MITf L-MITc OCC12 POLCOMSa

Entire Coast South of 668N
envi
DIR51NMA2014 6.4 7.1 8.2 8.7 7.3 envi

DIR51NMA2014 5.2 7.0 7.6 9.6 7.7 5.3
envi
TIM51NMA2014 6.3 7.1 8.2 8.8 7.3 envi

TIM51NMA2014 5.0 7.0 7.6 9.5 7.6 5.1
envi
NMA2014 6.6 7.2 8.3 8.7 7.3 envi

NMA2014 5.0 6.8 7.2 9.2 7.2 4.8
envi
EGM2008 5.7 6.7 6.3 8.1 7.1 envi

EGM2008 5.7 6.2 6.0 7.4 7.2 5.5

ctoh
DIR51NMA2014 7.4 8.1 9.3 9.9 8.6 ctoh

DIR51NMA2014 5.9 7.9 8.7 10.5 9.0 6.2
ctoh
TIM51NMA2014 7.4 8.1 9.3 9.9 8.6 ctoh

TIM51NMA2014 5.8 7.9 8.7 10.5 9.0 6.0
ctoh
NMA2014 7.6 8.3 9.3 9.9 8.7 ctoh

NMA2014 5.6 7.6 8.3 10.1 8.6 5.7
ctoh
EGM2008 6.4 7.4 7.2 9.0 8.1 ctoh

EGM2008 5.7 6.7 6.9 8.1 8.1 5.6

dtu13
DIR51NMA2014 5.6 6.5 7.5 8.4 6.7 dtu13

DIR51NMA2014 5.3 6.6 7.4 9.1 7.1 5.0
dtu13
TIM51NMA2014 5.5 6.5 7.5 8.5 6.8 dtu13

TIM51NMA2014 5.2 6.6 7.5 9.1 7.1 4.9
dtu13
NMA2014 5.7 6.5 7.5 8.4 6.7 dtu13

NMA2014 5.2 6.4 7.1 8.7 6.7 4.6
dtu13
EGM2008 6.1 7.1 6.4 8.6 7.6 dtu13

EGM2008 5.4 5.4 5.4 6.5 6.2 4.7

North of 668N jas2
DIR51NMA2014 5.4 6.7 7.6 9.4 7.8 5.4

envi
DIR51NMA2014 7.2 7.3 7.5 7.8 7.0 jas2

TIM51NMA2014 5.2 6.6 7.5 9.3 7.8 5.2
envi
TIM51NMA2014 7.3 7.3 7.5 7.9 7.0 jas2

NMA2014 5.2 6.4 7.2 9.0 7.4 4.9
envi
NMA2014 7.8 7.8 7.9 8.4 7.6 jas2

EGM2008 6.5 6.4 6.6 7.6 7.8 6.1
envi
EGM2008 5.2 5.8 6.8 6.1 5.0

oce3
DIR51NMA2014 5.5 6.2 7.0 8.7 7.4 6.1

ctoh
DIR51NMA2014 8.8 8.6 8.7 9.3 8.4 oce3

TIM51NMA2014 5.4 6.1 7.0 8.7 7.3 5.9
ctoh
TIM51NMA2014 8.8 8.7 8.8 9.4 8.5 oce3

NMA2014 5.3 5.9 6.6 8.3 7.0 5.7
ctoh
NMA2014 9.4 9.2 9.3 10.0 9.1 oce3

EGM2008 6.4 5.7 5.7 6.7 7.2 6.7
ctoh
EGM2008 6.7 7.0 7.8 7.6 6.4

red3
DIR51NMA2014 5.3 5.4 6.3 8.1 6.6 6.3

dtu13
DIR51NMA2014 6.0 6.4 7.1 7.3 6.3 red3

TIM51NMA2014 5.1 5.3 6.3 8.0 6.5 6.1
dtu13
TIM51NMA2014 6.1 6.4 7.1 7.3 6.4 red3

NMA2014 5.1 5.1 5.9 7.6 6.1 5.9
dtu13
NMA2014 6.5 6.8 7.3 7.8 6.9 red3

EGM2008 6.6 5.3 5.3 6.2 6.7 7.3
dtu13
EGM2008 4.8 5.8 7.2 6.5 5.3

aFor POLCOMS, the analysis covers the Norwegian coast south of 658N.
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of 8 cm between the grids. Woodworth et al. [2015] obtained an agreement of 6 cm between a geodetic MDT grid
(computed by subtracting a DIR5-based geoid from an altimetric MSS product) and an assimilated MDT grid in the
Mediterranean. They further conclude that �5 cm is a likely general level of agreement between altimetric geo-
detic and ocean MDT grids. This work shows that pointwise monomission coastal altimetry products give results
comparable with the multimission DTU13MSS grid on the�5 cm level, which is encouraging.

As with the tide gauges, on average, we observe lowest standard deviations when comparing geodetic MDTs
with MDTNemo12, and highest when comparing with MDTL-MITc. As with the tide-gauge geodetic MDTs, we note
that the GOCE R5 models outperform NMA2014. We further observe that MDTPOLCOMS performs well, on the
level of MDTNemo12. The poorest altimetry performance is delivered by CTOH, regardless of quasigeoid model.

Figure 3 shows the along-shore altimetric geodetic and ocean MDT profiles for the entire coast. Even
though the pattern complexity has increased, it is still possible to infer the MDT rise from Vardø to Kabelvåg,
as well as a flattening toward Heimsjø. A distinctive fall of MDT is observed by all MDT models toward Ber-
gen 2. Another fall is observed by MDTNemo12 and the geodetic MDTs from Tregde toward Helgeroa, which
is not observed by the remaining ocean models.

In the cases where the distances between two associated MSS sites and the coast differ considerably (e.g.,
Rørvik 1 and Rørvik 2), so will their MDT value, because the MDT is higher toward the coast. This explains
the zigzag pattern we observe when following the profile lines with their alternating order of sites closer to,
respectively further off the coast (Figure 3a).

The ocean profiles (Figure 3a) present an average standard deviation of 4.9 cm, while the geodetic profiles (Fig-
ures 3b–3d) based on Envisat, CTOH, and DTU13MSS present larger values of 7.0, 8.1, and 6.5 cm, respectively.

The along-shore altimetric geodetic and ocean MDT profiles south of 668N are shown in Figure 4, beginning
at Rørvik 2. In Figure 4a, we see that the course of MDTPOLCOMS observes the same fall from Tregde toward
Helgeroa as MDTNemo12 and the geodetic MDTs. The course of the Jason-2-based MDT profiles (Figures 4b–
4d) generally agrees well with the Envisat-based MDT profiles south of 668N.

3.3. Comparison of Taylor Diagrams
A Taylor diagram [Taylor, 2001] summarizes four model statistics in a single diagram. If we consider two
models, the four statistics are the model standard deviations (r1, r2), their correlation R, and the centered

Figure 2. Tide-gauge MDT profiles: (a) ocean, (b) geodetic, using NN1954-originated ellipsoidal heights of MSL, (c) geodetic, using NN2000-originated ellipsoidal heights of MSL, and (d)
the difference between NN1954-originated and NN2000-originated MDT. In Figures 2b and 2c, MDTNemo12 is included. The horizontal dashed line denotes 668N. In all cases, the profile
mean has been removed.
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root-mean-square (RMS) difference between the models E0, related by E025r2
11r2

222r1r2R. This relation
has an analogue in the cosine rule for triangles, which is exploited in the Taylor diagram. It allows for con-
venient model intercomparison and was applied to MDTs by Bingham and Haines [2006].

Figure 5 shows Taylor diagrams where MDTNemo12 has been chosen as the reference model against which
all other MDTs are compared. It was chosen because, on average, it is the best-performing ocean model.
The model standard deviations are represented as radial distances from the origin, the centered RMS differ-
ences are proportional to the distances between reference and test models, and correlations are repre-
sented as the azimuthal angle. Consequently, the reference model has a correlation of one.

Figure 3. Altimetric MDT profiles along the entire Norwegian coast: (a) ocean, (b) geodetic, using Envisat, (c) geodetic, using CTOH, and (d) geodetic, using DTU13MSS. In Figures 3b–3d,
MDTNemo12 is included. The horizontal dashed line denotes 668N. In all cases, the profile mean has been removed.

Figure 4. Altimetric MDT profiles along the Norwegian coast south of 668N: (a) ocean, (b) geodetic, using Jason-2, (c) geodetic, using Ocean3, and (d) geodetic, using Red3. In Figures
4b–4d, MDTNemo12 is included. In all cases, the profile mean has been removed.
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Figure 5a shows the Taylor diagram for tide-gauge geodetic and ocean MDTs along the entire coast. As
MDTNemoQ is closely related to the reference model, it consequently has the lowest RMS difference and
highest correlation. Geodetic MDTs based on EGM2008 have a higher correlation than the NMA2014-
related MDTs, but generally the geodetic MDTs give quite similar results. Almost all MDTs but the NN1954-
based geodetic MDTs lie within an RMS of 4 cm.

Figures 5b and 5c show results from the altimetric geodetic and ocean MDTs along the entire coast as well
as south of 668N. We observe that the ocean MDTs are more similar to MDTNemo12 considering the entire

Figure 5. Taylor diagram intercomparison of geodetic and ocean MDTs for tide gauges (a) along the entire Norwegian coast, altimetric MSS sites (b) along the entire Norwegian coast,
and (c) south of 668N. To ease readability, labels for the geoid models incorporated in the geodetic MDTs have been left out of the diagrams; however, this information may be inferred
from the legend.

Journal of Geophysical Research: Oceans 10.1002/2015JC011145

OPHAUG ET AL. COASTAL MDT IN NORWAY 7821



coast than south of 668N. Furthermore, the signal standard deviations of the geodetic MDTs are lower south
of 668N than for the entire coast, suggesting that the geodetic MDTs are a little smoother in the south. This
explains why the MDT values in Table 8 vary primarily by geodetic MDT north of 668N, while varying primar-
ily by ocean MDT south of 668N.

4. Discussion

4.1. Error Budgeting and Significance of Results
Using the standard deviations of differences between geodetic and ocean MDTs (Tables 7 and 8) we derive
error estimates for both. We relate the empirical standard deviation of differences,

s5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i51 ð�i2��Þ2=ðn21Þ
q

, where �5MDT2ðh2fÞ, to the formal error propagation r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

MDT1r2
h1r2

f

q
. Here

we take MDT to be the ocean model, h to be the ellipsoidal height of tide-gauge MSL or altimetric MSS, and
f to be the height anomaly. Consequently, rMDT, rh, and rf are the error contributions from ocean model,
ellipsoidal height, and quasigeoid model, respectively. By this approach, we assume that the individual
components are uncorrelated, because they are derived from independent methods.

We turn to Table 1, and, assuming equal error contribution from quasigeoid, leveling and GNSS, derive an
estimate rf � 2 cm. This estimate is based on the NMA2014-related quasigeoids. We did not consider
EGM2008 because we trace its worse performance to the slightly lower resolution compared to the
NMA2014-related quasigeoids. Furthermore, we take rh � 1 cm, corresponding to the lower HREF error esti-
mate of Mysen [2014]. Using these numbers together with the standard deviations s from Table 7 (entire
coast, and NN2000), we get rMDT � 325 cm, depending on the ocean model. Because rf is derived from an
assumption of equal error contribution from quasigeoid, leveling, and GNSS, rather than from error propa-
gation of the heterogeneous gravity data included in the quasigeoid model, we take it to be an optimistic
estimate. Furthermore, the HREF error estimate rh is inherently optimistic due to different aspects of the
estimation method of Mysen [2014]. Consequently, as we regard our estimates of rf and rh as optimistic,
rMDT is a pessimistic estimate. Alternatively, assuming equal error contributions from rf, rh, and rMDT, we
get rMDT � 223 cm.

It is more challenging to assess the quasigeoid error off the coast. Therefore, we choose the more conserva-
tive estimate of rf � 3 cm. We do not expect the ocean models to be more accurate at the tide gauges
than at the altimetry sites (in fact, the opposite is more likely). Consequently we adopt rMDT � 225 cm.
Using these numbers together with the standard deviations s from Table 8 (entire coast, Nemo12), we get
rh � 127 cm for the altimetric MSS. We have chosen Nemo12 because it shows the lowest s values, and
larger values are attributed to rMDT and not rh. Alternatively, if we assume equal error contributions from
rf, rh, and rMDT, we get rMDT � 324 cm.

When summarizing the error estimates at the tide-gauge and altimetry sites, we conclude that rf � 4 cm,
rMDT � 5 cm, and rh � 7 cm.

We further want to comment on the significance of our results. Looking at the Taylor diagram at the
altimetry sites (Figure 5b), we see that the signal standard deviation of the geodetic MDTs is roughly
7 cm. From our altimetry error estimates, we derive an error standard deviation for the geodetic MDTs of
2–8 cm, which gives a signal-to-noise ratio (SNR) of 1–3. This suggests that our results at the altimetry
sites are statistically significant. From Figure 5b, we also find a �60% correlation of the geodetic MDTs
with MDTNemo12. This value proves actual correlation with a certainty of 99%, as confirmed by a correla-
tion significance test. At the tide gauges (Figure 5a), the signal standard deviation of the geodetic MDTs
is roughly 6 cm. The tide-gauge error estimates give an error standard deviation of 2–4 cm for the geo-
detic MDTs, again resulting in an SNR of 1–3. Furthermore, we observe an even higher �80% correlation
of the geodetic MDTs with MDTNemo12 than at the altimetry sites. Thus, we consider our results statistically
significant.

4.2. Tide-Gauge MDT
Considering the assessment of geodetic MDTs at Norwegian tide gauges, standard deviations of differences
suggest an improvement when using data based on the new height system, NN2000. North of 668N,
improvement is less evident. We note a possible explanation for the worse fit of tide-gauge geodetic MDTs
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north of 668N. As mentioned, Norway is in the process of changing its height system from NN1954 to
NN2000, and at the time of writing, no municipalities north of 668N have initiated the change. Conse-
quently, HREF2014c should not be considered a final HRCS for NN2000, and changes are expected in future
versions (D. I. Lysaker, NMA, personal communication, 2015). As the largest discrepancies between NN1954
and NN2000 are found in Northern Norway, this might be part of the explanation. We thus expect that with
the finalization of the height system change, better results will be obtained when using data based on the
new height system, NN2000. Better still, using GNSS to directly observe ellipsoidal height of MSL at the tide
gauges would eliminate this uncertainty altogether.

4.3. Altimetric MDT
Regarding the altimetry-based geodetic MDTs, we note that those based on DTU13MSS perform well in all
regions. One of the reasons for the good performance of DTU13MSS could be that it contains an increased
amount of altimetry observations from several altimeters, including the more recent Cryosat-2 mission.
Another reason could be that it is a gridded product. Gridding will to some extent always imply an
unwanted smoothing, as values at equally spaced grid points are estimated from irregularly distributed
data through spatiotemporal interpolation. Thus, DTU13MSS may well be more similar to the ocean models,
which are also smooth surfaces not only due to their initial model physics and grids but also due to resam-
pling (section 2.2).

We should also mention that Woodworth et al. [2015] considered DTU10MSS rather than DTU13MSS in the
Mediterranean, as the latter model showed more spatial differences than was expected from the few addi-
tional years of observations. Our analysis with DTU10MSS along the Norwegian coast, however, gave slightly
worse results than with DTU13MSS, which suggests that DTU13MSS offers an improvement over DTU10MSS
along the Norwegian coast.

In general, CTOH performance is poor, which is not easily explained. Part of the explanation may be that
CTOH uses the radiometer for the wet tropospheric correction, while Envisat and Jason-2/PISTACH use a
composite model, exchanging the radiometer for ECMWF data within 50 km of the coast. However,
DTU13MSS also uses the radiometer for the wet tropospheric correction, which suggests that differences in
the correction method (radiometer or ECMWF) are of minor importance.

The performance of Jason-2/PISTACH corresponds well with Envisat for all ocean models. On average,
Ocean3 offers a slight improvement over Jason-2, and Red3 an improvement over Ocean3 (Red3 differs
from Jason-2 and Ocean3 in that it uses GIM only for the ionospheric correction, and lacks correction for the
sea-state bias). However, we conclude that improvements due to retracking are small compared with the
differences observed between different quasigeoid models.

From the Taylor diagram intercomparison at the altimetry sites, we observe that geodetic MDTs based on
both pointwise and gridded altimetry correlate more with MDTNemo12 than do MDTL-MITc, MDTL-MITf, and
MDTOCC12, suggesting a convergence of the geodetic and ocean MDT approaches.

4.4. Characteristics of Coastal MDT in Norway
The tide-gauge and altimetric geodetic MDT profiles generally show a similar pattern (a 10 cm rise toward
Kabelvåg, a flattening toward Stavanger, and another 10 cm rise toward Viker), although with some differ-
ences. In part, these differences result from the geographic location of the tide-gauge and altimetry sites
(Figure 1).

At the tide gauges, the rise from Stavanger southward is evident in all ocean MDTs but MDTPOLCOMS (Figure 2).
This rise is confirmed by the geodetic MDTs regardless of quasigeoid model or height system, which suggests
that the MDT along the southern coast is not well represented in MDTPOLCOMS. The general tendency of lower
MDT values at the altimetry sites further off the coast is evident in all geodetic MDTs and MDTNemo12, but not
in the remaining ocean MDTs (Figure 3). This suggests that the MDT characteristics along the southern coast of
Norway are best described by MDTNemo12 as opposed to the other ocean models.

If a tide gauge is located in a protected harbor, or in the vicinity of an estuary, observed MSL may include a
steric contribution from river runoff and other coastal processes that the altimetry observations lack. All
geodetic MDTs observe large variations in the Lofoten Basin (covered by Kabelvåg and Bodø) that are not
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observed by the ocean MDTs. This, however, is an area of considerable dynamic activity in the form of mael-
stroms and eddies, and the ocean models are likely to have limited validity in this area.

In general, we observe more variability in the geodetic MDTs than in the ocean MDTs. This may be attrib-
uted to observation errors in the geodetic MDTs, but also to the smooth characteristics of the ocean mod-
els, which have their main application in the open ocean, resolving features at larger spatial scales.
Generally, the spatial scale of MDT will depend on the temporal averaging period, as well as the length scale
at which geostrophic currents (determined from the MDT inclination) become important. This length scale,
known as the Rossby radius of deformation, depends on the Coriolis parameter, and thus varies with lati-
tude (�200 km close to the equator, �10 km at high latitudes). In addition, at the coast, ocean dynamic fea-
tures not yet fully understood, exist at shorter scales than on the open ocean. Therefore, it is likely that part
of the variability observed by geodetic observations comes from actual short-scale ocean dynamics not
resolved by the general circulation models.

Consequently, we would expect MDTPOLCOMS, which takes shorter-scale coastal shelf processes into account,
to show a better agreement with the geodetic MDTs than the other ocean MDTs. While scoring well at the
altimetry sites, in close agreement with MDTNemo12, and corresponding well to the geodetic MDTs, it lags
behind at the tide gauges.

It generally remains challenging to assess whether geodetic MDT variability is actual ocean signal or short
spatial-scale errors in the geodetic observations.

4.5. Quasigeoid Performance
In order to assess the quasigeoid performance, we reconsider the data sources of the quasigeoid models.
EGM2008 relies solely on GRACE data up to d/o 70 (�285 km), and solely on terrestrial gravity information
beyond d/o 120 (�167 km) [Pavlis et al., 2012]. NMA2014 is purely based on terrestrial gravity data above d/
o 140 (�140 km), and GOCE DIR4 data below. The GOCE R5 models are dominated by GOCE data up to d/o
�181 (�110 km). This can be derived from the empirical relationship n51:453104=r between filter radius r
and maximum SH degree n, as reported by Zenner [2006].

The GOCE R5 quasigeoids offer an improvement over NMA2014. This corresponds to our findings from
GNSS/leveling (section 2.1.1). Considering the filter length, the improvement is related to the spectral
band between d/o 140 and 180. On average, however, geodetic MDTs based on EGM2008 outperform
the NMA2014-based quasigeoids. This contrasts the fact that EGM2008 performs worst in comparison
with GNSS/leveling. This can be explained by the different quality of terrestrial gravity data over land
and ocean. Undetected systematics in shipborne gravity may degrade the quality of the NMA2014-
related quasigeoids over ocean, while EGM2008, which heavily relies on altimetry-derived gravity, is less
affected. However, we cannot rule out the possibility that the dependence of EGM2008 on altimetry-
derived gravity eliminates short-scale MDT signal in the geodetic MDT. Consequently, EGM2008-based
geodetic MDTs are more similar to the smooth ocean MDTs, leading to smaller standard deviations of
differences.

5. Conclusions

Returning to the goals of this work, we observe that along the Norwegian coast, geodetic and ocean MDTs
agree on the �3–7 cm level at the tide gauges, and on the �5–11 cm level at the altimetry sites. In the Nor-
wegian coastal area covered in this work, we quantify the ocean MDTs to contribute to the total error
budget by 2–5 cm, while satellite altimetry and quasigeoid models contribute by less than 7 cm, respec-
tively 4 cm. From the Taylor diagram intercomparison at the altimetry sites, we observe that geodetic MDTs
based on both pointwise and gridded altimetry correlate with MDTNemo12 on a similar level as the ocean
models, suggesting a convergence of geodetic and ocean MDT approaches. The GOCE R5 quasigeoids offer
an improvement over NMA2014. Over land, both models are superior to EGM2008, while the latter performs
best over ocean areas. The dedicated coastal altimetry products generally do not offer an improvement
over the conventional products they are based on. Pointwise monomission altimetry products give results
comparable with the multimission DTU13MSS grid on the �5 cm level. Lacking ellipsoidal heights of MSL
directly observed by GNSS, our tide-gauge geodetic MDT estimates rely on different height systems. For
most sites, better results are obtained when using the new height system, NN2000. However, we stress the
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importance of directly observing ellipsoidal heights of MSL at tide gauges by GNSS, thus ruling out possible
distortions from leveling and quasigeoid errors.
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a  b  s  t  r  a  c  t

We  have  compiled  and  analyzed  FG5  absolute  gravity  observations  between  1993  and  2014  at  21  gravity
sites  in  Norway,  and  explore  to  what  extent  these  observations  are  applicable  for  glacial  isostatic  adjust-
ment  (GIA)  studies.  Where  available,  raw  gravity  observations  are  consistently  reprocessed.  Furthermore,
refined  gravitational  corrections  due  to ocean  tide  loading  and non-tidal  ocean  loading,  as  well as  atmo-
spheric  and  global  hydrological  mass  variations  are  computed.  Secular  gravity  trends  are  computed  using
both standard  and  refined  corrections  and  subsequently  compared  with  modeled  gravity  rates  based  on a
GIA model.  We  find  that  the refined  gravitational  corrections  mainly  improve  rates  where  GIA, according
to  model  results,  is  not  the  dominating  signal.  Consequently,  these  rates  may  still  be  considered  unreli-
able  for  constraining  GIA  models,  which  we  trace  to continued  lack  of  a correction  for  the  effect  of  local
hydrology,  shortcomings  in  our  refined  modeling  of  gravitational  effects,  and  scarcity  of observations.
Finally,  a subset  of standard  and  refined  gravity  rates  mainly  reflecting  GIA  is used to  estimate  ratios
between  gravity  and  height  rates  of  change  by  ordinary  and  weighted  linear  regression.  Relations  based
on  both  standard  and  refined  gravity  rates  are within the  uncertainty  of a recent  modeled  result.

© 2016  The  Authors.  Published  by  Elsevier  Ltd. This  is an  open  access  article  under  the CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Gravimetry considers the observation or measurement of grav-
ity. It may  be spaceborne, air- and shipborne, or ground-based
(terrestrial), where latter observations may  be used to validate
results from the first (e.g., Šprlák et al., 2015). Observing temporal
gravity changes, and thus changes in the Earth’s density distribu-
tion, gives insight into a range of geophysical phenomena, e.g., Earth
tides, Chandler wobble, core, mantle and tectonic processes (Torge
and Müller, 2012), sea-level change (e.g., Simpson et al., 2013),
the hydrological cycle (e.g., Pálinkáš et al., 2012), and cryospheric
mass variations (e.g., Breili and Rolstad, 2009; Arneitz et al., 2013).
Long-term temporal gravity changes can be observed by repeated
absolute gravimetry, with an accuracy of ∼0.5 �Gal yr−1 (where
1 �Gal = 10−8 ms−2) after 10 years of annual observations (Van
Camp et al., 2016).

∗ Corresponding author.
E-mail address: vegard.ophaug@nmbu.no (V. Ophaug).

As opposed to space-geodetic observation techniques such as
Global Navigation Satellite Systems (GNSS), absolute gravity (AG)
is independent of the terrestrial reference frame, and may  thus be
used to assess it (e.g., Mazzotti et al., 2011; Collilieux et al., 2014).
Furthermore, AG is particularly suitable for monitoring long-term
vertical deformation (Van Camp et al., 2011) caused by, e.g., glacial
isostatic adjustment (GIA) in North America (e.g., Lambert et al.,
2006) and Fennoscandia (e.g., Steffen et al., 2009; Pettersen, 2011;
Müller et al., 2012; Timmen et al., 2011, 2015; Nordman et al.,
2014), alongside GNSS (e.g., Milne et al., 2001; Vestøl, 2006).

Sasagawa (1989) reviewed the required time span of gravity
observations for determining a secular gravity trend with desired
accuracy, given by

�ġ = �g
√

12

T
√

N − 1
N

, (1)

where �ġ is the trend uncertainty, �g is the uncertainty of individ-
ual gravity observations, T is the time in years, and N the number
of observations. Eq. (1) assumes evenly distributed observations
with known uncertainties and a true Gaussian distribution. Steffen

http://dx.doi.org/10.1016/j.jog.2016.09.001
0264-3707/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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Fig. 1. AG sites in Norway. Blue sites have been observed more than once.
The contour lines show modeled gravity rates (�Gal yr−1) from the preliminary
NKG2016GIA prel0306 GIA model (H. Steffen, personal communication, 2016). (For
interpretation of the references to colour in this figure legend, the reader is referred
to  the web version of this article.)

and Wu (2011) further state that a secular gravity trend should be
known within an uncertainty of ±0.5 �Gal yr−1 for crustal defor-
mation studies, which, by Eq. (1), should be achieved by five to six
years of annual gravity observations with �g ≈ 1 −2 �Gal.

In 1990, the Nordic Geodetic Commission (NKG, http://www.
nordicgeodeticcommission.com/) began establishing a geodetic
network for monitoring crustal deformations and sea-level changes
in Fennoscandia and Svalbard. As part of this initiative, the first AG
observations with modern instruments were performed in Norway
in 1991 and 1992 (Roland, 1998). Between 1991-1995, several AG
campaigns were conducted in Fennoscandia and Svalbard (Roland,
1998).

Breili et al. (2010) established an AG reference frame for Norway
including 16 gravity sites. Since then, it has been extended to
include 21 sites, as shown in Fig. 1 and Table 1. Gravity sites marked
in blue have been observed more than once, thus only VEGA is
excluded from the set of candidates for trend computation. There
exist single observations at a few other sites, but these are less likely
to be revisited and are therefore not considered in our work. The
observation time spans are ∼5 years or longer for 18 of the 21 sites
(Table 1). Unfortunately, some gravity sites show uneven obser-
vation distributions, with typically larger gaps between initial and
later observations. Thus we interpret Eq. (1) as a best-case scenario
for our data sets.

The present crustal movements of Fennoscandia are largely due
to the viscoelastic process of GIA (or postglacial rebound), which
has been monitored by geodetic techniques (e.g., Milne et al., 2001;
Lidberg et al., 2010; Kierulf et al., 2014; Steffen and Wu,  2011). The
GIA pattern of Fennoscandia is shown in Fig. 1.

This work presents results from two decades of AG observations
in Norway, and an attempt is made to derive empirical secular grav-
ity trends based on these data. Our main goal is to explore to what
extent the gravity trends are applicable for GIA studies. A prerequi-
site for this goal is a homogenization of the gravity trends through
a consistent analysis of the AG data. This is done by investigating
to what extent the gravity trends reflect GIA or other geophysical
processes. Ideally, careful reduction of other geophysical processes
will ultimately give the pure GIA signal. Therefore, we compute
refined ocean loading, atmospheric, and global hydrological effects

on gravity, and explore how these affect the trends. Finally, the rela-
tion between gravity and height rates of change is investigated. The
presented gravity values serve as a Norwegian contribution to the
Fennoscandian AG project of the Working Group on Geodynamics
of the NKG, which aims to combine all Fennoscandian AG data in a
joint analysis on postglacial gravity change for the region.

Section 2 covers fundamentals of the AG processing scheme,
where Sections 2.1 and 2.2 concern the refined modeling of ocean,
atmospheric and hydrological effects on gravity. Secular gravity
trends are computed in Section 3, and a subset of reliable trends are
used for determining ratios between the rates of change of gravity
and height. Results are discussed in Section 4, while Section 5 con-
cludes the work with recommendations for future AG observations
in Norway.

2. Processing absolute gravity

All AG observations in this work were made with the FG5
(Niebauer et al., 1995) absolute gravimeter, which has an accu-
racy of 1–2 �Gal. It is ballistic, i.e., it applies the free-fall principle,
where a test mass is dropped in vacuum. A laser interferometer
and atomic clock are used to obtain time-distance pairs, and New-
ton’s equations of motion are solved to obtain the acceleration.
A typical observation campaign lasts 1–2 days, including several
hourly gravity sets where a set consists of 50-100 drops of the test
mass. With few exceptions, we have used observations made dur-
ing the same season (between May  and September), so as to reduce
seasonal effects (e.g., the influence of surface snow cover during
winter).

To minimize computational biases, we have adopted a com-
mon  processing scheme for the data analysis, ensuring consistency
with respect to model and setup parameters. All raw gravity obser-
vations have been reprocessed using the g9 software (Micro-g
LaCoste, 2012), developed by Micro-g LaCoste and bundled with
the instrument.

Vertical transfer of the measured gravity value is done using
the vertical gravity gradient, which has been determined at each
gravity site using the LaCoste & Romberg G-761 relative gravimeter,
see Table 1. All AG observations in this work are given at a reference
height of 120 cm,  close to a point where the influence of the gradient
uncertainty on the FG5 is almost zero (Timmen, 2010).

The most important time-variable components of the raw grav-
ity value are reduced in the software by various models, i.e.,
variations due to solid Earth and ocean tides, polar motion, ocean
loading, and atmospheric mass (Timmen, 2010). The atmospheric
correction is determined by observed barometric pressure during
the observations, which was done at all sites except Hammerfest
in 2006.488, where the barometer failed, and pressure observa-
tions transferred from a nearby weather station were used instead
(Breili et al., 2010). Corrections for polar motion were computed
using final polar coordinates from the International Earth Rotation
and Reference Systems Service (IERS), at http://datacenter.iers.org.

The bulk of observations presented here were made with the
FG5-226 AG meter of the Norwegian University of Life Sciences
(NMBU). The rubidium (Rb) frequency standard of the FG5-226
has been calibrated (i.e., compared with a stable reference signal)
at convenience since its acquisition in April 2004, and on a reg-
ular basis using a portable Rb reference since the oscillator was
replaced in May  2007. We  have observed it to vary within a range
of ∼0.02 Hz (where 0.01 Hz roughly corresponds to 2 �Gal). While
Gitlein (2009) reports a linear drift of the FG5-220 Rb frequency,
the FG5-226 Rb frequency development is non-linear, see Fig. 2. A
stable frequency was  observed with the original oscillator, while
the frequency changed by ∼−0.005 Hz during the first year after
its replacement. Then it was stable within 0.002 Hz until a large
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Table  1
Absolute gravity sites in Norway, gravity gradients, and observation spans.

Site Code ϕ (◦) � (◦) H (m)  ∂g/∂Ha (�Gal cm−1) tg
b (yrs) ng

c

Andøya ANDO 69.278 16.009 370 −4.04 ± 0.01 6.0 5
Bodø  Asylhaugen BODB 67.288 14.434 68 −3.31 ± 0.01 4.0 4
Bodø  Bankgata BODA 67.280 14.395 13 −2.64 ± 0.02 5.1 4
Hammerfest HAMM 70.662 23.676 17 −3.14 ± 0.01 4.0 2
Honningsvåg HONN 70.977 25.965 20 −3.54 ± 0.01 4.9 5
Hønefoss AA HONA 60.124 10.364 108 −2.23 ± 0.04 16.7 2
Hønefoss AB HONB 60.167 10.389 604 −3.11 ± 0.02 16.7 4
Hønefoss AC HONC 60.143 10.250 120 −2.80 ± 0.02 15.9 12
Jondal  2 JON2 60.286 6.246 52 −2.53 ± 0.03 9.0 2
Kautokeino KAUT 69.022 23.020 388 −3.08 ± 0.01 4.9 5
Kollsnes 1 KOL1 60.559 4.836 10 −2.67 ± 0.01 7.7 2
Kollsnes 2 KOL2 60.557 4.828 3 −2.80 ± 0.02 7.7 2
Stavanger AA STVA 59.018 5.599 55 −2.86 ± 0.08 15.2 7
Tromsø  TROM 69.663 18.940 103 −3.34 ± 0.01 15.9 8
Trondheim AA TRDA 63.455 10.446 27 −2.95 ± 0.01 14.8 10
Trysil  AB TRYB 61.423 12.381 693 −3.85 ± 0.01 16.8 7
Trysil  AC TRYC 61.423 12.381 693 −3.85 ± 0.01 18.0 17
Vågstranda AA VAGA 62.613 7.275 38 −3.03 ± 0.01 7.2 4
Vega  VEGA 65.673 11.964 12 −3.44 ± 0.01 – 1
Ålesund ALES 62.476 6.199 145 −2.90 ± 0.01 7.0 5
Ås  NMBU NMBU 59.666 10.778 95 −2.94 ± 0.01 9.9 10

a Determined by repeated observations of the gravity difference between the floor marker and ∼1.4 m above it.
b Number of years.
c Number of campaigns.

Fig. 2. Calibration of the FG5-226 Rb oscillator. The vertical bar denotes the oscillator
replacement (May 2007).

frequency offset of ∼0.02 Hz was observed during the 2013 cam-
paign in Ny-Ålesund in Svalbard. This large offset was  due to a
helium leakage from the co-located superconducting gravimeter
which penetrated the Rb cell. Subsequent frequency calibrations
indicate that it has slowly returned to the level prior to the helium
contamination. Mäkinen et al. (2015) discuss the effect of helium
contamination on Rb frequency references, and underline that large
offsets are unproblematic as long as they are known and corrected
for. For every observation epoch we have chosen to use the cali-
brated frequency value closest in time.

We  have also used AG observations performed by other agen-
cies and instruments, see Table 2. Raw observations by LM at TRYB,
TRYC and VAGA in 2007 have been reprocessed using the above
procedure. Observations by IfE and BKG, reported in Gitlein (2009),
are given at 120 cm and 125 cm reference heights, respectively.
Remaining observations by NOAA and BKG, reported in Roland
(1998), are given at a reference height of 100 cm.  When needed,
the observations were transferred to the 120 cm reference height
in two steps. First, the original gradient value was used to transfer

gravity from the original reference height (100 or 125 cm)  to the
actual measurement height. In turn, the new gravity gradients pre-
sented in this work (Table 1) were used to transfer gravity from the
actual measurement height to the new reference height of 120 cm.

The total uncertainty of an observed gravity value is composed
of the gravity measurement precision �g, system errors �SYS, setup
error �SETUP, and vertical transfer (gradient) error �∂g/∂H (Niebauer
et al., 1995). �SYS includes (i) instrumental errors (laser, clock, sys-
tem model) and (ii) modeling errors (barometer, polar motion,
Earth tide, ocean loading). Using formal error propagation and
thereby assuming the error terms are uncorrelated, the total uncer-
tainty �tot is given by

�tot =
√

�2
g + �2

SYS + �2
SETUP +

(
�∂g/∂H × HTRANS

)2
, (2)

where HTRANS is the difference between actual measurement height
(top of the drop) and reference height. The measurement precision
�g is the standard deviation of the mean of all sets, i.e., the set to set
scatter �SET divided by the square root of the number of sets. We
take �SYS ≈ 1.6 �Gal as given in g9 by the manufacturer. Instead of
the �SETUP = 1.0 �Gal estimate suggested in g9, however, we adopt
the more conservative �SETUP = 1.6 �Gal estimate of Van Camp et al.
(2005).

We investigated the stability of the FG5-226 by checking for
time-variable instrument offsets, trends or drift. Fig. 3 shows the
gravity time series using all sufficiently long FG5-226 gravity cam-
paigns at its home site, NMBU. The mean gravity value has been
subtracted from each observation, and the observations have been
corrected for GIA using a recent modeled linear rate of change in
gravity, ġM , as described in Section 3. We observe the remaining
secular gravity trend to be 0.0 ± 0.1 �Gal yr−1 and insignificant. A
similar conclusion can be drawn from Fig. 4, which shows the grav-
ity time series using FG5-226 observations at all gravity sites where
more than one observation is available. Here, the mean gravity
value of each site has been removed from GIA-corrected site obser-
vations, giving several time series which are ultimately plotted in
the same figure. Again we  observe an insignificant remaining grav-
ity trend of 0.1 ± 0.4 �Gal yr−1. Furthermore, we  do not observe any
nonlinear structure in neither Fig. 3 nor Fig. 4. We  therefore con-
clude that the FG5-226 has no significant drift, which suggests it
has been stable throughout the observation span of this work.
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Table 2
FG5-generation of absolute gravimeters used in Norway 1993–2014.

Instrument Agency Reference

FG5-226 (2004–2014) Norwegian University of Life Sciences (NMBU), Ås, Norway This work
FG5-233 (2007) Lantmäteriet (LM), Gävle, Sweden
FG5-220 (2003–2007) Institut für Erdmessung (IfE), Leibniz Universität Hannover,

Germany
(Roland, 1998)

FG5-101 (1993–1998), FG5-301 (2003) Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt,
Germany

(Gitlein, 2009)

FG5-102 (1993), FG5-111 (1995, 1997) National Oceanic and Atmospheric Administration (NOAA), Silver
Spring, Maryland, USA

G. Sasagawa, personal communication, 2005

Fig. 3. Stability of the FG5-226 AG meter for the 2004–2015 period, as derived from
all  repeated gravity observations at NMBU. The gravity time series is reduced for the
site-specific mean value and GIA trend, thus showing residual temporal variations
including instrumental drift only.

Standard g9 gravity estimates g0 and uncertainties are shown
in the supplementary data Table S1.

2.1. Ocean loading effects

The majority of the AG sites in Norway are located within 2 km
of the coast (see Fig. 1). It has been previously shown that these
stations may  be strongly influenced by ocean tide loading (OTL)
(e.g., Lysaker et al., 2008; Breili, 2009; Breili et al., 2010). In addition,
non-tidal variation of sea level due to low barometric pressure and
strong winds may  affect gravity (Olsson et al., 2009).

OTL and non-tidal loading (NTL) have different characteristics.
Along the Norwegian coast, OTL may  introduce deterministic semi-
diurnal patterns with amplitudes of several �Gal in time series of
gravity (Lysaker et al., 2008). As a result, the variation of the set to
set scatter of a gravity campaign may  increase if appropriate OTL
corrections are not applied. Furthermore, the campaign averages
and derived secular trends may  be biased (Timmen et al., 2015).
This is particularly relevant for short campaigns not covering an
integer multiple of the dominating tidal periods. NTL, on the other
hand, is non-deterministic and non-periodic; hence, corrections
must be computed from observations. As NTL may  be close to con-
stant during a campaign, its impact on gravity is difficult to infer
from inspection of the set to set scatter alone.

In the following we investigate different OTL corrections and
identify OTL models that are most successful in reducing the cam-
paign set to set scatter (�SET).

In general, OTL corrections are easily computed from pre-
determined amplitude and phase coefficients for sinusoids with
frequencies matching the major tidal constituents (Petit and

Fig. 4. Stability of the FG5-226 AG meter for the 2005–2014 period, as derived from
repeated gravity observations at 20 different sites. The gravity time series of each
station is reduced for the site-specific mean value and GIA trend, thus showing
residual temporal variations including instrumental drift only.

Luzum, 2010, Ch. 7). The coefficients are computed by convolving
global ocean tide (GOT) models with Green’s functions formed by
load Love numbers (Farrell, 1972), and are available through M.S.
Bos and H.-G. Scherneck’s Ocean tide loading provider at http://
holt.oso.chalmers.se/loading/. This procedure is also implemented
in g9, and for our standard gravity estimates (g0, see Table S1), OTL
was computed with the FES2004 GOT model (Lyard et al., 2006),
with the exception of KAUT and TRYB/TRYC, where no OTL effect
was computed due to their inland locations.

An important difference between g9 and the OTL provider is that
the latter refines the spatial resolution of the GOT model gradually
towards the observation point and checks whether new GOT cells
are located on land or sea (Penna et al., 2008). g9 also refines the
GOT model towards the observation point, but does no land/sea
check of the new cells (O. Francis, personal communication,
2016).

With coefficients from the OTL provider we  have explored a suite
of GOT models, i.e., FES2004, CSR4.0 (Eanes, 1994), DTU10 (Cheng
and Andersen, 2010), EOT11 (Savcenko and Bosch, 2011), GOT4.8
(Ray, 1999), NAO99b (Matsumoto et al., 2000), OSU12 (Fok et al.,
2012), Schwiderski (Schwiderski, 1980), and TPXO7.2 (Egbert and
Erofeeva, 2002). These models were chosen as they represent the
latest release from each group available at the OTL provider.

Lysaker et al. (2008) showed that careful local modeling of the
OTL correction (direct Newtonian and displacement of the observ-
ing point due to load) corresponded better with the OTL signal at
selected high-latitude coastal stations in Norway than did the effect
computed from GOT models. Thus for FES2012 (produced by Nov-
eltis, Legos, and CLS Space Oceanography Division and distributed
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Table  3
The gravitational and loading effects of a one-meter sea-level anomaly within 10
km of coastal gravity sites in Norway, and the amplitude of the M2  tidal constituent
for the attraction component. All in �Gal.

Code Gravitation due to a
1 m sea-level
anomaly

Loading due to a
1 m sea-level
anomaly

Amplitude of M2
(attraction only)

ANDO 3.4 0.20 3.7
BODB 0.6 0.22 1.1
BODA 0.3 0.25 0.8
HAMM 3.1 0.13 3.0
HONN 6.4 0.28 5.9
JON2 4.8 0.16 1.5
KOL1 0.3 0.29 0.1
KOL2 0.5 0.30 0.2
STVA 1.5 0.26 0.2
TROM 1.4 0.14 1.6
TRDA 2.6 0.27 2.1
VAGA 4.2 0.21 3.2
VEGA 0.1 0.17 0.6
ALES 9.8 0.26 6.9

by Aviso, with support from CNES, at http://www.aviso.altimetry.
fr) as well as NAO99b, we investigate OTL corrections as computed
by an in-house software. The routines closely follow methods used
by the OTL provider, although with two important distinctions.

First, we have used a higher-resolution coastline provided by
the Norwegian Mapping Authority (NMA), with a level of detail
corresponding to national maps in scale 1:50,000, and termed the
N50 coastline hereafter. It is complete and includes all islands
and reefs along the Norwegian coast with an area greater than
20,000 m2.

Second, our software allows for choosing which regions are
to be included in the convolution. We  have used this function-
ality to investigate the effect of replacing the GOT model with
predicted tides based on tide-gauge observations when comput-
ing the attraction from the tides in the local zone. The local zone
is here defined as the area within 10 km of the gravity site. The
method is a development of the one demonstrated by Lysaker et al.
(2008). By this approach the gravitational effect of the local tides
was modeled by (i) dividing the local zone into spherical sectors,
(ii) assigning to each sector a uniform layer of water correspond-
ing to sea level as observed by a local tide gauge, (iii) computing
the attraction from each sector, (iv) eliminating sectors on land,
and (v) add together the contributions from the individual ocean
sectors.

The size of the spherical sectors was adjusted depending on the
distance from the observation point, i.e., the length of the outer arc
was set to 25, 50, and 200 m in the zones 0–500, 500–1000, and
1000–10,000 m from the observation point, respectively. Each sec-
tor was classified as land or ocean by comparing the sector midpoint
coordinates with the N50 coastline.

In this work, NTL is the combined effect of gravitational attrac-
tion and loading of the seabed due to non-tidal variations in sea
level. The gravitational attraction component was modeled by the
above procedure, using spherical sectors with a water thickness
equal to the difference between actual and predicted sea level as
observed by a local tide gauge. For the loading components, we
assumed that sea level responds like an inverted barometer (IB,
static atmospheric loading effect). This implies that sea level vari-
ation due to changing atmospheric pressure does not induce any
loading on the sea floor. Thus, before computing the loading effect,
observed sea level was corrected for the IB effect using Wunsch and
Stammer (1997, Eq. (1)).

We have computed refined OTL and NTL corrections at 14 coastal
gravity sites in Norway (Table 3), with remaining sites excluded
due to their inland locations. The gravitational and loading effects
of a one-meter sea-level anomaly at the coastal gravity sites is

shown in Table 3, where the actual gravitational effect may be
found by scaling the one-meter effect with the actual sea-level
anomaly.

We have used tide-gauge records from the NMA  database, with
a sampling rate of 10 minutes and all observations referring to
present mean sea level (1996-2014 inclusive). Unfortunately, there
are no tide gauges within the local zones of JON2, KOL1, KOL2,
VEGA, and VAGA. For these sites, sea level was derived by applying
site-specific scale factors and time delays to observations from the
nearest tide gauge. The scale factors and time delays were obtained
from the tide and sea-level web  service of the NMA  at http://www.
kartverket.no/en/sehavniva/.

For each gravity site, we  identify the ocean loading corrections
that reduce �SET as much as possible, combining all OTL and NTL
corrections. Table 4 shows the average percentage reduction in �SET
for each site. We  note that STVA and JON2 stand out with low reduc-
tions. For STVA, this is due to a weak OTL signal related to a M2
amphidromic point in the North Sea, giving a locally low tidal range
(0.32 m between mean high and mean low tide). At JON2 the aver-
age is strongly influenced by the 2005.482 campaign, which has a
low �SET of 1.2 �Gal. When applied to this campaign, �SET increases
for several OTL corrections, resulting in a negative reduction of �SET.

With few exceptions, the OTL corrections computed by g9
reduce �SET less than the corrections computed by the OTL provider
or the in-house software. This also holds for FES2004 as used by
both g9 and the OTL provider.

Table 4 suggests that N50 improves the fit between obser-
vations and models at several sites (e.g., NAO99b(N50) com-
pared with NAO99b(OTLP), and FES2012(N50) compared with
FES2004(OTLP)). Largest improvements are found at HONN and
HAMM for NAO99b and FES2012, and at TRDA and VAGA for
NAO99b. For these combinations, the N50 coastline reduces �SET by
7.5% to 22.5%. We expect coastline accuracy to have largest influ-
ence on gravity sites that are in immediate vicinity of the ocean.
Indeed the sites showing the largest improvements are also among
those closest to the ocean, e.g., HAMM and HONN (75 m).

For most stations we observe further improvement when the
N50 coastline is combined with local tide-gauge observations. The
change in reduced �SET ranges from −0.5% to 3.7% for NAO99b, and
from 0% to 21.3% for FES2012. Both TRDA and JON2 are located
inside fjords. Comparing NAO99b and FES2012 at these sites, the
largest effect of introducing tide-gauge observations is seen for the
latter, suggesting that FES2012 does not capture the tidal regime
in these fjords.

Choosing a best-performing model is challenging, as their per-
formance depends on the gravity site. Considering all models,
NAO99b and FES2012 in combination with the N50 coastline per-
form best at 9 out of 14 sites.

Corrections from the OTL provider give the best results at BODA,
VEGA, KOL1, JON2, and STVA, where all sites but JON2 have in com-
mon that the M2 amplitude of the attraction component is less
than 1 �Gal (see Table 3). This suggests that careful modeling of
the local zone is important mainly at sites with a strong attraction
component.

Table S1 shows the final ocean loading corrections for all coastal
gravity campaigns, together with standard and refined set to set
scatters and the chosen ocean loading model. As the standard grav-
ity estimates from g9, g0, have already been corrected for OTL
(�g0

OTL), we  present the change in OTL correction, i.e., ıgOTL =
�gOTL − �g0

OTL, to ease the application of the refined OTL correc-
tion �gOTL. NTL is not treated in g9; hence, the complete correction
is listed as �gNTL.

Typically, OTL and NTL contribute to a campaign gravity value
by a few tenths of a �Gal, although some corrections reach
∼2 �Gal. The refined OTL correction ranges from −0.55 �Gal (STVA
2006.855) to 1.81 �Gal (ALES 2006.384), while the new NTL
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Table 4
Average percentage reduction in set to set scatter (�SET) for each gravity site, obtained by applying OTL corrections from different models. Also includes NTL. Sites ordered
along  the coast from north to south. Only campaigns where raw data is available are included.

Code FES2004 FES2004 CSR4.0 DTU10 EOT11a GOT4.8 OSU12 SCHW80 TPXO7.2 NAO99b NAO99b TG+NAO99b FES2012 TG+FES2012
ga OTLPb OTLP OTLP OTLP OTLP OTLP OTLP OTLP OTLP N50c N50 N50 N50

HONN 25.5 34.4 20.9 35.6 35.7 34.1 35.2 37.8 35.0 31.8 57.3 61.0 58.7 60.9
HAMM 34.6 44.2 46.0 44.4 45.1 45.1 42.9 42.9 44.4 47.3 56.8 57.0 58.2 58.3
TROM 30.0 30.8 35.0 30.6 31.4 36.4 35.9 35.9 36.9 35.6 35.3 37.0 31.2 37.7
ANDO 53.9 62.2 55.3 62.8 63.3 62.5 63.3 58.7 62.5 63.9 63.7 64.3 62.2 63.3
BODA 36.1 39.6 34.9 39.7 39.4 38.7 39.5 39.9 38.3 39.4 38.7 38.8 39.5 39.5
BODB  45.1 50.0 47.9 50.5 50.1 50.9 50.9 50.8 49.6 51.3 51.2 51.4 50.0 50.3
VEGA  25.3 26.2 26.9 25.9 25.8 26.5 26.7 25.4 25.4 26.6 26.7 26.7 26.0 26.0
TRDAd 21.6 26.1 21.0 25.1 25.1 25.4 25.1 23.3 29.8 34.7 42.2 45.6 24.1 45.4
ALES  25.4 46.0 44.4 45.6 45.8 47.6 42.1 30.9 41.5 48.5 49.6 50.0 48.9 50.2
VAGA 32.4 39.3 27.9 39.0 39.4 34.1 35.1 32.6 36.4 36.4 47.0 47.5 40.7 47.3
KOL1 13.8 15.2 17.5 16.3 16.7 18.2 16.9 14.6 16.7 17.3 17.4 17.3 15.6 15.7
KOL2 32.9 40.0 37.8 39.4 40.4 39.5 40.1 33.7 40.6 42.6 43.2 43.1 41.9 42.2
JON2  9.3 3.8 3.4 3.1 4.0 16.5 10.3 12.0 19.6 18.7 14.2 15.4 −0.7 17.6
STVA  −0.2 1.0 4.8 2.0 2.5 2.4 2.5 2.1 2.7 4.1 4.7 4.2 1.6 1.8

a Original g9 OTL correction.
b OTL provider.
c In-house software with higher-resolution coastline.
d Not including the 2004.475 campaign.

correction ranges from −1.86 �Gal (ALES 2003.715) to 1.04 �Gal
(ALES 2008.724).

2.2. Atmospheric and hydrological effects

Atmospheric density variations in time cause changes in the
direct Newtonian gravitational attraction from the air mass around
the gravimeter, as well as varying crustal and ocean surface
deformation due to loading. Conventionally, local pressure and
gravity variations are correlated with an admittance factor of
A = 0.30 � Gal/hPa, in accordance with IAG Resolution No. 9, 1983.
This admittance factor is used in the correction �gATM for atmo-
spheric pressure implemented in g9, �gATM = A (Po − Pn), where
Po is the in situ pressure as observed by the FG5 barometer, and

Pn = 1013.25
(

1 − 0.0065H/288.15
)5.2559

is the nominal baromet-
ric pressure (H is the gravity site height in meters), in accordance
with DIN Standard #5450. A more precise description of A allows it
to vary in space and time, and depend on the total global mass dis-
tribution of the atmosphere. Typically, an improved atmospheric
effect on gravity is computed by incorporating atmospheric mass
attraction and load considering zones of increasing distance to the
gravity site (Gitlein et al., 2013).

Having reduced the gravity value for the time-variable tidal,
polar motion, and atmospheric mass components, it may  remain
strongly influenced by hydrological variations (Mikolaj et al., 2015).
The effect of hydrology on the observed gravity value is usu-
ally not considered when processing absolute gravity observations
(Timmen, 2010), and is not treated in g9.

For the computation of total atmospheric (ATM) and global
hydrological (GH) effects on gravity we have tested the novel
matlab® tool mGlobe (Mikolaj et al., 2016), developed at the
German Research Centre for Geosciences (GFZ) in collaboration
with the University of Vienna, obtained from https://github.com/
emenems/mGlobe (M.  Mikolaj, personal communication, 2015).

For the computation of the ATM effect, we have used 2D
and 3D European Centre for Medium-Range Weather Forecasts
(ECMWF) Interim Reanalysis (ERA Interim) data (Dee et al., 2011)
as input model, obtained from http://apps.ecmwf.int/datasets/
data/interim-full-daily. The temporal resolution was chosen to be
six-hourly, and all data are given on 0.75◦×0.75◦ grids, with a sur-
face geopotential (orography) grid as height reference (where the
height in meters is obtained by dividing the geopotential with
9.80665 ms−2).

Using the coarse orography resolution of 0.75◦×0.75◦ will often
give large height discrepancies between actual gravity site height
and orography height. This spatial deficiency, together with tempo-
ral deficiency (six-hourly), can be taken into account by considering
the difference between pressure data from ERA Interim at orogra-
phy height and actual in situ pressure at gravity site height. This
difference in ATM effect, or residual effect �, is then computed by
the single admittance approach outlined in the above, i.e.,

� = −A
(

Psite
in situ − Poro

ERA

)
, (3)

where A is the site-specific admittance factor. Gitlein (2009)
estimated A at ANDO, BODB/BODA, HONN, KAUT, TROM, TRDA,
TRYB/TRYC, ALES, and NMBU as well as a mean value of
0.32 �Gal/hPa for Fennoscandia using ECMWF  data. For the com-
putation of Eq. (3) we  used the site-specific A where available, and
the mean value for Fennoscandia for the remaining sites.

We do not have actual in situ pressure measured by the FG5
barometer for the adopted gravity values (where we do not have
raw data). Therefore, we obtained in situ pressure data for all grav-
ity campaigns by cubic spline interpolation of six-hourly pressure
data from nearby meteorological stations of the eKlima database
of the Norwegian Meteorological Institute at http://eklima.met.no.
The average distance between the meteorological station and the
gravity site is ∼23 km.

We investigated the applicability of the interpolated in situ
pressure values by comparing them with actual in situ pressure
measured by the FG5 barometer where available (86 campaigns).
Simulated single admittance ATM corrections were computed
using interpolated in situ pressure and compared with those from
g9. The mean difference between simulated and actual ATM cor-
rection is ∼0.4 �Gal. In addition, we checked the pressure values of
ERA Interim against the interpolated pressure values (for the same
86 campaigns and with ERA and eKlima pressure at equal height),
and found a mean difference of ∼0.7 hPa, in agreement with pre-
vious comparisons of in situ and ECMWF  pressure (Gitlein, 2009).
We therefore conclude that the interpolated in situ pressure values
are applicable.

For the computation of the GH effect, we have used the
ACE2 30” × 30” digital elevation model (DEM) (Berry et al., 2010),
as well as the Global Land Data Assimilation System (GLDAS)
Version 2 NOAH (0.25◦×0.25◦) hydrological data (Rodell et al.,
2004), downloaded through mGlobe. GLDAS has two versions, 2.0
and 2.1, covering the time periods 1948–2010 and 2000–2015,
respectively. Where available, we have used the most recent
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version. GLDAS/NOAH captures the contribution of global conti-
nental water storage to gravity variations by considering four soil
moisture layers (0–10 cm 10–40 cm,  40–100 cm,  and 100–200 cm)
and snow (snow water equivalent); hence, it does not consider
groundwater.

Although the IAG resolution (1983) recommends the removal
of the mean atmosphere, this is not done in the current version
of mGlobe, which computes effects with respect to an arbitrary
reference (M.  Mikolaj, personal communication, 2015). However,
an absolute reference is not important here as we only consider
temporal variations. Thus, we have computed long-term means of
both ATM (gERA

ATM) and GH (gGLDAS/NOAH
GH ) effects and subtracted these

from the short-term effects gERA
ATM and gGLDAS/NOAH

GH . For consistency,
we have chosen the time period 2004-2009 inclusive for both mean
ATM and GH effects. Fig. 5 shows the variation of mean ATM and GH
effects at NMBU for the chosen epoch. The mean value at a given
time step is computed using mGlobe output up to this time step
only, i.e., it is computed in a cumulative fashion. We  observe that the
variation of the mean ATM effect stabilizes earlier than the mean
GH effect, and by the end of the sixth year, both means vary by less
than ∼0.03 �Gal, which is well within model uncertainties. Thus,
we conclude that the chosen time period suffices as a stable long-
term mean for all gravity sites in this work. Short-term ATM and
GH effects were computed using six-hourly and daily resolutions,
respectively, overlapping the gravity campaigns. For the ATM effect,
overlapping values were subsequently interpolated to the actual
time spans of the gravity campaigns.

The correction for the GH effect was computed according to

�gGH = −
(

gGLDAS/NOAH
GH − gGLDAS/NOAH

GH

)
. (4)

Computing the ATM correction is slightly more laborious. First,
the 2004–2009 long-term mean � of the residual effect (Eq. (3)), was
computed. Second, there will be a bias  ̌ between the ATM correc-
tion referring to the long-term mean pressure using ERA Interim,

P
04−09
ERA , and the standard ATM correction referring to nominal pres-

sure Pn. To ease comparison and facilitate the computation of the
difference between standard and refined corrections, we  computed

 ̌ at orography height according to

 ̌ = 0.3
(

Pn − P
04−09
ERA

)
. (5)

Finally, the correction for the ATM effect was  computed by

�gATM = −
[(

gERA
ATM − gERA

ATM

)
+
(
� − �

)
+ ˇ

]
. (6)

Table S1 shows ATM and GH corrections for all gravity cam-
paigns. As was the case for ocean loading, the standard gravity
estimates from g9, g0, have already been corrected for the ATM
effect (�g0

ATM), and we present the change in ATM correction, i.e.,
ıgATM = �gATM − �g0

ATM. Hydrology is not treated in g9; hence, we
list the complete correction �gGH.

The refined ATM correction ranges from −1.9 �Gal (TRYC
2003.723) to 1.1 �Gal (e.g., HONN 2007.507), which is in the same
order as the refined ATM corrections of Gitlein (2009). The GH cor-
rection ranges from −1.5 �Gal (TRYB 2008.254) to 1.7 �Gal (TRYC
2006.614), corresponding to previous studies (e.g., Pálinkáš et al.,
2012; Mikolaj et al., 2015).

3. Secular gravity trends and gravity-to-height ratios

Table 5 shows secular gravity trends for each observation site.
The rates ġ0 and ġ were computed by fitting a linear trend using
ordinary least-squares regression (OLR, without weights) to the
gravity data sets g0 and g of Table S1, respectively. The percent-
age change �ġ of ġ with respect to ġ0 has been computed, as well

as statistics (for sites with more than two  observations) in the form
of coefficients of determination for both ġ0 and ġ, and the 95% confi-
dence interval for ġ. The coefficient of determination was computed
according to R2 = 1 − SSR/SST ∈ [0, 1], where SSR and SST are the
residual and total sum of squares, respectively.

R2 indicates how well the linear model fits the gravity data, and
will increase as the model fit to the data improves. R2

0 and R2 denote
the coefficient of determination for the standard gravity estimates
g0 and the refined estimates g, respectively. Looking at Table 5, we
note that both R2

0 and R2 reveal both good and bad linear model
fits. R2 gives a better fit to the linear model than R2

0 at nine sites.
95% confidence intervals shows a significantly negative trend at six
sites.

In order to assess our empirical gravity rates, a modeled grav-
ity rate, ġM , was computed using height rates of change ḣ from a
recent empirical absolute land uplift model (given in ITRF2008) of
the NMA, based on a combination of GNSS and leveling (O. Vestøl,
personal communication, 2015), together with a recent modeled
relation between gravity and height rates of change

(
ġ/ḣ

)
M

of

−0.163 �Gal mm−1 for GIA (Olsson et al., 2015) (Table 5). It is
generally challenging to quantify the uncertainty of

(
ġ/ḣ

)
M

, as it
incorporates uncertainties of both the ice and Earth models used.
However, Olsson et al. (2015) computed

(
ġ/ḣ

)
M

for Fennoscan-
dia using six Earth models with varying upper mantle viscosities
(their Table 3), giving a maximum difference of 0.008 �Gal mm−1.
We adopted this model spread multiplied by two as an uncer-
tainty estimate for

(
ġ/ḣ

)
M

, yielding 0.016 �Gal mm−1 (H. Steffen,

personal communication, 2016). The uncertainties of ḣ were deter-
mined as a sum of the observation error and systematic errors due
to origin drift along the three directions (0.5 mm yr−1) and scale
error (0.3 mm yr−1) of the reference frame (Collilieux et al., 2014).
In turn, the uncertainties of ġM were computed by formal error
propagation.

Considering ġM as a “true” reference, �ġ indicates that ġ per-
forms better than ġ0 at nine gravity sites. For the remaining sites,
the refined gravity corrections give no significant improvement or
even degrade the trend. We note that these results are similar to the
results of Gitlein (2009), where refined ATM corrections were esti-
mated and found to improve the gravity rates at 6 out of 11 sites,
with no observed improvement on average. We also note that in
some cases, although the linear model fit degrades, the rate itself
is improved.

Similar conclusions can be drawn from Fig. 6, which shows the
linear gravity rates ġ0, ġ,  and ġM for all gravity sites. With the excep-
tion of HONC and TROM, the observed gravity rates are larger than
the modeled ones, particularly BODA, KAUT, and TRDA.

Combining linear rates of change in gravity and height gives a
convenient means for interpreting the physical processes underly-
ing vertical crustal deformation, and is the only way to distinguish a
gravity change due to vertical deformation from gravity change due
to mass redistribution (de Linage et al., 2007). The relation between
gravity and height rates of change due to GIA in Fennoscandia
has been subject to extensive research, and the proportionality
constant between gravity and height rates of change determined
within the range of −0.154 to −0.217 �Gal mm−1 (e.g.,Wahr et al.,
1995; Ekman and Mäkinen, 1996; Gitlein, 2009; Pettersen, 2011;
Olsson et al., 2015).

Based on the results presented in Fig. 6, we  formed a subset of
reliable rates, where a reliable rate is defined as within the uncer-
tainty of ġM . In other words, an agreement of ġ0 or ġ with ġM gives us
confidence in that the empirical rates mainly reflect GIA. The sub-
set contains empirical gravity rates from 10 sites, namely BODB,
HONN, HONA, HONB, KOL1, STVA, TRYB, TRYC, ALES, and NMBU.
These rates have been used for the following comparison of gravity
and height rates of change.
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Fig. 5. Variation of mean ATM and GH effect at NMBU 2004–2009, as computed with mGlobe. The mean value at a given time step is computed cumulatively, using mGlobe
output up to this time step only.

Fig. 6 and Table 5 reveal a considerable variation in the uncer-
tainties of the empirical gravity rates, suggesting a weighted linear
regression (WLR) approach for the estimation of gravity versus
height rates of change. It is not possible to derive uncertainties for
the gravity rates at HONA and KOL1, as they are based on two  obser-
vations only. We  approximated these uncertainties by plugging an
average of both campaign uncertainties (�tot) as well as their time
span into Eq. (1). This gives uncertainties of �ġ ≈ 0.5 �Gal yr−1 and
�ġ ≈ 1.7 �Gal yr−1 for HONA and KOL1, respectively. Eq. (1) must
be taken as a rough uncertainty estimate when only two observa-
tions are used, and we consider the uncertainty estimate of KOL1
unrealistically large. Therefore, we decided to use both OLR and
WLR  approaches.

Fig. 7 shows gravity versus height rates of change using
the standard gravity rates ġ0, which yields a WLR  of ġ0 =
−0.135 (±0.100) − 0.142ḣ (±0.018) �Gal yr−1 and an OLR of ġ0 =
−0.175 (±0.137) − 0.143ḣ (±0.032) �Gal yr−1. Using ġ,  Fig. 8
shows a WLR  of ġ = −0.210 (±0.183) − 0.133ḣ (±0.030) �Gal yr−1

and an OLR of ġ = −0.097 (±0.196) − 0.167ḣ (±0.045) �Gal yr−1.
We first note that WLR  and OLR based on ġ0 are quite similar,
while WLR  and OLR based on ġ differ considerably. Considering
the constant terms and their relatively large uncertainties, only
OLR based on ġ is statistically equal to zero. The regression slopes
based on OLR (

(
ġ/ḣ

)
0

= −0.143 (±0.032) �Gal mm−1,
(

ġ/ḣ
)

=
−0.167(±0.045) �Gal mm−1) and WLR  (

(
ġ/ḣ

)
0

= −0.142 (±0.018)

�Gal mm−1,
(

ġ/ḣ
)

= −0.133 (±0.030) �Gal mm−1) are all in

Table 5
Linear rates of change in gravity and height.

Code ġ0 R2
0 ġ R2 CIġ [L U]a ġM �ġ

b ḣc

(�Gal yr−1) (�Gal yr−1) (�Gal yr−1) (�Gal yr−1) (%) (mm  yr−1)

ANDO −1.13 ± 0.38 74.2 −0.91 ± 0.44 58.7 [−2.32 0.49] −0.24 ± 0.11 19.5 1.47 ± 0.63
BODB  −1.06 ± 0.63 59.0 −1.18 ± 0.62 64.4 [−3.46 1.49] −0.55 ± 0.12 −11.0 3.35 ± 0.62
BODA  −2.28 ± 0.39 94.6 −2.31 ± 0.44 93.3 [−4.19 − 0.43] −0.54 ± 0.12 1.4 3.33 ± 0.62
HAMM  −1.44 −1.61 −0.37 ± 0.11 11.9 2.26 ± 0.66
HONN  −0.38 ± 1.04 4.2 −0.57 ± 0.57 24.7 [−2.39 1.26] −0.31 ± 0.11 −49.9 1.93 ± 0.67
HONA  −0.82 −0.88 −0.82 ± 0.13 −7.3 5.04 ± 0.62
HONB  −0.93 ± 0.09 98.2 −1.02 ± 0.13 96.8 [−1.58 − 0.45] −0.83 ± 0.13 −9.4 5.09 ± 0.62
HONC  −0.15 ± 0.27 2.9 −0.24 ± 0.27 7.3 [−0.84 0.36] −0.82 ± 0.13 −62.8 5.01 ± 0.62
JON2  −0.80 −0.65 −0.33 ± 0.11 19.1 2.03 ± 0.61
KAUT  −2.16 ± 0.38 91.7 −2.43 ± 0.39 92.6 [−3.68 − 1.17] −0.79 ± 0.13 −12.2 4.84 ± 0.63
KOL1  −0.38 −0.12 −0.25 ± 0.11 67.8 1.54 ± 0.63
KOL2  −0.93 −0.75 −0.25 ± 0.11 19.7 1.54 ± 0.63
STVA  −0.42 ± 0.24 37.6 −0.53 ± 0.23 50.7 [−1.13 0.07] −0.22 ± 0.10 −27.6 1.32 ± 0.61
TROM  −0.08 ± 0.19 2.8 −0.12 ± 0.18 6.3 [−0.57 0.33] −0.42 ± 0.11 −50.0 2.59 ± 0.62
TRDA  −1.84 ± 0.24 87.9 −1.82 ± 0.22 89.3 [−2.33 − 1.31] −0.70 ± 0.12 1.1 4.28 ± 0.61
TRYB  −1.32 ± 0.27 82.4 −1.39 ± 0.24 87.2 [−2.01 − 0.78] −1.10 ± 0.15 −4.8 6.74 ± 0.62
TRYC  −1.05 ± 0.08 91.5 −1.06 ± 0.07 93.3 [−1.22 − 0.90] −1.10 ± 0.15 −1.0 6.74 ± 0.62
VAGA  −0.86 ± 0.11 96.7 −0.81 ± 0.22 86.6 [−1.77 0.16] −0.33 ± 0.11 5.7 2.03 ± 0.61
ALES  −0.29 ± 0.14 60.7 −0.01 ± 0.31 0.0 [−0.99 0.97] −0.26 ± 0.10 96.3 1.60 ± 0.62
NMBU  −0.55 ± 0.24 39.1 −0.58 ± 0.29 33.1 [−1.26 0.09] −0.77 ± 0.13 −5.5 4.74 ± 0.61

a Lower (L) and upper (U) limits of the 95% confidence interval for ġ.
b Change of ġ with respect to ġ0.
c From the NMA  empirical land uplift model, given in ITRF2008.
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Fig. 6. Linear rates of change in gravity. ġ0 and ġ are empirical linear gravity rates based on standard and refined gravity corrections, respectively. ġM are modeled rates using
a  recent empirical land uplift model together with a theoretical relation between the gravity and height rate of change for GIA.

Fig. 7. Gravity versus height rates of change based on standard gravity rates ġ0.
Height rates given in ITRF2008. The white diamonds denote the gravity site, with
vertical (gravity) and horizontal (height) error bars reflecting the respective uncer-
tainties. The solid orange line shows the WLR, with the dark gray area showing its
95% confidence interval. The solid blue line shows the OLR, with the light gray area
showing its 95% confidence interval. (For interpretation of the references to colour
in  this figure legend, the reader is referred to the web version of this article.)

agreement with
(

ġ/ḣ
)

M
and the reported range. However, in gen-

eral, ġ gives a more uncertain regression than ġ0.

4. Discussion

There are limitations in our refined modeling of ATM and GH
gravitational effects. We  expect an ATM modeling inaccuracy due
to using the coarse orography rather than a DEM in the local zone. In
turn, the residual effect needs in-situ pressure observations which
were not available for all campaigns, further limiting the accuracy.

Fig. 8. Same as Fig. 7, but based on refined gravity rates ġ.

For the GH effect, an obvious limitation is that the local zone is
completely left out, when it is predominantely the local hydrology
in the local zone which is expected to impact on the observa-
tions (e.g., Virtanen et al., 2006; Leirião et al., 2009). Further, as
GLDAS/NOAH explicitly does not include the effect of groundwa-
ter variations, these have not been considered neither globally nor
locally. Groundwater variations may  lead to gravity changes in the
order of ∼6–7 �Gal depending on local topography and ground
porosity (Breili and Pettersen, 2009), and may  dominate our con-
sidered effects.

Regressions based on two  gravity campaigns only, i.e., HAMM,
HONA, JON2, KOL1 and KOL2 are inherently uncertain, and although
HONA and KOL1 present reasonable trends, they are obviously not
in agreement with the needed number of observations as pre-
scribed by Eq. (1). Because of the larger gravity rate uncertainties
at HONA and KOL1, the WLR  is similar to a linear regression where
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both are left out. Thus, the WLR  underlines the difficulty of using
these rates.

Fig. 1 shows that the majority of the Norwegian AG sites are
located along the coast, relatively close to the zero-line of present
GIA-induced rebound in Fennoscandia. Consequently, at these sites,
the signal we aim to describe (GIA) is weak, and other site-specific
unmodeled processes or observation noise may  dominate the rates.

Although the main component of vertical land movement
in Fennoscandia is GIA, smaller elastic processes (present-day
changes due to, e.g., local tectonics or melting glaciers) may  also
give rise to vertical deformations. For example, by observing a misfit
between observed uplift (using tide gauges, leveling, GPS, and grav-
ity) and a GIA model, Fjeldskaar et al. (2000) found a weak tectonic
uplift in the order of ∼1 mm yr−1 in addition to the uplift due to GIA
in large parts of Norway. Other results confirm this misfit between
GIA model and observations in the Norwegian area between 65◦N
and 68◦N (e.g., Olesen et al., 2013; Kierulf et al., 2014), suggest-
ing that this area might not be primarily affected by GIA, but other
geophysical processes. Therefore, the Norwegian data set alone is
insufficient for extensive GIA modeling in Fennoscandia, a topic
which is left to the NKG joint analysis on postglacial gravity change,
considering observations in the entire region.

Bearing the above considerations in mind, we return to our
assessment of the refined gravitational corrections (Section 3). Here
we consider a reliable secular gravity trend as one in agreement
with ġM , i.e., a GIA model. Thus, if the rate at a gravity site agrees
well with ġM it is reasonable to believe that the vertical displace-
ment of that site is dominated by GIA. For almost all gravity rates
of the reliable subset chosen in Section 3, ġ0 agrees more with ġM

than does ġ.  In other words, the refined gravitational corrections
do not offer an improvement of the reliable rates, which might be
expected, as the refined corrections mainly impact gravity sites that
are not dominated by GIA. At sites that are still affected by resid-
ual signals caused by other geophysical processes than GIA, refined
and additional modeling is needed. Exceptions are TRYC and NMBU;
however, at these sites ġ0 and ġ are quite similar.

Consequently, ġM might not be the optimal choice for assessing
the refined corrections, as an agreement with ġM occurs at sites
where GIA already is the dominant signal. At sites where ġ and
ġ0 depart from ġM (e.g., ANDO, BODA, HAMM,  KAUT, and TRDA),
the signal is possibly dominated by other processes (e.g., tecton-
ics, groundwater). Heck and Mälzer (1983) investigate

(
ġ/ḣ

)
for

tectonic processes using leveled heights and relative gravimetry,
giving a linear regression of ∼−1.5 �Gal mm−1. Thus, if we  consider
a tectonic uplift of ∼1 mm yr−1, the resulting gravity change could
be 1 − 2 �Gal yr−1. Furthermore, de Linage et al. (2009) explore the
variability of

(
ġ/ḣ

)
due to different surface loads, and report that(

ġ/ḣ
)

is quite sensitive to local masses, where smaller surface load

sizes give larger absolute values of
(

ġ/ḣ
)

. For example, they give
a mean ratio of ∼−0.87 �Gal mm−1 over continents due to hydro-
logical loading.

We stress, however, that it remains to be verified whether the
observed deviations from ġM are due to the geophysical processes
discussed herein. In addition to other geophysical processes, the
misfit between GIA model and observations may  be explained by
errors in the GIA model or observation errors (GNSS, leveling, and
AG).

The stability and accuracy of AG meters are usually assessed
by AG intercomparisons, which have shown systematic biases
between different instruments. Pettersen et al. (2010) computed
gravity differences for two  instruments measuring simultaneously
at a site using a suite of gravimeters used in Fennoscandia
2003–2006, and obtained an rms  error of ±3 �Gal. The European
Comparison of Absolute Gravimeters (ECAG) in 2007 (Francis et al.,
2010) showed an agreement of ±2 �Gal between 20 instruments,

while ECAG 2011 showed an agreement of ±3.1 �Gal between 22
instruments (Francis et al., 2013). The first North American compar-
ison of 9 gravimeters showed an agreement of ±1.6 �Gal (Schmerge
et al., 2012). While differences that are larger than the observation
uncertainties may  indicate a possible systematic error, it is uncer-
tain to which extent these differences are reproducible or stable in
time. Consequently we did not consider applying an instrumental
offset to our data set.

5. Conclusions

We have compiled and analyzed all Norwegian FG5 AG obser-
vations from the 1993–2014 period, with an aim of exploring the
applicability of these data for GIA studies. Raw observations have
been reprocessed using a common scheme, ensuring consistency
with respect to model and setup parameters. Adopted observations
by other instruments or agencies have been carefully incorporated
in the data set, with updated uncertainties.

To improve the separation of the different gravity rate sig-
nal contributors, we have investigated whether it is possible to
improve the corrections for geophysical processes other than GIA.
Using a suite of GOT models, we have compared standard OTL cor-
rections with results from a web service and an in-house software
incorporating the higher-resolution coastline N50 as well as tide-
gauge observations. Furthermore, we have tested the novel mGlobe
tool for the computation of ATM and GH effects. Refined OTL, NTL,
ATM, and GH corrections have all been applied to the standard
gravity values to form refined gravity values.

Secular gravity trends based on both standard and refined
corrections have been computed. These, in turn, have been com-
pared with modeled rates based on a recent empirical land uplift
model and theoretical relation between the gravity and height
rate of change for GIA. The refined gravity rates mainly impact
sites where GIA is not the dominant signal. This suggests that a
refined modeling is meaningful at sites that are still affected by var-
ious unmodeled or insufficiently modeled effects. Compared to the
modeled gravity rates, the refined gravity rates agree better than
standard rates at 9 out of 20 sites. This reveals the need for further
improvement of the refined corrections as well as the consideration
of remaining unmodeled effects. We  have not considered the effect
of local hydrology in this work. Although seasonal variations will
have less of an impact on the rates with time, we  conclude it should
be taken into account if possible (e.g., by monitoring groundwater
variations).

Based on a subset of gravity trends mainly reflect-
ing GIA, we have computed empirical estimates of the
ratio between gravity and height rates of change using
both standard and refined gravity corrections. The WLR
gives ġ0 = −0.135 (±0.100) − 0.142ḣ (±0.018) �Gal yr−1 and
ġ = −0.210 (±0.183) − 0.133ḣ (±0.030) �Gal yr−1, respectively.
The OLR gives ġ0 = −0.175 (±0.137) − 0.143ḣ (±0.032) �Gal yr−1

and ġ = −0.097 (±0.196) − 0.167ḣ (±0.045) �Gal yr−1, respec-
tively. The regression slopes are within −0.133 (±0.030) to
−0.167 (±0.045) �Gal mm−1, in agreement with previous empir-
ical and theoretical estimates. Therefore, this subset of the
Norwegian data may  well be embedded in the planned NKG joint
analysis on postglacial gravity change, which will consider data
from the entire region. We  expect the subset to be augmented
with additional sites in the future, as they become suitable for GIA
studies through improved corrections for remaining geophysical
effects and/or additional observations.

Finally, the WLR  reveals the challenge of incorporating gravity
rates that are based on few observations, emphasizing the need for
extending the gravity time series. Both past and future observa-
tion of the AG reference frame in Norway is dependent on funding
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and operator availability. Consequently, the sampling interval and
number of observations at each gravity site is variable. Some of
the longer time series rely on quite few observations. We  therefore
conclude that although the Norwegian AG data set should be appli-
cable for further studies, extending the observation time series is
decisive for improving the gravity rates, and is expected to reveal
new and beneficial information at all gravity sites.
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Abstract This work is an investigation of three methods for
regional geoid computation: Stokes’s formula, least-squares
collocation (LSC), and spherical radial base functions (RBFs)
using the spline kernel (SK). It is a first attempt to compare
the three methods theoretically and numerically in a unified
framework. While Stokes integration and LSC may be re-
garded as classic methods for regional geoid computation,
RBFs may still be regarded as a modern approach. All meth-
ods are theoretically equal when applied globally, and we
therefore expect them to give comparable results in regional
applications. However, it has been shown by de Min (1995)
that the equivalence of Stokes’s formula and LSC does not
hold in regional applications without modifying the cross-
covariance function. In order to make all methods compara-
ble in regional applications, the corresponding modification
has been introduced also in the SK. Ultimately, we present
numerical examples comparing Stokes’s formula, LSC and
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data, to verify their equivalence. All agree on the mm level.
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1 Introduction

The global gravity field is typically represented using spher-
ical harmonics (SH). Consequently, in regional gravity mod-
eling, one usually splits the gravity signal into a global long-
wavelength part which is modeled using SH, and a regional
short-wavelength part, which is modeled using a suitable re-
gional method (Sansò and Sideris, 2013).

There exist several methods for approximating Earth’s
regional gravity field, of which integral formula solutions to
geodetic boundary value problems and least-squares tech-
niques have emerged as common approaches (Nerem et al.,
1995). A review and comparison of different regional grav-
ity modeling concepts is given by Tscherning (1981). More
recently, Schmidt et al. (2015) investigated different regional
gravity modeling methods through an International Associ-
ation of Geodesy Inter-Commission Committee on Theory
Joint Study Group. Considering geoid computation in par-
ticular, Stokes’s formula (Stokes, 1849) and least-squares
collocation (LSC) (Krarup, 1969; Moritz and Sünkel, 1978;
Moritz, 1980) are treated in most geodetic text books (Heiska-
nen and Moritz, 1967; Vanı́ček and Krakiwsky, 1986; Hofmann-
Wellenhof and Moritz, 2006; Torge and Müller, 2012).

Radial base functions (RBFs) are limited to a certain
spatial region, making them suitable for regional gravity field
modeling due to their space-localizing properties. There is a
vast amount of RBFs to choose from, as long as they rep-
resent harmonic kernel functions. They are versatile in that
their approximation characteristics and spatial distribution
can be adjusted, making it possible to use them for all kinds
of data sets and for combining different types of observa-
tions (e.g., Lieb et al., 2016). Regional gravity field model-
ing with RBFs can be done using numerical integration (e.g.,
Freeden and Schneider, 1998; Schmidt et al., 2002; Liu and
Sideris, 2003; Roland and Denker, 2005) or least-squares es-
timation approaches (e.g., Schmidt et al., 2007; Lieb et al.,
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2016). In this work we use the latter, which is the com-
mon geodetic approach, facilitating error analysis and prop-
agation. The mathematical foundation of RBFs, the special
RBFs known as spherical wavelets, and their application in
multiscale analysis are given by, e.g., Freeden et al. (1998),
Schmidt (2001), Jekeli (2005) or Schmidt et al. (2007). In
later years, we have observed an increased use of RBFs for
regional gravity modeling (Roland, 2005; Klees et al., 2008;
Eicker, 2008; Tenzer and Klees, 2008; Wittwer, 2009; Ben-
tel, 2013; Naeimi, 2013; Bentel et al., 2013a,b; Eicker et al.,
2014; Pock et al., 2014; Bucha et al., 2015; Naeimi et al.,
2015; Farahani et al., 2016; Lieb et al., 2016).

In this work we aim to show that regional geoid compu-
tation with RBFs is equivalent to Stokes’s formula and LSC,
in theory and in practice. Theoretical and numerical com-
parisons of Stokes’s formula and LSC was done by de Min
(1995), while a theoretical comparison of LSC and SKs was
discussed by Eicker (2008), both of which we review and
present in a unified framework. We show the theoretical equiv-
alence of Stokes’s formula, LSC, and RBFs in the global
case, as well as the breakdown of the equivalence of Stokes’s
formula and LSC in regional applications. We introduce the
remedial modification of the cross-covariance function of
LSC also in the SKs, such that all methods are equal also
in regional applications. Ultimately we present numerical
examples comparing the methods in a closed-loop environ-
ment, demonstrating their equivalence in practice.

Sect. 2 introduces the different modeling approaches,
while their theoretical equivalence in the global case is shown
in Sect. 3. The breakdown of their equivalence in regional
applications is shown in Sect. 4, and the remedial modi-
fications of LSC and SKs to restore their equivalence to
Stokes’s formula are applied. Numerical examples compar-
ing the methods are given in Sect. 5, while Sect. 6 summa-
rizes our results.

2 Modeling approaches

2.1 Stokes’s formula

Geoid heights N may be obtained from block mean grav-
ity anomalies ∆ ḡ by the integral formula of Stokes (1849).
It globally integrates the gravity anomalies over the whole
sphere σ , using the Stokes function S as integration kernel
(or weight),

N(P) =
R

4πγ

∫∫

σ

S(ψPq)∆ ḡq dσ , (1)

where R is the spherical Earth radius, γ is normal gravity
evaluated on the surface of the reference ellipsoid, and ψPq
is the spherical distance between computation point P and

data point q. Eq. (1) is a spherical convolution of the ∆ ḡq
function with the kernel S(ψPq), and can be solved exactly
by either numerical integration or by a one-dimensional Fast
Fourier Transform (1D-FFT) (Haagmans et al., 1993), where
the FFT is performed along parallels only. We have used the
FFT approach, implemented according to

N(ϕP)=
R∆ϕ∆λ

4πγ
F−1

1

[
∑
ϕ

F1 {S(∆λ )} ·F1
{

∆ ḡq cosϕ
}
]
,

(2)

where F1 denotes the 1D-FFT operator and F−1
1 its inverse,

and ∆ϕ and ∆λ are the latitudinal and longitudinal spac-
ing of the computation grid, respectively. Furthermore, the
Stokes function is computed by its closed formula (Hofmann-
Wellenhof and Moritz, 2006).

2.2 Least-squares collocation

LSC is an optimal estimation method in the statistical sense,
allowing the estimation of arbitrary gravity field quantities
from inhomogeneously distributed point observations. It takes
advantage of the knowledge of the signal covariance and
tries to minimize the prediction error.

Restricted to the case of geoid computation and in direct
comparison with Eq. (1), LSC can be written as

N(P) = CNg
Pq

(
Cgg

qq
)−1 ∆gq, (3)

where CNg
Pq is a matrix containing the signal cross-covariances

between the functionals N and ∆g between computation point
P and observations q, and Cgg

qq is the auto-covariance matrix
between all combinations of observations.

All covariances are obtained from the same covariance
function C(ψ), assumed to depend only on the horizontal
distance ψ between the considered points. In physical geodesy,
we typically take the covariance function of the disturbing
potential T to be the basic covariance function, from which
all covariances are computed by covariance propagation. The
covariance function can be written as

C(ψPq)=
1

8π2

2π∫

λ=0

π∫

θ=0

2π∫

α=0

T (θP,λP)T (θq,λq) sinθdθdλdα,

(4)

where (θ ,λ ) are spherical coordinates, and the points P(θ ,λ ),
q(θ ,λ ) are on the surface of the unit sphere.

The global integral in Eq. (4) can also be expressed as a
Legendre series,
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C(ψPq) =
∞

∑
n=2

(λ T
n )2cnPn(cosψPq), (5)

where Pn(cosψPq) are the Legendre polynomials, and cn
are the dimensionless signal degree variances, with λ T

n =
GM/R. The signal degree variances can be computed from
a set of spherical harmonic coefficients {∆C̄nm,∆ S̄nm},

cn =
n

∑
m=0

(
∆C̄2

nm +∆ S̄2
nm
)
, (6)

as obtained from a global gravity model (GGM), or by dif-
ferent empirical degree-variance models (Tscherning and Rapp,
1974; Jekeli, 1978; Flury, 2006; Rexer and Hirt, 2015).

2.3 Spherical splines

RBFs are isotropic functions which store most of their en-
ergy in a limited spherical cap around their origin, i.e., they
have a distinct space-localizing ability and are therefore said
to have quasi-local support.

Geoid computation with RBFs is performed according
to

N(P) =
K

∑
k=1

d̂kB(ψPk), (7)

where B(ψPk) are the RBFs which are placed on spa-
tially distributed grid points k, and d̂k are point-specific grav-
ity field parameters in the form of dimensionless coefficients.

As spherical isotropic functions, RBFs can be decom-
posed into a series of Legendre polynomials Pn(cosψPk),
where the spectral characteristics of a specific RBF depends
on the choice of Legendre coefficients Bn (see Eq. (8)). One
choice of Bn is to take the frequency response of the signal
into account, characterized by the signal degree variances.
These RBFs are known as spherical splines (Freeden et al.,
1998; Jekeli, 2005; Eicker, 2008). In terms of a harmonic
kernel, the spline kernel (SK) can be written as

BSK(ψPk) =
∞

∑
n=2

√
2n+1
4πR2 λnσnPn(cosψPk)

=
∞

∑
n=2

n

∑
m=−n

λnBSK
n Y R

nm(θP,λP)Y R
nm(θk,λk), (8)

where ψPk is the spherical distance between computation
point P and the origin of the SK at grid point k. The Leg-
endre coefficients are given by

BSK
n =

σn√
2n+1

, (9)

where σn =
√

cn are the degree standard deviations, λn are
the spectral eigenvalues including dimensioning, and

Y R
nm(θ ,λ ) =

1
R
√

4π

×
{

P̄nm(cosθ)cosmλ , m = 0,1,2, . . . ,n
P̄n|m|(cosθ)sin |m|λ , m =−n, . . . ,−2,−1

(10)

are the surface spherical harmonic base functions of degree
n and order m, as defined by Schmidt (2001). P̄nm(cosθ) are
the fully normalized associated Legendre functions.

We note that the Legendre coefficients of the spherical
splines differ slightly from the ones of the covariance func-
tion, and this is due to norm convergence issues (Eicker,
2008).

Eq. (7) represents the synthesis of geoid heights from
known coefficients d̂k. The coefficients are obtained from
gravity field observations by integration or parameter esti-
mation techniques. We follow the latter approach, and write
Eq. (7) in matrix notation as

N(P) = ANd, (11)

where d contains the spline coefficients d̂k according to Eq.
(7), and AN represents the prediction matrix according to
Eq. (8), with elements

AN
Pk =

∞

∑
n=2

n

∑
m=−n

λ N
n BSK

n Y R
nm(θP,λP)Y R

nm(θk,λk), (12)

and with λ N
n = GM/Rγ .

In agreement with geoid computation using Stokes’s for-
mula (Eq. (1)) or LSC (Eq. (3)) we derive the spline coeffi-
cients from observed gravity anomalies in an analysis step,
by inversion of the linear model

∆g+v = Agd. (13)

Thereby, ∆g is the observation vector and v is the error vec-
tor. Ag is the design matrix, with elements

Ag
kk =

∞

∑
n=2

n

∑
m=−n

λ g
n BSK

n Y R
nm(θk,λk)Y R

nm(θk,λk). (14)

and with λ g
n = GM/R2(n−1).

By inversion of the linear model (Eq. (13)), one coef-
ficient for each SK needs to be determined. This is an ill-
conditioned linear inverse problem, and the normal matrix
must be regularized in order to solve the system. Numerous
regularization techniques exist, and regularization remains
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an important topic within gravity field modeling with RBFs
(Bentel et al., 2013b; Naeimi et al., 2015). We have ap-
plied Tikhonov regularization (Tikhonov, 1963), where an
extended norm which includes constraints on the unknowns
is minimized. Thereby, we have a damped least-squares prob-
lem where not only the parameters which best fit the obser-
vations are determined, but also the solution is kept smooth
enough to allow a stable inversion. The smoothness con-
straint is set a priori, and governed by the regularization ma-
trix R. The regularized solution can be written as

d̂k =
[
(Ag)T Ag +αR

]−1
(Ag)T ∆g, (15)

where the regularization parameter α is a weight, balancing
the contribution of observations and prior information to the
solution. It is chosen as a compromise between a solution
which is smoothed too much and significant parts of the sig-
nal is lost (α too large), and a solution which is corrupted
by high-frequency errors, and no physically meaningful so-
lution is obtained (α too small).

We determine the regularization parameter α by the L-
curve method of Hansen and O’Leary (1993), as it has proven
to be a suitable method for noise-free data (Bentel, 2013).
Regardless of the regularization method, an initial guess of
the regularization parameter, α0, must be made. Here, we
make an initial guess based on the condition number of the
normal matrix and the maximum SH degree Nmax, i.e., α0 =
8‖N‖/N3

max (Naeimi, 2013).
In case of signal representation using SKs, R contains

scalar products of the SKs located at different grid points
(Eicker, 2008). If the SKs would be orthogonal, R would
become a diagonal matrix which could be represented by a
scaled identity matrix. If the scaling factor is combined with
α , we can set R = I.

For bandlimited signals, as we employ them in discrete
matrix computations, the SKs are not strictly orthogonal,
and therefore R is not a diagonal matrix (Eicker, 2008). For
non-bandlimited signals, orthogonality can theoretically be
achieved, but at the cost of infinite energy along the main di-
agonal of R. Eicker (2008) discussed different modifications
which restrict the elements along the main diagonal to finite
values. Among them is the modification of the a priori signal
covariance function, which is used to define the smoothness
of the solution. This modification could possibly lead to our
SK solution becoming inconsistent with LSC, because im-
plicitly, two different covariance functions are used. The so-
lutions of both methods would not represent the same grav-
ity field.

Eicker (2008) compared different modified and unmodi-
fied solutions using either a fully occupied R, or the approx-
imation R = I, and found that the considerations regarding
infinite energy and non-orthogonality are of rather theoret-
ical significance. The best solutions were in fact achieved
using the approximation R = I. Even though the numerical

experiments of Eicker (2008) are related to downward con-
tinuation of satellite gravity data of relatively low spectral
resolution, our own numerical examples indicate that this
approximation also holds for higher spectral resolutions.

Ultimately, the regularized solution for the dimension-
less spline coefficients is given by

d̂k =
[
(Ag)T Ag +αI

]−1
(Ag)T ∆g, (16)

representing the analysis step.

3 Global equivalence

In the global case, Eqs. (1), (3), and (7) are equivalent grav-
ity field representations. Furthermore, all three are equal to
SH, which is our point of departure.

The disturbing potential T on Earth’s surface is a har-
monic function satisfying Laplace’s equation. Its solution
may be formulated as a spherical harmonic expansion,

T (P) =
∞

∑
n=2

Tn(P) =
∞

∑
n=2

λ T
n

×
n

∑
m=0

[
∆C̄nm cosmλ +∆ S̄nm sinmλ

]
P̄nm(cosθ). (17)

Stokes’s formula (Eq. (1)) is the surface integral repre-
sentation of the spherical harmonic expansion of T , subject
to the boundary condition as given by the well-known spher-
ical fundamental equation of physical geodesy,

∆g =−∂T
∂ r
− 2

R
T. (18)

Taking the spherical harmonic expansion of ∆g and Eq.
(18) into account, we can establish the relationship between
T and ∆g as

T =
∞

∑
n=2

Tn =
∞

∑
n=2

R
n−1

∆gn. (19)

Considering the orthogonality relations and addition the-
orem of SH, ∆gn is given by

∆gn =
2n+1

4π

∫∫

σ

∆gPn(cosψ)dσ , (20)

such that Eqs. (19) and (20) in combination with Bruns’s
formula, N = T γ−1, gives Stokes’s formula (cf. Eq. 1),

N(P) =
R

4πγ

∫∫

σ

[
∞

∑
n=2

2n+1
n−1

Pn(cosψPq)

]
∆gq dσ , (21)
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where we identify the Stokes function expressed as a Leg-
endre series,

S(ψPq) =
∞

∑
n=2

2n+1
n−1

Pn(cosψPq). (22)

Thus Stokes’s integral formula and SH are equivalent in
the global case, which is an omen for the practical appli-
cation of Eq. (1): As the integration is performed globally,
globally available ∆g are needed.

Stokes’s formula is equivalent to LSC, as the follow-
ing review of the interpretation of de Min (1995) will show.
Given an area of i gravity anomalies ∆gi, we can predict
gravity anomalies ∆gq in any point q on Earth, by means of
LSC. Then we can rewrite Eq. (1) as

N(P) =
R

4πγ

∫∫

σ

S(ψPq)∆gq dσ

=
R

4πγ

∫∫

σ

S(ψPq)
[
Cgg

qi (C
gg
i j )
−1∆gi

]
dσ , (23)

and, because the gravity points i do not depend on the inte-
gration element,

N(P) =
R

4πγ



∫∫

σ

S(ψPq)Cgg
qi dσ


(Cgg

i j )
−1∆gi. (24)

As the integration is performed globally, both functions
inside of the integral can be written in terms of SH. Thereby,
we insert Eqs. (22) and cg

n =(λ g
n )

2cn into Eq. (24), and apply
the decomposition theorem and orthogonality relations of
SH, to obtain

N(P) =
R

4πγ



∫∫

σ

∞

∑
n=2

2n+1
n−1

Pn(cosψPq)

×
∞

∑
n=2

cnPn(cosψqi)dσ

]
(Cgg

i j )
−1∆gi

=
∞

∑
n=2

[
R

γ(n−1)
cg

nPn(cosψPi)

]
(Cgg

i j )
−1∆gi

= CNg
Pi (C

gg
i j )
−1∆gi, (25)

which is the LSC formula (Eq. (3)). This derivation allows
LSC to be interpreted as a two-step procedure. In the first
step, least-squares prediction is performed continuously over
the entire Earth, based on discrete point data. In the second
step, global integration by Stokes’s formula is performed on
this continuous data set.

We now follow the interpretation of Eicker (2008) to
show that the same prediction as in Eq. (3) can be done in
RBF representation using SKs.

Omitting the regularization term αI for simplicity, we
insert the solution for the estimated spline parameters in Eq.
(16) (analysis step) into Eq. (11) (synthesis step) and obtain

N(P) = AN [(Ag)T Ag]−1
(Ag)T ∆g. (26)

Using some matrix algebra, we can rearrange Eq. (26)
as follows,

N(P) = AN(Ag)T [Ag(Ag)T ]−1 ∆g. (27)

If we now compare Eqs. (3) and (27), we see that LSC
and spline representation are identical if

AN(Ag)T = CNg
Pq (28)

and

Ag(Ag)T = Cgg
qq. (29)

We now look at the matrix multiplications in Eqs. (28)
and (29) in the limit case where the distribution of SKs be-
comes continuous. Suppose we have sets of K equidistant
points k. In the limit, the sum will become the integral over
the unit sphere, supposing an infinitely dense distribution of
SKs. We get

AN(Ag)T
(Pq) = lim

K→∞

K

∑
k=1

×
[

∞

∑
n=2

n

∑
m=−n

λ N
n BSK

n Y R
nm(θP,λP)Y R

nm(θk,λk)

]

×
[

∞

∑̄
n=2

n̄

∑
m̄=−n̄

λ g
n̄ BSK

n̄ Y R
n̄m̄(θq,λq)Y R

n̄m̄(θk,λk)

]

=
∞

∑
n=2

n

∑
m=−n

∞

∑̄
n=2

n̄

∑
m̄=−n̄

λ N
n λ g

n
(
BSK

n
)2

×Y R
nm(θP,λP)Y R

n̄m̄(θq,λq)

×

=δnn̄δmm̄︷ ︸︸ ︷∫∫

σ

Y R
nm(θk,λk)Y R

n̄m̄(θk,λk)dσ

=
∞

∑
n=2

λ N
n λ g

n
cn

2n+1

n

∑
m=−n

Y R
nm(θP,λP)Y R

nm(θq,λq)

=
∞

∑
n=2

λ N
n λ g

n cnPn(cosψPq) = CNg
Pq , (30)

and
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Ag(Ag)T
(qq) = lim

K→∞

K

∑
k=1

×
[

∞

∑
n=2

n

∑
m=−n

λ g
n BSK

n Y R
nm(θq,λq)Y R

nm(θk,λk)

]

×
[

∞

∑̄
n=2

n̄

∑
m̄=−n̄

λ g
n̄ BSK

n̄ Y R
n̄m̄(θq,λq)Y R

n̄m̄(θk,λk)

]

=
∞

∑
n=2

n

∑
m=−n

∞

∑̄
n=2

n̄

∑
m̄=−n̄

(λ g
n )

2 (BSK
n
)2

×Y R
nm(θq,λq)Y R

n̄m̄(θq,λq)

×

=δnn̄δmm̄︷ ︸︸ ︷∫∫

σ

Y R
nm(θk,λk)Y R

n̄m̄(θk,λk)dσ

=
∞

∑
n=2

(λ g
n )

2 cn

2n+1

n

∑
m=−n

Y R
nm(θq,λq)Y R

nm(θq,λq)

=
∞

∑
n=2

(λ g
n )

2 cnPn(cosψqq) = Cgg
qq. (31)

Thus we are able to approximate the original covariance
function by a finite sum of the similar harmonic SKs. With
mathematical rigor, increasingly dense point distributions
will never reach the continuous limit. Instead of the num-
ber of points, one may consider introducing area weights
for points, and investigate the limit case where these area
weights approach zero. This issue was discussed by, e.g.,
Rummel (1982), and later by Tscherning (1999). As we will
see in Sect. 5 we do not need to reach the limit case in prac-
tice, as SKs and LSC tend to be identical already for moder-
ate point densities. Therefore, we stick with the derivations
in Eqs. (30) and (31), noting that in practical applications,
the rigorous treatment of the surface integral does not devi-
ate significantly from the point grid representation.

Finally, it may be shown that Tikhonov regularization
and LSC are formally equivalent if we consider observation
noise ε , giving C̄gg

qq =Cgg
qq+Cgg

εε . Thereby, Cgg
εε = σ2I=R is

interpreted as the regularization matrix. Thus, LSC is equal
to Tikhonov regularization with α = 1, and LSC may be
considered a particular form of regularization with a sta-
tistical rationale for determining the regularization matrix.
The interested reader is referred to Rummel et al. (1979) or
Bouman (1998) for more on this topic.

4 Regional applications

As seen in Sect. 3, all methods are equivalent in the global
case, and they can, in principle, be applied globally. This,
however, is not practical due to the requirement of globally
distributed high-resolution gravity data. In addition, global

integration using Stokes’s integral, the LSC formula applied
to large data sets, as well as the global analysis of spline
coefficients all require huge computational efforts.

Terrestrial gravity data of high resolution are not avail-
able globally, while GGMs have global coverage, but lack
high resolution. Consequently, in practical regional geoid
computation, both data sources are combined. Thereby, the
long-wavelength part of the gravity signal is determined from
a GGM and removed from the terrestrial data. In turn, re-
gional geoid computation is applied to the residual gravity
data in a limited area only. The modeling results are resid-
ual geoid heights, and the long-wavelength part of the GGM
is restored to obtain the final geoid. This procedure is com-
monly referred to as the remove-restore technique (Denker,
2013).

In the case of Stokes’s formula we consider available ter-
restrial gravity data in a spherical cap with radius ψ0 around
the computation point only. Typically ψ0 is chosen such that
the resulting omission error is negligible, which depends on
Nmax of the GGM. The cap is usually called the inner zone
and denoted by σ0. Thus, Eq. (1) is only applied to the inner
zone, and we get

N(P) =
R

4πγ

∫∫

σ

S̄(ψPq)∆ ḡq dσ , (32)

with

S̄(ψPq) =

{
S(ψPq), 0◦ ≤ ψ < ψ0

0, ψ0 ≤ ψ ≤ π
. (33)

In its spectral form, S̄(ψPq) is written as (de Min, 1995)

S̄(ψPq) =
∞

∑
n=2

[
2

n−1
−Qn(ψ0)

]
2n+1

2
Pn(cosψPq), (34)

where Qn(ψ0) are the Molodensky or truncation coefficients,
which can be computed by the recurrence relation of Paul
(1973).

Considering the two-step interpretation of LSC in Sect.
3, we see that if Eq. (3) is applied to residual data in the
inner zone only, we also include the implicitly extrapolated
gravity signal outside the inner zone. Thus, as demonstrated
theoretically and numerically by de Min (1995), LSC and
Stokes’s formula are not equivalent in regional applications.

Following de Min (1995), we insert Eq. (34) in Eqs. (24)
and (25), and obtain

N(P) = C̄Ng
Pi (C

gg
i j )
−1∆gi, (35)

with
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C̄Ng
Pi =

∞

∑
n=2

R
2γ

[
2

n−1
−Qn(ψ0)

]
cg

nPn(cosψPi). (36)

Thereby, in terms of the two-step interpretation, least-
squares prediction is still performed continuously over the
entire Earth, but Stokes’s formula is applied in the inner zone
only. Thus, LSC is again identical with Stokes’s formula.

Eq. (34) may be rewritten as follows,

S̄(ψPq) =
∞

∑
n=2

[
1− n−1

2
Qn(ψ0)

]
2n+1
n−1

Pn(cosψPq), (37)

where we, in comparison with Eq. (22), isolate the modifica-
tion of the Stokes function in brackets. Consequently, con-
sidering the global equivalence of LSC and SKs (Sect. 3),
the modification must be introduced in the SKs in the syn-
thesis step (Eq. (11)). By introducing the Molodensky coef-
ficients in Eq. (11), the SKs get strict local support (Kusche,
2002). Then, the elements of AN are given as follows,

AN
Pk =

∞

∑
n=2

n

∑
m=−n

λ N
n

[
1− n−1

2
Qn(ψ0)

]
BSK

n Y R
nm(θP,λP)Y R

nm(θk,λk).

(38)

5 Numerical examples

Here we aim to demonstrate to what extent the different ap-
proaches are equivalent in practical geoid computation. To
do this, we perform a comparative assessment of SKs, LSC,
and Stokes’s formula in a closed-loop environment using
synthetic data, see Fig. 1. Both noise-free synthetic obser-
vations (in the form of gravity anomalies ∆g) and the true
validation geoid are computed by spherical harmonic syn-
thesis (SHS) using the EGM2008 GGM (Pavlis et al., 2012),
with 251 ≤ n ≤ 2190, to simulate the remove-restore tech-
nique (where we assume that the long-wavelength part of
the gravity signal has been removed using a typical GOCE-
based GGM of Nmax = 250). Thereby, the residual gravity
anomalies are computed as follows,

∆g(P) =
2190

∑
n=251

λ g
n

×
n

∑
m=0

[
∆C̄nm cosmλ +∆ S̄nm sinmλ

]
P̄nm(cosθ).

(39)

Geoid heights by Stokes’s formula, LSC, and SKs are
compared in terms of RMS differences to the validation geoid
computed by SHS (to which they should all be equivalent).

NSHS

NLSCNStokes∆gSHS NSplines

∆C̄nm,∆S̄nm

d̂k

Fig. 1 Schematic of the closed-loop simulation

Table 1 Test regions

East Frisia Alpine region

Data area 52◦ ≤ ϕ ≤ 55◦ 46◦ ≤ ϕ ≤ 49◦

5◦ ≤ λ ≤ 10◦ 7.5◦ ≤ λ ≤ 13.5◦

Target area 53◦ ≤ ϕ ≤ 54◦ 47◦ ≤ ϕ ≤ 48◦

6.5◦ ≤ λ ≤ 8.5◦ 9◦ ≤ λ ≤ 12◦

By this approach, we not only validate the internal consis-
tency of the methods, but also check whether the methods
are correct by comparison with an external reference. How-
ever, in order to make the SH validation geoid equivalent to
geoids computed by the regional methods, where a spherical
cap with radius ψ0 is considered, the truncation coefficients
(Sect. 4) are also introduced in the SHS as follows,

N(P) =
2190

∑
n=251

λ N
n

[
1− n−1

2
Qn(ψ0)

]

×
n

∑
m=0

[
∆C̄nm cosmλ +∆ S̄nm sinmλ

]
P̄nm(cosθ). (40)

For practical computational reasons, the input and output
grid resolutions (directly related to the number of observa-
tions) were set to 5 arcmin (corresponding to the maximum
resolution of EGM2008), and the radius of the spherical in-
tegration cap was set to ψ0 = 1◦. This cap gives theoret-
ical omission errors of approximately 2 cm and 6 cm for
East Frisia and the Alpine region, respectively; however, the
omission error is not relevant in our comparison as it is equal
for all methods. We have considered two regions, namely the
North Sea coastal region of East Frisia and the mountainous
Alpine region, with respectively smooth and rough topog-
raphy. Around the target areas, we consider enlarged data
areas, to reduce edge effects, see Table 1.

Geoid heights by Stokes’s formula were computed using
Eq. (32), implemented according to Eq. (2) using the closed
formula for computing Stokes kernel, while geoid heights by
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LSC were computed using Eqs. (35) and (36). Considering
the SKs, dimensionless spline coefficients were estimated
using Eq. (16) with Eq. (14). Details regarding the stabil-
ity of the linear system are shown in Table 2. Subsequently,
the spline coefficients were used to compute geoid heights
using Eq. (11) with Eq. (38). The SKs were developed to de-
gree 2190, corresponding to the maximum resolution of the
observations (5 arcmin).

There are several different point grids available for the
RBF positions, known as the grid area. Bentel et al. (2013a)
explore how different point grids affect RBF modeling re-
sults, and conclude that differences due to different point
grids are very small (∼1×10−4 mm to ∼0.2 mm), provided
the number of grid points is sufficiently large. We have placed
the SKs on the equidistributed Reuter grid, where the spher-
ical distance between grid points is almost constant. The
number of SKs on the Reuter grid is defined through the
control parameter γ , which is equal to the maximum SH de-
gree Nmax, γ = Nmax (Bentel et al., 2013b). The outer margin
widths w of the RBF grid area were determined by the em-
pirical formula of Bentel (2013), where w≈ 4 ·180◦/(Nmax+
1). As a result, the number of RBFs will typically be slightly
larger than the number of observations, but practically equal.
In the following statements regarding equality of the number
of RBFs and the number of observations, it is this approxi-
mate equality that is meant.

First, we show that the unmodified LSC and SK formu-
las applied to the synthetic inner zone data set do not give
the same results as Stokes’s formula. Fig. 2 shows the error
of LSC and SKs when leaving the covariance function un-
modified. The validation geoid is the truncated SH geoid, so
as to simulate Stokes’s formula. We observe that there is a
continuous residual pattern over both data and target areas.
In East Frisia, using unmodified LSC (SKs), we get RMS
differences of 1.75 cm and 1.83 cm (1.80 cm and 1.83 cm)
in the data and target areas, respectively. In the Alpine re-
gion, using unmodified LSC (SKs), we get RMS differences
of 5.73 cm and 5.18 cm (5.76 cm and 5.18) in the data and
target areas, respectively. The RMS numbers for East Frisia
and the Alpine region are in the same order of magnitude as
the omission (or truncation) error in the respective regions.
This shows that the unmodified LSC and SK formulas have
taken signal content outside the data area into account when
computing the geoid heighs, while Stokes’s formula has not.

The results of the geoid computations using modified
formulas are shown in Table 3 and Figs. 3 and 4. Table 3
shows that all methods agree on the mm level in the target
area, with smaller errors in East Frisia than in the Alpine
region. Stokes’s formula gives larger errors outside the tar-
get area than LSC and the SKs. LSC and SKs show maxi-
mum RMS differences of 0.7 mm and 1.3 mm, respectively,
while RMS differences of 1.7 mm (East Frisia) and 5.9 mm

(Alpine region) are found using Stokes’s formula. Of all
three methods, LSC gives the smallest error.

Looking at Figs. 3 and 4 we see that the errors in the
target areas are much lower than in their exterior, showing
the effect of truncated computation. In particular, LSC and
the SKs show smaller errors in the target area, which was
not the case when using the unmodified formulas (Fig. 2).
We also note the similarity in the error patterns of LSC and
SKs.

The slightly larger RMS differences of Stokes’s formula
in comparison with LSC/SKs could be owing to the fact
that the synthetic observations are point values, which SHS
and LSC/SKs expect. However, Stokes integration, while
applied point-wise, expects block mean values. SHS uses the
exact observation grid values, while LSC/SKs interpolate
and do not give exact values (at least not everywhere). To
test to what extent the larger RMS differences for Stokes’s
formula are due to a discretization error, we set up the closed-
loop simulation with 2.5 arcmin grid resolution, see Table 4.
Increasing the grid resolution to 2.5 arcmin leaves the LSC
and SK results largely unaffected (with maximum improve-
ments of∼0.5 mm, and even a slight degradation of the LSC
solution in East Frisia), while results by Stokes’s formula
improves by 0.85 to 3.5 mm. Thus, we identify the larger
discrepancies using Stokes’s formula at the 5 arcmin grid
resolution as a discretization error. Furthermore, as there is
nothing to gain from increasing the grid resolution of the
observations (at 5 arcmin they are already at their maximum
signal resolution), we attribute the discretization error to the
Stokes function and not the gravity data. The error is a re-
sult of the Stokes function being evaluated only at each grid
point of the input data, instead of evaluating its surface in-
tegral over the corresponding blocks. Thus, with increased
resolution and decreased block size, the function value at the
grid nodes gives an increasingly better representation of the
surface integral over the grid compartments, and Stokes’s
formula converges towards SHS.

Finally, we explored how the number of SKs affects the
RMS differences (and thus the equivalence to the other meth-
ods). Fig. 5 shows the RMS difference between SHS and
SKs for varying number of SKs in the Alpine target area,
computed from observations provided on the original 5 ar-
cmin grid. The vertical dotted lines denote the number of
observations corresponding to the 5 arcmin and 2.5 arcmin
grid resolutions, while the horizontal dotted line denotes the
1-mm RMS difference with respect to SHS. The regulariza-
tion parameter was kept constant to make the computations
as comparable as possible. Thus, the only variable in this test
is the number of SKs. Indeed, in light of Eqs. (30) and (31),
it seems that the SKs become similar to LSC only when the
number of SKs is similar to or larger than the number of
observations. At first glance, this does not seem promising
when regarding any prospect of saving computational effort
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Table 2 Spline representation

East Frisia Alpine region
Resolution (arcmin) 5 2.5 5 2.5

No. of observations 2257 8833 2701 10585
No. of SKs 2374 1842 2868 2464
cond(N) 1.0×1020 9.3×1018 1.6×1020 7.1×1019

α0 9192 2.8×104 8180 2.7×104

α 9146 284 8139 1.1×104

cond(N+αI) 6.0×105 6.0×107 6.0×105 1.5×106
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Fig. 2 Error of LSC and SKs when leaving the covariance function unmodified; error from (a) LSC and (b) SKs in East Frisia, error from (c) LSC
and (d) SKs in the Alpine region.

Table 3 Results from the closed-loop simulation, 5 arcmin resolution. Gravity anomalies in mGal (= 10−5 ms−2) and geoid heights in cm.

East Frisia Alpine region
max min mean RMS max min mean RMS

Data area
∆gSHS 11.617 -6.881 0.316 3.242 46.704 -63.217 -0.677 12.762
NSHS 17.474 -10.942 0.513 5.200 66.092 -93.867 -1.013 18.765
NSHS−NStokes 14.165 -5.426 1.204 3.410 28.229 -35.504 -2.477 7.218
NSHS−NLSC 1.880 -2.594 0.006 0.644 7.548 -7.952 -0.007 1.354
NSHS−NSplines 2.229 -3.183 0.001 0.809 6.453 -6.498 -0.013 1.433

Target area
NSHS 7.297 -9.076 1.870 4.241 40.613 -35.447 -1.669 13.678
NSHS−NStokes 0.419 -0.638 0.082 0.173 1.087 -1.598 -0.087 0.588
NSHS−NLSC 0.003 -0.020 -0.001 0.002 0.212 -0.208 0.000 0.065
NSHS−NSplines -0.006 0.135 -0.022 0.028 0.180 0.021 0.120 0.127
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Fig. 3 Results in East Frisia; geoid from SHS in (a) data and (b) target areas, error from Stokes’s formula in (c) data and (d) target areas, error
from LSC in (e) data and (f) target areas, and error from SKs in (g) data and (h) target areas.

with RBFs as opposed to LSC. To test this, we computed
spline solutions at the 2.5 arcmin grid resolution for two
cases; (1) setting the number of splines equal to the number
of observations (corresponding to 2.5 arcmin, not shown),
and (2) setting the number of splines equal to the maximum
resolution of the observations (corresponding to 5 arcmin,
see Table 2). Both cases give practically equal results (max-
imum RMS differences of 23×10−3 mm and 6×10−3 mm

in the data and target zones, respectively), suggesting that
the SKs converge towards LSC depending on the resolution
rather than the number of observations.

Thus, in our examples, when we place the observations
on a 5 arcmin grid, the SKs will converge towards LSC when
setting the number of SKs equal to the number of observa-
tions, because the number of observations is equal to their
maximum signal resolution. Consequently, there is nothing
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Fig. 4 Results in Alpine region; geoid from SHS in (a) data and (b) target areas, error from Stokes’s formula in (c) data and (d) target areas, error
from LSC in (e) data and (f) target areas, and error from SKs in (g) data and (h) target areas.

Table 4 Results from the closed-loop simulation, 2.5 arcmin resolution. Gravity anomalies in mGal (= 10−5 ms−2) and geoid heights in cm.

East Frisia Alpine region
max min mean RMS max min mean RMS

Data area
∆gSHS 11.794 -6.894 0.296 3.219 46.736 -63.347 0.634 12.723
NSHS 17.536 -10.942 0.481 5.158 66.515 -94.385 -0.955 18.729
NSHS−NStokes 14.422 -5.894 1.032 3.273 30.577 -37.650 -2.107 7.056
NSHS−NLSC 3.717 -3.266 0.031 0.996 12.432 -10.639 -0.051 2.098
NSHS−NSplines 2.317 -3.385 -0.022 0.786 4.377 -5.683 -0.019 1.257

Target area
NSHS 7.333 -9.076 2.097 4.247 41.130 -35.447 -1.936 13.620
NSHS−NStokes 0.429 -0.512 0.037 0.088 0.529 -0.663 -0.041 0.242
NSHS−NLSC 0.057 -0.103 -0.001 0.010 0.059 -0.054 0.000 0.015
NSHS−NSplines -0.002 -0.040 -0.004 0.006 0.110 0.024 0.079 0.082
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Fig. 5 Difference between SHS and SKs for varying number of SKs
in the Alpine target area, with α = α0 = const.

to gain from increasing the number of SKs beyond 5 arcmin,
as Fig. 5 readily shows.

6 Summary

We have reviewed the theoretical equivalence of Stokes’s
formula, LSC, and SKs in the global case, as well as in re-
gional applications, where Stokes integration is restricted to
a spherical cap around the computation point, and no data
outside this cap is considered. If LSC is not applied glob-
ally, its result will be different from Stokes’s formula, be-
cause an unwanted extrapolation outside the cap takes place.
If the cross-covariance function is modified appropriately,
LSC and Stokes’s formula are again equal. This has already
been shown by de Min (1995). As SKs are equivalent to
LSC, they have to be modified correspondingly to give equal
results as Stokes’s formula.

With a few numerical examples we have shown that the
methods are equal also in practice. Two regions were con-
sidered, East Frisia and the Alpine region, with small and
large gravity field variations, respectively. At the 5 arcmin
resolution, all methods agree within 2× 10−2 mm to 5.9
mm in the target areas, where the largest RMS differences
are due to the discretization of Stokes’s formula. At the 2.5
arcmin resolution, all methods agree within 6× 10−2 mm
to 2.4 mm. In general, the remaining discrepancies can be
expected due to the varying numerical implementations. For
example, Novák et al. (2001) found remaining differences
on the mm level between the theoretically equivalent numer-
ical integration and 1D-FFT evaluations of Stokes’s formula
at the 5 arcmin resolution, which they attribute to the numer-
ical accuracy of the computational algorithms.

From a theoretical point of view, LSC should give the
best results because the covariance function is the only ker-
nel which has the minimum variance property (Moritz, 1980).
Indeed, this is confirmed in our numerical examples, where
LSC generally gives the smallest error. SKs perform very
similar to LSC, but the solution strongly depends on the
number of SKs used. Our numerical examples show that lit-
tle is gained by using more SKs than the corresponding res-
olution of the observations, i.e., by reducing the grid spac-
ing. This is because there is hardly any signal variability be-
tween the original grid nodes. Therefore, it is reasonable to
stick with the original grid spacing, where the number of
grid points corresponds to the number of SKs. In order to
represent the actual signal, we need roughly the same num-
ber of observations. However, the number of observations
may be much larger. In such a case, the auto-covariance ma-
trix to be inverted in LSC becomes large, while we can keep
the same number of SKs. Our numerical examples therefore
suggest that the RBF method is similar to SHS or LSC in
case the number of SKs corresponds to the signal resolution
of the data, independent of the number of observations. By
contrast, the size of the auto-covariance matrix to be inverted
in LSC corresponds to the number of observations, indepen-
dent of the signal resolution. However, as the number of SKs
needed depends on the resolution, potentially huge matrices
may result from this approach as well, rendering the compu-
tational effort comparable with LSC.

Finally, our aim has not been to decide which regional
geoid computation method is the best, as there are advan-
tages and drawbacks to all depending on the data situation.
Our numerical examples do not represent the most efficient
implementations of each method, as they rather aim to com-
pare the outcome of the different methods. Thus, we have
not compared the numerical implementations in terms of
computation times and limitations. In addition, this work
does not present new theory, but is a first attempt to com-
pare the three methods both theoretically and numerically in
a unified framework. We have demonstrated that the three
methods give equal results in applications, for which a mod-
ification of LSC and SKs was necessary. We stress that this
modification is not a general necessity when applying the
LSC and RBF approaches. However, de Min (1995) points
out a few advantages of modifying the covariance function.
For example, the modification makes the LSC results less
dependent on the validity of the covariance function, as its
validity is of most importance for the extrapolated data, which
is not considered anymore. Although the modification is not
necessary when applying the LSC and RBF approaches, how-
ever, it is critical in direct comparison with Stokes’s formula.
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Coastal Sea Level from CryoSat-2 SAR Altimetry in Norway

Martina Idžanović1, Vegard Ophaug1, Ole Baltazar Andersen2,∗

Abstract

Conventional altimeters determine the sea surface height (SSH) with an accuracy of a few centimeters over the open
ocean. However, in coastal areas the noise is seriously increased from numerous effects which degrade the quality. The
Norwegian coast adds further complications to the use of satellite altimetry, due to its complicated coastline with many
islands, mountains, and deep, narrow fjords. The European Space Agency (ESA) CryoSat-2 (CS2) satellite carries a
synthetic aperture interferometric radar altimeter (SIRAL), which is able to observe sea level closer to the coast than
conventional altimeters, without degradation. In this work, we investigate the potential of CS2 data to provide improved
observations in the Norwegian coastal zone.

Initially we evaluate the performance of SAR altimetry by comparing CS2 SAR altimetry with 22 tide gauges, and
investigate the performance of the two major geophysical corrections applied to CS2 data for the determination of the
SSH. We demonstrate that we can significantly improve the comparison with tide-gauge observations if we substitute
the standard ocean tide and dynamic atmosphere corrections with local corrections. Secondly, we compare CS2 with
conventional altimetry at the Stavanger tide gauge, revealing an improvement of ∼2-3 cm.

Keywords: CryoSat-2; SAR altimetry; tide gauges

1. Introduction

Satellite altimetry is a well-proven and mature tech-
nique for observing sea level, with good spatial and tem-
poral coverage over the open ocean. The effective foot-
print of an altimeter is controlled by the pulse duration
and width of the analysis window and is typically between
2 and 7 km, depending on the sea state (Gommenginger
et al., 2011). For conventional altimeters and typical wave
heights of 2 m, this gives a circular footprint of ∼100 km2.
The coastal zone is particularly relevant to society con-
sidering, e.g., sea-level rise, shipping, fishery, and other
offshore activities. Close to the coast, the application
of satellite altimetry is difficult due to land-contamined
radar echoes resulting in observation gaps in these zones
(Cipollini et al., 2010). Furthermore, large variations in
atmospheric pressure along the coast and complex tidal
patterns degrade the geophysical corrections for dynamic
atmosphere (DAC) and ocean tides (OT), which are ap-
plied to derive accurate SSHs (Andersen and Scharroo,
2011). Norway has the world’s second longest coastline
of 103,000 km, with many islands, steep mountains, and
deep, narrow fjords. This makes the application of coastal
altimetry particularly difficult in Norway.

∗Corresponding author
Email address: oa@space.dtu.dk (Ole Baltazar Andersen)

1Dept. of Mathematical Sciences and Technology, Norwegian Uni-
versity of Life Sciences (NMBU), Drøbakveien 31, N-1430 Ås

2DTU Space, Technical University of Denmark, Elektrovej, DK-
2800 Kgs. Lyngby

In a recent comparison of conventional altimetry with
tide gauges (TGs) along the Norwegian coast, the aver-
age distance between conventional altimetric observations
(Jason-2 and Envisat) and local TGs was ∼54 km (Ophaug
et al., 2015), suggesting room for improvement.

As the first of its kind, the European Space Agency
(ESA) CryoSat-2 (CS2) satellite carries a synthetic aper-
ture interferometric radar altimeter (SIRAL) which can
operate in synthetic aperture radar (SAR), synthetic aper-
ture interferometric (SARIn), as well as conventional low
resolution (LR) modes. At high latitudes, the satellite
operates in all three modes following geographically de-
limited masks as shown in Figure 1. Along the Norwe-
gian coast, in a narrow strip with a typical width of less
than ∼40 km, CS2 operates in SARIn mode, in which a
Delay-Doppler modulation of the altimeter signal creates
a synthetic footprint. The footprint is nominally 0.3 km
by 8 km in respectively along- and across-track directions
(Wingham et al., 2006). Hence, the risk that the footprint
is contaminated by land is far less for CS2 in this mode
compared with conventional altimeters.

This paper explores the potential for these data to
provide improved sea-level observations in the Norwegian
coastal zone. We do this by investigating whether CS2
observes the same ocean signal as the TGs, and compare
CS2 with conventional altimeters.

Preprint submitted to Advances in Space Research January 24, 2017



Figure 1: Geographical mode mask version 3.8 for CS2 (ESA, 2016). SARIn mode: purple, SAR mode: green, LR mode: red and areas not
covered by other masks.

2. Data and methods

2.1. CryoSat-2 20 Hz SARIn data processing

Satellite altimetry is normally distributed through agen-
cies like AVISO, EUMETSAT, MyOcean, NOAA, PO-
DAAC, and RADS, focusing on the regular distribution of
homogenized and quality-controlled 1 Hz data. However,
these archives do not process and/or distribute the CS2
SARIn data. ESA provides CS2 data in two modes, Level
1 (L1) and Level 2 (L2). L1 data contain orbit information
and waveforms, while L2 data contain range and geophys-
ical corrections, as well as height estimates. The 20 Hz
Level 1b (L1b) SARIn dataset was obtained by the Techni-
cal University of Denmark (DTU) Space retracker system
(Stenseng and Andersen, 2012) for the period from 2010
to 2014. We used the simple threshold retracker (Nielsen
et al., 2015), whereby the bin that contains 80% of the
maximum power is taken as the retracking point.

Compared with other conventional satellites like Jason-
2 and Envisat, CS2 does not carry a radiometer. There-
fore, the wet and dry troposphere corrections must be de-
rived using models (standard is ECMWF). CS2 is further-
more a single-frequency altimeter, hence the ionospheric
corrections must also be provided by a model (standard
is GIM). In general, these corrections are believed to be
only slightly less accurate than the instrument-derived cor-
rections applied on conventional altimeters (Andersen and
Scharroo, 2011). The CS2 DAC consists of a high-frequency

part (MOG2D) and a low-frequency part (inverse barome-
ter, IB), and the OT correction is provided by the FES2004
global OT model, which is similar to data from conven-
tional satellites.

A known bias of 69 cm was removed from the 20 Hz CS2
SSHs (Scagliola and Fornari, 2013). At the time of data
processing, the SARIn/cross-track correction (Armitage
and Davidson, 2014; Abulaitijiang et al., 2015) was not
implemented in the retracker system. Consequently, the
SARIn observations have been processed as SAR. Because
the burst mode pulse repetition frequency in SAR mode
is four times that of SARIn mode, the SARIn data are
expected only to have half the precision of normal SAR
altimetry (Wingham et al., 2006).

A suite of editing and outlier detection criteria are nor-
mally used to edit the altimeter data for the computation
of 1 Hz data, e.g., (Scharroo et al., 2013). As most of
these are not available for the CS2 L1 data, an two-step
outlier detection was developed. After having removed all
CS2 observations over land using a high-resolution coast-
line (1:50,000 map scale, provided by the Norwegian Map-
ping Authority (NMA)) as a mask, the first step in the
outlier detection was to remove all observations deviating
more than ±1 m from DTU15MSS (Andersen et al., 2015).
This first step led to a 28% data rejection. The second step
of our outlier detection was based on a within-track gross
error search using a multiple t test (Koch, 1999; Revhaug,
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2007), applied to the centered SSH data.
For each track, assuming error-free observations, we get

the following linear model,

E{l} = A · x, D{l} = C, (1)

where E stands for expectation and D for dispersion (or
spread). In Eq. 1, l (n×1) is the observation vector, A is
the (n × e) design matrix multiplied by the vector of un-
known parameters x (e×1). The dispersion of l equals the
covariance matrix C. Considering the observation noise,
the functional part of the mathematical model is given by:

v = A · x− l, (2)

where v are the residuals. Using eqs. 1 and 2 the expec-
tation of v equals a zero vector:

E{v} = 0. (3)

We now allow our observations l to contain gross errors
∇ (q×1), and see that the observation vector can be cor-
rected for these gross errors by the subtraction (l−E ·∇).
Thereby, we extend Eq. 2 by a gross-error term:

l−E · ∇+ ṽ = A · x̃, (4)

where E is a (n× q) matrix containing ones where a gross
error is present (at (n, q)) and zeros elsewhere. Correcting
for the gross errors, we get new estimates for v and x,
annotated as ṽ and x̃. We use Eq. 4 to consecutively
estimate possible gross errors in each observation.

A statistical outlier test using Eq. 4 is obtained if the
null hypothesis H0 : ∇ = 0 (all outliers equal zero) is
tested against the alternative hypothesisH1 : ∇ = ∇1 6= 0.
The least-squares solution for Eq. 4 gives:

Q∇ = (ET ·P ·Qv ·P ·E)
−1
, (5)

∇ = −Q∇ ·ET ·P · v, (6)

where Qv and Q∇ are cofactor matrices of v and ∇, re-
spectively, and P is the weight matrix. Applying the mul-
tiple t test, one observation at a time can be tested, with
an estimated standard deviation of ∇:

s̃2∇ =
1

f − 1
· (vT ·P · v − ∇

2

Q∇
), (7)

where f represents the degrees of freedom.
First, we assume a solution without gross errors, based

on Eq. 3, after which we perform the outlier test. The
Student’s t-distribution is a statistical distribution for es-
timating the mean of normally distributed observations,
without knowing the standard deviation. The well-known
t-statistic is given by:

t =
x̄n − µ
sn

, (8)

where x̄n is the mean of n independent and identically
normally distributed observations, µ is defined as a mean,

when the number of observations tends to infinity, and sn
is an estimated standard deviation of x̄n (standard devi-
ation of an observation divided by the square root of the
number of observations).

If an observation is free of a gross error, ∇ is small. If
no gross errors are present, the observations are normally
distributed, i.e., µ = E{∇} = 0. Then Eq. 8 can be written
as:

t =
∇
s∇

, (9)

where ∇ is the value of the gross error, and s∇ is its
estimated standard deviation. If there is no gross error
present, t in Eq. 9 will follow the distribution of t in Eq. 8.
Thus, if the absolute value of t is smaller than the thresh-
old value (two-tailed, with α = 0.05 and f = n − 1), we
accept the observation, otherwise we classify it as an out-
lier. For further details, see Koch (1999). On average,
∼21% of the data points were classified as outliers (see
Table 1).

2.2. Tide-gauge data

We have considered 22 TGs on the Norwegian main-
land as shown in Figure 2. The figure shows one addi-
tional TG at Narvik (NARV), which was not considered
for the comparison as it contained too few altimeter data.
Tide-gauge data covering the 2010-2016 period were pro-
vided by the NMA (K. Breili, personal communication).
The TG data have a 10-minute sampling rate, and include
predicted ocean tides as well as local air pressure observa-
tions.

In order to make the TGs compatible with the altime-
ter, both IB and OT corrections must be applied to the
TG observations. Before this was done, the annual as-
tronomical tidal contribution, Sa, was estimated from the
OT predictions and removed, as it includes seasonal ef-
fects that to a large extent are already accounted for in
the IB correction (Pugh and Woodworth, 2014). All TG
observations were corrected for the IB effect using Wunsch
and Stammer (1997, Eq. (1)), with respect to a reference
value of 1011.4 mbar (Woodworth et al., 2012). At Ham-
merfest TG, no local pressure observations were available,
and pressure data from a nearby meteorological station
were used instead. These pressure observations were ob-
tained from the eKlima database of the Norwegian Mete-
orological Institute, at https://eklima.met.no/.

2.3. CryoSat-2 tide gauges

Treating CS2 like an exact 369-day repeat altimeter
would only give four observations for the 2010-2014 pe-
riod. Consequently, we consider a different approach for
CS2. We established 45×45 km boxes around each TG
containing CS2 observations, forming “CS2 tide gauges”
(CS2TGs). The CS2TGs, as seen in figures 3, 4, and 5,
were positioned around each TG depending on topogra-
phy, such that they cover as much marine area as possible,
but still keep a minimum distance of 0.2◦ between the TG
and the edge of the CS2TG.
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Figure 2: Norwegian tide gauges. Narvik (NARV) is left out of this
study due to few altimeter observations.

As mentioned in Sect. 2.1, we did not downsample the
20 Hz observations to 1 Hz. This is normally done by
the space agencies using iterative editing and averaging,
and it will increase data accuracy. Instead, as the CS2
observations within a track are sampled very close in time
(and all CS2 observations within a track would be assigned
the same TG observation), we averaged all 20 Hz obser-
vations within a track, and linearly interpolated the TG
observations to the time of the averaged CS2 observations
using nearest-neighbor. On average, ∼76 CS2 tracks were
available in each CS2TG. To quantify whether CS2 ob-
serves the same ocean signal as the TGs, the Spearman’s
(distribution-free) rank correlation coefficient, ρ, between
the CS2TG and TG time series was computed. Spear-
man’s ρ is a non-parametric method for detecting associa-
tions between two variables. Non-parametric methods are
relatively insensitive to outliers, and do not assume that
the observations are normally distributed (Hollander et al.,
2013). In addition to the correlation coefficient, the stan-
dard deviations of differences between the CS2TGs and
TGs were computed.

2.4. Conventional altimeter data

Jason-2, Envisat phase C, and SARAL/AltiKa 1 Hz
altimetry data were extracted from the radar altimeter
database system (RADS) (Scharroo et al., 2013), with
standard corrections applied. For each altimeter, the two
nearest tracks to the Stavanger TG were considered, and
on each of these the closest point with the highest tem-
poral correlation with the Stavanger TG was chosen for
comparison, see Figure 3 and Table 2. For Jason-2, its
entire 2010-2016 period could be used, while for Envisat
only the period between 2010 and 2012 was used, where the
satellite was in a 30-day repeat orbit. For SARAL/AltiKa
only the period after 2013 could be used. Looking at Ta-
ble 2 we note that the number of observations from the
conventional altimeters do not always correspond with the
expected number of observations considering the number
of repeats for each altimeter time period. This is because
the RADS data are not resampled to reference tracks, in
combination with the fact that not necessarily all repeats
have survived the RADS processing. Thus, when choosing
the closest conventional altimeter point, we also set a lower
threshold of 10 repeats. For consistency, the SSHs were ex-
tracted from RADS using the same geophysical corrections
as for CS2 (FES2004 OT model, MOG2D+IB DAC).

Experimental coastal altimetry products are currently
under development at, e.g., AVISO (http://www.aviso.
altimetry.fr) or COASTALT (http://www.coastalt.
edu). In their study along the Norwegian coast, Ophaug
et al. (2015) found that tailored coastal altimetry prod-
ucts based on Jason-2 and Envisat offered only marginal
improvements over the conventional observations, thus we
did not consider coastal altimetry products in this study.
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Table 1: CS2 at 23 Norwegian TGs.

Standard Refined improv.

(tide + IB) (tide + IB) of σ(∆)

no. corrections corrections using

Tide- obs. ∈ used t > refined

Tide- gauge no. [-1,1] m no. t(α/2,f) no. σ(∆) ρ σ(∆) ρ corr.

gauge code obs. DTU15 obs. [%] tracks [cm] [%] [cm] [%] [%]

Vardø VARD 6111 5710 4637 19 93 9.6 69.7 8.9 70.7 6

Honningsv̊ag HONN 6546 4457 3484 22 79 13.8 51.4 12.8 54.0 7

Hammerfest HAMM 5611 3669 2954 19 90 17.5 63.3 9.2 69.4 47

Tromsø TROM 2438 587 497 15 36 40.2 -17.9 29.9 21.3 25

Andenes ANDE 8023 7662 6357 17 95 8.4 71.3 6.7 79.6 20

Harstad HARS 6010 4031 3011 25 83 16.1 52.5 11.7 62.4 25

Narvik NARV 2900 35 20 43 2 14.0 100.0 0.8 100.0 94

Kabelv̊ag KABE 7319 6639 5277 21 92 10.3 72.7 5.4 89.5 47

Bodø BODO 7463 5909 4480 24 85 13.4 69.6 6.3 89.4 53

Rørvik RORV 7940 7060 5658 20 102 11.3 67.2 6.8 82.9 40

Mausund MAUS 7489 6678 5097 24 94 6.9 79.2 6.6 81.8 5

Trondheim TRON 4826 1940 1451 25 56 54.8 28.9 25.1 49.5 54

Heimsjø HEIM 5018 3030 2360 22 89 21.0 38.1 11.2 59.8 47

Kristiansund KRIN 9949 9125 7466 18 97 9.4 68.8 8.2 73.3 13

Ålesund ALES 9653 7352 5814 21 89 10.0 77.2 10.2 74.4 -2

Måløy MALO 9246 6411 5339 17 70 10.8 70.7 11.0 71.0 -2

Bergen BERG 5820 3962 3085 22 74 18.0 65.6 10.9 78.5 40

Stavanger STAV 9365 8433 6767 20 94 8.1 71.2 7.0 78.7 13

Tregde TREG 7695 7453 6271 16 92 13.4 53.1 12.6 57.1 6

Helgeroa HELG 7496 7121 5877 17 92 10.9 71.6 9.9 77.3 9

Oscarsborg OSCA 2346 1747 1329 24 49 9.8 81.5 9.9 76.3 -1

Oslo OSLO 493 255 228 11 21 18.1 61.8 15.8 63.0 13

Viker VIKE 7407 6219 4493 28 67 7.8 85.7 7.0 88.1 10
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Figure 3: Location and track numbers of the closest altimeter data
to the Stavanger (STAV) TG.

3. Results

3.1. Comparison of CryoSat-2 with tide gauges along the
Norwegian coast

In order to investigate the accuracy of the DAC and
OT geophysical corrections, we substituted the standard
CS2 DAC/OT corrections with DAC and OT corrections
derived from the local TG data. We name the latter re-
fined corrections. Table 1 shows standard deviations of
differences between the 22 TGs and CS2, as well as their
correlations. The TGs are ordered such that the north-
ernmost TG appears first in the table, moving southward
along the Norwegian coastline. The smallest amount of
observations was, as expected, found at TGs located well
inside fjords, such as Oslo, Trondheim, and Tromsø. These
TGs show large standard deviations of differences (∼20 cm
or more). Figures 4a, 4d, and 4g show the data situation
at these TGs, and highlight how complicated these fjords
are. Although an improvement is observed when intro-
ducing refined corrections (Figures 4b, 4e, and 4h versus
Figures 4c, 4f, and 4i, and also Table 1), they are highly
unreliable. Tromsø drops from above 40 cm to below 30
cm in standard deviation, with clearly increased temporal
correlation. By contrast, the smallest standard deviations
and highest temporal correlations are typically found at
TGs which are close to the open ocean. Mausund and
Viker are clear examples of open-ocean TGs, while Sta-
vanger is slightly more land-confined, see Figure 3. All
three show smaller standard deviations of differences (∼7-
8 cm).

When replacing the standard geophysical corrections
with the refined corrections, we observe an improvement
in the standard deviations of differences at 19 out of 22
TGs (exceptions are Ålesund, Måløy, and Oscarsborg).
Figure 5 shows results for Bodø, Kabelv̊ag, and Viker,
all of which benefited substantially from introducing re-
fined corrections. At Bodø TG (Figure 5a), the time se-
ries using standard corrections (Figure 5b and Table 1)
shows a standard deviation of 13.4 cm and temporal cor-
relation of 69%. When introducing the refined corrections,
the standard deviation drops to 6.3 cm, and the tempo-
ral correlation increases to 89% (Figure 5c and Table 1).
The considerable improvement with refined corrections is
also seen at Kabelv̊ag (Figures 5e, 5f, and Table 1), where
the standard deviation of differences is 5.4 cm (dropped
to nearly half), and the temporal correlation increases to
89.5% (from 72%). A slightly less improvement is seen at
Viker (Figures 5h, 5i, and Table 1).

One explanation for the substantial improvement at
the northern TGs could be that Bodø and Kabelv̊ag are
located north of 66◦N, which is outside the coverage of
the Jason-type altimeter observations, partly on which the
FES2004 OT model is based.

On average, using refined corrections gives better re-
sults than using standard corrections, with an improve-
ment of ∼25% in standard deviations of differences, and
∼18% for correlations (Table 1).

3.2. Comparison of CryoSat-2 with conventional altimetry
at Stavanger tide gauge

Figures 2 and 3 show the location of Stavanger TG,
as well as the location of the 20 Hz CS2 SARIn data in
a 45 km region close to it, the CS2TG. In addition, the
closest conventional 1 Hz altimeter data around Stavanger
TG is shown. The smaller ∼5 km2 footprint and 20 Hz
processing gives SSH observations from CS2 closer to the
coast than other altimeters. By contrast, SARAL/AltiKa,
Envisat, and Jason-2 have footprints of ∼25 km2, ∼100
km2, and ∼150 km2, respectively (Verron et al., 2015).
At distances from Stavanger TG of 31 km or more, the
closest conventional altimeters are further away from the
Stavanger TG than CS2, which has valid observations di-
rectly at the TG.

Table 2 shows standard deviations of differences be-
tween the TG and altimetry sites available in the Sta-
vanger area. Although SARAL/AltiKa and Envisat show
correlations of ∼80%, similar to CS2, their standard devi-
ations of differences are 9 cm or more. The closest point
for SARAL/AltiKa lies 31 km from the TG. It shows a
correlation of 79% and standard deviation of 10.1 cm. In
general, Jason-2 performs worse than the other two, but
also shows the largest distances to the TG. It shows a
temporal correlation of ∼30%, and standard deviations of
∼14 cm. CS2 shows a standard deviation of 7 cm and
a temporal correlation of ∼80%, which can be considered
accurate for a number of reasons. First, the CS2 wet tro-
posphere correction was derived from the ECMWF model,
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Figure 4: Comparison of CS2TGs and TGs at Oslo (a-c), Tromsø (d-f), and Trondheim (g-i). The TG (red dot) and CS2 SSHs are shown in
a, d, and g. CS2TG and TG time series using standard corrections are shown in b, e, and h, while time series using refined corrections are
shown in c, f, and i.
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Figure 5: Comparison of CS2TGs and TGs at Bodø (a-c), Kabelv̊ag (d-f), and Viker (g-i). The TG (red dot) and CS2 SSHs are shown in
a, d, and g. CS2TG and TG time series using standard corrections are shown in b, e, and h, while time series using refined corrections are
shown in c, f, and i.
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Table 2: Conventional altimetry sites and CS2TG at Stavanger TG.

Altimeter Time track no. dist. to σ(∆) ρ

period no. obs. tide-gauge [km] [cm] [%]

CryoSat-2 2010-2014 N/A 6767 <45 7.0 79

SARAL/AltiKa 2013-2016 T085 16 31 10.1 79

T360 23 92 9.7 61

Envisat/C 2010-2012 T775 15 59 14.7 33

T390 14 67 9.3 81

Jason-2 2010-2016 T163 139 77 14.3 24

T246 197 148 14.4 29

which accuracy, when compared with a radiometer-based
correction, is largely unknown this close to the coast (An-
dersen and Scharroo, 2011). Second, the CS2 SSHs are
taken from multiple tracks within the CS2TG, which may
be offset from each other. Such offsets would hamper the
averaged CS2TG value. Finally, the raw 20 Hz data were
used for the comparison, as discussed in the above.

4. Conclusions

CS2 delivers new coastal altimetry data along the Nor-
wegian coast, over areas previously uncovered by conven-
tional altimeters. Its geodetic orbit gives a denser spatial
coverage than the conventional repeat orbits, with an av-
erage of 6398 20 Hz SSH observations within a 45×45 km
area around TGs that are both close to the open ocean
and more land-confined/inside fjords.

In terms of standard deviations of differences, CS2 shows
an improvement of ∼3 cm over conventional altimeters for
the comparison at Stavanger TG. We believe that this is
due to the ability of CS2 to measure closer to the TGs
than conventional altimeters.

Our study of the DAC and OT geophysical corrections
applied to the altimeter data revealed that on average, we
get an improvement between 2-5 cm at 19 out of 22 TGs
when replacing the standard corrections with refined cor-
rections based on local TG data. On average, we observe
a slightly larger improvement for the TGs north of 66◦N,
where no altimetry was available for the standard FES2004
OT model.

These results highlight the great improvement in coastal
sea-level recovery due to the SAR altimeter onboard CS2.
We therefore have high hopes for Sentinel-3, which carries
a SAR altimeter and has a 27-day repeat everywhere, and
which will be equipped with a radiometer for improved
range corrections.
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Abstract13

The Norwegian Coastal Current (NCC) has been studied by oceanographers using hydro-14

graphic in situ measurements, and is revealed by high-resolution coastal numerical ocean15

models (ocean approach). Until now, it has not been possible to complement the oceano-16

graphic results using space-geodetic observations, due to the proximity of the NCC to the17

coast, where conventional satellite altimetry observations are either nonexistent or unre-18

liable. Using new regional geoid models as well as CryoSat-2 (CS2) data, we determine19

three geodetic coastal mean dynamic topography (MDT) models. The CS2 MDTs agree20

on the ∼3-5 cm level with both tide-gauge geodetic and ocean MDTs along the Norwe-21

gian coast, and for the first time the NCC is revealed by space-geodetic techniques. How-22

ever, even though the regional geoid models are all based on the latest satellite gravity23

data as provided by GOCE, the resulting circulation patterns differ substantially. This sug-24

gests that there is significant MDT signal at spatial scales beyond GOCE, and that the25

geodetic approach to MDT determination benefits from the additional terrestrial gravity26

information provided by a regional geoid model.27

1 Introduction28

The Norwegian Coastal Current (NCC) transports warm and relatively fresh wa-29

ter along the Norwegian coast and into the Barents Sea, with its origin in Baltic water30

entering Skagerrak [Skagseth et al., 2011]. Along its way northward it is fed by addi-31

tional freshwater discharge. The NCC is important for the regional marine ecosystem and32

contributes to the poleward transport of warm Atlantic Water, maintaining the relatively33

mild climate in northwest Europe [Rhines et al., 2008]. The Norwegian Atlantic Current34

(NwAC) is a two-branch system where the eastern branch follows the bathymetry as a35

barotropic slope current (NwASC) [Orvik et al., 2001]. The NCC also has a barotropic36

slope branch [Skagseth et al., 2011], which is the focus of this work.37

Although satellite altimetry is a mature technique, observing the sea surface height38

(SSH) globally with an accuracy of a few centimeters [e.g., Chelton et al., 2001], numer-39

ous effects degrade the observations in the coastal zone [Vignudelli et al., 2011]. For ex-40

ample, the radar footprint is contaminated by land and bright targets, and the range and41

geophysical corrections become difficult to model. The rugged Norwegian coast presents42

a further challenge, and the NCC typically falls into a zone where conventional altimeters43

do not deliver reliable observations [Ophaug et al., 2015].44
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CryoSat-2 (CS2) [Wingham et al., 2006] was launched by the European Space Agency45

(ESA) on April 8th 2010, orbiting the Earth at 717 km altitude and an inclination of 92◦,46

in a repeat orbit of 369 days, with 30-day subcycles. Consequently, CS2 has a dense47

groundtrack spacing of around 5-7 km at high latitudes. It carries a synthetic aperture48

interferometric radar altimeter (SIRAL) which can operate in synthetic aperture radar49

(SAR), SAR interferometric (SARIn), as well as conventional low resolution (LR) modes.50

CS2 uses a geographical mode mask to decide which mode to operate in [ESA and MSSL-51

UCL, 2012]. CS2 is in LR mode (LRM) over flat surfaces and the open ocean, where it52

operates as a conventional altimeter with an almost circular footprint. The SAR mode53

improves the along-track resolution to ∼300 m through a complex Doppler processing54

chain, and is used over sea ice. Over regions with significant topography, CS2 operates in55

SARIn mode, which also has an along-track resolution of ∼300 m. In addition, the altime-56

ter measures the phase difference of the backscattered signal at two antennas, from which57

the position of any backscattered point may be derived. Thus, the SARIn mode may help58

discriminating and mitigating land contamination signals from off-nadir land targets (e.g.,59

steep cliffs) [Armitage and Davidson, 2014].60

The geodetic dynamical ocean topography (DOT) is computed by [e.g., Pugh and61

Woodworth, 2014]62

DOT = h − N, (1)63

where h is the ellipsoidal height of sea level, and N is the geoid height, all referring to64

the same reference ellipsoid. If we average h over a specific time period, equation (1) will65

give the MDT for that period. Using equation (1), the mean dynamic topography (MDT)66

has a high dependence on the geoid model.67

In this work we use three state-of-the-art regional geoid models as well as CS268

data in the Norwegian coastal zone, and determine coastal MDT models by equation (1).69

Our main goal is to validate the three CS2 MDTs against tide-gauge observations and the70

state-of-the-art operational coastal numerical ocean model NorKyst800. We further explore71

to which extent the CS2 MDTs observe realistic flow patterns.72

As we compare coastal MDTs determined by the methodically different approaches73

of geodesy and oceanography, this work is a natural extension of such comparisons along74

different coasts [e.g., Woodworth et al., 2012; Higginson et al., 2015; Hughes et al., 2015;75

Lin et al., 2015; Woodworth et al., 2015]. In particular, this work builds upon the bench-76
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mark comparison of geodetic and ocean MDTs along the Norwegian coast as presented by77

Ophaug et al. [2015].78

Section 2 describes the data and methods we use to determine the CS2 MDTs and79

validate them. The CS2 data and MDT computation is described in Section 2.1. Section80

2.2 concerns the data used to validate the CS2 MDTs, specifically the tide-gauge geodetic81

MDT (Section 2.2.1) and the NorKyst800 ocean MDT (Section 2.2.2). In Section 3 we82

assess the CS2 MDTs by comparing geodetic and ocean MDT profiles at the tide gauges,83

as well as comparing the flow patterns of the CS2 MDTs and NorKyst800. Finally, we84

discuss our results and give some concluding remarks in Section 4.85

2 Data and methods86

2.1 CryoSat-2 MDT87

While equation (1) seems computationally simple, it is important that h and N cover88

the same wavelengths. Typically, when using satellite-only geoid models, h contains small-89

scale features that N lacks, requiring a suitable filtering of h to reduce the error of N .90

In order to resolve the smallest spatial scales of the gravity field and thus reduce91

the filtering need, we have referenced ellipsoidal sea level to three regional geoid mod-92

els, namely the operational regional geoid model for Norway, NMA2014, as described in93

Ophaug et al. [2015], the Nordic Geodetic Commission NKG2015 model [Ågren et al.,94

2016], as well as the European Gravimetric Geoid EGG2015 [Denker, 2016], see sup-95

porting information Table S1. All are based on fifth-release data from the ESA satellite96

gravity mission Gravity and steady-state Ocean Circulation Explorer (GOCE) [Drinkwater97

et al., 2003]. The geoid heights were transformed from the zero-tide system to the mean98

tide (MT) system using Ekman [1989, Eq. (17)]. They refer to the WGS84 ellipsoid.99

CS2 operates in LRM over most of the Norwegian Sea, and in SAR mode in the100

North Sea and Skagerrak area. It switches to SARIn mode in the Norwegian coastal areas.101

SARIn data points are available in a zone stretching out ∼40 km off the Norwegian coast.102

Thus we have considered SSH observations obtained in all three modes in this work.103

The LR and SAR mode data was obtained through the Radar Altimeter Database104

System (RADS) [Scharroo et al., 2013a]. It contains 1 Hz values referring to the TOPEX105

ellipsoid, and was referenced to WGS84 by considering an average difference of 0.686 m106
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between WGS84 and TOPEX [Ophaug et al., 2015]. RADS provides SAR mode obser-107

vations as so-called pseudo-LRM observations, i.e., they are reduced SAR observations108

using an incoherent processing of the pulse-limited echoes, similar to the the conventional109

LRM processing [Scharroo et al., 2013b]. Therefore, we will refer to all RADS data as110

LRM data in the following.111

SARIn mode observations were obtained from ESA, which provides CS2 data in112

two modes, Level 1 (L1) and Level 2 (L2). L1 contains orbit information and received113

radar echoes, while L2 contains range and geophysical corrections, and a height estimate.114

The CS2 SARIn mode dataset was obtained through the Technical University of Denmark115

(DTU) Space retracker system. This data processing is based on the L2 dataset, as well116

as the 20 Hz L1b dataset, which is retracked using an empirical retracker. The SARIn117

off-nadir range correction was applied in the processing [Abulaitijiang et al., 2015]. The118

dataset covers the 2010-2015 time period, but was limited to the 2012-2015 period, to be119

in agreement with the ocean MDT (Section 2.2.2).120

We have used the Narrow Primary Peak Threshold empirical retracker, which uses121

waveform statistics to determine the retracking point [Jain et al., 2015]. Only the primary122

peak of the waveform is considered, which corresponds to the part of the waveform re-123

flected from the sea surface in nadir. As coastal waveforms may be complex and contain124

multiple peaks due to reflections from other surfaces than the ocean [Gommenginger et al.,125

2011], considering only the primary peak of the waveform will give the most precise in-126

formation about the sea surface. Empirical retrackers generally only give the range, but127

provide a SSH estimate for all kinds of waveforms and are computationally efficient. A128

previous study by Villadsen et al. [2016] has shown that empirical retrackers perform as129

well as physical retrackers if only the SSH is wanted.130

As opposed to the LRM data obtained from RADS, no editing or quality assess-131

ment has been performed on the SARIn data. Consequently, the SARIn data contains an132

unknown amount of erroneous data points (e.g., when CS2 has tracked land instead of133

ocean). First, we removed all observations over land, giving 462,862 data points over the134

ocean. Next, we removed observations deviating more than ±1 m from the geoid, and135

performed a within-track outlier removal by multiple Student’s t-test (two-tailed, with136

α = 0.05) [e.g., Koch, 1999, chapter 4]. This two-step outlier removal led to a ∼40%137

reduction in SARIn data points.138
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We have considered standard range and geophysical corrections for both LRM and139

SARIn datasets, and they were combined by considering a known bias for the SARIn140

dataset, see supporting information Table S2.141

Geoid heights from each geoid model were interpolated to the CS2 SSH observa-142

tions, from which they were subsequently subtracted. Next, the SARIn DOT observa-143

tions were averaged in 7×7 km bins to correspond with the 1 Hz LRM DOT observa-144

tions. Finally, all observations were averaged in 15×15 km bins, and interpolated onto a145

regular grid with 30 arcsec resolution, within an area delimited by 55.8092◦≤ϕ≤73◦ and146

0◦≤λ≤34◦. The interpolation was done using least-squares collocation [Moritz, 1980],147

see supporting information Text S1. CS2 MDTs based on NKG2015, EGG2015, and148

NMA2014 will be referred to as C2NKG, C2EGG, and C2NMA in the following.149

We have chosen to compare flow patterns in the form of geostrophic surface cur-150

rents, see supporting information Text S1. Under the geostrophic assumption we look151

at the barotropic component of the flow. Considering the barotropic slope branch of the152

NCC, we expect the mean flow to follow the isobaths. Other contributors to the NCC ex-153

ist, e.g., from the shallow shelf region and a baroclinic offshore region [Skagseth et al.,154

2011]. However, as our main goal is to compare the CS2 MDTs with NorKyst800, we155

limit the flow pattern to a geostrophically balanced flow for simplicity.156

2.2 Validation data157

2.2.1 Tide-gauge MDT158

We have considered a subset of 19 tide gauges (TGs) on the Norwegian mainland159

in this work, see Figure 1a and supporting information Table S3. Thereby, we have omit-160

ted four TGs due to their location well inside fjords not sufficiently covered by altime-161

try data [Ophaug et al., 2015]. Monthly sea-level observations for 2012-2015 were ob-162

tained from the Permanent Service for Mean Sea Level (PSMSL) [Holgate et al., 2013]163

at http://www.psmsl.org/data/obtaining/, while local pressure observations with 10-minute164

temporal resolution have been obtained from the database of the Norwegian Mapping Au-165

thority (NMA) (K. Breili, personal communication, 2016). As Mausund data is not yet166

available at PSMSL, these data were obtained from the NMA database.167
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The pressure observations were used to correct sea level for the ocean’s inverted168

barometer (IB) effect, using Wunsch and Stammer [1997, Eq. (1)], with respect to a refer-169

ence value of 1011.4 mbar [Woodworth et al., 2012]. Local pressure observations are not170

available at Hammerfest, where we instead used local six-hourly sea-level pressure data171

obtained from the eKlima database of the Norwegian Meteorological Institute (MET Nor-172

way) at http://eklima.met.no. In addition, a correction for the nodal tide was applied, using173

Woodworth [2012, Eq. (1), scaled by 0.44 according to Pugh and Woodworth, 2014].174

The sea-level observations are given as heights H in the national height system,175

NN2000. As none of the considered TGs have been observed directly by Global Nav-176

igation Satellite Systems (GNSS) with sufficient accuracy, we have derived ellipsoidal177

heights h of MSL using the Norwegian height reference surface HREF2016A [Solheim,178

2000], and the simple relation h = H + HREF. Ellipsoidal heights of MSL derived from179

HREF2016A refer to the GRS80 ellipsoid (which is practically equal to the WGS84 ellip-180

soid). They are given in the conventional tide free system, and were converted to the MT181

system using Petit and Luzum [2010, Eq. (7.14a)]. NKG2015, EGG2015, and NMA2014182

were linearly interpolated to the tide-gauge sites, and by equation (1) TGNKG, TGEGG, and183

TGNMA were determined, respectively.184

2.2.2 NorKyst800185

We have considered the operational coastal ocean model of MET Norway, NorKyst800,186

based on the Regional Ocean Modeling System (ROMS) [Haidvogel et al., 2008]. It was187

obtained from http://met.no/Hav_og_is/English/Access_to_data/, where it is available in188

the form of daily mean values since July 2nd 2012.189

NorKyst800 is a free-surface terrain-following hydrostatic numerical ocean model190

using finite difference horizontal and σ vertical coordinate systems. It is vertically dis-191

cretized into 35 levels, where the σ coordinates follow a smoothed bathymetry. Moreover,192

it is forced by atmospheric datasets (mean sea-level pressure, wind, temperature, specific193

humidity, total cloud cover, and precipitation), where the equations of motion determine194

the model’s response to these forces.195

NorKyst800 uses a polar stereographic grid delimited by 55.8092◦≤ϕ≤75.2419◦196

and −1.5651◦≤λ≤38.0339◦, at an eddy-resolving resolution of 800 m. The NorKyst800197

version of ROMS differs from the original version in that it replaces the atmospheric forc-198
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ing by that of Røed and Debernard [2004], and additionally considers a sea-ice compo-199

nent [Budgell, 2005]. It includes tidal forcing from the global TPXO model [Egbert and200

Erofeeva, 2002], and freshwater runoff from a hydrological model discharge at 256 main201

catchment areas.202

To make our validation easier, NorKyst800 was resampled to a regular grid with 30203

arcsec resolution using the nearneighbor routine of the Generic Mapping Tools (GMT)204

[Wessel et al., 2013]. The nearest-neighbor algorithm is favorable due to its simplicity, and205

because it does no extrapolation at the coast. Typically the coastal grid point of the native206

ocean model grid is used, relieving us from any special treatment of the coastal points.207

As NorKyst800 is forced by atmospheric pressure it includes the IB effect. We cor-208

rected NorKyst800 for the IB effect by applying Wunsch and Stammer [1997, Eq. (1)]209

to a 0.25◦×0.25◦ mean sea-level pressure field for the 2012-2015 period, obtained from210

the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis211

(ERA Interim) [Dee et al., 2011].212

3 Results213

CS2 MDTs (Figures 1b-d) are generally consistent with NorKyst800 (Figure 1a),214

with slightly larger values in the coastal zone (up to ∼40 km off the coast) and smaller215

values to the open ocean. The general pattern of Norwegian Sea circulation is evident216

in all MDTs; we trace the NwASC northward and observe its branching at the Barents217

Sea Opening around 72◦N, as well as the NCC originating in the Baltic Sea around 58◦N218

flowing northwards along the coast all the way to its final destination in the Barents Sea.219

However, in comparison with NorKyst800, C2EGG shows a larger ∼8 cm standard devi-220

ation of differences than the other two geodetic MDTs (∼6 cm), see supporting informa-221

tion Table S4. All the geodetic MDTs have areas along the coast where the MDT shows222

smaller values than expected. For example, a fall towards the coast between 65-70◦N,223

as well as along the north-eastern coast, is evident in all geodetic MDTs, although with224

slight variations. The most striking coastal feature of C2EGG and C2NMA is an MDT low225

seen in the area between the Lofoten-Vesterålen area and Senja island, roughly at 69◦N,226

between 15-20◦E. This feature is much less visible in C2NKG.227

The ocean and geodetic MDT profiles at TGs are shown in Figure 2. The coastal232

MDT profile obtained from NorKyst800 is smoother compared to the MDT profiles ob-233
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Figure 1. Coastal MDTs in Norway; (a) ocean, based on NorKyst800 and geodetic, based on (b) C2NKG,

(c) C2EGG, and (d) C2NMA. The mean value has been removed in all cases. The tide gauges considered in

this work are shown in (a), for which a code is given in Figure 2. In all (a-d), 400 m isobaths from the 2014

General Bathymetric Charts of the Oceans (GEBCO) [Weatherall et al., 2015] grid are shown.
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Figure 2. Tide-gauge MDT profiles using geodetic and ocean estimates, arranged from north to south.

For all profiles the mean value has been removed. TG codes and IDs are given on the bottom and top x-axis,

respectively.
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254

tained from TGs and CS2. In accordance with the findings of Ophaug et al. [2015], we234

observe a 10 cm rise toward Kabelvåg, a flattening toward Stavanger, and another 10 cm235

rise toward Viker. We observe the largest differences in the Lofoten-Vesterålen area (∼10 cm).236

The geodetic MDTs show a large spread at HAMM, ANDE, and HARS, but agree well237

at KABE, RORV, HEIM, and ALES. We further observe a polarization of TG and CS2238

MDTs at some TGs. At HONN, MAUS, and STAV, the TG MDTs agree more with NorKyst800239

than the CS2 MDTs, while the converse holds true at BERG. Notably, at BODO, all the240

geodetic MDTs show a ∼10 cm disagreement with NorKyst800. In comparison with their241

respective TG MDT, C2NKG, C2EGG, and C2NMA show profile standard deviations of dif-242

ferences of 3.5 cm, 3.8 cm, and 3.9 cm, respectively. In comparison with NorKyst800,243

C2NKG, C2EGG, and C2NMA show values of 4.3 cm, 4.4 cm, and 3.4 cm, respectively.244

TGNKG, TGEGG, and TGNMA show profile standard deviations of differences of 4.1 cm,245

4.7 cm, and 3.9 cm to NorKyst800, respectively. We regard these numbers as promising246

considering previous studies of coastal MDT, which have shown an agreement between247

tide-gauge geodetic and ocean MDTs on the ∼2-14 cm level [e.g., Woodworth et al., 2012;248

Higginson et al., 2015; Lin et al., 2015; Ophaug et al., 2015; Woodworth et al., 2015], and249

between altimetric geodetic and ocean MDT on the ∼5-11 cm level [e.g., Ophaug et al.,250

2015; Woodworth et al., 2015].251

For the assessment of the NCC, geostrophic velocity fields were derived, see sup-255

porting information Text S1 and Figure 3. Prior to the differentiation, all MDTs were256

slightly filtered using a Gaussian kernel with a filter width of 12 km. The general pat-257

tern of the Norwegian Sea circulation is evident in NorKyst800, C2NKG, and C2NMA. We258

trace the NwASC northward and observe its branching at the Barents Sea Opening around259
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72◦N, as well as the hot spots at Svinøy around 62.5◦N and the Lofoten-Vesterålen area.260

We also see the NCC originating in the Baltic Sea around 58◦N, flowing northwards,261

splitting from the NwASC at Svinøy and connecting with it again in the Lofoten-Vesterålen262

area, and continuing towards the Barents Sea. The strongest currents are visible in NorKyst800,263

which is highly correlated with the bathymetry (compare with Figure 1a). C2NMA shows264

the strongest currents and most distinct pattern of the geodetic MDTs, followed closely by265

C2NKG. However, the narrow jet along the south-eastern coast, observed in NorKyst800, is266

less visible. Apart from the hot spot in the Lofoten-Vesterålen area, the circulation pattern267

is more or less absent in C2EGG.268

4 Summary and discussion271

In this work, we have shown the promising abilities of CS2 SAR(In) altimetry to re-272

cover MDT directly at the Norwegian coast, even in skerry landscapes and fjords. At the273

tide gauges, the CS2 MDTs agree on the ∼3-5 cm level with both tide-gauge and ocean274

MDTs, which are determined using fundamentally different methods. The NCC is revealed275

in the geostrophic current patterns of C2NKG and C2NMA. However, in spite of these en-276

couraging results, our CS2 MDTs show different artifacts requiring further investigations,277

which we would like to expand upon in the following.278

The geodetic MDT is notorious for its reliance on the resolution and accuracy of279

the marine geoid. This is demonstrated in this work, where we observe different circula-280

tion patterns depending on the geoid. These variations are observed even though we have281

restricted ourselves to using new high-resolution gravimetric geoid models which are all282

based on the same satellite gravity information. This suggests there is significant MDT283

signal at smaller spatial scales than those resolved by GOCE, and that the geodetic MDT284

can be improved by considering regional geoid models which include terrestrial gravity285

data.286

The three regional geoid models in this work are mostly based on the same terres-287

trial gravity data. However, while NKG2015 and NMA2014 are both almost completely288

free of altimetry-derived gravity information (and thus independent of the altimetry obser-289

vations they are subtracted from), EGG2015 is heavily based on altimetry-derived grav-290

ity. Looking at Figure 3c, we note in particular that the branching of the NwASC is less291

emphasized in C2EGG, and north-south flows generally seem less distinct. This could,292
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Figure 3. Geostrophic ocean surface currents derived from (a) NorKyst800, (b) C2NKG, (c) C2EGG, and (d)

C2NMA. Areas not relevant to the geostrophic assumption, at the coast or inside fjords, have been masked out.
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in part, be owing to the way gravity is derived from altimetry. However, other regional293

geoid computation issues, such as data weighting and interpolation may also play a role.294

For example, the MDT low in C2NMA mentioned in Section 3 is probably due to a grav-295

ity data interpolation issue in the computation of NMA2014, as gravity data is sparse in296

this particular area (O. C. D. Omang, NMA, personal communication, 2016). This seems297

to have been resolved in the more recent NKG2015 geoid model, which is based on the298

same gravity dataset. The MDT low in C2EGG is located slightly more to the southwest299

of the low in C2NMA, which suggests it might be related to a different issue. However, as300

the problem is more or less solved in C2NKG, it is still likely to be a geoid-related artifact301

rather than related to CS2.302

As mentioned in Section 3, Figure 2 reveals a polarization of TG and CS2 MDTs303

at some sites. In some cases, the TG MDTs agree more with NorKyst800 than the CS2304

MDTs. As all geodetic MDTs are based on the same geoid models, this suggests that305

the CS2 MDTs are off due to noisy CS2 observations rather than geoid errors. Using the306

same argument, in case the CS2 MDTs agree more with NorKyst800 than the TG MDTs,307

this suggests there could be an error in the ellipsoidal height of MSL. Our method for308

determining the ellipsoidal height of MSL at tide gauges make these values dependent309

on HREF accuracy, which in turn is dependent on GNSS/leveling and errors in the geoid310

it is based on. We continue to stress that ellipsoidal heights at tide gauges are best de-311

termined directly by GNSS techniques, simplifying the geodetic MDT error budget. In312

BODO, however, all geodetic MDTs agree well internally, but disagree with NorKyst800313

by ∼10 cm. In this case, the TG and CS2 agree on the ellipsoidal height of sea level,314

which suggests there could be an error in the geoids. BODO lies in the coastal area be-315

tween 65-70◦N, which shows an MDT low in all geoids.316

At this point, we would like to stress that NorKyst800 errors also form a component317

of our MDT error estimates. Using the simple error budgeting approach of Ophaug et al.318

[2015], which relates the empirical standard deviation of differences to the formal error319

propagation, we get a 2-3 cm error contribution from NorKyst800. Thereby, we have used320

our MDT profile standard deviations and assume equal error contributions from ellipsoidal321

sea-level, geoid model, and NorKyst800.322

In general, gravity data is sparse in a small coastal gap between terrestrial and ma-323

rine gravity observations, which might explain the MDT lows that are observed in these324
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areas. Such gravity observation gaps could be filled efficiently with airborne gravimetry325

in a future regional geoid realization with particular focus on the coastal zone. Further,326

the regional geoid models are tuned to fit validation data on land, where also the bulk of327

gravimetric observations are found. Thus, they are not necessarily the best option for de-328

scribing the short-scale marine gravity field off the Norwegian coast, which was pointed329

out by Ophaug et al. [2015].330

Another challenge is posed by the geographical mode mask of CS2. The SARIn331

mode only stretches out to roughly ∼40 km off the coast, where it blends into the LR or332

SAR mode. Often this border area coincides with the NCC, requiring special attention333

when combining the CS2 data. Furthermore, being more sparse at the border, the SARIn334

and LRM/SAR observations are more uncertain in this area. In particular, the border be-335

tween the SARIn and SAR modes along the south-eastern coast of Norway coincides with336

the narrow jet of the NCC, making the jet highly dependent on the CS2 data weighting337

and interpolation methods. The jet is not a distinct feature in the current CS2 MDTs,338

which should be investigated in the future.339

Finally, our CS2 MDTs are based on novel SARIn processing and data screening.340

The DTU Space retracking system is experimental and under continuous development.341

Our editing of the CS2 SARIn data is crude, and only ∼60% of the raw CS2 data (omit-342

ting points on land) are used. This not only suggests that a considerable amount of valid343

data points did not pass the editing, but also reveals that the CS2 targets along the Norwe-344

gian coast are generally noisy and ridden with instrumental “contamination”; e.g., when345

CS2 passes a fjord with steep mountains on either side, and tracks its own noise instead346

of the fjord surface. Also, a large amount of CS2 observations inside fjords do not have347

a valid ocean tide (OT) correction, as they are outside the coverage of the standard global348

OT model. These observations have been disregarded in this work, but could be included349

in the future by considering local ocean tide corrections [Idžanović et al., 2016]. Future350

improvements of the retracker system and the application of other retrackers may mitigate351

noise effects, and a more elaborate and robust statistical editing of the data may remediate352

a larger amount of valid observations.353

At the current stage our results highlight the great improvement in coastal MDT de-354

termination due to the SAR(In) altimeter onboard CS2, giving a peek ahead of the results355

from new-generation SAR and SARIn altimeters such as the Sentinel-3 mission of the356
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Copernicus program, and the Surface Water and Ocean Topography (SWOT) mission of357

NASA/CNES, respectively.358
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the optimal interpolation technique used for determining the geodetic MDTs in this work

(see text for more details). In addition, four tables are included, showing covering areas

and grids for the regional geoid models, the range and geophysical corrections applied

to the CryoSat-2 altimetry data, the locations of the tide gauges used in this work, and

statistics of the computed MDTs, respectively.

Text S1.

The geostrophic surface currents [e.g., Wunsch and Stammer, 1998] are given by

u = − g

f R
∂MDT
∂ϕ

, (1)

and

v =
g

f R cos ϕ
∂MDT
∂λ

, (2)
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Table 1. Covering areas and grids for the used geoid models

Geoid model ϕ (◦) λ (◦) ∆ϕ (◦)×∆λ (◦)

NMA2014 53◦≤ϕ≤77.99◦ −15◦≤λ≤40◦ 0.01◦×0.02◦

NKG2015 53◦≤ϕ≤73◦ 0◦≤λ≤34◦ 0.01◦×0.02◦

EGG2015 25.0083◦≤ϕ≤84.9917◦ −49.9917◦≤λ≤69.9917◦ 0.017◦×0.017◦

where u and v are the zonal (east-west) and meridional (north-south) components,

respectively. R is the mean Earth radius, g is gravity, and f = 2ω sin ϕ is the Coriolis

parameter, of which the angular velocity of the Earth ω forms a part.

The interpolation of SARIn DOT observations was done with the geogrid routine

[Forsberg and Tscherning, 2008]. It uses least-squares collocation [Moritz, 1980]

ŝ = Csl (Css + Cnn )−1 l, (3)

where ŝ is the predicted MDT value, l contains the DOT observations, Css and Cnn

are the signal and noise parts of the covariance matrix of the observations l, respectively,

and Csl is the covariance matrix between signal and observations.

geogrid uses the second-order Gauss-Markov covariance function [Moritz, 1980],

given by

C(r) = C0

(
1 +

r
α

)
exp (−r/α) , (4)

where r is the distance between prediction and observation points, C0 is the signal

variance, and α is the correlation length. In this work, α has been empirically determined

to 80 km and an uncertainty of 3 cm was assigned to the data.
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Table 2. Applied range and geophysical corrections

Correction RADS LRM ESA SARIn

Dry ECMWF ECMWF

Wet ERA ECMWF

Iono GIM a GIM

LF b IB w/ECMWF IB w/ECMWF

HF c MOG2D No HF

SSB Non-param No SSB

OT GOT4.10 FES2004

SET CT d CT

PT Wahr [1985] Wahr [1985]

Range bias - +0.690 m

Period 2012-2015 2012-2015

a GIM: global ionosphere map.

b Low frequency contribution with periods > 20 days.

c High frequency contribution with periods < 20 days.

d CT: Tidal potential from Cartwright and Tayler [1971] and Cartwright and Edden [1973].
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Table 3. Tide gauges in our work

Tide gauge Code ID ϕ (◦) λ (◦)

Vardø vard 19 70.375 31.104

Honningsvåg honn 18 70.980 25.973

Hammerfest hamm 17 70.665 23.683

Tromsø trom 16 69.647 18.961

Andenes ande 15 69.326 16.135

Harstad hars 14 68.801 16.548

Kabelvåg kabe 13 68.213 14.482

Bodø bodo 12 67.288 14.391

Rørvik rorv 11 64.860 11.230

Mausund maus 10 63.869 8.666

Heimsjø heim 9 63.425 9.102

Kristiansund krin 8 63.114 7.734

Ålesund ales 7 62.469 6.152

Måløy malo 6 61.934 5.113

Bergen berg 5 60.398 5.321

Stavanger stav 4 58.974 5.730

Tregde treg 3 58.006 7.555

Helgeroa helg 2 58.995 9.856

Viker vike 1 59.036 10.950

Table 4. Statistics of the MDTs used in this work (m).

Model min max mean σ̂

NorKyst800 -0.6756 -0.0761 -0.3665 0.1178

C2NKG -0.3750 0.4180 0.0747 0.1281

C2EGG -0.2710 0.4780 0.1064 0.1255

C2NMA -0.3030 0.4780 0.1099 0.1296

C2NKG - NorKyst800 -0.2590 0.2423 -0.0573 0.0616

C2EGG - NorKyst800 -0.3310 0.3085 -0.0670 0.0765

C2NMA - NorKyst800 -0.2800 0.2345 -0.0650 0.0628
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Abstract Regional geoid models are based on the com-
bination of satellite-only gravity field information and

terrestrial data. Satellite information is conveniently
provided in terms of spherical harmonic global poten-
tial models. Terrestrial information is mostly provided

in terms of point or block mean values of gravity in the
region of interest. Combination of the two sources of
information in the overlapping spectral band is either
based on deterministic or on stochastic considerations.

We have tested different schemas for weighting satellite
and terrestrial information and compared the results to
GNSS-levelling data in Norway. The results provide im-

plications for the quality of terrestrial data in the study
area and for regional geoid modeling based on GOCE
satellite models in general.

In order to minimize the computational burden, we

avoid field transformation (from gravity anomalies to
geoid heights) by employing an already existing regional
geoid model to represent the terrestrial information.
Combination is then performed by filtering geoid grids

in the spatial domain.

Keywords Regional Geoid · Spectral Combination ·
GNSS-Levelling · GOCE
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1 Introduction

High resolution gravity field and geoid models are of in-
terest for geodetic and geophysical applications. A high
resolution geoid model may, e.g., be used to define the

vertical datum of a certain region with a focus on ef-
ficient determination of physical heights by means of
GNSS-levelling [14]

A state-of-the-arte high resolution geoid is based on
(i) data from satellite gravity missions for modelling
its large scale features and (ii) terrestrial (including

airborne and shipborne) data for those smaller scales
which are not observable from space. Today, combined
GRACE/GOCE models allow reconstructing the global

gravity field down to resolutions of about 100 km with
accuracies at the centimeter-level [1]. In our study, we
use the global potential models (GPM) DIR5 [1] and
GOCO05s [10], both of which are based on GRACE

and release 5 GOCE data.

In order to fully exploit the high quality of these
GPMs, optimal combination with the terrestrial data

available in the specific area of investigation is required.
The selection of spectral weights for satellite and terres-
trial data in the overlapping spectral band depends on

the geographic location (due to slight inhomogenities in
the quality of satellite-only GPMs, see Fig. 1) and on
quality and distribution of terrestrial observations. For

example, in a region with sparse and/or less accurate
gravity data, satellites may still provide valuable infor-
mation for scales well below 100 km resolution (maybe
down to 70 km), i.e. satellite information dominates

the overlapping spectral band. However, in regions with
dense and high quality terrestrial data (like the USA or
central Europe) terrestrial information may outperform

satellite data even for scales well above 100 km (say, up
to 150 km, or so). Then terrestrial data dominates the
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common band. In the latter case the total error bud-
get may end up at the level of some few centimeters in
terms of geoid heights (see, e.g., [13], [4])

Optimal combination of satellite and terrestrial data

requires selecting a weighting schema based on some
optimization criterion. There exist deterministic and
stochastic schemas, see, e.g., [15] or [5].

Here we specifically test the stochastically optimal
spectral combination method proposed by Wenzel [16],
[17]. Thereby, the error degree variances of the satellite-

only global potential model, σGPM

l , and those of the ter-
restrial data, σ∆gl are combined in a Wiener-type filter-
ing schema according to

wl =
(σGPM

l )
2

(σGPM

l )
2

+
(
σ∆gl

)2 . (1)

For each spherical harmonic (sh) degree l, the wl are
spectral weights for the satellite information and (1 −
wl) represent the complementary weights for the ter-
restrial data. The approach assumes, (i) that the errors
are isotropic and homogenous (thus they can be rep-

resented by error degreee variances) and (ii) that they
are uncorrelated. Both aspects need to be considered in
the construction of the degree variances (see section 2)

and when interpreting the results (see section 4).
The aim of our study is to investigate different com-

bination schemas for a test region in the Nordic coun-
tries. The focus is on data weighting in the spectral

transition zone from satellite-only to terrestrial-only in-
formation. Because the quality description of the terres-
trial data is difficult to judge, we derive Wenzel-weights

wl under different assumptions for σ∆g, namely {0.2,
1.0, 2.0} mGal, and we compare the results to indepen-
dent GNSS-levelling data in Norway. In addition to the

stochastic approach, we test deterministic approaches,
like the classical Wong & Gore kernel modification [18]
and simple data blending based on a Gaussian filter
kernel as implemented, e.g., in [13]. The Wong & Gore

filter is chosen, because it is traditionally applied in
the computation of Norwegian geoid models. Here we
use the 2014-version regional geoid model NMA2014,

provided by the Norwegian Mapping Authority (Ove
Omang, personal communication). The model is a com-
bination of terrestrial data and the release-4 GOCE
model DIR4 [2] employing a Wong & Gore type modifi-

cation. The latter does not cut the kernel at one specific
degree, but employs a linear transition of the weights
(from 1 to 0) over the narrow spectral band between

sh-degrees 130 and 140 (see the spectral weights in
Fig. 2). The Gaussian filter is chosen, because it was
used in [12] for the generation of a simplified update

of NMA2014. Thereby NMA2014 was combined with
DIR5 using a Gaussian filter (correlation length 80 km),

thus effectively ”replacing” DIR4 by DIR5. This update

decreased the standard deviation of the residuals with
respect to GNSS-levelling from 3.5 cm to 3.0 cm.

As the focus of this study is on data weighting, we do

not go into specific methods for geoid computation, like
Stokes integration, least-squares collocation or other al-
ternatives. Actually we avoid field transformation from
gravity anomalies to geoid heights, but represent the

terrestrial data by a high-pass filtered version of the
regional geoid model. Geoid heights generated on the
same geographic grid from the the coefficients of a GPM

are smoothed with the complementary low-pass filter
and the two grids are added to form the combined geoid
solution.

Section 2 presents the error degree variances used

for construction of the spectral weights wl. The lat-
ter are treated in section 3. Based on the error de-
gree varainnces and the spectral weights, formal errors

are derived for the combined geoid solutions. The ac-
tual geoid models are compared to GNSS-levelling data,
thus providing empirical error estimates. Formal and
empirical errors are discussed in section 4 and the re-

sults are summarized in section 5.

We may also have to mention, that, strictly speak-
ing, the quantities we work with are height anomalies

and normal heights. However, since our focus is on data
weighting and the results should be independent from
the technical differences between geoid and quasigeoid
computation, we will consistently use the term geoid

throughout the text, even though this may seem a bit
loose in some places.

2 Error degree variances

2.1 Error degree variance of terrestrial gravity data

Regional geoid computation is based on point gravity

data or corresponding area averages. Thereby the fol-
lowing error contributions are of relevance: (i) errors
of original gravity observations, (ii) errors of the point

coordinates when computing anomalies, (iii) any com-
puational errors that arise in the process of forming
area averages, or in applying data reductions and (iv)
last but not least, the representation error, i.e., the abil-

ity of a point value to represent the gravity field in its
neighbourhood.

In many cases, information to fully account for all

of the above errors is not readily available. In our case,
we do not even go back to the original gravity data,
but start with the regional geoid model derived from
it. Trying to help out, we acknowledge, that NMA2014

is based on a set of terrestrial gravity values which was
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in large parts provided for the computation of the Eu-
ropean gravimetric geoid model EGG2008 [3]. There-
fore, we approximate the short scale error behaviour
of NMA2014 by the error description of EGG2008 as

published in [3]. There it is provided in the form of the
error covariance function of geoid heights; from this we
have derived error degree variances σEGG2008

l by spectral

analysis.
The error description of EGG2008 is based on a

1 mGal correlated noise model (for the terrestrial part)

and on error degree variances of the GPM EIGEN-5S
[8]; thus the satellite part is effectively represented by
error degree variances from GRACE (see the error de-
gree variances in Fig. 3). The spectral transition from

pure GRACE to pure terrestrial information happens
in the band between sh-degree 60 and 120. Thus the
error model is effectively free from satellite information

above degree 120. This does not exactly correspond to
NMA2014, where satellite data is used up to degree
140. As will be shown later, optimal combination em-
ploys GOCE data even above degree 140. Therefore,

this spectral range is reduced from NMA2014 by high-
pass filtering and NMA2014 provides only information
for the shorter scales well above degree 140. Thus, we

may with good reason, set

σ∆gl ≈ σNMA2014

l ≈ σEGG2008

l (2)

for the spectral band above l = 140 and neglect the fact

that, in theory, we violate the basic requirement for the
Wenzel-approach in Equ. (1), namely that satellite and
terrestrial information should be uncorrelated.

2.2 Error degree variances from satellite-only gravity
models

The error description of DIR5 and GOCO05s is pro-
vided in the form of the full error variance-covariance
matrix (VCM). However, Equ. (1) requires rather con-

densed information in terms of error degree variances.
The full VCM does not represent a globally homoge-
nous and isotropic error behaviour as implied by using

error degree variances. Here we use a two-step proce-
dure to construct a degree variance model that allows
approximating the full VCM in the study area.

In the first step, we approximate the full VCM by

the diagonal blocks of constant sh-order m, hereafter
termed as the m-block or mbm-approach. The m-blocks
contain the most significant correlations of the full VCM

and describe about 99% of the geoid error, see [9]. The
corresponding geoid error is perfectly latitude-dependent,
but not homogenous, as shown in Fig. 1. It differs sig-

nificantly from the geoid error derived from error de-
gree variances only. This latter approach neglects not
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Fig. 1 Geoid height formal errors from GOCO05s (full reso-
lution) as function of latitude in units of [m]. Error propaga-
tion is based on either the cn-approach (gray curves) or the
mbm-approach (black curves). Solid lines include downward
continuation to the surface of the ellipsoid, while dashed lines
refer to a sphere of radius R = 6 378 km. The gray area marks
the latitude range of our test region (Norway).

only all error correlations of the original VCM (it takes
only error variances into account), but additionally as-

sumes homogenous and isotropic error behaviour. The
geoid error computed from this degree variance or cn-
approach is constant all over the globe (if evaluated on
a sphere of constant radius).

The second step provides a local approximation of

the mbm-approach by rescaling the error degree vari-
ances. Practically, the error covariance function is de-
rived from the cn-approach, but its amplitude is scaled

to fit its error variance (gray curve in Fig. 1) to the
error variance from the mbm-approach (black curve in
Fig. 1). The scaling factor is a function of latitude. Be-
cause the factor changes only smoothly with latitude,

we may use an average scaling factor to generate a suf-
ficient approximation of the mbm-based geoid error for
local to regional applications. For our test area in Nor-

way we have used the scaling factor for the average
latitude of 65◦ and applied it to the whole study area
(which stretches from about 55◦ to 75◦ latitude). The
corresponding latitude band is marked with gray in Fig.

1.

Considering Fig. 1 it is also worth mentioning, that
the dashed lines are valid on a sphere of constant ra-
dius R = 6 378 137 m, while the solid lines are valid on

the surface of the ellipsoid, i.e., they involve downward
continuation. Due to a slight orbit excentricity of the
GOCE satellite, the error is not symmetric with respect
to the equator. This asymmetry is amplified through

downward continuation, because the orbit height is larger
over the southern hemisphere and smaller over the north-
ern hemisphere. Thus the error is significantly larger in

southern latitudes than in the correspoding northern
latitudes.
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3 Spectral weights and filter functions

Figure 2 shows the spectral weights for some of the
combination schemas. Comparing the three GOCO05s
curves (each with different error assumption for the ter-

restrial data), it is obvious, that the worse the terres-
trial data is assumed to be, the higher the weights for
GOCE data are. Comparison of DIR5 and GOCO05s

(employing the same assumption on σ∆gl ) shows, that
the DIR5-combination puts more weight on the satellite
information. This is because the formal errors of DIR5

are smaller than the GOCO05s-errors.

As satellite-only GPMs should provide the best in-
formation for the long wavelength, the weights should
be equal to one for the lower part of the spectrum.

This is the case for Wenzel-type combinations which
are based on the assumption, that σ∆gl = 1.0 mGal or
worse. It is not the case, if the error degree variances

for the terrestrial data are scaled to provide the smaler
0.2 mGal error amplitude. This is due to our specific
definition of the error degree variances for the terres-
trial data. As mentioned earlier, the errors for the lower

sh-degrees are taken from the GRACE-based model
EIGEN-5S and these error degree variances are also
rescaled. This is of course rather crude and generates

the artificial behaviour of the spectral weights (thin,
black line in Fig. 2). However, we accepted this for our
purpose as it hardly affects the overall cumulative error

budget (effectively GOCO05s is partly replaced by the
GRACE model EIGEN-5S, which also provides good
information for the longer wavelengths).

Concerning the Gaussian weights, one may try to

represent different quality of the terrestrial data by
chosing a different filter length; if terrestrial data is as-
sumed to be of good quality, the filter length will be
larger. However, for various realistic error assumptions,

the weights for the satellite data will always start de-
caying even for the longest wavelengths. Therefore, this
approach can only provide good results, if both, ter-

restrial and satellite data are of good quality for long
wavelengths. This is the case for our combination of
NMA2014 and release 5 GOCE models. It may not be

the case, when combining GOCE and an old regional
geoid model, which is not already based on GRACE or
GOCE data.

The isotropic spatial filter functions are constructed

according to

W (ψ) =

∞∑

l=2

wl Pl (cosψ) (3)

where Pl(cosψ) are the conventional Legendre polyno-

mials and ψ is the spherical distance between computa-
tion and integration point. In practise the summation is
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Fig. 2 Spectral filter weights wl using different filtering
schemas for combination. The Wong&Gore as well as the
Gaussian weights are deterministic schemas. All other curves
represent stochastic schemas according to Wenzel, employing
scaled error degree variances for either DIR5 or GOCO05s
along with different assumptions on the error amplitude of
terresrial gravity data.

carried out to a high sh-degree (e.g. l = 10 000) and the
integration is limited to a certain spherical cap around
the compution point. Here we have taken care, that the

filter function smoothly tends to zero, by applying a
Meissl-type modification. The effective integration cap
for the different functions is around 2◦. In addition, all

functions are normalized (integral of the filter function
over the spherical integration cap is equal to 1).

4 Results

Figures 3 and 4 show error degree variances resp. cu-
mulative geoid errors of some selected geoid solutions.

These numbers reflect the expected formal error of the
geoid models. Table 1 shows the statistics of the com-
parison to GNSS-Levelling for several more scenarios.
In contrast to the formal errors shown in the figures,

these numbers represent empirical errors which also con-
tain contributions from GNSS and levelling.

Tab. 1 also contains results for some older nordic
geoid models, namely NKG96 [6] and NKG2004 [7].
The results nicely reflect the improvement brought by

GRACE and GOCE during the last 10-15 years (part of
the improvement is also due to improvements in the ter-
restrial databases). NKG96 (pre-GRACE era) gives an

overall standard deviation of around 8 cm. This value is
reduced to 6 cm for NKG2004 (which includes GRACE)
and to around 3 cm for the latest, GOCE-based models.

The formal errors show the importance of optimal
combination and of good knowledge of the quality of

terrestrial data. The formal error of EGG2008 is esti-
mated to be 2.5 cm. Including GOCE data, even based
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Fig. 4 Cumulative geoid height errors for different geoid so-
lutions in units of [m].

on the quite crude Wong&Gore combination, allows to

reduce the error to below 2 cm. Using different error
assumptions for the terrestrial data allows to further
reduce the error of the combined geoid model. Assum-

ing an error level of 1 mGal, the geoid error goes fur-
ther down to 1.6 cm; assuming 0.2 mGal yieds an even
smaller error of 0.4 cm.

Such a strong variation (2.5 to 0.4 cm) is not re-

flected by the statistics in Tab. 1. Here all geoid models
yield about a 3 cm fit to GNSS-levelling. This fits about
to the error budget of the Norwegian height reference

surface HREF as derived by [11].

There is only a slight tendency indicating that the
Wong&Gore combination as well as the Wenzel-type
combinations assuming high quality of terrestrial data

(0.2 mGal) do obviously not take enough GOCE data
into account. It also seems that the Gauss kernel proves

Table 1 Statistics of the residuals of different geoid solu-
tions with respect to GNSS-levelling data in Norway (mean
subtracted). All modified solutions are combinations of either
GOCO05s or DIR5 with NMA2014. Units are [cm].

Geoid model type of modification min max std

NKG96 - -35.99 19.47 8.48
NKG2004 - -23.84 16.52 5.91
NMA2014 - -14.94 12.23 3.41
EGG2015 - -13.88 8.75 3.43

DIR5 Gauss (80 km) -13.26 12.45 2.98
DIR5 mbm (2.0 mGal) -13.25 12.31 2.93
DIR5 mbm (1.0 mGal) -13.66 12.86 2.94
DIR5 mbm (0.2 mGal) -13.88 13.10 3.10
DIR5 Wong & Gore -13.79 13.13 3.11

GOCO05s Gauss (80 km) -12.66 12.19 3.00
GOCO05s mbm (2.0 mGal) -12.96 12.70 2.94
GOCO05s mbm (1.0 mGal) -13.30 12.97 3.01
GOCO05s mbm (0.2 mGal) -13.61 12.97 3.12

better than the Wong&Gore combination, however, it
can further be improved by the Wenzel-modifications
which take more GOCE data into account in the medium

wavelength. Besides this, the statistics show that DIR5
gives slightly better results than GOCO05s (when com-
paring solutions with identical error assumptions for

σ∆g). Because the empirical errors do not vary as strong
as the formal geoid errors, we assume, that the error
budget is dominated by the error of GNSS and level-
ling.

5 Conclusions

We have generated several regional geoid models for
our study area in Norway by applying different types of
kernel modifications for optimal combination of GOCE

and terrestrial data. The stochastically optimal Wenzel-
modification was tested against deterministic modifica-
tions that have been used earlier for the study area,

namely the Wong&Gore modifications and the Gaus-
sian kernel. Empirical errors were derived from com-
parison to GNSS-levelling.

In general, the errors show, that GRACE and GOCE

have strongly improved the regional geoid over the last
decade. The fit to GNSS-levelling drops from 8.5 cm
(before the GRACE era) down to about 3 cm (with

GOCE data).

The empirical errors vary only slightly around 3 cm.
However, in tendency they confirm that those combi-

nations are best, which put more weight on GOCE.
This is also reflected by the formal errors. Therefore the
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Wong&Gore filter used for NMA2014, does not seem to
be optimal.

The formal errors are lower and show larger dis-
crepancies between the different combination schemas.

This could be an indication, that the empirical error is
dominated by the quality of GNSS-levelling data. Fur-
ther inspection of these data sets will be valuable for

future improvements of the regional geoid model and
for deriving a realistic formal error budget.

Geoid modelling on the centimeter to sub-centimeter
level is not an easy task. Our formal error budget shows

significant differences depending on the quality of ter-
restrial data in the area of interest. The latest version
of the European Gravimetric Geoid model, EGG2015,

is optimized with respect to some other validation data
sets and obviously not the optimal solution for Nor-
way. It assumes σ∆g = 0.2 mGal, which seems too op-

timistic for the Norwegian data set - an error of around
2.0 mGal seems more realistic. As the quality of ter-
restrial data is not necessarily constant for the area of
interest, one may also pose the question, if further im-

provement of regional geoids can be achieved with the
classical Stokes approach, where one chooses one sin-
gle weighting schema for the whole area, i.e. one and

the same modified Stokes function. This necessarily re-
quires a compromise between subareas with highest and
lowest quality (repectively density) of terrestrial data.
Alternative approaches like least-squares collocation or

spherical radial basis functions, which allow taking spa-
tial variations in data quality into account, may prove
to provide better results. This however, was out of the

scope of this study and will be subject to future re-
search.
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