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Abstract 

Owing to the rapid rate of development in the field of systems biology researchers have faced 

many new challenges with regard to handling the large amount of generated data sets originating 

from different –omics techniques, integrating and analyzing them and finally interpreting the 

results in a meaningful way. Different statistical methods have been implemented in the field of 

systems biology. The use of chemometrics approaches for the integration and analysis of systems 

biology data has recently increased.  Different chemometrics methods are potentially available 

for integrating –omics data and detecting variable and sample patterns. An important challenge is 

to decide which method to use for the analysis of –omics data sets and how to pre-process the 

data sets for this purpose. Special attention needs to be given to the validity of the detected 

patterns.       

In this study we have been working on developing multi-block methods for integrating different 

types of systems biology data and investigating the co-variation patterns among the measured 

variables. A special focus was given to the validation of the results of the multi-block methods 

CPCA and MBPLSR. Different types of graphical tools were introduced for the purpose of 

validation. We have also developed pre-processing techniques that could explicitly be used for 

lipidomics data sets. A framework was built for pre-processing, integrating, analyzing and 

interpreting the lipidomics data sets. The framework was then used for the analysis of a 

lipidomics data set from a human intervention study.     

Working on the development of the validation tools required an understanding of the concept of 

DFs consumption during the multi-block modeling. Therefore, we ran simulation studies where 

we investigated the number of DFs that were consumed during the modeling processes of PCA 

and CPCA. Another important issue for applying multi-block methods is the choice of the 

deflation method. Hence, we studied different deflation strategies available for Multi-block PCA 

and investigated their interpretational aspects. 

 



Norsk sammendrag 

På grunn av rask utvikling innen systembiologi har forskere møtt mange nye utfordringer med 

hensyn til håndtering av store datamengder, som genereres med forskjellige -omics teknikker. 

Det er en stor utfordring både å integrere, analysere og til slutt tolke resultatene på en meningsfull 

måte. Ulike statistiske metoder har blitt implementert for analyse av systembiologi data. Bruk av 

kjemometri for integrering og analyse av biologiske data har økt mye den siste tiden.   I 

utgangspunktet finnes det flere metoder fra kjemometri som kan brukes for å integrere data fra 

forskjellige –omics teknikker og for å oppdage grupperinger av objekter og variabler. En stor 

utfordring er å bestemme hvilken metode som skal brukes til analyse av -omics datasett og 

hvordan pre-prosessere datasettene. Det er også viktig å validere de grupperingene som har blitt 

oppdaget. 

I denne studien har vi jobbet med å utvikle multiblokk metoder for å integrere ulike typer data fra 

systembiologi og å undersøke samvariasjon blant de målte variablene. Det har spesielt vært fokus 

på validering av resultatene av multiblokkmetoder som CPCA og MBPLSR. Ulike typer verktøy 

ble innført for å sikre valideringen. Vi har utviklet pre-prosessering teknikker som kan brukes 

spesielt til lipidomics datasett. Vi har bygget et rammeverk for pre-prosessering, integrering, 

analysering og tolkning av lipidomics datasett. Metoden er blitt brukt til å analysere et lipidomics 

datasett fra et human intervensjonsstudie.  

Utvikling av validerings metoder krever en forståelse av bruk av antall frihetsgrader under 

modelleringen. Det har derfor blitt gjennomført simuleringsstudier hvor vi undersøkte antallet 

frihetsgrader som ble brukt under modellering med PCA og CPCA. Et annet viktig tema når man 

bruker multiblokk metoder er valget av deflasjonsmetoden. Det er blitt studert ulike 

deflasjonsstrategier som er tilgjengelige for multiblokk PCA og undersøkt deres 

tolkningsaspekter. 
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1. Background  
Integrating Systems Biology data 

Systems biology is a multidisciplinary emergent field that employs several high-throughput 

techniques to study interactions between different components of a biological system [1]. 

Obtaining data along the casual chain from genotype to phenotype enables studying the samples 

at different levels from DNA to phenotype. A variety of –omics techniques are nowadays 

becoming available in the field of systems biology e.g. genomics, proteomics, metabolomics and 

lipidomics which is a branch of metabolomics (Fig. 1). Understanding a biological system as a 

whole requires integration and simultaneous analysis of such –omics data sets [2]. As it can be 

seen in Fig.1, different types of techniques are generally used for generating –omics data sets. 

Collecting data from each technique in a separate data matrix, results in multi-block multivariate 

data set containing different types of measurements belonging to the same samples. Samples are 

ordered in the same way in each data set leading to a row to row correspondence between the 

blocks of the multi-block data set. An example of a multi-block data set from Systems Biology is 

shown in Fig. 2a where different –omics techniques are applied on the same samples. As it can be 

seen in Fig. 2a, different blocks of a multi-block data set always contain the same sample set 

while they contain different variable sets. The measurement of the same samples by different –

omics techniques raises the challenge of building a multi-block framework for integrating and 

analyzing such generated multi-block data sets. 

 

Figure 1: Integration of data in Systems Biology along the casual chain from genotype to 
phenotype. The figure is adapted from [3]. 
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Figure 2: (a) Structure of an example multi-block data set from Systems Biology. (b) Structure 
of an example multi-block lipidomics data set containing four lipid classes. 

Lipidomics, a branch of metabolomics, is the study of the cellular lipidome, involving detection, 

characterization and quantitative analysis of hundreds up to thousands of lipids (i.e. fatty 

molecules) using mass spectrometry instruments with high sensitivity and high specificity (mass 

resolution) [4]. Lipids are classified into several lipid classes and sub-classes. Such a 

classification of lipids results in a multi-block situation for lipidmics data sets when the data from 

different lipid classes are gathered in different data blocks. An example of a multi-block 

lipidomics data set is shown in Fig. 2b for a four-block lipidomics data set containing the 

following lipid classes: Ceramides (Cer), Phosphatidic Acid (PA), Sphingomyelins (SM) and 

Triglycerides (TG). An important challenge for analyzing such lipidomics data sets is integrating 

lipids from different lipid classes and analyzing them simultaneously in order to explore the lipid-

lipid relationships as well as the dynamics between different lipid classes. There is also a need for 
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integrating lipidomics data together with other types of data and studying the co-variation 

patterns among the lipids and co-variation patterns among lipids and other variables.   

Exploratory chemometrics approaches, such as Principal Component Analysis (PCA) and Partial 

Least Squares Regression (PLSR), are nowadays being employed for the analysis of –omics data 

sets. PCA is an unsupervised chemometrics approach that is used for the purpose of modeling 

one-block data sets. The application of PCA for the analysis of different types of data from 

Systems Biology has recently increased e.g. analysis of metabolomics data [5-8], proteomics data 

[9-11], genomics data [12-14] and lipidomics data [15, 16]. PCA reveals the co-variation patterns 

among the samples and variables of a one-block data set. PLSR is a different supervised 

exploratory chemometrics approach that is used for modeling two-block data sets. PLSR is 

commonly applied for the analysis of Systems Biology data e.g. in the analysis of metabolomics 

studies [17-19], in proteomics studies [20, 21], in genomics studies [22, 23] and in lipidomics 

studies [24, 25]. PLSR is a subspace regression method that reveals the co-variation pattern 

between the samples and variables of a two-block data set by maximizing the covariance between 

the variables of two data blocks.    

Due to the fact that different types of –omics data sets are generated by the same experiment in 

Systems Biology, there is a growing need for data analysis methods that can be used for 

integrating and analyzing such multi-block data sets. Consensus PCA (CPCA) [26] and Multi-

block PLSR (MBPLSR) [27] are two exploratory chemometrics approaches that are capable of 

modeling multi-block data sets. These methods, which are based on latent variables, aim at 

detecting a common underlying pattern between different data matrices and revealing the 

contribution of every individual block to the detected pattern. CPCA and MBPLSR can therefore 

be adapted for the integration of multi-block –omics data sets such as lipidomics data sets. 

However, the application of these multi-block techniques within the Systems Biology field is at 

its early immature stage and only few systems biology studies have reported the use of these 

multi-block methods [28, 29][Paper VI].  

CPCA and MBPLSR have excellent graphical visualization possibilities and therefore overview 

about sample and variable variation patterns can be easily gained. Global score plots of CPCA 

and MBPLSR illustrate the global sample patterns shared between the different blocks of a multi-



 10

block data set while block score plots show the sample patterns within every block of the multi-

block data. Correlation loading plots illustrate the variable variation patterns among the variables 

within and between different data blocks.   

Before data from different –omics data sets can be integrated, the scientists are faced with the 

challenge of pre-processing of –omics data sets. The pre-processing of instrumental and 

experimental effects contained in raw data as obtained from the –omics techniques as for 

example shift alignments of chromatography data is a wide field and beyond the scope of the 

thesis. Still, after the pre-processing of instrumental and experimental effects other pre-

processing steps are necessary which have a direct effect on the integration of the data blocks in 

the multi-block model. An important issue to be solved here is the grouping of the variables into 

different data blocks in a logical way, which is related to the biological problem to be solved. 

Another issue for pre-processing procedure of such multi-block data sets prior to integration is 

the weighting of different data blocks. This is an important aspect of multi-block data analysis 

since it provides the researcher with the possibility of a simultaneous analysis of data blocks that 

may contain very different number of variables as well as very different data units. 

After the pre-processing of the data blocks, data blocks may be integrated by CPCA and 

MBPLSR. In recent years different variants of CPCA and MBPLSR have been discussed in 

literature. All of them are based on the Nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm for CPCA and MBPLSR, but they differ in the deflation procedures employed [30, 31]. 

The different deflation strategies lead in general to different sample and variable variation 

patterns. Mathematical aspects of these deflation procedures have been discussed in literature, but 

it is not clear how the deflation procedure relates to the interpretation of sample and variable 

variation patterns. Therefore, understanding the different results obtained for the different 

deflation procedures needs further investigation.  

As it was mentioned before, global and block score plots visualize the sample patterns between 

and within the blocks of a multi-block data set. However, the question of “how strong a detected 

pattern is” remains still unanswered. It is also hard to guess the importance of the different data 

blocks for the detected global pattern just by studying the score plots visually. Therefore, there is 
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a need for statistical methods that can detect the blocks that are significantly contributing to the 

detected patterns and can give us a measure for the amount of such contribution.  

It was explained before that lipidomics data sets are multi-block data sets due to the possibility of 

dividing them into lipid classes. In the analysis of lipidomics data sets scientists are mostly 

interested in knowing if lipid profiles are significantly changed by a design parameter or not. If 

lipid profiles are significantly changing, then they investigate lipid classes in order to see if so-

called remodeling effects appear, i.e. if lipid metabolism is going on within specific lipid classes, 

or if lipid metabolisms are going on between the different lipid classes. Techniques that could 

visualize such remodeling effects are therefore needed.  

Similar to sample variation patterns, variable variation patterns also need to be validated in order 

to provide the user with the possibility of detecting the significant variables and knowing the 

amount of their contribution to the detected patterns. The large number of variables makes the 

use of univariate analysis methods complicated for –omics data and leads to the multiple testing 

problem: when t-tests are performed on hundreds or thousands of variables the chance for false 

discovery is high. Penalizing p-values for multiple testing leads in average to high p-values and 

therefore to many false-negatives. However, such statistical tests are still the most common 

variable selection method employed for the analysis of –omics data sets. 

Cross-validation has been frequently used for validating the results of PCA and PLSR [32-34]. 

Cross-validation investigates the reproducibility of the results by dividing the samples into 

calibration sets and test sets. The calibration models are built based on the calibration samples 

and then are implemented on the test samples in order to check their predictability on new 

samples. Validation tools for the extension of these methods (i.e. PCA and PLSR) to the multi-

block situations (i.e. CPCA and MBPLSR) could be developed by extending these ideas to a 

multi-block situation. Special attention needs to be given to the concept of Degree of Freedom 

(DF) when dealing with the development of such validation tools for calculating the Mean 

Squared Errors of cross-validated models.      
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2. Aim of this study 

The main purpose of this study was to develop methods that can be used for integrating and 

analyzing different types of multivariate data sets that are generated in the field of systems 

biology with a special focus on data from lipidomics. The study had the following sub-goals:   

1. To adapt CPCA and MBPLSR for integrating data from lipidomics. 

2. To unify the different CPCA and MBPLSR methods with respect to the different deflation 

strategies existed. For this purpose the interpretational aspects of the different deflation 

strategies needed to be investigated. 

3. To develop validation tools for CPCA and MBPLSR. For this purpose the degrees of 

freedom consumed during validation needed to be investigated.            
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3. Methods 

3.1 Pre-processing 

Data pre-processing involves different types of treatments applied on the raw data in order to 

make it ready for being analyzed [35]. Raw data should be prepared prior to the data analysis 

procedures since it is usually harder and less efficient to analyze the raw data directly. A 

simultaneous analysis of data from different sources requires appropriate pre-processing methods 

for integrating them into the same data framework. Data pre-processing depends both on the data 

type and the analysis method that is being used. Three different methods for pre-processing of 

data are described in the following sections: 1) Mean-centering the variables, 2) scaling the 

blocks (two pre-processing procedures that are commonly used prior to PCA/CPCA and 

PLSR/MBPLSR) and 3) a special pre-processing technique for lipidomics data.  

3.1.1 Mean-centering 

The data is usually mean-centered prior to PCA/CPCA and PLSR/MBPLSR by subtracting the 

mean of the variables according to:     

Mean-centred Raw Raw

Mean-centred Raw Raw

′⋅

′⋅

X = X -1 x

Y = Y -1 y
 (1) 

where, Mean-centredX  and Mean-centredY  are mean-centered data, RawX  and RawY  are the original data 

sets, 1  is an 1N ×  vector of 1s, Rawx  and Rawy  are vectors of sizes 1K ×  and 1J ×  respectively 

which contain the mean values of the variables of RawX  and RawY .    

The effect of mean-centering on the results of PCA analysis is illustrated in Fig 3 using a data set 

from spectroscopy which contains 88 samples and 498 variables. Fig. 3a shows score plot when 

the data is mean-centered prior to the analysis. The grouping pattern in the data is clearly detected 

by the first Principal Component (PC) which is describing 62.5% of the variation in the data set. 

Fig. 3b illustrates score plot for the same data when the data set is not mean-centered prior to the 

analysis. The grouping pattern in the data set is not detected by the first PC anymore. The first PC 

describes 96% of the variation while less than 3% of the variation (due to the grouping pattern) is 

described by the second PC. Therefore, one can see that it is crucial to mean-center data prior to 
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running PCA especially since the important issue for finding PCs is the relative variation among 

the samples and not the absolute values. 

 

Figure 3: Score plots for the PCA analysis of data. (a) The data is mean-centered. (b) The data is 
not mean-centered. (c) The data is scaled and mean-centered. (d) The data is scaled but not mean-
centered.   

3.1.2 Scaling 

Since the different data blocks in a multi-block data set are generally coming from different 

sources, they may have very different number of variables or their magnitudes may vary 

significantly from each other. In order to put all blocks of data on the same footing prior to CPCA 

and MBPLSR, the data blocks can be scaled by dividing the mean-centered data blocks by their 

Frobenius norm as in Eq. 2:   
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where bX  and Y  are mean-centered and scaled data, Mean-centred
bX  and Mean-centredY  are mean-

centered data calculated by Eq.1, Mean-centred( , )b i kX  and Mean-centred ( , )i jY  are the ( , )i k th  entry and 

( , )i j th  entry of Mean-centred
bX  and Mean-centredY  respectively. We denote the samples by 1,...,i N= , the 

variables in bX  by 1,..., bk K= , the variables in Y  by 1,...,j J=  and the data blocks of a multi-

block data set by 1,2,...,b B= .                 

If the data set contains only one data block, then scaling the variables, using the same scale factor 

for all of them, does not affect the PCA results. The corresponding score plots for Fig. 3a-b are 

shown in Fig. 3c-d where the data is scaled according to Eq. 2a for 1B = . One can see that the 

patterns in the score plots are exactly the same as before while the scales of the axes are different. 

Since the score plots are tools that are used for visual identification of patterns, the scales of the 

axes do not have any interpretational influence on the outcome.       

Scaling plays a critical role in multi-block situations (such as CPCA and MBPLSR) since 

different blocks of data are often scaled by different scale factors. Global score plot and block 

score plots for running CPCA on a two-block data set are shown in Fig. 4. The same data block 

that was used in Fig. 3 is the first block here. The second block is a different spectroscopic data 

block for the same 88 samples. Both blocks have 498 variables. The global score plot and block 

score plots when the data are mean-centered but not scaled are shown in Fig. 4c and Fig. 4a-b, 

respectively. The global score plot (Fig. 4c) is showing precisely the same pattern as the one in 

the second block (Fig. 4b). As it can be seen on the axes for the block score plots, the magnitudes 

of the axes in two blocks are different. Since the second block has extremely large numbers 

compared to the first block, this block is strongly affecting the global underlying pattern. In fact, 

the pattern in the first block is completely removed due to having small influence on the global 

model. Scaling the blocks according to Eq. 2a let all blocks contribute to the global model 
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equally regardless of their magnitudes. The corresponding score plots for the scaled data are 

illustrated in Fig. 4d-f. Scales of the axes in Fig. 4d-f indicate that the variables from the different 

blocks are on the same footing. The global pattern in Fig. 4f does not anymore belong only to one 

of the blocks. A mixture of patterns from both blocks is seen in Fig. 4f. This is what one wishes 

to detect in most of the situations when running a multi-block analysis. However, there are 

certain instances when one would like to force a data block dictate its pattern to the global pattern 

or prevent a data block from influencing the global pattern e.g. when dealing with design data 

blocks. Such situations can be handled by over-weighting or under-weighting the corresponding 

data block by scaling with a very large or a very small number instead of its norm.  

 

Figure 4: Score plots for the CPCA analysis of a multi-block data set. (a-c) The data blocks are 
not scaled. (d-f) The data blocks are scaled and are therefore on the same footing. (g-i) The data 
blocks are scaled first and the second data block is down-weighted afterwards. 
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An example for under-weighting a data block is seen in Fig. 4g-i where the second block is 

scaled by multiplying by 0.000001. One can see that the global pattern is dominated by the first 

block (Fig. 4h).  

3.1.3 Pre-processing of lipidomics data  

A wide variety of lipids exist from simple fatty acids to complex glycolipids (i.e. lipids with a 

carbohydrate attached). Lipids are categorized into eight major classes: Fatty acids, 

Glycerolipids, Glycerophospholipids, Sphingolipids, Sterols, Prenol lipids, Saccharolipids and 

Polyketides [36, 37]. This classification enables us to split the data into several data blocks 

according to different lipid classes. The blocking procedure is subjective toward the aim of the 

study and the detected lipids, therefore it is certainly possible to use any other classification of 

lipidomics data for the purpose of blocking (e.g. the following classes/sub-classes of lipids: 

Ceramides, Lysophosphatidylcholines, Lysophosphatidylethanolamines, Phosphatidic Acid, 

Phosphatidylcholines, Phosphatidylethanolamines, Phosphatidylglycerols, Phosphatidylserines, 

Sphingomyelins and Triglycerides [Paper VI]). The original lipidomics data table ( X  of size 

N K× ) is consequently split into B  blocks of data for B different lipid classes 

( 1 2, ,...., B⎡ ⎤= ⎣ ⎦X X X X  where bX  is of size bN K×  for 1, 2,...,b B= ). In order to get insights into 

different lipid species belonging to a lipid class, the data should be pre-processed within each 

lipid class. For this purpose the original amounts of the lipids are replaced by their relative 

variations within their corresponding lipid classes. This task is performed by dividing the raw 

data for every lipid class by the total amount of lipids in that class (i.e. sum of the data in each 

block). Restoring the sum values for the lipid classes in a separate data block enables a 

simultaneous analysis of the lipid species and lipid classes. The same pre-processing approach 

can be applied when dealing with a single data block (i.e. when the data set contains all lipids 

without classification). In that case the total amount can be added as an extra variable to the data 

table instead of an extra data block.  

Fig. 5 shows the correlation loading plot for PCA of Phosphatidylethanolamines (PE) data. Fig. 

5a illustrates the results when data is not pre-processed, and Fig. 5b shows results when data is 

pre-processed as described above (the data is mean-centered and scaled in both cases prior to 

PCA). The variables in Fig. 5a are all located on the lower part of the plot which gives the 
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impression that all of the variables are influencing the second PC in the same way. One can also 

see that many of the variables are explaining more than 50% variance in the data set and are 

highly positively correlated indicating that they all increase and decrease together. This is 

expected in most of the situations when dealing with one specific class of lipids, since the lipid 

species within the same class may often increase and decrease simultaneously. However, this is 

not what the analysis is mainly seeking. The relative variation of the lipids within the class is an 

important issue for the purpose of the data analysis. Fig. 5b shows correlation loading plot for the 

same data set when the data is pre-processed according to the procedure described earlier in this 

section. One can see that the lipids are now distributed in the whole plot and are not gathered in 

only one spot which enables detecting the lipid species whose changes are significant relative to 

the other lipids in the same class.  

 

Figure 5: Correlation loading plot for the PCA analysis of a lipidomic data set. (a) The data is 
not pre-processed properly. (b) The data is pre-processed.   

An important application of pre-processing the lipidomics data according to the proposed 

procedure is the ability for detecting any remodelling of the lipids within the lipid classes. 

Remodelling of the lipids occurs when a lipid is transformed into another lipid within the same 

lipid class. Replacing the original amounts of the lipids by their relative amounts enables 

investigating the variation of lipid species within the lipid classes and studying any increase or 
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decrease of the lipid species with respect to the other lipids in the same class as well as a 

simultaneous analysis of the total amount of the lipids in each class.              

3.2 Consensus PCA (CPCA) and Multi-block PLSR (MBPLSR)      

Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR) have been 

employed for analyzing different types of systems biology data for over a decade now [13, 20, 

38-40]. The integration of data from different techniques in systems biology has been in focus of 

several studies recently [41-44]. CPCA and MBPLSR which are extensions of PCA and PLSR to 

multi-block data sets can be employed for such integration of systems biology data [3, 28, 

45][Paper I, Paper VI]. CPCA aims at finding a common underlying pattern among the data 

blocks ( 1,..., ,...,b B⎡ ⎤= ⎣ ⎦X X X X ) and studying individual block’s contribution to the global pattern 

while MBPLSR tries to find the common underlying pattern among the descriptor data blocks 

( 1,..., ,...,b B⎡ ⎤= ⎣ ⎦X X X X ) that can explain most of the variations in the response data ( Y ).  

A powerful visualization tool (so-called global score plot) is available for CPCA and MBPLSR 

that provides the users with an overview over the sample variation pattern that is shared by all the 

data blocks. The global score plot reveals the grouping pattern of samples with respect to the data 

from all of the data blocks. To what extent every block is contributing to the detected global 

underlying pattern may be studied by so-called block score plots. The block score plots provide 

an insight into different data blocks by visualizing the variation patterns that are detected by the 

respective data blocks. The contributions of the variables to the detected patterns can then be 

studied by correlation loading plots. The correlation loading plot reveals the relationships among 

the variables under investigation. Score plots, loading plots and correlation loading plots are 

described in more details in Sections 2.3.3–2.3.5. CPCA and MBPLSR algorithms are described 

in the following sections.   

3.2.1 CPCA parameter calculation 

Applying CPCA on the mean-centered and scaled multi-block data set 1,..., ,...,b B⎡ ⎤= ⎣ ⎦X X X X , 

models the data as sum of A relevant Principal Components (PCs) plus a residual matrix. The 

global CPCA model is given in Eq. 3:  
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A A A′= +X T P E  (3) 

where 1 2... ...b B⎡ ⎤= ⎣ ⎦X X X X X  is the concatenated multi-block data set, [ ]1 2... ...A a A=T t t t t  is the 

global score matrix containing A global score vectors, the corresponding global loading vectors 

are collected in the global loading matrix [ ]1 2... ...A a A=P p p p p  and 1 2 ... ...b B
A A A A A⎡ ⎤= ⎣ ⎦E E E E E  is the 

matrix of residuals for the model. The corresponding block parameters for the model in Eq. 3 are 

given in Eq. 4:  

b b b b
A A A A

′= +X T P E  (4) 

where 1 1 ... ...b b b b b
A a A⎡ ⎤= ⎣ ⎦T t t t t  is the block score matrix for block b ( 1,...,b B= ), b

AP  is the 

corresponding segment of the global loading matrix AP  for block b and b
AE  is the residual matrix 

for the block model b. 

The algorithm for CPCA contains two main steps:  

1) Parameter estimation (ath component, for 1, 2,...,a A= ): the global and block parameters (i.e. 

ath global score, ath global loading, ath block scores and ath block loadings) are initially 

calculated. Nonlinear Iterative Partial Least Squares (NIPALS) is the method which is commonly 

used for CPCA parameter estimation. The iterative procedure of NIPALS for the calculation of 

parameters for ath component is shown in Fig. 6. First, an arbitrary vector ( at ) is chosen as the 

initial global score vector for component a. (i) Loading vector for every block ( b
ap ) is then 

obtained by column-wise projection of each data block on at . (ii) Block score vector for every 

block ( b
at ) is then calculated by row-wise projection of every data block to its loading vector. 

These block score vectors are then put together and form a matrix of block score vectors (T). (iii) 

This matrix is then projected on at  in order to obtain global loading weights ( aw ). (iv) A new 

estimate for the global score vector is obtained by projecting T on aw . The whole process is 

iterated until convergence of the global score vector ( at ). 
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2) Deflation (ath component, for 1, 2,...,a A= ): the data set is deflated by subtracting the 

variation that corresponds to the ath calculated parameters. Different deflation strategies are 

suggested to be applied when dealing with multi-block data sets. CPCA implements the deflation 

on global scores where the variation due to the ath global score is removed from every data 

block. Two alternative deflation methods are also available: deflation on block scores [30] and 

deflation on block loadings (applied by Multiple Co-inertia Analysis (MCoA) [46]).      

The deflated data set is then used for calculation of the ( 1)a th+  parameters.   

 

Figure 6: The iterative procedure of NIPALS for calculating CPCA parameters. The figure is 
adopted from [3].   
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3.2.2 MBPLSR parameter calculation 

Analyzing the mean-centered and scaled multi-block descriptor data set ( 1,..., ,...,b B⎡ ⎤= ⎣ ⎦X X X X ) 

and response data ( Y ) by means of MBPLSR models the data as sum of A relevant latent 

variables plus residual matrices. The global MBPLSR model is as the following: 

A A

A A

A A A

A A A

A A A

=
= +

′= +
′= +
′=

T XV
Y XB F
X T P E
Y T Q F
B V Q

 (5) 

where 1 2 ... ...b B⎡ ⎤= ⎣ ⎦X X X X X  is the concatenated descriptor multi-block data set and Y  is the 

response data set. [ ]1 2... ...A a A=T t t t t  is the matrix of A scores from X (so called global score 

vectors) defined by weight vectors [ ]1 2... ...A a A=V v v v v  so as to maximize the total covariance 

between each consecutive score vector at  and Y. [ ]1 2... ...A a A=P p p p p  and [ ]1 2... ...A a A=Q q q q q  

are the loadings for X and Y respectively, 1 2 ... ...b B
A A A A A⎡ ⎤= ⎣ ⎦E E E E E  and AF  are the residuals for 

modeling X and Y respectively and AB  is the regression coefficients (of size K J× ). The 

corresponding block parameters for the model in Eq. 5 are given by the following model:     

b b b b
A A A

′= +X T P E  (6) 

where b
AT , b

A
′P  and b

AE  are block scores, block loadings and block residuals respectively 

belonging to data block bX .    

Similar to CPCA, the algorithm for MBPLSR consists of two main steps:  

1) Parameter estimation (ath component, for 1, 2,...,a A= ): ath parameters (i.e. ath global scores, 

ath X-block scores, ath X-block loading weights, ath Y-scores and ath Y-loading weights) are 

calculated first. Several variations of PLSR algorithm to be used when having more than one 

descriptor data block are available [26, 47-50]. The procedure for MBPLSR algorithm proposed 
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by Wangen and Kowalski [27][Paper II], that handle most types of different relationships 

between the data blocks, is shown in Fig. 7. An arbitrary vector is chosen as the initial ath Y-

score ( au ). (i) Every data block ( bX ) is then projected column-wise on au  in order to obtain 

block loading weights ( b
aw ). (ii) Row-wise projection of each data block on its loading weights 

results in the block scores ( b
at ). The block scores from all data blocks are then put together in the 

matrix of block scores (T). (iii) Projecting T on au  gives the super loading vector ( s
aw ). (iv) T is 

then projected row-wise on s
aw  in order to obtain global scores ( at ). (v) Projecting Y on the 

global scores gives Y-loading ( aq ). (vi) A new estimation for Y-score ( au ) is then calculated 

from projecting Y on its loading. The procedure is iterated until the convergence of global scores 

( at ).        

 

Figure 7: The iterative procedure for calculating MBPLSR parameters. 

2) Deflation (ath component, for 1, 2,...,a A= ): similar to CPCA, when the ath parameters are 

calculated the data is deflated by removing the variations that corresponds to the ath parameters. 

Different deflation strategies are available for MBPLSR [30]. The method that is commonly used 

deflates both X and Y on global scores [51]. An alternative deflation strategy is to deflate data 
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blocks ( bX ) by the block scores ( b
at ) and Y by the global score ( at ) [27, 31]. The other 

possibility is to deflate only X on the global scores and not deflate Y at all [31].     

The deflated X and Y are then used for the calculation of (a+1)th parameters. 

3.3 Visualization tools 

3.3.1 Score plot 

PCs are the directions of the largest variances in a data set in a descending order (i.e. the first PC 

is responsible for most of the variation). PCs build a new coordinate system. In fact, the axes of 

the original variable space are rotated in a way that the axes in the new coordinate system are 

expanding the variances of the data. The coordinates of the original samples in this new rotated 

system are given by scores. Each score vector ( at ) is in fact a latent variable which is a linear 

combination of the original variables ( 1 2[ ... ]K=X x x x ). A score plot of two given PCs illustrates 

the location of the samples in the new coordinate system.     

Two types of scores are calculated by CPCA and MBPLSR: global scores ( 1 2[ ... ... ]A a A=T t t t t ) 

and block scores ( 1 2[ ... ... ]b b b b b
A a A=T t t t t  for 1, 2,...,b B= ). Consequently, two types of score plots are 

becoming available by these analyses: global score plot and block score plots. The global score 

plot provides an overview over the underlying pattern that is in common between the data from 

all of the blocks whereas the block score plot illustrates how much of the global underlying 

pattern is present in every individual block. These plots indicate the contribution of every block 

to the detected global underlying pattern.  

It is worth noting that deflating the data by global score (i.e. the most commonly used method 

which is also employed by CPCA) results in having orthogonal global scores while the block 

scores are not orthogonal. This means that the axes for the global score plot are always 

orthogonal (i.e. independent), while the axes for the block score plots are not necessarily 

orthogonal. This can in some instances lead to strange block patterns if the block follows a very 

different pattern from the common underlying one. An example is given in Fig. 8 where the 

CPCA block and global score plots are illustrated for a five-block data set. One can notice that 

block five is showing a strange pattern (Fig. 8e) indicating that the first and second block scores 
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for block five are linearly correlated to each other. Such situation can not happen in a global 

score plot since the global scores for different components are always orthogonal (given that the 

data is deflated on the global scores or on the block loadings).  

 

Figure 8: Score plots for the CPCA analysis of a multi-block data set. (a-e) The block score plots 
for PC1 and PC2. (f) The global score plot for PC1 and PC2.  

3.3.2 Loading plot 

PCs which are the axes of the new coordinate system are in fact latent variables that are linear 

combinations of the original variables. Loadings ( [ ]1... ...A a A=P p p p ) represent the weights of the 

original variables in this new coordinate system defining the contribution of each original 

variable to the new latent variables. Loadings can be visualized in different ways e.g. plotting the 

loadings for the first PC ( 1p ) against that for the second PC ( 2p ) or plotting PCs against the 

original variables. Loading plot corresponds to the score plots in Fig. 3a and Fig. 3c where 1p  
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and 2p  are plotted as a function of the original variables is shown in Fig. 9. It is worth 

mentioning that loadings are unit-free parameters and therefore the same loadings corresponds to 

both unscaled and scaled data in Fig. 3a and Fig. 3c. The contribution of the original variables to 

the new latent variables can be studied by loading plots. The location of the variable 186 is 

shown on the figure by a green dashed line. Since both PC loadings reach a relatively large 

negative peak for this variable, it can be concluded that the variable is significantly contributing 

to both PC1 and PC2 in the same way. Variable 225 is also marked on the figure. As it can be 

seen, PC1 and PC2 reach a negative and a positive peak respectively for this variable leading to 

the conclusion that variable 225 is significantly contributing to PC1 negatively and to PC2 

positively. The location of variable 368 is also shown on the figure. It can be seen that both 

loadings are zero for this variable leading to the conclusion that variable 368 is not contributing 

either to the first or to the second PC.    

 

Figure 9: Loading plot for the PCA analysis of a data set: loadings for the first and second 
components are plotted in blue and red respectively.  
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Figure 10: Correlation loading plot correspond to the loadings in Fig. 9. 

3.3.3 Correlation loading plot 

Correlation coefficients ( r ) between the latent variables and the original variables are plotted in 

the correlation loading plot. Correlation coefficient is a unit-free parameter and can be considered 

as a measure of dependencies between the latent variables and the original variables. Fig. 10 

illustrates the correlation loading plot corresponding to the loading plot in Fig9. The abscissa in 

the correlation loading plot is the correlation coefficient ( 1r ) between the variable and the 

corresponding PC (e.g. PC1) and the ordinate is the correlation coefficient ( 2r ) between the 
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variable and PC2. Since the correlation loading plot would become too crowded having all 498 

variables in the data set, only few were chosen to be shown in Fig. 10. The relative amount of 

explained variance is represented by sum of the squared correlation coefficients (i.e. 2 2
1 2r r+ ). 

Therefore, the outer and inner circles with radii of 1 and 0.5  represent 100% and 50% 

explained variances respectively. Three variables that were marked in the loading plot in Fig. 9 

are plotted in red in Fig. 10. Similar conclusions as in Fig. 9 are also derived here. E.g. variables 

186 and 225 are contributing significantly to both PCs, while variable 368 is not contributing to 

these PCs.     

3.4 Validation  

Model validation is one of the main challenges in data analysis. The goal of validating is to 

ensure the reliability of the model and assess the final outcomes. Different resampling techniques 

[52] in statistics are available for the purpose of validation e.g. Permutation test [53], 

Bootstrapping [54], Cross-validation [55] and Jack-knifing [56, 57]. The importance of validating 

the results should not be neglected when dealing with methods (e.g. CPCA and MBPLSR) that 

provide the user with practical visualization tools (e.g. score plots). This is because the 

visualization tools can be misleading for the scientist’s mind due to their fascinating graphical 

capabilities. Cross-validation and Jack-knifing are two methods that can be applied for validating 

the visually identified patterns of the score plots [Paper I, Paper II]. These methods are described 

in the following sections. 

3.4.1 Cross-validation  

Cross-validation aims at verifying the reproducibility of the results by predicting how well a 

model will perform on future data sets. For this purpose the data is split into M subsets. Each 

subset is considered as a test set (left-out data segment) when the rest of the data is used as 

training set (leave-in data segment). Models are first built on the leave-in samples and are then 

applied on the left-out data in order to validate how well the models will work for a data not 

included in the modeling process. The procedure is performed M times for all different data 

segments. The error is calculated for all of these sub-models and is then used as a measure for the 

model goodness. This is called an M-fold cross-validation. If M is chosen equal to the total 
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number of samples, it is called a leave-one-out (or full) cross-validation (i.e. every single sample 

is left out in turn to be used as test set).  

Studying the Root Mean Squared Errors (RMSE) calculated from cross-validating CPCA or 

MBPLSR models provides an opportunity for evaluating the models and assessing the validity of 

visually identified patterns [Paper I, Paper II]. Moreover, comparing the RMSE calculated for the 

global model with those calculated for every block gives an indication for the contribution of the 

blocks to the global pattern.                     

3.4.2 Jack-knifing  

Jack-knifing is employed for estimating the bias and variance of a statistic when using a random 

set of samples. Similar to cross-validation samples are left out in turn and the statistic is estimated 

based on the leave-in samples. A set of estimations for the statistic is calculated in this way. It is 

in fact the variation of the statistic from sub-model to sub-model that gives an estimate for the 

true variance of the statistic. Jack-knifing may be employed in the calculation of uncertainty t-test 

statistic by giving an estimate for the variance of the statistic [Paper I].       

3.4.3 Permutation test  

Permutation test is a resampling technique that is employed for running statistical significant 

tests. The test statistic under study is firstly estimated for the subjects in the experiment in their 

original orders (this may be called true test statistic). The subjects of the experiment are then 

rearranged in all possible ways and the test statistic is calculated in every permutation round. This 

procedure results in generating a distribution for the test statistic under study. The ranking of the 

true test statistic among the generated distribution gives a p-value for the significance level of the 

true test statistic. In the cases that there are too many possibilities for reordering of the subjects, 

Monte Carlo sampling technique [58, 59] can be used where a sub-set of the possible orderings is 

chosen randomly in order to be used for generating the distribution. The choice for the number of 

the elements in the sub-set depends on the accuracy of the test.            
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3.5 Degree of Freedom (DF)  

The term DF is widely used in different fields of science (e.g. mechanics, physics, chemistry, 

statistics and chemometrics) referring to different yet related concepts. The concept of DF in 

mechanics refers to “independent displacements and/or rotations that specify the orientation of 

the body or system” [60] while in statistics the DF is defined as “the number of values in the final 

calculation of a statistic that are free to vary” [61, 62]. DF plays an important role when statistical 

hypothesis tests such as F-test and student’s t-test are run. It is also an important issue when 

assessing statistical models and estimating parameters since neglecting the DF may lead to 

misinterpreting an “over-fitted model” as a “good model”. Estimating parameters such as a 

variable’s mean requires having knowledge of the remaining DFs in the data as well i.e. the total 

number of independent samples minus the number of independent estimated parameters. Martens 

and Næs used the term DF in the field of chemometrics in 1989 where they discussed the 

“degrees of freedom used in the fitting of the regression equations” [63]. However, at that time 

no specific definition was given for the term DF in Chemometrics. The importance of having 

knowledge about the correct number of consumed DF draws special attention when facing issues 

such as calculation of prediction uncertainty for a PCA- or PLSR-model. By the number of DFs 

that are being consumed by implementing a modeling technique (such as PCA or PLSR), we 

generally refer to the number of pieces of independent and useful information from the data that 

are consumed during the process. Estimating the DFs that are consumed when a data set is 

modeled using multivariate data modeling techniques that are based on latent variables (e.g. PCA 

or PLSR) is very complicated. Few studies with the focus on estimating the consumption of DF 

by these models can be found in literature [64-68].       
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4. Paper summaries 

Paper I. Analysis of -omics data: Graphical interpretation- and validation tools in multi-

block methods 

Rapid development of systems biology leads to generating large different types of –omics data 

sets. The data are in general huge multi-block sets generated by applying different high–

throughput techniques on the same samples e.g. proteomics–, genomics– and metabolomics–data. 

The ongoing challenge is to integrate these different –omics measurements, analyze them in light 

of the background knowledge and interpret the outcomes. A data analysis framework for 

analyzing such massive data sets was presented in this article. Visualization tools were presented 

together with their interpretational aspects. These tools enable investigating the common 

underlying patterns in complex multi-block data sets. They make it possible to investigate the 

pattern shared by all data blocks as well as the presentation of the global pattern in each block. 

Validation tools for evaluating the detected patterns on a block level were introduced in this 

article. Tools that can be used for detecting outliers at global and block levels were also 

introduced. The methods in this paper were introduced for Consensus Principal Component 

Analysis (CPCA) while the general concepts are still possible to be transferred to other multi-

block analysis methods e.g. MBPLSR. The presented methods were applied and illustrated by a 

multi-block microbiological data set.            

Paper II. Model validation and error estimation in multi-block partial least squares 

regression 

Design of the multi-response experiments has been given special attention by many systems 

biology studies. Multi-block Partial Least Squares Regression (MBPLSR) can be implemented 

for analyzing such data sets. Consequently, investigating the effect of the design factors on the 

measured variables becomes an important issue for these studies. MBPLSR-Discriminant 

Analysis (MBPLSR-DA) can be applied in such situations where the study aims at separating 

different groups of observations. The significant role of MBPLSR family of methods for 

analyzing systems biology data is therefore clear. Extensive applications of these methods for the 

analysis of data require validation strategies. Tools for validating the prediction ability of the 
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MBPLSR models were introduced in this article. These tools can be used for validation on the 

block level as well as on the global level enabling the user to investigate the contribution of every 

block to the grouping pattern as well as studying the common grouping pattern shared by all the 

blocks. Moreover, tools for validating the model stability were also introduced which are 

available on both global and block levels. In addition we investigated the problem of choosing 

the number of latent variables to be included in a PLSR model. The proposed methods were 

illustrated with the same data set that was used in Paper I.                          

Paper III. Degrees of freedom estimation in Principal Component Analysis and Consensus 

Principal Component Analysis 

In this paper, we ran simulation studies in order to investigate the true number of DFs consumed 

when cross-validating PCA and CPCA models. The simulation studies confirmed the formula for 

estimating the consumed DFs which we proposed in Paper I. In the cases that cross-validation is 

not implemented and the errors are therefore estimated by fitting the model from the same 

samples, the number of consumed DFs increases. The reason is the loss of DFs due to the search 

process that leads to CPCA parameter estimation. By simulating data sets with different 

eigenvalue structures, we showed that the DF consumption depends on the eigenvalue structure 

of the data to be modeled. We also proposed a method for estimating the DFs that are lost during 

the search processes of PCA and CPCA. The method was afterwards implemented on real data 

sets from spectroscopy. We estimated the consumed DFs for a real data set considering its 

eigenvalue structure. We showed that the estimated number of DFs can be used for a different 

real data set that has a similar eigenvalue structure.    

In cross-validation a part of the data set – often a small part – is set aside for validation. This 

process is repeated until all samples are once used as a test set, without taking the same samples 

twice or more times as test set.  Especially when a data set is small and one can afford to set aside 

only a small number of samples, cross-validation is attractive. Cross-validation results are 

questioned by some scientists since the same samples are used both for modeling and testing the 

models. Simulation studies in this paper indicated that the findings of cross-validation agree with 

those from independent test sets. The effect of the number of cross-validation segments on the 
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results was also studied. We even showed that using a higher number of cross-validation 

segments does not necessarily lead to better results.       

Paper IV. Deflation strategies for multi-block principal component analysis revisited 

Different deflation strategies can be implemented when analyzing data sets by methods that are 

based on latent variables. The choice of the deflation strategy affects the estimated parameters 

(i.e. scores and loadings) which therefore leads to different interpretation of the results. Three 

different strategies are available for running multi-block Principal Component Analysis: i) 

deflation on global scores that is employed by Consensus PCA (CPCA), ii) deflation on block 

scores and iii) deflation on block loadings that is employed by Multiple Co-inertia Analysis 

(MCoA). In this paper we described these methods in details and compared them with each other. 

We studied the theoretical properties of these methods as well as their interpretational aspects. 

Orthogonality properties for block and global scores and for block and global loadings were also 

discussed. Data block’s reconstruction formulas for different deflation strategies were 

established.  

The effect of implementing different deflation strategies on the results were illustrated by an 

example. The interpretational aspects of different deflation strategies were also studied by the 

example. We showed that deflation by global scores and by block loadings have some advantages 

over the deflation by block scores. In order to gain insight into the multi-block data set we 

proposed using the deflation by global scores (i.e. the global variation pattern is subtracted from 

every block) and compared the results with those using the deflation by block loadings where the 

block variable variation pattern is subtracted. We also showed that it is difficult to interpret the 

block patterns in connection to the global pattern when deflating by block scores. This is because 

new underlying block loadings are defined for the purpose of deflation which leads to block 

patterns that are more similar to results of PCA of every block instead of the multi-block PCA 

results.        

Paper V. Simultaneous analysis of inter- and intra-class lipid changes in lipidomics studies 

Lipidomics is an emerging field of systems biology. Due to its rapid development there is a 

growing need for the methods that can integrate and analyze data from different lipid classes. 
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Investigating the remodeling effects (i.e. when lipids dynamics happen within a lipid class) and 

lipid metabolisms (i.e. when lipids from one lipid class are transferred into lipids from other lipid 

classes) are some of the main challenges of the lipidomics studies. In this paper we proposed a 

multi-block structure for the lipidomics data sets with respect to the lipid classes and lipid sub-

classes. We then suggested pre-processing the multi-block lipidomics data by two different 

normalization strategies: 1) by normalizing the amount of lipids with respect to the total amount 

of lipids, 2) by normalizing the amount of lipids with respect to the total amount of lipids in each 

lipid class and keeping the sum values in a separate data block. Using a simulated data set we 

showed that the second pre-processing strategy improves the detection of remodeling effects. We 

proposed employing multi-block methods (i.e. CPCA and MBPLSR) for integrating and 

analyzing the data from different lipid classes simultaneously. In order to investigate the 

importance of each lipid class for the global pattern, we suggested running Monte Carlo 

permutation tests which led to p-values for the significance of every lipid class. The suggested 

methods were implemented on a real lipidomics data set and the results were interpreted from a 

data analysis point of view. The readers were provided with the in-house-written and standard 

MATLAB routines for implementing the proposed framework for the analysis of lipidomics data 

sets.            

Paper VI. Fish Oil Supplementation Alters the Plasma Lipidomic Profile and Increases 

Long-Chain PUFAs of Phospholipids and Triglycerides in Healthy Subjects 

Our contribution to this paper was the analysis of a lipidomics data set from a human intervention 

study by means of the framework that was proposed by us in Paper V. A seven-week double-

blinded randomized controlled parallel-group intervention study was run to investigate the effect 

of fish oil supplementation on plasma lipidomic profile in healthy subjects. The subjects 

completed a fully controlled diet period during the first three weeks of the intervention study 

where they received capsules containing either fish oil or high oleic sunflower oil.  

We structured the lipidomics data from the intervention study into 10 lipid classes. In order to be 

able to investigate the remodeling effects of lipids, we then pre-processed the lipid classes by 

normalizing each lipid class by its total amount. The total amounts of lipids for each lipid class 

were restored in a separate data block. In order to study the differences between the intervention 
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groups the pre-processed multi-block data of lipid classes (containing 11 blocks) were then 

analyzed by MBPLSR-DA. As expected, a good separation of the groups after three weeks of 

intervention was detected. The influence of each lipid class on the global MBPLSR model was 

estimated by the methods from Paper II. Several data blocks (7 out of 11) showed a significant 

contribution to the detected pattern while the block that contained the sum values of the lipid 

classes did not show a significant contribution. This led us to the conclusion that remodeling of 

lipids was happening within each lipid class. In order to detect the significant lipids we ran 

uncertainty t-tests on the regression coefficients of the MBPLSR model and 75 lipids were found 

to be significantly altered during the intervention. The results were compared to the results from 

univariate t-tests and 49 lipids were found to be significant by both methods.       
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5. Results and discussions 

5.1 Validation  

Integrating and analyzing multi-block data sets from the –omics field, interpreting the findings 

and finally validating the results, is an increasing challenge for the data analysts. Multi-block 

methods that are based on latent variables, such as Consensus Principal Component Analysis 

(CPCA) and Multi-block Partial Least Squares Regression (MBPLSR), are tools that can be 

employed for the purpose of integrating and analyzing such data sets. These multivariate 

techniques provide the user with powerful visualization tools e.g. score plots. However, the 

detected patterns are subjective and need to be validated. This necessitates the existence of 

validation techniques for evaluating the findings of these methods. Papers I and II proposed 

validation tools for CPCA and MBPLSR, respectively.  

5.1.1 Cross-validation 

The patterns that are detected by CPCA can be validated by studying the cross-validated Root 

Mean Squared Errors (RMSE) of the CPCA model. In Paper I we proposed a method for 

calculating cross-validated RMSE for the global model as well as for each individual block. 

Studying the cross-validated global RMSE plot allows evaluating the patterns detected in the 

global score plot. The cross-validated RMSE plot also gives an indication for the number of 

Principal Components (PCs) to be included in a CPCA model. The contribution of each block to 

the global detected pattern can then be studied by investigating cross-validated block RMSE 

plots. In order to study the significance of variables in the multi-block model, we suggested using 

an uncertainty t-test (based on cross-validation and jack-knifing) for assessing the contribution of 

the variables to the CPCA model. This results in a p-value for each variable and helps detecting 

important variables. The stabilities of the samples within a PCA model can be studied by 

investigating the stability score plots [69]. In Paper I we extended these plots to multi-block 

situations and proposed methods for the calculation of block stability plots. These plots are used 

for assessing the extent to which the calculated scores are influenced by every individual sample. 

The reliability of the CPCA model can also be assessed by studying the global stability plot. An 

important aspect of the block stability plots is that it allows identifying outliers on a block level. 
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These outliers are either interesting objects with a special property that is only detectable by 

means of the technique related to that specific block or they have been subjected to an error in the 

respective block.      

In Paper II we undertook a study for developing validation tools for MBPLSR. Similar to CPCA, 

the detected patterns here can be validated by investigating the cross-validated global RMSE 

which is calculated for the descriptor data set ( X ). In this paper we proposed a method to 

calculate cross-validated RMSE for each block separately in order to study the contribution of 

each individual descriptor block ( bX ) to the global pattern. Investigating the cross-validated 

RMSE plots calculated for X  enables evaluating the grouping patterns that are detected in the 

score plots. The block cross-validated RMSE plots give an indication for the contribution of 

every block to the global MBPLSR model. Since MBPLSR constructs predictive models, the 

models can be also validated for their predictive ability. For this purpose, we proposed 

calculating the cross-validated RMSE for the response data set ( Y ) with respect to both the 

global model parameters as well as the block parameters. Studying the cross-validated global 

RMSE calculated for Y  enables evaluating the predictive ability of the global MBPLSR model 

which is an indication for the predictive ability of the multi-block descriptor data set 

( 1 2, ,..., B⎡ ⎤= ⎣ ⎦X X X X ). By investigating the block cross-validated RMSE for Y  the ability of 

every descriptor data block to predict the response data ( Y ) can be studied.       

5.1.2 Cross-validation vs. independent test set 

Our proposed methods for assessing the reliability of the CPCA and MBPLSR models in Paper I 

and Paper II were based on cross-validation. However, the cross-validation itself can be criticized 

for the fact that the same samples are used both for modeling and for testing the models. 

Alternative approach for such critics is the use of an independent test set. Therefore we undertook 

simulation studies (Paper III) where we compared the results from running cross-validation with 

the results calculated by means of independent test sets. Our simulation studies show that the 

results from cross-validation agree with those from independent test sets. When running cross-

validation, one faces the important question of “How many cross-validation segments to be 

used?”. It is believed that, as a rule of thumb, increasing the number of cross-validation segments 

leads to more robust results. Especially, leave-one-out cross-validation is supposed to get the 
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most stable results. Since the models are built based on all the samples except only one sample, 

they are not expected to vary significantly from each other. However, our simulation study 

indicates the fact that using a higher number of cross-validation segments does not always lead to 

better results. A 10-fold cross-validation gave similar results as an independent test set for all of 

our simulated data sets.                                       

5.2 Degree of Freedom (DF)  

Calculating the cross-validated MSE i.e. the average of the squared errors, as described in the 

previous section requires having knowledge over the DFs that are consumed while errors are 

estimated. In Paper I we proposed a tentative formula for the calculation of cross-validated MSE. 

In Paper III we wanted to investigate the validity of that tentative formula. Since DF is a 

challenging issue in multivariate modeling, we extended our simulation studies to the estimation 

of DFs that are consumed during the PCA and CPCA modeling processes. Our simulation studies 

show that DFs are consumed at two different stages: i) when searching for the direction of the 

largest variation in the data set. ii) When estimating parameters. Calculating the cross-validated 

errors does not involve any search process in the left-out data and the parameters are estimated 

based on the directions found in the leave-in data segment. However, our simulations showed that 

some DFs are still being consumed for the parameters estimation when using an independent test 

data set. The DFs consumed are equal to the number of estimated parameters (a) in PCA models 

[63] and equal to the leverage of the block loadings ( b
Ah ) for every block in CPCA models. When 

errors are calculated without cross-validation, more DFs are consumed due to the search process. 

In Paper III we proposed a method for estimating the DFs consumption of the search process. 

Only one formula (proposed by Faber in [68]) is available in literature for calculating the number 

of DFs consumed by a PCA model. We estimated the overall DFs consumption for PCA models 

for simulated data sets and compared our results with the results from the formula that was 

previously proposed by Faber. Our results indicated that the previously proposed formula does 

not take into account the DFs consumed by the search process.     

We have shown that estimating the cross-validated errors (for PCA and CPCA) does not 

necessarily require running cross-validation. The eigenvalue structure of a data set defines the 

DFs. Data sets originating from the same type of measurements have similar eigenvalue 
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structures, given that the size of the data set is the same. Therefore, if one is dealing with similar 

data sets in terms of the eigenvalue structure, it is sufficient to estimate the DFs that are 

consumed by the search process, once and to use the DFs for correcting the fitted RMSE 

calculated for comparable data sets.               

5.3 Deflation strategies  

Deflation plays an important role in estimating CPCA and MBPLSR parameters. Different 

deflation strategies for CPCA and MBPLSR can be found in literature. Deflation strategies that 

can be used for MBPLSR were studied in [31]. In Paper IV, we investigated three deflation 

strategies (i.e. deflation by global scores, by block scores and by block loadings) that are 

commonly used for running multi-block PCA. The choice of the deflation strategy affects the 

orthogonality properties of the estimated parameters (i.e. scores and loadings). It also influences 

the reconstruction procedure for the data blocks which leads to different explained variances for 

each PC. The differences of the calculated parameters can in some instances lead to very different 

visual patterns in the score plots. We discussed the interpretational aspects of different deflation 

strategies and gave an overview over their properties. When deflation is performed on the global 

scores, the common variation pattern among all blocks is subtracted in every deflation stage. 

However, deflating on block loadings subtracts the variables variation pattern belonging to every 

data block from itself. These two deflation methods can be used in parallel considering their 

different interpretational aspects. Deflation on block scores requires calculating new block 

loadings. Therefore the new block loadings lose their relationship to the global parameters and 

therefore the block patterns are not directly interpretable along with the global pattern. The 

calculation of the new block loadings is performed by going through an extra NIPALS step which 

moves the block results toward the results of running PCA on the given block. Therefore the 

patterns detected in the block score plots become more similar to the patterns that are seen in the 

PCA score plot of each block. This can be considered a drawback of this deflation strategy since 

the aim of running multi-block data analysis is detecting a common pattern among the different 

blocks and not running single block analysis.     
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5.4 Integrating lipidomics data  

Lipidomics is an emerging –omics field which aims at investigating the role of the lipids in the 

biological systems. Detecting the remodeling of lipids is an important challenge for the data 

analysts in the lipidomics studies. In Paper V we proposed tools for pre-processing the lipidomics 

data sets in a way that promotes the detection of lipid remodeling. The proposed pre-processing 

strategy re-arranges the lipidomics data set into a multi-block data of different lipid classes. This 

method enables a simultaneous analysis of lipid species and lipid classes by means of multi-block 

data analysis techniques. Therefore, in Paper V, we further developed the multi-block methods 

from Paper I and Paper II into a framework for integrating and analyzing the multi-block set of 

lipid classes. New validation tools (based on Monte Carlo permutation tests) were added to the 

previous methods providing more insight into the importance of different lipid classes. We also 

developed new tools for analyzing the lipidomics data sets with respect to the underlying design 

of the experiments.            

5.5 Application of the proposed methods  

In Paper VI, we applied the proposed methods from Paper V on a lipidomics data set. The data 

was from a seven-week double-blinded randomized controlled parallel-group intervention study 

which aimed at investigating the effect of fish oil supplementation on plasma lipidomic profile in 

healthy subjects. The lipidomics data consisted of three data matrices of 568 variables (i.e. 

detected lipids) for 33 samples (i.e. healthy subjects) measured at three different time points. We 

grouped the data into 11 blocks where each lipid class was defined as an individual data block. 

Afterwards, the data blocks were pre-processed by our method as described above. MBPLSR was 

then performed on the pre-processed multi-block lipidomics data set where the intervention group 

indicator was used as y-variable. The lipidomic profiles of the intervention groups were well 

separated in the global sample variation patterns detected by global score plots. The sample 

variation patterns for every lipid class were investigated by studying the block score plots. 

Several lipid classes were identified for showing a clear separation of the intervention groups. We 

validated the contribution of the lipid blocks to the grouping by means of the cross-validation 

based methods from Paper II. We also ran significance testing (from Paper V) in order to identify 

the lipids that were significantly contributing to the separation of the intervention groups. We 
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studied the correlation loading plots in order to further identify the lipids that contributed to the 

grouping patterns. The results of analyzing this lipidomics data set by means of the methods from 

Paper V were biologically explained in Paper VI. The fact that the findings were biologically 

relevant is an indication of the reliability of our proposed methods for investigating lipidomics 

data sets.     



 42

6. Conclusions and Future perspectives 

The focus of the present study was to establish a framework for integrating systems biology data 

and analyzing them in light of background knowledge and the design of the experiment. Multi-

block methods based on latent variables (i.e. CPCA and MBPLSR) were employed for this 

purpose. These methods provide the user with powerful visualization. In this thesis tools were 

developed for the validation of the perception of the identified patterns. In general techniques for 

investigating and validating the multi-block models from different points of view were 

developed. All of the methods were put together and introduced as a framework for the analysis 

of lipidomcis data. Afterwards, the proposed framework was used for pre-processing and 

analyzing a multi-block lipidomics data set from a human intervention study. The results of the 

analysis were biologically relevant and explainable. This was an indication for the fact that the 

proposed tools are appropriate to be employed when dealing with data sets from systems biology. 

At the moment the proposed tools are available through in-house-written and standard MATLAB 

routines. This requires the user to have a primary knowledge about MATLAB programming 

which sounds fearful to many researchers in the field of biology. Therefore, developing a user 

friendly interface for the tools could motivate many more biologists to try these methods on their 

data sets. 

Developing the validation tools for multi-block data analysis methods made us undertake a 

simulation study in order to gain a deeper understanding of the concept of DF in multi-block 

models. We were actually surprised when we figured out that DF’s consumption affects many 

different areas. In Paper III we proposed a method for estimating the consumption of DF in real 

data sets and we implemented our method on three data sets from spectroscopy. It will be 

interesting to study the consumption of DF in data sets from other fields as well e.g. different 

types of systems biology data. We studied the consumption of DFs for CPCA and PCA models 

while it is also interesting to study the same concept within the PLSR framework in order to 

investigate the consumption of DFs both in descriptor and in response data sets.    
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As systems biology develops, various types of high-throughput -omics data become rapidly available. An
increasing challenge is to analyze such massive data, interpret the results and validate the findings. Data
analysis for most of the omics-techniques is in a fledgling immature stage. Alone the dimensionality of the
data tables calls for new ways to reveal structure in the data, without cognitive overflow and excessive false
discovery rate. Multi-block methods have been developed and adapted in order to find common variation
patterns in data and depict these findings on graphical displays while providing tools to enhance the
interpretation of the outcomes. In particular, multi-block methods based on latent variables are powerful
tools to study block and global variation patterns, e.g. by inspecting block and global score plots. These
methods can be used to achieve a graphical overview over sample and variable variation patterns in an
efficient way. However, a visual detection of patterns may be subjective and, therefore, there is a need for
validation tools. In this paper tools for validation of visually identified patterns in multi-block results are
presented. Cross-validated estimates of Root Mean Square Error (RMSE) for block results are introduced for
estimating the number of relevant PCs of the Consensus Principal Component Analysis (CPCA) models.
Furthermore, important variables are identified by approximate t-tests based on Procrustes-corrected
jackknifing. For the assessment of the stability of score patterns, block stability plots are introduced. Outliers
can be revealed graphically on block and global level by stability plots.
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1. Introduction

Systems biology is a new biological research field where the
interaction between different biological levels is studied by
different-omics techniques in different scientific disciplines such
as nutrigenomics and nutrigenetics, genomics, proteomics, metabo-
nomics and metabolomics. Genomics is increasingly being used in a
variety of health applications including pharmaceutical companies,
healthcare industry, animal research studies and the production of
livestock and crops [1–4]. Proteomics is slowly altering the
biomarker discovery methods in the field of medicine while having
significant applications in basic and applied biology [5–8]. An
extension of genomics and proteomics leads to metabonomics
which studies the metabolic responses to diets, drugs and diseases
[9]. Metabolomics is a newborn science which offers a unique
opportunity to study genotype-phenotype as well as genotype–
environtype relationships. There are many and diverse applications
of metabolomics in drug trials, toxicology, transplant monitoring
and pathway discovery [10–12]. Systems biology has gained in
importance in food science and food industry due to an increasing
focus on food for better health. Food industry and food science in
collaboration with nutrition experts are applying human dietary
intervention and cohort studies in order to test the effects of foods
on human health [1,3,13–16].

As systems biology develops, high-throughput techniques gener-
ating huge amounts of -omics data become rapidly available: e.g.,
Amplified Fragment Length Polymorphism (AFLP) is a powerful DNA
fingerprinting technique for DNAs of any origin which is also highly
sensitive and reproducible. It has been used for identifying the genetic
variation in strains or closely related species of plants, fungi, animals,
and bacteria [17]. Measurement principles for proteomics based on 2-
dimensional electrophoresis are well established, but analysis of the
data from these experiments still remains a challenge [18,19]. Mass
spectrometry (MS), Nuclear magnetic resonance (NMR) and Fourier
transform infrared (FTIR) spectroscopy are analytical techniques used
in many metabolomics studies resulting in comprehensive and

http://dx.doi.org/10.1016/j.chemolab.2010.08.008
mailto:sahar.hassani@nofima.no
http://dx.doi.org/10.1016/j.chemolab.2010.08.008
http://www.sciencedirect.com/science/journal/01697439
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quantitative analysis of wide arrays of metabolites in biological
samples [20–24].

The design of -omics experiments poses new challenges, since the
obtained data is multi-response data: From a chosen set of combina-
tions of experimental design parameters, genomics-, proteomics-,
metabonomics- and metabolomics-data are generated, together with
target parameters such as clinical data in intervention studies,
phenotypical data and food quality parameters [25]. Thus, the design
of multi-response experiments is an important aspect of further
multi-matrix research not only with respect to the design factors but
also with respect to the chosen variables and measurement
techniques [26]. The effects of different designs factors on response
variables are of central interest in many research studies [27–29].
Selecting an appropriate design optimizes the number of samples,
variables and measurement techniques and minimizes the noise and
experimental error. Different measurement principles have different
error structures and so they require a different number of samples,
biological and technical replicates. The incorporation of replicates is
an approach that ensures greater experimental success. Replication
increases the statistical power and subsequently the confidence of the
conclusions drawn from the study.

Structuring of -omics data in appropriate databases and integra-
tion of the large amounts of data is gaining in importance [30]. An
increasing challenge is to analyze such massive data, interpret the
results and make the findings reproducible [31]. Data modelling
techniques for the analysis of, e.g. genomics and transcriptomics data
have been emerging during the recent years [32,33]. But still, the
cross-disciplinary integration of different -omics measurements
within one common data modelling approach is at its earliest
beginning [34–37].

Omics experiments lead in general to multiple data matrices or
data blocks, where each block refers to data from one measurement
principle. When the measurements are performed on the same set of
samples, the data blocks can be ordered to form a multi-block data set
where the same rows in every block refer to the same sample, i.e. we
obtain a row to row correspondence. Mathematical aspects of data
analysis methods for multi-block data have been in focus of intensive
research during the last three decades [38–47]. Multi-block methods
have been applied in several disciplines [44,46], their use in the field
of systems biology is rather new: Multi-block methods have been
developed and adapted in order to find common variation patterns in
data in functional genomics [45,47]. These methods can be used to
achieve a graphical overview over sample and variable variation
patterns within and between blocks of variables and/or sets of
samples in an efficient way [47]. In general there is a lack of statistical
validation methodology for multi-block methods. Moreover, concepts
for variable selection need to be transferred to multi-block methods.
Due to the complexity of the systems biology data, strategies for
graphical visualisation and validation need to be developed and made
available for the user.

In this paper, a data analysis strategy for a multi-response
experiment is presented and applied to a data set obtained in a
study that aimed to characterize natural variability in microbiology.
Graphical representation and interpretation are presented to help the
user to discover interactions and common structures in complex
datasets. In order to enable the user to validate visually detected
patterns when studying global and block results in multi-block
analysis, new methods for the validation of block results are
introduced. These validation tools are introduced for Consensus
Principal Component Analysis (CPCA), but since they represent
general concepts, they could be easily transferred to other multi-
block methods. The paper is organised in the following way: After an
introduction into the multi-block analysis of -omics data in
Section 2.1, the NIPALS algorithm for CPCA is introduced in
Section 2.2. This is done in order to introduce block and global
parameters of CPCA that are used for visualisation. In Section 2.3 the
calculation of block Root Mean Squared Errors (RMSE) is introduced
for the validation of block patterns. In Section 2.4 the calculation of
uncertainties by cross-validation is explained. The cross-validated
loadings obtained in Section 2.4 are used in Section 2.5 for the
calculation of cross-validated block loadings and block stability plots.
In Section 3, a multi-block example is presented, different techniques
for visualisation are explained and the new validation tools are
illustrated by an example. In Section 4 we finish by a conclusion.

2. Theory

2.1. Notation

We follow the notation commonly used in chemometrics, e.g.
Martens & Martens in [40]: Matrices and vectors are written as bold-
face, matrices as upper-case letters and vectors as lower-case letters.
By the indices b=1,...,B we denote blocks of variables, by m=1,...,M
cross-validation segments of samples and by a=1,...,A the number of
principal components. The total number of samples in each data set is
represented by N, the total number of variables by K and the total
number of variables in a given block b by Kb. By X = X1;X2; :::;XB

h i
we denote the multi-block data set consisting of B blocks. Measure-
ments belonging to the samemeasurement technique, e.g. AFLP, NMR,
GC–MS, proteomics, FTIR and phenotypes are typically collected in the
same block Xb. In omics experiments different measurement
techniques are applied to the same samples and for the multi-block
analysis data need to be ordered in a way that a sample-to-sample
(row-to-row) correspondence between the blocks is achieved. Only
measurements originating from the same biological replicate can be
related to each other by a row-to-row correspondence. If, for example,
for different methods several and different biological replicates are
used, only means of biological replicates can be related to each other.

2.2. CPCA

In order to find the common underlying patterns between data
blocks Xb in a multi-block data set, Consensus Principal Component
Analysis (CPCA) has been used [48]. However, the graphical and
validation tools discussed herein are generic and can be easily adapted
to othermulti-blockmethods. In CPCA, principal components or latent
variables describe variation patterns within and between the data
blocks. Variation patterns shared by several blocks can thus be
detected. The CPCA algorithm consists of two steps: (1) The first
global score and loading vector, block score and loading vectors are
calculated for the multi-block data set X where each block has been
preprocessed to remove irrelevant variation types (if possible) and
scaled so as to balance the various blocks. (2) In a deflation step X is
updated by subtracting the variation that corresponds to the first
global score vector. For the calculation of the second component, the
procedure is repeated on the deflated matrix and so on. For the
calculation of the global score and loading vectors, block score and
loading vectors an iterative procedure is used, the NIPALS algorithm
for CPCA [49,50]. The NIPALS algorithm is given below, where the
notation according to Westerhuis et al. (1998) [45] is used.

2.2.1. Preprocessing

2.2.1.1. Mean-centering. All variables are usually mean-centered prior
to CPCA.Mean-centering is done by subtracting themean according to

XUnscaled = Xinput� ONES⋅—x ′
input ð1Þ

where XUnscaled is the centered variables, Xinput is the original data,
ONES is the N×1 vector whose components are equal to one and
—xinput, a K×1 vector, is the mean along the samples of the data matrix
Xinput.
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2.2.1.2. Scaling. In CPCA the data blocks are scaled by dividing each
block by its norm. Scaling is performed for mean-centered variables
according to

Xb =
Xb
Unscaledffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i=1
∑
Kb

j=1
Xb
Unscaled i; jð Þ� �2s ð2Þ

where Xb is the data block after centering and scaling, Xb
Unscaled is the

mean-centered, un-scaled data block, Xb
Unscaled i; jð Þ is the ith, jth entry

of data block Xb
Unscaled. This scaling sets all the blocks on the same

footing (i.e. same total variance) and is usually recommended because
un-scaled data would give the blocks different influence, since they
differ from each other with respect to their numbers of variables and
themeasurement units. In some instances the user may want to give a
certain block a different influence than the other blocks, either
because the user wants to let one or several blocks dictating the
variation pattern or because the user wants to avoid that certain
blocks influence the variation pattern for example it is an appropriate
approach to “passify” the design block by down-weighting it with a
very small number e.g. 0.000001, in order to minimize its influence on
the CPCA model. The advantage of this particular scaling is that
although the design is not significantly contributing to the model, the
relation of design factors and measured variables can still be
investigated. Individual variables within the blocks may be similarly
“passified” by drastic down-scaling (Martens & Martens in [40]), but
that is not employed herein.

2.2.2. Overall modelling
CPCA is used to explore the systematic variation pattern in X. Data

table Xwas modeled as sum of A relevant principal components (PCs)
plus a residual matrix E. The CPCA model for X is given in Eq. (3):

X = TP′ + E
Xb = TbPb′ + Eb ð3Þ

where T = t1; t2; :::; ta; :::; tA½ � contains A global score vectors ta, and P
is the corresponding matrix of global loading vectors pa,
P = p1;p2; :::;pa; :::;pA½ �. The global loading matrix P can also be
written as the matrix of concatenated block loading matrices Pb:
P′ = P1′;P2′; :::;Pb′; :::;PB′

h i
.

2.2.3. Component estimation
Several equivalent CPCA estimation algorithms are proposed in the

literature. The original algorithm called NIPALS is the most popular
and presents the advantage of explicitly showing how to compute in
addition to the global scores, the block loadings and the block scores.
NIPALS algorithm runs as follows. For each component a=1,2,...:

A. Initialization
1.1 Choose an arbitrary starting global score vector, t

B. Computation of block scores and block loadings
1.2 p̃b = Xb′t

t ′t Preliminary block loadings

1.3 pb = p̃b

‖p̃b‖
Block loadings, scaled to length 1 in each block

1.4 tb = Xbpb Block scores

C. Computation of global scores and global loadings
1.5 T = t1 t2:::tB

� �
1.6 w = T′t Block weights
1.7 Normalize w to ‖w‖ = 1
1.8 t = Tw Global scores

D. Replace the starting score vector t by the updated vector of global
scores in 1.8 and iterate until convergence of the algorithm (i.e. no
significant change in t).
Alternatively, the same solution for global scores and loadings may
be obtained by performing PCA on X. Thereafter, block scores and
block loadings may be computed according to their definition in the
NIPALS algorithm above.

2.3. Error estimation, cross-validation and jack-knifing

In order to estimate the stability of the CPCA model and the
number of relevant PCs, RMSE is calculated by cross-validation [51]
for a=1,...,A components, where A is chosen sufficiently large. The set
of m=1,...,M segments of data consists of one or several samples
which are left out, in turn, resulting in a left-out segment of data (Xm)
and a leave-in segment of data (X−m). CPCA models are determined
for the leave-in segment matrices X−m in a cross-validation
procedure. Thereafter, the model is fitted to the left-out samples
leading to the predicted matrix X̂m. The residual matrix Em is defined
as the difference between the predicted values for the left-out
samples, X̂m, and the data in Xm. This procedure is repeated over all
segments in the data set resulting in A residual matrices Ea. The above
mentioned steps are visualized in Fig. 1.

In order to predict X̂m, P−m is calculated from the CPCA model of
XC−mwhich represents the mean-centered “leave-in” samples. Mean-
centering is performed on X−m according to Eq. (4):

XC−m
= X−m�ONES ⋅—x′−m ð4Þ

where X−m = X1
−m;X

2
−m; :::;X

b
−m; :::;X

B
−m

h i
contains leave-in samples

and —x−m, a K×1 vector, is the mean along samples of X−m.
The CPCA model of XC−m is given in Eq. (5):

XC−m
= T−mP

′
−m ð5Þ

where T−m = t−m;1; t−m;2; :::; t−m;a; :::; t−m;A
� �

contains A global scores
calculated for leave-in samples, P−m is thematrix of concatenated block

loadings for leave-in samples P ′−m = P1′
−m;A;P

2′
−m;A; :::;P

b′
−m;A; :::;P

B′
−m;A

h i
and XC−m = X1

C−m
;X2

C−m
; :::;Xb

C−m
; :::;XB

C−m

h i
.

The set of A score values for each of the left-out samples is
unknown and is determined as follows. Firstly, the leave-out samples
are centered using the means estimated from the leave-in samples:

XCm
= Xm−ONES ⋅—x′−m ð6Þ

Secondly, the matrix of loadings P−m estimated from the leave-in
samples are applied to XCm leading to the score matrix for the leave-
out samples:

T̂m = XCm
P−m ð7Þ

Multiplying the predicted scores for the left-out segments from
Eq. (7) with the loadings estimated according to Eq. (5) results in a
prediction for the left-out segment data. In order to choose the
appropriate number of PCs, left-out samples were estimated for
various values of A=0,1,...,Amax (Amax is considered sufficiently large
e.g. the total number of variables) and resulted in different
estimations and residual matrices. Residual matrices are calculated as

X̂m;A = T̂m;AP′−m;A

Em;A = XCm
−X̂m;A

Em;0 = XCm

ð8Þ

where T̂m;A = t̂m;1; t̂m;2; :::; t̂m;a; :::; t̂m;A

h i
contains A global score

vectors calculated for left-out samples according to Eq. (7),
P′−m;A = P1′

−m;A;P
2′
−m;A; :::;P

b′
−m;A; :::;P

B′
−m;A

h i
is the matrix of concate-

nated block loadings for leave-in samples,X̂m;A is the prediction of the



Fig. 1. Flow chart of the RMSE calculation. Square boxes are input and output, diamond is for loop and rounded boxes are instructions. The following indices are used: (i,j) for the ith,
jth entry of the respective matrix, Kb for the total number of variables in block b, K for the total number of variables in the data set, N for the total number of samples in the data set,
m=1,...,M for the cross-validation segments of samples, A for the number of principal components, b1 for the column number of first variable in block b and b2 for the column
number of the last variable in block b. ‘g’ stands for the global.
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left-out samples based on A PCs, XCm is segment m of the data table
which was calculated by Eq. (6) and Em;A = E1

m;A
;E2

m;A
;:::;Eb

m;A
;:::;EB

m;A

h i
is

the corresponding residual matrix of concatenated block residual
matrices Eb

m;A
for segment m using A PCs.

Thereafter, the residual matrices Em;A were concatenated ver-
tically for all segments, which resulted in one residual matrix
EA = E1

A;E
2
A; :::;E

b
A; :::;E

B
A

h i
for every different value of A. In the

same way, the residual matrices Em;0 were concatenated vertically
for all segments, which resulted in one residual matrix E0 =
E1
0;E

2
0; :::;E

b
0; :::;E

B
0

h i
.

The error estimation and cross-validation described above were
introduced within the framework of PCA. The aim herein is to extend
these procedures to the multi-block setting and propose graphical
tools to enhance their interpretation.

2.3.1. Block errors
For the estimation of block errors, we suggest to calculate for each

PC in each block b, the sum of squares of residual matrix according to
Eq. (9)

SScvbA = ∑
N

i=1
∑
Kb

j=1
ebA i; jð Þ2 ð9Þ

where eAb(i, j) is the ith, jth entry of residual block Eb
A, (i.e. block b of the

residual matrix for a model with A PCs included).
In order to calculate cross-validated estimates of themean squared

errors for each block we propose to calculate MSEb according to:

MSEbA =
SScvbA

N Kb−hbA
� �

MSEb0 =
SScvb0
NKb

ð10Þ
The quantity hA
b is the partial block leverage, intended to represent

block b contribution in the A degrees of freedom consumed in
predicting A global scores ta. The partial block leverages hA

b for A
components and every block is calculated according to Eq. (11)

p̃′a = p̃1
a
′; p̃2

a
′; :::;p̃b

a
′; :::;p̃B

a
′

h i
p�
a′¼p̃′a p̃′ap̃a

� �−1=2

hbA = ∑
A

a=1
∑
b2

k=b1
p�′ k; að Þ2

ð11Þ

where p̃b′is calculated in the CPCA algorithm in (Section 2.2.3), p*′(k,
a) is the (k,a)-th entry of the loading vector matrix P�′ containing the
loading vectors p�

a, defined in Eq. (11), as columns. The b1 and b2 are
the column numbers of the first and the last variables in block b,
respectively, considering all blocks. It is worth noting that the sum of
the partial leverages equals A.

In order to have better RMSE plots where it is easier to choose the
correct number of PCs, the mean squared errors associated with each
block were augmented by 3% of the initial variance, MSE0

b, for each
new PC introduced in the model:

MSEbA + A × 0:03 × MSEb0→MSEbA ð12Þ

The 3% rule has been successfully used in PCA and PLSR for a
number of years [52], e.g. in The Unscrambler software. We have tried
several alternatives, more advanced methods to avoid incidental over
optimism, e.g. trying to assess “significance” of each component etc.,
but we have concluded that the 3% rule seems the easiest and most
reliable method. The cross-validated RMSE for each block was
determined by calculating the square root of MSEA

b for all various



144 S. Hassani et al. / Chemometrics and Intelligent Laboratory Systems 104 (2010) 140–153
values of A (the number of components to be introduced in the CPCA
model):

RMSEbA =
ffiffiffiffiffiffiffiffiffiffiffiffi
MSEbA

q
ð13Þ

The percent cross-validated explained variance for each block, for
all various values of A, is then calculated according to Eq. (14):

Percent Explained Variance ¼MSEb0−MSEbA
MSEb0

× 100 ð14Þ

The unvalidated explained block variance for each block and
component a is given as fraction of the total variance of the respective
block. The unvalidated explained variance is shown for each PC on the
axes of the score plots in Figs. 3a–e, 4a–e.

2.3.2. Global errors
Global cross-validated RMSE and degree of freedom correction for

RMSE is calculated as in PCA and briefly recalled in the following.
For all model ranks A=0,1,...,Amax, the sum of squares of the cross-

validated residual matrix was calculated according to Eq. (15)

SScvg0 = ∑
N

i=1
∑
K

j=1
e0 i; jð Þ2

SScvgA = ∑
N

i=1
∑
K

j=1
eA i; jð Þ2

ð15Þ

where eA(i, j) is the (i,j)–th entry of EA and EA = E1
A;E

2
A;:::;E

b
A;:::;E

B
A

h i
is

the residual matrix associated with a CPCA model which includes A
PCs, e0(i, j) is the (i,j)-th entry of residual matrix E0 which is calculated
in Section 2.3.

SScvA
g was then corrected for the approximate number of degrees

of freedom being consumed, using Eq. (16):

MSEg0 =
SScvg0
NK

MSEgA =
SScvgA

N K−Að Þ

ð16Þ

Eq. (16) assumes that all N objects have been sampled and
measured independently, and that all K variables have beenmeasured
with independentmeasurement error. This is not always satisfied, and
therefore, the MSE values are only considered as approximate.

Again, in order to have better RMSE plots where it is easier to
choose the correct number of PCs, 3% of the initial variance is added
for each new PC:

MSEgA + A × 0:03 × MSEg0→MSEgA ð17Þ

The cross-validated global RMSE was determined by calculating
the square root of MSEA

g:

RMSEgA =
ffiffiffiffiffiffiffiffiffiffiffiffi
MSEgA

q
ð18Þ

The global percent cross-validated explained variance is calculated
according to Eq. (19):

Percent Explained Variance ¼MSEg0−MSEgA
MSEg0

× 100 ð19Þ

Unvalidated global explained variance is the fraction of the
variance in the data set which is explained by component A. It is
shown for each PC on the respective axes in Figs. 3f, 4f and 5. By
examining the plot where the approximate global and block RMSEs
were plotted against PC numbers, a decision about the number of
relevant PCs to be retained in the CPCA model Aopt was made, in the
whole data set and also in each block individually. The flow chart of
the approximate RMSE calculation is given in Fig. 1.

2.4. Uncertainty t-test for the variables

In order to assess whether the variables at hand are contributing to
the CPCA model, an approximate t-test was run on the loading
coefficients. For the t-test an uncertainty standard deviation of the
loadingmatrix PK;Aopt was calculated by cross-validation. An important
aspect involved here is that the orientation of the subspace in the
variable space which is defined by the loading matrix P is in general
not identical to the one which is defined by the loading matrix P−m

obtained by leaving out the segment m. In order to correct for
rotations and flipping of directions Procrustes rotation was used. In
each cross validation step, the full, global P−m , estimated from leave-
in samples was rotated towards P by using Procrustes rotation. This
resulted in a new loading matrix which is called P̂−m. The calculation
of the rotation matrix was done by taking the singular value
decomposition of P′−mP

� �
. Related equations are detailed below:

SVD P′−m;Aopt
PAopt

� �
= USV′

Rm;Aopt
= UV′

P̂−m = P−m;Aopt
Rm;Aopt

ð20Þ

where Aopt is the number of relevant PCs, P′ is the loading matrix for
the whole data set and P′−m is the loadings matrix of the leave-in
samples. When the Aopt×Aopt rotation matrix R is estimated, this
entails the estimation of Aopt−1 unknown parameters and hence
consumption of Aopt−1 degrees of freedom from the original K input
variables. Therefore, the variance/covariance of the rotated loadings
P̂−m, estimated in Eq. (21), should be corrected by the factor

K
K−Aopt−1

. By taking account of this degree-of-freedom correction

we make sure that the Procrustes rotation does not create overfitting.
The jack-knifed estimate of the uncertainty standard deviation

SK;Aopt is finally calculated by comparing the loadings for the whole
data set with Procrustes-rotated loadings of the leave-in samples P̂−m.
The sk, a, which is the (k,a)-th entry of the matrix SK;Aopt , is calculated
according to

s2k;a = ∑
M

m=1
pk;a−p̂k;a

� �2
CMDA ð21Þ

Where pk, a is the (k,a)-th entry of the loading matrix PK;Aopt ,
CM = M

M−1 is the jack-knife correction factor and DA = K
K−Aopt−1 is the

degrees-of-freedom correction from the Procrustes rotation.
The t-statistics are then calculated according to

tk;a =
pk;a
sk;a

ð22Þ

where k=1,…,K denotes the variables, a=1,…,Aopt the components.

2.5. Stability plots

2.5.1. Global stability score plots
Stability plots for PCA were introduced and discussed in detail by

Martens & Martens in [40]. They aim at assessing the extent to which
the scores are influenced by the various samples in the datasets. We
discuss herein how to extend these plots to the multi-block setting.

The stability of the scores can be visualized by so-called stability
plots. The stability of scores is estimated by cross-validation. Since the
stability plots compare score values for different cross-validation
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models with the full model, the models need to be corrected using
Procrustes rotations as in the previous section. Therefore, for the
calculation of the stability scores the rotated loadings P̂−m of Eq. (20)
are used:

T̂A = XCP̂−m ð23Þ

where P̂−m is the rotated loading matrix of the leave-in samples after
having taken out segment m calculated in Eq. (20) and XC is obtained
bymean-centering the input dataXinput using themean of the leave-in
samples X−m. Finally we obtain according to Eq. (23), M cross-
validated score matrices T̂A (For the sake of simplicity, we omit a
possible index m for marking T̂A according to the cross-validation
model m). Scores TA, obtained by using the full model calculated in
Eq. (3), are plotted together with the M cross-validated sets of scores
T̂A in the following way: In score plots we draw n lines, for each
sample, from each pair of score values (tin, tjn), where ti

n refers to
column (component) i and row n (sample n) in TA, to all M pairs of
cross-validated score values t̂

n
i ; t̂

n
j

� �
, where t̂

n
i refers to column

(component) i and row n (sample n) in T̂A. The length of the instability

line dn1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tni −t̂

n
i

� �2
+ tnj −t̂

n
j

� �2
r

and its direction shows howmuch
the parameters for sample n for components i and j vary when
segment m is left out. This provides a nice overview of possible
outliers etc.: If the instability line is long, it means that the sample has
unique information not represented by samples in segment m,
resulting in an unstable model. The instability line expression may
be modified in various ways. For instance, since the uncertainty
variance of the scores ta

n is estimated by the jack-knifing expression

s2n;a = ∑
M

m=1
tna−t̂

n
−m;a

� �2
CMDA, the individual perturbation distances

can be corrected by dn2 = dn1
ffiffiffiffiffiffiffiffiffiffiffiffi
CMDA

p
in order to avoid underestimation

in the case of high-dimensional Procrustes rotation. In our example
this is ignored, since both factors are close to 1.

In the results section we will mark the instability line that
represents the cross-validation round where the sample itself has
been left out by a dot. When more than one sample are left out in one
Sample 1
.
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Fig. 2. Structure of “Listeria monocytogenes strains” data set. Three different ranges of the
1500 cm−1, protein region; 3000-2800 cm−1, fatty acid region) are used in order to produce
data blocks [47,53].
cross-validation loop, all samples that are taken out in a given cross-
validation loop could be marked.

2.5.2. Block stability score plots
In order to estimate stability of samples on block level, we will

propose how stability plots can be calculated for block score plots. For
setting the global stability plots we predicted cross-validated scores
according to Eq. (23). This was possible because the rotated global

loadings P̂−m are orthogonal. Since the rotated block loadings P̂
b

−m,
that are obtained by splitting the rotated global loadings P̂−m into

blocks i:e P̂−m = P̂
1
−m;P̂

2
−m; :::;P̂

b

−m; :::;P̂
B

−m

	 
� �
, are in general not

orthogonal, the block stability scores T̂
b
cannot be calculated in the

sameway. They need to be calculated at every deflation step as shown
in the following.

We start by calculating the cross-validated and rotated loadings
P̂−m according to Eq. (20). For every segment m, we perform the
following calculations and deflations on XC:

1. Start by choosing the first loading p̂−m;a from P̂−m (a=1).
2. Split p̂−m;a into rotated and cross-validated block loadings

p̂−m;a = p̂
1
−m;a;p̂

2
−m;a; :::;p̂

b
−m;a; :::;p̂

B
−m;a

h i
3. Normalize the p̂−m;a block-wise: p̂

b
−m;a

‖ p̂b
−m;a‖

→p̂
b
−m;a

4. Calculate the rotated and cross-validated block scores t̂
b

a= Xb
Cp̂

b
−m;a

5. Replace XC by XC− XC p̂−m;a

� �
p̂′−m;a and increment a by one

6. Iterate steps 2.–5. A times to obtain A components.

Following this procedure we obtain block stability scores

T̂
b
= t̂

b

1; t̂
b

2; :::; t̂
b

a; :::; t̂
b

A

	 

. Similarly to the global stability scores, the

block stability scores are obtained for every cross-validation loop for
all samples, also for the left-out samples (here again we omit labeling
the block stability scores T̂

b
according to the cross-validation loop m

for the sake of simplicity). The block stability score plots are visualized
in the same way as in the global stability score plots.

Since the Procrustes rotation of the loadings with A PCs estimates
A−1 independent parameters from the K input variables, it is
otypes AFLP
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three different blocks. In addition, phenotype data and AFLP data are used as two further



146 S. Hassani et al. / Chemometrics and Intelligent Laboratory Systems 104 (2010) 140–153
considered to consume A−1 degrees of freedom. Hence, to avoid too
small deviations in the stability plots, the length of the line segments

may be corrected by the square root of the factor
K

K−Aopt−1
. But since

the number of components here is low relative to the number of
variables K, this correction is presently ignored.
3. Multi-block data set

The multi-block data set used in this study is described in detail in
the references [47,53] and illustrated in Fig. 2. The data set consists of
five data blocks with different numbers of variables in each block; all
these variables being measured on the same set of 88 microbiological
samples. This multi-block data set contains amplified fragment length
polymorphism (AFLP) data (genetic fingerprinting), Fourier Trans-
form Infrared (FTIR) spectra, and a collection of other, univariate
phenotypes (serotype grouping, susceptibility to sakacin P, nisin and
the antibacterial agent benzalkonium chloride) of 88 L. monocytogenes
strains. FTIR spectroscopy is a rapid technique for metabolic
fingerprinting of microorganisms [54]. The FTIR data block is
subdivided into the following spectral region blocks: polysaccharide
region and fingerprint region (720–1200 cm−1) defining block X1

(498 variables), the protein region (1500–1700 cm−1) defining block
X2 (209 variables) and the fatty acid region (2800–3000 cm−1)
defining block X3 (208 variables). The phenotypes are collected in
Fig. 3. Consensus Principal Component Analysis (CPCA) of the data. The samples are labeled
(a–e) First and second components of block scores. (f) First and second components of Glo
data block X4 (10 variables). The AFLP data block defines block X5

(1701 variables). Prior to CPCA the spectral data was pre-processed by
EMSC [55,56]. The structure of the data set is shown in Fig. 2.
Integrating and exploiting these omics data sets in combination was
done in the reference [47] and further information about the
background behind the L. monocytogenes strain to strain variation in
general and especially the variation in susceptibility to bacteriocins
was obtained. Different ways to group the 88 strains phenotypically
have been studied: (1) According to sakacin sensitivity, since the
strains form two distinct sensitivity groups. Half of the strains is below
and half above a sensitivity threshold. (2) According to serotype.
(3) According to the polysaccharide-fingerprint region in FTIR: The
polysaccharide-fingerprint region of FTIR shows three distinct groups
which we named FTIR groups [47,53]. The three polysaccharide-
fingerprint groups can be obtained by running a Principal Component
Analysis (PCA) on the polysaccharide-fingerprint region (720–
1200 cm−1) and considering the first two components. The FTIR
groups will be used for graphical illustration in the following.
4. Results and discussion

4.1. CPCA of a multi-block data set

In order to find the common variation pattern between blocks in
the multi-block data set, CPCA was performed on the five different
“1” (red), “2” (blue) or “3” (green) according to FTIR polysaccharide-fingerprint groups.
bal scores. The (un-validated) explained variance is shown on the axes.
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data blocks. The structure of the data set is described above and
illustrated in Fig. 2. In Fig. 3 the score plots (first and second
components) for the five different blocks and the global scores are
shown. The samples are labeled “1”(red), “2”(blue) or “3” (green)
according to FTIR polysaccharide-fingerprint groups as defined in
[47]. We see that the three polysaccharide-fingerprint groups are
visible in the global pattern (Fig. 3f): The first principal component
covers 34% of the total variation (unvalidated explained variance).
The first component separates group 3 from groups 1 and 2. The
second PC accounts for 19% of the variation in the data set and
separates group 1 from groups 2 and 3. The sample variation pattern
in block 1 (polysaccharide-fingerprint region) is very close to the
global pattern. The phenotypes block (block 4) and AFLP block (block
5) show tendencies toward the same grouping pattern. However,
blocks 2 and 3 (the protein region and fatty acid region of FTIR) show
slightly different patterns. We can see that although there are some
differences in the separation between groups in different blocks in
Fig. 3, similar patterns can be identified in all blocks. This rises the
question whether there are indeed similar co-variation patterns in all
the blocks or whether one or few blocks (e.g. block 1) are dominant
and impose their pattern to the other blocks. The (unvalidated)
explained variance of block 1, the polysaccharide-fingerprint region,
already gives an indication that block 1 is dominant. Nevertheless, all
the other blocks show a relatively large explained variance. In Fig. 4
the score plots (third and fourth components) for the five different
Fig. 4. Consensus Principal Component Analysis (CPCA) of the data. The samples are labeled
(a–e) Third and fourth components of block scores. (f) Third and fourth components of Glo
blocks and the global scores are shown. The third and the fourth global
components do not explain a large variation in the data as they both
recover only 16% of the variation. It can also be seen that the second
block leads the global pattern for the third and fourth principal
components. Indeed, 28% of the variation in the second block is
explained by the third and fourth components.

The correlation loading plot (first and second components) is shown
in Fig. 5, revealing correlations between the global scores T and the
variables in the different data blocks used for CPCA (black: FTIR
(polysaccharide-fingerprint region); blue: FTIR (protein region); green:
FTIR (fatty acid region); red: phenotypes data; and olive: AFLP data). A
circle centered at the origin and unit radius is also drawn and represents
themaximumcorrelation.More precisely,whenever a variable is close to
the circle, this highlights that it can be well predicted by the two PCs
under consideration. Contrariwise, whenever a variable is close to the
origin, this means that it is not connected to the two considered PCs.
This graphical display alsomakes it possible to depict the extent towhich
the variables in X are correlated to each other and the two PCs being
considered. Roughly speaking, two variables close to the circle which
point to the same direction are positively correlated and vice versa.

If xk is the kth variable vector (column) in the data matrix X and
ti; tj
� �

are score vectors of two PCs, for the correlation loading plot, the
correlation coefficients (rki, rkj) are calculated for xk towards ti and tj.
The variable corresponding to xk is then represented as a point with
coordinates (rki, rkj). This is done for all of the variables. Due to the
“1” (red), “2” (blue) or “3” (green) according to FTIR polysaccharide-fingerprint groups.
bal scores. The (un-validated) explained variance is shown on the axes.
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orthogonality between scores, the norm of the vector (rki, rkj) is less
than or equal to 1. Thus a circle of radius equal to 1 is plotted, on the
correlation plot, with the center at the origin of the graph. If xk is
positioned on the circle it indicates that it is possible to exactly predict
the variable k from the scores ti; tj. A variable positioned close to the
origin of the graph is then not predictable from the studied pair of
scores and it plays no role in the “construction” of these scores.
Moreover, if two variables are close together on the correlation plot
and also close to the perimeter of the circle, they are strongly
positively correlated, while they are strongly negatively correlated if
they are found at the opposite perimeter.

For the sake of clarity, only FTIR variables related to actual
chemical bands are plotted in Fig. 5. The figure clearly shows a high
correlation between polysaccharide-fingerprint region of FTIR data
and serotype grouping. It can also be seen that AFLP variables have
high correlations with sakacin P susceptibility and FT-IR group 3,
while they do not have significant correlationwith any of the serotype
groups. The protein region of FTIR data is mainly distributed in the
inner circle, which corresponds to 50% explained variance, revealing
the fact that the protein region of FTIR data is not well explained by
the first two principal components.

4.2. Root Mean Square Error (RMSE): a cross-validation approach

In order to validate visually detected variation patterns of CPCAwe
propose in this paper to study global RMSE and block RMSEs,
calculated by Eqs. (18) and (13) respectively. Visual perception
when inspecting the score plots can be misleading since scientist's
mind is always looking for patterns of grouping. Colors in the score
plots improve visualizing the underlying patterns and groupingwhilst
they can lead to false discovery. Normally, if the different blocks of
variables represent different types of information about the samples,
one would expect the blocks to contain different numbers of
important latent structures. It is important to discover these
differences in latent block structure. But on the other hand we want
to compare the different blocks in a common cognitive structure; one
way to do this is the CPCAwith block score displays, but with deflation
on the global, common scores only. The block RMSE plots then give a
validated image of block score plots revealing the important
contributions to the global patterns. RMSE plots for all of the five
blocks together with the global RMSE are shown in Fig. 6a.We observe
that block 3 has the most important contribution to the second
component, which is already indicated by the unvalidated explained
variance. Blocks 1 and 4 are also contributing to the component
number 2 but obviously block 3 affects the second component more
than any other block. The most remarkable result is that Block 5
(AFLP) has no influence on the second component (see Fig. 3) even if
the block score plot (Fig. 3e) shows a nice pattern. Although a pattern
was seen in block 5 with the same tendency as the global pattern for
the first and second components (Section 4.1), the validation (RMSE)
plot shows that block 5 does not contribute to the global variation
pattern in the second PC and in fact it is the only block which does not

image of Fig.�5


Fig. 6. (a) Root Mean Square Error (RMSE) plot for the data set. (1–5) RMSE plots for blocks 1–5. (red dotted) Global RMSE plot. (b) Explained variance plot for the data set. (1–5) for
blocks 1–5. (red dotted) Global explained variance.

149S. Hassani et al. / Chemometrics and Intelligent Laboratory Systems 104 (2010) 140–153
fit to the rest of the data. Block 4 and 1 are mostly contributing to the
global pattern for the first component whilst block 3 is not important
for component one at all.

RMSE plots can also be used for determining the number of
relevant PCs. As it is seen in Fig. 6a the global RMSE reaches a local
minimum at four PC. Although RMSE decreases for blocks 2 and 3 up
to the sixth component, it does not seem to have a significant effect on
the global pattern. Studying the RMSE plot, it is concluded that the
first block consists of three components and that the common pattern
in the data set for the first two PCs is much like the pattern in this
block. Looking at the fifth block reveals that it is very much different
from the other blocks, as it shares only the first PC with the other
blocks and it does not fit the common pattern in the data set.

By looking at the global RMSE plot one can state that in order to
extract most of the information from the multi-block data only the
first four components should be retained. It is also clear that the sixth
PC is just affected by the second and third blocks and it does not
contain any reliable information for the other blocks. In addition to
allowing us to find the necessary rank of the CPCA model, the rank
estimates in the individual blocks give us new insight about these sets
of variables. Of course, further rank details about the individual blocks
may be obtained by PCA of individual blocks or PLSR between pairs of
blocks.

4.3. Cross-validated explained variance

The cross-validated explained variance is calculated according to
Eqs. (14) and (19). The corresponding cross-validated explained
variance plot is shown in Fig. 6b. This plot displays the RMSE
information in Fig. 6a in a different way. It depicts the percentage of
the total variance in the data explained by a CPCA model as a function
of the number of PCs. From this figure, one can also assess how much
of the variation is left unexplained after a specific number of
components have been introduced in the model. It can be seen that
with three components more than 60% of the variation in the first and
third blocks is explained by the model whereas the fifth block never
reaches even 50% of the explained variance.

Fig. 7 shows bar plots for the cross-validated explained variance
(a) together with the unvalidated explained variance (b), until rank
A=7. It is interesting to compare them as it can be informative in
some cases e.g. if one block is pulling the global pattern toward itself
while the block is led by few extreme samples then the original
explained variance will be high for the mentioned block while after
cross-validation it would be hard for the model to estimate the
extreme samples. As a consequence, this will force the cross-validated
explained variance bar to go much lower than the original one. In the
present study the plots do not contain such extreme cases and it can
be concluded that the original explained variance is trustful enough.
The explained variance is much lower and even negative for the fifth
PC after cross-validation which makes the fifth PC less trustworthy
than what one may think by looking at the original results.

4.4. Detecting important variables

The patterns which were detected by CPCA analysis have thus
been validated by a statistical assessment, but the important variables
which contributed to these patterns have not been identified yet.
Looking at the correlation loading plots that show the correlation
between variables and PCs, gives an idea about which variables
contribute to the determination of each PC. A good way for assessing
the variable importance is jack-knife-based p-value. An approximate
t-test is run on the variables and results in p-values for each variable.
In order to visualize the significance of variables we plot negative
logarithmic p-values (−log10(p-value), i.e. p=0.1, 0.01 or 0.001 yield
1, 2 or 3, respectively). This makes it possible to highlight the most
significant values. The respective plot for all variables for the second
component is shown in Fig. 8. The red line defines the 5% significance
level (variables above the threshold are considered to be significant).
It can be seen that a lot of variables are significant in the first four
blocks compare to not many significant variables in the fifth block
although this latter block contains more than 1700 variables. This
result confirms the conclusions from the RMSE plots regarding the
weak contribution of block five to the second component. It is also
clear that in the first block there are many important variables
(confirming the conclusions from RMSE plots). Variables can be
examined for different numbers of components and different blocks
separately. E.g. in FTIR variables corresponding to specific spectral
bands in the FTIR spectra were evaluated and it turned out that the
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Fig. 7. (a) Cross-validated explained variance. Bar plot for the percentage cross-validated explained variance in each PC. (b) Explained variance. Bar plot for the percentage (un-
validated) explained variance in each PC.
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bands at 835 cm−1 and 980 cm−1 were significant variables for the
first component (results are not shown). Fig. 5 shows that the first
component accounts for the variation in susceptibility toward sakacin
P. The bands at 835 cm−1 and 980 cm−1 can be attributed to pyranose
rings, and Lafleur [57] suggested that the variation in susceptibility
toward sakacin P is connected to variations in the cell wall, probably
to variations in pyranose. Since these two variables are found to be
significant for explaining the variation in susceptibility towards
sakacin P and, moreover, this can be explained biologically, we can
be confident that high significances found for these two variables are
not spurious.

4.5. Stability of the model and detecting outliers

As an additional approach to validate visually identified variation
patterns in CPCA, we defined in this paper block stability scores.
Fig. 9a–e shows such block stability plots for the first and second
components for the five blocks. In Fig. 9f the global stability plot for
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the first and second components is shown. In Fig. 9 we can see how
samples change positions during cross-validation loops where the
model predicts left-out samples from amodel determined on the basis
of leave-in ones. The iteration when the sample itself was left out is
marked by a dot. It can be seen that the stability plot gets less stable in
the third and fourth components (Fig. 10). In Fig. 9e (plot referring to
the AFLP data) a sample, belonging to the second group (blue), shows
a high instability when the sample itself is left out in the construction
of the model (the dot at the end of the instability line indicates the
cross-validation step when the sample itself has been left out). The
same sample appears to be very stable in the other stability plots.
The reason for such a behavior can be either a measurement error in
the AFLP or that the sample represents a ‘real’ (biological) outlier. In
order to clarify this, additional analyses of this sample need to be
done. In Fig. 10 one sample belonging to the third group (green)
largely changes position during an iteration of the cross-validation
loop. Since this was again the iteration, where the sample itself was left
out, it can be concluded that the sample has a large effect on the model
1500 2000 2500

ables

 Block 5
 

 5%  Significant

omponent, truncated at 5 (i.e. p≤0.00001). Blocks are specified by different colors.

image of Fig.�7


−0.15 −0.1 −0.05 0 0.05
−0.1

−0.05

0

0.05

0.1

PC1 

P
C

2 

3

3

22

1

1

1

1
1

1

3

1

3

3

1

3

3

1

3

1

3

3
3

3

3

3

3

3

3

2

3

3
3

3
3

3
1

31

3

1

3
2

3

3

3

3

3

1

3

3

3
3

2

3

1

3

3

2

33

1

1

2

2
2

3
33

3

3

2

3

3

33

3

3

3
3

33

2
22 2

33

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

PC1 
P

C
2 

3

3

2

2

1

1

1

1

1

1

3

1

3

3

1

33

1

3
1

3 3

3

3

3
3

3

3
3

2
3

3 3
3

3

3

1
3

1

3

1

3

2

3

3

3

3

3

1 3

3
3

3
2

3

1
3

3
2

3

3

1
1

2

2

2
3

3

3

3

3

2 3

3

3
33

3

3
3

3

3

22
2

2

3

3

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

PC1 

P
C

2 

3

3

2

2

1

1

1

1

1 1

3

1

33

1

3

3

1

3

1

3

3

3

3

3
3

3

33

2

3

3

3

3

3

3

1
3

1

3

1

3

2

3

3

3
3

31
3

3

3

3

2

3

1

3
3

2

3

31

1

2

2
2 3

3

3

3
3

2

3

3 3

3

3

3

3

33

3

2
2 2

2

3

3

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

PC1 

P
C

2 

3

3

22

11111
1

3

1

33

1

3
3

1

3

1

3

3

3

3

3 33

3

3

2 3

3 3
33
3

1

3

1

3

1

3

2

3
3

3

33

1

3

3 3

3

2

3

1

3

3

2

33

11

2
22

3
33 3

3

2

3

3

3
3

3

3

3
333

22

2

2

33

−0.1 −0.05 0 0.05 0.1 0.15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

PC1 

P
C

2 

3

3

2

2

1
11

1

1
1 31

3

3

1

3

3

1

3

1

33

3

3

3

3

3
3

3

2

3

3

3

3

3

3

1

3

1

3

1

3

2

3

3

3

3

3

1

3

3

3

3

2

3

1

3
3

2

3

3

1
1

2
2

2

3
333

3

2

3

3

3

3

3

3

3 33

3

2 2

2

2

3
3

−0.3 −0.2 −0.1 0 0.1 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

PC1 

P
C

2 

3

3

2

2

1

11

1
1

1

3

1

33

1

3

3

1

3
1

3

3

3

3

33
3

3
3

2

3
33

3

3
3

1

3
1

3

1

3

2

3

3

3

3

3

1 3

3

3

3

2

3

1

3

3

2

3

3

1

1

22 2

3

3

3

3
3

2

3

3

3

3

3

3

3

33

3

2
2
2
2

3

3

a b c

d e f

Fig. 9. Stability plot of the scores for the first and second components. The samples are labeled “1” (red), “2” (blue) or “3” (green) according to FTIR polysaccharide-fingerprint
groups. The dots at the end of the perturbation lines indicate the cross-validation step when the sample itself has been left out. (a–e) First and second components of block scores
stability plots. (f) First and second components of Global scores stability plot.
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since its position is well estimated when it is included among leave-in
samples whereas the position is inaccurately estimated when the
sample is left aside. It is worth noting that the same kind of variation in
position for that sample is seen in blocks two, three and four. Therefore
that sample can be considered as a real biological outlier – all the data
blocks consider it as such – and its behavior should be studied more
carefully.

5. Conclusion

Multi-block methods provide an overview over a multi-block data
set, in terms of sample- and variable- variation patterns within and
between blocks of variables. The visual perception of patterns by
inspection of global and block score plots is very subjective and needs
validation: In explorative datamodelling the scientist who designs the
experiment and performs the data analysis is an essential part of the
process. For better or worse our prior knowledge and hypotheses
influence the perception of patterns and thereby the reported results.
For instance, the recognition of structures and patterns in the score
plots is a creative process that is strongly influenced by the user's
expectations about the biological system. In order to reduce the
subjectivity and prevent the danger of being misled by random noise
effects, we present various validation techniques to help the user to
critically assess the visual perception when interpreting the results
from multi-block analysis. More precisely, new tools for validating
block variation patterns together with the global variation patterns as
obtained in CPCA are presented. They can help the users validate their
discovery of visual variation interactions and common structures in
complex datasets. We have also introduced the use of block RMSE
plots, which are powerful graphical tools for evaluating the
contribution of visually identified block patterns to the global
variation patterns. We have shown that certain block components
after validation by the block RMSE plots appear to contain no relevant
information for the pattern detected in the global score plot. This
shows that the interpretation of block patterns can be misleading and
that patterns that appear in some of the block scores are only present
because they are introduced by other blocks that have a very strong
connection to the associated components.

By the use of global stability plots, the reliability of multi-block
models as a function of the model rank can be assessed. Another
important use of the stability plots is the possibility to identify
outliers. In the present paper we have introduced the block stability
plots, which can be used to assess outliers on block level. This has
turned out to be very useful, since it made it possible to assess
whether a sample is an outlier with respect to one block only or
with respect to the global pattern. A sample that is identified as an
outlier on block level, might either have a very special property seen
only by this block (e.g. -omics technique) or be subjected to a
measurement error in the block under consideration (e.g. -omics
technique).

One possible way for assessing the importance of variables for a
given pattern is to present significance level estimates (p-values),
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Fig. 10. Stability plot of the scores for the third and fourth components. The samples are labeled “1” (red), “2” (blue) or “3” (green) according to FTIR polysaccharide-fingerprint
groups. The dots at the end of the perturbation lines indicate the cross-validation step when the sample itself has been left out. (a–e) Third and fourth components of block scores
stability plots. (f) Third and fourth components of Global scores stability plot.
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which reflect the probability that the observed effect could have been
caused by random noise in the data. Such p-values are often used to
assess whether computed values reflect significant departures from
pre-specified hypotheses. In our context, we used them in a more
informative way by plotting them as measures that highlight
which variables are significantly contributing to the determination
of the various principal components. The way of plotting the
approximate p-values can either be used to get an overview on how
single blocks contribute to the global model, or they can be used to
assess the importance of single variables, as specific bands in the FTIR
spectra.

An interesting issue in PCA and CPCA is to define the number of
relevant components. Here it was achieved by plots of approximate
estimates of the modelling error RMSE from cross-validation. There
are other alternative methods for determining the number of relevant
components which we plan to study in the future. On the other hand
the present work is not limited to CPCA. It can be easily extended to
other multi-block methods such as HPCA.
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1. Introduction

Analyzing a multi-block data set can be accomplished by means of
different multi-block methods e.g. Consensus Principal Component
Analysis (CPCA) and Multi-block Partial Least Squares Regression
(MBPLSR). Both methods provide the user with an efficient graphical
overview over sample and variable variation patterns between and
within the data blocks [1]. Powerful visualization tools provided by
these multi-block methods make it easy to interpret the results.
However, one should bear in mind that the interpretations made by
practitioners on the basis of visual detection of patterns may be
misleading. This remark raises the need of formal validation of the
outcomes of a multi-block analysis. So far, this topic has not attracted
sufficient attention. Recently, we have reported a study concerning the
interpretation and validation of visually detected patterns both in the
global and block results of CPCA [2]. We intend to undertake a similar
study within the framework of MBPLSR. This method of analysis is a
prevalent approach in the analysis of multi-block data sets. It is
employed in different fields of science e.g. analysis of environmental
data sets [3] and spectral data sets [4] [5], modeling of pharmaceutical
processes [6] and monitoring complex chemical processes [7].

Validating the MBPLSR model can be studied from two different
points of view: 1) Since MBPLSR is a data analytical technique which
enables the user to set up predictive models, one possible way of
validation is to validate the predictability of the model. 2) AsMBPLSR is
also a multi-block data analytical technique, it is of paramount interest
to validate the contribution of different blocks in the overall model and
to assess how the global MBPLSR model is related to each block. In this
paper, two validation strategies for MBPLSR are presented and
illustrated on the basis of a data set pertaining to a study which aimed
at characterizing natural variability in microbiology. New methods for
validating the visually identified patterns, both at global and block
levels, from the results ofMBPLSR are introduced thus allowing the user
to formally validate these patterns. The paper is organized as following:
In order to introduce block and global parameters of MBPLSR that are
used for visualization, MBPLSR is described and its algorithm is given in
Section 2.2. Root Mean Square Error of X and Y (RMSEX and RMSEY) are
calculated for the validationpurposes in Section2.3. Section 3 presents a
multi-block data set that has been used as an example in this paper.
Global and block score plots which are important visualization tools in
MBPLSR are illustrated together with our proposed validation tools in
Section 4. We end the paper with a conclusion in Section 5.

2. Theory

2.1. Notation

We follow the notation commonly used in chemometrics, e.g.
Martens & Martens in [8]: Matrices and vectors are written as bold-
face, matrices as upper-case letters and vectors as lower-case letters.
By the indices b=1,…,Bwe denote blocks of variables, bym=1,…,M
-block partial least squares regression, Chemometr.
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cross-validation segments of samples and by a=1,…,A the number of
PLSR components. By X=[X1 X2…Xb…XB] we denote the multi-
block descriptor data set consisting of B blocks. Measurements
pertaining to the same measurement technique, e.g. spectroscopy,
chromatography and gene fragment analysis profiling are typically
collected in the same descriptor block Xb. In omics experiments
different measurement techniques are applied to the same samples
and, for themulti-block analysis, data need to be ordered in away that
a sample-to-sample (row-to-row) correspondence between the
blocks is achieved. Only measurements originating from the same
biological replicate can be related to each other by a row-to-row
correspondence. If, for example, for different methods several and
different biological replicates are used, only means of biological
replicates can be related to each others. By Y we denote the response
data set which contains the target variable e.g. phenotype data in the
current study. The total number of samples in each data set is
represented by N, the total number of variables in a given descriptor
block b by Kb, the total number of variables in the descriptor data set

(X) by K (K = ∑
B

b=1
Kb), and, finally, the total number of variables in

the response data set (Y) by J.

2.2. MBPLSR

In order to predict a set of response variables Y from a multi-block
set of descriptor variables X, Multi-block Partial Least Squares
Regression (MBPLSR) has been used herein. MBPLSR seeks latent
variables, within and between the multi-block set of descriptor
variables, which account for most of the variation in X while, at the
same time, predicting the response variables Y in the best way. The
multi-block descriptor data set X and the response data set Y are
preprocessed prior to MBPLSR calculations and the irrelevant
variation types are removed. X and Y are also scaled in order to
make the data blocks balanced as described in the subsequent section.

Two sets of parameters are produced during the MBPLSR
algorithm: super (i.e. global) parameters and block parameters. The
super parameters are related to the global model for predicting Y from
a multi-block set (X) which are equivalent to the parameters
calculated by running an ordinary PLSR on Y and concatenated X
blocks. The extra feature of MBPLSR is the calculation of block
parameters which gives an insight into the contribution of each block
to the model. The MBPLSR parameters are calculated in two main
steps: (1) Calculation of super score, super weight, block scores and
block loading weights. (2) Deflation: X and Y (or only Y) are updated
by subtracting the variation already explained by the super score.
Steps 1 and 2 are repeated on the deflated matrices for the calculation
of subsequent MBPLSR components.

For the calculation of the super score and super weight vector,
block score and block loading weight vectors a general MBPLSR
algorithm was introduced by Wangen and Kowalski (1988) [9] which
was based on the algorithm presented by Wold and Martens (1983)
[10]. The MBPLSR algorithm is given below, where the notation
according to Westerhuis et al. (1998) [11] is used.

2.2.1. Preprocessing

2.2.1.1. Mean-centering. All of the variables (belonging to both X and
Y) are mean-centered prior to MBPLSR calculations. Mean-centering
is performed by subtracting the mean of each variable over all of the
samples according to

XUnscaled = XInput�1⋅ x ′Input
YUnscaled = YInput�1⋅ y′Input

ð1Þ

where XUnscaled and YUnscaled are the mean-centered descriptor data
table and response data table respectively, XInput and YInput are the
Please cite this article as: S. Hassani, et al., Model validation and error es
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original non-centered descriptor data table and response data table
respectively, 1 is a N×1 vector of 1s, xInput K × 1ð Þ and yInput J × 1ð Þ are
the vectors of mean values of the variables along the samples in X and
Y respectively.

2.2.1.2. Scaling. As part of the preprocessing, variables in X and Y are
scaled block-wise, to balance the sum of square contributions for
different blocks. Scaling is attained by dividing the mean-centered
data tables by their norms according to:

Xb =
Xb
Unscaledffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i=1
∑
Kb

k=1
Xb
Unscaled i; kð Þ

� �2

s

Y =
YUnscaledffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i=1
∑
J

j=1
YUnscaled i; jð Þð Þ2

s
ð2Þ

where Xb and Y are the mean-centered and scaled descriptor data
blocks and response data block respectively, Xb

Unscaled and YUnscaled are
the mean-centered and non-scaled descriptor data blocks and
response data block, calculated by Eq. (1), respectively. Xb

Unscaled i; kð Þ
is the (i,k)th entry of Xb

Unscaled and YUnscaled i; jð Þ is the (i, j)th entry of
YUnscaled. By i=1,…,N we denote samples, by k=1,…,Kb we denote
the variables of Xb and by j=1,…, J we denote the variables of Y.

The purpose of scaling is to set all of the blocks on the same
footing (i.e. the same total variance in every block) so that
the number of variables or the measurement unit of a certain
block will not have any influence on the MBPLSR model. However, it
should be noted that this scaling is flexible: in the sense that
different scaling factors could be introduced according to the user's
aim. For instance, one may wish to scale the blocks in such a way
that a particular block dictates its variation pattern to the overall
MBPLSR model or, contrariwise, the scaling can prevent a given
block to influence the overall model. For instance, a common
situation which motivates to drastically down-weight a block of
variables occurs when dealing with the design block. In order to
avoid that the design of the study influences the results of MBPLSR
model, one can down-weight the design block by scaling it with a
very small number (e.g. 0.000001). The advantage of down-
weighting the design block with such a small number and still
keeping it in the model calculations, is to investigate its relationships
with the other variables. Similarly, individual variables in any block
can be “down-weighted” by down-scaling them (Martens & Martens
in [8]), but this is not used herein.

2.2.2. Overall modeling
In order to explore the systematic variation patterns inXwhich are

likely to predict the systematic variation patterns in Y, MBPLSR is
applied. Descriptor data tables X and response data table Y are
modeled as sum of A latent variables plus residual matrices E and F
respectively. The MBPLSR model for mean-centered and scaled data is
as below

X = TAP
′
A + EA

Xb = TAP
b
A
′ + Eb

A

Y = TAQ′A + FA
Y = XBA + FA

ð3Þ

where X = X1 X2…Xb…XB
h i

is the matrix of concatenated mean-
centered and scaled descriptor data blocks (Xb) in Eq. (2),
TA = t1; t2;…; ta;…; tA½ � is the matrix of A super score vectors ta and
PA = p1;p2;…;pa;…;pA½ � is the corresponding matrix of A loading
vectors associated with X. The X loading matrix P can also be written
timation in multi-block partial least squares regression, Chemometr.
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as the matrix of concatenated block loading matrices Pb: P′ =
P1′ P2′…Pb′…PB′
h i

. Q = q1;q2;…;qa;…;qA½ � contains A loading vec-

tors of Y qað Þ, and BA is the K× J matrix of regression coefficients
derived from regressing Y upon the super scores TA.

2.2.3. Component estimation
Multi-block PLSR is an extension of PLSR with the possibility for

the researcher to add additional knowledge to the data by dividing
them into meaningful data blocks. This division of data into blocks is
likely to give more insight into the data, since variables can be
grouped according to the scientist's a priori knowledge about the
variables. This may enhance the interpretation of variation patterns
that several data blocks have in common. Several extensions and
variations of PLSR to more than one descriptor block have been
proposed so far [12] [13] [14] [15] [16]. For this study the MBPLSR
algorithm ofWangen and Kowalski (1988) [9] which can handle most
types of relationships between the blocks is used. The algorithm is
given below.

The following procedure is performed for each PLSR component
a=1,2,…:

A. Initialization
1.1 Choose an arbitrary starting Y score vector, u

B. Computation of X block scores and block loading weights

1.2 w̃b = Xb′u
u′u X block loading weights

1.3 tb = Xbw̃b w̃b′w̃b
� �−1

X Block scores

C. Computation of super scores and super weights, Y scores and Y
weights

1.4 T = t1 t2…tb…tB
h i

1.5 w̃s = T′u
u′u

X super weight (relative to the contribution of
each block)

1.6 t = Tw̃ s

�
w′˜ sw̃ s

�−1
X super scores

1.7 q = Y′t
t′t

Y loading weights

1.8 u = Yq
q′q Y scores

D. Replacing the Y score vector u by the updated vector of Y scores
in 1.8 and iterating until convergence of the algorithm (i.e. no
significant change in super scores t).

E. Computation of Regression Coefficients

1.9 pb
a = Xb ′t

t′t
X Block loadings

1.10 p′
a = p1

a
′ p2

a
′…pb

a
′…pB

a
′

h i
X ath Super Loadings

1.11 P = p1;p2;…;pa½ �
1.12 w̃ a = w̃1

a w̃
2
a…w̃b

a…w̃B
a

h i
1.13 wa = w̃a

‖w̃ a‖

1.14 W = w1;w2;…;wa½ �
1.15 V = W P′W

� �−1

1.16 Q = q1;q2;…;qa½ �
1.17 Ba = VQ ′ Regression coefficients

F. Deflation on super scores
1.18 Xa = X and Ya = Y
1.19 X = Xa−tp′a X deflation
1.20 Y = Ya−tq′ Y deflation

Alternatively, the same solution for super scores and weights may
be obtained by performing PLSR on X = X1 X2…XB

h i
and Y.

Thereafter, block loading weights, block scores and block loadings
may be computed according to their definition in the multi-block
algorithm given above.
Please cite this article as: S. Hassani, et al., Model validation and error es
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Deflating both X and Y on super score is one way of deflation in
MBPLSR. Other ways of deflation are available and can be applied
depending on the goal of the study [17]. Westerhuis and Smilde
proposed that instead of deflating X and Y, only Y should be deflated
using the super score [18]. The validation procedures proposed in this
paper will be illustrated using the algorithm proposed by Wangen and
Kowalski (1988). All validation procedures can be easily transferred to
other deflation types.

2.3. Error estimation and cross-validation

We propose two different strategies for validating MBPLSRmodels
and selecting the appropriate number of latent variables to be
included in the model: (1) Model stability and co-variation patterns
in the X-matrix are validated by computing the Root Mean Square
Error (RMSE) for the explanatory data set (X). (2) The prediction
ability of the main common variation pattern in X and main variation
patterns in the different blocks are validated by computing the Root
Mean Square Error (RMSE) for the response data set (Y). When the
RMSE is calculated for explanatory data (RMSEX) it highlights the
contribution of every data block in the MBPLSR model for each PLSR
component. The RMSEX calculation is described in Section 2.3.1.When
RMSE is calculated for response data (RMSEY), it highlights the
prediction ability of each explanatory data block for predicting
response data table Y. The RMSEY calculation is described in
Section 2.3.2.

RMSEX and RMSEY are calculated by cross-validation [19]:
Segments (indexed by m=1,…,M) are formed by leaving, in turn,
one or several samples out, resulting in left-out segments of
explanatory data (Xm) and response data (Ym), and leave-in segments
of explanatory data (X−m) and response data (Y−m). During each
round of cross-validation MBPLSRmodels are calculated for the leave-
in data (X−m and Y−m). These models are afterwards fitted to the left-
out samples in order to calculate RMSEX (or RMSEY) of the left-out
segments.

2.3.1. RMSEX : RMSE calculation for X
The predicted values for the left-out explanatory data (X̂m =h

X̂
1
m X̂

2
m…X̂

b
m…X̂

B
m

i
) are assessed by applying the block loading

weights for an A-dimensional model of the leave-in samples (W̃′−m;A =

W̃′−m;A
1

h
W̃′−m;A

2 …W̃′−m;A
b …W̃′−m;A

B
i
calculated according to step 1.2 of

the MBPLSR algorithm in Section 2.2.3) to the left-out data. The
difference between the true values of the left-out data (Xm) and their
predicted values (X̂m) is collected in the segment m of the residual
matrix E (Εm). This procedure is repeated for all of the segments of the
data and for every A=0,1,…,Amax which results in Amax residual
matrices (EA).

In Fig. 1 the different steps of the validation procedure are shown
and the calculations are coming in the following:

Prediction of X̂m requires the calculation of X block weights,
W̃′−m;A

b ; b = 1;…;B from the MBPLSR model of leave-in samples.
Leave-in data is mean-centered prior to MBPLSR calculation
according to

XC−m
= X�m�1⋅ x′�m

YC�m
= Y�m�1⋅ y′�m

ð4Þ

where XC−m and YC−m represent the mean-centered leave-in values of
explanatory and response data sets respectively. X−m = X1

−m X2
−m…

h
Xb
−m…XB

−m

i
and Y−m are leave-in samples before mean-centering.

x−m is a K×1 vector of themeans along the samples of X−m and y−m is
a J×1 vector of the means along the samples of Y−m.
timation in multi-block partial least squares regression, Chemometr.
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Eq. (5) shows the MBPLSR model of XC−m and YC−m :

XC−m
= T−m;AP′−m;A + E−m;A

Xb
C−m

= T−m;AP
b
−m;A

′ + Eb
−m;A

YC−m
= T−m;AQ ′−m;A + F−m;A

ð5Þ

where XC−m = X1
C−m

X2
C−m

…Xb
C−m

…XB
C−m

h i
; T−m;A, P′

−m;A =
h
P1
−m;A

′

P2
−m;A

′…Pb
−m;A

′…PB
−m;A

′
i

and Q′−m;A contain X-scores, X-loadings
and Y-weights (having A PLSR components in the model) of the
leave-in samples respectively. E−m;A = E1

−m;A E2
−m;A…Eb

−m;A…EB
−m;A

h i
and F−m;A are segments m of the residual matrices EA and FA
respectively.

The predicted values for the left-out segment of X are calculated in
the following way. At first the left-out data is centered using the
means of the leave-in samples according to Eq. (6):

XCm
= Xm−1·x′−m

YCm
= Ym−1·y′−m

ð6Þ

The projection scores for the left-out samples are then predicted
by applying the loading weights of X (W̃′

−m;A = ½W̃′
−m;A
1 W̃′

−m;A
2 …

W̃′
−m;A
b

…W̃′
−m;A
B �), which are estimated from the leave-in samples, on

the mean-centered left-out data (XCm):

D̂m;A = XCm
W̃−m;A W̃′−m;AW̃−m;A

� �−1 ð7Þ
Please cite this article as: S. Hassani, et al., Model validation and error es
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Projecting the left-out samples on all the A loading weights in
W̃−m;A simultaneously, by a sequence of individual loading weights,
followed by deflation, results in simple projection scores D̂m;A in the
sample space of the left-out data XCm . These are equivalent to how the
scores are calculated and presented in Martens' PLSR algorithm [20].
Finally, estimation for the left-out data (X̂m;A) is calculated from the
projection scores and loading weights according to Eq. (8):

X̂m;A = D̂m;AW̃′
−m;A ð8Þ

where D̂m;A = d̂m;1; d̂m;2;…; d̂m;a;…; d̂m;A

h i
contains A projection score

vectors for the left-out samples and W̃′−m;A = ½ W̃′−m;A
1 W̃′−m;A

2
…

W̃′−m;A
b

…W̃′−m;A
B � is the matrix of concatenated block loading weights

of the leave-in samples.
Residual matrices for the left-out samples of the explanatory data

(Εm) are calculated as

Em;0 = XCm

Em;A = XCm
−X̂m;A

ð9Þ

where XCm is the mean-centered segment m of the explanatory data
which was calculated by Eq. (6), X̂m;A is the prediction for that
segment based on A latent variables, Em;0 = E1

m;0 E2
m;0…Eb

m;0…EB
m;0

h i
is

the initial residual matrix for segment m and Em;A = E1
m;A E2

m;A…
h

Eb
m;A…EB

m;A� is the corresponding residual matrix for segment m.
The predictions for the left-out samples (X̂m;A) were estimated for

various values of A=0,1,…,Amax (Amax was chosen sufficiently large)
resulting in Amax different residual matrices for each segment (i.e.
timation in multi-block partial least squares regression, Chemometr.
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Em;1;Em;2;…;Em;A;…;Em;A max). These matrices Em;A were concatenated
vertically for m=1,…,M resulting in a residual matrix EA =

h
E1
A E2

A…

Eb
A…EB

A

i
for every value of A. The residual matrices Em;0 were

concatenated in the same way yielding the initial residual matrix
E0 = E1

0 E
2
0…Eb

0…EB
0

h i
.

The reason why we project on loading weights in Eq. (7) and not on
loadings is because loading weights have – as can be seen from the
NIPALS algorithm for multi-block PLSR in Section 2.2.3 – a direct relation
to the block scores which are used for visualization in block score plots.
While the block score plots visualize the sample variation pattern in each
block which is related to the variable variation pattern in the block
loading weights, the blockmodel residuals represent the cross-validated
residuals using the same loading weights as model parameters.

2.3.1.1. Global errors for X. Global errors calculation is performed as in
[2]. This is briefly recalled in the following.

Cross-validated sum of squares for X was calculated from the
residual matrices according to

SScvX
g
0 = ∑

N

i=1
∑
K

j=1
e0 i; jð Þ2

SScvX
g
A = ∑

N

i=1
∑
K

j=1
eA i; jð Þ2

ð10Þ

where e0(i, j) and eA(i, j) are the (i, j)-th entry of residual matrices E0

and EA respectively.
Thereafter, mean square errors were calculated by correcting the

sum of squares for their approximate degrees of freedom according to

MSEX
g
0 =

SScvX
g
0

NK

MSEX
g
A =

SScvX
g
A

N K−Að Þ

ð11Þ

Eq. (11) relies on the assumptions of independent sampling of the
N objects and independent measurement errors for all K variables.
Since these assumptions are not satisfied in practice, MSEX values can
be regarded as approximations.

In order to display RMSEX plots that are used for estimating the
optimal model rank, the mean square errors corresponding to the
global model were augmented by 3% of the initial mean square error
MSEX0

g for each latent variable added to the model [20]:

MSEX
g
A + A × 0:03 × MSEX

g
0→MSEX

g
A ð12Þ

This 3% rule is a rule of thumb strategy to estimate the number of
latent variables in the model and is shown to be statistically stable.
The resulting RMSE plots, give conservative estimations for the
optimal rank of the model.

Finally, cross-validated RMSEX was determined according to
Eq. (13):

RMSEX
g
A =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEX

g
A

q
ð13Þ

2.3.1.2. Block errors for X. Calculating block errors for X is done in a
similar way as it was done globally. It just varies in the sense that
every calculation is performed block-wise and repeated for all of the
blocks. Cross-validated sum of squares for every block of X is
calculated according to:

SScvX
b
0 = ∑

N

i=1
∑
Kb

j=1
eb0 i; jð Þ2

SScvX
b
A = ∑

N

i=1
∑
Kb

j=1
ebA i; jð Þ2

ð14Þ
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where e0
b(i, j) and eA

b(i, j) are the (i,j)-th entry of block b of the residual
matrices Eb

0 and Eb
A respectively.

Mean square errors of X for each block b are then calculated from
correcting the sum of squares of each block by the approximate
degrees of freedom consumed by that block:

MSEX
b
0 =

SScvX
b
0

NKb

MSEX
b
A =

SScvX
b
A

N Kb−hbA
� �

ð15Þ

where hA
b is the partial block leverage intending to represent the

contribution of block b in consuming A degrees of freedom
for predicting A global scores ta. hA

b is calculated according to
Eq. (16):

w̃′
a = w̃′

a
1 w̃′

a
2…w̃′

a
b…w̃′

a
B

� �

wa =
w̃a

‖w̃a‖

hbA = ∑
A

a=1
∑
b2

k=b1
wa kð Þ2

ð16Þ

where w̃ 0b
a are block loading weights which were calculated in step

1.2 of the MBPLSR algorithm given in Section 2.2.3, wa(k) is the
(k)-th entry of the normalized loading weight matrix wa. b1 and b2
are the numbers of the first and the last variables in block b
respectively in the concatenated set of explanatory variables.

For the rank selection as in the global error, 3% of the initial
variance in each block is added to the mean square error of that block
for each new latent variable:

MSEX
b
A + A × 0:03 × MSEX

b
0→MSEX

b
A: ð17Þ

The cross-validated RMSEX corresponding to each block is then
calculated as:

RMSEX
b
A =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEX

b
A:

q
ð18Þ

Plotting approximate global and block RMSEXs against the number
of latent variables, visualizes the contribution of each block to the
MBPLSR model. The block patterns can also be compared to the global
pattern. In addition, one can decide the number of relevant PLSR
components to be retained in the MBPLSR model (Aopt), in the whole
data set and also in each block individually. Fig. 1 shows the flow chart
of the approximate RMSEX calculations.

2.3.2. RMSEY: RMSE calculation for Y
Response values of the left-out samples Ŷm can be predicted by

applying the prediction model for the leave-in samples on the left-out
samples. The difference between the true response value for the left-
out data (Ym) and the predicted value (Ŷm) is stored in the
appropriate segment of the residual matrix (Fm). This procedure is
repeated for all of the cross-validation segments and for every
A=0,1,…,Amax resulting in Amax residual matrices (FA). Fig. 2
visualizes the procedure. The detailed calculations are explained in
the following.

Predicting response values for the left-out segment (Ŷm) requires
using the regression coefficients of the model built on the leave-in
samples. MBPLSR model for the mean-centered leave-in data (XC−m
timation in multi-block partial least squares regression, Chemometr.
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and YC−m) was given in Eq. (5). Regression coefficients calculated from
that MBPLSR model satisfy Eq. (19):

YC−m
= XC−m

B−m;A + F−m;A ð19Þ

where XC−m = X1
C−m

X2
C−m

…Xb
C−m

…XB
C−m

h i
and YC−m are leave-in data

which are mean-centered according to Eq. (4), B−m;A is a K× J matrix
which contains regression coefficients for the MBPLSR model of the
leave-in data based on A latent variables.

Predicting the response values for the left-out data is done in the
following way: First left-out explanatory data are centered using the
mean estimated from the leave-in samples (Eq. (6)). After this we
obtained amean centered left-out segmentXCm . In order to estimate the
response values for the left-out samples (Ŷm), regression coefficients of
the MBPLSR model of leave-in data (B−m;A) are applied to the mean-
centered explanatory left-out data (XCm) according to Eq. (20):

Ŷm = XCm
B−m;A: ð20Þ

Segment m of residual matrix of the response data (Fm;A) is
calculated according to

Ŷm;A = XCm
B−m;A

Fm;0 = YCm

Fm;A = YCm
−Ŷm;A

ð21Þ
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where Ŷm;A is the predicted response values for the left-out samples
based on A MBPLSR components, B−m;A contains regression co-
efficients for the MBPLSR model of leave-in data having A latent
variables in themodel,XCm and YCm are segmentsm of the explanatory
and response data tables respectively calculated in Eq. (6), Fm;0 is the
initial residual matrix for segment m and Fm;A is the corresponding
residual matrix for segment m using A latent variables.

Predicting response values for the left-out samples (Ŷm;A) was
performed for various values of A=0,1,…,Amax (Amax was chosen
sufficiently large) resulting in Amax different residual matrices for
each segment i.e. Fm;1; Fm;2;…; Fm;A;…; Fm;A max . In order to have one
residual matrix for the response data for each value of A, Fm;A s were
concatenated vertically for m=1,…,M resulting in a residual ma-
trix FA for every value of A. The residual matrices Fm;0 were
concatenated in the same way in order to acquire the initial residual
matrix F0.

Estimating the errors by cross-validation in the way that is
described above was explained within PLSR's framework [20]. Our
aim herein is to extend the procedure to the multi-block setting and
propose graphical tools to enhance their interpretation. Investigating
the contribution of each block to the prediction of Y can be done in two
ways: Either to establish a PLSR model for each block separately or to
use the block parameters of MBPLSRmodel. As our aim herein is not to
test different PLSR models based on separate block analyses, we will
consider the block parameters derived from the MBPLSR model.
Section 2.3.2.1 describes the common method for calculating the
cross-validation errors. Sections 2.3.2.2 and 2.3.2.3 describe our
proposed method.
timation in multi-block partial least squares regression, Chemometr.
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2.3.2.1. Global errors for Y (Common method). Calculating the Root
Mean Square Error of Y in a multi-block setting is the same as is
usually done in PLSR. It is briefly recalled in the following:

Cross-validated sum of squares for Y is calculated from the residual
matrices according to Eq. (22)

SScvY0
g = ∑

N

i=1
∑
J

j=1
f0 i; jð Þ2

SScvY
g
A = ∑

N

i=1
∑
J

j=1
fA i; jð Þ2

ð22Þ

where f0(i, j) and fA(i, j) are the (i,j)-th entry of the residual matrices F0
and FA respectively. Calculations of F0 and FA were described in
Section 2.3.2.

Mean square error of Y is then calculated from correcting the sum
of squares by the approximate degrees of freedom being consumed:

MSEY0
g =

SScvY0
g

NJ

MSEYA
g =

SScvYA
g

NJ
:

ð23Þ

MSEY values are regarded as approximations for the same reasons
as advocated for Eq. (11).

As it is done in the previous sections of this study, mean square
errors are augmented by 3% of the initial variance for each new latent
variable introduced in the model:

MSEYA
g + A × 0:03 × MSEY0

g →MSEYA
g
: ð24Þ

Finally, the cross-validated global RMSEY is determined as:

RMSEYA
g =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEYA

g
q

: ð25Þ

2.3.2.2. Global errors for Y (Proposed method). For the estimation of
global error, we suggest to predict Y from global scores
TA = t1; t2;…;

	
ta;…; tA� for A=1,…,Amax components. The calcula-

tions of residual matrices FgA and Fg0 for every different value of A are
the same as described in Section 2.3.2 while every X is replaced by TA.
Root mean square error calculations are done in the same way as
was described in Section 2.3.2.1. The flow chart of the approximate
RMSEYA

g calculation for this method is given in Fig. 2.

2.3.2.3. Block errors for Y (Proposed method). For the estimation of
block errors, we suggest to predict Y from block scores Tb

A =
h
tb1; t

b
2;…;

tba;…; tbA
i
for A=1,…,Amax components. The calculations of residual

matrices FbA and Fb0 for each block b and every different value of A are
the same as described in Section 2.3.2 while every X is replaced by Tb

A
and the procedure is repeated for b=1,…,B and A=0,1,…,Amax.

The cross-validated sum of squares of the residual matrices for
every block b=1,…,B and for all model ranks A=0,1,…,Amax is then
calculated according to Eq. (26)

SScvY0
b = ∑

N

i=1
∑
J

j=1
f b0 i; jð Þ2

SScvYA
b = ∑

N

i=1
∑
J

j=1
f bA i; jð Þ2

ð26Þ

where f0
b(i, j) and fA

b(i, j) are the (i, j)-th entries of residual block
matrices Fb0 and FbA; F

b
A is the residual matrix for block b associated

with an MBPLSRmodel of Tb
A and Y, with A latent variables introduced

in the model.
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Cross-validated mean square errors of estimating Ŷ from block
scores are then calculated according to:

MSEY0
b =

SScvY0
b

NJ

MSEYA
b =

SScvYA
b

NJ
:

ð27Þ

Following the same procedure in this paper mean square errors
associated with each block are augmented by 3% of the initial variance
for each new latent variable introduced in the model:

MSEYA
b + A × 0:03 × MSEY0

b →MSEYA
b
: ð28Þ

Finally the cross-validated RMSE of estimating Ŷ from block scores
is determined by calculating the square root of MSEYA

b for every block
and for all various values of A:

RMSEYA
b =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEYA

b
q

: ð29Þ

By examining the plot where the approximate global and block
RMSEYs are plotted against the number of PLSR components one can
investigate the predictability of every block i.e. how much each block
is contributing to the prediction of Y. It is worth mentioning that if the
design matrix is used as Y then it will not be meaningful to calculate
RMSEY as it is described in this section for the whole Y matrix. In that
case, we suggest that cross-validated sum of squares SScvY

b, mean
square errors MSEY

b and therefore root mean square errors RMSEY
b are

calculated for every Y-variable separately.

3. Multi-block data set

The multi-block data set which is used as the explanatory data in
this study consists of four data blocks with different number of
variables in each block; all of the variables are measured on the
same 88 microbiological samples. The original multi-block data set
is described in detail in the references [1,21]. Fig. 3 illustrates the
multi-block data set. The multi-block explanatory data set contains
Fourier Transform Infrared (FTIR) spectra and Amplified Fragment
Length Polymorphism (AFLP) data (genetic fingerprinting) of 88
L. monocytogenes strains. FTIR spectroscopy is a rapid technique for
metabolic fingerprinting of microorganisms [22]. As it can be seen
in Fig. 3 the FTIR data are divided into three blocks of different
spectral regions: polysaccharide region and fingerprint region (1200–
720 cm−1) define block X1 (498 variables), the protein region (1700–
1500 cm−1) defines block X2 (209 variables) and the fatty acid region
(3000–2800 cm−1) defines block X3 (208 variables). Block X4 (1701
variables) contains AFLP data. It should be noted that the spectral data
is pre-processed by EMSC [23,24] prior to data analysis. Analysis of the
original data set was done in the reference [1] and further information
about the background behind the L. monocytogenes strain to strain
variation in general and especially the variation in susceptibility to
bacteriocins was obtained. Different ways of grouping the 88 strains
phenotypically were studied: (1) According to susceptibility to
Sakacin P, since the strains form two distinct sensitivity groups. Half
of the strains lie below and half lie above a sensitivity threshold.
(2) According to serotype. (3) According to the polysaccharide-
fingerprint region in FTIR: The polysaccharide-fingerprint region of
FTIR shows three distinct groups which we named FTIR groups [1,21].
The three polysaccharide-fingerprint groups can be obtained by
running a principal component analysis (PCA) on the polysaccharide-
fingerprint region (1200–720 cm−1) and considering the first two
components. In this study we use FTIR groups for graphical illustration.
timation in multi-block partial least squares regression, Chemometr.
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4. Results and discussion

4.1. MBPLSR of a multi-block data set

In order to find the common variation pattern in the explanatory
multi-block data set which can predict the Sakacin P sensitivity of the
strains in the study, MBPLSR was performed. For the MBPLSR
algorithm we used super score deflation of X and Y. We have also
tested the MBPLSR algorithm were only Y is deflated. The algorithms
lead to different block scores and consequently the obtained RMSE
plots are expected to be different. The obtained validation results
were slightly different (results not shown). Since a comparison of
both algorithms is beyond the scope of this paper we only present the
results from the MBPLSR algorithm were both X and Y are deflated.
Multi-block data set described in Section 3 was used as explanatory
data (X) and Sakacin P sensitivity was used as the response variable
(Y). The structure of the data set is described above and illustrated in
Fig. 3. Fig. 4 shows the score plots (blocks and global plots) for the first
and second latent variables. Samples are labeled “1”(red), “2”(blue) or
“3” (green) according to different FTIR groups that they belong to.
Different FTIR groups can be detected easily in the global pattern in
Fig. 4e. Unvalidated explained variances for every explanatory block
and for the global pattern are shown by the respective axes. The first
two PLSR components cover 43% of the total variation in explanatory
data set and 57% of the total variation in the response data. It is seen in
the global pattern that the first latent variable separates group 3 from
groups 1 and 2 while the second latent variable is responsible for
separation of groups 1 and 2 from each other. Blocks one, three and
four show tendencies toward the same grouping pattern in the global
score plot while the second block has a different pattern. Although the
grouping pattern seen in blocks one, three and four are different from
each other, similar patterns can still be identified. An important
question arises here: are there similar co-variation patterns in these
three blocks or are there few dominant blocks which are imposing
their patterns to the other blocks. The (unvalidated) explained
Please cite this article as: S. Hassani, et al., Model validation and error es
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variance of block 1, already gives an indication that block 1 is
dominant. Nevertheless, all the other blocks show a relatively large
explained variance. The second block has the second largest explained
variance among the others while its sample pattern does not follow
the pattern of the samples in the other blocks. The score plots (blocks
and global plots) for the third and fourth latent variables are shown in
Fig. 5. The third and the forth components do not explain a large
variation in the data as they cover only 18% of the variation in the
explanatory data set and 10% of that of the response data.

4.2. Root mean square error of X (RMSEX): a cross-validation approach

In order to validate variation patterns that have been visually
detected from the outcomes of MBPLSR, we propose to study global
RMSEX and block RMSEXs, calculated by Eq. (13) and (18) respec-
tively. Since scientist's mind is always looking for grouping patterns
when inspecting the score plots, he or she can be misled by visual
perception. The use of colors in the score plots is likely to help in
identifying the underlying patterns and clusters while increasing the
risk of false discovery. When we have different blocks of variables
containing different types of data and we want these blocks to predict
common response data, one way to meet our goal is to implement
MBPLSR and study the global score and block score displays.
Inspecting the score plots necessitates the user to be provided with
a tool to validate the contribution of each block in the global pattern.
RMSEX plots give a validated image of block score plots which reveals
the contribution of every block to the pattern that is seen in the global
score plots. RMSEX plots for four blocks together with the global
RMSEX are shown in Fig. 6. It is observed from the plots that blocks 1
and 2 have the most important contribution to the first and second
latent variables; this was indicated by the unvalidated explained
variances for these blocks. The remarkable result here is the
significant contribution of block 2 to the global pattern although the
block score plot (Fig. 4b) does not show a pattern similar to the global
one.
timation in multi-block partial least squares regression, Chemometr.
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RMSEX plots can also be used for determining the number of
relevant latent variables in the model. As it is seen in Fig. 6 the global
RMSEX reaches a local minimum having six latent variables in the
model. Studying the RMSEX plots for every block gives an indication
for the number of important latent variables in that block.
Please cite this article as: S. Hassani, et al., Model validation and error es
Intell. Lab. Syst. (2011), doi:10.1016/j.chemolab.2011.06.001
From the RMSEX plot, it is seen that the fourth block is different
from the other blocks, as it shares only the first and the sixth PLSR
component with the other blocks and it does not fit the common
pattern in the data set. This important finding would not have been
discovered by only looking at the patterns of the score plots (Fig. 4).
timation in multi-block partial least squares regression, Chemometr.

image of Fig.�4
http://dx.doi.org/10.1016/j.chemolab.2011.06.001
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Looking at the score plots before validating the patterns could have
given the wrong impression that block 2 has a very different pattern
from the global pattern in the data.
Please cite this article as: S. Hassani, et al., Model validation and error es
Intell. Lab. Syst. (2011), doi:10.1016/j.chemolab.2011.06.001
It worth mentioning that the rank of the data blocks can be
visualized by the RMSEX plots. Low rank data block will not pose any
problem to the modeling and visualization. E.g. the very low rank of
timation in multi-block partial least squares regression, Chemometr.

image of Fig.�5
http://dx.doi.org/10.1016/j.chemolab.2011.06.001
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one or several of the blockswill be seen in the RMSEX plot as: (1) If the
variation of a low-rank block is captured by the global model, the
RMSEX of this block will go to zero after few components. (2) If the
low-rank block contains a variation pattern that does not exist in
other blocks and the other blocks have a high rank with a strong co-
variation pattern, RMSEX of this block will not go to zero before the
common variation pattern of the other blocks is modeled.

4.3. Root mean square error of Y (RMSEY): a cross-validation approach

In order to validate the ability of the MBPLSR model for predicting
the response variable we propose to study global RMSEY and block
RMSEYs, calculated by Eq. (25) and (29) respectively. The block RMSEY
plots give a validated image of the contribution of every block to the
prediction of response data in the MBPLSR model. Global and block
RMSEY plots are shown in Fig. 7. It is observed that Sakacin P sensitivity
is well predicted by the MBPLSR model from our set of explanatory
variables, specifically after the first PLSR component. We can also
observe that all of the blocks are able to predict the Sakacin P sensitivity
on the basis of the first two latent variables. It is worthmentioning that
the contribution of blocks 1 and 4 to the prediction (in the first two
components) is more significant in comparison to blocks 2 and 3.

4.4. Choosing the number of latent variables in the model: a comparison
of different approaches

After introducing two different approaches for validating the
MBPLSR model, we still have not answered a fundamental question:
How many latent variables should be included in an MBPLSR model?
The first and foremost thing that should be kept inmindwhile looking
for the sufficient number of components is the purpose of the analysis.
The aim of the data analysis is an important aspect which gives
different weights to the latent variables i.e. every latent variable can
be more or less important depending on the point of view, which is
the aim of the study. In this study, we have proposed two different
types of RMSE plots for the same MBPLSR model. Comparing Fig. 6
and 7 reveals a significant difference between the two validation plots
which raises the question as to which one of them should be used for
choosing the appropriate number of latent variables.

We can look at our MBPLSR model from two different points of
view: (1) Do we want our model to be stable and not to change
significantly after having a certain number of latent variables? or (2)
Do we emphasize the ability of our model for predicting the Sakacin P
sensitivity and we would like to use our model for future predictions?
Please cite this article as: S. Hassani, et al., Model validation and error es
Intell. Lab. Syst. (2011), doi:10.1016/j.chemolab.2011.06.001
Fig. 6 gives the answer to the first question. If one is looking for a
stable model with trustworthy grouping patterns, he or she should
keep six latent variables in the model. Especially if one is interested in
studying the patterns in the different blocks, interesting information
is still available in the third to sixth components (e.g. the third and
forth latent variables of block 3 are very informative, the fifth and
sixth latent variables of block 1 also contain important information).
Alternatively, if one is not interested in revealing the different
patterns of different blocks and if setting up a stable model is not the
main goal, but the main purpose is to set up a global model with good
prediction ability, then Fig. 7 is a very relevant tool. Indeed, this figure
suggests selecting less than four components and, moreover, the
global RMSE does not significantly change from the second to the
fourth latent variables. Therefore an MBPLSR model containing only
two latent variables could be a good choice for the prediction
purposes. However if one would like to have the most precise model,
he or she should use the number of PLSR components where global
plot reaches its minimum and that would be seven (or even eight)
components in the model which is relatively the same number
suggested by Fig. 6. It is concluded that having seven MBPLSR
timation in multi-block partial least squares regression, Chemometr.

image of Fig.�7
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12 S. Hassani et al. / Chemometrics and Intelligent Laboratory Systems xxx (2011) xxx–xxx
components in the model results in a stable model with a great ability
for predicting sensitivity to Sakacin P.

5. Conclusion

Multi-block techniques such as MBPLSR provide the user with
powerful visualization tools that aim at a better understanding of the
data. Sample- and variable- variation patterns are detected between
and within the data blocks. However the patterns that are identified
visually should not be taken for granted and should be validated for
interpretation purposes. Indeed, the identification of patterns by
visual inspection can be misleading. In order to avoid misinterpreting
the identified block and global patterns, we have proposed different
validation techniques. These techniques alsomake it possible to assess
the stability of the model. Moreover, the user has the possibility to
assess the prediction ability of the model. We have also tackled
another important aspect in explorative data analysis methods such
as MBPLSR which is the selection of appropriate number of latent
variables to be introduced in the model.
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Abstract 
The concept of Degree of Freedom (DF) is an important issue in statistical model assessment and 

parameter estimation. In this paper, we investigate this concept within the context of data 

modeling by Principal Component Analysis (PCA) and its multi-block extension, the Consensus 

Principal Component Analysis (CPCA). We run simulation studies and assess the degrees of 

freedom by comparing cross-validated error estimates with error estimates from uncorrected 

model fits. These simulation studies reveal that the DF consumption in PCA and CPCA depends 

on the eigenvalue structure of the data at hand. We also show that the obtained DF estimates can 

be used to obtain realistic error estimations without performing cross-validation. Furthermore, it 

is shown how different strategies of cross-validation and the use of an independent test set affect 

the estimate of the degrees of freedom and the estimate of the model error. 
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1. Introduction 
1.1 The concept of DF  
The term “Degree of Freedom” (DF) is widely used in mechanics, physics, chemistry, statistics and 

chemometrics, and refers to different, but related concepts. The concepts range from “independent 

displacements and/or rotations that specify the orientation of the body or system” in mechanics 

[1] to the “number of values in the final calculation of a statistic that are free to vary” in statistics 

[2] [3]. In parameter estimation, e.g. estimating the mean or variance for a given response 

variable, the DFs consumed is determined by the number of parameters that are estimated 

independently, so the available DFs after the estimation equals the number of independent 

observations (‘samples’) minus the number of independent parameters. The DF quantification 

plays an important role in classical statistics and is reported together with the results, e.g. when 

parameters are estimated in statistical hypothesis tests as in the F-test, Student’s t-test and in 

linear modeling. It is important to apply a correct estimate of the consumed DFs, otherwise the 

assessment (confidence limits, p-values etc) will be over-optimistic or too pessimistic. In 

multivariate data modeling the DF concept is equally important but slightly more complicated; 

both samples (rows) and variables (columns) contribute to DFs, and since both relations between 

samples and variables are modeled, the DF availability also has to take patterns of variable co-

variation into account. By “the number of DFs consumed during modeling” in this paper we mean 

the number of pieces of independent, useful information in the data set that are used for the 

modeling process. 

DF is important in PCA in order to assess the level of random noise in the data set at hand, in 

order to optimize the number of PCs to trust as valid information. The more PCs are included in 

the PCA model, the more DFs are consumed and the smaller the apparent lack-of-fit residuals 

between the data and the fitted model is, irrespective whether the PCs pick up valid signal or 

random noise. Therefore, a model assessment based on naively averaging the squared lack-of-fit 

residuals will lead to over-optimism with respect to the model rank i.e. how many interesting 

phenomena can be validly estimated from the data, as well as to the model’s predictive ability, 

which for PCA means the expected fit of future data vectors to the bilinear model. To guard 

against such over-fitting, model assessment can be done by cross-validation/jack-knifing or with 

the use of an independent test set of samples. However, the former can be time-consuming since 

the model has to be recalculated repeatedly, and the latter can be expensive because a large, 
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representative test set is required, otherwise the results will be unreliable or irrelevant. The 

purpose of the present paper is to study the role of DF consumption in PCA and to assess the 

potential for a simple and realistic estimate of DF consumption in such models. 

 

1.2 DF estimation in PCA 

Traditionally, for models based on estimated latent variables (“components” or “factors”), such 

as Principal Component Analysis (PCA) or Partial Least Squares Regression (PLSR), it has not 

been clear how many DFs are consumed by the individual components. Faber [4] studied DFs for 

the residuals of a PCA model. The method that he used for calculating DFs was based on 

standard statistical formula for DF calculation consisting of two steps: a) Identifying the 

projection matrix. b) Determining the trace of the projection matrix which gives the DF for the 

residuals of the model. However, while this formula accounts for the number of independent 

parameters estimated, it does not take into account the DFs consumption caused by the PCA 

search for maximal covariance.  

Assessing the bi-linear data approximation model from PCA can be compared to the 

corresponding assessment of bi-linear regressions by PLSR. In both cases variance estimation, 

rank optimization and prediction assessment would be simplified if a simple estimate of the 

number of DFs consumed existed. Van Der Voet in 1999 estimated DFs consumed from Y in 

predictive models ( ( )f=Y X ) by introducing pseudo-DF (PDF). He calculated and applied PDFs 

for a Multiple Linear Regression (MLR) model as well as for a PLSR model on a real data set 

[5]. His method consists of comparing error variances obtained by direct model fitting and by 

cross-validation. 

In 2007 Krämer and Braun calculated DF in Y for kernel PLS. They implemented methods based 

on either DF or cross-validation for addressing important issues such as model selection [6]. 

Kengo Kato [7] studied DF consumption in estimating regression coefficients. He calculated an 

unbiased estimation for DFs related to those methods. Recently, Krämer and Sugiyama [8] 

calculated DFs in Y for PLSR. They derived an unbiased estimator for DF and applied it for 

choosing the number of relevant PLSR components. In the PLSR literature there has been little 

focus on estimating DF consumption in X. 

The procedure of modeling a data set by means of PCA or CPCA consumes DFs in two respects: 1) 

The search process that leads to the identification of the Principal Component (PC) directions in the 
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X-space – this may be seen as a kind of variable selection. 2) The estimation of the parameters 

(loadings and scores) for the chosen directions – this may be seen as a traditional OLS regressions on 

orthogonal regressors in both loading and score directions, but with an increasing number of 

orthogonality constraints for each PC. Since CPCA is a multi-block extension of PCA, the latter will 

be assessed by a block-wise redistribution of the DFs consumed by each PCA PC.  

The assessment of the correct number of consumed DFs is of particular importance when dealing 

with issues such as calculating Mean Squared Error (MSE) after 0,1,2,… PCs. Tentative formulas 

have previously been proposed by us [9] [10]. In this work, we set up simulation studies in order to 

corroborate the validity of those tentative formulas. The work has two aspects: a) Studying how DFs 

are consumed as PCA and CPCA models are developed from data with different structures, based on 

comparing fitted and cross-validated error estimates. b) Deriving a metamodel that can replace cross-

validation in the sense that it gives a realistic prediction of DF consumption in new data sets from the 

characterization of individual data sets. If successful, this would allow a fast and cheap determination 

of predictive MSE and optimal model rank. For PCA and CPCA modeling we expect that the 

eigenvalue structure of the data at hand affects the search process for these models. Therefore we take 

this into account when estimating the DF consumption in a wide range of data types: In our 

simulation study, thousands of data sets are generated with differing singular value structures in 

order to cover as a large range of data qualities as possible.  

Our proposed method for determining the number of DF requires validating the models – i.e. 

estimating the residual variances by external means that do not over-fit. This can be performed 

either through running cross-validation or using an independent test set. We will apply both 

approaches and compare the validated errors and the DF consumption by CV with that for an 

independent test set. Since the number of CV segments may affect the results, we will also run 

the same study using different CV segments in order to find an optimal number of CV segments 

to be used.     

The paper is organized in the following way: The theory of the paper (i.e. notations, data 

simulation procedures, preprocessing of data, data modeling and DF estimations) are given in 

Section 2. The results of the paper are given in Section 3: the correctness of the intuitive MSE 

formulas that we used in our previous study is checked in Section 3.2 and 3.3. DFs associated 

with PCA calculated for 500 simulated data sets are shown in Section 3.4. Section 3.5 contains 

the results for DF calculations in CPCA. The number of cross-validation segments to be used for 
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calculations are studied in Section 3.6. Application of DF calculations for real data sets is shown 

in Section 3.7. We finish the paper by a conclusion in Section 4.   

 

2. Theory 
2.1 Notation  

We follow the notations commonly used in chemometrics, e.g. Martens & Martens in [11]: 

Matrices and vectors are written as bold-face, matrices as upper-case letters and vectors as lower-

case letters. The indices 1, 2,...,i N=  and 1,2,...,k K=  denote samples (rows) and variables 

(columns) in a data table X, respectively. We denote blocks of variables by 1,2,...,b B= , by 

1,2,...,m M=  cross-validation segments of samples and by 1,2,...,a A=  the number of PCA 

components. By 1 2, ,..., ,..., b B =  X X X X X  we denote the multi-block data set consisting of B 

blocks, each of them containing bK  variables. Data pertaining to the same measurement 

technique, e.g. spectroscopy, chromatography and gene fragment analysis profiling are typically 

collected in the same descriptor block bX . In omics experiments different measurement 

techniques are applied to the same samples and, for the multi-block analysis, data need to be 

ordered in a way that a sample-to-sample (row-to-row) correspondence between the blocks is 

achieved. Only measurements originating from the same biological replicate can be related to 

each other by a row-to-row correspondence. If, for example, for different methods several and 

different biological replicates are used, only means of biological replicates can be related to each 

others. The total number of samples in each data set is represented by N, the total number of 

variables in a given descriptor block b by bK  and the total number of variables in the whole data 

set (X) by K (
1

B

b
b

K K
=

=∑ ). 

 

2.2 Data simulation 

2.2.1 Single-block data set 

A data set with known characteristics is generated for the purpose of estimating the degrees of 

freedom consumed during the calculations of the model parameters by PCA. An important aspect 

in simulating the data is to make sure that we can control different features of the data sets that 

are generated. In particular, we want to control the latent structure of the simulated data sets by 
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monitoring the eigenvalue structure of their covariance matrices. Simulating data sets with 

specified structures was performed according to the algorithm given by Arteaga and Ferrer in 

[12] with a slight simplification. Data was simulated as follows: First a random normally 

distributed data set was generated with the desired size:  
1
Input 1( , )randn N K=G  (1) 

where 1( , )randn N K  is a random normally distributed matrix of size 1N K× ; N  is the number of 

samples and 1K  is the number of variables.  

The matrix 1
InputG  was mean-centered according to: 

1 1 1
Input Input

′⋅G = G -1 g  (2) 

where 1G  is the mean-centered random data set, 1  is an 1N ×  vector of 1s and 1
Input

′g  is a 11 K×  

vector of the mean values of 1K  variables in 1G  calculated along the N samples. Then the 

Singular Value Decomposition (SVD) of mean-centered 1G  was calculated as: 

1 1 1 1′=G U S V  (3) 

where 1U  and 1V  are unitary matrices of sizes N N×  and 1 1K K×  respectively and 1S  is a 

diagonal matrix of the size 1N K×  containing the singular values of 1G  i.e. square root of the 

eigenvalues of the covariance matrix 1 1′G G .   

The desired singular value structure was produced in the following way:  We generated a vector 

of eigenvalues between 0 and 1, in descending order as: 
1 1 1

1 1
1

1 1 1

1 2 1, ,..., ,0
m m m

A A
A A A

      − − =             
λ  (4) 

where 1A  is the number of PCs in the simulated data block which is chosen herein as the 

minimum of N  and 1K ; 1m  is a tuning parameter which controls the eigenvalue structure. 

Simulated singular values are computed as the square root of the generated eigenvalues:   



1
Sim 1

1

1

1

1

1

1

1
Sim

( )

1     0             0   . . . . .        0          0

2     0          0   . . . . .         0         0

     .     .      .     .     .     .     .     .  

m

m

diag

A
A

A
A

=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

⎛ ⎞−
⎜ ⎟
⎝ ⎠

=

S λ

S
1

1

  .     .     .    .

1     0                0               0 . . . . .     0

     0  .      .     .     .     .     .     .     .     .     .        0

m

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (5)
 

We replace the singular values of the mean-centered random data set  by the simulated 

singular values in order to generate a data set with specified singular values:  

1G

1 1 1
True Sim

1′=X U S V  (6) 

where and  are the matrices which were calculated by Eq. 3.  contains the simulated 

singular values calculated in Eq. 5 and  is the generated data set which has the desired 

singular value structure.    

1U 1′V 1
SimS

1
TrueX

Finally, random normally distributed errors were added to the generated data matrix :    1
TrueX

1 1
Input True 1 1( , )randn N K 2σ= + ×X X  (7)  

where  is an  matrix of random normally distributed numbers, 1( , )randn N K 1N K× 2
1σ  is the 

parameter which controls the noise level added to the data block and  is a single-block 

simulated data set with the desired singular value structure and noise level. 

1
InputX

   

2.2.2 Multi-block data set 

The procedure described in the previous section needs to be slightly modified in order to be used 

for simulating different blocks in a multi-block data set. Repeating the same procedure as in 

Section 2.2.1 produces a multi-block set of data without any connection among the different 

blocks whereas in a real multi-block data set one would expect to find a row-to-row relationship 

between different blocks. The only modification which is applied on the procedure in Section 
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2.2.1 for simulating a multi-block data set is to introduce such a relationship. We have 

accomplished this task by imposing the same sample variation pattern to all of the blocks. This is 

done by replacing Eq. 6 by the following Eq. for 1,...,b B= :   

1
True Sim
b b b′=X U S V  (8) 

where 1U  is the unitary matrix of size N N×  calculated for the first data block by Eq. 3, b′V  is 

the unitary matrix of size b bK K×  calculated for simulating block b, Sim
bS  is the simulated singular 

values belonging to block b and True
bX  is the block b of the multi-block simulated data set with the 

desired singular value structure.  

 

2.3 Preprocessing of the data  

2.3.1 Mean-centering 

It is common to mean-center the data prior to PCA and CPCA. Therefore we mean-center each 

block in the simulated data set by subtracting the mean value of each variable according to Eq. 9:  

Unscaled Input Input
b b ′⋅X = X -1 x  (9) 

where Input
bX  is the block b of the data set at hand, 1  is an 1N ×  vector of 1s, Input′x  is a 1 K×  

vector of the means of the variables in the data block calculated over the N samples and Unscaled
bX  

is the unscaled mean-centered data block. 

 

2.3.2 Scaling 

In order to put the data tables on the same footing (i.e. the same total variance) when running 

PCA or CPCA, variables may be scaled. When the data is used without scaling, the measurement 

units or number of variables in each block may influence the multi-block model. When scaling 

the data in a multi-block setting the user has also the possibility to control the influence of some 

blocks on the multi-block model. For instance, the user may want to assign relatively large 

weights to some blocks in order to let them dictate the variation pattern or, contrariwise, he may 

down-weight some blocks in order to minimize their influence on the multi-block model. In the 

present study, we scaled all the blocks in the same way by dividing each block by its norm 

according to:      
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Unscaled

2
Unscaled

1 1
( ( , ))

b

b
b

KN
b

i k
i k

= =

=

∑∑

XX
X

 (10) 

where Unscaled
bX  is the mean-centered unscaled data, Unscaled ( , )b i kX  is the (i,k)-th entry of Unscaled

bX  

and bX  is the mean-centered and scaled data block which will subsequently be used in the 

following model calculations.    

 

2.4 Data modeling  

2.4.1 PCA 

PCA aims at investigating the covariation patterns within a data table. In this method of analysis, 

the mean-centered data table X is modeled as a sum of A relevant PCs plus a residual matrix E as: 

A A A′ +X = T P E  (11) 

where [ ]1 2, ,..., ,...,A a A=T t t t t  contains A score vectors ta , and AP  is the corresponding matrix of 

loading vectors pa , [ ]1 2, ,..., ,...,A a A=P p p p p . 

Calculating the parameters of a PCA model can be performed through several equivalent 

algorithms e.g. NIPALS in [11].  

 

2.4.2 CPCA   

CPCA can be used in order to explore the common variation pattern within and between the data 

blocks in a multi-block data set. The CPCA model for the mean-centered multi-block data set 
1 2, , ... , B =  X X X X  is given by: 

A A A

b b b b
A A A

′ +

′ +

X = T P E

X = T P E
 (12) 

where [ ]1 2, ,..., ,...,A a A=T t t t t  contains A global score vectors ta , and AP  is the corresponding 

matrix of global loading vectors pa , [ ]1 2, ,..., ,...,A a A=P p p p p . The global loading matrix AP  can 

also be written as the matrix of concatenated block loading matrices b
AP  as: 

1 2  ...  ... b B
A A A A A

 ′ ′ ′ ′′ =
 

P P P P P . 
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There are several algorithms which can be used for the calculation of the parameters of a CPCA 

model. NIPALS which explicitly shows how to calculate the block parameters (i.e. block scores 

and block loadings) in addition to the global parameters (i.e. global scores and global loadings) is 

the most popular one. A presentation of the NIPALS algorithm for CPCA can be found in [10]. 

 

2.5 Degrees of Freedom (DFs) estimation  

Modeling a data set by means of multivariate techniques, such as PCA and CPCA, consumes 

useful information and consequently DFs in the data set. Finding latent variables requires 

searching for the direction of the main variation in the data. The search process obviously 

consumes DFs that need to be taken into account. The easier the main variation patterns are 

found, the less DFs are consumed in the process. The methods used for determining PCs in PCA 

and CPCA are based on an eigenvector analysis. Since the performance of the algorithm 

searching for eigenvectors depends on the eigenvector structure in the data set, the DF 

consumption for modeling a data set by PCA and CPCA is tightly related to its eigenvalue 

structure. Therefore it is desirable that a simulated data set has a defined eigenvalue structure.  

For each data set, we estimated the DF consumption during the modeling process in the following 

way: 1) We model a data set by PCA (or CPCA) and we calculate the “calibration” sum of 

squares of the errors (SSCal,A) over the N samples, for the calibration model after 0,1, 2,...A =  

PCs. 2) We also calculate the corresponding cross-validated sum of squares (SSCV,A) for the same 

data set, after 0,1, 2,...A =  PCs. 3) By comparing SSCal,A and SSCV,A we find the number of DFs 

that makes the calibration based error estimate MSECal,A equal to corresponding cross-validated, 

and presumably “true” error estimate MSECV,A. The detailed calculations for these three steps 

will be explained in the following sections.    

 

2.5.1 Estimated Degree of Freedom (EDF) in PCA  

2.5.1.1 Calibration Mean Squared Error (MSECal) 

PCA parameters are calculated by means of SVD as follows: 

′=
=
=

X USV
T US
P V

 (13) 
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where X  is the simulated data set of size N K× , U  and V  are unitary matrices of sizes N N×  

and K K×  respectively, S  is a diagonal matrix of the size N K×  containing the singular values 

of X , T  is the N K×  matrix of all the K  score vectors for the PCA model of X  and P  is the 

K K×  matrix of all the K  loading vectors for the PCA model of X .         

The predicted values for the data are then estimated from the scores and loadings for different 

values of max1,...,A A=  according to: 

ˆ
A A A′=X T P  (14) 

where [ ]1 2, ,..., ,...,A a A=T t t t t  is the N A×  matrix of the first A score vectors of the model, 

[ ]1 2, ,..., ,...,A a A=P p p p p  is the K A×  matrix of the first A loading vectors of the model and ˆ
AX  

is the prediction values for the data set based on A PCs. 

The residual matrix for the PCA model for the total number of components max1,...,A A=  is 

calculated according to: 

ˆ
A A= −E X X  (15) 

where X  is the mean-centered data set, ˆ
AX  is the predicted values of data estimated by Eq. 14 

and AE  is the residual matrix for A PCs.        

The sum of squares for max1,...,A A=  components is obtained as: 

( )2

1 1
( , )

N K

A A
i k

SScal e i k
= =

=∑∑  (16) 

where ( , )Ae i k  is the (i, k)-th entry of residual matrix AE  calculated in Eq. 15.  

Finally, the Mean Squared Errors for the calibration model is calculated according to 

( )
A

A
A

SScalMSEcal
N K A DF

=
− −

 (17) 

where ADF  is the number of DFs that are consumed for finding the A PCs of the PCA model and 

which will be estimated in the following.  

Eq. 17 can also be reformulated as: 
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( )
              

A
A

A

A

A

SScalMSEcal
DFN K A
N

SScal
N K EDF

=
  − +    

=
−

 (18) 

where ADF  is the number of DFs consumed during the search process and AEDF  represents the 

total number of DFs consumed for modeling the data set with A PCs.   

2.5.1.2 Cross-validated Mean Squared Errors (MSECV) 

In order to calculate MSECV,A, segments of data which are indexed by 1,...,m M=  are left-out, in 

turn, resulting in a leave-in segment and a left-out segment of the data. During each round of 

cross-validation, a PCA model is established for the leave-in data. The left-out segment is then 

fitted to the model in order to calculate MSECV,A for the left-out data segment. A detailed 

description for calculating MSECV,A in a multi-block situation is given in [10] which also covers 

the case of one block which amounts to PCA. Thus, MSECV,A in PCA is given by: 

( )
A

A
SScvMSEcv

N K A
=

−
 (19) [9] 

where ASScv  is the cross-validated sum of squares for max1,...,A A= . The parameter DF, which 

was included in Eq. 17, does not appear when cross-validated mean squared errors since there is 

no consumption of DFs in fitting the model except for A, which reflects the number of PC scores 

estimated in each local “test”-sample during cross-validation. 

We have here chosen to use cross-validation for estimating MSECV,A. The motive for this is to 

ensure that the same data set is used both for calibration and for validation in the simulations. 

Moreover, we wanted to study the performance of MSECV,A with different number of cross 

validation segments ( 1, 2,...,m M= ). It is worth noting that it is possible to replace cross-

validation calculations by an independent test set. An independent test set would in that case be 

treated like a leave-out segment of data i.e. MSETest calculations would be similar to those for a 

leave-out segment of data.    

2.5.1.3 Calculating the number of DFs in PCA 

In order to estimate the DFs, we require that the calibration Mean Squared Error and the cross-

validated Mean Squared Error are equal. This condition is justified since they are calculated for 

the same data set. We obtain 



 14 

             A AMSEcal MSEcv=  (20) 

where AMSEcal  is the calibration mean squared error calculated by Eq. 17 and AMSEcv  is the 

cross-validated mean squared error calculated in Eq. 19. By solving Eq. 20 we obtain an estimate 

of the DF: 

( ) 1 A
A

A

SScalDF N K A
SScv

 
= − − 

 
 (21) 

If an independent test set is used instead of cross-validation, ASScv  in Eq. 21 will be replaced by 

ASStest . However, it is important to note that when using an independent test set instead of cross-

validation, equality between MSECal and MSETest is valid if we assume that the test set arises 

from the same population as the training set. 

This formula, based on our choice of simple variance estimation principles, is slightly different 

from that used by Van Der Voet [5], who used a  formula where DF is a function of the square 

root of the variances. 

 

2.5.2 Estimated Degree of Freedom (EDF) in CPCA  

2.5.2.1 Calibration Mean Squared Error for every block (MSECal) 

Mean squared error calculations for the multi-block setting are very similar to those for a single-

block data set. The calculation of errors is done according to Eq. 15 for the matrix of 

concatenated data blocks ( 1 2 ... ... b B =  X X X X X ). The sum of squared errors is then calculated 

for each block separately according to:  

( )2

1 1
( , )

N Kb
b b
A A

i k
SScal e i k

= =

=∑∑  (22) 

where N  is the number of samples, bK  is the number of variables in block b of the multi-block 

data set, ( , )b
Ae i k  is the (i,k)-th entry of residual matrix b

AE  and b
AE  is the block b of the residual 

matrix 1 2 ... ... b B
A A A A A =  E E E E E  calculated for the concatenated multi-block data set by Eq. 15. 

The global sum of squared errors g
ASScal  is calculated according to Eq. 16.   

The global Calibration Mean Squared Errors ( g
AMSEcal ) is calculated according to Eq. 17. While 

the calculation of Calibration Mean Squared Errors for every block ( b
AMSEcal ) in the multi-block 
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setting is slightly different from that of the single-block data. The term A in Eq. 17, representing 

the A degrees of freedom consumed in predicting A global scores, needs to be modified for a 

multi-block setting. Instead of A we suggested to use the partial block leverage b
Ah  [10]. For the 

block MSEcal  we then obtain:      

( )
b

b A
A b b

b A A

SScalMSEcal
N K h DF

=
− −

 (23) 

where b
ADF  is the number of DFs that are consumed in block b of the multi-block data set for 

finding the A PCs of the multi-block model and the quantity b
Ah  is the partial block leverage, 

intended to represent block b contribution in the A degrees of freedom consumed in predicting A 

global scores at . The partial block leverages b
Ah  for A components and every block are calculated 

according to Eq. 24: 
2

2
( , )

1 1

A b
b
A a k

a k b
h p

= =

=∑∑  (24) 

where 
2

2
( , )

1

b

a k
k b

p
=
∑  calculates the sums of squared values in the loading matrix pertaining to block b 

of the multi-block data set, 2
( , )a kp  is the (a,k)-th squared entry of the loading matrix A

′P  and 

[ ]1 2, ,..., ,...,A a A=P p p p p  is the loading matrix for the first A PCs defined in Eq. 14. 1b  and 2b  are 

the column numbers of the first and the last variables in block b, respectively, considering all 

blocks. It is worth noting that the sum of the partial leverages equals A: 

2
( , )

1 1 1

B A K
b
A a k

b a k
h p A

= = =

= =∑ ∑∑  (25) 

Finally, similarly to single-block data, Eq. 23 is reformulated for calculating the total number of 

DFs consumed in each block ( b
AEDF ): 

( )
              

b
b A
A b

b A
b A

b
A

b
b A

SScalMSEcal
DFN K h

N

SScal
N K EDF

=
  

− +  
  

=
−

 (26) 
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where b
ADF  is the number of DFs consumed in block b during the process of determining 

component A and b
AEDF  represents the total number of DFs consumed in block b for modeling 

the data set with A PCs, reflecting both the data-driven choices leading to the PC directions and 

the actual estimation of the component parameters (its loadings and scores). 

2.5.2.2 Cross-validated Mean Squared Error for every block (MSECV) 

Cross-validated mean squared errors calculations in the multi-block situation is done according to 

[10]. Since MSECV does not involve the estimation of any parameter, the formula for MSECV 

calculation for every block 1,...,b B=  is written without the number of DF as: 

( )
b

b A
A b

b A

SScvMSEcv
N K h

=
−

 (27) [10] 

where bK  is the number of variables in block b and the quantity b
Ah  is the partial block leverage, 

intended to represent block b contribution in the A degrees of freedom consumed in predicting A 

global scores at . Partial block leverage calculation was given in Eq. 24.  

2.5.2.3 Calculating EDF in CPCA 

In order to calculate DFs in a multi-block setting similar considerations as for one block can be 

made: The Mean Squared Error of every block are assumed to be equal when estimated in 

calibration and cross-validation. This assumption leads to: 

             b b
A AMSEcal MSEcv=  (28) 

where b
AMSEcal  is the calibration Mean Squared Error for block b calculated by Eq. 23 and 

b
AMSEcv  is the block cross-validated Mean Squared Error calculated by Eq. 27. As in the PCA 

we can solve Eq. 28 for the b
ADF  and obtain: 

( ) 1
b

b b A
A b A b

A

SScalDF N K h
SScv

 
= − − 

 
 (29) 

  

3. Results and discussions   
3.1 Simulated data sets 

Since the relative distribution of singular value structure of a data set defines its correct PCA 

solution and also influences the process of determining these PCs, we undertook a simulation 
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study where this structure is controlled by the tuning parameter 1m  in Eq. 4. Fig. 1a shows 

different singular value structures produced by different tuning parameters 1m . The simulated 

data sets in this figure contain 500 samples and 200 variables (note that no noise is added to the 

data sets). It can be seen that 1 2m =  gives linear decrease in the singular values. Increasing 1m , 

from 2 to 500, shifts the structure toward having few large singular values and many small ones 

whereas decreasing 1m , from 2 to 0.01, influences the structure in the opposite way (i.e. many 

large singular values and few small ones). The figure also shows that the formula given in Eq. 4 

encompasses a wide range of possible singular value structures. 

The noise level in the simulated data set is controlled by the parameter 2
1σ  of Eq. 7. Fig. 1b 

shows the effect of different levels of noise on the singular value structure of a simulated data set. 

The simulated data set for this figure contain 500 samples and 200 variables. The tuning 

parameter 1 200m =  is used for the simulations in Fig. 1b.  It can be seen that increasing the noise 

level from 0 to 1 can tremendously change the singular value structure of the data. Since we 

wanted to deal with a defined singular value structure we did not use noise levels above 0.005 in 

our simulations. However, the level of the added noise was close to what we might encounter in 

real situations.  

We compared the simulated data to four different real data sets containing 88 sample spectra 

from FTIR [13] [14] . Singular value structures of real data sets are shown in Fig. 1c. Simulated 

data sets with similar structures to our real data sets are shown by dashed lines. The noise level of 

the simulated data sets was set to 0.0005. As shown in the figure, different values of 1m  were 

used in order to control the singular value structures for the simulated data sets. Although the real 

data sets (from spectroscopy) used here in pertain to very different FTIR sampling techniques and 

biological materials (i.e. listeria, meat tissue samples and yeast samples) they still show similar 

behavior: FTIR data sets show a tendency to having few large singular values and many small 

ones. Fig. 1c leads to the conclusion that 1m  value chosen between 30 and 70 can be a realistic 

choice when we want the simulated data to have a similar structure as real data sets in FTIR 

spectroscopy.  
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3.2 MSEcv in PCA 

In order to assess the validity of the tentative formula for MSECV in Eq. 19 we have simulated 

500 data sets, each of them containing 500 samples and 200 variables, according to Section 2.2.1 

(Eq. 7) where the parameters 1 60m =  and 2
1 0.005σ =  were used for simulations. Fig. 2a shows 

the singular value structures of the simulated data sets before adding noise (in green) and after 

adding noise (in red). For the cross-validation 5 randomly chosen segments (i.e. 100 samples in 

each segment) were used. Thereafter MSECV was calculated using two different formulas: firstly 

by Eq. 19, where A is subtracted in the denominator and secondly without subtracting A. Cross-

validated Root Mean Squared Errors (RMSECV i.e. the root of the MSECV) plots calculated both 

with and without subtracting A together with RMSECal without DF-correction (i.e. root of MSECal 

in Eq. 17 when 0ADF = ) are plotted in Fig. 2b for all PCs, with the first PCs enlarged in Fig. 2c. 

RMSECV with rank corrected DFs (Eq. 19) drops drastically during the description of the first 

few components, expected to contain systematic information, while it flattens out for the 

subsequent PCs, expected to reflect random noise. In contrast, RMSECV without the rank 

correction does not flatten out, and neither does the RMSECal without DF-correction. The 

horizontal dashed line plotted in Fig. 2c highlights the fact that RMSECV calculated from Eq. 19 

clearly flattens out. Flattening out of the plots is important here since it shows that residual 

reduction caused by adding more components to the model is compensated by the DF-correction, 

and demonstrates that adding more PCs beyond the interesting ones does not improve the model. 

This property of Eq. 19 is useful for choosing the number of PCs to include in a PCA model.  

 

3.3 MSEcv in CPCA 

In order to corroborate the tentative formula in Eq. 27 for CPCA we proceed similarly to the case 

of PCA in Section 3.2. We have simulated 500 multi-block data sets. Each data set contains 4 

blocks of data. There are 500 samples and 200 variables in every block. The method that is used 

for data simulation was described in Section 2.2.2. The noise level was set to be 2 0.005bσ =  for  

1,..., 4b = . Again, 5 random segments of rows (i.e. 100 samples in each segment) were used for 

cross-validation. Tuning parameters bm  that control the singular value structures of the data 

blocks are as follow: 1 55m = , 2 60m = , 3 65m =  and 4 70m = . RMSECVs are firstly calculated 

using Eq. 27 and, thereafter, without subtracting the partial block leverages ( b
Ah ). RMSECVs for 
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every block and global RMSECVs are plotted in Fig 3. Again, correcting the MSECV with a term 

for model rank, in this case distributed as partial block leverages, RMSECV plots flatten out when 

enough number of PCs have been included in the multi-block model.              

 

3.4 EDF in PCA 

We have simulated 500 data sets for calculating the DFs being consumed during the PCA 

process. DFs in this section are estimated by two different methods: (1) Using cross-validation. 

(2) Using a separate test set. The results from both methods are compared to DFs calculated by 

the formula proposed by Faber in [4] (i.e. ( 1)( )N a K a− − −  degrees of freedom for the residuals 

of a PCA model). The simulated data sets are generated according to the procedure described in 

Section 2.2.1, each of them containing 2500 samples and 200 variables. For these simulations, we 

used the parameters 1 60m =  and 2
1 0.005σ = . Five segments of samples (i.e. 100 samples in each 

segment) were used for cross-validation. Each simulated data set is divided randomly into two 

sets of test set (2000 samples) and training set (500 samples) resulting in 500 simulated test sets 

and training sets. Fig. 4a shows the singular value structure for 500 sets of 2500 samples together 

with the structure of the test sets and training sets. The former, with a lower aspect ratio (# 

samples / # of variables), shows a steeper decline in singular values than the latter. This was 

expected, since for singular value decomposition of random data tables, an aspect ratio of 1 gives 

singular values decreasing linearly to zero, while a very high or very low aspect ratio yields 

almost constant singular values. 

RMSE according to Faber, RMSECal without DF-correction (calculated from Eq. 17 when 

0ADF = ) and RMSECV (Eq. 19) were calculated for the training sets while RMSETest were 

calculated for the test sets. RMSE plots (RMSECal not DF-corrected, RMSECV, RMSETest and 

RMSE according to Faber) are shown in Fig. 4b (enlarged in Fig. 4c). It can be seen that 

RMSETest calculated for the independent test sets (plotted in red) are very similar to the mean of 

RMSECV calculated for the training sets (plotted in blue). However, they are very different from 

RMSE calculated according to Faber’s formula. RMSE calculated according to Faber are more 

similar to RMSECal (not DF-corrected) indicating that the DFs consumed in the search process 

are not taken into account. DF was then estimated by cross-validation and by independent test set. 

The EDF results from individual simulations are plotted in Fig. 4d and averaged in Fig. 4e (red 

and blue plots). Some simulation runs got negative EDFs in their very first components, probably 
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due to rotational differences or PC ordering differences between calibration and validation 

models (it is not possible to identify them in Fig. 4d since the plots are truncated at EDF equal to 

zero). But the average EDFs calculated for those components (Fig. 4e) are far from being 

negative. This figure reveals that over-all, EDFs calculated by both methods have the same 

structure on average, although they may look different for their very first components in Fig. 4d. 

Fig. 4f shows EDFs for the first 30 components. It can be seen that both methods, lead to EDFs 

which are, on average, very close to each other. EDFs according to Faber are also plotted in Fig. 

4d-f (in green). Faber’s formula underestimates the consumed DFs in the first PCs and 

overestimates them in the last PCs. This highlights the fact that the search process in PCA (for 

the given singular value structure) consumes much more DFs for finding the first PCs compared 

to the last ones.            

The reason for calculating EDF by two different methods was to see the effect of using a separate 

test set on the EDF results versus using cross-validation. We did not detect any significant 

difference between the two methods (comparing the blue and red plots in Fig. 4e-f). However, 

since the number of cross-validation segments may affect the EDF results, we will investigate 

this issue in detail in Section 3.6.     

 

3.5 EDF in CPCA 

For calculating EDF in CPCA, we used cross-validation with the same number of segments as in 

Section 3.4 and ran the simulations 500 times. Each of the 500 multi-block sets are simulated 

with the following properties: Four blocks of data with 500 samples and 200 variables in each 

block. We followed the simulation procedure described in Section 2.2.2. The noise level was 
2 0.005bσ =  for 1,..., 4b = . Five segments of data (i.e. 100 samples in each segment) were used for 

cross-validation. The tuning parameters bm  are as follow: 1 55m = , 2 60m = , 3 65m =  and 

4 70m = . EDFs calculated for each block and the global EDF, for all of the 500 simulations, are 

plotted in Fig. 5. Fig. 6 shows a zoom out of the average EDFs calculated for every block and 

globally for the first 30 components. It can be seen that the average EDF in different blocks are 

similar to each other. This is probably due to the fact that all the four blocks share the same 

sample patterns in this illustration. The simulated multi-block data sets are, as a matter of fact, 

simple examples which are used for visualization purposes. EDF for more complicated cases can 

be calculated exactly in the same way.   
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3.6 Number of cross-validation (CV) segments 

In cross-validation the user has to specify how to split the samples into segments. In order to 

assess the effect due to the number of CV segments we compared results for different numbers of 

CV segments and results from using an independent test set. For this purpose we have simulated 

5 data sets containing 2500 samples and 200 variables. 500 samples (from 2500 samples in each 

data set) are used as training sets while the rest 2000 samples are set aside to be used as 

independent test sets. 1 60m =  and 2
1 0.005σ =  are used as the parameters for data simulations. 

RMSECal (not DF-corrected) and RMSETest are calculated for training sets and test sets 

respectively. Then, we calculated RMSECV for training sets using different number of CV 

segments. Similar procedures as in Section 3.4 were applied here for calculating EDFs for test 

sets versus cross-validation using different choices of CV segments: 2, 5, 20, 100 and finally 500 

(i.e. leave-one-out CV).  

Fig 7a shows RMSE plots when samples are divided into two segments (i.e. 250 samples in each 

segment) for CV calculations. It can be seen that RMSECV (plotted in blue) and RMSETest 

(plotted in red) are slightly different from each other. EDF calculated from test set and CV are 

plotted in Fig. 7b-c. It can be seen that EDF plots based on test sets and 2-fold cross-validation 

are not very different from each other.  

The same calculations that were applied for 2 segments were repeated for 5, 20, 100 and 500 

segments on the same simulated data sets. RMSE plots for leave-one-out CV are shown in Fig. 

7d. It can be seen that the leave-one-out CV results are noisier than those from split-half CV. 

EDF plots for the leave-one-out CV are shown in Fig. 7e-f and appear to be very noisy compared 

to those from split-half CV. Even the average plot (blue plot in Fig. 7f) seems to be extremely 

noisy compare to the blue plot in Fig. 7c. The plots for intermediate segmentation schemes (5-

fold, 20-fold and 100-fold CV) gave intermediate results; they are not shown here, for simplicity. 

As a rule of thumb, scientists have always believed that running cross-validation with more CV 

segments gives better and more robust results. Especially, the leave-one-out CV is supposed to 

give the most stable results due to the fact that the models fitted to the data are not expected to 

change very much since only one sample is set aside at a time. One can see that the results from 

our simulation study indicate that a price is thereby paid in estimation precision.         
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3.7 DF’s application for real data sets 

In order to estimate the DF for real data sets in FTIR spectroscopy we ran a simulation study 

where we simulated 500 data sets using the eigenvalue structure of a real dataset. Data sets were 

simulated using the eigenvalue structure of FTIR data of 88 listeria samples with 2282 

absorbance variables. For the simulation study, the procedure described in Section 2.2.1 was 

followed and the eigenvalue structure shown in Fig. 1c (the black curve) was used. An error was 

added with 2
1 0.0001σ = . For the cross validation four segments were used with 22 samples in 

each. The DFs were estimated as before and results were averaged using 500 simulations.  

In order to check if the DF estimate could be used to correct the RMSE of a new independent 

data set, we used different data sets from FTIR spectroscopy for the calculation of RMSE and 

corrected them by the DF obtained from the Listeria data set. The three new datasets were two 

FTIR data sets of yeast strains and one data set from FTIR microspectroscopy of meat tissues. All 

sets were obtained by different instruments. Their eigenvalue structures are shown in Fig. 1c. All 

three sets contained several thousand of samples but with the same number of variables as in the 

listeria set, making it possible to sample 100 times randomly 88 samples from each of them for 

calculating RMSE. Fig. 8 shows average RMSE plots for the Listeria set and the three other sets: 

RMSECal not DF-corrected (plotted in green), RMSECV (plotted in red) and RMSECal DF-

corrected (plotted in blue). The figure shows that correcting RMSECal for the number of DFs 

being consumed gives a fairly good estimation of RMSECV and hence the optimal rank, without 

running any CV on the data sets. Considering the correct number of DFs that are being consumed 

for modeling a data set and applying them correctly has enabled us replacing the time- and 

memory-consuming procedure of cross-validation by easy-to-calculate formulas. As it can be 

seen in Fig. 8 RMSE plots calculated by DF correction (plotted in blue) are fairly close to the 

RMSECV plots calculated by cross-validation (plotted in red) but their differences get larger as 

the number of PCs increases. Unlike what we observed on the plots based on simulated data sets 

the DF corrected plots are not perfectly flattening herein. The reason could be that the samples 

and/or the variables in the input data are not completely independent, as assumed by the present 

theory.  For instance, as part of the Fourier transform, the noise in the FTIR variables may have 

become somewhat intercorrelated. The lack of independence may be compensated for by 

modifications of the proposed MSE and EDF formulas.   
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4. Conclusion 
Degrees of freedom (DFs) are consumed when parameters are estimated in PCA and CPCA. We 

have shown that the search process itself consumes some DFs and therefore the total DF 

consumption during the modeling process is more than (only) the number of independently 

estimated parameters. However when cross-validating CPCA models there is no DF consumption 

due to the search process, the obtained Mean Squared Errors (MSE) still need to be corrected for 

the DFs consumed by the estimation of the model parameters for the leave-out segments. Since 

block loadings in CPCA are not independent, we previously suggested that the MSE estimated by 

cross-validation for each block should be corrected by the leverage of the block loadings. In the 

present paper we have simulated data sets to show that the cross-validated Root Mean Squared 

Error (RMSE) plots for each block flatten out when corrected by our previously proposed 

formula. This proves the validity of the proposed formula.   

When errors are calculated without cross-validation, simply by fitting, the number of DFs needed 

for correcting the errors is higher. This extended number of DFs is due to the search process and 

depends on the eigenvalue structure of the data. The process of searching a principal component 

is faster, when eigenvalues are decreasing rapidly. In this study we have proposed an easy and 

straightforward method for estimating the number of consumed DFs while looking for the PC 

directions. We have also estimated DFs for a real data set from FTIR spectroscopy of biological 

material and afterwards applied it to the other data sets from the same field. The results reveal the 

fact that we do not necessarily need to estimate DF for every individual data set. Instead it is 

possible to calculate DFs for one data set from a specific field and apply the estimated DFs to 

future data sets within the same field. Therefore, we believe that estimating cross-validated errors 

for a PCA or CPCA model can be obtained without running cross-validation, when a 

characteristic DF is already known. 

Another important challenge in PCA and CPCA data analysis is to assess the reliability of a 

model. Using an independent test set seems to be a good choice for this purpose. However, 

because of a lack of sufficient samples, it is not always possible to set aside a subset of the 

observations to serve as a validation set. Cross-validation has been in focus as an alternative 

method. However, it has been criticized since the same samples are used both for the modeling 

procedure as well as for validating the model. Our simulation study reveals an interesting finding: 

the outcomes from a cross-validation study agree to a large extent with those from an 



independent test set. One should note that the choice of the number of segments to be used for 

running cross-validation affects significantly the results. In this article, we have shown that an 

increased number of CV-segments do not necessarily lead to better results. In our case, it turned 

out that a 10-fold cross-validation gives results which are close to those from an independent test 

set.       
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Figure 1: Normalized singular values. Singular value structures for simulated data sets 
containing 500 samples and 200 variables are shown in (a) and (b): (a) Singular value structures 
for data sets generated by different tuning parameter ( 1m ) (without adding any noise) are plotted.  
(b) Singular value structures for data sets generated by adding different noise levels to the same 
data structure, are plotted. Tuning parameter 1 200m =  is used here. (c) Normalized singular 
values for different simulated data sets, with different tuning parameter ( 1m ) values, are plotted 
together with normalized singular values for real data sets containing FTIR spectra. The same 
noise level (i.e. 0.0005) is used for all of the simulations. 
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Figure 2: 500 simulated single-block data sets containing 500 samples and 200 variables. (a) 
Normalized singular value structures of the simulated data sets (parameters 1 60m =  and 

2
1 0.005σ = ). The singular values structure before adding noise is plotted in green. Red plots show 

the structures after adding noise. The dashed blue line is the average of the red plots. (b,c) 
Single-block Root Mean Squared Error (RMSE) plots. RMSECal (without DF-correction) 
plots are plotted in blue. RMSECV not corrected for A degrees of freedom consumptions are 
plotted in red. RMSECV corrected for A degrees of freedom consumptions are plotted in green. (b) 
RMSE plots plotted for 200 components. (c) A zoom out of plots in (b) for the first 30 
components together with the average lines in black. A horizontal dashed line is plotted in pink 
for visualizing that RMSECV corrected for DF consumption flattens out for PCs presumably 
dominated by random noise.  
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Figure 3: Multi-block Root Mean Squared Error (RMSE) plots for 500 simulated data sets, 
using 4 blocks of data, each of them containing 200 variables. RMSECal (without DF-
correction) plots are plotted in blue. RMSECV not corrected for the degrees of freedom 
consumptions are plotted in red. RMSECV corrected for the degrees of freedom consumptions are 
plotted in green. (a-d) RMSE plots for different blocks. (e) Global RMSE plots. 
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Figure 4: 500 simulated training and test data sets. (a) Normalized singular values for 500 
simulated data sets, each of them with 2500 samples, are plotted in green. Normalized singular 
values for 500 simulated training sets, each of them with 500 samples, are plotted in blue. 
Normalized singular values for 500 simulated test sets, each of them with 2000 samples, are 
plotted in red. Every data set contains 200 variables. (b) RMSECal (without DF-correction) plots 
are plotted in black. RMSECV plots for the training sets are plotted in blue. RMSETest plots are 
plotted in red. RMSE plots corrected for DF according to Faber’s formula are plotted in green. 
Training sets and test sets have 500 and 2000 samples respectively. (c) A zoom out of the plots in 
(a) for the first 30 components. (d) Estimated degrees of freedom (EDF) consumption using 
cross-validation are plotted in blue. EDF consumption using test set are plotted in red. EDF 
consumption according to Faber’s formula are plotted in green. (e) The average of the 500 plots 
in (d). (f) A zoom out of plots in (e) for the first 30 components.  
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Figure 5: Estimated Degrees of Freedom (EDF) for 500 multi-block simulated data sets. 
EDF consumptions using cross-validation are plotted in blue. The average EDF consumptions are 
plotted in red. (a-d) EDF for different blocks. (e) Global EDF.  
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Figure 6: Zoom out of the plots in Fig. 5. A zoom out of the average plots in Fig. 5 are plotted 
for the first 30 components. (a-d) EDF in different blocks. (e) Global EDF.  
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Figure 7: Simulated training and test sets with 500 and 2000 samples respectively 
containing 200 variables. (a) RMSECal (without DF-correction) and RMSECV (2-fold cross-
validation) for training sets are plotted in black and blue respectively. RMSETest plots are plotted 
in red. (b) Estimated Degrees of Freedom (EDF) calculated by cross-validation are plotted in 
blue. EDF calculated by test set are plotted in red. (c) The average plot for the plots in (b). (d) 
RMSECal (without DF-correction) and RMSECV (leave-one-out cross-validation) for training sets 
are plotted in black and blue respectively. RMSETest plots are plotted in red. (e) EDF calculated 
by leave-one-out cross-validation are plotted in blue. EDF calculated by test set are plotted in red. 
(f) The average plot for the plots in (e).  
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Figure 8: Root Mean Squared Error (RMSE) plots for four real data sets. RMSE plots for 
real data sets containing FTIR spectra are plotted. RMSECal (without DF-correction) are plotted 
in green. RMSECV (4-fold cross-validation i.e. 22 samples per segment) are plotted in red. 
RMSECal corrected for the number of consumed DFs are plotted in blue. (a) RMSE plots for the 
listeria data set. (b) RMSE plots for the meat data set. (c-d) RMSE plots for yeast data sets. 
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Abstract 
Within the framework of multi-block data sets, multi-block principal component analysis 

has been successfully used as a tool to investigate the structure of spectroscopy, -omics 

and sensory data. The determination of the successive principal components involves a 

deflation procedure which can be performed according to several strategies. We discuss 

the respective interest of these strategies and show orthogonality properties related to the 

vectors of loadings or to the scores. Reconstruction formulas for the data blocks are 

established for each deflation strategy. Interpretational aspects of the different deflation 

strategies are discussed and illustrated on the basis of a real and a simulated data set. 
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1. Introduction 
The interest in multi-block methods has gained ground during the recent years 

particularly in the field of biology, where scientists aim at integrating biological data 

acquired from the same samples by different instruments [1][2]. Several multi-block 

methods can be found in the scientific literature together with mathematical and statistical 

properties which highlight some similarities and differences between these methods. 

Nonetheless, a biologist may be lost to decide which method should be used in a 

particular situation and how to interpret the results. This is one of the reasons why further 

investigations are needed to compare different types of multi-block methods and to point 

out the extent to which they are similar or different and the implications of these 

differences, if any, on the interpretation of the outcomes. Different multi-block principal 

component analysis techniques have been proposed. In all these situations, several (and 

sometimes very many) variables are measured on the same set of (N) samples using 

different techniques or different assessors. These data could be presented in blocks bX  

with ( 1,2,...,b B= ). The total set of measurements can be described by the global 

( N K× ) matrix 1,..., ,...,b B =  X X X X , where 1 ... ...b BK K K K= + + + +  and bK  is the 

number of columns (variables) of the block bX . 

The aim of multi-block analysis is to investigate the relationships between data blocks 
bX  which are supposed to have similar underlying patterns. In order to analyze multi-

block data sets, Multi-block Principal Component Analysis (MBPCA) has been proposed. 

MBPCA is a Multi-block components model, where components or latent variables are 

constructed and used to summarize simultaneously the relevant information between and 

within the blocks. The computation of the components in MBPCA involves a sequential 

process in the course of which a principal component is computed at each step. 

Thereafter, the variation explained by this component is removed from the data sets 

(deflation) and the subsequent component is calculated from the residuals. More 

precisely, MBPCA consists in iterating the following two steps: (i) The computation of a 

global score vector, block loading vectors and block score vectors of the matrix 
1,..., ,...,b B =  X X X X . (ii) A deflation step consists in replacing 1,..., ,...,b B =  X X X X  

by a matrix of residuals.  
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In the first step, the computation of the global score vector, block score and block loading 

vectors is performed using an iterative procedure. This procedure can be considered as an 

extension of the NIPALS procedure [3][4] to more than one block. It has been 

subsequently shown that the iterative procedure used in MBPCA gives the same global 

score vector (principal component) as the NIPALS procedure applied to the concatenate 

matrix 
1

1

... ...
b B

b BK K K

 
=  
  

X X XX  [5]. Although this result shows that the global scores 

of MBPCA can be calculated from X  by the NIPALS algorithm, the rationale behind the 

iterative procedure of MBPCA is important since it exhibits, on the one hand,  block 

scores and block loadings, which allow us to investigate sample and variable variation 

patterns within the blocks (block analysis), and, on the other hand, global scores and 

global loadings which highlight the global variation patterns (global analysis) [1].  

Three different deflation strategies (step ii) have been introduced for MBPCA: 1) 

Deflation by global scores where the variation explained by the global score vector is 

subtracted by regressing all the variables at hand onto the global score vector. This 

variant of MBPCA is called Consensus PCA (CPCA) [6]. 2) Deflation by block scores 

(introduced by Chen and McAvoy) where the deflation is performed on every block 

matrix bX  using block scores [7]. 3) A third alternative deflation strategy which consists 

in deflating with respect to block loadings is very popular in the French literature [8][9]. 

This latter variant of MBPCA has been called Multiple Co-inertia Analysis (MCoA). It is 

clear that the deflation is a crucial step in MBPCA: The obtained results in terms of 

global/block loading and score vectors are different and the outcome studied by the 

scientist in terms of graphical representation (score plots or different loadings plots) may 

completely depend on which  deflation procedure is chosen. 

The three different deflation strategies have not been studied and compared so far and it 

remains unclear to which extend they are similar or different. To decide upon which 

deflation strategy to be used, orthogonality, reconstruction properties and interpretational 

aspects need to be clarified for the three methods. 

The objective of this paper is to discuss different aspects of the three mentioned deflation 

possibilities for MBPCA. (1) The paper gives a complete presentation of orthogonality 

properties for (block) scores and (block) loadings, which are different for the three 
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deflation possibilities. (2) The reconstruction of block matrices by the (block) scores and 

(block) loadings is discussed for the respective methods. (3) The differences of the three 

deflation possibilities with respect to the interpretation of the results in terms of global 

and block scores are highlighted and illustrated by examples.  

The paper is organised as follows: In section 2, the iterative procedure for MBPCA is 

presented and the three different deflation possibilities, deflation by global scores, 

deflation by block loadings and deflation by block scores respectively are described. In 

section 3 orthogonality properties of global scores and loadings and block scores and 

loadings are proven. In section 4 the reconstruction of the data blocks bX  for the three 

different deflation strategies are presented. In section 5 the interpretational aspects of 

different deflation strategies are discussed. In section 6 some of the theoretical findings 

are illustrated by an example. In section 7, we will give a conclusion. 

 

2. Multi-block Principal Component Analysis and its alternative 

deflations strategies. 
The NIPALS algorithm for MBPCA 

The iterative procedure of MBPCA is given below, where the notation according to 

Westerhuis et al. (1998) [5] is used. Throughout the paper we assume that the block 

matrices bX are divided by bK , in order to have equivalence with the procedure 

described by Westerhuis et al. (1998) [5]. 

A. Initialization  

1.1 Choose an arbitrary starting global score vector t  

B. Computation of block scores and block loadings (for 1, 2,...,b B= )   

1.2 
b

b ′
=

′
X tp
t t

  Preliminary block loadings  

1.3 
b

b
b

=
pp
p



 Block loadings, scaled to length 1 in every block 

1.4 b b b=t X p  Block scores 

C. Computation of global scores and global loadings   
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1.5 1 2  ... B =  T t t t  

1.6 ′
=

′
T tw
t t

 Block weights 

1.7 Normalize w  to 1=w  

1.8 =t Tw  Global scores 

This procedure is graphically illustrated in Fig. 1. To start the iterative procedure, an 

arbitrary starting global score t  is chosen. All blocks bX are regressed on global score t  

in order to obtain the block loadings bp . From the normalized block loadings bp , the 

block scores b b b=t X p  for all blocks are calculated. All block scores are combined to a 

global score matrix T . The global score matrix T  is then regressed on the global score 

vector t  resulting in the global weights w  as regression coefficients. The global weights 

are normalized to length one and a new global score vector t  is then calculated. The 

algorithm is iterated until convergence. Convergence is guaranteed as shown in [10].  

Once the parameters of the first component (i.e. 1t , 1w , 1
bt  and 1

bp ) are calculated, the 

matrix 1 2
1 , ,..., B = =  X X X X X  is deflated to 1 2

2 2 2 2, ,..., B =  X X X X . The deflation can 

be performed according to three different strategies given in table 1. The second 

components are calculated by applying the iterative procedure to 2X  and the same 

procedure is repeated for the calculation of the subsequent components. The parameters 

of the ath components (i.e. at , aw , b
at  and b

ap ) are calculated by applying the iterative 

procedure to 1 2, ,..., B
a a a a =  X X X X  and 1 2

1 1 1 1, ,..., B
a a a a+ + + + =  X X X X  is then calculated by 

deflating aX  according to one of the three different strategies given in table 1. 

Deflation strategies in MBPCA 

The residuals 1
b
a+X  in table 1 correspond to different regression models that are derived in 

the following. It is important to grasp the rationale behind the various strategies in order 

to gain insight into the differences between the three deflation strategies and assert their 

implications in terms of the interpretation of the outcomes. 



 7 

For the deflation by global scores (employed by CPCA), the best rank one approximation 

(prediction) of b
aX  by the global scores at  is achieved, as a solution of the following 

minimization problem:  
2

b b
a a a

′−X t p    (1) 

The solution of (1) is given by the non-normalized block loadings defined by the 

MBPCA algorithm: 

b
b a a
a

a a

′
=

′
X tp
t t

  (2) 

It is clear that 1
b b ba a
a a a

a a
+

′
= −

′
t tX X X
t t

 is the residual part of the regression of block b
aX  on 

global score at . It is important to note that the deflation on global scores can either be 

performed block-wise or on the global matrix X  according to: 

1
a a

a a a a a a
a a

+

′
′= − = −

′
t tX X t p X X
t t

  (3) 

Where ap  is the vector obtained by concatenating the non-normalized block loadings b
ap  

calculated by Eq. 2.  

For the deflation by block loadings the best rank one approximation of b
aX  by the block 

loadings b
ap  is achieved, as a solution of the following minimization problem:  

2
b b
a a

′−X tp    (4) 

Since b
ap  is normalised to length one, the solution of the minimization of (4) is given by 

the block scores that are obtained by the iterative procedure for MBPCA: b b b
a a a=t X p . For 

the deflation by block loadings, the deflation is based on the residual part of (4), which is 

given by: 

1
b b b b b b b
a a a a a a a a+

′ ′= − = −X X t p X X p p  (5) 
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For the deflation by block scores the best rank one approximation (prediction) of b
aX  by 

b
at  is achieved, as a solution of the minimization problem:  

2b b
a a ′−X t q    (6) 

The solution is given by  

 
b b

b a a
a b b

a a

′
=

′
X tq
t t

 (7) 

The residual part of (6) is given by: 

1

b b
b b ba a
a a ab b

a a

+

′
= −

′
t tX X X
t t

 (8) 

We see that the deflation by block scores is based on a new underlying block loadings 
b
aq . In order to obtain the block loadings bp , the block bX  is projected column-wise on 

the normalized global score vector t . Then, for the calculation of the block scores bt , the 

blocks bX  are projected on the normalized block loadings bp . Finally, to find the block 

loadings bq , the blocks bX  are projected on the normalized block scores bt .  

The deflation by global scores is similar to the deflation of the X matrix in Partial Least 

Squares Regression (PLSR) [11] as illustrated in Fig. 2. The deflation in PLSR is usually 

performed with respect to the same score vector t  for X and Y, i.e. both matrices are 

deflated with respect to the X scores. According to the NIPALS algorithm for PLSR, the 

score vector t is obtained by the projection of the matrix X onto the loading weights w. 

The Y-loadings are obtained by the projection of the matrix Y onto the global score 

vector t and the X-loadings by the projection of the matrix X onto the score vector t. The 

deflation of X and Y is then performed according to 

1a a+ ′= −X X tp    (9) 

1a a+ ′= −Y Y tq    (10) 

Deflating on block scores attributes therefore the MBPCA block loading vector b
ap  the 

role of PLSR loading weights (w), and the MBPCA block loading vector b
aq  the role of 

PLSR loadings ( p ). 
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3. Orthogonality properties 

For the different deflation strategies different orthogonality properties follow. These 

properties are discussed in the following and summarised in table 2.  

The orthogonality of the global score vectors at , on the one hand, and the global loadings 

ap , on the other hand for the deflation by global scores stem from the fact that CPCA 

amounts to a PCA performed on matrix X [5, 12]. Block loading vectors and block score 

vectors are, in general, not orthogonal.  

For MBPCA with deflation by block loadings, the orthogonality of block loadings 

(within each block) follows, i.e. b
ap  is orthogonal to b

kp  for a k≠ . The global scores at  

are also orthogonal [8]. The orthogonality of block loadings and the global scores in 

MBPCA with deflation by block loadings is shown in appendix A. The corresponding 

block scores b
at  are, in general, not orthogonal, but it can be proven that block scores b

kt  

are orthogonal to global scores at  for k a>  (see appendix A, property A3). From the 

orthogonality of block loadings, the orthogonality of global loadings ap  follows 

immediately, since ap  can be written as a linear combination of the block loadings b
ap  as 

follows: 
1

2
1 2

00
00

00

a

a B
a a a a a a a

B
a

    
    
    ′ ′ ′= + + +
    
    

    

p
p

p X t X t X t

p




   (11) 

For MBPCA with deflation by block scores, we can show that the block loadings b
ap  

within each block are orthogonal. This property has been mentioned without proof by 

[12]. We present a proof in appendix B. The global scores at  are in general not 

orthogonal for the deflation by block scores, while block scores referring to the same 

block are orthogonal. This has been shown by [12]. For the sake of completeness this is 

also proven in appendix B. From the orthogonality of block loadings, the orthogonality of 

global loadings ap  follows immediately from Eq. 11. 
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Because of the orthogonality of the block loadings in MBPCA with deflation by block 

loadings, the block scores can be considered as a weighted sum of the original variables 
bX :  

b b b b b
a a a a= =t X p X p  (12)    

However, this is, in general, not the case for deflation by block scores:  
b b b b b
a a a a= =t X p X q  with b b

a a≠q p  (13)    

In addition, we can show that the hereby defined b
aq  are not orthogonal. 

 

4. Reconstruction of block matrices by block scores and block loadings 

The reconstruction of the block matrices bX  depends on the deflation method being 

chosen. The three possibilities for reconstruction are shown in table 3, where br  denotes 

the rank of block bX  and r  the rank of 1 2, ,..., B =  X X X X . 

For the deflation by global scores ( at ) the underlying block loadings used for 

reconstruction are the non-normalised block loadings defined by the NIPALS algorithm. 

For the deflation by block loadings the block scores and block loadings defined by the 

NIPALS algorithm are used for reconstruction. For the deflation by block scores new 

underlying block loadings b
aq  are used for reconstruction. 

 

5. Interpretational aspects 
When studying score and loading plots we are visually inspecting how samples and 

variables are clustered and related to each others, i.e. we study scores and loadings 

visually to discover sample variation patterns and variable variation patterns, 

respectively. To be able to interpret these sample and variable variation patterns, it is 

important to be aware of the relations between global and block scores and global and 

block loadings.  As stated above, how the global and block parameters are related to each 

others strongly depends on the deflation procedure. Indeed, in each deflation step, 

depending on which deflation procedure is performed, we either subtract a sample or 

variable variation pattern. For the deflation by global scores, it follows from (1) that the 
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pattern subtracted at every deflation step is given by the global scores at . According to 

(1), these scores are also subtracted from every block. For the deflation by block 

loadings, the block variable variation pattern is subtracted from each block during 

deflation. This is obvious when considering the minimization problem in equation (4) 

which corresponds to the deflation by block loadings. We see that the variation in 

variable space presented by the block loadings bp  is subtracted completely from every 

block. This will lead to the particular situation where the variable variation pattern in the 

second component for the same block will be independent from the first block and so on. 

This is in general not the case for the deflation on global scores. It is difficult to state 

which variation pattern is subtracted for the deflation by block scores. The additional 

step, that is necessary in order to define the underlying block loadings b
aq  for the 

deflation with respect to block scores can also be seen as an additional NIPALS step per 

block which bears a resemblance to setting up a PCA model per block matrix and, 

therefore, is not really aiming at finding common underlying patterns. Through this 

additional NIPALS step which is performed for each block, the block sample variation 

pattern subtracted in every deflation step is not any longer related to the global variation 

pattern in a direct way and makes the relation between deflation and score patterns 

unclear. This has important implications for the interpretation of the multi-block results 

as explained in the following: 

(a) Deflation by global scores: The block matrices are reconstructed by the orthogonal 

global scores at . The global sample variation pattern can be visualised by score plots 

based on global scores. Notwithstanding, care should be taken in the interpretation of 

score plots of block scores. The block scores b
at  are defined on the basis of normalised 

block loadings b
ap  (the b

at  are defined by means of b
ap ) and represent the block sample 

variation pattern with respect to b
ap . Therefore, they reflect the block sample variation 

pattern that corresponds to the variable variation pattern b
ap , which, in general, is not the 

same as the global variation pattern at . In other words, the global sample variation 

pattern at  is related to a certain variable variation pattern b
ap  in each block. This block 

variable variation pattern may in general also be related to other sample variation patterns 
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in the same block, i.e. the same block variable variation pattern may be related to 

different block sample variation patterns and therefore be present in several block 

loadings. This will be illustrated by an example. 

(b) Deflation by block loadings: For the deflation by block loadings, the block variation 

pattern b
at  which is related to the variable variation b

ap  is subtracted at each deflation 

step. Consequently, score plots of block scores b
at  represent the block variation patterns 

subtracted in each deflation step. Therefore, in the deflation by block loadings, the 

corresponding variable variation pattern b
ap  is completely subtracted from each block. 

For the interpretation of the global variation pattern as expressed by score plots of at  we 

have to keep in mind, that the global variation pattern is not the variation pattern that is 

subtracted in every deflation step, but it represents the calculated ‘consensus’. For the 

deflation by block loadings the property that block loadings are orthogonal follows, 

which guarantees that the ‘information’ contained in the block components is 

independent from one component to another. This may be helpful in situations where 

interpretative signals are considered. An example will be discussed in the next section. 

(c) Deflation by block scores: For the deflation by block scores new underlying block 

loadings b
aq  are defined and used for reconstruction of the original data. Among the three 

deflation methods considered, it is therefore the only strategy where the loading weights 

and loadings are different. Since the orthogonal block scores used for the reconstruction 

of the data are not directly related to the global scores, they are difficult to interpret in 

terms of the global variation pattern at : The variation that is subtracted at each deflation 

step for each block is not directly related to the global variation pattern. Therefore, the 

authors do not recommend using this type of deflation, since common and block variation 

patterns can not easily be interpreted. 

From the reconstruction formula given in table 3, the computation of the explained 

variances for each block bX  and at step a follows and is given in table 4 for the three 

different deflation methods. The proof is given in the appendix C.  
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6. Illustration 

The multi-block data set used for illustrating the different strategies of deflation is 

described in detail in the references [1, 13]  and consists of 5 data blocks with different 

number of variables in each block measured on the same set of 88 samples. This multi-

block data set contains amplified fragment length polymorphism (AFLP) data (genetic 

fingerprinting), Fourier Transform Infrared (FTIR) spectra, and other phenotypes (sero 

grouping, susceptibility to sakacin P, nisin and the antibacterial agent benzalkonium 

chloride) of 88 L. monocytogenes strains. As in [1] the AFLP data block defines block 1X  

(1701 variables), the FTIR data block is subdivided into the following spectra regions: 

polysaccharide region and fingerprint region (1200-720 cm-1) defining block 2X  (498 

variables), the protein region (1700-1500cm-1) defining block 3X  (209 variables) and the 

fatty acid region (3000-2800cm-1) defining block 4X  (208 variables). The phenotypes are 

collected in data block 5X  (10 variables). Previous to MBPCA the spectral data was pre-

processed by EMSC [14, 15].  

The block score plots and the global score plots for the deflation by global scores, block 

loadings and block scores are shown in Figs. 3-5, respectively ( 1X  is shown in (a), 2X  in 

(b), …, 5X  in (e) and the global scores in (f) ). The outcomes of PCA performed on each 

block ( 1X  to 5X ) separately is shown in Fig. 6a-e. The explained variances are calculated 

according to table 4 and are indicated on the axes for each score plot (block scores, global 

scores and score plots of PCAs) in the Figs 3-6.  

Obviously, the global/block scores and loadings are always identical for the first 

components of all three deflation strategies, since no deflation has been applied yet. 

Therefore, the score values for the first components are identical for the same blocks in 

Fig. 3-5. The score values for all subsequent components are in general different. The 

percentages of explained variances calculated according to table 4 are different even for 

the first component, since they depend on which deflation procedure is used. We observe 

that the percentage of explained variance by the first component of each block increases 

from Fig. 3 to Fig. 6: For example for block 1X  the explained variance of the first 

component is 27% for the deflation on global scores, 36.2% for the deflation on block 

loadings, 36.8% for the deflation on block scores and 36.9% for PCA of 1X . The increase 
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of explained variance of the first components from Fig. 3 to Fig. 6 can be explained by 

the fact that the calculation of block loadings defines the first NIPALS step of PCA for 

every single block bX , while the definition of block scores defines the second NIPALS 

step. We see that the variances explained by the first component greatly change from Fig. 

3 to Fig. 6 for the different blocks. For example, the result for the deflation by block 

loadings for the first block 1X  (Fig. 4a) shows that the explained variance has almost 

approached the result of PCA of 1X  (Fig. 6a). This is due to the fact that the main 

variation in block 1X  is very similar to the main consensus variation. For block 4X  the 

behaviour is completely different. The explained variance increases from 17.5% for the 

deflation on global scores to 31.9% for the deflation on block loadings, 44.1% for the 

deflation on block scores and reaches 62.3% for PCA of 4X . This indicates that the main 

variation in block 4X  is very different from the main consensus variation. Therefore, the 

explained variances for 4X  considerably change from Fig. 3 to Fig. 6. 

In order to further elucidate the differences between the different deflation procedures we 

simulated an artificial multi-block dataset using the blocks 1 5,...,X X  from the above 

example. The simulation procedure for generating the artificial data blocks is described in 

the following: First, a PCA of each block was performed in order to obtain scores and 

loadings for each block separately (i.e. b b b b′= +X T P E  where bT  and bP are respectively 

the matrices of scores and loadings of PCA for block b using bA  principal components). 

Then, a multi-block matrix (containing 5 data blocks) was simulated according to: 

1 5 2 1 2 2 2 3 2 4 2 5
Sim Sim Sim,..., , , , , ′ ′ ′ ′ ′ = =   

X X X T P T P T P T P T P  using 3bA =  components for 

each block (i.e. 2 2 2 2
1 2 3  b  = =  T T t t t  and 1 2 3  b b b b =  P p p p  for 1,...,5b = ). Performing 

MBPCA on SimX , results in completely identical block patterns for block scores and 

global scores, regardless of the deflation method used (Fig. 7). The pattern that is seen in 

the block score plots as well as in the global score plot in Fig. 7 is the same pattern seen 

in Fig. 6b. This is obvious since the sample variation pattern belonging to block 2X  

(given by 2 2 2 2
1 2 3   =  T t t t ) was introduced in all the blocks.  
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A second multi-block data set was simulated by modifying the second block of the 

previously simulated multi-block data set ( 2
SimX ). The modification was as follows: the 

scores and loadings used for the simulation of 2
SimX  (i.e. 2 2 2 2

1 2 3   =  T t t t  and 

2 2 2 2
1 2 3[   ]=P p p p ) were replaced by 2 2 2 2 2

Sim2 1 2 3 4[    ]=T t t t t  and 2 2 2 2 2
Sim2 1 1 2 3[    ]=P p p p p  

respectively, resulting in a second multi-block simulated data set: 

1 5 2 1 2 2 2 3 2 4 2 5
Sim2 Sim2 Sim2 Sim2 Sim2,..., , , , , ′ ′ ′ ′ ′ = =   

X X X T P T P T P T P T P  where Sim2 Sim
b b=X X  for 

1,3, 4,5b = . This means 2
Sim2X  is simulated such that two independent sample variation 

patterns (i.e. 2
1t  and 2

2t ) correspond to the same variable variation pattern ( 2
1p ). 

Performing CPCA on Sim2X  (i.e. MBPCA with deflation by global scores) resulted in 

block and global score plots shown in Fig. 8. We can see that the score patterns are 

almost identical in all the plots, although the block score pattern in the first and second 

component in block 2b =  corresponds to the same variable pattern. The corresponding 

block loadings for block two are shown in Fig. 9. We can see that the block loadings for 

the first and second components are identical. Performing MBPCA with deflation by 

block loadings resulted in block and global score plots shown in Fig. 10. We can see that 

the block score pattern of block two has completely changed. This is due to the fact that 

by deflating with respect to block loadings, the next block loading is constrained to be 

orthogonal to the previous ones. Therefore the sample variation related 2
1p  (i.e. 2

1t  and 

2
2t ) is captured at once by calculating 1 1 1

b b b=t X p  and already subtracted in the first 

deflation step. The corresponding first and second block loadings are shown in Fig. 11. 

The first block loading in Fig. 11 is identical to the block loadings in Fig. 9. However, the 

second block loading in Fig. 11 is different.  

The situation in this simulated data set is likely to occur in real data sets where for 

example two different design factors lead to the same or similar variable variation 

patterns in one data block, while the two design factors may be independent or may have 

a different effect on the variable variation pattern in a different block.   

 

 



7. Conclusion 
Three main deflation strategies for MBPCA have been studied, namely the deflation by 

global scores, the deflation by block loadings and the deflation by block scores. It has 

been shown that the three deflation possibilities lead to completely different 

orthogonality properties for global/block scores and loadings, to different reconstruction 

procedures of the block matrices and to differences in the calculation of the explained 

variances. These differences were illustrated using a real data set and simulated data sets. 

It turned out that the different deflation strategies yield very different graphical displays. 

We have shown that the deflation methods are also different from an interpretational 

point of view. Indeed, whereas, for the deflation by global scores, the global variation 

pattern is subtracted from every block, for the deflation by block loadings the block 

variable variation pattern is subtracted in every deflation step. Since both deflation 

methods (i.e. deflation on global scores and deflation on block loadings) clearly have 

different advantages, they may be performed successively in order to gain more insight 

into the data at hand. It was also pointed out that for the deflation by block scores new 

underlying block loadings are defined as in PLSR. Therefore, the global scores and 

loadings are not directly related to the block loadings used for deflation by block scores. 

As a result, it may be more difficult to interpret block results in connection with global 

results. We have illustrated the fact that the definition of the new underling block 

loadings can be considered as a further NIPALS step towards a PCA of each block .  bX

The choice of the deflation procedure is a generic problem in multi-block analysis and the 

results obtained in this paper can easily be transferred to, e.g., multi-block partial least 

squares regression (MBPLS) [16]. 
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Appendix A. Orthogonality properties in MBPCA with deflation by 

block loadings 

1
b b b b b b b b
a a a a a a a a+

′ ′= − = −X X t p X X p p , 1,2,...,b B=  

A1. Property 1. (Orthognality of block loadings) 

  For  1 ,k a A≤ ≤  and k a≠     0b b
k a
′ =p p  

A2. Property 2. (Orthognality of global scores)  

For  1 ,k a A≤ ≤  and k a≠   0k a′ =t t  

A3. Property 3.  (Orthognality between global scores and block scores)  

For  1 k a A≤ < ≤   0b
a k
′ =t t  

Preliminary lemma.  

for 1,2,..., 1a A= − .  b b b b
A A a A

′ ′=X X X X    (a)  

for a k> , ( )1

b

a
b b b b
a k m l l

l k

−

=

 ′= − 
 
∏X X I p p    (b) 

 

Proof of property 1.  

The proof of property 1 will be given by recurrence. First, we prove the property 1 for 

2A = , i.e. ( )1 2 0b b′ =p p . Note that the b
ap  for 1, 2,...a = ; are given by  

1 1
1

1 1

b
b

b

′
=

′
X tp
X t

 and 2 2
2

2 2

b
b

b

′
=

′
X tp
X t

, 1, 2,...,b B=  (A1.1) 

where in (A1.1) 1
b b=X X and 2 1 1 1 1

b b b b b′= −X X X p p .  

Using  ( )2 1 1 1b

b b b b
m

′= −X X I p p  then  2
bp  can be written as: 

( )
( )

1 1 1 2

2

1 1 1 2

b

b

b b b
mb

b b b
m

′ ′−
=

′ ′−

I p p X t
p

I p p X t
   (A1.2) 
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Multiplying (A1.2) by ( )1 1b

b b
m

′−I p p and using the equality ( ) ( )2

1 1 1 1b b

b b b b
m m

′ ′− = −I p p I p p  

which stems from the fact that ( )1 1b

b b
m

′−I p p
 
is a projector the right hand side of (A1.2) 

will remain unchanged and it therefore follows:  

( )1 1 2 2b

b b b b
m

′− =I p p p p    (A1.3) 

Expanding (A.3) we obtain ( )1 2 0b b′ =p p  for 1
b ≠p 0 . 

We suppose now that property 1 is valid for 1,2,..., 1a A= − , i.e. for  1 , 1k a A≤ ≤ −  and 

k a≠  we assume that 0b b
k a
′ =p p . From this it follows that  1 1 1 1

b b b b b
A A A A A− − − −

′= −X X X p p  can 

be written as 
1

1 1
1

A
b b b b b
A a a

a

−

=

′= −∑X X X p p    (A1.4) 

or equivalently 
1

1
1

b

A
b b b b
A m a a

a

−

=

 ′= − 
 

∑X X I p p    (A1.5) 

We will now show that 0b b
a A
′ =p p  for 1, 2,..., 1a A= − , where  

b
b A A
A b

A A

′
=

′
X tp
X t

   (A1.6) 

Using (A1.5) we can write b
Ap  as : 

1

1
1
1

1

b

b

A
b b b

m a a A
ab

A A
b b b

m a a a A
a

−

=

−

=

 ′ ′− 
 =
 ′ ′− 
 

∑

∑

I p p X t
p

I p p X t
   (A1.7) 

Multiplying (A1.7) by 
1

1
b

A
b b

m a a
a

−

=

 ′− 
 

∑I p p and using the equality 

21 1

1 1
b b

A A
b b b b

m a a m a a
a a

− −

= =

   ′ ′− = −   
   

∑ ∑I p p I p p , the right hand side of (A1.7) will remain unchanged 

and it therefore follows:  
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1

1
b

A
b b b b

m a a A A
a

−

=

 ′− = 
 

∑I p p p p  (A1.8) 

Expanding (A1.8) we obtain ( )1

1

A
b b b
a A a

a

−

=

′ =∑ p p p 0 . Because the vectors b
ap  are mutually 

orthogonal for 1,2,..., 1a A= − , it follows that ( ) 0b b
a A
′ =p p  for 1, 2,..., 1a A= − .  

Proof of property 2. 

As above the proof will be given by recurrence. First, we proof the property 2 for 2A = . 

i.e, 2 1 0b′ =t t . We consider:  

( )( )2 2 1 1 1 1 1 1 1 2
b b b b b b b b b b′ ′ ′ ′ ′= − − =X X X I p p I p p X X X  (A2.1) 

By summing over b  we obtain 

2 2 1 2
1 1

B B
b b b b

b b= =

′ ′=∑ ∑X X X X (A2.2) 

By multiplying (A2.2) by 1′t  and 2t  we find:  

1 2 2 2 1 1 2 2
1 1

B B
b b b b

b b= =

   ′ ′′ ′=   
   
∑ ∑t X X t t X X t  (A2.3) 

As 2t  is the first eigenvector of 2 2 2 2
1

B
b b

b=

′′ = ∑X X X X  associated to the largest eigenvalue 

denoted by 2λ , the left side of (A2.3) results in 

1 2 2 2 2 1 2
1

B
b b

b
λ

=

 ′′ ′= 
 
∑t X X t t t ,   (A2.4) 

By using the definition of 1
bp  and 2

bp  in (A.1), for the right hand side of (A2.3) becomes 

1 1 2 2 1 1 2 2 1 1 2 2 2 1
1 1 1

B B B
b b b b b b b b

b b b= = =

 ′ ′ ′ ′′ ′ ′= = ⋅ 
 
∑ ∑ ∑t X X t t X X t t X X t p p    (A2.5) 

Combining (A2.4) and (A2.5) we get 

2 1 2 1 1 2 2 2 1
1

B
b b b b

b
λ

=

′ ′′ ′= ⋅∑t t t X X t p p    (A2.6) 

Because of property 1 the right hand side of (A2.6) is zero and therefore 1 2 0′ =t t . 
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We suppose that property 2 is valid for 1,2,..., 1a A= − , i.e. for 1 , 1k a A≤ ≤ −  and k a≠  it 

is 0k a′ =t t . We will show now that 0a A′ =t t  for 1, 2,..., 1a A= − .  

By summing lemma 1a over b  we obtain 

1 1

B B
b b b b
A A a A

b b= =

′ ′=∑ ∑X X X X (A2.7) 

Multiplying (A2.7) by a′t  and At  it follows:  

1 1

B B
b b b b

a A A A a a A A
b b= =

   ′ ′′ ′=   
   
∑ ∑t X X t t X X t    (A2.8) 

As At  is the first eigenvector of 
1

B
b b

A A A A
b=

′′ = ∑X X X X  associated to the largest eigenvalue 

denoted by Aλ , the left side of (A2.8) results in 

1

B
b b

a A A A A a A
b

λ
=

 ′′ ′= 
 
∑t X X t t t , for 1, 2,..., 1a A= −   (A2.9) 

By using the definition of 
b

b a a
a b

a a

′
=

′
X tp
X t

, 1, 2,...,a A= ,  for the right hand side of (A2.8) 

becomes 

1 1 1

B B B
b b b b b b b b

a a A A a a A A a a A A a A
b b b= = =

 ′ ′ ′ ′′ ′ ′= = ⋅ 
 
∑ ∑ ∑t X X t t X X t t X X t p p  for 1, 2,..., 1a A= −  (A2.10) 

Combining (A2.9) and (A2.10) we get 

1
1

B
b b b b

A a A a A A A a
b

λ
=

′ ′′ ′= ⋅∑t t t X X t p p   for 1, 2,..., 1a A= −    (A2.11) 

Because of property 1 the right hand side of (A2.11) is zero and therefore 0a A′ =t t  for 

1, 2,..., 1a A= − .  

Proof of property 3. 

b b b
a k a a k
′ ′ ′=t t p X t    (A3.1) 

Using lemma 1b we obtain 

( )1

b

a
b b b b b b
a a k a m l l k k

l k

−

=

′ ′ ′ ′ ′= −Πp X t p I p p X t    (A3.2) 

Since the block loadings are orthogonal according to property 1, it follows 
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( )1

b

a
b b b b b b
a m l l k k a k k

l k

−

=

′ ′ ′ ′ ′− =Πp I p p X t p X t    (A3.3) 

Replacing b b b
k k k k k
′ ′=X t X t p  according to (A1.6) we obtain 

0b b b b b b
a k a k k k k a k
′ ′ ′ ′ ′= = =t t p X t X t p p    (A3.4)    

Proof of the preliminary lemma. 

 (a) The proof is based on the following equality which results from property 1:  

( )1 1

11
b b

A A
b b b b

m l l m l l
ll

− −

==

 ′ ′− = − 
 

∑ ΠI p p I p p     

It follows 

( )1 1

1 1
11

b

a a
b b b b b b b
a l l m l l

ll

− −

==

   ′ ′= − = −     
∑ ΠX X I p p X I p p     

( )1 1

1 1
11

b

A A
b b b b b b b
A l l m l l

ll

− −

==

   ′ ′= − = −     
∑ ΠX X I p p X I p p    

hence 

( ) ( )1 1

1 1
1 1

b b

a A
b b b b b b b b
a A m l l m l l

l l

− −

= =

 ′ ′ ′ ′= − − 
 Π ΠX X X I p p I p p X        

By using the equality ( ) ( )2

b b

b b b b
m l l m l l

′ ′− = −I p p I p p  we have  

( ) ( ) ( )1 1 1

1 1 1
b b b

a A A
b b b b b b

m l l m l l m l l
l l l

− − −

= = =

′ ′ ′− − = −Π Π ΠI p p I p p I p p     

(b) Lemma 1b follows directly the previous equality.      

 

Appendix B. Orthogonality properties in MBPCA with deflation by 

block scores 

1

b b
b b b b b ba a
a a a a a ab b

a a

+

′
′= − = −

′
t tX X t q X X
t t

, 1, 2,...,b B=  

Preliminary lemma.  

for a k>     
1

b

b ba
b bl l
a m kb b

l k l l

−

=

 ′
=  − 

 ′ 
∏ t tX I X

t t
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B1. Property 1. (Orthognality of block loadings) 

For  1 ,k a A≤ ≤  and k a≠     0b b
k a
′ =p p  

B2. Property 2. (Orthognality of block scores)  

For  1 ,k a A≤ ≤  and k a≠   0b b
k a
′ =t t  

Proof of property 1.  

The proof of property 1 will be given by recurrence. First, we proof the property 1 for 

2A = , i.e. ( )1 2 0b b′ =p p . Note that the b
ap  for 1, 2,...a = ; are given by  

1 1
1

1 1

b
b

b

′
=

′
X tp
X t

 1, 2,...,b B=   (B1.1) 

and   

2 2
2

2 2

b
b

b

′
=

′
X tp
X t

, 1, 2,...,b B=   (B1.2) 

 where in (B1.1) 1
b b=X X and in (B1.2) 1 1

2 1 1

1 1

b b
b b b

b b

′
= −

′
t tX X X
t t

.  

Using  1 1
2 1

1 1

b b
b b

n b b

 ′
= − 
 ′ 

t tX I X
t t

 then  2
b′p  can be written as : 

1 1
2 1

1 1
2

1 1
1 2

1 1

b b
b

n b b
b

b b
b

n b b

 ′
′ −  ′ ′ =
 ′
′ −  ′ 

t tt I X
t t

p
t tX I t
t t

   (B1.3) 

Multiplying (B1.3) by 1
bp  

1 1
2 1 1

1 1
2 1

1 1
1 2 1 2

1 1

b b
b b

n b b
b b

b b
b b

n b b

 ′
−  ′ ′ =
 ′

′ ′ −  ′ 

t tt I X p
t t

p p
t tX t X I t
t t

  (B1.4) 

Using the fact that 1 1 1
b b b=t X p  in (B1.5) we obtain:  
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1 1
2 1

1 1
2 1

1 1
1 2 1 2

1 1

b b
b

n b b
b b

b b
b b

n b b

 ′
−  ′ ′ =
 ′

′ ′ −  ′ 

t tt I t
t t

p p
t tX t X I t
t t

  (B1.5) 

Remark that 1 1
1

1 1

0
b b

b
n b b

 ′
− = 

 ′ 

t tI t
t t

 and the right hand (B1.4) is equal 0, we obtain 

( )2 1 0b b′ =p p . 

We suppose now that property 1 is valid for 1,2,..., 1a A= − , i.e. for  1 , 1k a A≤ ≤ −  and 

k a≠  we assume that 0b b
k a
′ =p p . We will now show that 0b b

a A
′ =p p  for 1, 2,..., 1a A= − , 

where  

b
b A A
A b

A A

′
=

′
X tp
X t

   (B1.6) 

It follows that  1 1
1 1

1 1

b b
b b bA A
A A Ab b

A A

− −
− −

− −

′
= −

′
t tX X X
t t

 can be written as 

1

1
1

b

b bA
b bl l
A m b b

l l l

−

=

 ′
=  − 

 ′ 
∏ t tX I X

t t
  (B1.7) 

And using (B1.7), the equation (B1.6) can be written as the following. 

1

1
1

1

1
1

b

b

b bA
bl l

A m b b
l l lb

A
b bA

bl l
m Ab b

l l l

−

=

−

=

 ′
′ −  ′ ′ =
 ′

−  ′ 

∏

∏

t tt I X
t t

p
t tI X t
t t

  (B1.8) 

Using the obvious fact that 
0

0

1

b

b bA
b bl l
A m ab b

l a l l

−

=

 ′
=  − 

 ′ 
∏ t tX I X

t t
 and multiplying equation (B1.8) by 

0

b
ap  we obtain  
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0 0

0

0

1

1

1
1

b

b bA
b bl l

A m a ab b
l a l lb b

A a
b bA

b a a
n Ab b

a a a

−

=

−

=

  ′
′  −  ′   ′ =

 ′
′ −  ′ 

∏

∑

t tt I X p
t t

p p
t tX I t
t t

  (B1.9) 

Using the fact that 
0 0 0

b b b
a a a=t X p  in (B1.9) we obtain: 

0

0

0

1

1

1
1

b

b bA
bl l

A m ab b
l a l lb b

A a
b bA

b a a
n Ab b

a a a

−

=

−

=

  ′
′  −  ′   ′ =

 ′
′ −  ′ 

∏

∑

t tt I t
t t

p p
t tX I t
t t

 

Using the obvious fact that 0 0

0 0

0 0
0 0

1 1

1
b

b bb b b bA A
a ab bl l l l

m a n n ab b b b b b
l a l al l l l a a

− −

= = +

 ′   ′ ′
  −  =  −  −

    ′ ′ ′    
∏ ∏

t tt t t tI t I I t
t t t t t t

 and by 

remarking that 0 0

0

0 0

0
b b
a a b

n ab b
a a

 ′
 − =
 ′ 

t t
I t

t t
 we obtain the hope result. 

Proof of property 2. 

The proof of property 2 will be given by recurrence. First, we proof the property 1 for 

2A = , i.e. ( )1 2 0b b′ =t t . Note that the b
at  for 1, 2a = ; are given by  

1 1 1
b b b=t X p and 1 1

1

1 1

b
b

b

′
=

′
X tp
X t

 1, 2,...,b B=   (B2.1) 

and   

1 2 1
b b b=t X p 2 2

2

2 2

b
b

b

′
=

′
X tp
X t

, 1, 2,...,b B=  (B2.2) 

 where in (B2.1) 1
b b=X X and in (B2.2) 1 1

2 1 1

1 1

b b
b b b

b b

′
= −

′
t tX X X
t t

.  

Using  
'

1 1
2 1

1 1

b b
b b

n b b

 
= − 
 ′ 

t tX I X
t t

 then  2
bt  can be written as: 
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1 1 1 1
2 1 2 1 1 2

1 1 1 1

b b b b
b b b b b b

n b b b b

   ′ ′
= − = −   
   ′ ′   

t t t tt I X p X X p
t t t t

   (B2.3) 

Multiplying (B2.3) by 1
b′t  

( )1 2 1 1 1 1 2 0b b b b b b b′ ′ ′= − =t t t X t X p  (B2.4) 

We suppose now that property 1 is valid for 1,2,..., 1a A= − , i.e. for  1 , 1k a A≤ ≤ −  and 

k a≠  we assume that 0b b
k a
′ =t t . We will now show that 0b b

a A
′ =t t  for 1, 2,..., 1a A= − , 

where  
b b b
A A A=t X p    (B2.5) 

It follows that  1 1
1 1

1 1

b b
b b bA A
A A Ab b

A A

− −
− −

− −

′
= −

′
t tX X X
t t

 can be written as 

1

1
1

b

b bA
b bl l
A m b b

l l l

−

=

 ′
=  − 

 ′ 
∏ t tX I X

t t
(B2.6) 

And using (B2.6), the equation (B2.5) can be written as the following. 

Property 2.  

1 1

11
b b

b b b bA A
l l l l

m mb b b b
ll l l l l

− −

==

   ′ ′
 −  =  − 
   ′ ′   

∑∏ t t t tI I
t t t t

 

1

1
b

b bA
b bl l
A m Ab b

l l l

−

=

 ′
=  − 
 ′ 

∑ t tt I p
t t

 (B2.7) 

Using the obvious fact that 
0 0

0

1 1

b b

b b b bA a
b b bl l l l
A m a m ab b b b

l al a l l l l

− −

==

   ′ ′
=  −  =  − 

   ′ ′   
∑∏ t t t tX I X I X

t t t t
 and multiplying 

equation (B2.7) by b
at  we obtain  

0 0 0 0

1

b

b bA
b b b b bl l
a A a m a ab b

l a l l

−

=

 ′
′ =  − 

 ′ 
∑ t tt t t I X p

t t
  (B2.8) 

0 0

1

0
b

b bA
b b b l l
a A a m b b

l a l l

−

=

 ′
′ ′=  −  =

 ′ 
∑ t tt t t I

t t
 



 27 

Appendix C. Computation of the explained variances for each block 
C1: Deflation by global scores:  

( )
2 2

1 1

var
R R

b b ba a a a
a a

a aa a a a= =

′ ′′ ′= =
′ ′∑ ∑t t t tX X X

t t t t
 

( ) ( )
2

1 , 1 , 1

var
R R R

b b b b b ba a a a k k a k
a a a a k a a

a a k a ka a a a k k a a k k

trace trace
= = =

   ′ ′ ′ ′′ ′ ′′= = =   ′ ′ ′ ′ ′   
∑ ∑ ∑t t t t t t t tX X X X t t X X

t t t t t t t t t t
 

2

1 1

R R
b b ba a a a
a a a

a ak k a a

trace
= =

 ′ ′′ ′= ′ ′ 
∑ ∑t t t tX X X

t t t t
 

C2: Deflation by block loadings:  

( )
2 2

1 1
var

R R
b b b b b b b

a a a a a a
a a= =

′ ′= = =∑ ∑X X p p X p p  

( ) ( ) ( )
( )

2

1 , 1 , 1

2

1 1

var
R R R

b b b b b b b b b b b b b b b b
a a a a a a k k a a k a a k k

a a k a k

R R
b b b b b b b
a a a a a a a

a a

trace trace

trace

= = =

= =

′ ′ ′ ′ ′ ′ ′= = =

′ ′ ′= =

∑ ∑ ∑

∑ ∑

X X p p X p p p p X p p X p p X

X p p X X p p
 

C3: Deflation by block scores:  

( )
2 2

1 1
var

b b b bR R
b b ba a a a

a ab b b b
a aa a a a= =

′ ′
′ ′= =

′ ′∑ ∑t t t tX X X
t t t t

 

( ) ( )
2

1 , 1 , 1

1

var
b b b b b b b bR R R

b b b b b b b ba a a a k k a k
a a a a k a ab b b b b b b b b b

a a k a ka a a a k k a a k k

b b b bR
b b ba a a a
a a ab b b b

a k k a a

trace trace

trace

= = =

=

   ′ ′ ′ ′
′ ′ ′ ′= =   =  

   ′ ′ ′ ′ ′   

 ′ ′
′=   =

 ′ ′ 

∑ ∑ ∑

∑

t t t t t t t tX X X X t t X X
t t t t t t t t t t

t t t tX X X
t t t t

2

1

R

a=

′∑
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Deflation strategies 
1

b
a+X  

Deflation by Global scores [17] 
b ba a
a a

a a

′ ′−
′

t tX X
t t

 

Deflation by Block loadings [8]  b b b b
a a a a

′−X X p p  
Deflation by Block scores [12] b b

b ba a
a ab b

a a

′
−

′
t tX X
t t

 

Table 1: Deflation in MBPCA. 

Deflation strategies b
ap  b

at  ap  at  

Deflation by Global 
scores 

Not Orthogonal Not Orthogonal Orthogonal Orthogonal 

Deflation by Block 
loadings 

Orthogonal Not Orthogonal Orthogonal Orthogonal 

Deflation by Block 
scores 

Orthogonal Orthogonal Orthogonal Not 
Orthogonal 

Table 2: Orthogonality properties for block loadings, block scores, global loadings and 
global scores for the different deflation methods. 
 

Deflation strategies Reconstruction formulae of Block 
 

Deflation by Global 
scores 1

br
b a a

a
a a a=

′ ′
=  

 ′ 
∑ X tX t

t t
 

Deflation by Block 
loadings 

1

br
b b b

a a
a=

′= ∑X t p   

 
Deflation by Block scores 

1

br
b b b

a a
a=

′= ∑X t q  

Table 3: Reconstruction of block matrices for the different deflation methods 

Deflation strategies Decomposition the total variance 
 

Deflation by Global 
scores ( )

2

1
var

br
b a a

a
a a a=

′ ′
=  

 ′ 
∑ X tX t

t t
 

Deflation by Block 
loadings ( )

2

1
var

br
b b b

a a
a=

′= ∑X t p  

Deflation by Block scores 
( )

2

1
var

br
b b b

a a
a=

′= ∑X t q  

Table 4: The total explained variance for each deflation step for MBPCA 
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Figure 1: The iterative algorithm for MBPCA. 
 
 

 

Figure 2: The deflation strategy in PLSR. 
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Figure 3: MBPCA with deflation by global scores (CPCA): Block score plots (a-e) and 
global score plot (f) for CPCA for an example from biospectroscopy. 
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Figure 4: MBPCA with deflation by block loadings: Block score plots (a-e) and global 
score plot (f) for MBPCA with deflation by block loadings for the same example as in 
Fig. 3. 
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Figure 5: MBPCA with deflation by block scores: Block score plots (a-e) and global 
score plot (f) for MBPCA with deflation by block scores for the same example as in 
Fig. 3. 
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Figure 6: PCA of the single blocks: Score plots (a-e) for PCA of the single blocks for the 
same example as in Fig. 3. 
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Figure 7: MBPCA with any of the three deflation strategies: Block score plots (a-e) and 
global score plot (f) for MBPCA for a simulated example as explained in the text. 
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Figure 8: MBPCA with deflation by block loadings: Block score plots (a-e) and global 
score plot (f) for MBPCA with deflation by block loadings for a simulated example. 
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Figure 9: MBPCA with deflation by global scores (CPCA): First and second block 
loadings for CPCA for the second block for the same example as in Fig. 8. 
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Figure 10: MBPCA with deflation by block loadings: Block score plots (a-e) and global 
score plot (f) for MBPCA with deflation by block loadings for the same example as in 
Fig. 8. 
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Figure 11: MBPCA with deflation by block loadings: First and second block loadings for 
MBPCA with deflation by block loadings for the second block for the same example as 
in Fig. 8. 
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Abstract  

A framework is presented that allows simultaneous analysis of metabolic shifts 

between lipid classes and remodelling shifts within lipid classes. The framework 

consists of a particular within/between-class pre-processing, followed by multi-block 

multivariate data analysis. Particular features are illustrated using simulated data, and 

the framework is demonstrated for a lipidomics data set from a human intervention 

study.                   

Keywords  
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Background  

Lipidomics is an emerging –omics technology aiming at investigating the diverse 

nature and roles of lipids in biological systems. Lipids are a diverse group of chemical 

species, often grouped into a low number of more homogeneous classes (chemical 

groups), each containing a range of chemical species (molecular types). Biologically, 

lipids are involved in many different cellular functions and metabolic pathways. 

Therefore the “lipidome” (the profile consisting of “all” relevant lipid species) can 

vary in many different ways between different tissue types or at different points in 

time, as well as between different individuals, e.g. due to different food habits, 

medical syndromes, treatments, etc. As science’s ability to quantify the details of the 

lipidome increases, the challenge of interpreting the lipidomic data also increases. 

Lipidomics studies are carried out in many fields of science. In nutrition and food 

science [1-3], scientists are interested in studying effects of different diets on the lipid 

profile in body liquids and cells in order to estimate health effects of the diets. In 

pharmaceutical and medical sciences [4, 5] lipidomics studies are undertaken to test 

effects of drugs on lipid profiles. In healthcare studies [6-9] investigating the lipid 

profiles is an important step towards a better healthcare management. For instance, 

the cholesterol level and composition has been used for many years as biomarker for 

the estimation of the risk of heart disease, while the triglyceride level and composition 

are important biomarkers for estimating the risk of diabetes [10]. 
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Eight major, more or less homogenous lipid classes are usually recognized: Fatty 

acids (free, mono-di and tri-glycerides), Glycerolipids, Sphingolipids, Sterols, 

Glycerophospholipids,  Prenol lipids, Saccharolipids and Polyketides [11]. Each of 

these classes has its own sub-classification hierarchy. For instance, Sphingolipids are 

classified into the following three sub-classes: Ceramides (Cer), Sphingomyelins (SM) 

and Glycosphingolipids ([glycan]-Cer), while Glycerophospholipids are classified into 

several sub-classes among them are Glycerophosphocholines (PC), 

Glycerophosphoethanolamines (PE), Glycerophosphates (PA), 

Glycerophosphoserines (PS) and Glycerophosphoglycerols (PG).   

Shifts in the concentrations between the different lipid classes may reflect important 

metabolic processes that transform lipids in one lipid class into lipids in a different 

lipid class. On the other hand, concentration changes of lipid species within a given 

lipid class (or sub-class) may also take place – this is in lipidomics termed 

remodelling. The two types of processes can take place simultaneously or 

independently, being due to the same cause or different causes.  To discover the 

causal patterns behind complex lipidomic changes, both types of changes need to be 

experimentally perturbed and data-analytically detected and visualized. For instance, 

when studying remodelling effects it is important to monitor the relative changes 

within each of the lipid classes.  

Data analytical challenges in lipidomics. Several studies [12-15] have mentioned the 

need for modern statistical and computational tools in lipidomics. One of the reasons 

is that modern instrumentation offers new opportunities to understand causality and 

predict developments, but also poses new challenges – in lipidomics as elsewhere. 

High-throughput high-dimensional instrumentation (chromatography, mass 

spectrometry etc.) allows identification and quantification of hundreds or thousands of 

lipid species in each biological sample, at widely different concentrations. This large 

and heterogeneous set of measured variables presents cognitive as well as statistical 

problems: How can we find the essential changes in the lipidome, and how can we 

test if the observed effects are statistically valid? With a high number of input 

variables (lipid constituents) from a low number of samples (e.g. patients), traditional 

univariate analysis methods are easily misinterpreted, for two reasons. The first one is 

the multiple testing problem: When e.g. conventional t-tests are performed 

independently on a high number of variables in a low number of independent samples, 

the chance for false discovery is high. To guard against this,  penalizing the p-values 
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from the many t-tests is often used – e.g. by  Bonferroni correction [16, 17]. But this 

can lead to false negatives – even causally valid relationships in the data may then be 

deemed “non-significant”. For instance, detecting potential lipid biomarkers is often 

one of the major goals of the lipidomics studies. Univariate statistical tests (such as 

Student t-test) are widely used for this purpose. However, a multiple-testing problem 

is often likely, due to the large number of lipids and low number of patients in these 

studies. 

But traditional univariate analyses pose a second problem as well: Changes in the 

different lipids reflect systematic biological mechanisms. Therefore lipids within a 

lipid class are often inter-correlated, and so are the different lipid classes. These 

natural inter-correlations between different lipids can lead to misguided 

interpretation, if traditional, but commonly used full-rank statistical regression and 

discrimination tools are used: Because these natural inter-correlations then pose 

estimation problems (“the multi-collinearity problem’), only a small subset of the 

available input variables is then reported, and this variable selection process may be 

misleading.  

One-block multivariate data modelling. The risk of over-fitting is lowered when using 

subspace-methods like Principal Component Analysis (PCA) [18]. Recently, various 

studies have employed PCA for investigating and interpreting lipidomics data sets 

[19-22]. PCA is an un-supervised subspace method for multivariate data analysis. 

This method can detect and display patterns of samples and variables, revealing their 

actual relationship in the data and enabling new hypothesis generation. The subspace-

method collects the naturally occurring patterns of co-variation between the many 

input lipid variables into a lower number of “super-variables” (estimated latent 

variables). And since strong co-variation patterns are thus detected in an unsupervised 

manner, and only few latent variables are usually needed, the problem of multiple 

testing can be greatly reduced. In fact, methods such as PCA utilize such natural inter-

correlation patterns as a stabilizing advantage (rather than a “collinearity problem” as 

in many traditional statistical methods), and the interpretation of the low-dimensional 

solutions is far simpler than assessing all the input variables individually. In most data 

sets, there are strong inter-correlation patterns between single variables, desirable 

ones due to common causal mechanisms, and undesirable ones due to inadequate 

sampling. The analysis of a given data set can not resolve these ambiguities, because 

the measured data set at hand simply does not contain enough information. However, 
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when all the inter-correlated variables are visualized together in a sub-space that 

reveals the co-variation patterns, the scientist may come up with causal hypotheses, 

based on his or her background knowledge. That is one of the main strengths of 

graphically oriented multivariate data modelling by subspace analysis.  

Another important challenge for the data analysis of lipidomics data is the need to 

integrate information from different classes of lipids and analyze them 

simultaneously, in order to explore lipid-lipid remodelling within classes as well as 

the dynamics of metabolism between classes. Above all, there is a need for integrating 

lipidomics data together with other types of variables in order to study how the co-

variation patterns within and between the lipid classes relate to other measured 

variables, and/or background information such as personal data and medical or 

nutritional treatment. In order to give answers to these questions, data analytical tools 

that are capable of integrating lipidomics data into one interpretable data model are 

needed.   

Two-block multivariate data modelling. The PCA method, which extracts the internal 

patterns of co-variation within one block or class of input variables at a time (by 

maximizing the amount of variance described within a block of variables), has been 

extended to two-block subspace regression methods. Partial Least Squares Regression 

(PLSR) [23] is a supervised subspace method that maximizes covariance between two 

blocks of variables. PLSR is now widely used in lipidomics to relate lipid variables to 

other types of variables, e.g. when the researcher is interested in interpreting the lipid 

measurement profile in light of the design information [24-27].  However, when more 

than two blocks of variables are to be interrelated (e.g. several lipid classes, gene 

expression, external patient data and experiments design descriptors), the two-block 

PLSR is not sufficiently informative. 

Multi-block multivariate data modelling. Data modelling methods that are capable of 

maintaining block structure, as for example the block structure of the blocks of lipid 

classes, are called multi-block methods. Multi-block methods were originally 

introduced for integrating data in sensometrics and psychometrics [28-31]. In recent 

years these methods have received attention in the field of data modelling of -omics 

data [32-34]. 

Pre-processing to change the units of the data. A promising use of multi-block 

analysis of lipidomics data is the study of remodelling effects. When lipids are said to 

be remodelled within specific lipid classes, it means that some kind of lipid dynamics 
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is taking place within those specific lipid classes. This is opposed to lipid 

metabolisms, which transfers lipids form one lipid class into lipids from a different 

lipid class.   

Detecting the remodelling effects and revealing the mechanisms between different 

lipid classes are some of the major challenges in the field of lipidomics. The reason is 

that, in order to reveal these two effect types clearly, the data modelling processes 

need to keep both the lipid class and species structures in the data modelling process, 

and they are not necessarily easy to represent with variables given in the same unit.  

For instance, metabolic processes leading to conversion of molecules from one class 

into another may most easily be studied in a unit that reflects mass balance (e.g. 

mg/cell or microgram/gram tissue). But the remodelling within a lipid class may most 

easily be interpreted in a unit that is insensitive to the total concentration of each lipid 

class, e.g. in % of the lipids within each class. There is a need for data analysis 

methods that are able to analyze data sets on the lipid species level and on the lipid 

class level simultaneously and to make the mechanisms visible. This calls for 

conscious pre-processing of the variables to ensure that they are represented in 

suitable units: otherwise they will not correlate across the samples in a way that reveal 

the difference between metabolic changes and class remodelling.  

The aim of this study is to present a framework for integrating lipidomics data that is 

capable of detect and reveal both between- and within-class variations, detecting both 

metabolic and remodelling processes and showing how they relate to external 

variables such as feeding descriptions. This is accomplished by applying a pre-

processing strategy that keeps the lipid class and species structure in the data 

modelling process. Two different versions of the data are then submitted to multi-

block techniques such as Consensus PCA (CPCA) and Multi-block PLSR 

(MBPLSR). 

These methods are intended to provide the users with efficient methods of information 

extraction, compact and statistically stable information representation, simple 

statistical validation tools, and good  graphical functionalities for interpretation in 

terms of both overview and detail. In this article we present statistical validation tools 

based on cross-validation (assessing optimal subspace model rank and model 

stability) and Monte Carlo permutation tests (assessing the distribution of the null 

hypotheses of no valid relationships in the data). This is applied for testing the 

contribution of lipid classes and species to the detected patterns. The pre-processing 
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and subspace data modelling is demonstrated on a real lipidomic data set from a 

human nutrition study. But first, some essential phenomena are illustrated by slightly 

modifying this data set artificially. 

Results  

Structuring lipid classes prior to data integration 

In order to analyze lipidomics data we suggest arranging lipidomics data as a multi-

block data set, e.g. according to the major classes of lipids mentioned above. This is 

done by aligning the data in such a way that samples (e.g. patients) are represented by 

rows and variables (lipid species, background variables etc.) by columns. The lipid 

species are grouped into different data blocks according to their lipid classes, each 

data block containing lipids belonging to the same lipid class. Each individual lipid 

variable is given a short name, to give informative plots. Fig. 1a illustrates an example 

for arranging the lipidomics data set as a multi-block data set. We assign one 

additional lipid class to possibly unidentified lipids. This predefinition of lipid classes 

is a structure, which the scientist imposes. The grouping of lipids into any different 

lipid classes or sub-classes is in principle also possible. 

Pre-processing of structured data with respect to the lipid classes 

In order to highlight remodelling effects we suggest using two alternative 

normalization strategies:  

1) To represent all variables in, or proportionally to the same basic unit, to maintain 

over-all mass balance, i.e. to normalize each row containing the total lipid profile for 

one sample with respect to the total amount of lipids.  

2) To normalize all the rows in a block (lipid class) relative to the total amount of 

lipids within this class. First, the concentration of lipids of each lipid class is summed 

and defined as a new variable within that class, referred to as its ‘lipid class sum’. 

Then the individual lipid variables are normalized relative to this lipid class sum. This 

means that for each sample (row), all lipids in each class are divided by its lipid class 

sum. Thus, each class consists of a set of variables reflecting the relative 

concentration (e.g. percentage) of its individual lipids, plus one variable reflecting its 

over-all contribution to the total amount of lipid. 

The second lipid class normalization procedure is illustrated in Fig. 1b for an example 

lipid class. Detailed theory for implementation is provided in Methods section. Thus, 
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metabolic changes in the total amount of the different lipid classes are to be revealed 

by patterns of co-variation in the lipid class sums in the different blocks, while within-

class remodelling processes are to be revealed by the relative fraction (or percentages) 

of lipids within each lipid class. If both metabolic and remodelling processes are 

controlled by the same external phenomena, they will be revealed by the same 

subspace dimensions, while if they are independent of each other, they will be seen to 

span different subspace dimensions. 

CPCA: An explorative unsupervised approach for integrating lipid classes 

CPCA [35] is an un-supervised multivariate exploratory technique that allows 

integrating several data blocks with multivariate measured variables for the same 

samples. As in PCA and PLSR, every variable is usually mean-centred and 

standardized to a total initial variance of 1 before the data modelling process.  

Moreover, as a standard procedure, the different data blocks in CPCA (and MBPLSR) 

are then scaled in order to set them on an equal footing, i.e. so that the total initial 

sum-of-squares is the same for all blocks. The rationale behind this is to give every 

data block the same importance in the data modelling process. This scaling of the 

variables enhances the probability of the CPCA detecting all interesting co-variance 

structures before being hit by noise. But it does not affect the relationship between 

them, provided that the model loading parameters are plotted in a descaled or scale 

free version. Details about mean-centring and scaling as well as a brief description of 

CPCA are given in the Methods section. A more detailed description on the 

implementation of CPCA together with algorithms for validation can be found in [32]. 

One of the strengths of CPCA is that visualization tools of sample variation patterns 

and variable variation patterns are readily available. As in PCA and PLSR, the 

patterns of covariation between the variables are shown by their so-called loadings, 

usually pair-wise for the first few subspace dimensions. For visual simplicity, these 

loadings are often represented as unit-free correlation loadings (correlations between 

input variables and latent variables). The corresponding patterns of samples are 

plotted as so-called scores.  Together, the plots of loadings and scores allow the 

interpretation of the main variation patterns present in each block and relations 

between the data blocks. For visualization of sample variation patterns, global and 

block score plots are used, while correlation loading plots are employed to discover 

relations between variables in each data block and between the data blocks. The 
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global score plot offers an overview over sample variation patterns and sample 

clusters as a consensus for all the different lipid classes. Thus, it gives a common 

compromise picture of the samples’ groupings, more or less shared between all of the 

lipid classes. For data in the first pre-processing, it shows the main patterns of the 

whole lipid profile. In addition to the global score plot, a block score plot is produced 

for each lipid class, visualizing how these patterns are manifested in each individual 

block.  

An overview of the lipid-lipid interactions is shown in the correlation loading plot. 

This plot displays all the lipids within the space of few latent variables and helps 

identifying correlations among all lipids, thus providing an opportunity for studying 

the causal pathways and their dynamics within and between different lipid species and 

lipid classes, under the different pre-processing regimes applied.         

Identifying the grouping patterns in the score plots is somewhat subjective. Therefore, 

it is crucial to validate the detected patterns. In a previous article we proposed 

studying the global and block Root Mean Squared Error (RMSE) plots as a tool for 

validating the CPCA results [32]. Investigating these plots helps identifying the lipid 

classes that are significantly contributing to the detected grouping patterns. Here, we 

propose in addition to assess significance by Monte Carlo testing. Details are in the 

Methods section.  

The above mentioned permutation tests provide p-values for the contribution of each 

lipid class to the grouping of samples which is then used for detecting the important 

lipid classes. Investigating the important lipids may be done by running an uncertainty 

t-test which results in a p-value for each lipid. We previously described the details for 

implementing the uncertainty t-test in [32].                             

Integrating two lipid classes with simulated remodelling effect  

In order to investigate the effect of the two different normalization procedures 

(described in Fig. 1b) a data set was simulated. The data set mimics a two-block 

lipidomics data set consisting of lipids belonging to the lipid classes LycoPC and 

Ceramides (Cer). The data set was simulated based on a real lipidomics data set where 

LycoPC and Ceramides were measured for three different intervention groups at the 

baseline and after the intervention period. The complete data set is described in more 

detail in the application example part. In the simulated data set, remodelling was 

predefined by increasing the concentrations of the compound named Cer(d18:1/24:0)  

by a small amount, while correspondingly decreasing the concentration of another 

 - 9 - 



compound, Cer(d18:1/22:6) by the same small amount in Group 1 samples during the 

intervention period. This was done by adding a small number to the baseline amount 

of Cer(d18:1/24:0) and then using the increased amount as the level of 

Cer(d18:1/24:0) after the intervention period. A similar process (in the opposite 

direction) was performed by reducing the amount of Cer(d18:1/22:6) from the 

baseline and using the results for the level of Cer(d18:1/22:6) after the intervention 

period. The rest of the real data set remained untouched. Correlation loading plots for 

the CPCA modelling of the simulated data set after normalization with respect to total 

amount of lipids are shown in Fig. 2a and after normalization with respect to the lipid 

classes in Fig. 2b. The remodelling effect of Cer(d18:1/22:6) into Cer(d18:1/24:0) is 

depicted most clearly by Fig. 2b: they are located opposite of each other and they are 

related to Group 1 samples. Cer(d18:1/24:0) is positively correlated to Group 1 which 

leads to the conclusion that the relative amount of this lipid in Group 1 has increased 

during the intervention. The negative correlation of Cer(d18:1/22:6) with Group 1 is 

an indication for a reduced percentage of this lipid during the intervention period. The 

total amount of Ceramides (TotalCer) falls inside the inner circle and is therefore not 

significantly changing during the intervention period. In the correlation loading plot in 

Fig. 2a we cannot observe this remodelling process within the Ceramides lipid class, 

since Cer(d18:1/24:0) and Cer(d18:1/22:6) are not located on opposite sides of the 

correlation loading plot.  

When investigating the significance of the observed changes in the Ceramides lipid 

class (using Monte-Carlo permutation tests) we found it to be not significant when we 

normalize with respect to the total amount of lipids (by method 1, Fig. 2a, p-

value=0.14) while it is found to be significant when the normalization procedure is 

performed with respect to the lipid classes (by method 2, Fig. 2b, p-value=0.05). 

We also simulated a different lipidomics data set where the lipids of a lipid class are 

transformed into the lipids from another lipid class. As in the data set used before, the 

simulated data set is a modified real data set already containing a distinct variation 

pattern. We used a four-block data set containing Ceramides, LycoPC, LycoPE and 

PA. The data set was modified by increasing all lipids in the lipid class Ceramides for 

Group 1 samples during the intervention period while lipids in the LycoPC class were 

decreased for these samples. Correlation loading plots for the two different 

normalization procedures are shown in Fig. 2c-d. Fig. 2d illustrates the results when 

the data is normalized by method 2 within the lipid classes. One can see that the total 
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amount of Ceramides and LycoPC are found to be clearly changing (they are 

positioned near the outer circle) while the total amounts of lipids in the other two 

classes are not significantly changing. Since the total amount of Ceramides stands 

close to the Group 1 samples we can conclude that this lipid class is increased in this 

intervention group. The total amount of LycoPCs is on the top of the correlation plot, 

in the positive direction of component two, while the design factors for group 2 and 3 

are in the positive direction of the first component. This separation can be explained 

by a variation pattern that was originally present in this data set, before the data were 

modified. What is striking is that the correlation plot in Fig. 2d suggests a remodelling 

in the Ceramides class, since the three lipids in this class are separated along the first 

component. Cer(d18:1/24:0) and Cer(d18:1/16:0) are now on the opposite side as 

Cer(d18:1/22:6). The reason for this is the normalization within each lipid class: Since 

each lipid class is normalized to contain the same amount of lipids, we now focus on 

relative changes among the lipids in each class, which is also present only if all lipids 

within one class increase accordingly, therefore no remodelling is detected. 

We can conclude that relative minor remodelling shifts, already present in the input 

data, were only weakly evident after pre-processing method 1 (Fig. 2c). But they 

became much more evident after the normalization within each lipid class (pre-

processing method 2). 

When increasing all individual lipids in the Cermides class for Group 1, Fig. 2d might 

be misunderstood as indicating that the some of the LysoPC lipids were decreased in 

this class.  This illustrates that when interpreting the correlation loading plots, the unit 

in which the variables are represented must always be kept in mind. In the present 

illustration, after pre-processing method 2 the total Cermides was given in one unit 

(here: micromol/liter), and the individual LysoPC lipids in another (fraction of the 

total LysoPC concentration). But incidentally, they happened to vary in similar ways 

here, which could be interpreted as a common causality behind both a metabolic 

between-class process and a within-class remodelling.  

MBPLSR: An explorative supervised approach  

The multi-block extension of PLSR (MBPLSR) is useful when lipidomics data are to 

be regressed on or compared explicitly to other types of variables, e.g. describing the 

experimental design. MBPLSR may be used as an explorative technique that tries to 

find the main patterns in the descriptor data that at the same time can predict the main 
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patterns in the response data. But it may also be used for confirmative analysis, as a 

generalization of e.g. multi-response ANOVA. Thus the MBPLSR can be used in two 

different ways, depending on whether the lipidomics variables are used for predicting 

the other variables or vice versa. These will here be named MBPLSR-DA and  

ANOVA-MBPLSR, following the naming conventions in two-block PLSR [36]. 

MBPLSR-Discriminant Analysis (MBPLSR-DA). MBPLSR is called MBPLSR-DA 

when the pre-processed data of multi-block lipid variables are used as the descriptor 

variable set ( X ) and a matrix containing the treatment grouping information is used 

as the response variable set ( ). The MBPLSR-DA can then be used for revealing 

patterns and groupings in the lipidomic data (similar to CPCA), while at the same 

time investigating how these patterns relate to e.g. the design factors of the 

experiment.  

Y

The response data matrix (i.e. a matrix of 0s and 1s) is usually built in a way that one 

variable is assigned to every treatment group in the experiment. The samples 

belonging to the assigned group get a value of 1 while the rest of the samples get 0. 

Assuming that the  samples (people or people times time points) in the experiment 

are grouped into L different intervention groups,  will be a matrix of size  of 

1s and 0s. It is worth mentioning that we do not necessarily need to have as many 

variables in  as the number of groups since the samples that do not belong to the 

previous 

N

Y N L×

Y

1L −  groups are obviously belonging to the last one. Therefore a matrix of 

size  can equally be used in most of the situations. Still using one column 

for every group is recommended for graphical clarity, and does not pose any rank 

problems, since PLSR and MPLSR are designed to handle collinearity. 

( 1N L× − )

Similar to CPCA, the data sets (i.e. both X  and ) should be pre-processed in terms 

of mean-centring, standardizing and (optionally) block-normalizing prior to the data 

MBPLSR modelling. The modelling is described briefly in Methods section while the 

detailed algorithms were described by us in [37].   

Y

Different parameters (e.g. global/block scores and loadings) are generated during the 

implementation of MBPLSR-DA on a lipidomics data set. The same powerful 

visualization tools are available as for CPCA. For instance, the grouping patterns that 

are common between different lipid classes are investigated by means of a global 

score plot. The grouping patterns within each lipid class then can be studied through 

corresponding block score plots. We generally expect to detect similar patterns as 
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were seen by CPCA. However, the grouping patterns that are related to the treatment 

may be more emphasized, since PLSR is a supervised method, and patterns in the 

descriptor variables  that have strong covariance with  will be favoured.  Y X

Similar to CPCA, validating the detected patterns is required.  

Statistical validation. Validation may be performed by investigating the  plots, 

calculating prediction error for each lipid class block [37].  The number of statistically 

valid PLS components must be determined. Like for ordinary PLSR, this may be 

attained by initially computing more components than conceivably necessary, and use 

cross-validation to determine the optimal model rank – which is normally defined as 

the number of PLS components from X that have clear predictive ability for Y. The 

cross-validation information is assessed block-wise to assess the importance of the 

different PLS components in the different blocks. In addition we suggest Monte Carlo 

permutation tests in order to estimate the significance of each lipid class for predicting 

each of the intervention groups. The detail for how to implement the Monte Carlo 

permutation tests for MBPLSR-DA models is given in Methods section.  

YRMSE

As in CPCA, lipid-lipid interactions within the lipid classes as well as their 

relationship to each lipid class as a whole can be investigated by studying the 

correlation loading plots. Significance tests on regression coefficients of the 

MBPLSR-DA models are performed to estimate the significance of single lipids.                                  

ANOVA-MBPLSR. The MBPLSR may also be used for analysis of variance with a 

high number of response variables. In order to perform ANOVA-MBPLSR, the 

variables with design information about the rows (e.g. the patients) are used as 

descriptor variables ( X ) while the multi-block set of lipid variables in the different 

classes is used as the response variables ( 1, ..., , ...,b B⎡ ⎤= ⎣ ⎦Y Y Y Y ). MBPLSR is then 

employed in order to make a linear, possibly reduced-rank predictive model where the 

design information in X is used for predicting the lipidomic variable set in Y. The 

detail for running MBPLSR when the response data ( Y ) is a multi-block data set does 

not yet exist in the literature. Details are therefore given in the Methods section. The 

results of the analysis can be investigated through the global/block score plots for  

where the grouping patterns of the samples can be studied both between the lipid 

classes as well as within a lipid class. We propose to validate the model by studying 

the 

Y

XRMSE  plots.  The detail for how to calculate XRMSE  and generate the error 

plots when dealing with a multi-block response data set is given in the Methods 
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section. The global/block XRMSE  plots are plotted for each different factor of the 

background information separately. These plots validate the effect of each factor in 

the matrix containing group indicator variables on the detected grouping patterns. As 

before, we propose running Monte Carlo permutation tests and estimating the p-

values for getting estimates for how strongly the design factors affected the lipid 

classes. Details are given in the Methods section.             

Application example 

In this section a lipidomics data set from an intervention study is used for 

demonstrating the above described methods. The intervention study was a double-

blinded randomized controlled parallel-group study on healthy subjects where each 

person was assigned to one of the three intervention groups: (a) fish oil group, (b) 

oxidised fish oil group or (c) high-oleic sunflower oil group. Fifty people completed a 

fully controlled diet period of three weeks. The intervention study was previously 

described in [38]. The lipid profiles of subjects for the baseline and after the three 

weeks of intervention period were measured where 568 lipids were characterized and 

260 were identified. The 568 lipids were split into the following  11 blocks of 

variables, representing the  lipid classes and subclasses deemed most relevant for the 

present case [3]: Ceramides, lysophosphatidylcholines (lysoPC), 

lysophosphatidylethanolamines (lysoPE), phosphatidic acid (PA), 

phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols 

(PG), phosphatidylserines, sphingomyelins (SM), triglycerides (TG). For illustration 

we show results of an integration of the classes, Ceramides, lysoPC, PC and TG 

where the classes contain 3, 12, 57 and 87 measured lipids respectively. In the 

following we will refer to the three intervention groups as group 1, group 2 and 

group 3, respectively   

Data pre-processing 

As described before, the lipids were measured at two different time points: once at the 

baseline and then after three weeks of intervention period. The data blocks of lipid 

classes (both for baseline and after three weeks) were first pre-processed according to 

the second normalization procedure described in the Results section. Secondly, in 

order to correct for baseline effects, log2 ratios of the data from two visits were 

calculated. This is done because the fold changes of the lipids after the intervention 
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period are often of more interest than the original measured concentrations at every 

visit. This enabled us to investigate the proportional effect of the intervention diet on 

the lipidomic profile regardless of the baseline amounts of lipids. The structure of the 

pre-processed data is shown in Fig. 3b and will be used for CPCA and MBPLSR data 

modelling:  

CPCA modelling 

The grouping patterns of the samples are studied by block/global score plots of 

CPCA. Fig. 4 illustrates the block and global score plots for the CPCA model. The 

grouping pattern of the subjects that are in common between different lipid classes 

(i.e. the global pattern of all the lipids in the analysis) is seen in the global score plot 

(Fig. 4f). The global score plot in Fig. 4f shows a clear separation between the 

intervention group 1 and the other two intervention groups along the first principal 

component. A similar pattern as is seen in the global score plot is also detected in 

some of the lipid classes e.g. lycoPC, PC and TG while the other two blocks (i.e. 

Ceramides and Sum Lipids) do not show clear grouping patterns. Higher components 

did not show any informative groupings (results are not shown). 

In order to validate the detected patterns, RMSEs for each lipid class are estimated as 

described in the methods section. RMSEs for the different lipid classes are shown in 

Fig. 5a as a function of the number of components included in the model. Inspecting 

the RSME plots we can see that blocks 2, 3 and 4 (i.e. lycoPC, PC and TG) are 

contributing mostly to the global patterns as shown in Fig. 4f. Validated explained 

variances are shown in Fig. 5b, revealing that validated explained variances for the 

Ceramides and “Sum Lipids” are negative for the first component indicating that these 

blocks are not contributing to the separation of the intervention groups. One can see 

that Ceramides are contributing considerably to the second component, however the 

intervention groups were only separated with respect to the first component and 

therefore this class is not relevant for the separation of the intervention groups.   

Further we estimated p-values for the significance of the contributions of each block 

to the global pattern by Monte Carlo permutation tests. As an example, the calculation 

of the p-value for Ceramides data block for a CPCA model containing one component 

is described in the following: First, 1
1

b
ARMSE =
=  is calculated for the multi-block data set 

(we call it true 1
1

b
ARMSE =
=  here). Then, 1000 permutations are run (according to the 
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Methods section) and 1
1

b
ARMSE =
=  is calculated in each permutation run. The p-value for 

the test is given by dividing the number of the permutations whose calculated 
1
1

b
ARMSE =
= s are smaller than the true 1

1
b
ARMSE =
=  by the total number of permutations 

(i.e. 1000 here). The calculated p-values for the lipid classes are as following: 

Ceramides (0.996), lycoPC (0.000), PC (0.000), TG (0.007) and Sum Lipids (0.672), 

i.e. the lycoPC, PC and TG class are considered to be highly significant We notice 

that group 2 and group 3 are not well separated in the CPCA model. 

MBPLSR-DA 

When  analyzing the data by MBPLSR-DA  the pre-processed, mean-centred and 

scaled five-block lipidomic data set is used as descriptor data 

(  where  are Ceramides, lycoPC, PC, TG and Sum 

Lipids respectively) and the intervention groups of the samples are used as the 

response data block Y  of size 

1 2 3 4 5, , , ,⎡ ⎤= ⎣ ⎦X X X X X X 1,...,X X5

( )48 3× . Block and global score plots for the 

MBPLSR-DA model are plotted in Fig. 6. The global score plot (Fig. 6f) shows a 

distinct grouping for the samples belonging to group 1. One can see that the grouping 

here is more clear compare to Fig. 6f. Similar to the results from CPCA, Ceramides 

and the Sum Lipids do not show a clear grouping pattern. However, the other three 

classes show clear grouping patterns. Here even a separation between group 2 and 3 is 

visible, especially for the lipid class PC.  

The correlation loading plot for the MBPLSR-DA model is shown in Fig. 7. This plot 

shows that the first component is able to separate the group 1 samples from the other 

samples pretty well. We also can see that group 2 and 3 are fairly separated from each 

other by the second component. The lipids that are significantly contributing to the 

separation between the different groups: lycoPC(22:6), lycoPC(20:5), PC(36:5), 

PC(40:6) and several TGs (e.g. TG(56:9)) are contributing to the separation of the 

group 1 from the other intervention groups. All of these lipids are located close to 

each other leading to the conclusion that they increase and decrease together. Three 

lipids of the PC class (i.e. PC(40:4e), PC(37:4)/PE(40:4) and PC(38:5e)) are located 

on the opposite side of the PC(36:5) showing that an increase of these three lipids 

leads to the decrease of PC(36:5) and vice versa. PC(36:5) is located on the same side 

of the plot as the intervention group 1. Therefore, the amount of this lipid in the 

subjects belonging to the intervention group 1 is high while the amount of the three 
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lipids which are located in the opposite direction (i.e. PC(40:4e), PC(37:4)/PE(40:4) 

and PC(38:5e)) is low in group 1.   

The detected grouping patterns are validated by studying the error plots for every 

intervention group. These plots validate the ability of the lipid classes discriminating 

the respective intervention group from the other groups. Three RMSEY plots for the 

three intervention groups are shown in Fig. 8. Comparing the plots with each other, 

one can see that the error plots for intervention group 1 reduces much more than the 

other two groups. Therefore, the separation of group 1 is much more significant 

compare to that for the other groups. Fig. 8a illustrates that this separation can be 

detected just by the first component and lycoPC, PC and TG are responsible lipid 

classes for this grouping. The RMSEY plots for Ceramides and Sum Lipids (blocks 1 

and 5 in Fig. 8a-c) show that these lipid classes do not contribute to the separation of 

any of the intervention groups. Fig. 8b illustrates also an important aspect of PC since 

it shows that PC can distinguish the group 2 samples (by the second component) from 

the other intervention groups pretty well compared to the other lipid classes.  

The contribution of different lipid classes to the MBPLSR-DA model can be further 

examined by studying  the explained variances (for details see methods section). The 

validated explained variances are plotted in Fig. 9. The validated explained variance 

for the global model for separating group 1 samples (Fig. 9a) by the first component is 

more than 80%. Therefore, the global MBPLSR-DA model can separate the group 1 

samples from the rest by means of the first component to a large extent. LycoPC, PC 

and TG are the lipid classes which are contributing to this separation (by explaining 

almost 80%, 70% and 60% variances) while Ceramides and Sum Lipids are not 

contributing at all (these two class are showing negative validated explained 

variance). Fig. 9b and Fig. 9c show that lysoPC, PC and TG are also the lipid classes 

that contribute most to the separation of both groups 2 and 3. However, this separation 

is week, since the validated explained variances in  less than 20% for allof these 

classes. Fig. 8 and Fig. 9 show that there is a significant difference between the 

separation of group 1 samples compared to the other two groups.  

Y

In order to estimate if blocks are contributing significantly to the discrimination of 

group 1 from the other groups, we ran Monte Carlo permutation tests (1000 

permutation runs) and obtained p-values for each lipid class. The calculated p-values 

for the lipid classes for the separation of group 1 for a 1-component model are as 

follows: Ceramides (0.328), lycoPC (0.000), PC (0.000), TG (0.000) and Sum Lipids 
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(0.453). The p-values confirm that the lycoPC, PC and TG lipid classes are clearly 

separating group 1 from the other groups by the first component. 

Table 1 shows the p-values for the significant lipids for the separation of group 1 

samples obtained by a significance test on the regression as explained in the method 

section.  

The fact that the Sum Lipids data does not show any significant contribution to the 

grouping patterns shows that the total amount of the lipids in the lipid classes is not 

changing significantly during the intervention. However, few lipids are identified that 

are significantly contributing to the grouping patterns meaning that these lipid species 

are changing significantly during the intervention (Table 1). Therefore, we can 

conclude that the intervention resulted in the remodelling of these detected lipids.                

Including background information 

In order to include additional background information we use ANOVA-MBPLSR for 

investigating the effect of the collected background information on the detected 

patterns in the data. For the present lipidomic data set we have three additional 

background variables:  gender, age, BMI. As described in the Results section, we use 

the intervention grouping information and these three variables as the descriptor data 

(one data matrix) while the lipid classes are used for the response data set (five data 

matrices). This means that we estimate by ANOVA-MBPLSR modelling if grouping 

and background information can predict the lipid profile. The global and block score 

plots for the first and second components are shown in Fig. 10. We see that the global 

score plot separated group 1 samples nicely from the rest of the samples. As before, 

PC, lycoPC and TG are the lipid classes that are contributing mostly to this 

separation. The score plots of the third and fourth components did not reveal any clear 

grouping patterns (plots are not shown here). 

In order to investigating the effect of the background information on the lipid profile 

error plots are studied. The error plots for a 2-component model are shown in this Fig 

11. BMI is the factor which is contributing mostly followed by Age. Gender does not 

seem to have any effect at all. P-values for estimating the contribution of the BMI and 

Age to the grouping pattern (i.e. the grouping pattern in Fig. 10f) were calculated by 

running Monte Carlo simulations. The calculated p-values were 0.178 and 0.180 for 

BMI and Age, respectively, again showing that BMI and Age do not have a 

significant effect on the lipid profile.  
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Software  

The above mentioned steps of pre-processing and multivariate analyses were 

performed using in-house-written and standard MATLAB routines (MATLAB 

Version 7.8). The MATLAB routines for the whole framework are available at 

http://arken.umb.no/~achik/algorithms.html.                       

Conclusions  

Due to the fast development of the lipidomics field there is a growing need for 

statistical methods that can integrate, analyze, understand and interpret such massive 

data sets. In this study we have presented a strategy for analyzing lipidomics data. The 

strategy includes a pre-processing process for the lipidomics data sets that reveals 

remodelling within lipid classes and lipid dynamics between lipid classes in the 

subsequent data modelling. By applying two different pre-processing strategies, 

remodelling within lipid classes and lipid dynamics between lipid classes could be 

clearly identified. The pre-processing strategies are based on presenting the data in 

different units, where either all data is presented in the same basic unit, to keep the 

over-all mass balance, or to normalize each lipid class relative to the total amount of 

lipids within this class. The data modelling strategy presented keeps the lipid class 

and lipid species structure in the data modelling process and brings forward the 

interplay and inter-correlations between the many lipidomics variables and their 

relation to other variables such as background variables, design variables and other 

omics measurement.       

Methods  

Pre-processing of data with respect to the lipid classes 

Assuming that RawX  (of size ) is the raw lipidomic data set for  samples and N K× N

K  variables (i.e. measured lipids). The first step is to split data into B  different data 

blocks with respect to the lipid classes as: 
1 2[ , ,..., ,..., ]b B

Raw Raw Raw Raw Raw=X X X X X  (1) 

where RawX  is the raw lipidomic data and  (of size b
RawX bN K× ) consists of the lipids 

in bth class. The second step is to replace the amount of each lipid in every data block 
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by its relative amount within its respective class. This is done by dividing each data 

block by the total amount of lipids it contains, according to the following: 

Raw
Preprocessed

Raw
1

( ,:)( ,:)
( , )

b

b
b

K
b

k

ii
i k

=

=

∑
XX
X

 (2) 

where  indicates the samples, 1, ...,i = N K1,..., bk =  indicates the variables (i.e. lipids), 

 stands for the (i,k)th entry of data block  and  and 

 are the ith row of the data block b of the pre-processed data and raw data 

respectively.         

Raw ( , )b i kX Raw
bX Preprocessed ( ,:)b iX

Raw ( ,:)b iX

Mean-centring   

Mean-centring is an essential step which is usually performed on data blocks prior to 

CPCA and MBPLSR. Mean-centring is performed by reducing the mean of the 

variables over all samples according to  

Mean-centred Preprocessed Preprocessed
b b b ′− ⋅X = X 1 x  (3) 

where  is the pre-processed data set calculated by Eq. 2, Preprocessed
bX Preprocessed

bx  is the 

vector of means of the variables in block b over all samples and  is the 

resulting mean-centred data block. Eq. 3 is repeated for 

Mean-centred
bX

1, 2,...,b B= .  

Mean-centring for response data matrix Y  is performed in a similar way, according 

to: 

Mean-centred Raw
′= − ⋅Y Y 1 y  (4) 

where  is the mean-centred data matrix,  is the raw data matrix and Mean-centredY RawY y  

is the mean vector of the variables in  calculated over all samples.          RawY

Scaling 

All the input variables may be first standardized to a total initial variance of 1, if the 

different lipids within each block have very different initial variance (this was not 

deemed necessary in the present dataset). Then the different blocks of variables were 

scaled block-wise, to ensure equal block sum of squares, since the data blocks are 

different with respect to their number of variables and also their measurement units. A 
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neutral scaling can be performed by dividing each data block by its Frobenius norm 

according to 

Mean-centred

2
Mean-centred

1 1
( ( ,

b

b
b

KN
b

i k
i k

= =

=

∑∑

XX
X ))

 (5) 

where  is data block calculated by Eq. 3,  is the (i,k)th entry of 

data block  and  is the lipidomic data block that is pre-processed, mean-

centred and scaled and it ready to be used by the analysis techniques e.g. CPCA and 

MBPLSR.   

Mean-centred
bX Mean-centred( , )b i kX

Mean-centred
bX bX

When running MBPLSR, the response data matrix should also be scaled in order to be 

on the same footing as the descriptor data blocks. This can be done in the same as 

scaling was performed for data blocks in , according to: X

Mean-centred

2
Mean-centred

1 1
( ( ,

N J

i j
i j

= =

=

∑∑

YY
Y ))

b

 (6) 

where  is the mean-centred response data matrix calculated by Eq. 4, 

 is the (i,j)th entry of data matrix  and Y  is the mean-centred 

and scaled response data matrix.    

Mean-centredY

Mean-centred ( , )i jY Mean-centredY

Data modelling by CPCA  

It is important to know that the multi-block data set should be mean-centred and 

scaled prior to CPCA. CPCA models the multi-block data set as sums of A Principal 

Components (PCs) plus residual matrices according to: 

A A A

b b b
A A A

′= +

′= +

X T P E

X T P E
 (7) 

where  is the multi-block mean-centred and scaled data set 

where the blocks are calculated by Eq. 3,  and 

1 2 ... ...b B⎡= ⎣X X X X X ⎤⎦

AT b
AT  are global and block scores 

respectively,  and AP b
AP  are global and block loadings respectively,  and AE b

AE  are 

the global and block residual matrices for an A-PC model. Nonlinear Iterative Partial 

Least Squares (NIPALS) [39, 40] is commonly used for the calculation of the CPCA 

parameters. The detailed algorithm of NIPALS for CPCA may be found in [41].    

 - 21 - 



Data modelling by MBPLSR-DA  

Similar to CPCA, the data blocks in  (so called the descriptor data set) and the data 

matrix  (so called the response data set) should be mean-centred and scaled prior to 

the analysis. The predictive MBPLSR model is as the following: 

X

Y

A A= +Y XB F  (8) 

where  is the multi-block descriptor data set which is mean-

centred and scaled,  is the mean-centred and scaled response data matrix,  is the 

regression coefficients for a model including A-PCs and  is the residual matrix for 

the corresponding model. Moreover, employing MBPLSR-DA models the data sets 

 and  as: 

1 2 ... ...b B⎡= ⎣X X X X X ⎤⎦

b

Y AB

AF

X Y

A A A

b b b
A A A

A A A

′ +

′ +
′= +

X = T P E

X = T P E
Y T Q F

 (9) 

where  and AT b
AT  are the global scores and X-block scores respectively,  and AP b

AP  

are global loadings and X-block loadings respectively,  is the loadings of  and 

 and  are the residuals of  and  respectively.  

AQ Y

1 ... ...b B
A A A⎡ A= ⎣E E E E AF⎤⎦ X Y

Several methods for calculating the parameters of an MBPLSR-model can be found. 

The MBPLSR algorithm of Wangen and Kowalski [42] which handles most types of 

the relationships between the data blocks was described by us in detail in [37].       

Data modelling by ANOVA-MBPLSR  

In the ANOVA-MBPLSR the grouping or design information is used as the descriptor 

data block ( ) and the measured variables are used as response data ( ). Ordering 

the lipidomic data set as a multi-block data leads to the situation where the response 

data set is a multi-block data. In order to get block parameters (i.e. block scores and 

loadings) as we had in the previous analysis, we need to modify the usual MBPLSR 

algorithm in a way that we are able to calculate block parameters for Y . The 

MBPLSR model when the response data set ( ) is a multi-block set is as the 

following: 

X Y

Y

A A

A A A

A A A

= +
′ +
′= +

Y XB F
X = T P E
Y T Q F

 (10) 
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While the global scores ( ) from X form the basis for the data modelling in PLSR 

and MBPLSR, the parameters Y-scores ( ) may  also be estimate [37]; they may be 

used for studying the grouping patterns in the response data set. 

AT

AU

There are several equivalent algorithms to estimate the parameters in the PLSR, and 

hence also in its multi-block version. Here we employ a multi-block extension of the 

NIPALS algorithm: In cases where the response data is a multi-block set, we calculate 

block scores for  from the Y-scores ( ). In order to calculate the corresponding 

parameters, the following procedure is performed for each PLSR component 

( ):  

Y Au

1, 2,...a =

A. Initializing  

1.1 Choose an arbitrary starting Y score vector,  u

B. Computing the scores and loading weights   

1.2 
′

=
′

X uw
u u

 X loading weights 

1.3 1( )−′=w w w w  

1.4  X scores  1( )−′=t Xw w w

1.5 ′
=

′
Y tq
t t

 Y loading weights 

1.6 =
′

Yqu
q q

 Y scores 

1.7 1... ...b B⎡ ⎤= ⎣ ⎦q q q q  Partitioning Y loading weights into respective 

segments for every block in Y    

1.8 
b b

b

b b
=

′
Y qu
q q

 Y block scores 

C. Replacing the Y score vector u by the updated vector of Y scores in 1.6 and 

iterating until convergence (i.e. no significant change in scores t). 

D. Deflating the data on global scores   

1.9 a

′
=

′
X tp
t t

 X loadings 

1.10  and a =X X a =Y Y  

1.11 a a′= −X X tp  X deflation 
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1.12 a
′= −Y Y tq  Y deflation               

Monte Carlo permutation tests  

Permutation tests in CPCA  

Here, we propose a method for investigating the contribution of every data block (i.e. 

every lipid class) to the CPCA model in order to have an estimation of the importance 

of the role of each block (i.e. lipid class) for modelling the lipidomic data. For this 

purpose we generate a reference distribution for b
ARMSE  by Monte Carlo sampling 

[43, 44]. Monte Carlo sampling is performed by permuting the samples for the given 

block and calculating the RMSE for that block for a given number of PC (i.e. 
b
ARMSE ). The choice for the number of PCs is made based on the RMSE plots 

calculated for the multi-block data set prior to performing any permutations. 

Calculation of the RMSE and the respective plots were described by us in detail in 

[32]. Here, we describe how to perform the permutation tests for the given block , 

assuming that  is an  data matrix where each row corresponds to a sample 

(i.e. a subject in the experiment) and each column corresponds to a variable (i.e. a 

measured lipid).  can be written as following: 

bX
bX bN K×

bX

1 ,...., ,....,b b b b
i N

′⎡= ⎣X x x x ⎤⎦

N

 (11) 

where  are the row numbers of the data matrix and  (a vector of size 1, 2, ...,i = b
ix

1 bK× ) is the i-th row in the data block .  bX

Firstly, we calculate the b
ARMSE  for block b in the multi-block data set 

 (we call this 1, ..., , ...,b B⎡= ⎣X X X X ⎤⎦
b
ARMSE : observed b

ARMSE ). Secondly, we 

randomly permute the rows in the data block  which results in different 

combination of the rows e.g.: 

bX

,...., ,....,b b b b
e f g

′⎡= ⎣X x x x ⎤⎦  (12) 

where 1 , . ,e f g N≤ ≤ b
ARMSE  is calculated for 1, ..., , ...,b B⎡ ⎤= ⎣ ⎦X X X X  every time the 

rows of the data block b are permuted. Calculating b
ARMSE  for every permutation 

round leads to the generation of different b
ARMSE  which can then be put together in 

order to generate a distribution for b
ARMSE  for the given block for the given number 
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of PCs. A p-value is then assigned to the given block b by testing the observed 
b
ARMSE  in the generated distribution.    

Permutation tests in MBPLSR-DA  

Similar to CPCA, we propose to perform Monte Carlo permutations and calculate p-

values for the contribution of each block to the separation of the groups. Observed 
b

Y ARMSE  is firstly calculated for the data set prior to the permutations. The details for 

how to calculate  was described by us in [37]. Each block is then permuted in 

the same way that it was described for CPCA in the previous section. 

b
Y ARMSE

b
Y ARMSE  is 

calculated in every permutation round which results in generating a reference 

distribution for  by Monte Carlo sampling for every block having the chosen 

number of PCs in the MBPLSR model. Finally, a p-value for the observed

b
Y ARMSE

b
Y ARMSE  in 

the generated distribution is calculated.        

Permutation tests in ANOVA-MBPLSR  

The procedure of running the Monte Carlo permutation tests and calculating the p-

values for an ANOVA-MBPLSR model is very similar to that for the MBPLSR-DA. 

Observed g
X ARMSE  and s are calculated prior to the permutations (the 

calculation details are described in the respective section). Thereafter, reference 

distributions for the contribution of each background factor to the ANOVA-MBPLSR 

model are generated. This is done by permuting the values in the respective factor and 

calculating 

b
X ARMSE

g
X ARMSE  and b

X ARMSE  for every round. Finally, p-values for the 

observed g
X ARMSE  and s are calculated with respect to the generated 

distribution.        

b
X ARMSE

Uncertainty t-tests for MBPLSR  

Assessing the contribution of the variables (i.e. lipids) to the MBPLSR model can be 

done by running uncertainty t-tests on the regression coefficients of the MBPLSR 

model. For this purpose we run cross-validation and re-calculate the regression 

coefficients in every cross-validation round. Firstly, both  and  are divided into M 

segments resulting in leave-in data segments (i.e. 

X Y

m−X  and m−Y ) and left-out data 

segments (i.e.  and ) for mX mY 1, 2, ...,m M= . Regression coefficients ( ) are 

calculated for the MBPLSR models of the leave-in data segments (for the given 

,m A−B
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number of components A). We then calculate the Jack-knife estimate for the standard 

deviation of the regression coefficients according to 

( )
2

, , , , ,( , , )
1

1 M

k j A k j A m k j A
m

Ms b b
M −

=

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (13) 

where  is the (k,j)-th entry of the matrix of the regression coefficients (  of 

size (

, ,k j Ab AB

K J× )) for an A-component MBPLSR model of  and ,  is the (k,j)-

th entry of the regression coefficient matrix (  of size (

X Y ,( , , )m k j Ab−

,m A−B K J× )) for an A-

component MBPLSR model of m−X  and m−Y , M is the number of cross-validation 

segments and  is the standard deviation for the regression coefficients having A 

components in the MBPLSR model.   

, ,k j As

The t-statistic is then calculated according to 

, ,
, ,

, ,

k j A
k j A

k j A

b
t

s
=  (14) 

where  is the (k,j)-th entry of the matrix of the regression coefficients for an A-

component MBPLSR model and  is the standard deviation for the regression 

coefficients calculated by Eq. 13. From the t-statistic in Eq. 14, p-values are 

calculated which shows how significant variable k in  is for predicting variable j in 

 by an A-component MBPLSR model. It is worth mentioning that although we are 

testing a large number of variables the calculated p-values do not need any correction 

such as Bonferroni. The reason is that using the A-component MBPLSR model 

reduces the number of original variables (K) to A latent variables. Since we are testing 

the MBPLSR model we are in fact implementing tests on few latent variables which 

do not require any correction.     

, ,k j Ab

, ,k j As

X

Y

RMSEX calculations for ANOVA-MBPLSR  

For assessing the predictability of an ANOVA-MBPLSR model, we suggest a cross-

validation based method: First, the data (i.e. both  and ) are divided into leave-in 

segments (i.e.  and ) and leave-out segments (i.e.  and ). ANOVA-

MBPLSR models are built for the leave-in data. The models are then used for 

predicting the descriptor leave-out data segments ( ). The differences between the 

true values ( ) and the predicted ones ( ) gives the error for the ANOVA-

X Y

m−X m−Y mX mY

ˆ
mX

mX ˆ
mX
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MBPLSR model for the given number of components. The errors are then studied by 

plotting XRMSE  plots. We have previously described the calculations of XRMSE  for 

the case where the descriptor data ( X ) was a multi-block data set in [37]. Now, we 

have a different situation where the response data set ( ) is multi-block. Here, the 

calculation of the global errors (

Y
g
XRMSE ) and block errors ( ) is done in a 

similar way to what we described in that article. We do not explain all details here; 

instead we mention the modifications that need to be implemented on the previously 

described method in order to calculate 

b
XRMSE

XRMSE  for a multi-block response data.   

The global errors g
XRMSE  are calculated according to the method described in Section 

2.3.1.1 in [37]. One should just note that the descriptor data set ( X ) contains only one 

data block. This does not affect the description of the method.   

The block errors  are also calculated by the same method described in Section 

2.3.1.1 in [37]. However, some modifications are necessary for the calculations here: 

the loading weights ( ) that were used in Eq. 7 and Eq. 8 (in [37]) are here 

replaced by the block loading weights ( ). The block Y-scores ( ) (calculated 

in step 1.8 of the Data modelling by ANOVA-MBPLSR section) are contributing to 

the calculation of the block loading weights ( ) according to the following Eq.: 

b
XRMSE

,m A−W

,
b
m A−W bu

,
b
m A−W

,
,

, ,

b
m m ab

m a b b
m a m a

− −
−

− −

′
=

′
X u

w
u u

 (15) 

The rest of the calculations are similar to those for global g
XRMSE .                       
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Lipid 

p-value for 1-
component MBPLSR-
DA model 

LysoPC(20:5)  0,000 
LysoPC(22:5)  0,001 
LysoPC(22:6)  0,000 
PC(30:3)            0,001 
PC(32:5)            0,000 
PC(33:2)+PE(36:2)   0,024 
PC(33:2)+PE(36:2)   0,000 
PC(34:0e)           0,001 
PC(34:1)            0,018 
PC(34:1e)+PE(37:1e) 0,000 
PC(34:2)            0,000 
PC(34:3)            0,046 
PC(34:3e)+PE(37:3e) 0,030 
PC(35:2)            0,010 
PC(36:2)            0,001 
PC(36:3)            0,000 
PC(36:4)            0,045 
PC(36:4e)           0,013 
PC(36:5)            0,000 
PC(36:5)            0,003 
PC(36:5e)+PE(38:5e) 0,002 
PC(37:4)/PE(40:4)   0,000 
PC(38:1)            0,042 
PC(38:3)            0,001 
PC(38:3e)           0,010 
PC(38:4)            0,000 
PC(38:4)            0,000 
PC(38:5)            0,000 
PC(38:5e)           0,000 
PC(38:5e)           0,002 
PC(38:6)            0,000 
PC(38:6)            0,000 
PC(38:7)            0,000 
PC(38:7)            0,000 
PC(38:7)            0,017 
PC(40:2)            0,000 
PC(40:3)            0,001 
PC(40:4)            0,001 
PC(40:4e)           0,000 
PC(40:5)            0,000 
PC(40:5e)           0,023 
PC(40:6)            0,000 
PC(40:7)            0,003 
TG(16:0/18:2/18:1)            0,049 
TG(17:0/18:1/18:1)*          0,017 
TG(18:1/18:1/18:1)            0,000 
TG(18:1/18:1/22:1)+ 
TG(20:1/20:1/18:1) 0,027 
TG(18:1/18:2/18:1)            0,044 
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Lipid 

p-value for 1-
component MBPLSR-
DA model 

TG(40:0)*                          0,006 
TG(42:0)*                          0,039 
TG(45:1)*                          0,026 
TG(47:2)*                          0,042 
TG(50:4)                            0,000 
TG(50:5)*                          0,040 
TG(52:0)                            0,000 
TG(52:6)                            0,000 
TG(52:7)*                          0,000 
TG(53:3)*                          0,031 
TG(54:2)                            0,006 
TG(54:3)                            0,019 
TG(54:4)                            0,000 
TG(54:4)                            0,000 
TG(54:5)*                          0,020 
TG(54:8)*                          0,000 
TG(56:2)*                          0,001 
TG(56:4)                            0,016 
TG(56:7)*                          0,000 
TG(56:8)*                          0,000 
TG(56:9)*                          0,000 
TG(58:10)*                        0,000 
TG(58:6)                            0,002 
TG(58:6)                            0,000 
TG(58:8)*                          0,000 
TG(58:9)*                          0,000 
TG(59:2)*                          0,000 

Table 1 - P-values for 1-component MBPLSR-DA model 
The lipids that were contributing significantly to the first component of the MBPLSR-
DA model (i.e. the lipids that changed significantly in response to the intervention 
diet) are listed with their p-values. 
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Figure 1 – Multi-block structure and normalization procedures of an 
example lipidomics data set  
a) The structure of an example multi-block lipidomics data set is illustrated. b) The 
normalization procedure for an example lipid class is shown.  
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Figure 2 – The effect of different normalization procedures on the multi-block 
analysis results of simulated data sets  
a) Correlation loading plot for the multi-block analysis when the data is normalized 
according to method 1. b) Correlation loading plot for the multi-block analysis when 
the data is normalized according to method 2. The simulated data set mimics a two-
block lipidomics data set consisting of lipid classes LycoPC and Ceramides (Cer). 
c) Correlation loading plot for the multi-block analysis when the data is normalized 
according to method 1. d) Correlation loading plot for the multi-block analysis when 
the data is normalized according to method 2. The data is a four-block simulated data 
set containing Ceramides (Cer), LycoPC, LycoPE and PA.     
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Figure 3 – Pre-processing of an example lipidomics data set  
a) The multi-block structure and normalization procedure for a lipidomics data set 
from an intervention study is illustrated. b) The baseline correction procedure is 
shown for the multi-block lipidomics data set.  
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Figure 4 – Global and block score plots for CPCA  
The samples are labelled “1” (red), “2” (blue) and “3” (green) according to the 
intervention groups. The (un-validated) explained variances are written by the axes. 
(a-e) Block score plots and (f) global score plot are shown for the first and second 
components. 

 

Figure 5 – Validation plots for CPCA  
a) Error plots (i.e. RMSE plots) for the global model and for the block models of the 
different lipid classes are illustrated for the first and second components. b) Bar plots 
of the percentage cross-validated explained variances are illustrated for the first and 
second components.   
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Figure 6 – Global and block score plots for MBPLSR-DA  
The samples are labelled “1” (red), “2” (blue) and “3” (green) according to the 
intervention groups. The (un-validated) explained variances are written by the axes. 
(a-e) Block score plots and (f) global score plot are shown for the first and second 
components. 
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Figure 7– Correlation loading plot for MBPLSR-DA  
The lipid-lipid variation and co-variation patterns are shown in the correlation loading 
plot. The lipids are illustrated by different colours according to their lipid classes. The 
(un-validated) explained variances (for both X and Y) are written by the axes.  
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Figure 8 – Validation plots for MBPLSR-DA   
a) Error plots (i.e. RMSE plots) for the global model and for the block models of the 
different lipid classes are illustrated for five components. a) The error plots for 
validating the separation of group 1 samples from the rest of the samples are 
illustrated. b) The error plots for validating the separation of group 2 samples from the 
rest of the samples are illustrated. c) The error plots for validating the separation of 
group 3 samples from the rest of the samples are illustrated.   
 

 

Figure 9 – Validation plots for MBPLSR-DA  
Bar plots of the percentage cross-validated explained variances are illustrated for five 
components. a) Bar plots showing the contribution of the different lipid classes and 
the global model to the separation of group 1 samples from the rest of the samples are 
illustrated. b) Bar plots showing the contribution of the different lipid classes and the 
global model to the separation of group 2 samples from the rest of the samples are 
illustrated. c) Bar plots showing the contribution of the different lipid classes and the 
global model to the separation of group 3 samples from the rest of the samples are 
illustrated. 
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Figure 10 – Global and block score plots for ANOVA-MBPLSR  
The samples are labelled “1” (red), “2” (blue) and “3” (green) according to the 
intervention groups. The (un-validated) explained variances are written by the axes. 
(a-e) Block score plots and (f) global score plot are shown for the first and second 
components. 

 

Figure 11 – Validation plots for ANOVA-MBPLSR   
a) Error plots (i.e. RMSE plots) for the global model and for the block models of the 
different lipid classes are illustrated for two components. a) The error plots for 
validating the contribution of “Gender” to the patterns in Fig. 12 are illustrated. b) 
The error plots for validating the contribution of “Age” to the patterns in Fig. 12 are 
illustrated. c) The error plots for validating the contribution of “BMI” to the patterns 
in Fig. 12 are illustrated. 
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Abstract 

Background: While beneficial health effects of fish and fish oil consumption are well 

documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not 

completely understood. The aim of this study was to investigate the effect of fish oil 

supplementation on the plasma lipidomic profile in healthy subjects.  

Methodology/Principle Findings: In a double-blinded randomized controlled parallel-group 

study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d 

EPA+DHA) (n=16) or 8 g/d of high oleic sunflower oil (HOSO) (n=17) for seven weeks. 

During the first three weeks of intervention, the subjects completed a fully controlled diet 

period. BMI and serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged 

during the intervention period. Lipidomic analyses were performed using Ultra Performance 

Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight 

mass spectrometry (QTOFMS), where 568 lipids were characterized and 260 identified. Both 

t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed 

for analysing differences between the intervention groups. The intervention groups were well 

separated by the lipidomic data after three weeks of intervention. Several lipid classes such as 

phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, 

phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this 

separation. Twenty-three lipids were significantly decreased (FDR< 0.05) in the FO group 

after three weeks compared with the HOSO group, whereas fifty-one were increased 

including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. 

After seven weeks of intervention the two intervention groups showed similar grouping. 

Conclusions/Significance: In healthy subjects, fish oil supplementation alters lipid 

metabolism and increases the proportion of phospholipids and triglycerides containing long-

chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation 

may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of 

long-chain polyunsaturated fatty acids needs to be further investigated. 
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Introduction 

Intake of fish and fish oil, containing n-3 fatty acids; eicosapentaenoic acid (EPA; 20:5) and 

docosahexaenoic acid (DHA; 22:6), is associated with beneficial health effects such as 

reduced risk of cardiovascular disease and sudden cardiac death [1-4]. The beneficial effects 

of marine n-3 fatty acids have been explained by decreased plasma triglycerides (TGs) [5,6], 

moderate reduction in blood pressure [7], reduced platelet aggregation [8,9], and protection 

against cardiac arrhythmias [10,11]. It has been suggested that bioactive lipid components 

may be important in mediating these effects, but the molecular mechanisms is still to a large 

extent unknown.  

Cells, tissues and biological fluids contain tens of thousands of structurally different lipids, 

that fulfil multiple roles in cellular signalling, in membrane structure, and as fuel sources for 

many cell types [12]. The entire spectrum of lipids in a biological system, can be defined as 

the lipidome [13], which combines mass spectrometry technology and bioinformatics methods 

with traditional methods such as sample preparation, lipid extraction and separation. 

Lipidome analyses have revealed a diversity of lipid compounds in human plasma, which can 

be classified into six main lipid categories including fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids and prenol lipids [14]. The major plasma 

lipids are the glycerolipids (TGs), glycerophospholipids (phospholipids) and sterol lipids 

which are transported in the lipoprotein particles [14,15].  

In n-3 FAs intervention studies fatty acids have been measured in different blood 

compartments such as in platelets and red blood cells, and in plasma cholesteryl esters, 

triglycerides and phospholipids. Lipidomic analysis now offers the opportunity to detect exact 

fatty acid composition of these individual lipids. [16]. Recently it was shown that the plasma 

lipidomic profile was altered in subjects with coronary heart disease after intake of fatty fish, 

and in subjects with metabolic syndrome after consumption of a healthy diet containing fatty 

fish, wholegrain products and bilberries [17,18]. Furthermore, profiling of the plasma lipids 

suggests a relationship between the composition of plasma lipids and diet [19,20], with diet-

induced weight loss [21] and to diet-related diseases such as diabetes mellitus [22]. This 

opens up the opportunity to identify new functional lipid biomarkers to detect and prevent 

diet-related diseases. We have however not been able to find studies showing the plasma 

lipidomic profile in healthy subjects after intake of fish oil. 

We have previously reported that in the present study a daily intake of fish oil (1.6 g EPA + 

DHA/d) did not change the level of serum lipids, markers of oxidative stress, lipid oxidation 
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or inflammation, whereas an increase in plasma EPA, DPA and DHA was observed after 

three and seven weeks of intervention in a randomized controlled study in healthy subjects 

[23]. The aim of this study was to apply a lipidomic strategy to further describe the effect of 

fish oil supplementation in healthy subjects. 

Materials and Methods 

Subjects 

Healthy men and women between 18-50 years were recruited into this study. Detailed 

description of the protocol, participant recruitment and enrolment, inclusion and exclusion 

criteria, and compliance are described in details elsewhere [23] . In brief, exclusion criteria 

were total cholesterol > 7.5 mmol/l, triglycerides > 4 mmol/l, glucose > 6.0 mmol/l, C-

reactive protein (CRP) > 10 mg/l, body mass index (BMI) ≥ 30 kg/m2 and blood pressure (≥ 

160/100). The study was performed at the Akershus University College, Norway between 

September and December 2009.  

Ethics Statement 

Written informed consent was obtained from all participants and the protocol was approved 

by the Regional Committee of Medical Ethics (approval no.6.2008.2215) and by the 

Norwegian Social Science Data Services (approval no.21924), and was conducted in 

accordance with the Declaration of Helsinki.  

Study Design 

This study was a part of a randomized controlled double-blinded three-arm parallel group 

study, designed to investigate health effects from intake of fish oil [23]. In the present study, 

data from two of the intervention groups are included, as shown in Figure 1. Subjects in the 

present study were given 8 g/d of either fish oil (FO) or high oleic sunflower oil (HOSO), and 

each subject was taking 16 capsules/d minimum twice each day for seven weeks. Subjects in 

the fish oil group received capsules containing 0.7 g/d EPA + 0.9 g/d DHA from cod liver oil 

(Gadidae sp., TINE EPADHA Oil 1200) provided by TINE SA (Oslo, Norway) and subjects 

in the control group received high oleic sunflower oil purchased from AarhusKarlshamn AB 

(Malmø, Sweden). The subjects were instructed to take the capsules with food (minimum two 

meals). The fatty acid composition in the oils has been described elsewhere [23].  

The subjects met for visits and blood samples for the lipidome analyses were collected at 0, 3 

and 7 weeks. Between the screening and baseline visit (week 0), the subjects conducted a 

four-week washout period, where foods containing marine n-3 fatty acids were avoided. 
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During the first three weeks of the intervention the subjects conducted a fully-controlled 

isocaloric diet, provided with all food and beverages at Akershus University College, Norway.  

The last four weeks of the intervention period the subjects returned to their habitual diet. The 

food items provided in this study and the energy provided from diet have previously been 

described [23]. Intake of fish, fish products, marine n-3 enriched food or dietary supplements 

was not allowed during the entire study period of 11 weeks. The study was registered at 

www.clinicaltrial.gov (IDno. NCT01034423). 

Blood sampling  

Subjects were told to refrain from alcohol consumption and vigorous physical activity the day 

prior to blood sampling. Venous blood samples were drawn after an overnight fast (≥12 

hours) at the same time (± 2h) and serum were kept at room temperature at 30 min before 

centrifuged (1500g 12 min). EDTA-plasma was immediately placed on ice and centrifuged 

within 10 min (1500g, 4°C, 10 min). N2 flushed plasma samples were snap frozen and stored 

at -80°C until further analysis.  

Routine laboratory analysis  

Fasting serum hsCRP, total- cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides and 

glucose were measured by standard methods at a routine laboratory (Fürst Medical 

Laboratory, Oslo, Norway).  

Lipidomic analyses  

An aliquot (10 µL) of plasma sample was diluted with 10 µL of 0.15 M (0.9%) sodium 

chloride and 10 µL of internal standard mixture containing PC(17:0/0:0), PC(17:0/17:0), 

PE(17:0/17:0), PG(17:0/17:0)[rac], Cer(d18:1/17:0), PS(17:0/17:0) and PA(17:0/17:0) 

(Avanti Polar Lipids, Inc., Alabaster, AL, USA) and TG(17:0/17:0/17:0) and 

MG(17:0/0:0/0:0)[rac], DG(17:0/17:0/0:0)[rac] (Larodan Fine Chemicals) was added . The 

lipids were extracted using the mixture of HPLC-grade chloroform and methanol (2:1; 100 

µL). The lower phase was collected (60 µL) and 10 µL internal standard mixture containing 

labeled PC(16:1/0:0-D3), PC(16:1/16:1-D6) and TG(16:0/16:0/16:0-13C3) was added. 

 The extracts were analyzed on a Waters Q-Tof Premier mass spectrometer combined with an 

Acquity Ultra Performance LCTM (UPLC). The column (at 50 °C) was an Acquity UPLCTM 

BEH C18 2.1 × 100 mm with 1.7 μm particles. The solvent system included A: ultrapure 

water with 1% 1 M NH4Ac and 0.1% HCOOH, and B: LC/MS grade acetonitrile/isopropanol 

(1:1) with 1% 1M NH4Ac and 0.1% HCOOH. The gradient started from 65% A / 35% B, 
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reached 80% B in 2 min, 100% B in 7 min and remained there for 7 min. The flow rate was 

0.400 ml/min and the injected amount was 2.0 μl (Acquity Sample Organizer, at 10 °C). 

Reserpine was used as the lock spray reference compound. The lipid profiling was carried out 

using ESI+ mode and the data was collected at mass range of m/z 300-1200 with scan 

duration of 0.2 sec. The data was processed by using MZmine2 software [24] and the lipid 

identification was based on an internal spectral library. 

The data processing included alignment of peaks, peak integration, normalization and 

identification. Lipids were identified using an internal spectral library. The data was 

normalized using one or more internal standards representative of each class of lipid present 

in the samples: the intensity of each identified lipid was normalized by dividing it with the 

intensity of its corresponding standard and multiplying it by the concentration of the standard. 

All monoacyl lipids except cholesterol esters, such as monoacylglycerols and 

monoacylglycerophospholipids, are normalized with PC(17:0/0:0), all diacyl lipids except 

ethanolamine phospholipids are normalized with PC(17:0/17:0), all ceramides with 

Cer(d18:1/17:0), all diacyl ethanolamine phospholipids with PE(17:0/17:0), and TG and 

cholesterol esters with TG(17:0/17:0/17:0). Other (unidentified)  molecular species were 

normalized with PC(17:0/0:0) for retention time < 300 s, PC(17:0/17:0) for retention time 

between 300 s and 410 s, and TG(17:0/17:0/17:0) for higher retention times. 

Statistical analyses 

Sample size was calculated using expected change in plasma n-3 fatty acids as described as 

previously described [23]. Multi-Block Partial Least Squares Regression (MBPLSR) analysis 

was used for exploring the sample and variable variation patterns in the data [25] where each 

lipid class was defined as one individual block [26] resulting in 11 blocks of descriptor 

variables in total (i.e. ). The multi-block set of descriptor variables were 

organized in the following order: Ceramides as block one ( ), lysophosphatidylcholines 

(lysoPC) as block two ( ), lysophosphatidylethanolamines (lysoPE) as block three ( ), 

phosphatidic acid (PA) as block four ( ), phosphatidylcholines (PC) as block five ( ), 

phosphatidylethanolamines (PE) as block six ( ), phosphatidylglycerols (PG) as block 

seven ( ), phosphatidylserines (PS) as block eight ( ), sphingomyelins (SM) as block 

nine ( ), triglycerides (TG) as block ten ( ) and sums of lipid classes together with 

phosphatidylinositol (PI) as block eleven ( ) (a separate block was not assigned to PI class 

since it contained only onelipid). An intervention group indicator variable was used as 

1 2 11[ , ,..., ]X X X
1X

2X 3X
4X 5X

6X
7X 8X

9X 10X
11X
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response variable (y-variable). In order to estimate both the influence of the total amount of 

lipids in each lipid class and simultaneously the influence of the relative variation within each 

lipid class, -each block was normalized by a division by the total amount of lipids in the 

corresponding class. The total amounts of lipids of each lipid classes were then used as an 

additional block and named “the sums of lipids”. Subsequently, plasma lipids were 

transformed by taking the log2 ratio (baseline adjusted log2 values) after three and seven 

weeks in both the FO and the HOSO group. After this, each block (lipid class) was set on the 

same footing prior to MBPLSR analysis as described in [26]. Model-validation and testing of 

the influence of each lipid class to the global model was done by cross-validation as described 

in [26].Variable significance testing for the difference between the groups at baseline and 

after the intervention (baseline adjusted values) was done by cross-validation [25,26] of the 

multivariate MBPLSR model and by univariate testing using Student`s- t test. For the 

univariate testing the log2 ratios were used and False Discovery Rate (FDR) corrected q-

values were computed using the R package ‘qvalue’. Two subjects were detected as outliers 

by the MBPLSR models and were therefore excluded from the further analysis. Baseline 

characteristics were analyzed using (baseline adjusted values) Student`s- t test and Mann 

Whitney U test (serum triglycerides) when data was normally and not normally distributed, 

respectively. The significance level was set to 5% (two-sided) and the power of the test was 

chosen to be 80%. Data in Table 1 are presented as mean ± SD. All univariate analyses were 

performed using SPSS for windows (SPSS, version 19.0) and multivariate analyses were 

performed using in-house-written and standard MATLAB routines (MATLAB version 7.8). 

Results 

Characteristics of the subjects 

A total of 33 normal weight healthy subjects (n=8 men and n=25 women) completed this 

study. The subjects were young (28 ± 8 years), and with serum lipids within the normal range 

as shown in Table 1. No differences in age, BMI or serum lipids were observed between the 

FO group (n=16) and the HOSO group (n=17) at baseline (Table 1). Serum lipids and BMI 

were not significantly changed between the groups after three (Table 1) or seven weeks of 

intervention (data not shown).  

Plasma lipidomic profile 

A total of 568 lipids were detected and quantified in the plasma samples of the two 

intervention groups. Of these lipids, 260 were identified, including the following lipid classes; 
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ceramides, sphingomyelins (SM), lysophosphatidylcholines (lysoPC), 

lysophosphatidylethanolamines (lysoPE), phosphatidic acids (PA), phosphatidylcholines 

(PC), phosphatidyethanolamines (PE), phosphatidylglycerols (PG), phosphatidylinositols (PI), 

phosphatidyserines (PS) and triglycerides (TG). In the present study, the identified lipids were 

included in the statistical analysis.  

MBPLSR was performed with lipid class blocks as a multi-block X and intervention group 

indicator variable as y-variable. The lipid class block variation patterns after three weeks of 

intervention are shown in Figure 2 and Figure 3A-D. The lipidomic profiles of the two 

intervention groups were well separated in the global sample variation pattern (global score 

plot) (Figure 3F). The first principal component accounted for most of the separation of the 

two groups and explained 91.5% of the total variance in the y-variable. The explained block 

variances are shown on the respective axes. Several lipid class blocks (lysoPC, PC, PE, PG, 

PS, SM and TG) showed a clear separation of the FO and the HOSO group, whereas 

ceramides, lysoPE, PA lipids did not separate the FO and the HOSO group (Figure 2 and 

Figure 3A-D). In addition, the sums of lipid classes did not separate the FO and the HOSO 

group (Figure 3E) showing that the differences between FO and HOSO group can be 

explained by remodelling within lipid classes rather than by changes in the total amount of 

lipids in each class. A similar separation of the groups and patterns in block score plots were 

observed also after seven weeks of intervention (data not shown). To further analyze the 

plasma lipid profile and to identify specific lipids contributing to the separation, we decided to 

use the data obtained after completing a three weeks fully controlled diet period. After three 

weeks of intervention, the contribution of each lipid class block to the prediction of the group 

indicator variable was validated by calculating root mean squared errors of cross-validation 

per block. The validated explained variances for the first two components are shown in Figure 

4. The first principal component of the lysoPC, PC, PE and SM lipid classes described most 

of the group separation and explained more than 70% of the y-variance. The second 

component of the PG, PS and TG lipids explained the separation of the two intervention 

groups further accounting for 19-37% of the y-variance. By significance testing using cross-

validation and Jack-knifing [26] a total of 75 lipids were identified as significant for the 

separation of the two intervention groups after three weeks using a two principal component 

model (Supplementary Table S1). By investigating the validated root mean squared error as a 

function of components a two component model was selected (Supplementary Figure S1). 

To further identify the specific lipids that contributed to the distinction of the FO and the 

HOSO group correlation loading plots were studied [26]. The correlation loading plots in 
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Figure 5 and 6 show that several phospholipids and TGs containing long-chain PUFAs  

including lysoPC(20:5), lysoPC(22:6), PC(36:5), PC(40:6),  PE(38:5), TG(50:4), TG(52:6), 

TG(52:7), TG(54:8), TG(56:7), TG(56:8), TG(56:9), TG(58:6), TG(58:8), TG(58:9), and 

TG(58:10) were strongly positively correlated to intake of FO supplementation. 

A strong positive correlation was also observed between intake of FO supplementation and 

lipids of long-chain and lower double bond content such as SM(18:0/24:0), TG(59:2) and 

TG(52:0). Only PC(40:4e), PC(37:4)/PE(40:4), PC(38:5) and PC(34:2) were found negatively 

correlated to the FO group.  

In order to describe altered lipids in the FO group compared to the HOSO group unpaired t-

test was performed. In the FO group, 74 lipids were significantly altered (FDR< 0.05)  

compared with the HOSO group after three weeks of intervention, and 51 out of these 74 

lipids were significantly increased. Several phospholipids and TGs containing long-chain 

PUFAs were increased in the FO group, compared to the HOSO group. Significantly altered 

lysoPC, PC, PE, PA, PG, PS, PI, SM and TG lipids are shown in Table 2 and 3. Furthermore, 

49 lipids were identified as significantly altered in the FO group compared to the HOSO 

group by both unpaired t-test and MBPLSR (Supplementary Table S1). After seven weeks of 

intervention 58 significant altered lipids were identified in the FO group compared to the 

HOSO group, and 33 out of these 58 lipids were significantly altered after both three and 

seven weeks (data not shown).  

Discussion 

We have investigated the effect of fish oil supplementation on the plasma lipidomic profile in 

healthy subjects. A clear distinction of the lipidomic profile was obtained between the FO and 

the HOSO group after three and seven weeks of intervention. The lipid classes that 

contributed to the separation of the intervention groups were LysoPC, PC, PE, PG, PS, SM 

and TG. FO supplementation especially increased phospholipids and TGs of long-chain 

PUFAs, but the total concentration of the lipids within each lipid classes remained unchanged 

and did not differ in the FO compared to the HOSO group. The clear distinction between the 

FO and the HOSO group was observed after a fully-controlled isocaloric diet period for three 

weeks and it was also evident after the subjects had continued on their habitual diet for 

additional four weeks.  

By using MBPLSR, co-variation patterns in sample and variable space for the different lipid 

classes was studied. MBPLSR is a method based on latent variables, where by using only few 

latent variables the problem of over-fitting and false discovery is minimized. For MBPLSR 
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analysis data blocks were organized and normalized, such that remodelling effects in each 

lipid class and changes in total amounts of lipids per class could be studied separately.  

Recent results from a dietary intervention study have shown that fish intake increased TGs of 

long-chain PUFA similar to our results, and that fish consumption for eight weeks increased 

plasma long-chain TGs in subjects with coronary heart disease [18].  Interestingly, this effect 

was significant after intake of lean fish and not fatty fish [18]. A healthy diet rich in whole 

grain products, fish and bilberries significantly changed multiple TGs incorporating long-

chain PUFAs after 12 weeks intervention in subjects with impaired glucose metabolism [17]. 

Fish oil supplementation was previously found to reduce the total plasma TG concentration by 

selective reducing short chain fatty acids and to increase various phospholipids [27].Thus, it is 

reasonable to assume that intake of fish and fish oil causes a remodulation of plasma TG 

species towards more long-chained fatty acids. Our results demonstrate that this remodeling 

occurs in healthy subjects where the total serum TG level and the BMI are unchanged.  

We observed an increase in several phospholipids incorporating n-3 PUFAs, such as 

lysoPC(20:5) and lysoPC(22:6) in the FO group compared to the HOSO group. An 

association between n-3 FA intake and changes in lysoPC has previously been described  

[18,28], and in accordance with our results, lysoPC(20:5) was significantly increased in 

subjects with impaired glucose metabolism after a healthy diet containing fatty fish [17]. In 

contrast, fatty fish consumption for eight weeks in subjects with CVD decreased the total 

concentration of lysoPC [18].  In addition, Block and colleagues found that FO 

supplementation increased the EPA and DHA species of lysoPC in healthy individuals [28]. 

The potential health effect of altering the blood plasma concentration of EPA and DHA 

lysoPC compounds is uncertain. However, the biological functions of lysoPC compounds are 

assumed to vary with the degree of saturation and acyl length [28] and LysoPC has been 

suggested as the major carrier of DHA to brain tissues [29].  

Three out of four significantly altered SM lipids were increased in the FO group compared to 

the HOSO group. SM lipids are by far the most dominant circulating sphingolipid 

representing 88 % of the total concentration compared to ceramides that account for 

approximately 3 % [30]. SM in blood is key components and exists predominantly in the 

hydrophobic outer layer of lipoprotein particles. Of the lipoprotein particles, the VLDL 

particle contains the highest amount of SM lipids [31]. However, the localization, distribution 

and role SM lipid species among the lipoprotein particles is still obscure. 

In the present study, FO supplementation was not associated with changes in plasma PA, 

lysoPE and ceramides, indicating that n-3 PUFA is selectively incorporated into other lipid 
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classes. Ceramides have been associated with inflammation and cardiovascular disease 

[32,33]. However, high content of specific C24 ceramides have been linked to less atherogenic 

lipoprotein particles in healthy subjects [31]. Lankinen et al. observed that the total 

concentration of ceramides decreased after fatty fish consumption for eight weeks [18]. The 

discrepancies observed between these studies may be due to differences in the study 

population and design, or due to lack specific bioactive components in fish oil which are 

normally present in fish. 

Lipid profiling has identified a relation between lipid acyl chain structure and risk of disease 

[22]. The present study shows that fish oil supplement increases the level of lipids such as 

TG(56:9), TG(58:10), LysoPC(22:6) and PC(38:6). These lipid species were recently 

associated with decreased risk of diabetes, when lipidome analyses were applied to plasma 

obtained from participants in the Framingham heart cohort study [22]. In that study a higher 

carbon number and higher double bond content were associated with decreased risk of 

diabetes. Thus, long-chain highly unsaturated TGs that have been associated with diabetes 

risk reduction were increased after intake of fish oil in the present study. 

Whether the beneficial effects of fish oil supplementation may be explained by a remodeling 

of the plasma lipids into TGs and PLs of long-chain PUFAs, needs to be further investigated. 

However, PUFAs incorporated into TGs and PLs may reach tissues, cells and lipoproteins by 

an selective lipid exchange [34].  In the tissues, EPA and DHA can be incorporated into 

membranes and cause alterations in signaling pathways and the formation of lipid mediators 

that are important in inflammation [35,36]. In addition, EPA and DHA or their oxidation 

products have the ability to activate transcription factors both in the liver and in other 

metabolic active tissues and increase the expression of target genes involved in lipid 

metabolism and inflammation [37-40] . Altering the lipid composition of lipoprotein particles 

can also contribute to modulation of the lipoprotein particles [15], including altered spatial 

distribution of lipids and therefore also alternation of the function [41,42]. 

In conclusion, fish oil supplementation for three and seven weeks alter the plasma lipidomic 

profile markedly compared to intake of high-oleic sunflower oil. The selective elevation of 

TGs and phospholipids of high carbon number and double bond content may represent 

beneficial effects of fish oil supplementation in healthy subjects. Future studies are needed in 

order to elucidate the health benefits of incorporation of long-chain PUFAs into selective 

phospholipids classes and TGs. 

 

  11 
 



Conflicts of interest:  

Inger Ottestad, Sahar Hassani, Grethe I. Borge, Achim Kohler, Gjermund Vogt, Tuulia 

Hyötyläinen, Matej Oresic, Kirsten B. Holven, Stine M. Ulven and Mari CW Myhrstad  have 

“no conflicts of interest”, or any financial or personal interest. 

Kirsti W. Brønner is clinical nutritionist/Project manager in TINE SA R&D Center, Norway, 

with no financial interest.  

Contributions of authors: 

Conception and design: IO, GIB, GV, KWB, KBH, SMU, MCWM 

Data analysis and interpretation: IO, SH, GIB, AK, TH, MO, KBH, SMU, MCWM 

Drafting the article: IO, SH, AK, MCWM 

Revising the manuscript critically: IO, SH, GIB, AK, GV, TH, MO, KWB, KBH, SMU, 

MCWM 

Final approval of the version to be published: IO, SH, GIB, AK, GV, TH, MO, KWB, KBH, 

SMU, MCWM 

 

  12 
 



References 

1.  Skeaff CM, Miller J (2009) Dietary fat and coronary heart disease: summary of 
evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab 
55: 173-201. 

2.  Kris-Etherton PM, Harris WS, Appel LJ (2003) Fish consumption, fish oil, omega-3 
fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23: e20-30. 

3.  Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico (1999) 
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after 
myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354: 447-455. 

4.  Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, et al. (2007) Effects 
of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients 
(JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369: 1090-1098. 

5.  Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, et al. (2008) Omega-3 
polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database 
Syst Rev: CD003205. 

6.  Harris WS (1997) n-3 fatty acids and serum lipoproteins: human studies. Am J Clin 
Nutr 65: 1645S-1654S. 

7.  Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ (2002) Blood pressure 
response to fish oil supplementation: metaregression analysis of randomized trials. J 
Hypertens 20: 1493-1499. 

8.  Knapp HR (1997) Dietary fatty acids in human thrombosis and hemostasis. Am J Clin 
Nutr 65: 1687S-1698S. 

9.  Hornstra G (2001) Influence of dietary fat type on arterial thrombosis tendency. J Nutr 
Health Aging 5: 160-166. 

10.  Christensen JH, Gustenhoff P, Korup E, Aaroe J, Toft E, et al. (1997) n-3 
polyunsaturated fatty acids, heart rate variability and ventricular arrhythmias in post-
AMI-patients. A clinical controlled trial. Ugeskr Laeger 159: 5525-5529. 

11.  Nodari S, Metra M, Milesi G, Manerba A, Cesana BM, et al. (2009) The role of n-3 
PUFAs in preventing the arrhythmic risk in patients with idiopathic dilated 
cardiomyopathy. Cardiovasc Drugs Ther 23: 5-15. 

12.  Gross RW, Han X (2011) Lipidomics at the interface of structure and function in 
systems biology. Chem Biol 18: 284-291. 

13.  Seppanen-Laakso T, Oresic M (2009) How to study lipidomes. J Mol Endocrinol 42: 
185-190. 

14.  Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, et al. (2010) 
Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51: 
3299-3305. 

15.  Kontush A, Chapman MJ (2010) Lipidomics as a tool for the study of lipoprotein 
metabolism. Curr Atheroscler Rep 12: 194-201. 

16.  Fekete K, Marosvolgyi T, Jakobik V, Decsi T (2009) Methods of assessment of n-3 
long-chain polyunsaturated fatty acid status in humans: a systematic review. Am J Clin 
Nutr 89: 2070S-2084S. 

17.  Lankinen M, Schwab U, Kolehmainen M, Paananen J, Poutanen K, et al. (2011) 
Whole grain products, fish and bilberries alter glucose and lipid metabolism in a 
randomized, controlled trial: the sysdimet study. PLoS ONE 6: e22646. 

18.  Lankinen M, Schwab U, Erkkila A, Seppanen-Laakso T, Hannila ML, et al. (2009) 
Fatty fish intake decreases lipids related to inflammation and insulin signaling--a 
lipidomics approach. PLoS ONE 4: e5258. 

19.  Harris WS (1989) Fish oils and plasma lipid and lipoprotein metabolism in humans: a 
critical review. J Lipid Res 30: 785-807. 

  13 
 



20.  Hodge AM, Simpson JA, Gibson RA, Sinclair AJ, Makrides M, et al. (2007) Plasma 
phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an 
ethnically diverse cohort. Nutr Metab Cardiovasc Dis 17: 415-426. 

21.  Schwab U, Seppanen-Laakso T, Yetukuri L, Agren J, Kolehmainen M, et al. (2008) 
Triacylglycerol fatty acid composition in diet-induced weight loss in subjects with 
abnormal glucose metabolism--the GENOBIN study. PLoS ONE 3: e2630. 

22.  Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, et al. (2011) Lipid profiling 
identifies a triacylglycerol signature of insulin resistance and improves diabetes 
prediction in humans. J Clin Invest 121: 1402-1411. 

23.  Ottestad I, Vogt G, Retterstol K, Myhrstad MC, Haugen JE, et al. (2011) Oxidised fish 
oil does not influence established markers of oxidative stress in healthy human 
subjects: a randomised controlled trial. Br J Nutr: doi:10.1017/S0007114511005484 

24.  Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular 
framework for processing, visualizing, and analyzing mass spectrometry-based 
molecular profile data. BMC Bioinformatics 11: 395. 

25.  Wangen LE, Kowalski BR (1989) A multiblock partial least squares algorithm for 
investigating complex chemical systems. Journal of Chemometrics 3: 3-20. 

26.  Hassani S, Martens H, Qannari M, Hanafi M, Kohler A (2011) Model validation and 
error estimation in multi-block partial least squares regression Chemometrics and 
Intelligent Laboratory Systems 10.1016/j.chemolab.2011.06.001. 

27.  McCombie G, Browning LM, Titman CM, Song M, Shockcor J, et al. (2009) Omega-3 
oil intake during weight loss in obese women results in remodelling of plasma 
triglyceride and fatty acids. Metabolomics 5: 363-374. 

28.  Block RC, Duff R, Lawrence P, Kakinami L, Brenna JT, et al. (2010) The effects of 
EPA, DHA, and aspirin ingestion on plasma lysophospholipids and autotaxin. 
Prostaglandins Leukot Essent Fatty Acids 82: 87-95. 

29.  Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thies F, et al. (2001) 
Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the 
brain. J Mol Neurosci 16: 201-204; discussion 215-221. 

30.  Hammad SM (2011) Blood sphingolipids in homeostasis and pathobiology. Adv Exp 
Med Biol 721: 57-66. 

31.  Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, et al. (2010) Blood 
sphingolipidomics in healthy humans: impact of sample collection methodology. J 
Lipid Res 51: 3074-3087. 

32.  Pfeiffer A, Bottcher A, Orso E, Kapinsky M, Nagy P, et al. (2001) Lipopolysaccharide 
and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. 
Eur J Immunol 31: 3153-3164. 

33.  de Mello VD, Lankinen M, Schwab U, Kolehmainen M, Lehto S, et al. (2009) Link 
between plasma ceramides, inflammation and insulin resistance: association with 
serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52: 
2612-2615. 

34.  Shearer GC, Savinova OV, Harris WS (2011) Fish oil - How does it reduce plasma 
triglycerides? Biochim Biophys Acta. doi:10.1016/j.bbalip.2011.10.011 

35.  Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory 
diseases. Am J Clin Nutr 83: 1505S-1519S. 

36.  Sijben JW, Calder PC (2007) Differential immunomodulation with long-chain n-3 
PUFA in health and chronic disease. Proc Nutr Soc 66: 237-259. 

37.  Jump DB (2008) n-3 polyunsaturated fatty acid regulation of hepatic gene 
transcription. Curr Opin Lipidol 19: 242-247. 

  14 
 



38.  Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of 
PPARgamma. Annu Rev Biochem 77: 289-312. 

39.  Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, et al. (1997) Fatty acids 
and eicosanoids regulate gene expression through direct interactions with peroxisome 
proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94: 4318-
4323. 

40.  Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR 
and LXR nuclear receptors. Curr Opin Genet Dev 18: 461-467. 

41.  Yetukuri L, Soderlund S, Koivuniemi A, Seppanen-Laakso T, Niemela PS, et al. 
(2010) Composition and lipid spatial distribution of HDL particles in subjects with 
low and high HDL-cholesterol. J Lipid Res 51: 2341-2351. 

42.  Yetukuri L, Huopaniemi I, Koivuniemi A, Maranghi M, Hiukka A, et al. (2011) High 
density lipoprotein structural changes and drug response in lipidomic profiles 
following the long-term fenofibrate therapy in the FIELD substudy. PLoS ONE 6: 
e23589. 

 

  15 
 



 

Table 1 BMI and serum lipids at baseline and after three weeks of intervention with fish oil (n=16) and 

high oleic sunflower oil (n=17)  

 Fish oil  Sunflower oil     

Parameter Baseline 3 wk    Baseline 3 wk   P-value* P-value**

BMI (kg/m2) 22 ± 3 22 ± 3 23 ± 3 23 ± 3  0.25 0.53 

Triglycerides (mmol/l) 0.9 ± 0.4 0.9 ± 0.3 1.1 ± 0.7 1.1 ± 0.4  0.46 0.68 

Total-cholesterol (mmol/l) 4.6 ± 0.8 4.4 ± 0.6 4.9 ± 0.9 4.6 ± 1.0  0.27 0.36 

LDL-cholesterol (mmol/l) 2.5 ± 0.8 2.4 ± 0.8 2.7 ± 0.6 2.6 ± 0.6  0.35 0.64 

HDL-cholesterol (mmol/l) 1.5 ± 0.3 1.4 ± 0.4  1.5 ± 0.4 1.4 ± 0.4   1 0.86 

* Independent t- test for between groups at baseline  

** Independent t- test for changes between groups after three weeks  
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Table 2 Significantly altered lipids (FDR < 0.05) in the fish oil (FO) group compared to the 
sunflower oil group (HOSO) after three weeks of intervention 

    Fold change from 
baseline 

Lipid Name  q-value  HOSO   FO  
LysoPC(20:5) <0.001 0.80 4.35 
LysoPC(22:5) 0.025 0.91 1.67 
LysoPC(22:6) 0.003 0.94 1.89 
PA(38:5e) 0.006 1.05 0.75 
PE(38:4) 0.026 1.11 0.88 
PE(38:4)+PC(35:4) 0.029 1.27 0.90 
PE(38:5) <0.001 0.92 3.29 
PE(38:5e) 0.042 1.09 0.75 
PE(38:7e) <0.001 1.17 2.58 
PE(38:7e) 0.013 1.11 1.40 
PE(40:4) 0.027 1.10 0.78 
PE(40:6) 0.013 1.10 1.75 
PE(40:7e) 0.010 1.08 1.51 
PG(36:2) 0.015 0.96 0.68 
PG(36:5e) 0.028 1.02 0.80 
PG(38:4) 0.013 1.24 0.89 
PG(40:6) 0.003 1.11 1.91 
PI(40:7) 0.024 1.25 0.96 
PS(36:1) 0.001 1.14 1.84 
PS(38:0) 0.031 1.18 1.67 
PS(38:1) 0.010 1.11 1.58 
PS(38:1) 0.019 1.26 1.83 
PS(41:5) 0.031 1.17 0.96 
PS(42:1) 0.003 1.09 1.86 
PS(42:6) 0.001 0.96 1.54 
PS(42:7) 0.001 0.92 1.39 
PS(42:8) 0.001 1.36 2.51 
PS(44:1) 0.001 1.08 1.86 
SM(d18:0/20:0) 0.029 1.08 0.81 
SM(d18:0/22:6) 0.015 1.01 1.44 
SM(d18:0/24:0) <0.001 0.93 2.62 
SM(d18:1/26:2) 0.015 1.10 1.43 
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Table 3 Significantly altered lipids (FDR < 0.05) in the fish oil (FO) group compared to the 
sunflower oil (HOSO) group after three weeks of intervention 

    Fold change from 
baseline 

Lipid Name  q-value   HOSO  FO  
PC(30:3) 0.015 0.85 0.6 
PC(32:5) 0.024 1.03 0.77 
PC(36:3) 0.031 0.97 0.73 
PC(36:5) <0.001 0.80 4.00 
PC(37:4)/PE(40:4) 0.021 1.07 0.83 
PC(38:1) 0.025 1.05 1.60 
PC(38:1e) 0.026 0.91 1.39 
PC(38:4) 0.007 2.35 9.08 
PC(38:5) <0.001 1.12 3.97 
PC(38:5e) 0.006 1.2 0.96 
PC(38:6) 0.006 1.15 1.52 
PC(38:6) 0.037 0.89 0.69 
PC(38:7) 0.001 1.09 2.27 
PC(38:7) 0.001 1.09 2.25 
PC(40:2) <0.001 0.99 3.54 
PC(40:3) 0.001 0.93 1.74 
PC(40:4) 0.029 1.09 0.79 
PC(40:4e) 0.015 1.01 0.78 
PC(40:5) <0.001 0.89 1.57 
PC(40:6) <0.001 1.04 1.71 
TG(50:4) <0.001 1.04 3.57 
TG(52:0) 0.001 1.03 2.52 
TG(52:2) 0.029 1.09 0.79 
TG(52:6) 0.004 0.96 2.86 
TG(52:7) <0.001 0.80 4.55 
TG(54:2) 0.001 1.27 0.59 
TG(54:3) 0.029 1.26 0.83 
TG(54:4) <0.001 0.96 2.34 
TG(54:4) 0.003 0.97 1.73 
TG(54:5) 0.022 1.51 0.82 
TG(54:8) <0.001 0.98 5.02 
TG(56:2) 0.026 1.02 1.93 
TG(56:4) 0.038 4.50 1.47 
TG(56:7) <0.001 1.09 3.02 
TG(56:8) <0.001 1.27 2.71 
TG(56:9) <0.001 1.01 4.76 
TG(58:10) <0.001 1.17 4.14 
TG(58:6) 0.003 1.17 2.10 
TG(58:6) 0.023 0.99 1.70 
TG(58:8) <0.001 1.36 4.07 
TG(58:9) 0.001 1.48 4.05 
TG(59:2) <0.001 1.08 2.73 
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Supplementary Table 1 Significantly altered lipids (Multivariate analyses, p<0.05)  in the 
fish oil (FO) group compared to the sunflower oil group (HOSO) after three weeks 
intervention. The corresponding q-values from univariate analyses are also given. 

 

  Multivariate 
analyses 

Univariate 
analyses Fold change Fold change 

lipid p-value for 
2PCs model q-value HOSO group FO group 

PE(38:5) 0,0000 0,0000 0,92 3,29 
PC(36:5) 0,0000 0,0000 0,80 4,00 
LysoPC(20:5) 0,0000 0,0000 0,80 4,35 
TG(54:8) 0,0000 0,0000 0,98 5,02 
TG(52:7) 0,0000 0,0000 0,80 4,55 
TG(56:9) 0,0000 0,0000 1,01 4,76 
SM(d18:0/24:0) 0,0000 0,0000 0,93 2,62 
TG(54:4) 0,0000 0,0031 0,97 1,73 
TG(50:4) 0,0000 0,0000 1,04 3,57 
TG(58:10) 0,0000 0,0000 1,17 4,14 
TG(59:2) 0,0001 0,0001 1,08 2,73 
PC(40:2) 0,0001 0,0001 0,99 3,54 
PS(41:5) 0,0002 0,0305 1,17 0,96 
PE(40:7e) 0,0003 0,4802 1,09 1,05 
LysoPC(22:6) 0,0004 0,0031 0,94 1,89 
PS(40:0) 0,0005 0,2308 1,39 1,19 
PC(37:4)/PE(40:4) 0,0005 0,0205 1,07 0,83 
TG(58:8) 0,0005 0,0001 1,36 4,07 
TG(56:8) 0,0006 0,0004 1,27 2,71 
PC(40:5) 0,0006 0,0001 0,89 1,57 
PC(40:4e) 0,0007 0,1938 1,39 1,17 
PC(38:5) 0,0008 0,1315 1,01 1,17 
PE(38:7e) 0,0013 0,0004 1,17 2,58 
TG(52:0) 0,0014 0,0006 1,03 2,52 
PC(38:5e) 0,0017 0,0063 1,20 0,96 
PC(34:2) 0,0017 0,1374 0,98 0,88 
TG(56:7) 0,0019 0,0000 1,09 3,02 
TG(58:9) 0,0019 0,0005 1,48 4,05 
PC(38:7) 0,0022 0,0009 1,09 2,27 
TG(58:6) 0,0024 0,0226 0,99 1,70 
PE(38:4) 0,0025 0,0255 1,11 0,88 
PC(38:7) 0,0027 0,0011 1,09 2,25 
PE(38:7e) 0,0028 0,0126 1,11 1,40 
PC(40:3) 0,0028 0,0005 0,93 1,74 
PC(40:6) 0,0029 0,0000 1,04 1,71 
PC(36:3) 0,0029 0,0305 0,97 0,73 
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  Multivariate 
analyses 

Univariate 
analyses Fold change Fold change 

lipid p-value for 
2PCs model q-value HOSO group FO group 

TG(56:2) 0,0033 0,0255 1,02 1,93 
TG(52:6) 0,0036 0,0037 0,96 2,86 
PE(40:6) 0,0038 0,1359 1,39 1,92 
PE(40:4) 0,0042 0,0267 1,10 0,78 
TG(52:2) 0,0062 0,2738 1,13 1,26 
PC(38:4) 0,0063 0,0068 2,35 9,08 
SM(d18:0/22:6) 0,0066 0,0152 1,01 1,44 
PA(34:0e) 0,0068 0,4817 1,05 1,05 
PC(40:4) 0,0087 0,0292 1,09 0,79 
PE(36:3e) 0,0100 0,0508 0,85 0,52 
TG(54:3) 0,0102 0,0290 1,26 0,83 
PC(36:2) 0,0125 0,0706 0,94 0,83 
SM(d18:1/24:1) 0,0125 0,1095 1,00 1,20 
PG(40:6) 0,0147 0,0032 1,11 1,91 
PC(38:5e) 0,0171 0,0610 1,38 1,06 
PC(38:6) 0,0177 0,0372 0,89 0,69 
SM(d18:0/20:0) 0,0194 0,0292 1,08 0,81 
PC(38:3e) 0,0213 0,0766 0,98 0,75 
PC(34:3e)+PE(37:3e) 0,0218 0,1910 1,03 0,92 
PC(38:6) 0,0237 0,0060 1,15 1,52 
TG(18:1/18:1/22:1)+ 
TG(20:1/20:1/18:1) 0,0251 0,1983 1,23 1,99 

PE(40:3) 0,0251 0,1076 1,12 0,81 
TG(56:4) 0,0259 0,0379 4,50 1,47 
PG(36:2) 0,0263 0,0145 0,96 0,68 
PC(30:3) 0,0264 0,0152 0,85 0,60 
TG(54:5) 0,0287 0,0222 1,51 0,82 
SM(d18:1/26:2) 0,0342 0,0152 1,10 1,43 
SM(d18:1/16:1) 0,0346 0,2927 0,97 0,91 
PE(38:3) 0,0363 0,0856 1,14 0,82 
PC(38:4) 0,0363 0,1333 1,13 0,99 
PE(38:4e) 0,0365 0,1032 1,15 0,93 
PC(36:4e) 0,0386 0,2308 1,21 1,03 
PE(40:6) 0,0409 0,1486 1,27 1,56 
PC(38:3) 0,0413 0,0779 0,97 0,75 
TG(16:0/18:2/18:1) 0,0465 0,1614 1,22 0,99 
PS(40:0) 0,0466 0,1614 1,12 1,30 
TG(54:4) 0,0475 0,0000 0,96 2,34 
SM(d18:1/22:0) 0,0495 0,2535 0,96 1,12 
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Figure 1. Flow chart of the study showing subjects enrolled, lost during follow-up and 
number of subjects included in the statistical analysis at baseline and after three and seven 
weeks of fish oil supplementation. FO group, fish oil group; HOSO, high oleic sunflower oil 
group; oxFO, oxidized fish oil group (not included in the present study).  
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Figure 2. Multi-Block Partial Least Squares Regression (MBPLSR) analysis of the data 
after three weeks of intervention. First and second PLSR components of block scores of 
ceramides, lysoPC, lysoPE, PA, PC and PE are shown (A-F). The samples of each 
intervention group are presented as  blue (HOSO group) or  red (FO group) circles. The (un-
validated) explained variances are shown on the axes. 
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Figure 3. Multi-Block Partial Least Squares Regression (MBPLSR) analysis of the data 
after three weeks of intervention. First and second PLSR components of block scores of 
PG, PS, SM, TG, the sums of lipid classes and global scores are shown (A-F). The samples of 
each intervention group are presented as  blue (HOSO group) or  red (FO group) circles. The 
(un-validated) explained variances are shown on the axes.  
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Figure 4. Cross-validated explained variance in Y. Bar plots of the validated explained 
variances in Y for each block and for the global model using data obtained after three weeks 
of intervention are presented. 
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Figure 5. Multi-Block Partial Least Squares Regression (MBPLSR) analysis of the data 
after three weeks of intervention. Correlation loading plot for the variables contributing to 
the separation of the FO and the HOSO group after three weeks are shown for LycoPC, PE, 
PG, PS and SM. The (un-validated) explained variances in X and Y are shown on the axes. 
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Figure 6. Multi-Block Partial Least Squares Regression (MBPLSR) analysis of the data 
after three weeks of intervention. Correlation loading plot for  the variables contributing to 
the separation of the FO and the HOSO group after three weeks are shown for TG and PC. 
The (un-validated) explained variances in X and Y are shown on the axes. 
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Supplementary material Figure S1. Global Root Mean Square Error plot of Y (RMSEY). 
RMSE of Y for the global model is plotted as a function of the number of components. 
Detailed explanation for the plot is given in [26]. 
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Erratum 

Dedication page added. 
Page 6: Status of papers IV and VI changed to “Under revision”. 
Paper III, page 24: “the grant 203699 (New statistical tools for integrating and exploiting complex 
genomic and phenotypic data sets) financed by the Research Council of Norway” added to the 
Acknowledgements. 
Paper IV, page 1: Mohamed Hanafi’s address changed from “1,2” to “3”. 
Paper IV, page 16: “and for financial support by the Nordic Centre of Excellence on Food, 
Nutrition and Health “Systems biology in controlled dietary interventions and cohort studies” 
(SYSDIET) funded by NordForsk” added to the Acknowledgements. 
Paper V, page 7, paragraph 5: “columns” changed to “rows”.  
Paper V, page 35, line 8: “b” changed to “d”.  
Paper V and VI: Text justified.   
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