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Summary

The emergence of complex traits in living organisms has been of interest to
biologists since the early days of biology. Domestication and breeding has
resulted in the most remarkable transformations, such as the grass teosinte
turning into the cornstalks of today, or the variation that can be seen among
different breeds of dogs. In the mid 19th century, Gregor Mendel uncovered
the basics of genetic inheritance and was able to explain the passing down of
traits in peas. Not all traits are this simple to dissect, however, since they are
controlled by several genes; these are collectively called complex traits. Due
to the large number of genes in a species, it is simply not possible to explore
the space of all gene combinations exhaustively. New sequencing technologies
however makes it possible obtain so-called omics data on multiple aspects of a
biological system and these data can be integrated in order to narrow down
the search space and focus on the functional gene combinations. Moreover,
several of these data types are much closer to the phenotype than data on
variation in genome sequence. The changes in genome sequence are manifested
as changes in gene expression levels, or changes in protein sequences in turn
leading to changes in protein function, protein interactions, metabolite levels
and gene regulation. In order to obtain a complete picture of how phenotypes
change based on changes in genome sequence, these intermediate layers must
be included as well.

In this thesis, we aim to shine some light on gene regulation and the emergence of
complex traits. In paper I, gene regulation in the cyanobacterium Synechocystis
is explored by integrating regulatory motifs with co-expression networks, and a
web tool is developed to make the results interactively available to the research
community. Paper II investigates the sexual dimorphism in Populus tremula
using data on phenotype, gene expression, and genotype. In paper III, the focus
is directed towards the genetic component of gene expression variation and
how this can be understood in the context of a co-expression network. Finally,
paper IV expands on paper III by adding genotype–phenotype associations,
in addition to eQTLs and gene expression, in order to dissect leaf shape in
Populus tremula.
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Sammanfattning

Uppkomsten av komplexa egenskaper i levande organismer har intresserat
biologer under lång tid. Domesticering och avel har resulterat i dramatiska
förändringar av arter, till exempel förvandlingen av gräset teosinte till dagens
majsstänglar, eller variationen vi kan se mellan olika hundraser. I mitten
av 1800-talet upptäckte Gregor Mendel de grundläggande principerna bakom
genetisk nedärvning. Dock är inte all egenskaper lika enkla att förklara då de
kontrolleras av mer än en gen. Denna typ av egenskaper kallas gemensamt
för komplexa egenskaper. På grund av det stora antalet gener i en organism
är det helt enkelt inte möjligt att utforska alla genkombinationer för att
försöka förklara dessa egenskaper. Nya sekvenseringsteknologier gör det dock
möjligt att samla så kallade omics-data som kan fånga olika aspekter av
biologiska system, och detta data kan kombineras för att reducera antalet
genkombinationer till de som mest troligt bidrar till själva egenskapen. Utöver
detta så är många av dessa datatyper “närmre” den slutgiltiga egenskapen
jämfört med genomsekvensen. Förändringar i genomsekvensen uttrycker sig
som förändringar i genuttrycksnivåer, eller förändringar i proteinsekvenser
som i sin tur leder till förändringar i funktion hos proteinerna, interaktioner
mellan proteinerna, metabolitnivåer och reglering av gener. För att kunna få en
komplett bild av hur komplexa egenskaper förändras baserat på förändringar i
genomesekvensen måste dessa mellanliggande lager av reglering inkluderas.

I denna avhandling undersöker vi genreglering of komplexa egenskaper för
att försöka få en klarare bild av hur detta fungerar. I artikel I undersöker vi
genreglering i cyanobakterien Synechocystis genom att integrera regulatoriska
motiv med co-uttrycksnätverk. Även en webbapplikation utvecklades för att
tillgängliggöra resultaten. Artikel II ser på könsdimorfism i asp (Populus
tremula) genom att använda data på fenotyper, genuttryck, samt genotyp. I
artikel III riktas fokus mot den genetiska komponenten av variation i genuttryck
och hur en klarare bild kan erhållas genom att se på detta ur perspektivet
av ett co-uttrycksnätverk. Slutligen expanderar artikel IV på resultaten från
artikel III genom att lägga till genotyp–fenotyp–associationer för att försöka
förklara skillnad i bladform hos asp.
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What I cannot create,
I do not understand.

RICHARD FEYNMAN
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1
Introduction

The aim of this thesis is to shed light on the complex matter that is complex
traits, and how these traits emerge from networks of interacting genes.

1.1 Background

Some phenotypes are simple to explain from a genetic point of view. Perhaps
the most famous example are the experiments conducted by Gregor Mendel
between 1856 and 1863. He crossed pea plants (Pisum sativum) having different
properties; some were green, some were yellow, some had wrinkly seeds while
others had smooth seeds. He then observed how these traits were passed down
to the next generation of pea plants and thus laid the foundation for what we
today refer to as the laws of Mendelian inheritance. This is something that is
so fundamental in biology today that parts of it are taught already in primary
school. Perhaps Mendel was just lucky, because most traits are much more
complex than the ones he described [1–3]. One example of a phenotype that
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has been notoriously difficult to explain is human height. Human height has a
very high heritability, i.e. a large portion of the variation in human height can
be explained by genetic differences [4], but studies that have tried to identify
the genetic factors that contribute to the variation in human height have not
succeeded to explain things as well and as simple as Mendel explained the
colour of his peas. In a recent study, a large team of researchers identified 697
genetic variants that were associated with human height, and together these
variants only explained 20 percent of the variation [3]. This is the definition
of a complex trait; a trait that can only be explained by the combination of
a large number of small effects that individually can be very hard to detect.
Another way of putting it is that the complex traits are emergent properties
arising from a combination of smaller factors that in themselves are not as
complex. These types of traits are often also referred to as non-Mendelian or
polygenic, indicating that they are determined by multiple genes, and possibly
the interaction between these genes. It is important to note, however, that the
individual effects that contribute to the trait do follow the laws of Mendel—it
is just that the combination of these effects manifests themselves in a way that
does not allow the trait to be dissected in the same way as pea colour.

In the case of Mendel’s pea plants, the traits were very visible and the difference
between plants was easy to assess. There is however more subtle variation in all
natural populations. In humans, variation might be manifested as susceptibility
to disease, and in trees, this could be something as minuscule as the texture of
the bark or the width of the leaves. This variability can be a result of genotype
alone, environmental factors alone, or a combination of these. A long lived
debate in this area of research is the nature versus nurture debate, i.e. whether
a particular trait arises from genetics or from the environment. Today the
general consensus is that most traits are a result of both genotype and the
environment that the genotype is subjected to. To add additional complexity,
there is also interaction between the genotype and the environment (or G×E),
a phenomenon where different genotypes respond differently to changes in
environment [5]. Twin studies have often been used to study these types of
interactions. For example, if identical twins separated at birth remain very
similar, albeit not absolutely identical, for a particular phenotypic trait, this
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trait is inferred to be under tight genetic control [6]. Consequently, the trait is
then also highly heritable and is environmentally invariant.

Figure 1 shows an overview of how information travels from the DNA via RNA
to proteins and metabolites (the central dogma of molecular biology) and how
these interact to give rise to complex phenotypes. This introduction will go
through this figure one concept at a time and explain the underlying biology,
the data we retrieve from this biology, and finally, methods used to analyse the
data.

Long-range
regulatory element

Promoter Gene

Transcript

SNP

DNA sequencing

RNA sequencing

Co-expression network

Regulatory motif

Phenotypes

Figure 1: An overview of the different types of data that has been used in this thesis. As the
foundation we have the genome sequence with its genes and variation. This gives rise to complex
traits by expressing genes that in turn interact with each other in biochemical pathways that in
the end can be observed as, for example, leaf shape.
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1.2 Genetic variation

1.2.1 The molecule of life

All living organisms have at least one thing in common: they have a genome.
It will not look the same in different species, or even individuals of the same
species, but the fundamentals are the same; there are four nucleotides, adenine
(A), cytosine (C), guanine (G) and thymine (T), that form the molecule
deoxyribonucleic acid, more commonly known as DNA. The well known double-
helix structure of DNA was discovered in the 1950s, and in the paper by
Watson and Crick [7] the second sentence reads: “This structure has novel
features which are of considerable biological interest.” This might be one
of the biggest understatements in modern science. The DNA is organised
into larger units called chromosomes, and the number of chromosomes vary
from species to species. Humans, for example, have 23 chromosomes and is a
diploid organism—it has two copies of each of the chromosomes. European
aspen (Populus tremula) has 19 chromosomes, and is also a diploid organism.
Being diploid means that every gene (and most other pieces of DNA for that
matter) exist in two copies—two alleles. Whenever a cell divides, the genetic
information has to be copied so that each of the daughter cells gets their own
copy of the genome. With this process, perhaps the most fundamental property
of biology manifests itself—erroneous copying of DNA. Without errors in this
process, life as we know it would not evolve. These errors introduce variation
into the genetic material, and this variation can take different shapes. Errors
in the DNA are known as mutations, and one type of mutation are single
nucleotide polymorphisms (SNPs). As the name implies, this type of mutation
changes a single base in the genome into another, and these are the type of
mutations this thesis will mostly focus on. However, we will also look at more
elaborate mutations such as the duplication of genes or the entire genome.

The central dogma of molecular biology states that information flows from DNA
to protein via messenger ribonucleic acid (mRNA), and information cannot flow
from protein to DNA [8]. When we talk about genes in this context, we mean
the parts of DNA that are transcribed into mRNA, and eventually translated
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into protein. Since the DNA alphabet only contains four letters, and the protein
alphabet contains twenty letters, there is not a one-to-one relationship between
mRNA and protein, but units of three nucleotides (codons) define one amino
acid, which constitute the building blocks of proteins. Proteins then act as
the workers and the building blocks of the cell. The parts of the DNA that
are translated into proteins are referred to as coding DNA, while other parts
of the DNA are referred to as non-coding. Non-coding regions of the genome
can also be transcribed and mostly have regulatory functions, but also act as
structural elements, for example 16S ribosomal RNA [9].

In the mid 19th century, traits were believed to be blended when inherited,
but Mendel’s experiments showed that this was not always the case. From
experiments he concluded that there must be different variants of some hidden
factor that give rise to the differences in traits in the offspring generation.
These factors are what we today refer to as genes, and the variants of these
genes are alleles.

If mutations are introduced into coding regions of the genome, one of three
things might happen: no effect at all (silent mutation), an amino acid sub-
stitution (mis-sense mutation), or the introduction of a stop codon that will
prematurely halt the translation process (non-sense mutation). Fifteen years
ago, these types of mutations were the focus of biological studies as everything
outside of genes was largely discarded as non-functional “junk DNA”. Since
then, with the arrival of cheap and high-throughput sequencing technologies,
the focus and understanding has changed. Although the majority of “junk
DNA” is not expressed and translated explicitly, it does facilitate or influence
the expression of genes and can contribute to the control of when and at what
levels genes are expressed. These parts of the genome consist of, amongst other
components, promoters, enhancers, and non-coding RNAs (microRNA, long
non-coding RNA [lncRNA or lincRNA], transport RNA [tRNA], ribosomal
RNA [rRNA], etc.) which all have different roles in regulating gene expression.
tRNA and rRNA are integral components in translation of mRNA to protein,
while other types of non-coding RNA have been shown to have regulatory
properties [10,11].
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It might sound as though regulatory DNA is something that has been discovered
during the past fifteen years, but this is not the case at all. Regulatory elements
in non-coding regions of the genome have been known and, to some extent,
elucidated since at least the 1960’s with the description of the regulation of
the lac operon by François Jacob and Jacques Monod [12]. Even though these
types of regulatory mechanisms have been known for a long time, it is only the
developments in the past 10 years or so that have made large scale analysis of
these types of regulatory mechanisms possible. This component of the genome
is today commonly referred to as the regulatory genome, and a plethora of
studies have emerged that identify and elucidate the biological function of
this in more detail [13], such as the ENCODE project that has the goal of
identifying all functional elements in the human genome [14]1. Gene expression
and some more details of the regulatory genome will be presented in more
detail in section 1.3.

Given the diversity of the genome in terms of function, it is very hard to predict
what effect different mutations will have on individual phenotypes. While it
is easy to predict the effect that mutations in coding regions will have on the
amino-acid composition of a protein, predicting the effects that this change
will have on protein function is less simple. To then understand how that
altered function will later influence phenotype is substantially harder again.
Understanding, from sequence alone, the effect of mutations that modify gene
regulation are much harder still, and they usually require extensive experimental
validation [15]. New efforts, such as ENCODE, will enable researchers to more
easily determine what effect mutations will have.

Humans and chimpanzees share as much as 99% of the coding regions of
the genome, and a lot of research has focused on discovering the genomic
differences that give rise to the phenotypic differences between humans and
chimpanzees. Several studies have found that most of these differences are
located in non-coding regions, i.e. potential regulatory regions [16,17]. So far,
most of this variation has only been quantified; developing an understanding of
how these differences determine functional effects is a challenge at least an order
of magnitude more complicated. Increasingly, efforts are being poured into the

1One could also argue the projects like ENCODE help drive the technological development.
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problem of predicting the effect of mutations in non-coding regions. In the past
few years we have seen the development of tools that try to predict the effect
that SNPs will have on transcription factor binding affinity [18,19], as well as
tools aiming to predict general regulatory effects [20] based on information in
existing databases.

Another important source of genetic variation are gene and genome duplications.
Returning to the comparison between humans and chimpanzees, studies have
shown that gene duplication plays an important role in explaining phenotypic
differences [21,22]. In addition, it has been shown that single gene and whole
genome duplications play an important role in speciation in plants, i.e. the
formation of new species [23,24], and that they likely explain Darwin’s “abom-
inable mystery”—the explosive radiation of species in the angiosperm lineage
[25,26]. Approximately 15% of angiosperm speciation events are accompanied
by a genome duplication event [27], and all flowering plants share at least one
genome duplication event in their evolutionary history [28,29]. In Populus
species (poplars, aspens, and cottonwoods), a whole genome duplication event
occurred about 65 million years ago [30].

Promoter Gene Gene duplicationLong-range
regulatory element

In
di

vid
ua

ls

Figure 2: Schematic example of genetic variation. Each of the four diploid individuals has two
alleles for each locus representing intergenic sequences (blue), long-range regulatory elements
(red), promoters (yellow), and genes (green). Polymorphisms where one of the alleles does not
match the reference is indicated by black lines. A gene duplication is illustrated as well where
individual three has a duplication of both alleles while individual four only has a duplication of
one of the alleles.
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1.2.2 Quantifying genetic variation

Technological advancements in the past two decades have led to a revolution
in biology. Genome sequencing, i.e. the process of determining the order of
nucleotides in the genome, has become very affordable. The $1000 human
genome has been a long-time vision, and during my PhD period, became a
reality [31]2. It has never been this cheap or easy to obtain the complete genome
sequence of an organism, and this clearly has huge potential for characterising
the genetic variation among individuals in a population.

The process of sequencing an individual involves extracting the DNA, randomly
fragmenting the DNA, and then determining the sequence of nucleotides for
each DNA fragment. The sequencing is then performed until the mean number
of sequenced fragments, or reads, for each position in the genome reaches
the required depth. There are a number of ways that genomic variation can
be quantified from high-throughput sequencing data, but the most common
approach today is to align the sequencing reads against a reference genome, that
is, a genome sequence that has already been determined. With this approach
it is possible to quantify genetic variation by comparing the read sequences
with the reference sequence. In the case of diploid organisms we expect to
see two alleles for each locus. If the locus is homozygous, i.e. the two alleles
are identical, then the reads originating from that locus should be identical.
Conversely, if the locus is heterozygous, i.e. the two alleles are different, then
the reads should ideally divide into two groups of equal size. Depending on
the number of reads that support the variant and the quality of the reads, the
variant will be detected, or called.

Different types of prior knowledge can be incorporated in the variant calling
in order to increase precision, such as known variants from databases such as
dbSNP [32]. Working with non-model, or even non-human organisms, often
mean that these types of resources are not available, at least not to the same
extent.

2Depending somewhat on how you count.
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1.3 Gene expression

Genetic variation does not really have any significance if it does not manifest
itself in a way that alters phenotype, and in an evolutionary perspective, affects
survival or reproductive fitness. One way that it can manifest itself is through
gene expression. Genes are pieces of DNA that are transcribed into messenger
ribonucleic acid (mRNA), and subsequently translated into proteins. This
is a very simplified view of the biological reality involved in these processes.
At every step of the process there are different forks in the road that can be
taken, and each of these forks will change the fate of that gene. Such forks
can lead to a gene eventually being translated into protein, or it might result
in splicing out part of the gene before translation into a protein, therefore
effectively producing an alternative protein from the same gene, or it could
lead to the degradation of the mRNA, among numerous other examples. These
processes are also highly dynamic, responding to different kinds of stimuli, such
as environmental changes.

6

5

4

3

2

1

Figure 3: Schematic overview of gene expression. The transcriptional machinery including the
RNA polymerase (1) is recruited to the promoter of the gene to be expressed by transcription
factors (2) that bind to the promoter and possibly enhancers (3) through specific motifs in the
DNA (4). The DNA is then translated to RNA by the RNA polymerase (5) and introns are
spliced out (6) before the mature mRNA is translated into protein. This is a simplified view of
how coding regions are transcribed.
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1.3.1 Regulation of gene expression

As stated in section 1.2, the regulatory genome has received ever more attention
throughout the last 15 years. New studies increasingly identify examples where
protein sequence is identical between vastly different phenotypes, but where
changes in gene regulation is instead responsible for the phenotypic variation.
Examples of this are beak length [33] and beak shape [34] in Darwin’s finches,
and the previously mentioned differences between humans and chimpanzees
[16,17]. In the study of Darwin’s finches by Lamichhaney et al. [34], one of the
genes that was associated with the differences in beak shape was a transcription
factor (TF). Transcription factors are proteins that bind to promoter regions
upstream of genes and that consequently recruit the transcriptional machinery
involving the RNA polymerase (figure 3). The regions of a genome that
transcription factors recognise are commonly referred to as motifs. They are
short DNA sequences with a specific composition that is meant to match the
binding residues in the active site of a transcription factor protein. These
motifs are often degenerate, i.e. some positions in the motif can have a number
of different DNA bases without affecting function, and can thus be difficult to
detect [35]. It is also very difficult to predict the effect of a single mutation in
one of these binding sites. One recent study characterised the effect on gene
expression by somatic mutations in cancer tumours and found that many of
the genes displayed altered regulation as a result of mutations in transcription
factor binding sites [36]. This study emphasises the important role that the
regulatory genome plays in complex disease.

There are several computational approaches for identifying regulatory motifs,
and perhaps the most common method is to compare regulatory sequences
(e.g. promoters) thought to be used by the same transcription factor, and identify
common regions corresponding to binding sites (motifs) among these sequences.
Sequences to consider could be the promoters of genes with similar expression
profiles (co-expressed genes) or of genes involved in the same biochemical
pathway. One way of increasing detection power is by including regulatory
sequences from multiple related species in addition to the species studied, so
called phylogenetic footprinting [37,38]. The promoter regions of orthologous
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genes—the same gene in different species—are compared, and assuming that
transcription factor binding sites accumulate mutations slower than surrounding,
non-functional, regions, sites are identified.

Transcription factors play one role in the regulation of gene expression. They
can either activate or repress gene expression, and in many cases several tran-
scription factors, both activators and repressors, are involved in determining
the final regulatory output for a gene, i.e. how highly expressed it will be. Com-
binatorial relationships make it very difficult to test, or even computationally
explore, all regulatory mechanisms in order to explain the expression patterns
of a gene. In a study that attempted to dissect the combinatorial nature of gene
expression regulation [39], the authors were able to explain gene expression
inside transcriptional modules computationally based on the expression of the
regulators. In this case, the dimensionality of the search space was reduced
by limiting the number of studied genes to those that were expressed in a
particular tissue—aspen leaves. Furthermore, the regulators considered for
each module were determined in an iterative fashion, where a new regulator
was added only if it increased the predictive power of the model.

Most genes are transcribed at some point in the lifetime of an organism, but
this could possibly be at a single time point in a specific tissue. Thus, it is
easy to see that there must be a very complex regulatory system orchestrating
transcription. Transcription factors have to be expressed, and they in turn
regulate the expression of some other gene(s) that in turn might act in a
feedback loop to regulate the expression of itself. This quickly scales to form a
complex network that is not easy to disentangle. To further complicate things,
even if all factors needed to transcribe a particular gene are available, the gene
might still not be expressed if the 3D structure of the DNA is not arranged in
a configuration that allows access to the transcription factor binding sites, for
example. In order for e.g. enhancers to act properly, they need to be physically
close to the gene it acts upon (figure 3). The 3D structure of DNA is part of
what is known as epigenetics; the heritable changes in gene expression that
are not caused by changes in DNA sequence [40]. Another type of epigenetic
modification that influences gene expression is the methylation of promoter
regions which can block transcription factors from binding [41,42].
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Due to this combined complexity, most studies of regulatory networks have so
far been limited to smaller sets of genes [43].

1.3.2 Quantifying gene expression

Similar to genome sequencing, the estimation of gene expression received
a big boost from the development of high-throughput sequencing. In the
case of gene expression, instead of extracting and sequencing the DNA, the
mRNA is extracted, reverse transcribed into complementary DNA (cDNA)
and this is then sequenced—a process referred to as RNA-Sequencing. This
effectively creates a snapshot of the abundance of all transcribed RNAs—the
transcriptome—in a tissue of interest at the time of extraction. The last
part of this sentence is something that is very important to consider, and
we will come back to this in section 1.6. With the previously very popular
microarray technology, relative quantification of transcript abundance was also
possible, but limited to the genes that were included on the array, among other
limitations. With RNA-Sequencing, all mRNA in the cell can, theoretically,
be sequenced, regardless of whether the gene expressing it has previously been
identified and annotated, or not.

The data from RNA-Sequencing is similar to that from DNA-Sequencing in
that it consists of sequence reads based on a set of template sequences. In
addition to being able to measure the expression of all genes and not only
known genes, the dynamic range of RNA-Sequencing is significantly wider
compared to microarrays since the signal does not get saturated, and the noise
levels are lower [44]. In order to quantify gene expression, reads are aligned
to either a reference transcriptome (all known RNAs in the organisms) or
a reference genome (all DNA). Both approaches have their advantages and
disadvantages, but perhaps the most obvious disadvantage of using a reference
transcriptome is that only known gene products will be detected. Aligning
to a reference genome means that no prior information about known genes is
used; if reads map to an unannotated region of the genome, then something is
expressed in that region. One problem of aligning reads to the genome is that
splice junctions have to be handled. A splice junction is the border between an
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exon and an intron, and these are not present in the sequenced mature mRNA
(figure 3).

A problem that exists for both alignment methods is multi-mapping reads—
reads that map to multiple locations in the genome/transcriptome. Duplicated
genes, for example, might result in multi-mapping reads. Even if the genes
have diverged when it comes to their regulation, their coding sequences can be
more or less identical, and given a read produced from either of the duplicated
copies one cannot confidently say from which gene the read originated.

Another problem slightly related to multi-mapping reads is that of alternative
splicing variants. Splice variants are mRNAs that are produced by the same
gene, but they have different composition of exons. Some variants might be
missing an exon that other transcripts have, for example, and these transcripts
are even harder to separate than duplicated genes. One possible way around
the problem is to look at the expression of exons, and not genes or transcripts
as a whole [45].

A more recent approach to read alignment is a collection of methods referred to
as “alignment free” that are utilised in software such as sailfish [46] and kallisto
[47]. The principle of these methods is to not care about the exact location
of every read, instead to focus on which transcript the read is compatible
with. These types of methods are quite new and have yet to be thoroughly
tested, but they are in any case very interesting simply due to their speed;
kallisto is 150–350 times faster than software that traditionally has been used
for quantifying gene expression in RNA-Seq data [47].

We have developed our own pipeline for read processing and mapping, that
was utilised throughout this thesis [48].

1.3.3 Co-expression networks

When two genes have similar expression profiles they are said to be co-expressed.
By a gene’s expression profile we mean its quantified expression across a number
of tissues, time points, conditions, or treatments. Co-expression can be seen as a
manifestation of the underlying regulatory network—if two genes are regulated

13



by the same factors, it is expected that these genes also are co-expressed.
In contrast to the regulatory network, the co-expression network is simple
to construct, with the simplest approach being to calculate the correlation
between all pairs of genes. A co-expression network can be represented as a
graph structure where the vertices are genes and the edges represent the degree
of co-expression (figure 4). The consensus from a large number of studies
is that co-expression networks (and biological networks in general) often are
scale-free. What this means is that there are few genes with many connections
to other genes (high degree centrality) in the network and more genes with few
connections (low degree centrality) [49]. If the network is disturbed by random
perturbations, such as mutations, genes with a high degree centrality are less
likely to be targeted, due to their low frequency [50]. Consequently, a scale-free
network will be robust against random perturbations. Another measure of
centrality is betweenness centrality, which is a measure of how often a node is
part of the shortest paths between all pairs of nodes in the network (figure 4).
Co-expression networks have also been found to be modular, that is, there
are sub-networks in the global network that are more tightly connected to the
inside of the module than to the outside. More often than not it is the case
that these modules are enriched in functional categories such as Gene Ontology
[51] terms or Kyoto Encyclopedia of Genes and Genomes [52] pathways [53,54].

Studies have shown that co-expression networks can be useful vehicles in
capturing and describing biologically relevant gene expression signatures. One
example is a study performed in lake whitefish (Coregonus clupeaformis) where
researchers found network modules that were correlated with dwarfism [55].
Another study identified gene expression signatures common across cancer
tumour types using a co-expression network approach [56].

As previously stated, the co-expression network is a manifestation of the
underlying regulatory network, but it is also important to remember that the
co-expression network is only a very simple representation of the correlation in
gene expression levels. It only captures the state of mRNA in the cell at the
time of sampling, and it is not necessarily a representation of the corresponding
protein abundance, or of protein–protein interactions. Two proteins that
can interact will not necessarily interact just because their corresponding
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Figure 4: If the expression of two genes is correlated they are said to be co-expressed. This can
be represented as a graph, or network, structure where each node represents a gene, and the
edges between nodes represent significant co-expression. Modules in the network are defined as
sub-networks that have a stronger connections to genes inside the module compared to genes
outside the module. The modules are here represented by background colour. Nodes are said to
have a high degree centrality if they have many connections to other genes, and these nodes can
also be referred to as hub nodes. Nodes with a high betweenness centrality are genes that act as
a connection between many other pairs of nodes in the network. These are typcially nodes that
connect modules with each other.

transcripts are expressed at the same time [57]. However, if two genes are
expressed simultaneously in a sufficiently high number of different conditions,
it is likely that they share at least some of their regulatory mechanisms. One
study exploring this in Arabidopsis used network cliques—sub-networks where
all nodes are connected to all other nodes—to identify potential transcription
factor binding sites [58]. They found that regulatory motifs identified in cliques
that contained many genes targeted by the transcription factor E2Fa in many
cases corresponded to the previously verified binding site of that transcription
factor.

1.4 Association studies

Association studies, in this context, refers to the association of genetic variants
with a phenotype of interest. This phenotype can range from very clear ones,
such as human height, to more abstract phenotypes, such as gene expression.
In the following sub-sections I will present the concept of association studies
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and what we have learned from those so far.

1.4.1 Genome-wide association

I dare to bet that most people have come into contact with genome wide
association studies (GWAS) at one time or another. Whenever you see headlines
in the news such as “the obesity gene has been found”, it is likely that the
underlying study is a GWA study. It is also likely that the sensational headline
is not quite true. What researchers have done in cases like this is to collect
populations of individuals; those that have the phenotype of interest, such as
a disease, and another population of healthy people. The genomes of these
individuals are then sequenced or otherwise assayed for genetic variants and
the researchers then ask themselves: can we identify variants that can be used
to predict if an individual will be healthy or diseased?

Tr
ait

 v
alu

e

Genotype

A/A A/G G/G

A A A G G G

Figure 5: A schematic example of an association study with three different individuals with three
different genotypes at a particular locus (left): A/A, A/G, and G/G. These genotypes explain the
height of these individuals where the G allele is associated with higher individuals. Associating
this locus with the height of individuals in a population might yield the plot to the right. The
dashed line is then fitted to the data to minimise the distances between all data points and this
line. If the slope of this line is significantly different from zero we say that the association is
significant. The effect size is the slope of the fitted line and the variance explained by the SNP is
related to the amount of variation of the data points around the line. The closer the points are
to the line, the more of the phenotypic variation is explained by the SNP. Finally, the significance
of the association is the probability of the slope of the line being different from zero.
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Prediction is usually performed by way of relatively simple linear regression
models where the disease status or the quantitative phenotype acts as the
response variable and the genetic variant as the explanatory variable. A straight
line is then fitted to the data and represents the predicted trait value for a
given genotype (figure 5). These types of linear models assume that there
is an additive effect, i.e. the contribution of an allele adds up to explain the
phenotype. In figure 5, this is shown by the G allele adding to the trait value
in a way that two copies of the G allele has twice the effect compared to having
one copy of the G allele, in relation to having no G allele. It is not hard to
imagine that GWA studies often require a huge number of tests. In humans,
for example, we expect to find one SNP every 1.9 kilobases in the genome [59],
and this would result in more than 1.5 million tests if one were to test the
association to the phenotype of interest for each and every genetic variant. This
has a few consequences, but mainly it requires computational power that has
only become widely available quite recently. More importantly, the multiple
testing burden of GWA studies often becomes quite heavy.

Multiple hypothesis testing is a statistical problem stemming from the fact that
we expect to see random associations when performing a large number of tests.
In the case of GWA in humans, suppose that we are associating 1.5 million
variants with a particular phenotype. Applying the commonly used p-value
threshold of 0.05 means that we would expect 75,000 false positive associations,
i.e. associations that are due to purely random chance as a direct result of the
number of tests. To control for this the p-values can be adjusted according
to the number of tests performed using approaches such as the Bonferroni
correction, where the obtained p-values are multiplied by the number of tests.
Depending on the context, other less stringent methods are often preferred, like
methods that control the false discovery rate (FDR) [60]. In studies involving
genomic and gene expression data, there is extensive correlation structure
in the data. Using relatively simple approaches such as Bonferroni or FDR
correction will not take the correlation structure into account and can thus be
overly conservative, and this can be overcome by using permutation tests.

In order to detect associations with a very low effect, i.e. a slope close to zero
(see figure 5), a large number of samples are needed. With fewer samples,

17



only the most obvious associations will be detected, i.e. those with a high
effect. For example, in the study of human height mentioned previously, more
than 250,000 individuals were included in the study [3], and a meta-analysis
of almost the same magnitude was performed to find a genetic explanation
to body mass index [2]. In both cases the phenotypic variance explained by
individual variants was very low (below 1%). These small effects would not be
detectable in a smaller study.

1.4.2 eQTL mapping

Expression quantitative trait locus (eQTL) mapping is related to the traditional
GWAS, as just described, but the phenotypes here are of the more abstract
kind, namely gene expression. The problems of GWAS get even bigger for
this type of association study since not only do we have a large number of
genetic variants, we also have a large number of phenotypes. The phenotypes
in this case are measures of gene expression for every transcribed gene. If we
are to consider the expression of every gene in the human genome together
with all the genetic variants in the genome, we have to perform approximately
30 billion tests. Not only does this results in a multiple testing problem, but it
also causes purely computational problems. Not too long ago, this many tests
would have been practically impossible to perform due to the computational
resources needed, but with the increase in computational power, coupled with
clever methods [61], this is now relatively easy to do.

QTL mapping is typically divided into two categories: linkage mapping and
association mapping. Linkage mapping is usually used when family information
is available, such as in a controlled cross. It relies on known markers and
operates by performing a cross and observing how genetic markers associate
with changes in the trait of interest. For the work described in this thesis we
have instead used natural populations of plants, for which we do not have
family information and where a naturally breeding collection of individuals
are considered, rather than a controlled cross between two individuals. This
approach is referred to as association mapping, or linkage disequilibrium
mapping. This method is related to GWA in that a large number of genetic
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markers (typically SNPs) are statistically tested to determine whether they
are significantly associated with variation in a phenotype; the phenotype in
this case being gene expression levels. Linkage disequilibrium (LD) is the
non-random association between different loci. The idea is that the SNPs used
for the association are in LD with the factor that is actually responsible for
the phenotype. This way, the causal variant itself does not necessarily have
to be included in the association, as long as a variant that is in LD with it is
included.

eQTLs can be classified as either local or distant. A local eQTL is close to the
gene that it is associated with while a distant one is far away, either on the
same chromosome or on a different chromosome than the associated gene. The
distance threshold where local becomes distant is however somewhat arbitrary.
In our eQTL analysis in paper III, we classify SNPs within 100 kilobases from
the transcription start site to be local, based on the distance distribution of
eQTL on the same chromosome as the associated gene. The division into local
and distant is a purely structural one as opposed to a functional definition. A
more functional definition also exists, where eQTLs are classified depending on
how they act on the associated gene. eQTLs are said to act either in cis or in
trans, with cis-eQTLs acting directly on gene expression while trans-eQTL act
indirectly on the associated gene. An example of a cis mechanism could be
a variant that modifies a transcription factor binding motif in the promoter
of a gene, while a trans effect could be something so subtle as affecting the
abundance of a certain co-factor that is required for expression of the associated
gene. Consequently, a cis-eQTL should act in an allele specific manner. If
a transcription factor binding site gets disrupted in only one allele, only the
transcription of that allele will be affected. Conversely, trans-eQTLs will have
the same effect on both alleles. Due to the indirect mechanism of trans-eQTL,
these are generally of lower effect (remember the slope from figure 5), and
this is something that has been reported by numerous studies (references in
[62,63]), although there are exceptions [64]. Normally cis acting variants are
local to the associated gene while trans effects are more distant. Some studies
opt to only consider local eQTL, like [65], and this is to some extent a tactical
decision in that it makes the computational problem a bit easier since fewer
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Figure 6: Simplified example of when eQTL effects and gene regulation is masked. A green
checkmark means the regulatory link is enabled, while a red cross means it is disabled. Green
arrows indicate up-regulation of the gene while a red arrow indicates down-regulation of the
gene. In the regulatory network, the regulators R1 and R2 are always on, while regulator R3
is on as long as at least one of the eQTLs Q2 or Q3 enables the signal. The expression of G1
only depends on Q1, and this eQTL is thus easily detected by standard eQTL mapping methods
since there is a perfect relationship between the genotype and the expression. Due to the dual
regulators and eQTLs for R3, there is no perfect relationship between the eQTLs Q2 and Q3 and
either R3 or G2. The regulation of G3 is even more complicated where R3 needs to be expressed,
and at the same time Q4 must enable the signal. No perfect relationship between G3 and any of
the eQTLs exist even though Q4 is cis-acting and Q2 and Q3 are both trans-acting.

tests have to be performed, and consequently, the multiple testing problem
becomes slightly less of a problem since the number of markers considered for
each gene is much smaller than the total number of markers.

The first study of the genetics underlying gene expression variation was per-
formed in yeast in 2002 [66] and included 3,312 genetic markers and 6,215 genes.
At the time this was a big feat, but today we are able to run association tests
for all genes in the genome and all markers as demonstrated by the human
Genotype Tissue Expression project (GTEx; [65]) with a total of about 6.8
million SNPs and using both coding and non-coding genes (53,934 genes in
total).
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1.4.2.1 Biology gets complicated quickly

Complex traits are the result of the interactions between many different factors.
When it comes to eQTLs, the most common approach is to consider pairs
of genes and genetic variants one by one. A better approach would be to
analyse combinations of genetic variants and how they affect gene expression in
concert. However, it is not possible to do this in an exhaustive manner due to
computational complexity and multiple testing. In figure 6 a simple example of
how the regulation could be hidden from traditional analysis methods is shown.
The gene G1 is perfectly correlated with the genotype of the eQTL Q1, and
thus the traditional approach is perfectly capable of detecting this relationship.
It does not take much before this becomes too complicated though. R3 is
dependent on two eQTLs, Q2 and Q3. The expression of R3 is not perfectly
correlated with neither Q2 nor Q3, but in combination these eQTLs fully
explain the expression of R3. In other words, a model that takes all pairs of
SNPs into account would be needed to detect this relationship. Since G2 is
directly regulated by R3, the dissection of G2 would need the same model
as R3. Finally, G3 could only be dissected if all triplets of SNPs were taken
into account. This is a very simplified example, but it highlights the inherent
difficulties of systems genetics. In paper III we work with about 3.2 million
SNPs and about 20,000 genes resulting in about 64 billion models. This would
be able to capture the expression of G1. In order to dissect the expression of
R3 and G2 we would need to create models using all pairs of SNPs against
all genes and this would result in 1.02 × 1017 models. The expression of G3 is
explained by three eQTLs, and in order to test all SNP triplets, we would have
to investigate 1.09 × 1023 models. Assuming that we are able to calculate 10
million models per second—which is about the same speed as we achieved in
paper III—computing all models for pairs of SNPs would take more than 300
years, and all models of SNP triplets would take more than 340 million years.
Moreover, this is not even the worst part since the ridiculous number of tests
would need a correspondingly strict correction for multiple testing. In order
for any effect, no matter how large, to be significant, an enormous amount of
sequenced and phenotyped individuals is needed. This can be viewed as the
Catch 22 of genomics, where we have biological complexity on one side and
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limited data availability and computational power on the other.

Machine learning is class of methods that can be used in order to identify
patterns in large data sets. In paper II we use a support vector machine (SVM)
approach to classify samples as male or female based on gene expression. Omics
data have a dimensionality problem with a large number of variables (e.g. genes)
compared to the number of observations. An SVM will very likely perform very
well on this kind of data, but it will not generalise, i.e. new observations will
not be classified with a very high accuracy. This can be alleviated somewhat
by limiting the model using cross-validation, but instead the model will likely
have a bad performance for all data instead. In order to use methods like this,
the data must be limited to smaller data sets with a higher signal to noise
ratio.

As seen in figure 6, the complexity of regulation often results in redundancy
in the regulatory network, redundancy that can act as a buffer for random
mutations [67]. Here gene duplications play a role as well since with two copies
of the same gene, any detrimental mutations to one of them will most likely not
affect the organism in a drastically negative way. Not only does this protect
the organism, but it can also hide the regulatory mechanism from traditional
analysis methods. One way to think of this is that simplicity would be bad
for biology in general. If something is easy to disentangle, then a very small
perturbation, like a mutation, could possibly disrupt the whole system. This
is part of why we, in paper III, hypothesise that genes that are central in the
co-expression network have evolved more redundancy in their regulation. By
having more redundancy, these genes will not be affected as easily by random
mutations, and this is the same idea underlying the hypothesis of scale-free
biological networks (section 1.3.3).

1.4.3 Genetic variants in an evolutionary context

The genetic variants that are used for association mapping are not static in
evolutionary time and their current state in a population reflects the evolution-
ary history and outcome within extant individuals of the popoulation being
studied. Mutations (i.e. markers) could slowly be removed from the population
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if they have a detrimental effect on reproductive fitness (negative or purifying
selection), they could become fixed if they have a beneficial effect (positive
selection), there could be selection to maintain a mix of alleles (balancing
selection), or they could be under no selection pressure (selectively neutral)
and just drift through the population (genetic drift). These concepts can be
used to put the genetic variation into an evolutionary context that can help
understand the process that have acted on mutations since their point of origin
in the history of a species. In the context of eQTLs, a recent study showed signs
of eQTLs being under negative selection and that the effect size of the eQTLs
were negatively correlated with their frequency [68], a finding in common to
those reported here in paper III.

1.5 Integration of different types of data

From the sections on gene expression and association studies above, we see that
it is possible to explain some of the variability in complex traits using omics
resources by themselves. The natural follow-up question is to ask whether
we can gain even more from combining omics data. Between the genome
and the phenotype of interest there are many regulatory steps: genes will
be expressed (or not expressed), proteins might be degraded prematurely (or
accumulate), and all these effects act on each other in a complex network
(figure 7). A single analysis method, e.g. GWA, will simply not be able to
capture the whole truth. It will generate a genomic variant that is associated
with your trait of interest, but everything in between will essentially be a black
box. By integrating different types of data, the black box can be illuminated.
Furthermore, combining data can constrain our search space an thus alleviate
some of the problems with computational power and multiple testing discussed
previously. The approach of combining different levels of omics data is known
as systems genetics [69].

Most GWAS variants found so far are located in non-coding regions of the
genome, and it is thus hard to assign function to these variants. One approach
to annotate these non-coding variants could be to combine GWA with eQTL
mapping. This way genes can be associated with gene expression if genetic
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Figure 7: The different types of regulatory layers and how they can interact in order to give rise
to complex traits. Genetic information is transferred to downstream layers through transcription
into RNA. This in turn is translated into protein. Proteins then act together in order to produce
and modify metabolites, as well as interacting with RNA and the DNA to regulate transcription.
All this, together with environmental factors, give rise to phenotypes; some more complex than
others.

variants are shared between the two studies, and phenotypes can consequently be
associated with genes through guilt by association [70–72]. So far, most studies
have focused only on protein coding genes leaving non-coding GWA variants
without functional annotation. With RNA-Sequencing as the dominating
technology for estimating gene expression together with the encouragement
from the community to make data publicly available, it will be possible to
revisit these studies as the annotations of the regulatory genome improve.

To gain even more understanding as to how complex traits emerge, information
from even more regulatory layers must be included. This can be done with
two main approaches: multi-staged analysis or a meta-dimensional analysis
[73]. The multi-staged analysis is based on using data in a hierarchical manner,
e.g. identify SNPs that are significantly associated with the phenotype of
interest, and associate that subset of SNPs with gene expression levels, i.e. eQTL
mapping. In this way, the number of SNPs to consider is significantly decreased
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compared to a genome-wide eQTL mapping approach. The expression of the
genes associated with genetic variants can then be used to investigate protein
expression and perhaps to examine a subset of a protein interaction network in
order to obtain a more complete picture of the emergence of phenotypes. In
a meta-dimensional analysis, data from different layers are combined into a
simultaneous analysis in order to consider multiple relationships at the same
time, as opposed to the multi-staged analysis approach. For an in-depth review
of data integration see [73].

In section 1.4.2.1, we mention that it is not feasible to do an exhaustive search
for combinatorial effects. This problem could get even worse when including
more data, but at the same time, more data can also help mitigate these issues.
By layering the different types of data, things that most likely do not have
an effect on the phenotype of interest can be excluded. By systematically
integrating different types of data, the search space can be limited drastically,
and ultimately it could actually be feasible to perform an exhaustive search of
this reduced space.

The dimensionality of individual data sets can also be reduced in many cases.
For example, if there are SNPs in the genome that are inherited together
(i.e. in LD), including all SNPs in such a region will not provide any additional
information, but rather take away statistical power due to an increased multiple
testing burden. If only one SNP is used as a representative for a linkage block,
it is important to remember that this might very well not be the causal SNP.
Again, integration of other data types such as transcription factor binding
information might be used to select the likely causal SNP.

1.6 Limitations

Although the strategies for elucidating the emergence of complex traits discussed
in this thesis are promising, there are practical limitations that cannot be
circumvented, at least not easily. In cases where natural populations are studied,
we are dependent on capturing the right moment when the biochemical process
of interest is active. If we do not sample at the critical time point, we risk
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missing the processes that actually define the trait of interest. Not only is
the sampling time point critical for capturing e.g. a developmental stage, it is
also important to consider daily fluctuations that can have an effect on gene
expression. This is clearly demonstrated in a recent study in rice where gene
expression was quantified in the field, and it was shown that even short term
variations in temperature and sunlight levels modified gene expression in a
reproducible manner [74].

When it comes to geographical range, we are limited to the range of sampling,
and cannot do inferences beyond that. For example, in papers III and IV, we
were limited to the range of Sweden, while aspens are spread out across more
or less the whole northern hemisphere. In that context, Sweden is a very small
part of the total distribution range, and it might not be very surprising that
we did not see any pronounced population structure in the data.

In order to have enough statistical power in association studies, large sample
sizes are needed. A problem with using forest trees is that it is very expensive
and time consuming to maintain a large population of trees. Ideally, we want
to grow them in a controlled environment in order to minimise environmental
effects, but this is clearly not a practical approach. In the study of human
height that has been mentioned several times in this thesis, they used more
than 250,000 individuals, but this was a meta-study [3], i.e. a study collecting
data from previous studies, avoiding the hassle of collecting the data themselves.
Even so, a meta-study of the same magnitude in P. tremula is not possible
today, since the amount of data generated is not even close to that of human
studies. The importance of good annotations such as previous efforts to
elucidate regulatory mechanisms also play a big role [36]. As of yet, most
of these efforts have been directed towards human studies (e.g. ENCODE
[14]), quite understandably. While the results from these annotation efforts
are not directly transferable to other species, information regarding general
characteristics of genome structure and function can most likely be transferred
to other species. This has to some extend been done already, but in the other
direction. For example, the fruit fly Drosophila melanogaster has been used as
a model organism for human genetics and disease for over a century [75].
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The results of associations studies are just that—associations. A genetic variant
that is associated with a particular phenotype is not necessarily the causative
variant. It might be that it in turn is associated with the causal variant
through linkage disequilibrium (LD). In the case of plants, a variant in LD
with the causal variant might be good enough in many cases where marker
assisted selection can be employed in breeding. However, if more control of the
phenotype is needed, a variant in LD is not of much help. If the variant is not
causal, it is likely that mutating this position will not result in a corresponding
change in phenotype. Strategies to filter out the causal variants from association
studies include integrating different types of data in order to single out the most
likely candidate genes or loci, but there are several challenges associated with
this kind of data integration. The individual data sets themselves have their
own issues to begin with. There are systematic biases, normalisation issues,
and correlation structures that are not trivial to deal with, and that can eat up
a considerable portion of resources available to a project. Something a bit more
abstract that could help with finding causal variants is transparency when it
comes to publication. This could potentially help minimise confirmation bias
and consequently the number of false positives in circulation [76].
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2
Paper summaries

This chapter will give a short summary of each paper included in the thesis.
Paper I deals with gene regulation in a cyanobacterium, while papers II–IV
considers aspects of gene expression, genotype, and phenotype in the deciduous
tree Populus tremula (European aspen).

2.1 Paper I — Gene regulation in a cyanobacterium

Synechocystis is a fresh water cyanobacterium and it is one of the most studied
cyanobacteria to date, being used as a model system for nitrogen fixation and
photosynthesis amongst other things. Even though the genome of Synechocystis
was sequenced already in 1996, most of the genes in its genome are still
annotated as having unknown function. In this paper, we created the web
application Synergy to enable researchers working with Synechocystis to explore
the gene expression and the gene regulation of this organism in silico in order to
find potential candidate genes for e.g. knock-out experiments. We collected 371
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microarray experiments from public sources and constructed a co-expression
network. As mentioned in section 1.3.3, a co-expression network is simply
a manifestation of the underlying regulatory network, so in order to form
a link between co-expression and co-regulation, potential regulatory motifs
were identified using phylogenetic footprinting. This method is based on the
alignment of regulatory regions of orthologous genes from related organisms.
In this case, 22 genomes from the Chroococcales taxon were used for the
phylogenetic footprinting, and this resulted in a set of 4,977 potential regulatory
motifs. In the paper we show that co-expression network neighbourhoods of
regulatory proteins were enriched for regulatory motifs, thus providing a possible
regulatory link between these regulators and the co-expressed genes. The user
of the web application can then investigate whether their gene set of interest
is co-expressed, and whether this to some extent can be explained by shared
regulatory motifs. In order to make the application as useful as possible,
the gene identifiers used were the well established identifiers from CyanoBase
(http://genome.microbedb.jp/cyanobase/; [77]).

As part of a sanity check of the integrated data, a couple of case studies were
conducted where both previously published results were confirmed, and also
potentially novel regulatory relationships were presented.

Synergy is publicly available at http://synergy.plantgenie.org.

2.2 Paper II — Two-class phenotype prediction

The majority of angiosperms are monoecious or hermaphroditic, i.e. each
individual has both male and female flowers, or the flowers have both male and
female organs, respectively. This is not the case for about 4% of flowering plants,
including the genus Populus, which is dioecious (with a few exceptions). It is
thought that the formation of a dioecious species evolved from hermaphrodites
and thus have not yet evolved distinct sex chromosomes, as is the case in
mammals. When the sexes are separated, constraints on the phenotype are
released as the individual sexes adapt to a new fitness optimum, and this would
then give rise to sexual dimorphism, i.e. phenotypic differences between the

30

http://genome.microbedb.jp/cyanobase/
http://synergy.plantgenie.org


sexes. Previous studies in Populus species have shown that there is likely a sex
determining region on chromosome 19, but so far no study has looked at global
phenotype and gene expression patterns to look for sexual dimorphism.

In paper II we show that there are no significant phenotypic differences in a range
of phenotypes in Populus tremula. The phenotypes included different biomass
traits such as height and diameter, and also a range of secondary metabolites
involved in herbivore defence. In addition to the more classical phenotypes,
differences in gene expression were investigated by identifying differentially
expressed genes. In addition, we also attempted to classify samples as male or
female with a support vector machine (SVM) trained on genes inside sliding
windows across the genome. The rationale behind the sliding window approach
comes from the fact that there is a consensus that there is a sex determining
locus. This locus might contain more than one gene, and individual genes
might not be able to fully explain the sex division. However, in this case the
SVM analysis did not result in any gene combinations that could predict sex
any better than single genes. Only two individual genes were found to be
significantly differentially expressed between the sexes, and one of those was
located in a region previously linked to sex determination. As reported by
Pakull et al. [78], and independently discovered by us, part of this gene is
deleted in females and thus gives rise to the difference in expression between
sexes.

2.3 Paper III — Genetic basis of gene expression varia-
tion

Natural variation is perhaps the most important aspect of biology; without
variation there would be no evolution. Some of the observed variability can
be explained by environmental factors while some can be explained by genetic
factors. In paper III we take a closer look at the natural variation in gene
expression in Populus tremula by performing eQTL mapping and constructing
a co-expression network from gene expression data from a natural population
of P. tremula spanning the distribution range of this species in Sweden. In
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total, RNA-Sequencing and DNA-Sequencing data from 81 distinct genotypes
were used for the study.

One of the main goals of this study was to see whether eQTLs could explain the
structure of the co-expression network. Since the data originates from natural
populations of unrelated individuals, the pairwise gene expression correlations
were low, but we were still able to identify distinct co-expression modules.
Genes whose expression was associated with genetic variants (eGenes) were less
central in the co-expression network than what would be expected by chance,
and there was also a negative relationship between the centrality of eGenes
and the eQTL effect size. A general hypothesis when it comes to biological
networks is that central genes are critical for the organism to function correctly,
and that disruptions to these genes could have a negative impact on fitness.
We hypothesise that these central genes have more regulatory redundancy than
genes that are peripheral in the network. The regulation is governed by many
small-effect eQTLs that in concert offers genetic buffering of the regulation of
these genes. Due to a relatively small population size, we are not able to detect
these small effect size eQTLs, and a given, but practically difficult, follow-up
would be to collect more data in order to test this hypothesis.

2.4 Paper IV — Leaf shape and systems genetics

Leaves in plants are the main organs for photosynthesis and carbon fixation,
and the morphology of leaves affects photosynthetic efficiency. Furthermore,
leaves are often one of the most recognisable traits of a plant. In paper IV we
applied a systems genetics approach where data on genotype, gene expression,
and phenotype were integrated in order to understand the control of natural
variation of leaf shape in Populus tremula. In contrast to paper II and paper
III where a one-gene-at-a-time approach was followed, paper IV focused on
explaining the complexity of leaf traits as they emerge from the interaction of
many genes.

Three different leaf traits were considered: circularity, indent width, and leaf
area. Only a handful of SNPs were significant in GWA for indent width and leaf
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area, while none were significant for circularity. Two of the traits, circularity and
indent width, were highly heritable. Of the SNPs with the highest significance,
most were located in untranslated regions of genes, indicating that they might
be exerting their effects through gene expression. However, very few of the SNPs
were also eQTL SNPs in paper III. Furthermore, correlating gene expression
values with the leaf traits did not result in any significant correlations, indicating
that neither single-SNP nor single-gene approaches for dissecting leaf shape
are viable.

We took these results as support for the infinitesimal model, i.e. that these
traits are controlled by numerous variants of small effect size. Consequently,
we employed a gene set enrichment approach where sets of genes associated
with the top GWAS results were tested, as well as gene sets based on gene
ontology terms. Here, several gene sets with a common functional role had a
significant association to each of the three traits, emphasising the need to go
beyond single-SNP and single-gene approaches in order to understand complex
traits.
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3
Discussion

In order to decipher the emergence of complex traits, the most common
approaches that are used today, such as GWAS and eQTL mapping, are not
enough by themselves. To be able to find the factors that contribute to complex
traits, all layers of regulation must be taken into account. However, this is not
a trivial task. Firstly, the limitations for the individual data types must be
accounted for. Secondly, the data must be integrated in a way that maximises
the information we are able to get out, while at the same time minimising the
number of false associations.

This thesis has explored some of the strategies that can be used in order
to unravel the emergence of complex traits, utilising gene expression data,
genotype data, and phenotype data. In doing this we have seen the potential in
integrating data from different sources in order to get a more complete picture
of gene regulation and the emergence of phenotypes, but we have also seen that
there is a long way ahead of us. In no way have we exhausted the possibilities
with the data we have worked with.
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3.1 Future perspectives

The future holds much in store when it comes to the analysis of complex traits.
With sequencing costs already being low, they will probably get even lower.
Furthermore, new technologies, such as nanopore sequencing [79] that enables
sequencing of longer reads, will allow even more accurate quantification of
gene expression and identification of genetic variation. With the short-read
technologies that dominate the market today, there are a lot of ambiguities
when it comes to e.g. the expression of splice variants and allele-specific ex-
pression; problems that have yet to be solved. Disruption of splicing has been
associated with several human diseases [80], and may play an important role in
environmental adaptation in plants [81]. If the whole mRNA molecule can be
sequenced in one go, the expression of each and every splice variant could be
determined with much better accuracy than any of the techniques employed
today. However, one should not underestimate the computational challenges
that usually follow with new technologies. It might be easy in theory, but just
as for short-read sequencing, there will surely be some hurdles to pass on the
way.

When it comes to sequencing, a high quality reference genome is a vital
component in order to map genetic variation or quantify gene expression.
Up until today, reference genomes are simply a long string of characters
effectively representing a single haplotype in a single individual. Projects
such as the 1000 genomes project [82] make it possible to deviate from this
path and construct reference genomes that not only represent a consensus
genome sequence, but that also represent the variation present in populations
of individuals. There have been several studies to date reporting reference
allele bias in RNA-Sequencing data, i.e. reads originating from the reference
allele will map more confidently to the reference genome compared to a read
originating from an allele that contains polymorphisms relative to the reference
[83–85]. This could be alleviated by having a reference genome format that
represents known variation, together with compatible software. The latest
release of the human reference genome (GRCh38) is a step in this direction with
alternative loci available for selected parts of the genome that are too complex
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to be represented by a single sequence. In order to include all known genetic
variation from e.g. the 1000 Genomes Project a number of associated challenges
must be overcome, and this is something that likely will move forward slowly.

The association studies that are used today have one very obvious limitation:
these are simply statistical association between a genetic variant and a trait of
interest. Due to the lack of independence among genetic variance stemming
from linkage disequilibrium, the variant that is associated to the trait of interest
might not be the causative variant. Testing this could be accomplished using
the relatively new and much hyped CRISPR/Cas9 technology [86]. Briefly, this
can be seen as molecular scissors and glue that can cut and paste in the genome
in order to insert, change, or delete parts of the DNA. With this, it would be
possible to test the phenotypic effect of variants on a large scale in order to
find the causative variants in genome wide association studies. Old cloning
techniques are able to do the same thing, but they are very laborious, and in
cases when traits are polygenic, it is often not feasible to generate anything
more complex than a double mutant. With CRISPR/Cas9 it is possible to
test several variants at the same time using a multiplex strategy, i.e. targeting
multiple loci in a single experiment [87], which would be a direct requirement in
order to verify multiple causal variants underlying complex traits. Furthermore,
it is possible to perform allele specific modifications, where a point mutation is
introduced in one allele while leaving the rest of the genetic background the
same [88]. This technology is still very young, but owing to the great impact it
has had on the scientific community, a wide range of publicly available tools
have been developed in order to aid the community in designing CRISPR/Cas9
experiments [89–94], making this a far more accessible alternative compared to
similar technologies of a more proprietary nature [95].

One aspect that has not been taken into account at all in this thesis is the
effect of epigenetics. In section 1.3.1, it is mentioned that there are a number
of factors that are required in order for RNA to be transcribed from DNA. One
additional factor is epigenetics, i.e. modifications “on top of” the DNA that does
not change the actual DNA sequence but still affect regulation. One example
of an epigenetic modification is methylation which is the addition of a methyl
group to the DNA backbone. If this methylation occurs in a transcription
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factor binding site, it can block the binding of the transcription factor and
consequently repress the expression of the gene [96]. Since most of the significant
variants that are identified in GWAS are located in intergenic regions, not
much information is provided initially by the GWA alone. Integrating these
kinds of results with epigenetic data can contribute to a better understanding
of regulatory mechanisms that connect genomic variation and higher order
phenotypes [97].

In the end, these methods and technologies should be used in order to improve
the situation for people and the environment. With climate change being a very
real and imminent threat to the future of our species, we will need to develop
improved crop varieties that are able to grow in environments that would
normally be too harsh for the crop varieties of today. Most stress related traits
are complex, and breeding strategies used are basically just trial-and-error in
order to randomly identify something that will be ever so slightly more tolerant
to e.g. drought. If researchers instead are able to, with these new technologies,
dissect the genetic background of these complex traits, new crop varieties could
be generated much more rapidly with e.g. marker assisted selection or by simply
modifying the genome using something like CRISPR/Cas9. The ultimate goal
would be to some day be able to pinpoint causal variants and be able to say
that “if we change this from a C to a T we will get 5% higher yield in arid
conditions”. This scenario is probably quite far away at the moment, and given
the complexity of biology, it is not even certain that we will get there—but at
least we will not be bored.
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Abstract

Despite being a highly studied model organism, most genes of the cyanobacterium

Synechocystis sp. PCC 6803 encode proteins with completely unknown function.

To facilitate studies of gene regulation in Synechocystis, we have developed

Synergy (http://synergy.plantgenie.org), a web application integrating co-

expression networks and regulatory motif analysis. Co-expression networks were

inferred from publicly available microarray experiments, while regulatory motifs

were identified using a phylogenetic footprinting approach. Automatically

discovered motifs were shown to be enriched in the network neighborhoods of

regulatory proteins much more often than in the neighborhoods of non-regulatory

genes, showing that the data provide a sound starting point for studying gene

regulation in Synechocystis. Concordantly, we provide several case studies

demonstrating that Synergy can be used to find biologically relevant regulatory

mechanisms in Synechocystis. Synergy can be used to interactively perform

analyses such as gene/motif search, network visualization and motif/function

enrichment. Considering the importance of Synechocystis for photosynthesis and

biofuel research, we believe that Synergy will become a valuable resource to the

research community.

Introduction

Cyanobacteria are the only prokaryotic organisms that produce oxygen in the

process of photosynthesis, and are the ancestors of higher plant chloroplasts. Not
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only did cyanobacteria establish the aerobic Earth’s atmosphere, they also play a

crucial role in the global biochemical cycle today by fixing CO2 and producing

half of the global biomass. Being prokaryotes, cyanobacteria can be genetically

modified easily and due to their fast photoautotrophic growth, they have a great

potential for large scale production of renewable biofuels [1, 2] and other valuable

products [1, 3, 4]. The popularity of the cyanobacteria phylum in photosynthesis

and biotechnology research is reflected in the high number of sequenced

cyanobacterial genomes available in Cyanobase (http://genome.microbedb.jp/

cyanobase/) [5] and other public databases [6]. After the genome of the

unicellular fresh water cyanobacterium Synechocystis sp. PCC 6803 (hereafter

Synechocystis) was sequenced in 1996 [7], large amounts of gene expression data

have been generated from cells exposed to diverse experimental conditions.

Identifying groups of genes with similar expression patterns (i.e. co-expressed

genes) in such data sets allows inference of functional and regulatory similarities

among genes. For example, light response in Synechocystis has been studied using

gene co-expression networks [8–10]. While these studies give insight into how

cells react to single modifications, only the integration of multiple transcriptome

data sets will allow a holistic understanding of the cellular response. The first

meta-analysis of transcriptomics data in Synechocystis used a co-expression

network inferred from 163 different environmental and genetic perturbations to

identify a large number of genes (referred to as the Core Transcriptional

Response) that are commonly regulated under most perturbations [9]. The

growing interest in integrated transcriptome analysis has also led to the

development of a web database, CyanoEXpress [11]. Although this tool comprises

a vast set of experimental data, and integrates microarray data obtained with

different experimental platforms, its use is restricted to the visualization and

analysis of gene expression clusters. However, genes regulated by the same

transcription factor (i.e. co-regulated genes) should not only be co-expressed, but

also contain similar cis-regulatory elements in their promoter region. In

Synechocystis, co-expression has not yet been linked with motif discovery in order

to obtain a more mechanistic understanding of gene regulation.

We have developed Synergy, a web resource for exploring Synechocystis gene

regulation, which integrates co-expression network analysis with motif analysis.

Synergy is available at http://synergy.plantgenie.org. Considering the importance

of Synechocystis as a model organism in biofuel production [2] and photosynthetic

research [12, 13], we believe Synergy will become a valuable resource to many

researchers.

Results and Discussion

In this article we provide an integrated analysis of co-expression networks,

promoter motifs and existing gene function annotations in Synechocystis. See

Figure 1 for an overview.

Synergy: Exploring Gene Regulation in Synechocystis
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Co-expression network inference

Co-expression networks were inferred from 371 individual microarray experi-

ments obtained from KEGG Expression (Table 1; http://www.genome.jp/kegg/

expression/; [14]). We used locally corrected mutual information scores (CLR

scores, see Materials and Methods) to measure co-expression between pairs of

genes, and constructed co-expression networks by linking genes with a CLR score

above a preset threshold. Thus, a co-expression network is a set of nodes

representing genes, which are connected by links representing co-expression above

a threshold. Since some of the expression values were missing in the published

data, we decided to investigate their impact by inferring two different networks;

one based on a subset of samples that contained expression values for all the genes

across all microarrays (subset co-expression), and another one based on all

microarrays (complete co-expression). The subset co-expression network

contained 3,077 genes (i.e. nodes) and 59,595 links with a CLR score above 4.0,

while the corresponding complete co-expression network contained 3,067 nodes

and 52,081 links.

Figure 2 shows a simplified version of the complete co-expression network

where highly connected sub-networks are collapsed into single nodes (clusters)

that thus represent several co-expressed genes (see Materials and Methods). Some

of these clusters are associated with Gene Ontology (GO) [15] terms that are

assigned more often to genes in that cluster than what one would expect by chance

Figure 1. Overview of the data and methods used in the study. A co-expression network was inferred from
gene expression, and promoter motifs were identified de novo from the genome sequences of orthologous
species. The motif information was used to investigate if transcription factor neighborhoods were enriched for
motifs compared to random network neighborhoods.

doi:10.1371/journal.pone.0113496.g001
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(false discovery rate (FDR) [16] corrected p-value ,0.05 or, equivalently, q-value

,0.05). We will refer to such statistically significant overrepresentation as

enrichment. The dominating clusters in the network display genes encoding

proteins related to energy metabolism, photosynthesis, translation and protein

folding. These clusters stand out not only because they contain genes with

stringent regulation under the majority of stress conditions tested, but also

because these genes encode proteins with inter-functional dependency. As also

previously noticed [9], the expression of ribosomal genes is correlated with the

expression of energy producing pathways (photosynthesis and energy metabo-

lism); shutting down the major energy producing pathways will result in

temporary translational stop. Protection from reactive oxygen species (ROS) is of

tremendous importance for an oxygen-producing organism like Synechocystis,

which is reflected by the central location of the cluster representing genes coding

for enzymes involved in protein folding.

Co-expression networks can be used to quantify the importance of a gene by

reporting several different measures of network centrality calculated for the node

representing that gene. The degree centrality of a node is defined as the fraction of all

nodes in the network that are directly connected to it (i.e. neighbors). The

betweenness centrality of a node is the fraction of times that node is in the shortest

path between two other nodes in the network (the shortest path between two nodes

in a network is the fewest number of links needed to travel from one node to the

other). The 40 genes with the highest degree- and betweenness- centrality (average

centrality of 0.179 and 0.008, respectively) in the complete co-expression network

were both enriched for genes encoding proteins involved in the photosynthetic

processes (GO:0015979: photosynthesis, q,0.001 and q,0.05, respectively). The

Table 1. References to the microarrays used in this study.

Reference Arrays Conditions

[38] 18 3

[39] 20 4

[40] 4 1

[41] 22 2

[42] 11 3

[43] 46 11

[44] 144 12

[45] 38 10

[46] 4 1

[47] 4 1

[48] 14 4

[49] 28 14

[50] 18 9

Total 371

All data can be found at http://www.genome.jp/kegg/expression/.

doi:10.1371/journal.pone.0113496.t001
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complete results are available in file S1. The central role of these photosynthesis

related genes within the gene regulation of Synechocystis is also supported by the

relatively central location of its gene cluster (Cluster 3) in Figure 2. Functional

enrichment of co-expression in the model plant Arabidopsis thaliana has also found

a cluster of genes encoding proteins involved in photosynthesis in a central position

Figure 2. Clustered co-expression network. A clustered co-expression network derived from the complete co-expression network at a CLR threshold of
4.0. Each node corresponds to a set of clustered genes. The size of the nodes is proportional to the number of genes in the cluster. Two clusters are linked if
they share at least one co-expressed gene pair. The annotations correspond to the most significantly enriched GO terms in the clusters (q,0.05).

doi:10.1371/journal.pone.0113496.g002
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[17]. This confirms the high conservation of photosynthesis related genes; in

particular the regulation of these genes is highly conserved.

Phylogenetic footprinting

Transcription factors (TFs) bind to regulatory elements in the promoter region of

genes or operons to enhance or repress their transcription. Phylogenetic

footprinting was used to identify conserved DNA motifs within promoters of

orthologous genes, which would indicate functional regulatory elements. We

identified 8,961 groups of orthologous genes in 22 Chroococcales genomes (see

file S2 for a list of organisms) and searched for conserved DNA promoter motifs

using de novo motif finding (see Materials and Methods). Since motifs were

discovered from each group of orthologous genes independently, the resulting

motif set contained as many as 15,306 motifs that could be mapped to

Synechocystis promoters, of which many were very similar or even identical. To

obtain a more representative motif set, we inferred a motif similarity network,

identified clusters in this network and compiled a final library of 4,977 central

motifs; one motif from each cluster (see Materials and Methods). This extensive

motif set displays good coverage of the Synechocystis promoters; already at a q-

value threshold of 0.10 (i.e. less than 10% of the motif mappings are expected to

be false positives), virtually every gene had at least one motif mapped and almost

every motif in the library was mapped to at least one promoter (Figure 3).

Motif enrichment in co-expression network neighborhoods of

regulatory genes

A major aim of our study was to integrate co-expression networks and regulatory

motifs in order to describe gene regulation in Synechocystis. To this end, we rely on

the assumption that genes encoding TFs are co-expressed with their target genes and

that the target genes contain a specific binding site, which is used by the TF to

initiate transcription. Consequently, we tested this assumption for each gene

annotated with a regulatory function or DNA binding by first identifying all genes

directly connected to that putative TF (i.e. the TF neighborhood) and then by

calculating to what degree motifs occurred more often in this neighborhood than

what one would expect by chance (i.e. enriched motifs). This analysis was

performed for different network CLR thresholds and motif q-values in the complete

co-expression network and in the subset network (where experiments with missing

values were removed) using all discovered motifs and the non-redundant set of

central motifs. Figure 4 shows that the library of central motifs resulted in more TF

neighborhoods with enriched motifs (q,0.05) than the set of all motifs, which on

one hand can be explained by the multiple hypothesis correction procedure, but on

the other hand also indicates that the reduced set of central motifs covers all motif

variants. Also, TF neighborhoods in the complete co-expression network contained

enriched motifs more often than in the subset network, indicating that our network

inference procedure copes well with data sets having missing values. Based on these
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results, all analyses are henceforth based on the complete network and the central

motifs. Interestingly, there is a relationship between the network CLR threshold and

the motif q-value threshold, where stricter CLR thresholds require more generous q-

value thresholds in order to maximize the number of motif-enriched TF

neighborhoods. The highest number of enriched TF neighborhoods with the lowest

p-values was observed in the complete network with a CLR threshold of four and a

motif q-value of 0.15. Here, 105 of the 136 investigated genes with a regulatory

function (77%), and 87 of the 118 investigated DNA binding genes (74%), had at

least one enriched motif in its neighborhood. In total, 387 and 445 motifs were

enriched in these analyses, respectively. These results are statistically highly

significant, both, compared to neighborhoods of ordinary genes in the network

(p50.001) and compared to TF neighborhoods in randomized networks

(p,0.001). Thus, we can conclude that co-expression and motif information to a

large degree concur in Synechocystis. The fact that these two completely independent

data sets agree so well also strengthens any biological insight inferred from our data.

Figure 3. Central motifs mapped to Synechocystis promoters. The plots show the total number of times
the central motifs were mapped to promoters (A), the number of unique motifs that were mapped (B) and the
number of unique genes the motifs were mapped to (C) for different FIMO q-value thresholds.

doi:10.1371/journal.pone.0113496.g003
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Conservation of co-expression in photosynthesis genes

Cyanobacteria are the evolutionary origin of the plant chloroplast. Synechocystis

therefore is an important model system for studying photosynthesis. We

investigated to what extent the co-expression of Synechocystis genes coding for

Figure 4. Gene co-expression neighborhoods with significant motif enrichment. The figure plots the fraction of neighborhoods for regulatory genes (A)
and DNA-binding genes (B) with at least one significantly enriched motif (q,0.05) against the q-value threshold for mapping motifs to the genome. The
fractions are calculated from the total number of genes in the respective groups that have gene expression data (118 DNA-binding genes and 136 regulatory
genes). Plots are shown for all motifs and the subset of central motifs as well as for the complete and subset co-expression networks with different CLR
thresholds. P-values are given for each combination of parameters and indicate the probability of observing the reported fraction of enriched neighborhoods
in randomized networks.

doi:10.1371/journal.pone.0113496.g004
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photosynthetic proteins is conserved in plants. 64 Synechocystis genes were

annotated with the GO term photosynthesis (GO:0015979), of which 62 genes

formed a connected co-expression subnetwork (CLR threshold of three,

Figure 5A). 35 of these Synechocystis genes had at least one ortholog in A. thaliana

(E,1e-5), resulting in 30 unique A. thaliana gene models (file S3). We analyzed

these genes in the comparative network tool ComPlEx [18], and indeed confirmed

that all these genes formed a co-expression cluster with the same CLR threshold of

three. Moreover, this co-expression network was highly conserved also in Oryza

sativa and Populus trichocarpa (Figure 5B and 5C).

Web application

We have created a web tool for integrated analysis of co-expression networks and

regulatory motifs called Synergy (http://synergy.plantgenie.org). Available tools

include an interactive co-expression network viewer, Gene Ontology and motif

enrichment tools, precompiled gene lists and the ability to export annotated gene

lists.

The natural starting point on the web site is the gene search tool. From here, the

user can search for genes of interest or upload a list of genes (Figure 6A). There is

also the possibility of using precompiled gene lists; genes annotated to a GO

category, genes associated with a motif, genes in a co-expression cluster (Figure 2)

Figure 5. Conservation of photosynthesis genes. Co-expressed genes related to photosynthesis in Synechocystis (A) were BLASTed against A.
thaliana. The orthologs (BLAST E-value ,1e-5) were compared against P. trichocarpa (B) and O. sativa (C) using the network comparison tool ComPlEx.
This revealed conservation of co-expression across all four species. Note that the A. thaliana genes given in white color were not measurably expressed in
the other species.

doi:10.1371/journal.pone.0113496.g005

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 9 / 18



and genes in the immediate co-expression neighborhood of a regulatory gene. For

each of these gene lists, GO and motif enrichment have been pre-calculated.

Genes of interest can be added to the gene basket and these genes will be

available throughout the application. The gene basket page allows the user to

manage the gene basket and to calculate GO and motif enrichment for the genes

currently in the basket.

The network viewer features the possibility to view and explore co-expression

among sets of genes (Figure 6B). Genes that are co-expressed with the gene(s) in

the current co-expression network can be found by expanding the network at any

selected CLR threshold. It is also possible to export the networks in the Graph

Modelling Language (GML) file format, or as publication quality PDFs.

Gene expression profiles of a chosen set of genes can be plotted across the 371

experiments and later downloaded as publication quality PDFs.

Figure 6. Web application screenshots. Gene search interface (A), network viewer (B), gene details (C) and motif details (D).

doi:10.1371/journal.pone.0113496.g006
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For each gene name there is a dedicated page detailing annotations, the

expression profile and a list of motifs in the promoter (Figure 6C).

Correspondingly, there is a dedicated page for each motif containing the motif

logo, the set of genes that contain the motif in their promoters, the possibility of

searching for this motif in existing motif databases and the position specific

probability matrix for use in other software (Figure 6D).

To make sure that feedback from users reaches the developers by the shortest

path possible, a public issue tracker is available at Github (https://github.com/

maehler/Synergy/issues). Here, users can file tickets for bugs and enhancements.

Documentation for the tools can be found at http://synergy.plantgenie.org/

documentation.

Below we describe a number of case studies that illustrate different uses of

Synergy:

Case study 1: identification of genes regulated by a known

transcription factor

Synergy can be used to analyze motif occurrences in order to find candidate genes

regulated by a known transcription factor. Previously, a spaced motif in the

upstream region of genes involved in phosphate limitation had been identified

in Synechocystis as well as the transcription factor recognizing this

motif [19]. The consensus motif contained the direct repeat sequence

[CT]TTAA[CT][CT][TA]NNN[CT]TTAA[CT][CT][TA] (Figure 7). Comparing

the central region of the motif (TTAA[CT][CT][TA]NNN[CT]TTAA) with

existing motifs in Synergy identified the motif NP_442272.1_1 (E-value 1.61e-5).

A total of 56 genes contained this motif in their promoter sequence, including

Figure 7. Synergy case study 1. A regulatory motif and its transcription factor were extracted from the
literature [19]. Searching for the motif in Synergy identified a number of genes that were experimentally
determined to be regulated by this transcription factor.

doi:10.1371/journal.pone.0113496.g007
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slr0447 (urtA), slr1247 (pstS2) and sll0679 (sphX) that have been reported to be

up- or down-regulated under phosphate limiting conditions [19]. However,

slr1247 and sll0679 are leading genes in two operons according to information in

Cyanobase. Assuming that the downstream genes in these operons are also

regulated by the motif, we identified 11 of the 13 genes reported by [19].

Case study 2: motif analysis to reveal protein function

Synergy further can be used to investigate the relationship between a set of genes

by integrated analysis of both motifs and co-expression. A search for genes coding

for proteins related to the two photosystems in the Synergy gene search tool

resulted in 51 genes that subsequently were tested for regulatory motif

enrichment. The motif NP_441569.1_8 was ranked as the second most enriched

motif (q-value ,0.001), and its best match in the Prodoric database was

MX000068 in Bacillus subtilis. A sigma factor is known to bind to this motif, and

using protein BLAST revealed a number of sigma factors with highly significant E-

values (,1e-10) in Synechocystis.

With this information in hand, a new gene search was performed, in which all

genes coding for proteins annotated as sigma factors were added to the existing

selection of genes. Looking at the co-expression network for these genes revealed

that genes coding for photosystems together with those coding for sigma factors

formed a connected subnetwork (CLR threshold of three). Our analysis thus

supports previous data showing that sigma factors play a vital role in controlling

the stoichiometry of the photosystems within the thylakoid membrane [20, 21].

Case study 3: functional role of hypothetical proteins

Synergy can be used to assign functions to unknown or hypothetical proteins

based on co-expressed genes with known function. The CP12 protein encoded by

ssl3364 is highly conserved in all photosynthetic organisms, but is annotated as a

hypothetical protein in Cyanobase. In higher plants and algal species (reviewed by

[22]) it was found to be involved in the thioredoxin-mediated regulation of the

Calvin-Benson cycle [22]. Moreover, additional functions are hypothesized for

this protein in plants [22] and a comparative analysis of 126 cyanobacterial

genomes reveals functional diversity among its orthologues [23]. A co-expression

neighborhood analysis of ssl3364 (CLR threshold of four with an expansion

threshold of five) generated a densely connected cluster of 54 genes and 798 links.

The neighborhood is dominated by genes encoding proteins of the oxidative stress

response like chaperones and proteases, and is enriched in genes coding for

enzymes involved in protein folding (GO:0006457, q-value ,0.01). We

hypothesize a new biological function for the CP12 protein in Synechocystis, i.e.

protection from oxidative stress, similar to the function of its orthologues in A.

thaliana and Chlamydomonas reinhardtii, which have been shown to protect

Calvin-Benson enzymes from oxidative stress [24].
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Case study 4: TF neighborhoods contain biologically relevant motifs

We have shown that the neighborhoods of TFs in our co-expression networks

contain common motifs more often than by chance (enriched motifs). To see

whether experimental data support that these automatically discovered promoter

motifs in fact bind TFs, external motif databases were explored. The gene sll0998,

for example, encodes a LysR family transcription regulator. In the co-expression

network (complete network, CLR threshold of 4) this TF is connected to eight

neighboring genes with three enriched motifs in their promoters (q,0.05). One of

the motifs was NP_440076.1_5. Searching for motifs similar to NP_440076.1_5 in

Prodoric resulted in the motif MX000155 known to be regulated by OxyR in E.

coli. Using protein BLAST to search for homologs of OxyR in Synechocystis gave a

highly significant hit (E51e-26) to the protein product of sll0998.

Conclusions

We have developed a web tool, Synergy, allowing interactive analysis of the Synechocystis

genome by integrating co-expression networks, regulatory elements and existing

knowledge such as functional annotations and known regulatory genes and elements.

Furthermore, we have demonstrated the usefulness of this tool in finding both

previously published and new biologically relevant regulatory links in Synechocystis.

Materials and Methods

Microarray data

A total of 371 individual microarray experiments were downloaded from Kyoto

Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/

expression/). All of the data were based on the Takara microarray chips that

covers 83% (3,079/3,726) of the genes in Synechocystis [25]. The data were

combined into a single data set and normalized with the limma package [26] in R;

a software environment for statistical computing and graphics.

Annotations

Gene annotations were retrieved from Cyanobase. In total, 146 genes were

annotated as coding for enzymes with a regulatory function. In this study, these

genes were treated as coding for known transcription factors. In Cyanobase, there

were also functional annotations translated into GO terms. In total, 2,040

Synechocystis genes were annotated to 2,076 GO terms.

Co-expression inference

Mutual Information (MI) and Context Likelihood of Relatedness (CLR) were

used to infer co-expression networks from the microarray data. MI is a metric that

does not assume linearity or continuity when measuring the dependence between
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two variables. This makes it possible to detect relationships that would be

undetected by other methods, such as the Pearson correlation coefficient. CLR

then finds the most statistically significant co-expression neighbors of each gene

based on the local background distribution of MI scores to all other genes [27].

From the z-scores produced by the CLR algorithm, a co-expression network was

constructed. A co-expression network can be defined as a collection of nodes

(genes) and links (co-expression relationships) where the links are weighted

according to the strength of the co-expression.

To account for the large number of missing values in the complete dataset, two

different co-expression networks were constructed: the complete co-expression

network using all samples (i.e. all 371 microarray experiments) and the subset co-

expression network using only the samples with no missing values (67 samples).

Phylogenetic footprinting

MEME [28] was used to find potential regulatory motifs in groups of orthologs

(so-called phylogenetic footprinting). The proteomes of 22 organisms in the

Chroococcales taxon (file S2) were downloaded from NCBI and clustered with

OrthoMCL [29]. MEME was then used to find conserved motifs in the promoter

regions of the corresponding genes in each group. A promoter was defined as the

400 bp sequence upstream of the transcription start site, and the promoters were

retrieved using Regulatory Sequence Analysis Tools (RSAT) [30]. MEME was

instructed to find motifs between 8 and 20 bp in length with an E-value threshold

of 100. The MEME motifs were then mapped back to the Synechocystis promoters

using FIMO [31] and motifs with a q-value below 0.3 were kept.

The phylogenetic footprinting approach resulted in many motifs that were

similar to each other. To eliminate duplicates, a motif similarity network was

constructed. The similarities were calculated by CompariMotif [32] using the

consensus motifs derived from the position specific scoring matrices (PSSMs) as

input. The motif network was then clustered using MCL [33]. The motif with the

highest betweenness centrality was chosen as a representative motif from each

cluster (central motif).

Motif and GO enrichment

To calculate enrichment of motifs or GO terms in a set of genes, Fisher’s exact test

was used. The test was implemented using the Python library scipy (v0.13.3)

(http://www.scipy.org). To correct for multiple testing, false discovery rate (FDR)

adjustment was used and q-values were reported.

Motif enrichment in network neighborhoods

For genes of interest, the immediate co-expression neighborhood was extracted

and motif overrepresentation was calculated for these neighbors. The analysis was

performed on genes annotated with regulatory function and genes annotated with

DNA-binding. As a negative control, 1,000 random gene lists with 100 genes in
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each were used. In all gene sets, genes without expression values were excluded

since they will not be present in the co-expression networks. Both, the complete

and the subset co-expression networks were used with CLR thresholds of 3, 4 and

5. We also tested different sets of motifs mapped to the genome as defined by

different FIMO q-value thresholds. For each neighborhood and parameter

combination, motif enrichment was calculated using Fisher’s exact test and FDR

correction as described above, excluding the gene from which the neighborhood

was created. If a neighborhood had at least one overrepresented motif with

q,0.05, the neighborhood was considered to be enriched. To test for significance

of the enrichment in the context of networks, motif enrichment was also

performed in networks where node labels had been randomly shuffled.

Web application implementation

The Synergy web application was developed with the PHP framework CodeIgniter

(http://ellislab.com/codeigniter). The network viewer was implemented with the

JavaScript library Cytoscape.js (http://cytoscape.github.io/cytoscape.js/), the

successor of the Flash interface Cytoscape Web [34].

TOMTOM [35] was used for comparing motifs to known regulatory elements

in other organisms. The PRODORIC [36] and RegTransBase [37] prokaryotic

motif databases were downloaded from the MEME website.

Supporting Information

File S1. GO enrichment of the genes with the highest centrality.

doi:10.1371/journal.pone.0113496.s001 (XLS)

File S2. Number of coding regions vs. genome size for the organisms used
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doi:10.1371/journal.pone.0113496.s002 (XLS)
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Abstract

Background: Evolutionary theory suggests that males and females may evolve sexually dimorphic phenotypic and
biochemical traits concordant with each sex having different optimal strategies of resource investment to maximise
reproductive success and fitness. Such sexual dimorphism would result in sex biased gene expression patterns in
non-floral organs for autosomal genes associated with the control and development of such phenotypic traits.

Results: We examined morphological, biochemical and herbivory traits to test for sexually dimorphic resource
allocation strategies within collections of sexually mature and immature Populus tremula (European aspen) trees. In
addition we profiled gene expression in mature leaves of sexually mature wild trees using whole-genome oligonucleotide
microarrays and RNA-Sequencing.

Conclusions: We found no evidence of sexual dimorphism or differential resource investment strategies between males
and females in either sexually immature or mature trees. Similarly, single-gene differential expression and machine learning
approaches revealed no evidence of large-scale sex biased gene expression. However, two significantly differentially
expressed genes were identified from the RNA-Seq data, one of which is a robust diagnostic marker of sex in P. tremula.

Keywords: Sexual dimorphism, RNA-Sequencing, transcriptomics, Populus tremula, dioecious

Background
Sexual dimorphism, the differentiation of both primary
(i.e. gonads) and secondary (other morphological, behav-
ioural and physiological) sex characteristics is the norm
in animal systems [1]. In angiosperms the majority of ex-
tant species are co-sexual, being either monoecious or
hermaphroditic (i.e. they bear separate male and female
flowers or have either flowers containing both sexual or-
gans, respectively). However, ~4% of plant species are di-
oecious [2,3], with different individuals producing only
male or female flowers, and it is thought that dioecy
evolved from ancestral hermaphrodites, which inherently
lack sex chromosomes [4]. In several animal systems
including nematodes, insects and mammals, sex deter-
mination is well characterised [5], whereas the molecular
mechanisms underlying dioecious sex determination in
plants remain largely unresolved [4,6]. The emergence of

dioecy appears to have occurred relatively recently in
many plant species, with sex determining loci being lo-
cated in small regions of reduced recombination where
there may not yet have been adequate time for hetero-
morphic sex chromosomes to have evolved [4].
Evolutionary theory suggests that sexual dimorphism

arises after release from a co-sexual state as each sex
adapts to a new fitness optimum following the removal of
constraints previously imparted by the other sex – i.e. that
trade-offs necessarily exist between the male and female
functions in a monoecious state [4,7,8]. With the excep-
tion of sex-determining loci (or chromosomes), males and
females share the same genome. Thus sexually dimorphic
phenotypes that are not controlled by genes within the sex
determining loci/chromosome must result from differen-
tial expression regulation of autosomal genes involved in
the development and control of those traits [1]. Examples
of expected sexual trade-offs include differential optimal
strategies of resource allocation to growth and secondary
metabolites (such as phenolic compounds) given produc-
tion of either pollen or seeds; for example, females may
allocate more carbon to secondary metabolites at the
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expense of stem growth in order to protect seeds from
predators and pathogens [9,10], resulting in males and fe-
males experiencing contrasting selective pressures [8,11].
The genus Populus includes poplars, aspens, and cotton-

woods and is a well-established model system [12] with a
high quality genome sequence available for P. trichocarpa
[13,14]. Populus species and hybrids have numerous indus-
trial and silvicultural uses [15,16] and are often keystone
species [17,18]. In Populus, dioecy is the common condi-
tion with the only exception being the monoecious,
hermaphroditic P. lasiocarpa (see citations in [19]). There
are also rare cases of gender reversion, perfect (bisexual)
flower formation and even mature seed catkin formation
on male trees [19-21 and citations in 22]. Populus species
do not have heteromorphic sex specific chromosomes
[22], and the molecular mechanism of sex determination
remains undetermined, although sex is genetically deter-
mined [23]. In P. trichocarpa there is substantial evidence
that the sex-determining locus is located in the peritelo-
meric region of chromosome 19 [22,23]. For all Populus
genetic maps where sex has been included as a marker
during map construction, there is always a single sex-
linked locus that is located on chromosome 19. However,
its location on that chromosome varies in different
sections of the genus. There are also contrasting re-
ports as to which sex is heterogametic [22,24-26]. In
the aspens it is now well established that the sex deter-
mination locus is located in the pericentromeric region
of chromosome 19 [24-28]. Pakull et al. [28] recently
identified that Potri.019G047300, a gene that the same
group had previously identified as a candidate in the
sex determination locus [24], is either completely or
partially deleted specifically in females, a finding that
we independently discovered and detail below.
There is a current lack of knowledge of whether global

or specific patterns of sex biased gene expression exist
in non-reproductive tissues of dioecious plant species
[4]. To date, this has been investigated in a single study

of Silene latifolia [29], which considered only 22 ESTs.
Here we addressed this question using P. tremula, which
produces high amounts of phenolic-based secondary me-
tabolites that have been implicated in defence against her-
bivores and pathogens [30,31] making it a suitable model
system to test for sexually dimorphic differences in re-
source allocation to growth and defence. We explored glo-
bal gene expression patterns in combination with a set of
diagnostic phenotypes in non-reproductive tissues (leaves)
of sexually mature P. tremula. The same phenotypes were
additionally assayed in sexually immature trees. Gene ex-
pression was profiled using both whole genome oligo-
nucleotide microarrays and RNA-Sequencing (RNA-Seq).
The expression data were used for both individual gene
differential expression tests as well as a machine learn-
ing approach to test for genomic regions containing
combinations of genes exhibiting sex-related expres-
sion differences.

Results
Phenotypic analysis reveals no evidence of sexual
dimorphism in P. tremula
We found no evidence of sexual dimorphism in tree height
or diameter (Additional file 1) in either the Umeå Aspen
collection (UmAsp; [32]) or the Swedish Aspen (SwAsp;
[33]) samples or for height increment, a measure of vigour,
in the juvenile SwAsp samples (Figure 1a, Additional file 1).
Similarly, we found no statistical evidence of sexual di-
morphism for leaf area (Figure 1b), leaf nutritional quality
(nitrogen and carbon content and their ratio, Figure 1c)
or specific secondary metabolites (total phenolics and
condensed tannins, Figure 2a-b) in either the UmAsp or
SwAsp samples (Additional file 1). All SwAsp phenotypic
data except carbon and nitrogen concentration were gener-
ated by Robinson et al. [34], who showed that these, and
other, traits had a substantial degree of heritability (clonal
repeatability), a result that could only be obtained from
high quality phenotypic data, negating the possibility that

Figure 1 Growth and resource allocation in male and female Populus temula trees. Boxes representing females (F) are coloured pink and
males (M) coloured blue, in the Umeå Aspen (Um) and Swedish Aspen (Sw) collections. (a) Growth rate calculated as height increment over five
years in SwAsp. Analysis of Variance (ANOVA) results showed no significant sex differences (F1,45 = 0.448, P =0.507) (b) Individual leaf area in
UmAsp and SwAsp. ANOVA results showed no significant sex differences for samples from either the Um (F1,38 = 0.958, P =0.334) or Sw (F1,44 = 0.012,
P =0.914) collections. (c) Foliar carbon/nitrogen ratio in Um. ANOVA results showed no significant sex differences (F1,38 = 0.631, P =0.432).
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the observed lack of significant sexual dimorphism resulted
from low data quality.

Herbivorous insects display no sexual preference
Arthropods are common folivores on P. tremula and numer-
ous aspen-associated morphospecies have been recorded
[34]. We found no statistically significant sex-related dif-
ferences for arthropod abundance, species richness, feed-
ing guild abundances, or the Shannon-Wiener diversity
index in either the UmAsp or SwAsp samples (Figure 2c,
Additional file 1). We also found no statistically significant
sex-related differences in the arthropod community of

UmAsp and SwAsp analysed by non-parametric Multivarite
Analysis of Variance (MANOVA; UmAsp: F1,38 = 0.325,
P =0.808; SwAsp: F1,45 = 0.825, P =0.5, Additional file 1).

Transcript profiling reveals no global patterns of sex-biased
expression
We profiled gene expression in mature leaves of male
and female P. tremula from the UmAsp collection using
whole genome oligonucleotide microarrays (Figure 3)
and RNA-Sequencing (RNA-Seq; (Figure 4). The samples
used for RNA-Seq profiling were collected in two years and
a Principle Component Analysis (PCA) analysis revealed
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Figure 2 Secondary metabolite and herbivory phenotypes in male and female Populus tremula in the Umeå Aspen (Um) and Swedish
Aspen (Sw) collections. Boxes representing females (F) are coloured pink and males (M) coloured blue. (a) Foliar condensed tannins. Analysis of
Variance (ANOVA) results showed no significant sex differences for samples from either the Um (F1,38 = 1.667, P =0.203) or Sw (F1,45 = 2.764, P =0.103)
collections (b) Foliar total phenolic concentrations. ANOVA results showed no significant sex differences for samples from either the Um (F1,38 = 01941,
P =0.172) or Sw (F1,45 = 2.561, P =0.117) collections. (c) Shannon-Wiener index of arthropod herbivore diversity. ANOVA results showed no
significant sex differences for samples from either the Um (F1,38 = 0.659 P =0.422) or Sw (F1,45 = 0.074, P =0.787) collections.

Figure 3 Overview of microarray gene expression patterns in male and female Populus tremula trees from the Umeå Aspen collection.
(a) Principal Component Analysis plot of the microarray data with samples classified by sex (male in blue, female in pink). The percentage
variance explained by each component is shown in parenthesis for each axis. The female sample shown at the bottom left of the plot was
classified as an outlier and excluded from statistical analyses. (b) Volcano plot of the negative log10 p-value (y-axis) plotted against log2-fold
change (x-axis) showing the results of differential expression analysis comparing male to female trees assayed using whole-genome Agilent oligonucleotide
microarrays. Technical noise was accounted for in the statistical model by including factors for slide and sub-array within slide and the effect of sex was tested
after removal of variance due to those technical effects. Non-significant genes are coloured to indicate density, which is shaded from yellow (high) to blue
(low). No genes were significant (note that 0.01 on the y-axis corresponds to a p-value of 0.977).
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clear differences between samples from the two years
(Figure 4a). A total of 1,138 genes were identified as sig-
nificantly differentially expressed between years (Figure 5).
Despite many genes having relatively high mean fold-

changes between sexes in the RNA-Seq data (Figure 4b),
the within-sex variation for those genes was high result-
ing in non-significant statistical test results. To further
explore this, we examined the variance among samples
for the four genes with the lowest and highest fold
change values and for the four genes with the smallest
p values regardless of fold change (of which only two
were statistically significant) in the RNA-Seq data. Variance
for genes with high between-sex fold-change values was
high (Additional file 2) and only two genes (see below)
were statistically significantly differentially expressed be-
tween males and females.
We applied a machine learning approach, support vec-

tor machines (SVMs), to sliding windows of contiguous
genes in the P trichocarpa genome to identify any re-
gions where the combination of expression patterns for
all genes within the window were predictive of sex. No
statistically significant gene combinations that were pre-
dictive of sex were identified.

Potri.019G047300 is not present in females and is located
in the sex determination locus
In contrast to the clear influence resulting from year of
sampling, differential expression analysis identified only

Figure 4 Overview of RNA-Sequencing gene expression patterns in male and female Populus tremula trees from the Umeå Aspen
collection. (a) Principal Component Analysis plot of the RNA-Sequencing (RNA-Seq) expression data with samples classified by sex (male in blue,
female in pink) and by year of sampling (2008 as squares and 2010 as triangles). The percentage variance explained by each component is shown
in parenthesis for each axis. (b) Volcano plot of the negative log10 p-value (y-axis) (i.e. the log odds ratio) plotted against log2-fold change (x-axis)
showing the results of differential expression analysis assayed using RNA-Seq comparing male to female trees. The statistical model included
factors for year of sampling and sex and the effect of sex was tested after removal of the year effect. Significant genes are shown in blue
where expression was higher in males. For the two significant genes at a 1% False Discover Rate (FDR) cut-off, the obtained p-value was <1e-10

and was therefore set to 0. As a result the log odds value is infinite and was therefore replaced with the next largest log odds +1. Non-significant
genes are coloured to indicate density, which is shaded from yellow (high) to blue (low). The dashed horizontal line represents a 1% FDR. The four
genes with the smallest p-values (regardless of significance) and the four genes with the highest and lowest non-significant fold change values are
circled in red. These genes are represented in Additional file 2. The gene identifiers for the two statistically significant genes are shown
(identifiers refer to V3 of the P. trichocarpa genome).

Figure 5 Differential expression of year of sampling effect.
Volcano plot of the negative log10 p-value (y-axis) - i.e. log odds
ratio - plotted against log2-fold change (x-axis) showing the results of
differential expression analysis assayed using RNA-Sequencing
comparing samples collected from trees in 2008 and 2010. Gene
expression was assayed using samples collected from trees in
2008 and 2010 by RNA-Sequencing. Significant genes are shown
as larger brown points. Non-significant genes are coloured to indicate
density, which is shaded from yellow (high) to blue (low). The dashed
horizontal line represents a 1% False Discovery Rate.
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two statistically significant sexually dimorphic differences
in the RNA-Seq dataset (Figure 4b; Potri.014G155300,
FDR adjusted p-value 0.00: Potri.019G047300, FDR ad-
justed p-value 0.00) and none in the microarray dataset
(Figure 3b). These two genes were not represented in the
v1.1 genome annotation that was used for the array de-
sign, therefore excluding the possibility to cross-validate
the result in the microarray dataset. However, Pakull et al.
[28] provide an excellent and completely independent
confirmation of this finding for Potri.019G047300.
Potri.014G155300 has no functional annotation but con-

tains Pfam (Protein family) domains associated with cellulose
synthase activity. This gene has highest sequence similarity
to the Arabidopsis thaliana homolog AT2G32540, which is
annotated as “Cellulose synthase-like B4”. More interestingly,
the second gene (Potri.019G047300) is one of seven candi-
date genes identified within the sex determination locus
of P. tremuloides by Kersten et al. [24] and was re-
cently shown by the same authors to have a partial or
complete deletion in female aspens [28] resulting in ex-
pression only being observed in males. The gene has no
current functional description in poplar but contains
WD40 domains and shows highest sequence similarity
based homology to the A. thaliana gene AT5G16750
(TORMOZEMBRYO DEFECTIVE, TOZ). In A. thaliana
this gene is required for regulated division planes and em-
bryo development [35] and is thought to be involved in

18S rRNA biogenesis and RNA methylation. We exam-
ined the expression of the seven candidates highlighted by
Kersten et al. [24] within our data, revealing that this was
the only gene displaying any evidence of differential ex-
pression between sexes (Figure 6). The gene was expressed
more highly in male than female trees. Examination of
Affymetrix gene expression microarray data represented at
the poplar eFP resource (http://bar.utoronto.ca/efppop/
cgi-bin/efpWeb.cgi; [36]) shows that this gene has high
expression in male catkins and low expression in fe-
male catkins for the three array probes representing
this gene (PtpAffx.113801.1.S1_s_at, PtpAffx.212175.1.
S1_at; probe-to-gene links were obtained from PopAr-
ray [37], http://aspendb.uga.edu/). However, as these
data represent expression in P. balsamifera and as this
gene is not deleted in female P. trichocarpa trees (as
suggested by the presence of the complete gene struc-
ture in the assembled genome sequence) these results
require caution for extrapolation to the aspens.
We used genomic re-sequencing data (collected for

another study, but available on request) from two of the
assayed trees, one male and one female, to further ex-
plore this locus. Genomic DNA sequencing reads (2x100
bp paired-end reads generated from a 300 bp insert li-
brary and sequenced using standard procedures on the
Illumina HiSeq 2000 platform) were aligned to the refer-
ence P. trichocarpa genome sequence and only uniquely

Figure 6 Bar graph showing differential expression of seven candidate genes from the sex determination locus of Populus tremuloides
[24]. The width of each bar indicates the mean expression level of each gene relative to the gene with the highest expression (Potri.019G047600),
which had an expression value of 240, such that narrow bars represent low expression and wide bars high expression. The y-axis indicates the log2
fold-change between male and female trees. Expression values represent variance stabilising transformation normalised read counts. Genes displaying
higher expression in females are shown in pink and those with higher expression in males in blue. The gene model identifier for the only one of these
genes that was identified as significantly differentially expressed in the RNA-Seq data is marked in bold text.
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mapping reads were considered. This revealed that
there is a deletion of this region in the female individ-
ual (Figure 7), which is in agreement with the results
recently reported by Pakull et al. [28] and that explains
the lack of any RNA-Seq reads being produced from fe-
male individuals in this region. As such females appear to
be homozygous for absence of this locus. Corresponding
plots based on RNA-Seq reads from all individuals assayed
are available in Additional file 3. A single female individual
(226.1) showed expression of the TOZ gene. We have
been unable to confirm the sex of this tree as it has not
flowered again since sex was originally determined. Re-
peating the above analyses with or without this individual
did not affect the results obtained (see the R analysis
HTML report on the PopGenIE FTP site [38]).

No evidence of biased sex ratio in P. tremula
We observed no sex bias in the P. tremula collections
studied. The sex ratio of the SwAsp samples was 1:1
(female:male, where 52 trees of a total 116 in the col-
lection are of known sex, Additional file 4). In the
UmAsp samples the sex ratio was 1:1.1 (where 42 trees
of 350 are of known sex, Additional file 4).

Discussion
In dioecious species, evolutionary theory suggests that
males and females may have contrasting optimal strategies
of resource investment to maximise reproductive success.
As a result, natural selection would result in the emer-
gence of sexual dimorphism in phenotypic, biochemical
and ecological traits associated with contrasting resource
allocation and utilisation as each sex evolves towards fit-
ness optima. If phenotypic sexual dimorphism does arise,
there will be concomitant dimorphism in gene expression
patterns in the corresponding tissue(s) associated with
those phenotypic traits. Such dimorphic gene expression
patterns will be independent of any differential gene ex-
pression associated with sex determination and the con-
trol of reproductive tissue development. As such, although
those genes may in some cases be located within the sex
determination region or chromosome, it is likely that
many such regulated genes will be autosomal.
In the current study our primary interest was to test

the hypothesis that male and female P. tremula individ-
uals invest resources differentially, resulting in sexual di-
morphism. To this end a number of morphological and
biochemical traits (Additional file 1) were selected to be

Figure 7 Genomic DNA and RNA-Sequencing read coverage (y axis) for the region of chromosome 19 (x axis) including Potri.019G047300.
(a) Read coverage of uniquely mapping genomic DNA reads from a male (blue, 229.1) and female (pink, 349.2) individual. Black arrows represent
exons with arrow direction indicating strand. (b,c) Read coverage of uniquely mapping RNA-Sequencing reads for male (b, n = 8) and female (c, n = 9)
individuals. The coloured line represents the average per base pair read coverage across all individuals with grey indicating ± two standard deviations.
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diagnostic of such dimorphism in leaves sampled from a
set of wild-growing, sexually mature P. tremula individ-
uals (the UmAsp collection) and a set of common-garden,
sexually immature and clonally replicated individuals (the
SwAsp collection, see materials and methods). We fo-
cused on leaves as these are the primary point of inter-
action between aspens and the majority of their associated
herbivores as well as representing the site of energy as-
similation and therefore carbohydrate production for
utilisation in primary (growth-associated) and second-
ary metabolism.

P. tremula shows no phenotypic evidence of sexual dimorphism
Height and diameter are often used as proxies for fitness
based on the assumption that faster growing and larger
individuals are better equipped to out-compete their
neighbours, allowing greater resource acquisition that
can be invested in sexual reproduction [39]. We found
no statistical evidence supporting phenotypic differences
between males and females for any of the phenotypic
traits that we assayed in either the sexually mature UmAsp
or sexually immature SwAsp samples. These results contrast
with observations in Pauley [40] who reported a strong male
biased sex ratio within a collection of superior-growth indi-
viduals of five North American Populus species. This was
interpreted as potential evidence that males may display
more vigorous growth. In P. euphratica growth traits
showed variable differences between sexes among sam-
ple plots with no consistent statistically significant dif-
ference between sexes for assayed growth traits [41].
In the cross-species meta-analysis presented in Corne-
lissen & Stillin [10], males in general exhibited larger
leaves, lower concentrations of secondary metabolites
and higher growth rates. However, and in agreement with
our results, there was no sexual dimorphism for height or
nutrient concentrations. In P. deltoides, Farmer [42] ob-
served that males were taller than females but did not
have greater stem diameter. Citations within Farmer detail
observations that the height of P. tremula x P. tremuloides
seedling cohorts was correlated to the proportion of
males, but also that no differences in vigour between
sexes had been identified in P. tremuloides. Our results
are also in agreement with those reported for P. tremuloides
by Mitton & Grant [43] and Stevens & Esser [44]. Based on
the current limited number of publications examining sex-
ual dimorphism we would conclude that it is not yet pos-
sible to ascertain whether any generalisations can be formed
regarding the presence or absence of sexual dimorphism for
growth or defence related traits in Populus.
Several studies have additionally reported higher herbi-

vore loads associated with increased growth in males
[45-48], however we found no such reports in Populus.
Although the meta-analysis presented in Cornelissen &
Stiling [10] found that, in general, males suffered higher

arthropod abundances, showed evidence of reduced levels
of secondary metabolites and increased growth rates, it is
not possible to extrapolate such generalised findings as be-
ing relevant to a specific species. Our own data identified
no statistical evidence of sexual dimorphism in arthropod
abundance, diversity or folivore herbivory damage in P.
tremula in concordance with a lack of dimorphism in
assayed growth and defence related phenotypes.
The majority of current evidence for sexual dimorphism

in Populus has been identified in response to stressful en-
vironmental conditions, for example under drought, salin-
ity [49-51], UV-B radiation [52], chilling stress [53], or
differential nutrient availability [54-57] where females
were found to be more sensitive. However, these stud-
ies typically used small sample sizes, in some cases be-
ing restricted to only a single individual of either sex.
They also profile response to short term, acute stress
exposure in most cases. This is in contrast to the ap-
proach taken here where we sample a collection of
wild-growing trees. In these conditions individuals would
have been exposed to various short to long-term stress
events. We were interested to know whether evidence of
dimorphism is present under such conditions in addition
to knowing if there is evidence of sexual dimorphism for
resource allocation to growth in sexually immature trees.
In Salix it has been reported that evidence for sexual di-
morphism varies through the growing season [11]. Such
reports can lead to the general impression that sexual di-
morphism is common or expected. However, bias against
the publication of negative results potentially means
that many such examples of a lack of dimorphism have
remained unreported. The variable presence of evidence for
sexual dimorphism also cautions against over-extrapolation
of such results until multiple conditions and seasonal sam-
pling points have been considered for each species and each
geographic area of interest.
At both the national (SwAsp) and local (UmAsp) scales

we believe that our sampling represents an unbiased rep-
resentation of wild-growing mature trees, with sampling
taking place with no knowledge of, or consideration for,
sex or the presence of flowering. It is, of course, possible
that studies testing more specific hypotheses, for example
along an elevational cline (as reported for Salix [11]), may
uncover evidence for shifting sex ratios or for sexual
dimorphism. Indeed we see weak evidence for this within
the SwAsp collection (Additional file 4) suggesting that
further studies are needed in P. tremula before general
conclusions can be drawn. We would caution against ex-
trapolation of these findings beyond P. tremula growing in
natural conditions within the geographic range covered by
our sampling. To allow more general conclusions to be
drawn for other Populus species, members of the Salicaeae
and, more widely, other dioecious herbaceous species, will
require equivalently detailed investigation and publication.
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Environment affected gene expression more than sex
We profiled gene expression in leaves of sexually mature
P. tremula individuals from the UmAsp collection to test
the hypothesis that sexually dimorphic phenotypic traits
would also be revealed by concomitant differential gene ex-
pression between males and females in non-reproductive
tissues for genes associated with those phenotypes. In
agreement with the above morphological and biochemical
phenotypic results, we found no reliable evidence of large-
scale sexually dimorphic (sex-biased) differential expres-
sion (Figures 3 and 4). In contrast, clear evidence of an
effect of sampling collection was found (Figures 4a and 5).
As samples from the two years were collected on different
dates and from different heights within the canopy we
cannot determine whether environmental/climatic vari-
ation between years or height in the canopy accounted for
this difference. Significantly differentially expressed genes
between the sample collections were over-represented
for Gene Ontology (GO) biological process categories
primarily involved in cellulose biosynthesis and glucan
and lipid metabolism, most likely reflecting the slightly
different sampling dates, with year-to-year variance in
climatic conditions affecting the rate of leaf develop-
ment and maturity. This exemplifies that in P. tremula
leaves, changes in environmental conditions influence
expression to a greater extent than the sex of an indi-
vidual and that our expression data was of sufficient
quality to identify biological effects influencing gene
expression patterns.
The primary aim of this study was to identify patterns

of sexually dimorphic gene expression associated with
the morphological and biochemical traits profiled. As
such, we would have expected relatively large numbers
of genes to be involved should dimorphism have been
present. For example, if females invest more resources
into chemical defences produced via secondary metabol-
ism, there would be corresponding sexually dimorphic
differences in the expression of genes involved in second-
ary metabolism. Here we present gene expression results
generated using P. tremula RNA-Seq read alignments to
the P. trichocarpa reference genome. On the basis of a
number of considered factors we do not believe that this
biased our results: firstly, the vast majority - over 90% - of
RNA-Seq reads aligned to the P. trichocarpa genome, sug-
gesting that the two species have an almost entirely over-
lapping gene space and that sequence divergence within
coding regions is not high enough to impact read align-
ment; secondly, we have also used a draft assembly of the
P. tremula genome (available at the PopGenIE FTP re-
source [38]; ftp://popgenie.org/popgenie/UPSC_genomes/
UPSC_Draft_Assemblies/Current/Genome/) to confirm that
the vast majority of annotated CDS regions in P. trichocarpa
can be aligned to the draft assembly and that analysis
of the RNA-Seq data aligned to this draft genome

does not produce different results; lastly, alignment of
P. tremuloides and P. tremula x P. tremuloides genetic
maps to the P. trichocarpa chromosomes suggests that
there have been no major genome rearrangements be-
tween aspens and P. trichocarpa [24,27], although micro-
synteny has not been examined to date. As such, although
there may be a small number of genes unique to, or highly
variable between, each species, differences between the
two species are not sufficient to affect the results of
global-scale expression pattern analyses. We would cau-
tion that studies aiming specifically to identify the gene(s)
underlying sex determination, where genetic mapping
suggests a single locus is involved and for which a sin-
gle or small number of genes are likely involved, could
substantially benefit from use of species-specific gen-
ome sequences.

Potri.019G047300 is absent in females and is located in the
sex determination locus
The proposed peritelomeric sex determination locus
on chromosome 19 of P. trichocarpa represents a re-
gion of reduced recombination [23]. Kersten et al. [24]
recently provided evidence of a similar region of re-
duced recombination in the pericentromeric sex-linked
locus of chromosome 19 in P. tremuloides. One of the
two genes that we identified as being highly, and exclu-
sively, significantly differentially expressed between sexes
in the RNA-Seq data (Potri.019G047300) is located in that
identified sex determination locus of P. tremuloides. It is
one of seven candidate genes identified by Kersten et al.
[24] on the basis of Gene Ontology and other annotation
evidence as having the potential to be involved in sex
determination, primarily due to annotated involvement
in floral organ development. This was the only one of
those seven genes with evidence of differential expres-
sion between sexes in our data (Figure 6). Pakull et al.
[28] recently refined this finding, reporting a complete
or partial deletion of this gene in female P. tremuloides
and P. tremula individuals. Here we present independ-
ent confirmation of this finding, supported by both gen-
omic DNA and RNA-Seq results (Figure 7). It is unclear
what the biological influence of differential expression of
the gene in leaves might be. Our results clearly show that
this single gene did not result in any larger-scale down-
stream patterns of sex-biased expression and examination
of expression evidence at the PopGenIE [58] org and poplar
eFP resources showed that expression of this gene varies
between tissues and through the growth cycle, suggesting
that expression is not merely constitutively fixed in males.
This is certainly a finding that deserves future attention.
Due to reduced recombination rates in sex-determination

loci, all genes within a locus will, on average, be co-inherited
[22]. Such a case could be identifiable as a region of the
genome where a contiguous set of genes would have
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consistently sex-biased expression, resulting from either
presence/absence differences for genes present only in the
W-linked (or Y-linked) haplotype, or expression level dif-
ferences for genes present in both haplotypes, but with
fixed cis-acting differences between the Z and W (or X
and Y) haplotypes. As the degree of expression bias may
be small on a gene-by-gene basis, single gene analysis
methods may lack the sensitivity to detect such differences
but methods considering combinations of genes may
succeed. For example, such a situation could have
been possible for all seven of the candidate genes in
the P. tremuloides sex determination locus discussed
above. We therefore applied a machine learning ap-
proach to identify any sets of collinear genes (within
sliding windows) that were predictive of sex. However, no
statistically significant combinations of weakly predictive
genes or synergistically predictive genes were identified.

Conclusions
We present an assessment of sex ratio and the lack of
sexual dimorphism based on two independent samplings
of Swedish P. tremula. Our sample of 87 was more com-
prehensive than almost all previous such assessments in
Populus and, as such, we feel that the results obtained
are an accurate representation for P. tremula. We identi-
fied no evidence that sex has served as a significant selective
pressure affecting gross-scale morphological, biochemical or
herbivorous insect interaction traits expected to be diagnos-
tic of differential resource investment and allocation strat-
egies. Correspondingly, there was no evidence for sex-biased
patterns of gene expression associated with those, or any
other, traits.
Although no evidence of large-scale patterns of sexually

dimorphic gene expression patterns were identified, a pre-
viously identified candidate gene for sex determination in
P. tremuloides [24] showed exclusive expression in males
due to the homozygous absence of the locus in female in-
dividuals, an observation warranting future attention.

Methods
Phenotypic, morphological and biochemical traits
We examined the incidence of flowering in a collection of
(sexually mature) wild, mature aspen (Populus tremula L.)
trees in Sweden, the Umeå Aspen collection (UmAsp;
[32]). In addition we used sexually immature clonal copies
of trees of known sex from the Swedish Aspen (SwAsp)
collection growing in a common garden experiment near
Sävar, Umeå in Sweden, that were propagated and planted
as described previously [33].

Umeå aspen collection (UmAsp)
Twenty-two trees bore male flowers and 20 trees bore fe-
male flowers in the spring of 2007. Tree sex was deter-
mined by visual examination of catkins and was confirmed

by returning to each tree to record whether female trees
retained catkins post pollination when male catkins
had died. A description of trees and their geographic
coordinates, together with sampling dates, is provided
in Additional file 5. Tree height was measured in 2007
(when the collection was established) using a vertex
dendrometer and trunk circumference was measured
at breast height (1.3 m). Sampling took place on 22-25
June 2008. Six branches, each bearing approximately
60 leaves, were cut 4-5 m above ground level, in a
transect from east to west across the canopy, or the
nearest feasible positions, for morphological and herbivore
community analyses. Sampled branches were sealed into
plastic bags and kept at 4°C prior to morphological and
arthropod analyses. A second sample of ten undamaged
leaves from the west of the canopy was frozen in liquid
nitrogen and stored at -80°C prior to RNA extraction.
Following RNA extraction, samples were freeze-dried
and used in assays of total phenolics and condensed
tannins as described in [34] and leaf carbon and nitro-
gen against aspartame, wheat and atropine standards
(Flash EA 1112 NC Soil Analyser, Thermo Fisher Scientific,
Milan). Ten undamaged leaves were taken from each
branch sample and scanned for image analysis conducted
with LAMINA [59] to obtain leaf area. The same ten
leaves were dried and weighed to calculate specific leaf
area. From each sample bag, forty leaves were removed
at random and examined for arthropod herbivore spec-
imens and leaf modifications caused by known arthro-
pods on aspen [34], from which arthropod species
richness was calculated as the total number of mor-
phospecies and arthropod abundance as the total num-
ber of individuals. Herbivores were also classified and
summed by feeding guilds based on utilisation of the
plant tissue: leaf-chewers, leaf-miners, gall-makers and
leaf-rollers. Arthropod herbivore diversity was calculated
for each genotype with the Shannon-Wiener index [60]
using the diversity function from the package vegan [61]
in R [62].

Swedish aspen collection (SwAsp)
In the Sävar common garden, clonal copies of 23 genotypes
within the SwAsp collection originated from female and 24
from male trees. Sex was determined based on available
flowering observations of the original trees from which the
common garden trees were cloned. To determine sex, cat-
kins were removed and examined using a binocular micro-
scope. The cloned trees in this common garden experiment
have not yet reached sexual maturity. Trees were measured
annually in autumn for height with a measuring pole and
for diameter at 30 cm from ground level using digital cali-
pers. Growth rate over a five year period was calculated as
(Height (2011) – Height (2006))/5, when the trees were be-
tween two and seven years old. Ten undamaged, mature

Robinson et al. BMC Plant Biology 2014, 14:276 Page 9 of 14
http://www.biomedcentral.com/1471-2229/14/276



leaves were harvested for measurement of leaf area and
specific leaf area (leaf area/dry mass), and a further ten
leaves were harvested, dried and assayed for condensed
tannins and total phenolics as described in [34]. Leaf
nitrogen and carbon content were analysed on an
available subset of six male and six female genotypes
harvested on 29 June 2010. Counts of all arthropod
herbivores on each tree in the SwAsp common garden
were conducted on 27 – 29 June 2008 as described in
[34]. Morphospecies of folivorous arthropods were summed
from the replicates of each genotype. Arthropod species
richness was calculated as the sum of arthropod mor-
phospecies on each SwAsp genotype. Arthropod herbi-
vore diversity (Shannon-Wiener index), abundance, species
richness and feeding guild abundances were calculated on
each genotype using the same methods as the UmAsp sam-
ples. Details of clone geographic origins, sex, replication in
the common garden and phenotypic data collected are pro-
vided in Additional file 5.

Statistical analysis
Statistical analyses were conducted and figures generated in
R conducted [R Core Development Team reference]. Statis-
tical significance for all tests was determined at α ≤0.05.
Dependent variables (tree phenotypes) were tested for
normality and homogeneity of variance using Anderson-
Darling and equal variance (Bartlett) tests to meet the
assumptions of analysis of variance (ANOVA). Where trans-
formation using Box-Cox powers or log-transformation did
not result in improvement of the distribution of a dependent
variable, a two-tailed Mann–Whitney U-test was applied. In
SwAsp, the latitude of origin for each genotype was initially
applied as a covariate, to account for phenotypic variation
associated with latitude, however no significant effect of sex
was identified for any response variable (P >0.1), therefore
final analyses were conducted without a covariate. ANOVA
or Mann–Whitney U-tests tested the effect of sex (inde-
pendent variable) on each phenotypic trait (response
variable). To test for potential environmental influ-
ences partitioned by sex (independent variable) in UmAsp
trees, the response variables latitude, longitude, and eleva-
tion were used in separate one-way ANOVAs but sex had
no significant effect on the responses (P >0.5 in all cases),
therefore environmental factors were not considered neces-
sary in analyses of phenotypic traits. In each of UmAsp and
SwAsp, arthropod community composition was compared
between male and female trees using non-parametric multi-
variate analysis of variance (npMANOVA; [63]). A Bray-
Curtis dissimilarity matrix constructed from counts of
arthropod herbivores on aspen genotypes (response variable)
and tested for effects of tree sex (independent variable) using
npMANOVA in the adonis function implemented in the R
package vegan [61]. The p-value for significance was deter-
mined from 999 permutations of the data matrix.

Gene expression analysis
Sample collection for microarray and RNA-Seq analysis
Sample collection from the UmAsp trees is described
above and sample details are given in Additional file 5.
Briefly, ten mature leaves produced from pre-formed,
overwintered buds were collected per tree, from ten
male and ten female trees on June 29 2009 and used to
perform whole genome oligonucleotide microarray hybri-
disations. For RNA-Seq analysis we used a combination of
a set of samples that had been collected in 2008 (five male
and five female individuals collected 22-25 June) and add-
itional samples collected in 2010 (three male and four fe-
male individuals collected 11 August). All samples consist
of pools of ten leaves collected from ten buds (one leaf per
bud avoiding the first and last emergent leaf) collected by
removing a length of branch from either the base of the
tree canopy (2009 and 2010 samples) or from a branch at
a height of 4-5 m (2008 samples).

RNA extraction
Total RNA was extracted from 0.5 g tissue using a modi-
fied version of the CTAB method [64] as described in
[65]. Briefly, the ten sampled leaves were ground under
liquid nitrogen using a pestle and mortar and 0.5 g of
ground material was then used for RNA extraction. Pre-
cipitated RNA was further purified using an RNeasy
Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. RNA concentration and purity
were measured using a NanoDrop 2000 spectrophotom-
eter (NanoDrop Technologies, Wilmington, DE, USA)
and integrity was analysed on an Agilent 2100 Bioanaly-
zer (Agilent Technologies, Waldbronn, Germany). For
each set of samples (i.e. all samples used for microarray
or RNA-Seq analysis) all RNA extractions were per-
formed together on the same day with the order of male
and female samples randomised.

Microarray hybridisation and analysis
We used the Agilent v1.0 4x44k Populus gene expres-
sion oligonucleotide microarray (Agilent Technologies,
Waldbronn, Germany), as detailed in the Gene Expres-
sion Omnibus platform ID GPL16040. We used the cDNA
synthesis, amplification, microarray hybridisation and wash-
ing protocols supplied by Agilent (Agilent Technolo-
gies, Waldbronn, Germany) with no modifications. All
hybridisations were performed using only one sample
and using Cy3. Ten male and ten female individuals
were profiled and the respective samples were rando-
mised on arrays with two male and female samples run
on each slide and with the position of males and fe-
males randomised between the four array sections per
array slide. Arrays were scanned at 5 μm resolution, using a
Scanarray 4000 microarray analysis system scanner (Perkin-
Elmer, Boston, MA, USA). Spot data were extracted using

Robinson et al. BMC Plant Biology 2014, 14:276 Page 10 of 14
http://www.biomedcentral.com/1471-2229/14/276



GenePix (v5, Axon Instruments Inc, Union City, CA, USA).
Microarray normalisation and analyses were performed
using the Bioconductor [66] limma package [67] in R [62].
Microarray annotations were obtained from the PopArray
resource [37] and were based on V2 of the genome annota-
tion. The microarrays were first background corrected using
the normexp method implemented in the backgroundCor-
rect function. Then, a between microarray quantile normal-
isation was performed using the normalizeBetweenArrays
function. A Principle Component Analysis (PCA) plot was
used for quality control and this identified one sub array
assaying a female individual as a clear outlier and this sam-
ple was therefore eliminated and not used for the statistical
analyses. These were conducted by fitting a linear model
taking into account batch effects for slide and position of
sub-array within slide to the data in order to identify genes
with a high probability of differential expression between
sexes. FDR-adjusted P values were used to assess the signifi-
cance of differential expression.

RNA sequencing and analysis
Total RNA preparations were sent to the Science for Life
Laboratory (SciLifeLab, Stockholm, Sweden) for sequen-
cing. Paired-end (2 × 100 bp) RNA-Seq data were gener-
ated using standard Illumina protocols and kits (TruSeq
SBS KIT-HS v3, FC-401-3001; TruSeq PE Cluster Kit v3,
PE-401-3001) and all sequencing was performed using the
Illumina HiSeq 2000 platform. We generated data from 8
male individuals (five sampled in 2008 and three in 2010)
and 9 female individuals (five sampled in 2008 and four in
2010). For sequencing, samples were recoded (from 1-17)
with males and females randomised to avoid bias due to
sample handling order. Samples were multiplexed by the
addition of a unique barcode sequence and all samples
were profiled on two lanes of the same flowcell with male
and female samples and samples from 2008 and 2010 ran-
domised between the two lanes. Briefly, the sequencing
protocol involved DNase 1 digestion of total RNA, mRNA
isolation by use of oligo(dT) beads, mRNA fragmentation,
first and second strand cDNA synthesis, end-repair, A-
tailing, bar-coded adapter ligation and PCR amplification.
Sequencing libraries were quality checked using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Waldbronn,
Germany) before sequencing. The quality of the raw
sequence data was assessed using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Data were
then filtered to remove adapters and trimmed for qual-
ity using Trimmomatic (v0.32; [68]; settings TruSeq3-
PE-2.fa:2:30:10 LEADING:3 SLIDINGWINDOW:5:20
MINLEN:50). Residual ribosomal RNA (rRNA) con-
tamination was assessed and filtered using SortMeRNA
(v1.9; [69]; settings -n 6 -a 8 -v) using the rRNA sequences
provided with SortMeRNA (rfam-5 s-database-id98.fasta,
rfam-5.8 s-database-id98.fasta, silva-bac-16 s-database-

id85.fasta, silva-euk-18 s-database-id95.fasta, silva-bac-23
s-database-id98.fasta and silva-euk-28 s-database-id98.
fasta). After both filtering steps, FastQC was run
again to ensure that no technical artefacts were intro-
duced. Filtered reads were aligned to v3.0 of the P.
trichocarpa genome (retrieved from the Phytozome
[70] resource) using STAR (v2.3.1e [71]; non default
settings: –OutQSconversion -31 –outReadsUnmapped
Fastx –alignIntronMax 11000). The annotations obtained
from the P. trichocarpa v3.0 GFF file were modified to
generate ‘synthetic’ gene models; i.e. for each gene a non-
redundant set of all exons from all transcripts was defined,
with overlapping exons merged where necessary. This
gene-model GFF file and the OSA read alignments were
used as input to the HTSeq (http://www-huber.embl.de/
users/anders/HTSeq/doc/overview.html) htseq-count py-
thon utility to calculate exon-based read count values.
The htseq-count utility takes only uniquely mapping reads
into account. Statistical analysis of single-gene differential
expression between sexes was performed in R (v3.1.0 [62])
using the Bioconductor (v2.14 [66]) DESeq and DESeq2
packages (v1.16.0 [72] and v1.4.5 [73]). For the DESeq/
DESeq2 analyses, a two-factor linear model was fitted with
the factors Sex and Year where Year was included as a
blocking factor and the effect of Sex was tested after re-
moval of the Year effect. FDR adjusted p-values were used
to assess significance. The normalised read counts ob-
tained from DESeq2 were used for all subsequent expres-
sion analyses, e.g. PCA, which were performed in R, with
the exception of the differential gene expression analyses,
which were performed using DESeq as it has been shown
to be the most conservative of the currently available
methods with the lowest false discovery rate [74]. An over-
view of the data, including raw and post-QC read counts
and alignment rates is given in Additional file 6.
We analysed the RNA-Seq dataset using read align-

ments to both v2.0 and v3.0 of the P. trichocarpa gen-
ome assembly and annotation, yielding similar results in
both cases. Similarly we analysed the microarray dataset
using probe annotations based on v1.0 and v2.0 of the
genome and assembly with similar gene-level results in
both cases. We have also analysed the microarray data at
the probe level, again yielding similar results.

Support vector machine identification of sex-predictive gene
combinations
We used both the microarray data and normalised
RNA-Seq expression values to test for the presence of
contiguous gene combinations (i.e. windows of genes lo-
cated next to each other within the genome) that were
predictive of sex. We applied a sliding window across
the genome with a window size of 10 genes (other win-
dow sizes were also tested with similar results). In total
our expression data included 30,709 and 20,557 genes in
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the RNA-Seq and microarray datasets, respectively. The
criterion for accepting a gene inside a window was that it
had at least 5 samples with non-zero expression values.
Furthermore, only windows with at least 4 accepted genes
were included. The Python module scikit-learn [75] was
used to train SVMs with a radial basis function (RBF) ker-
nel parameterised by C and γ. This approach has previ-
ously been shown effective on gene expression data [76].
Since the optimal values of these parameters are not
known prior to training, a grid search was performed in a
parameter space consisting of γ = {10− 4, 5 ⋅ 10− 4, 10− 3,
5 ⋅ 10− 3, 10− 2, 10− 1, 1} and C= {1, 10, 103, 5 ⋅ 103, 104,
5 ⋅ 104, 105}. For each genomic window, a double cross val-
idation (CV) was performed where the outer CV was a
leave-one-out and the inner was a 2-fold CV. The inner
CV was used to train the SVM (i.e. estimate the parame-
ters), and parameters with the smallest prediction error
were used to predict the test data from the outer CV. The
error rate was measured as the fraction of incorrect sex
predictions. To validate the error rates, a permutation test
was performed where 10,000 random genomic windows
from all scaffolds were used in the same machine learning
approach, but where the sex assignments were shuffled.

Availability of supporting information
Microarray data has been deposited to the Gene Expression
Omnibus (GEO) under the accession ID GSE46219. Raw
RNA-Seq data has been deposited to the European Nucleo-
tide Archive (ENA) under the accession ID ERP002471.
Raw RNA-Seq fastq, the synthetic exon GFF3 file used

for read alignment and HTSeq analysis, read alignment
BAM files and other associated outputs from the gene
expression analysis can be downloaded from the Pop-
GenIE (Populus Genome Integrative Explorer; [58]) FTP
resource [38]). The FTP site includes RData files for
both gene expression datasets as well as an HTML tran-
script of the analyses performed, which we highly en-
courage readers to examine as all analysis details are
included in addition to a number of summary plots ex-
ploring the dataset. To facilitate future meta-analyses, all
phenotype data used in this study is also available at
the FTP site. The data pre-processing source code is
available through our public git repository accessible at
https://bioinformatics.upsc.se. The RNA-Seq expression
data presented here has been integrated in the exImage
and exPlot expression visualisation tools at PopGenIE.org
[58], where they are called the “Expression diversity
(RNASeq)” dataset.

Additional files

Additional file 1: Statistical analyses of phenotypic and biochemical
traits in the UmAsp and SwAsp samples. Phenotypic trait means and
standard deviations for female and male individuals from the UmAsp

collection (sheet1) and the SwAsp collection (sheet2), with results of
one-way ANalyses Of VAriance (ANOVA). Where data could not be
transformed to meet the assumptions of variance structure for ANOVA,
a Mann–Whitney U test was conducted. For the extended phenotype
of the arthropod community, non-parametric MANOVA (npMANOVA)
results are shown for each of the UmAsp collection (sheet 1) and
SwAsp collection (sheet 2).

Additional file 2: PDF image containing dot plot representations of
per-sample expression values of the four genes with the smallest p
values (regardless of significance) when testing for the effect of sex
(top row), the four genes with the highest fold-change between
males and females (middle row) and the lowest fold change (bottom
row). Bold text gene identifiers in the top row of plots indicate the two
statistically significant genes. The genes represented in these figures are
those circled in red in Figure 4b. Expression values represent variance
stabilising transformation normalised read counts derived using HTSeq
and DESeq2. Black lines represent the median expression value per sex.
For each gene male and female samples are plotted separately with
males represented by blue dots and females by pink dots. The position
along the x-axis of the plot has no meaning and merely separates male
from female samples. Note that the y-axis is a log scale, for which a
pseudo count was added to every value to avoid infinite values from the
log transformation.

Additional file 3: PDF file containing individual plots of per base
pair read coverage for reads aligning uniquely to the
Potri.019G047300 locus.

Additional file 4: PDF file containing plots further exploring sex
ratio of individuals and populations in the Swedish Aspen
collection in relation to elevation, latitude and marker based
population structure.

Additional file 5: Sex, longitude and latitude of clone origin for
UmAsp and SwAsp, and elevation for UmAsp, samples used in the
current study. The year of sampling for phenotype, microarray and
RNA-Seq analysis is indicated. For UmAsp trees the longitude, latitude
and elevation values represent the location of the actual tree sampled.
For SwAsp samples they represent the origin of the original clone that
was used to establish the clonal common garden experiment at the
Skogforsk research station, Sävar, near Umeå, (63.896054°N, 20.549321°E).
All UmAsp clones flowered in 2007. For the SwAsp samples, the number of
clonal replicates present in the common garden is shown.

Additional file 6: Overview of RNA-Seq data including quality
control metrics and correspondence between sample and ENA
submission IDs.
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Abstract 

Several eQTL studies in plant species, including forest tree, have investigated general properties of the 
genetic architecture of gene expression variation. Most of these studies used controlled crosses and it 
is unclear whether their findings extend to natural populations of unrelated individuals. Here we utilize 
RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population 
of Populus tremula. Expression Quantitative Trait Locus (eQTL) mapping identified 164,290 significant 
eQTLs paring 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found 
approximately four times as many local as distant eQTLs with local eQTLs having significantly higher 
effect size. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions) 
regardless of whether they were local or distant, and whether the local eQTL was closest to the 
associated eGene or some other gene. We used the gene expression data to infer a co-expression 
network and utilized the eQTLs to explain the structure of the network. Although pairwise gene 
expression similarity from natural variation was expectedly lower than from tissue atlases or 
developmental gradients, the network displayed modularity and scale-freeness. Although we found 
eGenes in the core of 28 of 38 network modules, eGenes were generally underrepresented in cores, 
and overrepresented in the periphery of the network, with a negative correlation between effect size 
and network connectivity. We hypothesize that network modules are explained by a few central 
regulators under the control of eSNPs of low effect size, matching expectations that biological 
networks are buffered against single mutations inducing highly negative effects. As such, most eSNPs 
fine-tune the regulation of individual genes while a few eSNPs combinatorially control regulators that 
determine the modular structure of networks, thus explaining why eGenes generally have low 
connectivity. 

Introduction 

A central aim of biology is to understand how genomes encode emergent phenotypes and how genetic 
variation results in natural variation in phenotypes within populations. While the biological function 
of many genes can be, and has been, ascertained through use of mutant screens, such approaches tend 
to identify genes essential to a biological process. There is no clear consensus as to whether variation 
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in these genes underlies natural variation in phenotypic traits. Additionally, many traits are complex, 
being controlled by the action and interaction of numerous genes, often rendering mutational 
approaches inadequate or infeasible. In such cases turning to nature and employing population genetics 
and systems biology approaches to uncover genetic and genomic co-variation between assayed traits 
(genomic markers, gene expression, protein abundance, metabolites etc.) and phenotype represents an 
appealing alternative approach. 

The availability of massively parallel sequencing technologies affords new possibilities for addressing 
biological questions, for example enabling the generation of de novo genome assemblies and of 
population-wide resequencing data that can be used to perform genome-wide association studies 
(GWAS), even in species with large genomes that harbour high levels of polymorphism or that display 
rapid linkage disequilibrium (LD) decay. The use of genome-wide resequencing data allows the 
discovery of, effectively, all genetic polymorphisms within an individual, which can then be used as 
markers for association mapping. These genetic markers, of which single nucleotide polymorphisms 
(SNPs) are currently the most commonly considered, can then be used to perform association or 
linkage mapping with the aim of identifying the subset of polymorphisms that contribute to the control 
of phenotypic variation among individuals. The majority of SNPs are expected to have no, or 
insignificant (i.e. are selectively neutral), consequence. However, an implication of the infinitesimal 
model [1] is the expectation that the control of variation for any given phenotype will be contributed 
to by a large number of loci, each of small effect size, although it is not clear how this holds across the 
scale of molecular to complex, integrative phenotypes (e.g. from transcription to morphology) or 
whether this pattern contrasts between adaptive and selectively neutral phenotypic trait variation. 

Advances in sequencing technologies have concordantly revolutionised transcriptomics studies, 
especially so in non-model organisms. Following the seminal work of [2] and [3], numerous early 
studies in a range of species established that there is a significant heritable component underlying 
natural variation of gene expression levels among individuals within populations [4–16] and that natural 
variation in expression underlies a number of phenotypes [17–24]. Given these findings, it became 
apparent that gene expression values could be considered in the same way as any other quantitative 
phenotype and be subjected to linkage or association mapping to identify polymorphisms contributing 
to expression level variation among individuals [25], as first reported in [19], with the identified loci 
termed expression Quantitative Trait Locus (eQTL; [6]) or, less commonly, expression level 
polymorphisms (ELPs; [26]). eQTLs are classified as either local or distant acting depending on the 
physical location of the associated polymorphism in relation to the gene that the eQTL is mapped for: 
local eQTLs are usually defined as being located within a specified physical distance of the gene 
location (typically up to 2 Mbp, although this varies depending on species) while distant eQTLs 
represent polymorphisms that are located beyond that threshold distance or on another chromosome. 
eQTLs can further be classified as acting in cis or trans: cis eQTLs act in an allele specific manner and 
are usually considered to be local, although long-range cis interactions can occur, for example when a 
polymorphism is located in an enhancer that is physically distant from the gene of interest; trans acting 
eQTLs affect both alleles of a gene and are most commonly located distant to that gene. There 
continues to be strong interest in eQTLs as they offer potential functional links between phenotypes 
and underlying molecular mechanisms. Importantly, the majority of polymorphisms that have been 
associated to phenotypes using GWAS in a wide range of species are located outside of protein coding 
or transcribed regions [27–30], suggesting that they influence expression rather than altering protein 
or transcript function. eQTLs therefore have potential for explaining how such polymorphisms 
ultimately influence phenotype, their evolutionary signatures, as well as offering new insights into the 
nature of expression regulation [31,32]. 
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There have been a number of previous eQTL studies conducted using plant species including 
Arabidopsis thaliana [33–38], maize [39–41] and rice [42,43], and in forest tree species [7,44–46]. A 
number of general observations have been made concerning the genetic architecture of gene 
expression variation using the expanding body of evidence from these and other eukaryotic systems, 
including that a greater number of local eQTLs are typically identified and that these individually 
explain a larger proportion of gene expression variance than do distant eQTLs [34,47–50]. However, 
with the exception of human studies, the majority of previous work was conducted using controlled, 
often interspecific, crosses and it is not clear how generally applicable the conclusions from these 
studies are for natural populations of unrelated individuals. Few studies have considered whether 
observed, heritable variation is adaptive [51,52] and there is a lack of consensus as to whether or not 
natural variation in gene expression is selectively neutral [52]. 

Species in the Populus family have been established as a powerful model system for forest tree 
genomics due to their relatively small genome, rapid growth, propensity for clonal propagation and 
ease of genetic transformation [53]. The genome of P. trichocarpa (black cottonwood) was the first tree 
to be sequenced [54] and, to date, has been used as a reference genome for studies of all members of 
the family. P. tremula (European aspen) has many features that render it a particularly useful model for 
population genetics and speciation studies [55,56]. To facilitate exploitation of P. tremula as a model 
system, we have produced a draft de novo assembly of the P. tremula genome (available at 
http://popgenie.org; [57]) and resequencing data (Wang et al. In prep.) for all individuals comprising 
the Swedish Aspen (SwAsp) collection [58]. Here, we utilise this resource in combination with 
population-wide RNA-Seq data assaying gene expression in winter buds undergoing bud flush. We 
used these expression data to perform eQTL mapping and to construct a co-expression network, with 
the results integrated to provide insight into the genetic architecture of natural variation in gene 
expression levels. 

Results 

Population level gene expression similarity 

We utilised the northern common garden (located at 63.9° N, near Umeå, Sweden) of the Swedish 
Aspen (SwAsp) collection [58] which comprises 116 Populus tremula genotypes sampled across the 
species distribution range in Sweden (56.2° to 66.4° N, Figure 1A). We have previously shown that the 
SwAsp collection represents abundant genetic variation, that linkage disequilibrium (LD) is low [56,59] 
and that there is minimal population structure (Wang et al. In prep.) and have recently performed whole 
genome re-sequencing of the collection (Wang et al. In prep.). These resequencing data were aligned 
to a de novo assembly of the P. tremula genome (available at PopGenIE.org; [57]) to perform SNP calling 
and genotyping, from which 4,509,654 SNPs were identified after stringent filtering for use in 
downstream studies such as GWAS (Wang et al. In prep.). 

To enable examination of the genetic architecture of natural variation in gene expression within the 
SwAsp collection, we generated RNA-Seq expression data from winter buds at the point of spring bud 
flush for 219 individuals (clonal replicates), representing 86 genotypes, and first examined the 
distribution of broad-sense heritability (H2) and QST (Figure 1B,C respectively) for all expressed 
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annotated genes. H2 ranged from 0.0 to 1.0 with a mean (± s.d) of 0.30 (0.22) and with 5,924 genes 
(17%) having H2 > 0.5. There was a weak positive correlation with median expression (Pearson r = 
0.09, p < 2.2×10-16) and a positive correlation to expression variance (Pearson r = 0.43, p < 2.2×10-16). 
QST ranged from 0.0 to 1.0 with a mean (± s.d) of 0.06 (0.12) and had a weak negative correlation with 
expression variance (Pearson r = -0.02, p < 4.5×10-4) and a positive correlation with median expression 
(Pearson r = 0.18, p < 2.2×10-16). To further examine whether population structure was apparent on 
the basis of expression variation among genotypes, we performed hierarchical clustering of all 
individuals (Figure 1A) or genotypes (Figure S1). 

We selected the 500 genes with the highest H2 (0.88-1.0, 0.93 ± 0.03) and QST (0.54-1.0, 0.71 ± 0.13) 
and subjected these to Gene Ontology (GO) enrichment analysis to determine their biological 
relevance. Genes with high H2

 were overrepresented for categories including protein phosphorylation 
(GO:0006468), while high QST genes were enriched in terms including translation (GO:0006412) and 
gene expression (GO:0010467). Likewise, we considered the 500 genes with the lowest values, which 
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Figure 1. (A) Map of the original locations 
of the SwAsp populations. The red arrow 
points to the location of the common 
garden used in this study. (B) Distribution 
of gene expression heritability. (C) 
Distribution of gene expression QST. (D) 
Sample clustering based on all samples, 
including biological replicates. The 
heatmap represents the sample 
correlation matrix based on the 500 genes 
with the highest expression variance. 
Darker colour indicates higher 
correlation. The coloured bar represent 
the populations the samples belong to. 
The small clusters on the diagonal 
correspond to biological replicates of each 
genotype.  
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identified no significant overrepresentation for low H2 genes and overrepresentation of terms including 
amino acid activation (GO:0043038)) among the 11,895 genes with a QST of zero. 

We performed a regression analysis to ascertain whether a set of geographic (latitude, longitude, 
elevation), climatic (temperature, precipitation) or other factors (time since sample collection) 
significantly explained the global patterns of gene expression similarity among genotypes (Figure S2), 
as identified by performing a PCA of the expression data. None of the gene expression principal 
components (PCs) were significantly explained by environmental factors, with the only significant 
results found between PCs 2, 5 and 7 and the number of hours from collecting branches from the field 
until bud sampling for RNA extraction (see Materials and methods), which explained 6.6%, 3.2%, and 
2.1% of expression variance, respectively. 

We subsequently filtered expression values to remove unexpressed genes and uninformative 
expression profiles with low variance. Of 35,154 annotated genes, 20,835 were expressed in all samples, 
including biological replicates, with 23,183 genes expressed in all genotypes when considering genotype 
means. Filtering to remove uninformative expression retained 22,306 genes while 12,848 were 
removed, representing both genes that were not expressed in our bud samples (6,736 genes with 
median expression of zero of which 2,385 had no detectable expression at all), or that were weakly 
expressed (1,762 genes with variance < 0.05 and median expression < 2), together with genes that had 
stable expression among genotypes (4,350 genes with expression variance < 0.05 and median 
expression >= 2). The latter potentially represent genes with canalised gene expression. Analysis of 
this set of stably expressed genes identified enrichment for GO categories including protein transport 
(GO:0015031, p = 6.8e-11) and protein localisation (GO:0008104, p = 2.2×10-10). In contrast, the 500 
genes with the highest variance were enriched for GO categories related to protein phosphorylation 
(GO:0006468, p < 10-6), chitin metabolic process (GO:0006030, p < 10-4), and cell wall macromolecule 
catabolic process (GO:0016998, p < 10-4). Comparing the variance of these 500 genes with mean FST 
calculated using SNPs within those genes revealed no apparent relationship. 

eQTL mapping 

We performed eQTL mapping (after accounting for hidden factors and populations structure) using 
linear modelling as implemented in the R-package Matrix eQTL [60]. We define an eQTL as a 
significant association between a SNP (termed an eSNP) and the expression of a gene (termed an 
eGene). Furthermore, we classified an eQTL as local if the eSNP was located on the same chromosome 
and not more than 100 Kbp from the associated eGene, and as distant otherwise. We did not consider 
whether eQTLs acted in cis or trans. 

In total 164,290 eQTLs were identified at 5% empirical FDR (Materials and methods): 131,103 local 
and 33,187 distant. These eQTLs represented pairwise relationships between 6,241 unique genes 
(eGenes) and 147,419 unique SNPs (eSNPs). The genomic context of eSNPs was determined by 
overlapping the eSNP positions with gene annotations. After normalizing for feature length, the 
majority of local eSNPs were located within untranslated regions (UTRs) and up- or down-stream 
(regulatory) regions of genes, with distinctly lower representation within exons than introns (Figure 
2B). The genomic contexts of local and distant eSNPs were largely similar, although there were 
distinctly more eSNPs located within intergenic regions for distant eQTLs. Dividing the local eQTLs 
on the basis of whether they were located within or near the associated eGene or within or near any 
other gene inside of our local distance threshold revealed that approximately half were located near 
the eGene itself. There was a clear tendency for a local eSNP to be located proximal to the transcription 
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start site (TSS) or the stop codon (Figure S3). eGenes had significantly higher heritability (difference 
in median of 0.24, Mann-Whitney p < 2.2×10-16) than non eGenes (Figure 2D), with this trend being 
slightly higher for local than distant eQTLs (Figure S5). There were no significant differences in median 
expression between eGenes and non eGenes or for local or distant eGenes. eGenes with at least one 
local eQTL were enriched for GO categories related to tRNA metabolic process (GO:0006399, p = 
1.5×10-5), ncRNA metabolic process (GO:0034660, p = 2.6×10-5) and organonitrogen compound 
biosynthetic process (GO:1901566, p = 2.2×10-5) while eGenes with at least one distant eQTL were 
enriched for protein phosphorylation (GO:0006468, p = 0.0064). 

The vast majority of eSNPs were associated with a single eGene (132,258 eSNPs) with a maximum of 
six eGenes associated with a single eSNP (Figure S6A). In contrast only 1,248 of the 6,241 eGenes 

Figure 2. (A) Expression variance explained 
(R2) for local and distant eQTLs. Box plots 
show the maximum variance explained by a 
single eQTL for each gene and the total 
variance explained by all eQTLs for each 
gene. The widths of the boxes are 
proportional to the number of genes 
represented. (B) Genomic context of local 
and distant eSNPs. When an eSNP 
overlapped with features on both strands, 
both of them were counted. For both local 
and distant eQTLs the features are based on 
the gene that is closest to the eSNP, and 
furthermore, for local eQTLs, the features 
are divided into whether the eSNP is located 
in or near the same gene that it is associated 
to or not. Flanking regions represent 2 kb 
upstream and downstream from the gene. 
(C) Scatter plot showing the positions of all 
significant eQTLs in this study. No evidence 
of eQTL hotspots can be observed. 
Numbers indicate chromosome. (D) Broad 
sense heritability distributions for eGenes 
and non-eGenes. (E) Manhattan plots for 
local eQTLs (upper) and distant eQTLs 
(lower).  
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were associated with a single eSNP, while there were eGenes associated with up to 1,547 eSNPs (Figure 
S6B). To partially account for linkage, we fitted linear models between the expression of each eGene 
and all the significant eSNPs for that gene, both local and distant. The use of a linear model masks 
eSNPs that contain identical/redundant information and thus effectively identifies haplotype blocks 
present in all individuals (which we refer to as ‘unique eSNPs’), while also producing a measure of how 
well the combination of eSNPs explains the expression of the corresponding eGene (in terms of 
percentage variance explained, %VE). Of the 4,993 eGenes associated with more than one eSNP, 
4,703 were also associated to more than one unique eSNP. The adjusted %VE for the combination of 
eQTLs was, in general, higher than for single eSNPs. Local eSNPs explained significantly more of the 
variance than did distant eSNPs (local mean adjusted %VE = 51, distant mean adjusted %VE = 47, 
Mann-Whitney p < 2.2×10-16, Figure 2A) and also had higher statistical significance (Figure 2E). There 
was a positive correlation between the maximum %VE of the eSNPs associated with an eGene and 
gene expression H2 (Pearson r = 0.47, p < 2.2×10-16). 

To detect possible hotspots, we plotted eSNP positions against the genomic positions of the associated 
genes (Figure 2C), as well as the number of eSNPs and eGenes for 100 kb genomic windows along 
the chromosome (Figure S7). We did not identify any clear hotspots in our data. 

Co-expression network 

We used our genotype mean gene expression values to calculate a co-expression network and 
subsequently considered the network characteristics for genes with and without a mapped eQTL 
(eGenes). The network was constructed using the R-package WGCNA (see Materials and methods), 
and, similar to other biological networks, it had a good scale-free fit (R2 = 0.97). One notable feature 
of the network compared to the type of networks considered by systems biology analyses, often 
inferred from different tissues or perturbations, was that the distribution of pairwise gene expression 
correlations was relatively narrow. We compared our network with the P. tremula expression atlas 
(exAtlas; [57]), which represents different tissues collected from a single genotype, and observed that 
the correlation distribution for the exAtlas samples was much wider than that of our population 
expression data (Kolmogorov-Smirnov D = 0.14, p < 2.2×10-16; Figure 3A). 

Clustering analysis of the co-expression network identified 38 co-expression modules (two examples 
are shown in Figure 3C). These were enriched for a number of different Gene Ontology (GO) 
categories including translation (modules 9, 10, and 14), photosynthesis (module 22) and oxidation-
reduction process (module 29; for all results see supplementary file 1). Despite the narrow distribution 
of correlation values, the modules were reasonably well defined, as shown by examination of  the 
normalized connectivity difference (Kdiff), i.e. the difference between intra- and inter-modular 
connectivity (see Materials and methods). All modules exhibited a positive mean Kdiff, with only 157 
genes (0.7%) having a negative Kdiff. This was in stark contrast to genes assigned to the ‘junk’ module 
(i.e. all genes not assigned to any well-defined module), where there were 480 genes with negative Kdiff 
(29%). 

eGenes are under-represented in network module cores 

To test whether eQTLs explained the structure of the co-expression network we examined the 
relationship of eGenes to network connectivity. In general, eGenes had lower connectivity and 
betweenness centrality than non-eGenes (Mann-Whitney p < 2.2×10-16 for both, Figure 3B). Moreover, 
genes with a positive Kdiff were significantly under-represented for eGenes (hypergeometric test p = 
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1.7e-27). We defined the core of each module to be the 10% of genes in the module with the highest 
normalized Kdiff while also having an intra-modular connectivity >1. Using this definition, all 38 
modules contained at least one core gene, with the percentage of core genes ranging from 2-10% 
(Supplementary file 1). Among the module cores, 28 contained at least one eGene, with 29 module 
cores being significantly under-represented for eGenes (hypergeometric test, 5% FDR). This further 
emphasises that eGenes were not central in the network. Subsequently, we tested whether the 
periphery of the network (see Materials and methods) was overrepresented for eGenes. Sixty-four of 
142 genes defined as being peripheral were eGenes, representing a significant enrichment 
(hypergeometric test p = 2.6×10-5). 
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Figure 3. (A) Co-expression correlation distribution of all pairs of genes for the SwAsp data and the exAtlas data. (B) 
Distribution of co-expression connectivity for eGenes and non-eGenes. (C) Network module 23 and module 22 with 
core genes coloured blue and eGenes are indicated by square nodes. In module 23 (upper network), all core genes 
are eGenes, while for module 22, there are very few eGenes in the core. Red edges indicate negative correlation in 
expression while blue edges indicate positive correlation. (D) eGene connectivity plotted against the total variance 
explained of all eQTL associated with each eGene. Colors indicate the effect size where more blue represents a more 
positive effect and red is a more negative effect. 
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In addition to eGenes having generally lower connectivity, there was also a negative relationship 
between the effect size of eQTLs and co-expression connectivity, where eGenes with the highest 
connectivities were associated with the smallest effect sizes (Pearson r = -0.15, p < 10-10, Figure 3D). 
eGenes also had higher expression heritability (H2) than non-eGenes (difference in median heritability 
0.24, Mann-Whitney p < 2.2×10-16). In addition, H2 correlated positively with  eQTL effect size 
(Pearson r = 0.59, p < 2.2×10-16) and negatively with connectivity (Pearson r = -0.30, p < 2.2×10-16). 

eGenes had higher expression variance than non-eGenes (median variance of 0.075 versus 0.048, p < 
2.2×10-16). In particular, 60 of the 75 genes with variance > 2 (hypergeometric test  
p < 2.2×10-16) and 178 of the 250 genes with variance > 1 (p < 2.2×10-16), were eGenes (Figure S8). 
There was a weak negative relationship between network connectivity and gene expression variance 
(Pearson r = -0.08, p < 2.2×10-16). Transcription factors had higher connectivity than non-transcription 
factors (Mann-Whitney p-value < 2.2×10-16). 

Paralogs with diverged expression are more likely to be eGenes 

In P. tremula 3,910 paralog pairs were detected (Delhomme et al. In prep.), with 2,140 of these (4,185 
unique genes) passing our gene expression and variance filtering criteria. These paralogs were 
significantly under-represented for eGenes, with 1,078 of the 4,185 genes having at least one associated 
eSNP (hypergeometric test p = 0.0004). Comparing the expression correlation of paralog pairs to that 
of random gene pairs showed that paralogs exhibited conserved regulation (permutation p-value < 
0.001). We compared the expression correlation distributions of paralog pairs containing 0, 1, and 2 
eGenes (Figure 4) and found that a higher number of eGenes in a pair was associated with lower 
expression correlation (p < 10-10). Excluding the paralog genes did not alter the fact that eGenes had 
significantly lower connectivity than non-eGenes. 

Population genetics signatures of eQTLs 

We examined allele frequencies and compared these for all SNPs as well as considering specifically 
local and distant eSNPs, revealing that both distant and local were more represented at higher 
frequencies compared to all non  eSNPs (Figure 5A).  
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Figure 4. Correlation within paralog pairs as a function 
of the number of eGenes in the paralog pair. The 
widths of the boxes are proportional to the number of 
genes in each set. The mean correlations for paralog 
pairs with 0, 1, or 2 eGenes were 0.17, 0.10, and 0.06, 
respectively. The correlation difference for paralog 
pairs with 0 and 1 eGenes was significant, as well as for 
paralog pairs with 1 or 2 eGenes (Mann-Whitney p = 
4.8⋅ 10-16 and p = 0.005, respectively). 
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We detected a significant negative correlation between eQTL effect size and allele frequency 
(Spearman’s rho=-0.290, P < 0.001) (Figure 5B). We also found significantly positive correlation 
between effect size and the standardized integrated haplotype score (|iHS|) [61] of eSNPs. Positive 
selection signals, revealed by |iHS|>2.0, were observed for 6.9% (5,885 eSNPs) of all tested eSNPs 
(84,956) (Figure 5C). We used one example eSNP (Potra001809:6322) with the highest |iHS| value as 
a proxy to explore the extent of positive selection at this eSNP (Figure S9). We calculated the extended 
haplotype homozygosity (EHH) [62] for both the ancestral and derived allele at Potra001809:6332, 
finding that haplotype homozygosity decayed substantially more rapidly for the derived allele 
compared to the ancestral allele (Figure S9b). 

  

Figure 5. (A) Comparison of minor allele frequency between all SNPs, distant eSNPs and local 
eSNPs. (B) The relationship between minor allele frequency and effect size (absolute value of beta) 
of eQTLs. (C) The relationship between effect size (absolute value of beta) and the absolute 
integrated haplotype score (|iHS|) of eQTLs. The red horizontal line indicates the threshold of 
positive selection signal (|iHS|>2.0). The black dot indicates the eSNP (Potra001809:6322) with the 
highest |iHS| value. 
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Discussion 

Expression heritability and population differentiation 

Our data identified prevalent heritability in gene expression levels, in line with observations in a 
number of species [4–16,52]. The majority of these studies reported narrow sense heritability (h2) 
estimates, however [20] also reported significant H2 for the majority of expressed genes. We observed 
5,924 genes (17%) having H2>0.5, representing ~10% more of expressed genes than reported in [52], 
although direct comparisons are hard given that we calculate H2 rather than h2. Although a relatively 
large proportion of genes had a large fraction of their variance explained by genetic factors (accepting 
that our estimates may suffer from over-inflation due to the relatively small number of genotypes 
available), for most genes the largest fraction of variance remained unexplained despite removal of 
hidden confounders, suggesting that there remained a large influence of environment on expression 
levels (plasticity). 

QST values were universally low, showing that there is no apparent differentiation between sub-
populations for expression levels. This is not surprising given the lack of population structure at the 
genome level (Wang et al. In prep) and that low values of QST have been reported for all phenotypes 
except the date of bud set (and other traits that are linked or confounded by this, such as height; [63]). 
However, as just noted, a substantial proportion of expression variance did likely result from 
environmental effects. As we attempted to remove systematic confounding effects, the expression 
variation observed will have resulted from environmental effects that hidden confounder removal was 
not able to account for, combined with inherent transcriptional noise. Although there was no apparent 
structuring of expression variation among genotypes on the basis of sub-population of origin (i.e. 
population structure), some evidence of clustering was apparent (Figure 1D), but this was not the case 
for the expression data after hidden confounder removal (Figure S10). Reassuringly, biological 
replicates of a genotype were consistently clustered together for both the original and the adjusted 
data, indicating that our data were reliable and that reproducible biological differences (in the current 
case genetic differences) in gene expression among genotypes could be detected. We were not able to 
identify the underlying factors responsible for the clustering, but were able to exclude a set of climatic, 
environmental and experimental factors that represented the most obvious candidates. However, it is 
of course possible that these environmental factors, especially latitude, may explain the expression of 
some genes. Despite not being able to identify the causes of the observed clustering, we did identify 
over-representation of GO categories in the set of the 500 most variable genes, suggesting that this 
represents a signature with biological relevance.  

[64] recently reported a reanalysis of two existing datasets assaying gene expression among natural 
accessions of A. thaliana [65,66] observing that thousands of genes displayed clear present/absent 
expression among accessions. In contrast, we did not find any genes displaying such a pattern of 
expression variation (Figure S11), an observation that we also confirmed in an independent P. tremula 
dataset [67], albeit containing substantially fewer genotypes. 

eQTLs 

In line with other published work, we found more local than distant eQTLs, with local eQTLs 
explaining significantly more of the variance than distant eQTLs [34,47–50] (Figure 2A). Although 
each eSNP typically was associated with only one gene, many genes were controlled by more than one 
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unique eSNP and the combined variance explained by these eSNPs was higher than for the individual 
eSNPs, both for local and distant eQTLs. This suggests that the observed expression variation resulted 
from the combined effects of several eSNPs, consistent with the infinitesimal model. However, 
combining local and distant eQTLs did not improve on only combining local eQTLs, which is 
surprising since one would expect local and distant eQTLs to not be in linkage and to contribute 
independent information. On the other hand, there were far fewer distant eQTLs affecting fewer genes 
and being of lower effect. Looking specifically at the 762 eGenes with both local and distant eQTLs, 
we did indeed see an average increase in the proportion of variance explained by all eSNPs compared 
to only local eSNPs (an increase of 0.04 %VE after adjustment). 

Local eQTLs were typically located in regulatory regions (Figure 2B), with UTRs having the highest 
density of local eSNPs (~1.5 eSNP per kb sequence) followed by flanking regions (2kb up- and 
downstream, ~1 per kb sequence) and introns (~0.75 per kb sequence). About half of the local eQTLs 
were located in or near the associated gene, suggesting a direct role in affecting the expression of that 
gene. Most of the remaining local eSNPs were located near another gene, with only a few being 
intergenic. eSNPs located near the associated eGene and those located near another gene were 
distributed fairly equally across different genomic contexts, with highest representation of regulatory 
regions. This indicates that eSNPs located near to a gene other than the one for which the eQTL was 
mapped (but still classified as local) may act indirectly (potentially through additional regulators) on 
the eGene and, if this is the case, that the indirect action of the eSNP is most often accomplished by 
affecting expression rather than by changing coding sequence. This also extends to many distant 
eQTLs, which had a remarkably similar distribution among genomic contexts to that of local eQTLs. 
However, distant eQTLs were somewhat more common in exon regions compared to local ones, as 
would be expected by indirectly acting eQTLs, and much more often located in intergenic regions, 
potentially representing distantly acting regulatory elements such as enhancers. [68] reported introns 
as the most frequent SNP location for distant eQTLs in humans, followed by intergenic regions. Our 
results only partially agree with this, with distant eQTLs being far more commonly associated with 
UTRs and flanking regions, followed by introns and intergenic regions. 

Previous eQTL studies in both plants and a range of other organisms have frequently identified distinct 
eQTL hotspots [19,34,36,47,50], which represent loci where numerous trans-acting effects are co-
located, with a stringent definition requiring that more such eQTLs are co-located than would be 
expected by chance. In our data distant eQTLs were distributed fairly equally across the genome 
(Figure 2C), with a maximum of six eGenes associated to a single eSNP and with the vast majority of 
eSNPs associated to a single gene. Analysing genomic windows of 100 kbp did reveal clear peaks of 
eSNPs on chromosomes 6, 11 and 18, however, these were not associated with corresponding eGene 
peaks (Figure S7). Thus, our data do not support the presence of eQTL hotspots. It has also been 
reported that hotspots are often associated with polymorphisms that alter developmental timing, which 
was not the case in our study. 

The relatively small size of our population limits the power available for GWAS mapping and 
overinflates effect sizes due to the ‘Winner’s curse’. Thus, our ability to detect eQTLs associated with 
rare alleles were limited. Before performing the association mapping we therefore filtered SNPs on 
minor allele and major genotype frequencies (Materials and methods). This filtering accomplished two 
goals: Firstly, we removed alleles observed in a single (or very few) individuals that often result in 
highly significant p-values (see Figure S12 for an example); Secondly, we increased our power to detect 
other, more frequent eSNPs, by reducing the number of variables going into the association mapping. 
We do not claim that the removed SNPs are not important but, rather, that we lack the detection 
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power to distinguish bona fide low-frequency eSNPs (false negatives) from spurious ones (false 
positives). Having discussed what SNPs we did not detect, it is interesting to analyse the properties of 
SNPs we did detect. There was a relatively high correlation between both the effect size of, and the 
variance explained by, an eSNP and expression heritability (H2) of the associated eGenes (Rs ranging 
from 0.40 to 0.60). Furthermore, we observed a substantially higher H2 for eGenes than for non-
eGenes (Figure 2D). Since expression heritability measure the fraction of gene expression variance that 
can be be explained by genetic variation, it is maybe not surprising that this measure is a good proxy 
for whether a gene will be detected as an eGene or not, and how strong the association will be. 
However, it is reassuring that low expression variance among genotype replicates coupled with high 
variation among genotypes (i.e. the hallmark of a high H2) is consistently associated with detection of 
eSNPs in our data. 

Co-expression 

It remains an open question whether there are distinct characteristics associated with genes displaying 
natural variation in expression and whether coexpression networks representing natural variation in 
gene expression resemble the coexpression networks more typically considered by systems biology 
studies. Here we analyzed such characteristics using a gene co-expression network together with eQTL 
mapping within a natural population of unrelated individuals of the outbreeding forest tree species P. 
tremula. After removing hidden confounders from the expression data, the assumption is that a 
significant portion of the variance in expression of single genes, and of significant co-expression 
between genes, has a genetic basis.  

The pairwise expression correlations underlying our co-expression network were low (mean 0.00 +/- 
s.d. 0.12), at least compared to those observed in most systems biology studies, for example in the P. 
tremula exAtlas network [57] where all samples originated from different tissues in a single clone (mean 
correlation 0.01 +/- s.d. 0.36) (Figure 3A). The fact that correlation values were generally low in our 
network is not surprising given that we are assaying natural variation among genotypes of the same 
species sampled under controlled conditions with the specific intention to limit environmental noise. 
It would be somewhat surprising if gene expression between individuals varied to the same extent as 
when exposing a single individual to often high effect perturbations or between developmental stages 
or tissues. Despite the low correlations, our natural variation co-expression network displayed typical 
properties characteristic to biological networks [69]; the network was scale-free with hubs and distinct 
modules. Specifically, we identified 38 co-expression modules that were enriched for a number of 
functional categories, suggesting that they represent biologically meaningful units. A central aim of this 
study was to ascertain to what degree eQTLs could explain these network modules. 

Genes with the highest expression variance, and the highest heritability, in our data were enriched for 
eGenes. However, perhaps surprisingly, genes co-expressed with many other genes (high connectivity) 
were under-represented for eGenes, while genes with few co-expression partners (located in the 
network periphery) were enriched for eGenes (Figure 3B). Furthermore, eGene connectivity was 
negatively correlated with variance explained by the associated eSNPs (Figure 3D). Thus there seems 
to be a need to consolidate the expectation that eSNPs should explain the co-expression network with 
our observation that network hubs were underrepresented by eGenes and that eGenes of higher 
connectivity were controlled by eSNPs of lower effect size. While this may seem paradoxical, a 
moment's pause reveals many plausible explanations for these observations.  
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The simplest explanation for a cluster of co-expressed genes (i.e. a network module) is that it results 
from variation (either expression or altered protein structure) in a single regulator, with that variation 
being caused by a single eSNP. If a single regulator induces the observed co-expression among module 
members, then it is almost inevitable that a module will be underrepresented by eGenes. This is in 
agreement with our observation that eGenes were under-represented in module cores. In fact, it would 
be sufficient that at least one eGene be present within each module core in order for the eSNPs to 
explain the co-expression data: in our data we observed at least one eGene in 28 of the 38 module 
cores. In this scenario, if co-expression between gene pairs were high, one would expect the eSNP(s) 
controlling the regulator to also be identified as a distant eQTL for the other coexpressed genes in the 
module. However, pairwise correlation in our data was low and eSNPs were generally associated with 
a single gene; most likely the direct target of the eSNP. Unlike network modules, the expression 
variation of genes with few expression partners (with a rare expression profile) is most likely explained 
by the presence of a directly-acting local eSNP, thus explaining the observed enrichment of eGenes 
within the network periphery.  

The above assumption that regulators are controlled by a single eSNP would not be favored by 
selection as it offers no opportunity for buffering. Regulatory networks are known to be redundant, 
scale-free and to have an inherent ability to buffer against single mutations of large negative effect [70–
72]. Genes with the ability to cause such large negative effects would, therefore, be observed as hubs 
in a co-expression network, and we would expect them to be controlled by complex regulatory 
mechanisms involving additive effects. This, in turn, would imply that many SNPs, each of small effect 
size, would contribute to the control of expression variation of those hub genes. Under this assumption 
we would therefore lack power to detect such eSNPs given our current sample size, and these would 
represent false negatives (i.e. would be unobserved). This lack of detection power could explain why 
the core of 10 of the 38 modules within our network did not contain eGenes. 

Just as nature abhors a vacuum, biology appears to abhore simplicity. As such, it should be expected 
that neither of the above explanations would account for all variation in gene expression. In fact, 
although we mention additive effects above, several other types of complex regulatory mechanisms 
can preclude our ability to detect eSNPs. Epistatic interactions between eSNPs, such as AND-logics, 
would result in very little correlation between the individual AND-interacting eSNPs and the 
expression of the controlled gene. Likewise, the expression of a gene will frequently not only be a 
function of the associated eSNPs but also of the expression of the regulators acting through those 
SNPs, which are themselves affected by other eSNPs. Furthermore, the regulator(s) that initiated an 
observed co-expression module may no longer be expressed at the sampling point used for RNA 
isolation, and thus the eSNPs that determined the expression variation of that regulator will no longer 
be visible to us (or a ‘ghost signature’ may remain, but be too weak to reach significance). 

In conclusion, we propose that a modular co-expression network from a natural population should be 
determined by a relatively small set of highly connected regulators displaying expression variation due 
to eSNPs. Since these regulators will be hubs, with potentially huge negative effects, they will be 
buffered by complex regulatory mechanisms making them difficult to detect by small association 
studies testing the effect of individual SNPs. Supporting this hypothesis, we find that eGenes are 
underrepresented in module cores and that transcription factors have higher connectivity than non-
transcription factors. Nonetheless, we do find eGenes in the core of 28 of 38 modules, in principle 
being adequate to explain these modules. In addition, we find a large number of eGenes with low 
connectivity, fine tuning the expression of individual genes. [73] similarly found that conserved genes 
and hubs in human protein-protein interaction networks were less likely to be associated with a 
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detectable eQTL and that the effect size of eQTLs were negatively correlated with connectivity in the 
protein-protein interaction network. In this study, we confirmed similar observations in the context of 
a natural variation and co-expression networks. 

Our results support the hypothesis that natural variation in gene expression follows the infinitesimal 
model, with there being remarkably few examples of a single eSNP controlling a large proportion of 
the expression variance of a gene. As we argue, this may arise from selective processes that maintain 
biological robustness. However, we cannot extrapolate these findings to suggest whether this is the 
rule for all cases. For example, we observed a snapshot of expression during the process of bud flush, 
a trait that does not appear to be under strong directional selection. To ascertain the general relevance 
of our findings, similar studies should be performed assaying expression for phenotypic traits that do 
show evidence of selection, such as the timing of autumn bud set within the SwAsp collection [63], 
although the specifics of how to sample comparative material while controlling for confounding effects 
to enable expression profiling presents significant challenges in such a case. 

Salicaceae species underwent a recent whole-genome duplication that remains represented by a large 
number of paralogous gene pairs. If many of these duplicated genes are functionally redundant or in 
the process of diverging, one would expect them to be overrepresented for eGenes as sub- or neo-
functionalization requires derived SNPs to drive expression differences. However, we saw an under-
representation of eGenes in paralog pairs, suggesting full divergence and fixation of most of the 
paralogs associated with the whole-genome duplication - that is that each of the genes in a paralog pair 
has diverged expression and that the SNPs that initially induced that expression divergence have 
reached fixation. Interestingly, we found progressively lower expression correlation between paralog 
pairs containing zero, one or two eGenes (Figure 4) indicating that eSNPs drive paralogs away from 
their present state of higher co-expression than randomly selected gene pairs (comparing Figure 3A to 
Figure 4 clearly shows higher co-expression for paralogous pairs). The fixation of such eSNPs will, 
over evolutionary time, seal the fate of these paralogs through the process of sub-, neo- or, most 
commonly, non-functionalization. It could be argued that paralogous eGenes would be loners in the 
co-expression network, because they are evolving away from their ancestral function in “search of” a 
new functional role, and that such drifting paralogs could be responsible for the observation that 
eGenes were enriched at the network periphery. However, removing paralogs from the analysis did 
not change the fact that eGenes have lower connectivity than non-eGenes, thus refuting this 
hypothesis. 

Signatures of selection 

In contrast to the pattern reported in [31], our results suggest that eSNPs, both local and distant, have 
been maintained at higher frequencies compared to the global set of SNPs not associated with gene 
expression in our data (Figure 5A). Rather than this suggesting that eSNPs were under weaker purifying 
selection, these results more likely reflect the lower power of our study to detect the true positive 
eSNPs of low allele frequency. Thus, future work will need to consider the influence of the variation 
in ascertainment power across allele frequencies during the detection of eSNPs and/ or eQTLs. 

We detected a significant negative correlation between eQTL effect size and eSNP allele frequency 
(Figure 5B), suggesting that prevalent purifying selection may have been acting on expression variation 
of the eQTLs detected in our study. Nonetheless, we also observed a significantly positive correlation 
between effect size and |iHS| (Figure 5C), suggesting the action of positive selection on these eSNPs. 
These results indicate that positive selection has also been involved in shaping the regulation of gene 
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expression variation among individuals. In combination, our results further suggest that variation in 
gene expression is controlled in a similar manner to most quantitative traits, by the combined action 
of a large number of components (eSNPs in the case of gene expression and genes in the case of 
phenotypes) and that any given locus, in general, explains only a very small fraction of the genetic 
variance. Although further work addressing this point explicitly is required, our results also likely 
indicate that expression variation is an important contributor to standing phenotypic variation. 

Materials and methods 

Samples 

We collected branches form the SwAsp collection common garden in north of Sweden on 27th May 
2012, before natural bud break but as close to the point of natural spring bud break as possible. 
Branches were placed in the greenhouse facility at the Umeå Plant Science Centre under conditions 
selected to induce rapid bud break (24 h light, temperature of 20 °C and humidity 50-70 %). At a 
defined point of emergence (Figure S13), buds were harvested, flash frozen in liquid nitrogen and 
stored at -80� until used for RNA isolation. Only terminal buds were sampled (i.e. no lateral buds 
were included). The time from the day branches were placed in the greenhouse until bud flush sampling 
ranged from one day to eight days (Figure S14A) and there was a high, positive correlation to bud flush 
date recorded in the field for the same year (Figure S14B; r=0.776, p < 2.2×10-16). As has previously 
been reported [63], there was no apparent QST for bud flush, either in the field or for the greenhouse 
material (QST 0.13 and 0.07 respectively), however H2 was high (H2 = 0.82 and 0.71 respectively). 

RNA isolation 

One to two buds per clonal replicate were ground using one 3 mm stainless steel bead (Qiagen, 
Redwood city, USA) in CorningR 96 well PP 1.2 ml cluster tubes (Sigma-Aldrich, St. Louis, USA) using 
a Mixer Mill MM400 (Retsch, Haan, Germany) at 20 Hz for 2 x 15 sec . Total RNA was extracted from 
all samples according to [74] with the omission of the L spermidine. Buffer volumes were adjusted 
according to starting material (70 - 130 mg). RNA isolation was performed using one extraction with 
CTAB buffer followed by one chloroform : isoamyl alcohol IAA (24:1) extraction. All other steps were 
performed as in [74]. DNA contamination was removed using DNA-freeTM DNA removal Kit (Life 
Technologies, Carlsbad, USA). RNA purity was measured using a NanoDrop 2000 (Thermo Scientific, 
Wilmington, USA) and RNA integrity was assessed using the Plant RNA Nano Kit for the Bioanalyzer 
(Agilent Technologies, Santa Clara, USA). 

RNA-Sequencing and analysis 

RNA-Sequencing was performed as in [67]. Briefly, paired-end (2 × 100 bp) RNA-Seq data were 
generated using standard Illumina protocols and kits (TruSeq SBS KIT-HS v3, FC-401-3001; TruSeq 
PE Cluster Kit v3, PE-401-3001) and all sequencing was performed using the Illumina HiSeq 2000 
platform at the Science for Life Laboratory, Stockholm, Sweden. Raw data is available at the European 
Nucleotide Archive (ENA, http://www.ebi.ac.uk/ena) with accession number ERP014886. 

RNA-Seq FASTQ-files were pre-processed and aligned to v1.0 of the P. tremula reference genome 
(available at http://popgenie.org) as in [75]. In short, reads were quality and adapter trimmed using 
Trimmomatic v0.32 [76], rRNA matching reads were filtered using SortMeRNA v1.9 [77], reads were 
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aligned to the v1.0 P. tremula reference genome using STAR 2.4.0f1 [78] and read counts were obtained 
using htseq-count from HTSeq [79]. FastQC [80] was used to track read quality throughout the 
process. Normalised gene expression values were obtained by applying a variance stabilising 
transformation (vst) to the raw counts from HTSeq, as implemented in the DESeq2 R-package [81]. 

Gene expression H2 and QST 

We calculated repeatability as an assumed upper bound estimate of broad sense heritability of gene 
expression (see [82] for discussion) from the variance estimates in our data according to the equation 
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where VG is the genetic component of the variance calculated as the expression variance between 
genotypes for a particular gene (i.e. variance among genotype means) and VP is the total phenotypic 
variance calculated as the sum of VG and VE, where VE is the environment component of the variance 
calculated as the expression variance within genotypes for a particular gene (i.e. the mean variance 
among clonal replicates). Point estimates of H2 were obtained using the repeatability function from the 
heritability R package [83]. 

Population differentiation (QST; [84]) was calculated as  
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where Vbetween is the variance among populations and Vgenetic is the genetic variance among genotypes 
as computed using the lmer function from the lme4 R package [85] using the formula 

expression ~ 1 + (1|population) + (1|clone) 

where expression is the expression of a gene, population is a factor representing the population of each 
sample, and clone is a factor representing genotype replicates. As we use repeatability as an upper bound 
estimate of H2, our QST estimates are conservative [86]. 

Hidden confounder removal 

Gene expression data was adjusted for hidden confounders before mapping eQTLs and constructing 
the co-expression network. Hidden confounders in the gene expression data was accounted for by 
regressing out the 9 first principal components (PCs) of the gene expression data [87–89]. The number 
of components to remove was determined by running the eQTL mapping with 0 to 20 PCs removed 
and selecting the number of components that yielded the largest number of significant eQTLs 
(Benjamini-Hochberg p < 0.05) (Figure S15). This approach is based on the assumption that the 
number of identified eQTLs will increase if the removed PCs are removing unwanted, systematic 
variation (i.e. noise) rather than informative biological variation [87–89]. 
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eQTL mapping 

eQTL mapping was performed by associating gene expression with biallelic SNPs using the R package 
Matrix eQTL v2.1.1 [60]. Before doing the association, genes were filtered on variance so that only 
genes with a gene expression variance above 0.05 were included. SNPs were also filtered on minor 
allele frequency (MAF) and major genotype frequency (MGF); any SNPs with MAF < 0.1 or MGF > 
0.9 were excluded to avoid spurious associations. The first genotype principal component based on 
independent SNPs (see Wang et al. In prep.) was used as a covariate in the linear model used by Matrix 
eQTL to account for the weak signature of population structure. Permutation testing was used to 
determine eQTL significance whereby genotype sample labels were permuted 1000 times and the 
maximum absolute t-statistic from Matrix eQTL was recorded for each gene across all SNPs for each 
permutation. Empirical p-values were calculated with the empPvals function in the qvalue R-package 
[90], and q-values (empirical FDR) were calculated with the qvalue function in the same package. 

When determining the genomic context of eSNPs, there were some cases where introns overlapped 
exons as a result of overlapping gene model being present on the same strand. These 41 eSNPs were 
discarded from the counting. Another type of overlap that was discarded were cases where an eSNP 
overlapped a gene feature, but no sub-feature inside that gene (e.g. UTR, exon or intron). These 1961 
eSNPs were excluded from the counting. Since many of the features overlap (e.g. exon and 
untranslated regions), the priority for counting was untranslated region, exon/intron, 
upstream/downstream and intergenic. 

Co-expression 

The R-package WGCNA [91] was used for constructing a co-expression network. The input gene 
expression values were per-gene genotype means. We chose to use the unsigned network type for this 
study with the motivation that we did not want to discard negative relationships. By looking at this 
from an eQTL perspective, an eSNP can be positively associated with one gene while negatively 
associated with another. There is a relationship between these genes that would be missed if we used 
the signed or the signed-hybrid approaches. Using the unsigned approach, we assure that genes with 
strong negative correlation end up in the same network modules. A soft thresholding power of 5 was 
used to calculate adjacencies. The topological overlap matrix (TOM) was generated using the 
TOMsimilarity function with the signed approach in order to take negative edges into account (see 
[91] for details). In order to identify network modules, hierarchical clustering was applied to the TOM 
dissimilarity matrix (1 – TOM) and the resulting dendrogram was divided into modules using the 
cutreedynamic function. The connectivity of the network was then defined as the adjacency sum for 
each node, i.e. the weights of the edges that are connected to this node. This concept was applied to 
modules as well to obtain measures of intra- and inter-modular connectivity, i.e. the connectivity based 
on edges connecting the gene with other genes inside the same module, and connectivity based on 
edges connecting the gene with genes outside of the module. 

To define the periphery of the network we applied a hard edge-threshold to the network where only 
gene-pairs with an absolute Pearson correlation > 0.22 were linked, which corresponded to the top 
1% most correlated gene pairs. Genes were then classed as peripheral if they  linked to only one other 
gene. 
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Figure S1. Clustering of genotypes. (Left) Heatmap of the sample correlation matrix based on the 500 most variably expressed 
genes. Darker colour indicates higher correlation. The coloured bar represent the populations the genotypes belong to. 
(Right) The two first principal components from a principal component analysis (PCA) based on all genes. Again, colours 
represent the genotype population. The percentages in the axis labels indicate the amount of variance explained by each 
component. 
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Figure S2. Correlations between gene expression principal components (PCs) and environmental variables. The values in each tile 
represent the Pearson correlation between the gene expression PC (x-axis) and environmental variable (y-axis). Small asterisks 
represent a nominal p-value < 0.05 while large asterisks represent Benjamini-Hochberg (BH) adjusted p-values < 0.05. The only 
factor with significant correlations to expression PCs was “Hours to harvest”, which is the number of hours into the sampling 
period that the buds were harvested. It was significantly associated with PC4 (BH-adjusted p = 4.6e-6),  PC7 (BH-adjusted p = 
0.030) and PC2 (BH-adjusted p = 0.033). 
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Figure S3. Distribution of local eSNPs relative to the gene that they are 
associated to. The zero-position represents both the start and the end 
of the gene feature, i.e. intragenic features are not shown. 

Figure S4. Heritability distributions for four non-overlapping sets of genes: genes 
with both local and distant eQTLs, genes with only distant eQTLs, genes with only 
local eQTLs, and genes with no significant eQTLs. 
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Figure S7. Sliding window approach to detect eQTL hotspots. The upper panel shows the number of eSNPs in genomic 
windows of 100 kb for each of the 19 chromosomes. The lower panel shows the number of unique genes that are associated 
to each genomic window (nominal eQTL p-value < 1e-6). 

Figure S8. Gene expression variance plotted against co-expression 
network connectivity. eGenes are indicated by red points. 
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Figure S9. The decay of haplotype homozygosity in the eSNP 
(Potra001809:6322) with the highest |iHS| value. (a) shows the decay of 
haplotypes in single regions near the eSNP (Potra001809:6322) for both 
ancestral and derived alleles. Adjacent haplotypes with the same color 
carry identical genotypes everywhere between the eSNP and the candidate 
site. Haplotypes are no longer plotted beyond the points at which they 
become unique. (b) Extended haplotype homozygosity (EHH) plot for the 
eSNP. EHH of the ancestral allele (blue curve) is much higher than the EHH 
of the derived allele (red curve), suggesting that the haplotypes with 
ancestral allele were the targets of selective sweeps. 
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Figure S10. Heatmap representing the sample clustering based on gene expression values 
after hidden confounder removal. The 500 most variable genes in the original expression 
data were used for calculating the sample correlations (i.e. the same genes as in Figure 
1D). The colour bar represents the population of the samples with the same colour 
scheme as in Figure 1D. The small clusters on the diagonal represents genotype 
replicates. 
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Figure S11. Relationship between gene expression ranks and the number of genotypes 
with detectable expression of the genes. The number of genotypes that a gene was 
expressed in was determined by counting the number of genotypes with non-zero 
expression for each gene. The gene expression ranks were calculated by ranking the 
mean gene expression values where the mean was calculated only considering samples 
with non-zero expression. 

Figure S12. Motivating example for major genotype filtering. In 
this case the SNP is heterozygous in all samples but one, 
resulting in a minor allele frequency close to 0.5, but a major 
genotype frequency close to one. The resulting association 
turns out very significant, but is only supported by a single 
sample. 
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Figure S13. Representative photo of the 
sampled bud flush stage. 
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Figure S14. (A) Box plot distributions of the Julian day of sampling for the SwAsp sub-
populations. (B) The relationship between Julian day of bud flush for the greenhouse 
sampled buds and Julian day of bud flush in the field for the same year (2012). 
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Abstract 

Background: A central aim of biological investigation is to understand how genomes encode 
information controlling emergent, complex phenotypes and the genetic architecture underlying 
natural variation of such traits among individuals. There are still relatively few studies exploring 
the genetic architecture of complex traits in natural populations with no consensus understanding 
of how genetic architecture is linked to the evolutionary history of a trait. Here, we focused on 
natural variation in leaf size and shape in a natural population of European aspen (Populus tremula) 
sampled across the distribution range of Sweden. Leaf morphology traits show no evidence of 
clinal variation of population differentiation, appearing to be selectively neutral. As such they serve 
as a useful contrast to studies performed on highly adaptive traits, such as the timing of autumn 
bud set. 

Results: We assayed leaf size and shape variation in replicated common garden experiments of 
the Swedish Aspen (SwAsp) collection, finding no correlation between leaf shape and a range of 
climatic, geographic and biological traits and no evidence of population differentiation. We utilised 
a collection of genome-wide SNPs to perform a Genome-Wide Association Study (GWAS), 
identifying overlapping sets of SNPs from the replicated gardens/years in order to reduce false 
positives. These results were integrated with RNA-Sequencing data assaying gene expression in 
the SwAsp collection that has previously been used to map expression QTL (eQTL). Using these 
data, we identified SNPs associated to leaf physiognomy phenotypes, to gene expression (eQTL) 
and correlations between phenotype and gene expression levels. 

Conclusions: The genetic architecture underlying natural variation in leaf morphology traits 
within the study population was in agreement with the infinitesimal model, with individual SNPs 
explaining little of the heritable trait variation. There was no evidence of correlation between gene 
expression and the phenotypic traits considered, although overlapping sets of morphological and 
expression associated SNPs were identified. We conclude that variation among genotypes in leaf 
morphology is controlled by the effect of many SNPs, each of small effect, each of which results 
in a small-scale modulation of expression patterns contributing to the control of the leaf 
developmental program. 

Keywords: Leaf shape; RNA-Sequencing; transcriptomics; Populus tremula; association mapping, 
natural variation, candidate gene 
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Introduction 

For many years the accepted dogma was that variation between species, and genetically controlled 
aspects of variation among individuals of the same species, resulted largely from non-synonymous 
changes in the protein coding sequence of genes: Resultant changes in protein structure/function 
then perpetuated a change in phenotype. Our understanding of the causal factors underlying 
natural variation and speciation has been revolutionised during the past decade and, most recently, 
is being further refined by discoveries arising from the application of high throughput sequencing 
approaches. For example, genomics has provided extensive evidence that divergence in regulation 
and expression network structure are key components of both within species variation and 
divergence between species  [1–8]. This has required a change in emphasis from the identification 
of causal polymorphisms within the protein coding regions of genes to that of identifying sequence 
variations that modify gene regulation and expression. The ability to determine whether the source 
of such regulatory diversity derives from polymorphisms lying in cis (local effects) or in trans 
(distant effects) additionally enhances our understanding of the genetic architecture of gene 
expression diversity [4, 9]. 

While reductionist molecular biology approaches have taught us much about the function and role 
of numerous individual genes, we still know relatively little about the mechanisms underlying 
natural variation and how interacting networks of genes result in the emergent properties of 
phenotypes [9]. Complex polymorphic traits are not the result of genes acting independently but 
rather are emergent properties of a polygenic, dynamic system of interactions among genes and 
between genes and the environment [10]. While genetic approaches have provided insight into the 
genetic architecture of complex traits, knowledge of the causal genetic polymorphisms has 
remained limited. For example it is not known if the majority of causative polymorphisms lie in 
protein-coding, promoter, intron or inter-genetic regions of the genome, how often the control of 
polymorphic traits is determined by cis (i.e. proximal) or trans (i.e. distal) effects and how these 
patterns relate to selection and adaptive trait variation. 

Partly driven by the above questions and by the availability of new technologies, the previous 
decade saw an explosion of interest in genome-wide association studies (GWAS), particularly in 
the field of human medical research. Such studies aim to identify causative genetic polymorphisms 
contributing to the control of complex quantitative phenotypes (for example height or obesity). 
Results from the numerous studies performed have, perhaps, been less insightful than hoped [11]. 
For the majority of traits with moderate to high heritability considered to date, potentially causative 
SNPs explain little of the phenotypic diversity that exists and often lack biological interpretation 
[12–14], leading many to ask where the ‘missing heritability’ lies [15]. As a result, attention is 
shifting towards approaches that integrate multiple forms that can both identify functionally 
important SNPs and provide biological context or insight as to their mode of action. These 
approaches also represent a means to minimise wasted effort on false-positives, which can be 
particularly important considering the substantial effort invested in functional validation of 
identified candidates. Integrative approaches include various combination of the relationship 
between SNPs and eQTL, differentially expressed genes and constructed expression network 
structure, phenotypic trait correlations and association mapping or QTL results (for example [16–
20]).  

Systems genetics formalises such integrative approaches as the study of systems biology within a 
population genetics context [9]. As an analogy, GWAS provides a two-dimensional view of a 
system: Adding gene expression data from the same individuals transforms this view into a three-
dimensional one, allowing previously hidden properties to be seen. In contrast to many previous 
systems biology approaches where, for example, gene expression networks are constructed from 
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a diverse set of experimental conditions, systems genetics profiles expression among individuals 
of a population. An expression network is then constructed based on the correlation structure of 
expression variation across the population. In this way, hubs in the network structure represent 
key components determining variation within the population. Two key aspects of the systems 
genetics approach are that it places emphasis on the fact that complex traits are not the result of 
genes acting independently but rather are emergent properties of a dynamic system of interactions 
between genes and the environment and that the link between phenotype, expression and genomic 
variants can provide functional insight when identified variants lie outside of protein coding 
regions [10]. 

As model systems for genetic studies, plants have a number of distinct advantages over animals: 
Clonal propagation results in the ability to precisely calculate heritability, phenotypic plasticity, 
genotype and environment effects and their interaction (GxE) within a single generation [15]. To 
date the plant field has focused largely on candidate gene based association studies. A major 
limitation of such an approach is that only genes for which there is pre-existing knowledge are 
considered. An assumption is also made that those genes are involved in the determination of 
natural variation. Additionally, a functional candidate gene approach is typically combined with a 
screen for SNPs within coding regions. This is counterintuitive as the functional evidence used to 
identify candidate genes is often the presence of phenotypic variation associated with differences 
in gene expression – and expression differences are rarely caused by SNPs within coding regions. 
A substantial risk of such an approach is falsely concluding that a gene does not play a role in 
controlling trait variation simply because no SNPs  within the coding region associate with the 
phenotype of interest. This risk is especially high in species with rapid decay of linkage. 

European aspens have been shown to contain extremely high levels of genetic variation [21–23], 
to have no significant population structure ([24]; Wang et al. 2016 in prep) and to be suitable for 
high-resolution association mapping [25]. P. tremula can also be grown in tissue culture and is 
amenable to genetic transformation, meaning that functional confirmation can be generated in the 
genetic background studied. In this context, variation in leaf shape of European aspen represents 
an excellent model system as we have previously shown that many leaf physiognomy traits have 
high levels of heritable variation [26]. Leaves are the direct energy source sustaining the majority 
of complex life on earth. Humans interact with and recognise plant species largely through the 
shape of their leaves and, as such, leaf shape forms an important component of the relationship 
we share with the living world. Indeed, leaf shape was historically one of the key features used by 
Linnaeus and others to classify and identify species and long-term historical changes in leaf shape 
recorded in  the fossil record provide insight into historical climatic conditions, subsequently 
allowing extrapolation of past trends to future changes in response to climate change. Leaf shape 
varies distinctly both between and, often, among species with some identifiable global trends such 
as the narrowing and more defined serration of leaves toward latitudinal extremes [27]. 

Here, we have taken a systems genetics approach using the Swedish Aspen collection [28] to 
investigate variation in a number of traits associated with leaf shape and size. These traits were 
selected to serve as a contrast to other highly adaptive traits that we have also been investigating 
(Wang et al. 2016 in prep) as leaf shape shows no evidence of clinal variation and has likely not 
been a target of positive selection. We have integrated population-wide genomic resequencing and 
RNA-Sequencing data together with morphological phenotypic traits to explore the genetic 
architecture of leaf shape variation. 
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Results 

Phenotypes 

We sampled mature, pre-formed leaves in the Swedish Aspen (SwAsp) collection at two common 
garden experiments in the north (Sävar, Västerbotten) and south (Ekebo, Skåne) of Sweden in two 
years (2008 and 2011). There was considerable variation in leaf shape represented among the 
SwAsp genotypes (Figure 1A) and we used a digital image analysis method [26] to measure a 
number of traits indicative of leaf physiognomy (Figure 1B). We calculated clonal repeatability as 
an upper-bound estimate of broad sense heritability (H2), which was relatively high for all traits 
and for which shape traits (including circularity and measures of indent size and number) had 
distinctly higher values than those related to size (measures of length, width and area), accounting 
for the bimodal distribution observed in Figure 1C (see supplementary file S1 for details of all 
traits). We calculated QST, which revealed no evidence of population differentiation for any of the 
traits considered (Figure 1D, supplementary file S1). As many of the dimension traits have a high 
degree of redundancy, we performed a dimension reduction using principle component analysis 
(PCA), for which PC1 was related primarily to size variation with PC2 and PC3 relating to 
components of shape (Figure 1E). ANOVA tests comparing traits and PCs in the two 
gardens/years revealed a variable degree of environmental variance (supplementary table S1), with 
size traits and PC1 having a greater variation than shape traits and PCs (consider the F values in 
sheet 1 of supplementary file S1). Although significant GxE was observed for a number of both 
size and shape traits, the percentage of variance explained by GxE (as indicated by F values) was 
considerably smaller for the shape related traits. As such, leaf shape is under tight genetic control 
and is a relatively invariant feature of a genotype. This is confirmed by the higher correlation 
between shape trait values for the two gardens/years than for size related traits (Figure 1F).  

Genome wide association mapping 

We performed a genome wide association (GWA) analysis to identify links between single 
nucleotide polymorphism (SNP) variants and indent width, leaf area, and leaf circularity for all of 
the four datasets. A total of 4.5 million SNPs (detailed in Wang et al. 2016, In prep) were associated 
to the phenotypes separately for each garden and year. After multiple testing correction and 
combining all significant associations from all four datasets, 65 SNPs were significant for indent 
width, 39 for leaf area and no SNPs were significant for circularity at a 5% false discovery rate 
(FDR; Figure 2). The significant SNPs for indent width had a wide range of contexts from coding 
SNPs to non-coding and intergenic SNPs, but judging from their location, many of them are likely 
to be linked. 44 of the 65 indent width SNPs were located within 2 kbp of a total of 15 genes, and 
all but one of the SNPs with a significant association to leaf area were located within 2 kbp of 5 
genes. Neither of these gene sets were enriched for any GO terms. 

To identify a set of the most consistent SNPs in order to minimise false positives, we selected the 
top 1000 SNPs (ranked by adjusted p-value but disregarding significance) for each trait and 
garden/year (figure 2). We refer to these SNPs as phenotypic trait associated SNPs or simply 
pSNPs. The genomic context of pSNPs identified in at least two gardens/years are shown in 
Figure 3 We also identified the set of genes associated with the pSNPs (genes located within 2kb 
of the SNP) present in at least two of the gardens/years (Materials and methods): 684 SNPs were 
associated with 252 genes for circularity (enriched in inorganic anion transport, GO:0015698, p = 
0.005), 715 SNPs with 236 genes for indent width (enriched in hexose metabolic process, 
GO:0019318, p = 0.007), and 66 SNPs with 43 genes for leaf area (enriched in sucrose metabolic 
process, GO:0031324, p = 0.0003).  
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Gene expression 

After filtering gene expression values on variance and adjusting for hidden confounders (Materials 
and methods), correlations were computed between the expression of 22,306 genes and the three 
morphological traits for each garden and year. After correcting for multiple testing, no genes were 
significantly correlated to any of the traits at 5% FDR (Figure 4). We therefore investigated the 
top 1000 genes from each garden/year (ranked by adjusted p-value but disregarding significance) 
and refer to these as expression-phenotype correlated genes or epGenes. Overlaps between the 
epGenes from each garden/year were relatively high (Figure 4). A GO enrichment analysis showed 
that the intersection of genes correlating with circularity was enriched for “ATP biosynthetic 
process” (GO:0006754; 31 genes, p = 0.008), intersecting genes correlating with indent width were 
enriched for “cellular protein localization” (GO:0034613; 7 genes, p = 0.0018), while no significant 
GO terms were found for leaf area. 

Gene set enrichment analysis (GSEA) 

Since no individual genes displayed expression that correlated significantly with any of the 
phenotypes, we employed gene set enrichment analysis (GSEA, [29]) to test whether any sets of 
genes were significantly enriched at the extreme ends of the gene list, i.e. the list of all 22,306 genes 
sorted by correlation to a phenotype (Materials and methods). 

For each of the three phenotypes, we tested two types of gene sets (Tables 1-3 for circularity, 
indent width and leaf area, respectively). Firstly, we tested genes associated with the pSNPs that 
were found in all, or at least two, of the gardens/years (see Venn diagrams in Figure 2). The only 
significant set from this analysis was the genes associated with the 98 pSNPs discovered for 
circularity in all gardens/years (p = 0.027).  Secondly, we tested genes with a common functional 
role (Gene Ontology annotation). Here we found several significant associations including GO 
terms related to amino acid biosynthesis and transport, as well as DNA repair and carbohydrate 
metabolism 

Data integration 

We combined data on pSNPs, epGenes, and eQTLs (referred to as pairs of eSNPs and eGenes, 
see Paper III) to identify genes and genetic variants that were associated with leaf phenotypes. For 
each phenotype, we first intersected genes associated with pSNPs identified in at least two 
gardens/years, epGenes identified in at least two gardens/years and eGenes associated with 
significant eSNPs in the eQTL mapping. This resulted in three genes each for circularity and indent 
width, and none for leaf area. The three genes for circularity were Potra000998g08306, 
Potra001379g11776 and Potra009203g26307, annotated as disease resistance protein, synthase 
mitochondrial F1 complex assembly factor, and CASP-like protein, respectively. The three genes 
associated with indent width were Potra000351g01289, Potra163617g27107 and 
Potra000727g05700, all of which are unannotated. Potra163617g27107 does however have an 
ortholog in Arabidopsis thaliana that is annotated as being part of the mitochondrial outer 
membrane translocase complex (GO:0005742). 

Next, we intersected the GSEA-significant GO categories in Tables 1-3 with the pSNPs and 
eQTLs. This revealed that several functional categories significantly associated to phenotypes 
through expression correlation also contained many eGenes. However, they contained very few 
genes with pSNPs and there was almost no overlap between these pSNPs and eSNPs. 
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Discussion 

For more than a century there has been much unresolved and speculative discussion as to the 
evolutionary significance, if any, of leaf shape per se and of natural variation of leaf shape within 
populations [30, 31]. While global and historical trends in leaf shape have been identified and 
attributed to climatic conditions [27], there remains a rather spectacular paucity of evidence linking 
standing leaf shape variation to aspects of plant fitness [30]. In the present study we identified 
considerable genetic control of leaf physiognomy traits (Figure 1), in particular traits associated 
with leaf shape – indeed these are the highest values we have observed for any of the numerous 
phenotypes we have considered to date, regardless of whether or not those traits have evidence of 
being under positive selection ([32], Wang et al, 2016 in prep). There was considerable observable 
variation in leaf shape both within local populations and within the distribution range of aspen 
across Sweden, with no identified clinal trends or evidence of population differentiation (Figure 1, 
supplementary file S1). Such patterns of variation may indicate that variation in the trait is 
selectively neutral or that balancing selection is acting to maintain within population variation. 
Here, we identified very few significant associations between SNPs and phenotypic traits, with no 
significant associations being identified in more than one garden/year for any of the traits 
considered. Even when identifying overlap without considering significance but taking the top 
1000 SNP associations per garden/year per trait (pSNPs, Figure 2), there was still relatively little 
overlap, although there were greater numbers of SNPs in common among two or more 
gardens/years for the traits with higher H2. Although these overlaps were low, GO over-
representation tests identified significant enrichment of categories for genes located within 2kb of 
the pSNPs, indicating that there was biologically functional meaning to the sets of genes, albeit 
without readily explainable functional interpretation. Taking the total variance explained for the 
sets of overlapping SNPs (data not shown) reveals that very little of the total genetically controlled 
variance was explained by identified SNP associations. If one assumes that SNPs of high effect 
size would have been detected as significant, this result suggests that there remain a very large 
number of SNPs of small effect size that, in combination, control variation in leaf size and shape 
– a finding in support of the infinitesimal model. This is an area where there is little consensus in 
the literature, with various studies reporting genetic architectures for complex traits spanning a 
range from few SNPs of large effect to many SNPs of small effect size. One likely explanation for 
these contrasting results is that genetic architecture contrasts depending on the extent to which a 
trait has been the target of positive selection, with strongly adaptive traits (such as bud flush for 
aspen within Sweden) more likely to be explained by a small number of SNPs of large effect (Wang 
et al. 2016, In prep). The case of leaf physiognomy in aspen appears to be far more similar to that 
of human height, for which there appears to be a vast number of small effect SNPs underlying the 
height variation among individuals within a population. 

For the three traits considered, the greatest proportion of associated SNPs identified in at least 
two gardens/years were located in UTR regions and the fewest in intergenic regions (Figure 3). 
The distributions of the proportion of SNPs within exons, introns and flanking regions were less 
consistent between the three traits, although with so few SNPs considered it is hard to interpret 
whether these differences are meaningful. The presence of the largest proportion of SNPs within 
UTRs is likely indicative of these acting to modify expression, suggesting that gene expression 
variation should be associated with variation in these traits. We utilised a resource profiling gene 
expression from winter buds undergoing induced spring bud flush in controlled conditions in an 
attempt to identify gene expression variation associated with trait variance. As for pSNPs, there 
were relatively few consistent correlations present between gene expression levels and phenotypic 
traits (Figure 4), none of which were significant. Similar to pSNPs, a greater degree of overlap 
among gardens/years was observed for the more heritable traits (circularity and indent width) 
compared to leaf area; when considering the top 1000 expression-phenotype correlated genes 
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(epGenes). In the case of circularity and indent width, significant over-representations for GO 
categories was present, suggesting biologically relevant functional links for these genes. In contrast, 
no such signal was detected for leaf area, which is likely due to the lower heritability and greater 
degree of environmental variability for leaf shape, possibly suggesting that different mechanisms, 
and therefore sets of genes, influenced leaf area at the two gardens and in the two years.  

The power of systems genetics lies in the integration of expression, eQTL and phenotypic GWAS 
results. In our case such integration proved to be of minimal value due to the low number of trait-
SNP and trait-expression associations detected. Of the three genes linked for all data types (overlap 
between genes close to pSNPs, epGenes and eGenes) for circularity and indent width, none of 
these are known to function in the control of leaf shape or to have any role in leaf development. 
However, these do represent our best leads for further downstream investigation. 

The infinitesimal model presents a number of analysis challenges. The first is that it can be 
extremely challenging to identify statistically significant associations between causal SNPs (true 
positives) and phenotypes, especially in cases such as ours where the millions of SNPs considered 
creates something of a multiple testing nightmare. Also, applying methods that employ a one gene 
or one SNP at a time strategy to explain traits will likely prove futile. A more realistic approach is 
to utilise gene set enrichment analysis (GSEA, [29]), where one can identify sets of genes that 
together correlate significantly with a trait, despite there being no significant individual genes. 
Here, we utilised the list of genes sorted by expression correlation to traits to test whether gene 
sets (1) located close to discovered pSNPs (i.e. top 1000 SNPs identified in at least two 
gardens/years) or (2) with a common functional role (i.e. genes annotated with the same Gene 
Ontology category) displayed such properties (Tables 1-3). The former (1) identified only one 
significant association between circularity and the 98 pSNPs discovered for circularity in all 
gardens/years (Figure 2). The latter (2) revealed several functional categories with significant 
associations to traits. Moreover, several of these categories included high numbers of genes with 
associated eQTLs (eGenes). However, the same categories contained very few genes located close 
to phenotypic trait associated pSNPs, and very few of these pSNPs were in turn associated with 
eQTLs (i.e. few pSNPs were also eSNPs). Thus, although we identified some gene sets for which 
expression were significantly associated with traits and that many of these genes also had mapped 
eQTL associations, there was a very low correspondence between gene expression and genome 
sequence driven discoveries. In part, such low correspondence will be due to the fact that each 
SNP affecting gene expression is of small effect size (Paper III) and that expression variation of 
an individual gene contributing to the control of the phenotypic traits also explains only a small 
fraction of the total phenotypic variation. Another important factor relates to the fact that we have 
only a single snapshot measure of gene expression and that an eQTL can only be identified for 
this snapshot: another snapshot measure would be expected to identify additional SNPs associated 
with expression variance. 

It may seem somewhat paradoxical that pSNP association results suggest that gene expression is 
likely to be the primary mechanism driving leaf shape variation (inferred from genomics contexct, 
Figure 3) but that we identified so few correlation links between expression and the traits, and 
furthermore that so few of the pSNPs were eSNPs. However, there are a number of possible 
explanations for this lack of correspondence, some of which are already alluded to above. 
Although the molecular mechanisms that give rise to leaf shape variation remain entirely unknown 
[30], leaf development is a temporal process with many temporally separated components, 
variation in any of which will contribute to variation in final leaf form. As such, a single snapshot 
of gene expression during this developmental program will be insufficient to capture all relevant 
links between gene expression and final leaf form. To overcome this limitation would require a 
time series sampling strategy, with samples being collected at multiple developmentally equivalent 
stages for all individuals in the population and with eQTL mapping being performed for the 
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snapshot measures of expression of all genes at each time point as well as for expression 
trajectories – a strategy that is currently intractable (or at least not fundable). In the current case 
of profiling expression from leaves that are produced and developmentally arrested in winter buds 
there are added complications. It is very likely that the period before bud set comprises an 
important developmental period where much of the pattern formation leading to final leaf shape 
is occurring. However, as genotypes set bud at different times and as climatic and environmental 
conditions vary considerably during the period in which bud set occurs, collecting developmentally 
equivalent samples of all genotypes would be extremely challenging. Before bud set the problem 
is also compounded by the fact that within a single bud the multiple leaves produced will be at 
different developmental stages. As such there would be a very high chance that the averaged 
expression snapshot that would be obtained from extracting RNA from a whole bud would negate 
any meaningful developmental expression signature (the Simpson’s paradox). Even after bud set, 
when all leaves are arrested at an equivalent developmental stage, similar problems exist at the leaf 
level as leaf development also varies spatially, for example with cell production being more prolific 
and continuing for longer at the leaf base than at the tip. Here again, a single sample from an entire 
leaf will potentially mask or negate the ability to associate expression variation to phenotypic traits. 
In both cases, spatially resolved expression profiling, for example using laser capture 
microdissection, would offer a solution although performing such an experiment for replicated 
samples all individuals in a population would be a daunting undertaking and would likely suffer a 
multitude of confounding technical factors. New or improved sampling techniques and expression 
profiling approaches combined with falling costs of generating expression data will help to 
overcome these limitations or to make more comprehensive experimental designs feasible within 
the future, however they will not overcome the fact that the signature of SNP to expression to 
phenotype will be weak and hard to detect for any trait following the infinitesimal model. 

Our results have shown that variation in the shape of pre-formed leaves in European aspen is 
controlled by numerous SNPs each of very small effect. These SNPs were primarily located in 
UTR regions of genes, suggesting that they induce variation in leaf form through modulation of 
gene expression patterns. However, very few of these coincided with eQTL and there was no 
significant correlation detected between a snapshot of gene expression during spring bud flush 
and the phenotypic traits considered. 

Our findings highlight the challenges faced when employing a systems genetics strategy, especially 
for traits controlled according to the infinitesimal model. As such, although the approach holds 
great potential for providing functional insight to the link between SNPs and phenotypic trait 
variation, the biological characteristics of the study system may present severe limitations to this 
potential. 
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Materials and Methods 

Leaf shape phenotyping 

Leaf size and shape parameters were measured in a natural population of Populus tremula, the 
Swedish Aspen (SwAsp) collection, growing in common gardens at Sävar, northern Sweden 
(63.9°N, 20.5°E) and Ekebo, southern Sweden (55.9°N, 13.1°E). The common garden trials 
comprised of natural (wild-growing) aspen genotypes collected in 2003 across ten latitudinal 
degrees, which were cloned and planted in 2004 in a randomised block design in each garden [28]. 
Leaf samples were harvested in Sävar on 14 July 2008 and 28 June 2011 and in Ekebo on 18 July 
2008 and 4 August 2011, when leaves were fully expanded and mature, but prior to bud set and 
before the occurrence of substantial damage due to herbivory or the presence of fungal rust 
infection. Ten undamaged leaves per replicate tree were sampled randomly across the canopy, 
avoiding leaves from the first or last leaf in a leaf cohort originating from a single bud. In total, in 
430, 444, 326 and 393 trees were sampled in Ekebo 2008, Ekebo 2011, Sävar 2008 and Sävar 2011 
respectively, comprising between 1 and 8 (median = 3) clonal replicates. One hundred and thirteen 
genotypes were sampled in both years in Ekebo and in 2011 in Sävar, and 111 genotypes were 
sampled in 2008 in Sävar. Leaves were stored at 4° - 8°C immediately after harvest. Petioles were 
removed at the leaf base and the sample of ten leaves per tree was scanned in colour at 300 dpi 
using with a CanoScan 4400F. A 5x4cm Post-it note was scanned as a scale image. The resulting 
images were analysed using LAMINA [26] to obtain leaf size and shape metrics (see supplementary 
file S2 for a list and descriptions). Median values of the ten leaves per tree were calculated for each 
leaf size and shape metric. Principal components analysis (PCA) was employed using the prcomp 
function within the R programming environment [33] for the size and the shape trait sets separately 
and in combination (see supplementary file S2 for the classification of obtained traits as either size 
or shape related). The first three principal components for leaf shape (PC1, PC2 and PC3) were 
used as unique leaf shape phenotypes and the first principal component for leaf size metrics (PC1) 
was used as a summary phenotype of leaf size. The first three components of the entire data set 
(Size and shape PC1, 2 and 3) were used to summarise all leaf phenotypes into three reduced 
descriptors. The PCA loadings are provided in supplementary file S2. For genome-wide 
association mapping, median values of each leaf shape and size phenotype were calculated for each 
aspen genotype for which there were three or more clonal replicates.  

Statistical	analyses	

All statistical analyses were conducted in R. Phenotypic data were examined for homogeneity of 
variance. No data transformations were required to meet the assumptions of a normal distribution. 
Pearson correlations were used for all phenotypic correlations calculated.  

We calculate clonal repeatability (R) and used this to provide an upper-bound estimate or broad 
sense heritability (H2 – see materials and methods). We refer to this trait as H2 rather than R as this 
probably allows a more intuitive interpretation for readers, however we not that the two are not 
the same (see (Dohm, 2002 for dicussion). Estimates of broad-sense heritability (H2) and their 
95% confidence intervals, including all clonal replicates, was calculated as  

H2 = VG / (VG + VE) 

where VG and VE are genetic and environmental variance components, using the heritability 
function in the R package ‘Heritability’. To estimate population differentiation, QST , the following 
formula was used:  
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QST=Vpop/(Vpop+(2*Vgeno))  

where Vpop is the population and Vgeno is the genotype genetic variance components.  

Genetic correlations between phenotypes were calculated as  

rG(AB) = VG(AB)/ √(VG(A) x VG(B)) 

where rG(AB), the genetic correlation of  phenotype A and phenotype B, was calculated from the 
VG(AB), the genetic covariance in phenotype A and phenotype B, VG(A) and VG(B)  were the genetic 
variances of phenotypes A and B respectively.  

Genetic (clonal) variation for each phenotype between years and common gardens were 
investigated using separate analyses of variance (ANOVA) models where phenotype was the 
dependent variable. Analyses were conducted only on genotypes with three or more replicate trees 
per genotype. To examine common garden effects in the same year, garden, genotype, and their 
interaction were considered independent variables in the following models:  

Phenotype2008 ~ Garden + Genotype + Garden x Genotype  

Phenotype2011 ~ Garden + Genotype + Garden x Genotype  

where  PhenotypeYear indicates that the analysis was conducted on the phenotypic data from one 
year to compare the two gardens. To compare the phenotypic data from the two gardens in one 
year, the phenotypic response for a given garden (Ekebo or Sävar) was partitioned into variance 
of the independent variables year and genotype and their interaction: 

PhenotypeEkebo ~ Year + Genotype + Year x Genotype  

PhenotypeSävar ~ Year + Genotype + Year x Genotype  

where PhenotypeGarden indicates phenotypic data were taken from only one garden in each model. 
ANOVA models were implemented in the aov function in R. All effects were considered 
significant at P<0.05.  

RNA-Sequencing data 

The RNA-Seq data used in this study has been described previously (Paper III). It consists of 219 
samples distributed among 86 distinct genotypes. The same type of gene expression filtering and 
adjustment were used in this paper as in Paper III. Genes were required to have an expression 
variance above 0.05, and the first nine gene expression principal components were regressed out 
from the data. This left 22,306 genes for further analysis. The data has been uploaded to the 
European Nucleotide Archive (ENA) with accession number ERP014886. 

Genome wide association mapping 

A total of 4.5 million SNPs were considered for the GWA, previously described in Wang et al. 
(2016, in prep). A univariate linear mixed model was applied to the data using GEMMA [35] and 
included the first principal component based on independent SNPs as a random effect in order to 
account for population structure (Wang et al. 2016 in prep) as well as the built-in estimation of a 
relatedness matrix. GEMMA produces different statistics for significance, and in this study we 
used p-values based on a likelihood ratio test. These p-values were consequently Benjamini-
Hochberg adjusted for multiple testing for each garden and year separately using the p.adjust 
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function in R. To associate genes with SNPs, the v1.0 Populus tremula annotations from the 
PopGenIE.org web resource were used [36], and any gene within 2 kbp of a SNP were said to be 
associated with that SNP. 

Gene set enrichment analysis 

Gene set enrichment analysis was implemented in R according to [29]. In short, a gene set was 
tested for significant association to a phenotype based on gene expression correlation. The 
expression profile of each of the 22,306 genes were correlated to the phenotype and sorted by 
correlation (from positive to negative values). A running sum was produced from the top of the 
list by adding the correlation to the sum if the gene is part of the gene set and subtracting if it is 
not. The test statistic is then the maximum absolute value of this running sum. This value is also 
used to represent the leading edge of the gene set, i.e. the genes that contribute the most to the 
enrichment. “Geneset %” and “Total %” in Tables 1-3 represents the portion of the data that 
contribute the most to the enrichment (the leading edge subset). A larger value of “Geneset %” 
indicates that a large portion of the genes in the gene set contribute to the enrichment, and a small 
value of “Total %” indicates that the leading-edge subset is tightly clustered at one extreme of the 
correlation distribution. Significance was determined by a permutation strategy where the 
phenotype sample labels were permuted. This process was repeated 1000 times, and the fraction 
of permuted tests that had a higher score than the score from the original data (one-sided test) was 
used as the p-value for the enrichment. The p-values for GSEA based on GO gene sets were not 
adjusted for multiple tests due to the high level of dependence in the data. Therefore these p-
values should be interpreted with care, but can be used as a relative ranking metric of the different 
gene sets. 

Gene Ontology enrichment 

The R-package topGO (http://bioconductor.org/packages/release/bioc/html/topGO.html) 
was used to perform GO enrichment analysis. In all cases the background used for the enrichments 
were the set of expressed genes (22,306 genes), and the classic test was used with the Fisher test 
statistic. In order for a GO term to be considered enriched, the gene set tested had to contain at 
least two genes annotated to that particular term, regardless of p-value. 
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Figures and Tables 

Figure 1 Leaf physiognomy variation in the Swedish Aspen collection. (A.) Natural genetic variation of physiognomic traits 
is apparent in a selection of the SwAsp genotypes. (B.) Leaf size metrics as measured by LAMINA (Bylesjö et al, 2008).  Density 
distribution of (C.) heritability (H2) and (D.) QST values, with independent distributions for Ekebo 2008 (green), Ekebo 2011 
(blue), Sävar 2008 (red) and Sävar 2011 (gold).  Arrows on the H2 distributions indicate the H2 values for the phenotypic 
traits. A = leaf area, I = indent width, and C = circularity. Biplot (E.) of the first two components of principal component 
analysis of all size and shape phenotypes in all years and gardens. Correlation plot (E) showing the positive (blue) or negative 
(red) correlations between selected phenotypes in all years and gardens. Narrower ellipses represented higher correlation 
r values. 
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Figure 2. GWAS results for the three traits in the different gardens and years. The Venn diagrams show the top 1000 
pSNPs based on p-value for each garden and year and how they overlap. The boxplots show the distribution of adjusted p-
values for pSNPs that are found among the top 1000 SNPs in at least two of the gardens/years. The dashed line represents 
5% FDR. 
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Figure 3. Genomic context of pSNPs found in at least two gardens/years (Figure 2) normalised by total feature length. In 
cases where SNPs overlapped several features, they were prioritised in the following way: UTR, exon, intron, flanking, 
intergenic. Exon counts should thus represent coding SNPs. 
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Figure 4. Correlation between gene expression profiles and the three traits for the different gardens and years. The Venn 
diagrams show the top 1000 epGenes based on Pearson correlation for each garden and year and how they overlap. The 
boxplots show the distribution of Benjamini-Hochberg adjusted p-values for correlations of the genes that are found among 
the top 1000 genes in at least two of the gardens/years. The dashed line represents 5% FDR.
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