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Part I: Introduction 

 

 

1. The aims and the content of the thesis 

 

The thesis consists of four independent research papers being concerned with health care evaluations of 

the following diseases: shoulder pain, colorectal cancer, and scoliosis. The main aims of this thesis are:  

 

i) Conduct policy-relevant health economic evaluations for: shoulder pain, colorectal cancer 

(CRC) and scoliosis.  

ii) Develop and validate a general model for colorectal cancer. 

iii) Apply and discuss the three approaches:  cost of illness (COI) analysis, cost minimization 

analysis (CMA) and Markov models. 

iv) Discuss strength and weakness of the approaches used and their applications, the 

generalizability of the results, and policy implications.. 

 

The thesis has two parts, where part I represents the integrative part (introduction) and part II presents 

the four research papers. Part I has four sections. Section 1 presents the aims of the thesis. Section 2 

presents, and critically assesses on a general level, health economic evaluations and relevant approaches 

for organizing and analyzing the data. The main focus is on cost-of-illness analysis, cost-minimization 

analysis and Markov models. The section ends by discussing the application of health economic 

evaluations for policy purposes. Section 3 summarizes and critically assesses the results and the methods 

used in the four papers. Subsection 3.1 summarizes and critically assesses paper by paper, while subsection 

3.2 compares the applications and methods used in the four papers. In subsection 3.3, the problems of 

generalization of results are introduced followed by a discussion on how the specific results from the four 

papers can be generalized and applied to other settings. Section 4 concludes by presenting the 

contributions of the thesis, key conclusions and policy implications.  
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2.  On health economic evaluations 

 

2.1 Types of Health care evaluations 

 

In the health sector, there are many ways to use the available resources to improve public health. Health 

care evaluations can be used for choosing among competing interventions (2). To see how the approaches 

used in the four research papers relate to health care evaluations, I use the taxonomy suggested by 

Drummond et al. (2) which focuses on the following two  characteristics of health care evaluations; (i) 

does the evaluation deal with both inputs and outputs (often called costs and consequences), and (ii) does 

the evaluation compare two or more alternative interventions.  

 
In table 1 below, taken from Drummond et al. (2), the two characteristics mentioned above are combined 

into a table to categorize different health care evaluations. Analyses belonging to cell 1A, 1B and 2 do not 

compare alternative interventions. Drummond et al. (2) denote such evaluations as “descriptions” of the 

costs or the outcome of one single intervention. Cell 1B is called cost descriptions because only costs are 

taken into account and cost of illness studies (COI) belong to this category (2). In cell 2 both the cost and 

the output is described and the analysis is called cost-outcome description analysis (here called COA). In cell 3A 

and 3B, we find evaluations that compare alternative interventions either according to cost or according to 

consequences. Randomized controlled trials are examples of evaluations that belong in cell 3A, since 

alternatives are compared according to their health consequences (efficacy or effectiveness). Cell 3B 

represents evaluations that compare two or more alternatives with respect to costs only.  

 
Drummond et al. (2) is of the opinion that not all cells of table 1 fulfill the requirements for being full 

economic evaluations. According to Drummond et al., only cost-effectiveness analysis (CEA), cost-utility 

analysis (CUA) and cost-benefit analysis (CBA) can be denoted as full economic evaluations comparing 

alternative interventions since they include both costs and consequences (see cell 4). The three types of 

analyses differ with respect to which units outcomes are measured in. CEA measures the consequences as 

physical units, such as a drop in blood pressure, cases detected, or life years saved. This analysis is 

particularly useful if the consequences of the alternatives compared are measured in the same physical 

unit. CUA measures all consequences in a generic health-related unit (“health state preference score” or 

“utility weights”), and is typically based upon individual preferences. The most common measure of 

consequences in CUA is the quality-adjusted life-year (QALY). The use of this approach implies that all 

interventions can be meaningfully compared. CBA measures the consequences of interventions in 

monetary units, based on individual preferences, to make them commensurable with the costs. CBA is 

based on economic welfare theory applying the principle of Potential Pareto improvement (Kaldor-Hicks) 

as a value criterion (3,4,5). A particular intervention is socially desirable (i.e. represents a potential Pareto 

improvement) if the sum of all benefits that follow from an intervention exceed the sum of all costs of the 

same intervention. Such a decision rule does not consider the distributional impact of the intervention. 
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Table 1. Types of Health Care Evaluations;  according to Drummond et al. (2)). 

 

Source: (2) 

 

CEA and CUA are suitable for comparing alternatives and maximize achievement of a defined objective 

within a given budget (1, 2). This is because increments in the relevant budget require assessment of the 

opportunity cost that is likely to fall outside the health care sector (2). If CEA or CUA is used to tell 

whether an alternative is worthwhile or not, we have to make a reference to an external standard like a 

threshold cost-effectiveness ratio (1). 

 
If a relevant threshold is not known, then the decision makers, in addition to evaluating the alternatives 

against each other, can also find out if any of them are worth the costs of the interventions, by using cost-

benefit analysis (CBA) (1). CBA can then also assess whether the health budget should be increased to 

accommodate the new alternative (2).  

 
Cost-minimization analyses (CMA) only include costs since the consequences are assumed to be the same 

across the interventions considered. Drummond et al. (2) do not explicitly locate CMA in any of the cells 

of table 1. However, based on the discussions in Drummond et al. (2) and Brigg et al. (6), it seems that the 

relevant cells are 3B or 4, or both, depending on how the consequences are handled.  

 

In the following I use the concept of Health Care Evaluations about all types of evaluations (analyses) that 

fit into table 1, while I use Health Economic Evaluations” (HEEs) about all health care evaluations that 

No Yes

Examines only 

consequences

Examines only 

costs

No 1A  Partial evaluation   1B 2 Partial evaluation

Cost-outcome descriptionOutcome 

description

Cost 

description

Yes 3A   Partial evaluation   3B 4 Full economic 

evaluation

Cost-effectiveness analysis

Cost-utility analysis

Cost-benefit analysis

Efficacy or 

effectiveness 

evaluation

Cost analysis

Are both cost (inputs) and consequences (outputs) of the 

alternatives examined?

Is there 

compar-

ison

of two 

or more 

alterna-

tives?
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take costs into account (2). Finally, I use Full Economic Evaluations (FEE) about all HEE that 

simultaneously include both consequences and costs. I have also chosen to categorize CMA as a FEE; see 

section 2.2 for the arguments behind this decision. 

 

 

2.2 Consequences, costs and perspectives 

Health economic evaluations may include health effects (health outcomes) and/or costs (inputs) of an 

intervention. Health effects can be measured in physical units such as life years, number of recurrences, 

blood pressure and number of injuries. In addition, health effects can be measured by quality of life 

instruments. One example is a QALY which captures improvements in both quality (morbidity) and 

quantity (mortality) from an intervention (7). To measure the quality element by using direct elicitation 

from participants, the three most common methods are rating scale, time trade-off (TTO) or standard 

gamble (SG) (8, 9). Because these methods can be complex and time consuming, pre-scored multi-

attribute health status classification questionnaires have been developed (9). Examples of questionnaires 

include the EuroQoL Group, 15D, Short Form 6D and the Health Utilities Index (HUI). These 

questionnaires are generic instruments, allowing them to be used for many different health states. Many 

classification systems exist, and some systems have been validated for only certain types of health states, 

such as heart disease or diabetes mellitus (10). The methods chosen can to a large extent influence the 

estimated quality of health outcome (2).  

 
Drummond at al. (2) define costs as the consumption of resources in association with planning, 

implementing and maintaining the intervention. Such costs can be imposed on the patient and the 

patient’s family, on the health care sector, or on society. In addition, health care interventions may also 

reduce future costs (e.g. lower costs of care). Some literature defines such effects as consequences while 

others define them as “saved” costs.  The literature also typically distinguishes between direct costs and 

indirect costs (2, 11-13). The direct costs include resources consumed (costs) or saved (benefits) by the 

intervention (2). Important parts of these costs will often be the time used by physicians, nurses, and other 

providers of health- and non-health service. The indirect costs include production losses or gains due to a 

change in morbidity and mortality rates. 

 
Two approaches used for estimating costs are gross-costing (top-down) and micro-costing (bottom-up) 

(14). Of these, micro-costing is somehow considered as the “golden standard” (12). It spells out the 

production and cost function for the service analyzed. According to Wordsworth et al. (15), the approach 

should be considered for treatment where: i) the cost of the staff or overheads are important, ii) there is 

extensive sharing of staff or facilities between treatments or patient groups, or iii) where health care 

costing systems do not routinely allocate costs to the intervention level. Under these circumstances, the 
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bottom-up approach could increase consistency and transparency and hence comparability of costs. 

However, this approach is relatively costly and time consuming. 

 
A typical process for estimating costs involves three distinct steps (2, 3, 14): i) identifying the relevant 

cost-items, ii) measuring the use of the cost-items (quantities), and iii) placing a value on one unit of these 

items (prices). When identifying, we have to find all relevant cost-items, both inside and outside of the 

health sector, if a social perspective is used. This step can be seen as a study of the production function of 

the intervention (14), and a comprehensive list of cost-items should be prepared so the analysts better can 

decide on what items to include in the next step (3). The choice of using micro- or gross-costing will 

influence the identification process because the micro-costing breaks down the cost-items into small 

components while gross-costing implies larger components (14). In both cases, we need to both measure 

and value the components.  

 
When measuring components in gross-costing, national average figures such as reimbursement rates can be 

used, while for micro-costing we can e.g. break down a surgery to the use of equipment, medicine, and 

hours per surgeon or nurse. An appropriate time horizon has to be used to cover all relevant costs (3). 

Data from local settings can be used if the aim is to support a local decision, while national registry data 

may be more appropriate for national health policy. One should put most effort into collecting precise 

data for parameters with the greatest impact on the final results. Possible sources of information include 

prospective studies (like randomized controlled trials, pragmatic trials, and observational study), registries, 

international scientific publications, and expert opinions. For a more detailed cost study, special patient 

surveys or patient diaries can be used (14).  

 
After measuring the cost components we need to value the cost-items in monetary terms. Ideally in an 

economic perspective, the costing should be based on the principle of opportunity cost, which in our context 

means the value of the foregone benefits of using those resources (either used or lost due to illness) in the 

best, alternative way (13, 14). However, as the estimation of opportunity cost of every resource used 

would be very demanding and time consuming, in practice approximations are used.  

 
Some of the cost-items can be valued in competitive markets like some types of transportation services, 

cars, fuel, computers and food. The market price for these items can be good proxies for the opportunity 

costs. Since many of the resources used in and produced more exclusively for the health sector are not 

priced in a transparent and competitive markets (14), the analysts often have to value these items in 

separate cost analyses.    

 

One way to cost productivity losses is to apply the human capital method (HCM) (1), which is an example of 

using the market price as a proxy. Here the value of employment for society is set equal to the gross wage 

of a worker (the marginal productivity). By using this approach, the costs of leisure time and work time 

can be estimated. For patients outside the labor market, the "replacement value approach" can be used, 
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which for example means that the housewife’s production is valued by the corresponding value of such 

work in the market. Alternatively, based on the “opportunity cost approach”, the value of unpaid work is 

assumed to be at least as much as the net wage rate that the same person would attain in the market place.  

 
Informal care, i.e. care provided by informal caregivers such as patient’s family, friends, acquaintances or 

neighbors, can also be estimated by the replacement value approach or by using opportunity cost (1, 12). 

 
An alternative approach to HCM for measuring the value of work time is the friction method (FM)(16, 17), 

which focuses mainly on the valuation of lost time from paid work caused by illness (18). The developer 

(17) of the method argued that HCM is based on unrealistic assumptions about wage flexibility and labor 

markets clearing. Instead, there will exist a pool of unemployed people which can replace the sick person, 

and there will only be a loss of productivity during a “friction” period. HCM estimates are often many 

times higher than the estimates obtained from the FM (17, 18). 

 
The inclusion of some types of cost in economic evaluations is being discussed, e.g. productivity losses 

caused by sick leave and morbidity-related reduced productivity during work hours (13, 19, 20). Another 

question is whether non-related health care costs should be included (16, 21). If evaluating a treatment 

that saves patients from cancer death, should we then only include the cost of the cancer treatment or 

should we also include the cost of other non-cancer-related care in the health sector (21)?  

 

The choice of which costs to include will also depends on the perspective taken. Different decision makers 

care about different interests, such as the interests of a certain hospital, the health care sector, the patient 

and the patient’s relatives, the employer, or the whole society. Some evaluations choose to include the 

interest of the health care sector and the patient, while other evaluations may choose to include the 

interest of the whole society. The choice of perspective will have an impact on the value of an 

intervention (e.g. cost-effect ratios) and might change the ranking of competing projects. Because the 

choice of which costs to include can be important to the conclusion about cost-effectiveness, the decision 

maker could participate in the process of choosing which costs to include, or at least ensure that they 

understand which potentially important costs are excluded.  For some evaluations, the process of deciding 

which costs to include is not only based on sound principles, but rather on which costs are possible to 

estimate within the time and resources available. 
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2.3 Approaches for organizing and analyzing data. 

The techniques for organizing and analyzing the data for health economic evaluations can be divided into 

two categories: i) evaluations based on patient-level data, and ii) decision-analytic modelling evaluations (9, 

22). In the presentation below, the decision-analytic modelling is emphasized. 

 

2.3.1 Patient level data 

Evaluations using patient-level data are often based on a randomized controlled trial (RCT), where the 

researcher asks cost-related questions about the use of time, the use of services from the health sector and 

transportation expenses, and estimates the health effect of the relevant intervention (2, 9, 23). RCTs 

continue to provide an important source of data for HEEs, but they have several potential  

limitations/shortcomings such as short-term follow-up, partial nature of the comparisons undertaken 

(restricted number of alternative interventions), use of intermediate health outcomes, and unrepresentative 

patients (often without co morbidity etc), clinicians and locations (24). 

 

2.3.2 Decision analytic modelling  

Decision-analytic modelling is based on statistical decision theory and shares common theoretical origins 

with both expected utility theory and Bayesian statistics (2). Decision analytical modelling can be defined 

as a systematic approach to decision making under uncertainty (25). With its set of methods, it can satisfy 

the following objectives of any economic evaluations (2): (i) structure reflecting the possible prognosis and 

the effects of the interventions evaluated, (ii) by an analytic framework the evidence relevant to the study 

can be brought to bear, (iii) provide an evaluation by translating the evidence into estimates of cost and 

effects of the relevant alternatives, and identify the best alternative by using the appropriate decision rule 

for the relevant HEEs (f ex CEA, CUA and CBA), (iv) facilitate an assessment of uncertainty and variability; 

and finally (v) through uncertainty analysis assess priorities for future research.        

      
Decision-analytical modelling is, as mentioned above, closely associated with Bayesian statistics. The 

Bayesian and frequentistic approaches are two competing philosophies of statistics (26). The frequentists 

are the dominant group, but the Bayesian approach has received increased attention within health 

evaluations. The frequentists represent classical statistics, while the Bayesian approach holds that 

unknown properties of the population have probability distributions about which we can have subjective 

beliefs. According to the Bayesian approach, to estimate the parameter value and its distribution for the 

model (and the Probability Sensitivity Analysis (PSA)), we can merge our own newly collected data 

(likelihood function) with existing information or beliefs that we have about the parameter (prior distributions). 

This strategy will generate a parameter value and a probability distribution (posterior distribution) that we can 

use in our model (27). The likelihood function and the prior distributions can be weighted according to 

their credibility. In this way, the Bayesian approach helps us to merge all we know about a parameter, and 
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avoid using only the most recently collected data. The approach also has tractable properties for the 

decision maker like estimating the probability that one intervention is better than another, rather than 

using hypothesis testing (27).  

 
One of the choices that we have to make when conducting decision analytic modelling, is to choose the 

appropriate approach for modelling the prognosis for the disease we study (28-32). Modelling techniques 

comprise; (i) decision trees, (ii) Markov models, (iii) discrete-event simulation, and (iv) other approaches 

(25, 33). In this thesis the main focus is on Markov models. 

 

2.3.2.1 Markov models 

The role of the Markov model in health economic evaluation is to provide an analytical structure that 

represents key elements of a particular disease (34) which subsequently can be used in health care 

evaluations such as COIs and FEEs. The Markov models can be split into cohort models and patient-level 

simulation models (25). Each approach has different advantages and disadvantages which can affect the 

results in different ways. In this thesis, I will focus on the Markov model based on a cohort. Compared to 

decision trees, the advantages of the Markov model include the explicitly estimated timeline and the ease 

of handling diseases where the patient may relapse to the same health state many times. Compared to the 

patient-level model, it is easier to de-bug the cohort model, and the simulation can be done faster (22). 

This is particularly important when conducting PSA (25). Briggs et al. (25) argue that for some evaluations 

the patient-level simulation can give a more detailed picture of reality, but this comes at the expense  of 

increased data requirements and computational burden.   

 
The principal elements of the model: The Markov model includes some principal elements (1, 22, 25, 34). The 

model has a set of mutually exclusive and collectively exhaustive health states, and the person is always 

only in one of the finite number of possible states in a given period of time. The person stays in a 

particular health state for a certain time period called the Markov cycle length (e.g. weeks, months or 

years), and move from state to state according to defined probabilities known as transition probabilities. A 

person can either move to another state, or to the same state for another period; and move only once per 

cycle. The transition probabilities can either be time-dependent, or constant over time. A person only 

stays for one period in temporary states, and never exit absorbing states (typically the death state). Each 

state can have an assigned cost and utility associated with staying in that particular state. An important 

model assumption is the so called Markovian assumption (34). This means that the transition probability 

only depends on the current health state, thus ignoring in which state the person has been earlier. Thus, 

the individual state has no “memory” of the natural history of the disease.      
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Estimating survival, utility and costs: To estimate survival time we estimate the average number of cycles (the 

amount of time) spent in each state where the persons are alive, and get: 

 

were ts is the time spent in state s, and n is the number of health states. Often, the quality of survival is 

important. Then we can associate each state with a quality factor representing the quality of life in the 

particular state relative to perfect health attaining the value 1 (34). This can be estimated by:  

 

where us is the utility in health state s (34). Expected costs are estimated by using the following formula:   

 

where cs is the cost in health state s.  

 
Transition probabilities: The transition probabilities have to be specified. Given n number of health states, 

and letting aij represent the probability that a person will move (transit) from state i to state j within one 

particular cycle, we get the n x n matrix A = aij for all the transition probabilities. By definition, 

 

 ∑ 𝑎𝑖𝑗 = 1.   

 

Transition probabilities can be derived from data in the literature, from primary data, or from registers. 

Some of the data are available from published papers such as the probability of a patient getting a certain 

treatment (e.g. the probability of prescribing adjuvant chemotherapy). 

 
Running the Markov model: There are three methods for running/calculating the Markov model (8): (i) 

Fundamental matrix solution, (ii) Cohort simulation (from now on called cohort based Markov model), and 

(iii) Monte Carlo simulation (25). In the latter we randomly select people from a cohort, and each of them 

transits through the model at a time. In contrast, the cohort simulation simultaneously tracks the whole 

cohort through the model. The Markov model can also be solved by using matrix calculations (35) if the 

transition probabilities are constant throughout all cycles (8). If they instead are changing, we can conduct 

cohort simulations by for example using a spreadsheet and produce a Markov trace to show how the 

whole cohort moves through the model (8). In this thesis, I focus on cohort simulations (Cohort based 

Markov models). 
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As already mentioned, one important limitation of the cohort based Markov models is the Markovian 

assumption. The problem of no “memory” of the natural history can be solved by building time-

dependency into the model. There are two kinds of time dependency. Transition probabilities can vary 

according to the time the person has been (i) in the model and (ii) in a particular state (25). The former 

imply that one or more transition probabilities changes as the cohort ages. These can be built into the 

model by changing them as the cohort ages. If e.g. cancer is the disease, both age-dependent changes in 

background mortality, recurrence rate and cancer related mortality could be relevant to build into the 

model. The second kind of time dependency can often also be important to build into the model. For 

example, both the recurrence rate and the cancer related mortality can change with the time elapsed since 

the first year of cancer treatment. This can be handled by using tunnel states, which means a sequence of 

states that is linked together so that persons in the tunnel are only coming into a state from the former 

state in the tunnel. This secures that the model can account for how long time the person has been in the 

state that the tunnel represent. Then the model can both let the transition probabilities, costs, and QALY 

vary with time since the person has been in a particular health state (e.g. the state when the tumor was 

removed by surgery). To handle the changes in transition probabilities by age and by elapsed time since a 

particular health state, one possibility is to combine the use of tunnel state and 3-dimensional data 

matrixes, as done in Joranger at al. (36).  

 
Another limitation of cohort based Markov models is that each patient undergoes only one state transition 

during a single cycle. In the model we can count the membership in the different states either in the start 

or in the end of each cycle, while in reality people transit continuously through each cycle. To correct for 

this we must typically perform half-cycle corrections for survival time, QALYs and costs. In some 

analyses the costs have already been corrected as part of the cost estimation of the sub-models. The 

analysts have to make choices both with respect to using half-cycle-correction or not, and between 

different ways of correcting (8, 37, 38). 

 

 

2.4 Uncertainty in health economic evaluations 
 

Health economic evaluations are often comprehensive and based on a range of elements that contribute 

to different types of uncertainty. Thus, it is important in health economic evaluations to analyze and 

handle the uncertainty.   

    

2.4.1 Definition of uncertainty  
 

The sources of uncertainty have been categorized in many different ways (2, 3, 8, 39-44), and there are no 

common way to categorize them (39). Here, I have chosen to categorize the sources of uncertainty for 

evaluations (i.e., stochastic analysis) in a way well known from the health economic literature (2, 43), first 
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developed by Briggs et al. (44). For patient-level data the following categories are used: methodological 

uncertainty, sampling variation, extrapolation and generalizability/transferability.  

 
For uncertainty related to decision-analytic modelling studies, I distinguish between the following sources 

of uncertainty (2, 43): (i) Methodological uncertainty, (ii) Parameter uncertainty, (iii) Modelling uncertainty 

(including: structure- and process uncertainty), and (iv) Generalizability/transferability. The same  

categorization is also in the Norwegian guidelines for preparing model based HEEs in the health sector 

(20, 45).   

 
Methodological uncertainty is the uncertainty related to the method used to estimate the parameters for the 

health effect, resource use, unit cost, etc. Which methodological assumptions to choose are often 

discussed among experts, and this brings uncertainty to the results from HEEs. Further, the HEEs are 

based on data sets and a set of methodological choices, which raise the following questions: for which 

group of people is this evaluation relevant, or to which group of people can this evaluation be generalized? 

This process of generalization will always generate some level of uncertainty for the decision maker.   

 
For the model-based evaluation, parameter uncertainty is the uncertainty related to the estimation of the 

parameters that measure health effects, resource use, unit costs, quality of life year (QALY) estimates, etc. 

This uncertainty is partially based on the sample variation, which is produced by the natural variation 

across the respondents, given the statistical method used, that can be described by standard errors, p-

values or confidence intervals.  

 
Modelling uncertainty is related to the uncertainty produced by the model structure and the modelling 

process. For a Markov model, model structure can e.g. be the number of health states and the path that the 

patients can follow between those states, allowing for time dependency or not, the length of a cycle, and 

the time horizon of the model. The distinction between methodological and structural uncertainty appears 

to be unclear, and some authors merge these two sources under the term structural uncertainty for model-

based evaluations (11). Modelling process uncertainty occurs as a result of the many choices made by the 

particular analyst or team of analysts (3). For the user of the evaluations, these choices contribute to the 

uncertainty.  

 

2.4.2    How to analyze and handle uncertainty  

 
Uncertainty related to decision analytical modelling will be emphasized because most of my work in this 

thesis is concerned with such models. The theoretical framework for handling uncertainty in this kind of 

modelling is closely related to the theoretical foundation of decision analytical modelling (see section 

2.3.2).   
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For analyzing uncertainty, we can both use deterministic and probabilistic sensitivity analysis (DSA and 

PSA, respectively). Both are usually based on a base case version of the model in comparison with an 

alternative treatment. The base case model builds upon the assumptions and the parameters that the 

analysts consider to be the most trustworthy. DSA and PSA will then estimate the difference between the 

base case estimate (result), and the estimates generated from varying some of the model elements 

(assumptions, structure, and parameter values).    

 
Deterministic sensitivity analyses (DSA) generate one expected value from a simulation, while probabilistic 

sensitivity analyses (PSAs), since based upon inputs with stochastic properties, generate a probability 

distribution of possible values. DSA can be classified as (46): i) one-way SA, ii) multi-way SA (including 

scenario analysis and best/worst case analysis), and iii) threshold analysis (see table 2). One-way SA is the 

simplest method for performing a SA.  Here we change one element in the base case model, and calculate 

how the result changes. Then we change this element back to the base case situation, and change another 

element to determine how this changes the result, and then do the same for all the assumed uncertain 

elements, one by one. We can then identify to which elements the model results are most sensitive when 

changing them, and by how much and in what direction each element changes the model results.  

    

Table 2. Types of SA for analyzing the different types of uncertainties (40, 43, 44). 

Type of uncertainty Type of sensitivity analysis (SA) 

Methodological Deterministic SA: One- and multi-way SA 
Probabilistic SA: Scenarios 

Parameter uncertainty Deterministic SA: One-way, multi-way (incl. scenario and best/worst case), 
threshold and analysis of extremes  
Probabilistic SA: All or a selection of parameters simultaneously 

Modelling uncertainty 
Structural 

 
 
   Process 

 
Deterministic SA: One- and multi-way  
Probabilistic SA: Scenarios  
 
No obvious methods 

Generalizability/ 
transferability 

Deterministic SA: One-way, multi-way, threshold 
Probabilistic SA: Scenarios 

Modified from: Briggs (43). 

 

When interested in changing several model elements at the same time, we use a multi-way SA 

(often named a scenario analysis). Another type of multi-way analysis is the best/worst case analysis, in 

which we change all uncertain elements in the direction that generates the best/worst possible 

result. Such an approach is particularly interesting for risk adverse decision makers. For uncertain 

parameters, we are often interested in knowing at which level of the parameter the result changes 

from a gain to a loss. In that case; a threshold analysis can be used.  

 
One important advantage of DSA is that such an analysis is simple to understand, and typically 

easy to implement. However, there are also a number of potential problems (40): (i) The estimate 
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of the expected value will be biased in nonlinear models. (ii) It is difficult to decide what can be 

considered to be an “extreme but plausible” value for some or all parameters when not knowing 

the distribution of the parameters. (iii) Furthermore, it is also difficult to know whether the 

parameter threshold value is likely or extremely unlikely when not knowing the distribution of the 

parameters. The use of PSA is one way to handle the problems that arise from using DSA.  

 
Probabilistic sensitivity analysis (PSA): The principle of a PSA is rather intuitive. Each parameter is assigned a 

probability distribution. From each of these distributions, simultaneously drawn values are entered into 

the model (8) and the results are then computed. This process is repeated many times (often 10 000 – 100 

000 times) to generate a large number of results that themselves constitute a probability distribution for 

the overall result. Monte Carlo simulations are often used and this type of simulation samples from the 

distributions at random. From the distribution of the result, we can estimate the expected value, the 

credibility interval, and the probability that each evaluated alternative is cost effective. These simulations 

can also be used to calculate the maximum value of additional evidence (25, 40).       

 
Because using parameter distributions, PSAs are often criticized for adding another layer of uncertainty 

that should also be subjected to sensitivity analysis. Briggs et al, however, argue that this is not necessary 

(25). The same distributions that are used in PSAs are also used to estimate parameters, and there are 

often a small number of candidates for the distributions for each type of parameter (25).  

 
Another criticism of PSAs is the assumption of independence between parameters since some of the 

parameter values could, at least to some degree, be correlated (25). It is possible to build correlations into 

PSAs, but we often lack the necessary information concerning such correlations. Performing PSAs can be 

time consuming, since, for each parameter, a distribution must be defined, important properties must be 

estimated, and values must be programmed into the simulation model. Further, it is more time consuming 

to run the estimations for PSAs than for DSA, particularly so for large models. Therefore, in practical 

modelling, we often observe that the comprehensive Markov model with many health states and related 

cost models are not constructed as a PSA (31).     

 
Handling of methodological and structural uncertainties in PSA: Gray et al. (1) argue that “Structural uncertainty is 

an under-researched area of uncertainty, but may contribute to even greater uncertainty than parameter 

uncertainty”. To handle methodological and structural uncertainties within the framework of a PSA, three 

methods are proposed: (i) probabilistic scenarios, (ii) model averaging, and (iii) parameterization. 

 
Probabilistic scenarios: When we are performing a PSA, we typically let all parameters change 

simultaneously while other elements (method and structure) remain unchanged. If so, the result of the 

PSA is based on the specific assumptions about method and structure, as if there was no uncertainty 

about these elements. However, we are often uncertain about these judgments. We should then change 
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the relevant method or structure and perform a new PSA simulation for each of the alternative 

assumptions or combinations of assumptions (40). By using such scenarios, the analysts can externalize 

the uncertainty related to these assumptions and remove the uncertainty from the evaluation by simulating 

and presenting the scenarios, leaving it to the decision maker to decide which scenario is the most 

credible. This could be a good solution if the decision maker is able to assess the credibility of the  

different scenarios. If not, it is probably better that the analysts handle such an uncertainty as a part of the 

analysis. For this, model averaging or parameterization can be used.   

 
Model (or scenario) averaging: When performing model averaging, we do the following: (i) evolve the 

relevant alternative scenarios (as for probabilistic scenarios) and use a PSA to simulate the costs and 

effects of these scenarios, (ii) weight these costs and effects according to the assumed credibility of each 

scenario, and (iii) based on the distributions of the costs and the effects of the scenarios and the 

corresponding weights, estimate the new result and the new distributions for the total costs and effects 

(40). This new distribution is the weighted average of all of the relevant scenarios and provides the overall 

decision uncertainty and the consequences of this uncertainty. Parametric uncertainty, methodological 

uncertainty, and structural uncertainty can be included in the result. For larger models, only a certain 

portion of the relevant scenarios can be included. Thus, the excluded scenarios generate some undefined 

uncertainty. This problem can be easier to handle by using parameterization.  

 
Parameterization: According to Claxton, nearly all cases of structural and methodological uncertainties in 

models can be handled as a missing parameter or an uncertain parameter (40). Such an approach implies 

that scenarios are special cases of a common “meta-model” where the missing parameters are taken as 

extreme values. One example is the situation of having two different data sources (i.e., A and B) for the 

recurrence of colorectal cancer after resection. Then, for example, we can (i) use A and neglect B or (ii) 

use B and neglect A. For both choices, we can think of this as setting a weighting parameter to some 

extreme value. Either A gets all the weight or B gets all the weight. However, if both data sources were 

reasonably reliable, an alternative could be to include both data sources in the model. This approach could 

be achieved by including a parameter that indicates the weight given to the two data sources, based on the 

degree to which those data are relevant and biased. In this way, we avoid working with a large number of 

scenarios, as could easily occur when using model averaging.  

 
One of the main challenges of implementing model averaging or parameterization is the question of how 

to find the values and distributions for the wages or the parameters. This question is discussed in Bojke et 

al. (47), Claxton (40) and Jackson et al. (48).  
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2.5 CEA, COI and CMA 

In this section, I will focus on COI and CMA since these are the main types of health economic 

evaluations used in the four research papers. However, some attention is also given to CEA to put COI 

and CMA into a broader perspective, and a kind of CEA is performed as part of paper III.  

 

2.5.1 Cost-effectiveness analysis (CEA) 

For the CEA we calculate both the costs and the health effects of a particular intervention and of one or 

more alternatives (the comparator). Thereafter, we calculate the differences in costs between the two 

options (ΔCost) and the difference in health effects between the two options (Δeffect). Finally, we 

calculate the ratio of the two differences (the cost difference and the effect difference), which provides us 

with the incremental cost-effectiveness ratio (ICER). The formulae for ICER is presented below (see  

equation (1)): 

 

 
 

The ICER can be located in and assessed in a cost-effectiveness plane.  By using a bootstrap analysis, 

given a patient-level analysis (1, 9, 43), or by using a Monte Carlo simulation given a decision analytical 

modeling (25), a scatter-plot of points can be produced in the cost-effectiveness plane. This again can be 

used for making a cost-effectiveness acceptability curve (CEAC)(1, 43). By building upon Bayesian 

statistical methods the CEAC can be interpreted as the probability that an intervention is more cost-

effective than its comparator. The CEAC can be said to represent the decision uncertainty in the CEA (2).  

 
An alternative to the ICER is the concept of “net monetary benefit” (NMB) presented by Drummond et 

al. (2), Briggs et al. (25) and Glick et al. (9). NMB is also being recommended in the Norwegian guideline 

for priority setting (20) as one way of presenting the results from health economic evaluations. NMB is a 

simple re-arrangement of the cost-effectiveness decision rule: If Cost and Effect still reflects the costs and 

effects associated with each of the two options and RT denote a particular threshold value (the maximum 

willingness to pay for a unit of Effect), then the intervention considered is deemed cost-effective if 

ΔC/ΔE < RT. Rearranging the same inequality yields ΔE•RT – ΔC > 0 , where ΔE•RT – ΔC = NMB. An 

intervention should be adopted if NMB > 0. 

 
This decision rule is entirely equivalent to the standard rule that follows from using the ICER (25), but it 

has some advantages(1). First, we do not need to worry about equivocal interpretations of positive or 

negative ICERs, and second, using the linear expression of NMB, the sampling distribution will be much 

closer to a normal distribution than for the ICER (1). The ICER has the problem of approaching infinity 

if ΔE approaches zero. 
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2.5.2 Cost of illness analysis (COI) 

The Cost of illness (COI) analysis focuses only on costs. However, the cost studies are not analyzing the 

cost of an intervention, but the costs associated with an illness (disease). Thus, the main aim of the COI 

analysis is to measure the economic burden of illness to the society (12, 13). According to Drummond et 

al. (2), identification of the costs and their measurement in monetary units is similar across most health 

economic evaluations, so all costing methods discussed in section 2.2 are also relevant for COI analyses. 

The analysis represents the earliest type of health economic evaluations (12), and is currently a standard 

analysis used by organizations like the World Bank (12) and the US National Institute of Health (49).  

 
Some of the most important choices we have to make when doing COI analyses are (12, 13, 49): (i) the 

epidemiological data used (incidence versus prevalence approach), (ii) whether using a retrospective versus 

a prospective study for data collection, (iii) what cost components are included, and (iv) what methods to 

use when estimating the economic costs. An incidence study refers to the new number of cases arising 

during a predefined period of time, while a prevalence study refers to the total number of cases that exists 

in a defined period of time (for example 6 months). The prevalence approach generally gives higher costs 

of illness than the incidence approach. By using a prospective instead of retrospective study design, the 

analysts can better design the data collection according to the data needed (12). However, the prospective 

design can for some diseases take a  long time and be more costly (12). 

 
There has been an extensive debate about the COI analysis (11-13, 19, 49-53). Shiell et al. (19) accentuate 

some of the important objections against the approach. These are: 

(i) The COI analysis rests on an intuitive economic logic that equates the cost of illness with the benefits 

of treatment, which implies that the treatment removes all illness and its consequences. 

(ii)  They questioned the use of HCM for estimating the amount that should be spent to save lives, and 

argue that it will lead to a bias towards those diseases which affect white, middle-class males in 

employment. They put forward loss of life years or quality-adjusted life years as possibly more relevant 

measures (19). Even if HCM is used in a more limited way (e.g. productivity loss) to estimate the 

economic impact of disease, they argue that the methods have shortcomings – e.g. that a given level of 

sickness-absenteeism would not end with the expected reduced production assumed for the HCM if the 

sick was easily replaced with labor outside the labor market. Further, Shiell et al. (19) doubt the existence 

of perfect labor markets, which is important to the assumption that labor costs equals the productivity. 

(iii) The use of COI analysis has embedded circularity. The COI analyses could estimate illnesses that 

already receive large resources, which then will be more costly than under-prioritized illnesses. If the COI 

analyses are used for prioritizing within the health sector, this can lead to circularity. 
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COI analyses are only focusing on estimating the cost of illness, and authors have argued that COI 

analyses can contribute directly or indirectly to better health related decisions in the following ways:  

 

(i) Information of the costs of a disease can help policymakers to decide which diseases need to 

be addressed (12, 54). While COI can be used as a first help to the policymakers to see which 

diseases need to be addressed (50), the CMA, CEA, CUA and CBA can be used for analyzing 

which intervention to implement based on cost-effectiveness.  

(ii) Estimates of the cost of illness are produced and can be used in CEAs, CUAs and CBAs (13). 

This is a practice used for some health economic evaluations of colorectal cancer screening 

(55-57) and result from both models (36, 58) and “model-free” (59) approaches are used to 

estimate cost of illness.  

(iii) COI analyses can show the financial impact a disease has on the heath sector. 

(iv)  COI analyses were the first economic evaluation approaches used in the health field (12), and 

much of the costing methods developed have been adopted in CMAs, CEAs, CUAs and 

CBAs (1-3, 14). Since most of the methods used in COI analyses, including the HCM, are 

also used in economic evaluation more generally, critique of the methods of costing in COI 

analyses will often also be a critique of the costing methods of CMA, CEA, CUA and CBA, 

and vice versa. Not only total cost but also intermediate costs estimated in COI analyses are 

of potential interest for other evaluations, and therefore should be reported if possible with 

confidence or credibility interval, so they could be use in other deterministic or probabilistic 

analyses.  

 

2.5.3 Cost-minimization analysis (CMA) 

CMA is a health care evaluation for comparing alternative interventions to find out which one is the most 

cost-effective. Because of the assumption that the health outcomes of the compared interventions do not 

significantly differ, we only need to be concerned with costs, and the most cost-effective alternative 

follows directly from choosing the option with the lowest costs (1). 

 
CMAs are sometimes used when a prospective economic evaluation is being conducted alongside a 

clinical trial that fails to find any significant difference in the primary clinical outcome (1). However, as 

Briggs and O’Brian (6) argue, the failure to find a difference in a study designed and powered to test the 

hypothesis that the health outcome differ between two alternative intervention, cannot be interpreted as 

evidence of no difference. As Altman (60) stated “absence of evidence is not evidence of absence”. 

Demonstrating equivalence in health outcomes (non-inferiority design), typically requires a much larger 

sample size than when testing for differences, which is the most common in RCTs. 

 
Briggs and O’Brian also argue that the focus of the analysts should be on the joint density of the cost and 

effect difference, the uncertainty surrounding the ICER, and the presentation of the related cost-
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effectiveness acceptability curves. To attain this, they argue that the uncertainty surrounding the difference 

between the health outcomes has to be included in the evaluation. 

 
According to Briggs and O’Brian (6) it is seldom that CMA can be used as a “full” economic evaluation, 

and, most likely, for the same reason, Drummond et al. (2) did not explicitly locate CMA in cell 4 of table 

1 (full economic evaluations). However, Drummond et al. did not place the CMA in another cell either. 

The problem with how to interpret the CMA also becomes apparent as they placed CMA in cell 4 (“full 

economic evaluation”) in the previous edition (second edition) (61) of the book mentioned above (2).  

 
Briggs and O’Brians (6) first argument above raises two questions: i) how sure should we be about "no 

difference" between the health outcomes, and ii) how can we determine this. They argue that by using 

sufficiently powered randomized controlled trials (RCT) and statistical tests, one can determine if the 

health outcomes of the interventions are sufficiently similar. However, is this sufficient? What if possible 

methodological limitations can cause bias for the randomized controlled trial (RCT)? For some RCTs, this 

uncertainty can be marginal, while for others it can be quite important. The importance of this uncertainty 

can be assessed by experts within the field, and can in principle be added to the statistical uncertainty 

(parameter uncertainty) to determine the total uncertainty.  

 
Further, what if there exist a lot of relevant RCTs but these are too heterogeneous to be summarized in a 

meta-analysis? Consequently, the health outcomes have to be assessed by experts. Drummond et al. (2) 

refer to Briggs and O’Brian arguments (6), as well as argue in accordance with the need of the opinions of 

experts, and write that “The only possible application of CMA is in situations where a prior view has been 

taken, based on previous research or professional opinion, that the two options are equivalent in terms of 

effectiveness”. They add that one might question the basis on which this professional view has been 

formed. I will argue that this situation is very similar to situations we are often experiencing, implicit or 

explicit, when performing health economic evaluations. Analysts have to use previous research and their 

professional opinions to decide on (i) which methods to use during data collection and for estimation of 

unit costs (for example using HCM or friction methods for estimating the cost of sick leave), and (ii) 

which model structure to implement if a simulation model is used (for example choose to use a Markov 

model or a decision-tree). These two decisions represent methodological and modelling uncertainties, 

respectively. Usually, these decisions are made without any estimates of the resulting methodological or 

modelling uncertainty, and often without (or with a limited number of) estimates of the result from 

alternative choices regarding modelling and the methods used. When doing a PSA entirely based on 

parameter uncertainty, which is the most common base for PSAs, the choices made about methods and 

modelling are taken for granted, and assumed without estimating the additional uncertainty related to 

these elements.  

There is reason to believe that in some cases, some of these “ignored” choices may contribute more to the 

total uncertainty of result than the uncertainty related to the assumption about similarities between the 



29 

 

interventions in question. Therefore, I will argue that, if the decision makers or experts on the relevant 

health outcomes say that CMA could be used, the health economists have to scrutinize the arguments to 

find out if one can be sufficiently sure about the presumed similarity in health outcomes. However, 

uncertainty related to the size of the difference between the health effects of the compared alternatives 

should not be focused more than the uncertainty of other decisions about modelling or methodological 

concerns with comparable level of uncertainty.  

 

 

2.6 Health economic evaluations applied for policy purposes 

  

Decision making about alternative use of health care resources is a critical issue for governments and 

administrators in all health care systems, and economic evaluations can be useful in determining the 

economic effectiveness and efficiency of different alternatives (62).  

 
The literature on the application of economic evaluations for health policy purposes is mainly focusing on 

the use of FEEs, which is also the case for section 2.6.  

 

2.6.1 What can Full Health Economic Evaluations (FEEs) be used for in the health sector? 

To decision makers, FEEs can be used for two kinds of decisions (40, 63): (i) The FEEs focus primarily 

on making the right decision about which alternative to implement based on the current uncertainty 

surrounding the results. However, 

simultaneous to this decision, the 

decision maker must also (ii) decide 

whether to accept the level of 

uncertainty or to collect more evidence 

before a decision is made (40). 

Based on current health economic 

evaluations, the decision makers 

must typically rely on deterministic 

or probabilistic SA to appraise this 

last question, and they must do so 

in an informal way. However, in the 

last years, a growing literature on 

how to formalize this decision 

based on the concept of the 

expected value of perfect information has emerged (25). Based on a PSA, both the “value of evidence” 

and the correct expected value can be estimated. Thus, from the viewpoint of a decision maker, the 

Table 3. Result from Cost Utility Analysis (CUA) for eight 
hypothetical interventions. The incremental cost and incremental 
QALYs are estimated for a given population.  
 

Intervention Incremental 
cost (mill. 

Euro) 

Incremental 
effectivenes 

(QALYs) 

ICER 
(Euro per 
QALY) 

1 4 800     5 000  

2 8 200   40 000  

3 6,5 1 100     5 909  

4 9 120   75 000  

5 5 250   20 000  

6 12 150   80 000  

7 18 850   21 176  

8 12 750   16 000  

 Total 74,5 4 220   

Source: Inspired by Gray et al. (1) 
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inherent uncertainty is important to acknowledge, both for decisions concerning whether or not to choose 

a new intervention, and for decisions on whether or not to ask for more information/research (1, 5).  

FEEs can be used to choose which alternative to implement based on the current uncertainty surrounding 

the results (point i above). According to the guidelines for health economic evaluations, CUA are often 

the preferred type of FEEs to use (3, 20, 64), as it is suitable for comparing all alternatives and maximizes 

the objective for a given budget (1, 2). In the following I will use CUA as an example. We focus on a 

decision maker provided with eight independent CUAs. For each analysis, the most cost-effective 

alternative is compared with the second best alternative. In table 3, the eight independent interventions are 

presented, assuming that the interventions were given to all patients needing the treatment within the 

jurisdiction of the decision maker.  

 

We assume that the decision maker has a total available annual budget equal to 70 mill €. The objective of 

the decision maker is now to decide which of the eight alternatives (interventions) should be implemented. 

This can be done by sorting the eight alternatives from the most to the least cost-effective one, and 

calculate their cumulative costs (see table 4) in order to identify the most cost-effective interventions that 

can be financed given the available budget of 70 million €. 

Following the procedure presented above, implies that all interventions with the exception of intervention 

number 6 would be implemented (see table 4 and the left part of the graph (the solid line) presented in 

Figure 1).  

Table 4. Presentation of eight independent interventions according to incremental costs, incremental effectiveness, 
ICER, cumulative effectiveness and cumulative costs.  
   

Intervention Incremental 
cost (mill. 

Euro) 

Incremental 
effectiveness 

(QALYs) 

ICER (Euro 
per QALY) 

Cumulative 
effectiveness 

(QALYs) 

Cumulative 
cost (mill 

Euro) 

1 4 800       5 000  800 4 

3 6,5 1100       5 909  1900 10,5 

8 12 750     16 000  2650 22,5 

5 5 250     20 000  2900 27,5 

7 18 850     21 176  3750 45,5 

2 8 200     40 000  3950 53,5 

4 9 120     75 000  4070 62,5 

6 12 150     80 000  4220 74,5 

Total 74,5 4220       

Source: Inspired by Gray et al. (1) 
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 What would happen now if a new independent intervention became available (see table 5)? In order to 

maximize the health benefits within the given budget, the decision maker would now implement all 

interventions (inclusive the new one) with the exception of interventions 4 and 6.  

 

Table 5. The ranking of the interventions when a new intervention is available.  
  

Intervention Incremental 
cost (mill. 

Euro) 

Incremental 
effectiveness 

(QALYs) 

ICER (Euro 
per QALY) 

Cumulativ 
effectiveness 

(QALYs) 

Cumulativ 
cost (mill 

Euro) 

1 4 800       5 000  800 4 

3 6,5 1 100       5 909  1 900 10,5 

8 12 750     16 000  2 650 22,5 

5 5 250     20 000  2 900 27,5 

7 18 850     21 176  3 750 45,5 

New 16 700     22 857  4 450 61,5 

2 8 200     40 000  4 650 69,5 

4 9 120     75 000  4 770 78,5 

6 12 150     80 000  4 920 90,5 

Total 90,5 4 920       

Source: Inspired by Gray et al. (1) 

 

 
 

Figure 1. The effect of using cost-effectiveness to maximize health gain. The solid line is 
before, and the dotted line is after the implementation of new technology. Source: Inspired 
by Gray et al. (1) 
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From Figure 1, we observe that the introduction of the new intervention causes an outward shift in the 

top of the graph (see the dotted line), reflecting that the introduction (and implementation) of the new 

intervention increased the sum of the health benefits that can be achieved for the available budget. 

This was a hypothetical example. Reality is more complex. One problem when adapting new technology 

can be to transfer money from the existing interventions to financing the new one. This problem 

constitutes one of the main criticisms of the cost-effectiveness approach (1). Further, in the above 

example, all relevant data for all possible interventions are available at the same time. This is not 

necessarily the case in practice, implying that only a limited number of possible interventions are being 

assessed at a time (2). One way to cope with such a problem is to use the maximum acceptable 

incremental cost-effectiveness ratio as a threshold for whether to adopt or not adopt a new intervention 

assessed by a CUA.  

For a given budget, it is important to identify the correct maximum acceptable ICER. If set too high or 

too low, the health benefits will not be maximized for the available budget. Ideally the level should be 

equal to the opportunity cost of the interventions being displaced by a new and more costs-effective 

intervention (64). If the maximum acceptable ICER is too high, the new adopted technology could replace 

more cost-effective existing programs (65-67). If it is too low, the health sector would not adopt new 

technology that is more cost-effective than some of the existing programs that it could replace.   

There are (at least) four different ways of identifying the threshold values (1): (i) the league table approach, 

(ii) the rule-based approach, (iii) the revealed preference approach, and (iv) the stated preference 

approach. The league table approach is already illustrated in table 3 and 4, where we assumed full information 

on the ICER of all the relevant interventions. By ranking the interventions by their respective ICER (table 

4), the ICER of the lowest ranked intervention being included defines the threshold value. In our above 

example this value is 75 000 Euro pr QALY (the ICER of intervention 4 in table 5) which again reflects 

the opportunity cost of implementing the new intervention.  

The rule-based approach refers to that the health authorities establish an explicit threshold that shall be used 

by analysts and decision makers (20, 64). The threshold might be somewhat arbitrary, for example, based 

on previous FEEs and guidelines, and/or on former practice in the health sector (1). In the UK, NICE 

has established the following rule (64): Below a ICER of £20 000 per QALY gained, the decision should 

normally be based on the cost-effectiveness estimates and the acceptability of the technology. If the ICER 

is in the range of £20 000 to £30 000, other factors (e.g. uncertainty the methods for estimating the 

QALYs and the innovative potential) should also be taken into account. When the ICER is above £30 000 

the other factors must be significant if the intervention considered is to be included (64). World Health 

Organization (WHO) has advocated that the maximum cost-effectiveness ratio should be related to a 

country’s gross domestic product (GDP) per capita, and suggests as a rule of thumb that an ICER less 

than the GDP per capita should be considered very cost-effective (1).  



33 

 

Revealed preferences is a method for estimating what a decision maker (or society) is willing to pay for health 

improvements: This is done by systematically examining the health care decisions actually made by the 

decision makers (revealed preferences). We can both use decisions on national level (e.g. national 

guidelines) and micro-level decisions (65, 66) (e.g. which group should receive a certain chemotherapy). 

Stated preferences is an alternative method for determining the willingness to pay for health improvements 

where decision makers or members of society are asked to report their willingness to pay. This approach 

can be divided into contingent valuation studies and discrete choice modeling (68).  

Above I have focused on the role FEEs may have in informing decision makers in choosing between 

potential interventions (static efficiency). However, the use of FEEs may also have long-term effects. The 

systematic use of FEE will act as an incentive for the developers of new technology (innovators) to focus 

on cost-effective technologies (dynamic efficiency) implying that costs, in addition to effects, become 

important in the development phase.                

In which situation and for whom can FEEs be useful? Generally, FEEs can be relevant for assessing 

medical devices, procedures and pharmaceuticals (69), or more specifically and according to NICE (64, 

70), FEEs can be relevant for assessing new technologies within medicinal products, diagnostic 

techniques, medical devices, surgical procedures, therapeutic technologies other than medicinal products, 

screening tools, systems of care, and health promotion activities. For analyses of medicines, Simones (71) 

argues that FEEs can be used by policy makers to inform the allocation of scarce health care resources; 

health care payers can apply evidence about the value for money of medicines to inform pharmaceuticals 

pricing/reimbursement decisions; health care professionals can use FEEs to shed light on alternative 

methods for managing a specific disease; and pharmaceutical companies can use FEEs to demonstrate the 

value for money of their medicines.   

 
Usually, health economic evaluations are conducted to identify which interventions that generate most 

health benefits relatively to the resources consumed (1). However,  cost-effectiveness is only one 

dimension that may be considered when deciding on how prioritize between different interventions (72). 

Some of the evaluations or considerations which can be relevant to the decision makers, and useful to be 

assessed before carrying out FEEs, are (2, 33, 73): (i) efficacy assessment, where we explore if the relevant 

intervention can work in a well-controlled setting (do more good than harm) when the patients fully 

comply. Randomized controlled trials are often used to assess this. (ii) Effectiveness assessment, which is 

used to find out if the intervention also will work in a real-world practice setting (“Does it work”). Here, 

pragmatic trials or practical clinical trials are used. (iii) Availability assessment, which is used to analyze if 

the intervention reaches those who need it.  

 
Another important dimension is equity considerations - how costs and health gains are distributed between 

different groups (income, wealth, ethnicity, and health severity). Such considerations can also be included 
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into economic evaluation, by for example explicitly weighting health benefits and cost between targeted 

groups of patients or population (74-76).  

 

2.6.2 The actual implementation of FEEs. 

 
How formalized prioritization processes are, and to which extent FEEs are explicitly used in such 

processes, vary widely between countries (33, 62, 67, 69, 71, 77-81). A country which has formalized the 

process relatively extensively and given FEEs an important role is the UK (69). The appraisal of a health 

technology used in the UK is divided into three distinct phases: (i) scoping, (ii) assessment and (iii) 

appraisal (64). In the scoping process the appropriateness of the proposed remit1 is determined by the 

National Institute for Health and Care Excellence (NICE), and the specific questions that each technology 

appraisal will address are defined. The assessment consists of two components: a systematic review of the 

evidence, and a health economic evaluation (64). These health technology assessments (HTAs) aim to 

assist those who make key decisions regarding the allocation of scarce health care resources (69) in the 

appraisal phase.  

 
FEEs are of central importance to the NICE Appraisals Committee in the process of reaching their 

decisions on health technologies (78). NICE provides an independent, tailored CUA for each health 

technology which the Committee wants to assess and employs experts in health economics to support the 

appraisal process (64). Dakin et al. (80) modelled NICE’s decisions in binary choices for or against a 

health care technology. They found that cost-effectiveness alone correctly predicted 82% of decisions and 

few other variables were significant. The chance of NICE rejection for technologies costing £27 000, 

£40 000 or £52 000 per quality-adjusted life-year (QALY) was 25%, 50% and 75%, respectively. Past 

NICE decisions appear to have been based on a higher threshold than £20 000–£30 000/QALY (80).  

 
Also, other countries like Australia, France, Canada, the Netherlands, Sweden, Belgium, Scotland, Norway 

and Taiwan, use information from FEEs to support their decisions (20, 67, 69, 71). In Norway the health 

care system is almost fully financed by general taxation, meaning that all citizens are covered by a National 

Insurance Scheme (67). FEEs are compulsory when assessing new prescription-only medicines for the 

reimbursement scheme. The Norwegian Medicines Agency is responsible for setting maximum prices on 

these medicines, and evaluates and decides whether or not a medicine should be reimbursed by the 

National Insurance Scheme. Preparing a CUA to inform these decision processes is required (45, 67). The 

Norwegian Directorate of Health recommends a reference value for costs per QALY of NOK 500 000 in 

2005-NOK (equivalent to 59 000 €), and insists that this is not to be interpreted as a threshold (81). 

However, interviews of stakeholders concerning outpatient pharmaceuticals, confirmed that this value is a 

strong indication of the Norwegian health system’s willingness-to-pay, and claims that cost-effectiveness 

                                                 
1 A “remit” is a brief given to NICE by the Department of Health and Welsh Assembly Government when a 
technology is referred to NICE for appraisal. 
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ratios of NOK 800 000 (94 000 €) or higher would “immediately be rejected” (81). In Sweden SEK 900 

000 (97 000 €) could, rarely be accepted. This suggests that cost-effectiveness is an explicit reimbursement 

criterion in Norway and Sweden (81). 

 
In contrast to the countries mentioned above, in the US and Japan, FEEs has not had much of an impact 

on prioritization decisions (69, 82). US Centers for Medicare and Medicaid Services have a policy that 

cost-effectiveness is not considered in national coverage determinations; and although Chambers at al. 

(83) identified a number of instances where cost-effectiveness evidence was cited in national coverage 

determinations, they found no clear evidence for the use of an implicit threshold.  

 
There are also differences in the degree of coverage of drug expenditures between UK and US. Mason et 

al. (84) analyzed coverage decisions by five decision-making bodies in the US and UK on all anticancer 

drugs approved by the US Food and Drug Administration (FDA) from 2004 to 2008. In the US 100% of 

drugs were covered, mostly without restriction, while the UK bodies made positive coverage decisions for 

less than half of the licensed drugs (NICE 39% and Scottish Medicines Consortium 43%), and applied 

considerably more restrictions than the US bodies. This study gives a reasonable indication of the impact 

of undertaking HTAs with an economic component - greater restrictions and longer time before the 

coverage decisions are made (69, 84). 

 

2.6.3 Barriers and incentives in the application of FEEs for policy purpose 

 

A range of barriers to using economic evaluations for policy purposes have been identified (62, 77, 85-89). 

Hoffmann et al. (77) conducted a study of European health care decision makers from 9 countries and 

used both standard questionnaires (887 respondents), personal interviews (53) and 10 focus groups. They 

found that only a small percentage had undergone training in health economics, and the majority of 

respondents had only a poor knowledge of CBA, CEA or CUA. As barriers in the use of study result they 

found the following, ranked in order of importance: (i) difficulty in moving resources from one 

sector/budget to another, (ii) sponsorship of studies (by the industry etc.) biases the results, (iii) budgets 

are too tight to free resources to adopt new therapies, (iv) savings are anticipated and not real, (v) 

economic studies make too many assumptions. The assertion in point (ii) is supported by a study done by 

Bell et al. (90), which shows that FEEs funded by industry were more likely to report ICERs under the 

threshold level, to have lower methodological quality and were published in journals with lower impact 

factors. Similarly, in a retrospective pairwise comparison, Miners et al. (91) found that estimated ICERs in 

analyses submitted by manufacturers to the technology appraisal programs of the NICE were on average 

significantly lower than those submitted by academics. Innvær et al. (85) did a systematic review of 24 

interview studies (18 were from outside Europe) with health policy-makers and their use of research 

evidence at a national, regional or organizational level; and found that the most commonly reported 

barriers were absence of personal contact between researchers and policy-makers (11 of 24 studies), lack 
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of relevance or timeliness of research (9/24), mutual mistrust between policy-makers and researchers 

(8/24), power and budget struggles (7/24), and poor quality of research (6/24).  

 
Hoffmann et al. (77) reported also on incentives (encouraging factors) for the use of result from economic 

evaluations and found the following, ranked in order of importance: a need to better explain the practical 

relevance of the results (actual cost savings etc), more training in health economics, more comparability of 

studies, more flexible health care budgets, and easier access to studies (e.g. publications in widely read 

journals). Innvær et al. (85), however, found that the most commonly reported facilitators for using 

economic evaluations were personal contact, timely relevance, and the inclusion of summaries with policy 

recommendations.  

 
The differences in results from Hoffmann et al. (77) and Innvær et al. (85) can partly be caused by the 

differences in the countries studied and the methods used. However, some common results seem to be 

the barriers related to budget struggles, mistrust and the quality of the research, and incentives related to 

explaining better how to apply the results from the economic evaluations.   

    
Drummond et al. (33)  propose some key principles for the improved conduct of health technology 

assessment (HTA) for resource allocation decisions, and organized it in four categories: (i) the structure of 

HTA programs, (ii) methods of HTA, (iii) processes for conducting HTA, and (iv) the use of HTA in 

decision making. For the category “methods of HTA”, they argued that HTAs should incorporate 

appropriate methods for assessing costs and benefits; wide range of evidence and outcomes should be 

considered; a full societal perspective should be considered; explicitly characterize uncertainty surrounding 

estimates; and consider and address issues of generalizability and transferability. For the category “use of 

HTA in decision making” they argue that the HTA should be timely; the HTA findings need to be 

communicated appropriately and adjusted to the different decision makers; and the link between the 

finding from the HTA and decision making processes needs to be transparent and clearly defined.   

        
Some argue for a wider view on the role of health economic evaluations, and claim that so far the health 

economists have tended  to focus on direct or instrumental use of FEEs, which may overlook the longer-

term influence of the health economists on health care resource allocation and then underestimate the 

opportunities to have greater impact in the future (72). “Research communities – particular those engaged 

in economic evaluation –  can be part of a debate which gradually re-frames prioritization debates so that 

over time the issue of scarcity can be more explicitly addressed” (72). 
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3.  Summary and discussion of the papers 

 
 
3.1        Summarizes and critically assess the papers 

 
3.1.1 Paper I: Costs of shoulder pain and resource use in primary health care - A cost-of-illness 

study in Sweden 

 

The aim was to assess the costs associated with primary health care and loss of productivity for the patients 

with shoulder pain in Sweden.  

 
Methods: We performed a cost-of-illness (COI) study. Based on a prospective bottom up approach, data 

were collected for six months from patient records at three primary health care centers in two 

municipalities in Sweden. Since this was a prevalence based COI study, it was suitable for estimating the 

annual cost for the group of patients. One reason for doing a prevalence study was the significant costs 

(time and resources) associated with undertaking a data collection. Because both the human capital and 

the friction cost approaches are considered to be adequate methods, and the choice of method have 

important impacts on the result, both approaches were used for estimating productivity loss. 

 
Contributions: This paper contributes in three ways: i) The analysis was the first COI analysis performed on 

shoulder pain in Sweden, ii) it provided usable data, iii) it generated expected cost of illness estimates (with 

confidence interval) that could become input into cost-effectiveness analyses of different treatment 

strategies in primary health care, and iv) in the analyses of uncertainty, we combined a DSA with statistical 

analyses under different assumptions. This type of analysis is rarely conducted.  

 
Results: A total of 204 (103 women) patients were registered. We found that 20% of the patients were 

responsible for 91% of the total costs and for 44% of the health care costs. The mean health care cost per 

patient was €326 (standard deviation (SD) 389) during the 6 months, and physiotherapy treatment 

accounted for 60% of this cost. Of the total costs, sick leave accounted for 84% of the cost (using the 

HCA). The mean annual total cost was €4 139 per patient. The costs for sick leave have a strong influence 

on total costs. Thus, interventions that can reduce long periods of sick leave are warranted. Health care 

interventions should focus on returning people to the workforce, with special attention to the small group 

that generates the highest costs. 

 
Uncertainty: We reported the 95% confidence intervals (CI) for the base case scenario for total costs and 

for health care costs in table 6 (€1 283-2 856 and €273-380, respectively). These intervals reflect the 

variability across patients and occurs because patients use services, such as x-ray and PT consultations, 

with different frequencies. This analysis parallels the patient-level analysis.  
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The SA was performed by using the sample variation related to the unchanged frequencies of health 

service use and the changed cost level per unit, which was assumed to be the same for all patients. For 

each tested parameter value or assumption, we computed both the new expected costs and the related 

95% CI. To estimate the methodological uncertainty, we used scenario analysis and found that the result 

was most sensitive to the method for estimating the unit cost for one day of sick leave (i.e., either the 

human capital method or the friction cost method). To test for uncertainty related to generalizability, a 

multivariate linear regression analysis was used to explore how gender, age and municipality, as 

independent variables, predicted total costs and health service cost (see Chapter 3.3.2). These factors did 

not influence the total costs or the health service costs.  

 
Discussion: A limitation of the study was that we had information about sick leave periods prescribed by the 

general practitioner, but did not know if patients were actually absent from work all that time or elsewhere 

contributed with other kinds of production. Further, we had no information about short-term sick leave, 

if patients had sick leave prescribed by the orthopaedic surgeon post-operatively, or if patients outside the 

labor market have reduced their production in informal sector. Another limitation was that the cost for 

medication was probably underestimated because we had no information on the consumption of drugs or 

of the medication paid out of pocket. However, medication had a minor contribution to the total cost. 

Generalization to other settings might be difficult, and will depend e.g. on how diagnostic codes are used, 

the treatment procedure, and the cost per unit.  

 
Strengths of the study were that: (i) we captured almost all patients consulting with all types of shoulder 

pain during a six month period, (ii) both health care costs and production losses were included in the COI, 

and (iii) the uncertainty analysis tested for some elements regarding generalizability, parameter uncertainty 

and methodological uncertainty.  

 
Since the COI analysis in Paper I does not estimate costs per patient for lifetime, the cost estimate from 

this study cannot be compared with the costs of an intervention that cures the patient, with the aim of 

estimating cost-effectiveness of the intervention. To attain this, we could use a Markov model to simulate 

the whole life span. We could use data about the average length and cost per period of illness, and data for 

how often the patients on average have such illness periods. By such a model we could analyze the cost-

effectiveness of interventions that e.g. cure the shoulder pain once and for all, reduce the number of 

recurrences, shortens the average period of illness, or combinations of these outcomes.    

3.1.2 Paper II: Modeling and Validating the Cost and Clinical Pathway of Colorectal Cancer 

 
The aim: Paper II and its appendices comprise the main paper of this thesis, and the purpose of this paper 

was to contribute to modelling the colorectal cancer (CRC) cost and survival by presenting a transparent 

model and validating it.  
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Contributions: Paper II makes three contributions: (i) The paper develops and presents a general (multi-

applicable) model for estimating CRC costs and survival. To the best of our knowledge, this is the first 

general CRC model to estimate both treatment costs and survival. (ii) The paper validates the model. (iii) 

The paper contributes to a more general understanding of validating models within health economic 

evaluations. ISPOR-SMDM has given recommendations for validating models (56), but to date, relatively 

few such models have been systematically validated. Kim and Thompson (59) write that: “Health economic 

decision models are based on specific assumptions relating to model structure and parameter estimation. Validation of these 

models is recommended as an indicator of reliability, but is not commonly reported.” 

 
Methods regarding the model: We built a semi-Markov model with 70 health states and tracked age and time 

since specific health states (using tunnels and a three-dimensional data matrix). Instead of using a 

decision-tree, a Markov model was built because the timing of events was important (estimate survival 

time, discounting of cost, etc.), and important events can happen many times (recurrence of CRC). The 

model parameters are based on an observational study at Oslo University Hospital (OUS) (with 2 049 

CRC patients), the National Patient Register, the literature and expert opinions. The model follows 

patients diagnosed with CRC from the age of 70 years until death or the age of 100 years. The health care 

payers’ perspective is used.  

 
The model is relatively complex, with 70 health states and many alternative paths. Each health state has its 

own economic model, and age and time since specific health states are tracked by using tunnels and a 

three-dimensional data matrix. A number of statistical analyses (e.g. survival analysis using Weibull) were 

performed, and separate computations were used to transform the output from the statistical analysis into 

input for the model. Weibull regression was used to estimate assumed changes in the transition 

probabilities as cycles elapsed after a certain event such as e.g. primary CRC treatment (92). Data from 

many different sources were used, some of which were assumed to be uncertain, such as expert opinions.  

 
Methods regarding the validation: The structure and complexity of the model and the variety of data sources 

imply that we faced many types of uncertainty connected to parameters, methods and modelling. 

Therefore, we needed to perform a validation to determine whether we could trust the model. The model 

was validated for face, internal, cross and external validity.  

 
Results from the validation: The validation revealed a satisfactory match with other models and with empirical 

estimates for both cost and survival time, without any preceding calibration of the model. In a cross 

validation, ten-year overall survival weighted for stage and estimated by the model, differed by 11.5 days 

(i.e. 0.38 months) compared with the OUS data. The cost of our model was 0,3% lower than the 

prediction by an Irish model (i.e. 3.0, 1.3, -3.6 and 1.2% lower in the Irish model for stages I, II, III and 

IV, respectively). 
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For external validation we compared relative survival estimated by the model with patients monitored by 

the Cancer Registry of Norway which contains a complete set of data for CRC patients in Norway. The 

model predicts 3.9% higher relative survival than national data during the first year, and 0.9, 5.6 and 5.6% 

lower relative survival five, ten and fifteen years after diagnosis, respectively. 

 
In another external validation, the model was compared to empirically estimated (“model-free”) total costs 

based on a Norwegian population study (National Patient Register). Taking into account difference in 

assumptions, the model estimate was 3.1% higher than the model-free estimate. 

 
Discussion: Some of the elements that contribute to uncertainty in the results from the CRC model are: i) 

the cycles in the model were set to one year, which restricts the preciseness of the model to some extent; 

ii) because some of the OUS data used in the model are relatively old (range from 1993-2010), long-term 

survival is lower in the model, which can be explained by the older and less effective treatments; iii) in the 

model, we used a cohort of patients who were diagnosed at the age of 70 years, which may have resulted 

in a higher survival rate than if we had used the average age in the OUS sample; iv) the palliative sub-

model was suitable for exploring treatment paths and costs, but there was no explicit built-in time 

dimension; therefore, an approximation was used to disperse the costs over time; and v) there appears to 

be a lack of data concerning the resource use related to treatment for local and distant recurrence, 

separately or combined, primarily because the relevant registers are not organized to estimate this 

parameter. The amount of uncertainty contributed by these elements, and possible solutions are discussed.  

 
The production costs were not included in the estimation of CRC costs. For decisions makers this can be 

important to consider in order to get a complete estimate of CRC costs to society. For a person who is on 

sick leave for one year because of CRC, the production loss to society could be 2-3 times the costs of 

lifelong CRC treatment, according to the human capital methods. According to Yabroff et al. (93) the lack 

of including production cost analyses of colorectal cancer costs seems to be a widespread practice.  

 
A limitation for the validation was that external validations can be applied to some components of the 

model or to the model as a whole (94), while our external validation was only applied to the model as a 

whole (survival and cost). Generally, the model complexity could be a drawback for decision makers to 

fully understand all the mechanisms of the model. 

   

3.1.3 Paper III: Cost and survival of colorectal cancer and consequences of changing treatment 

algorithms: A model approach 

 

The aims and contributions: While we in paper II presented and validated the CRC model, Paper III uses the 

model for estimations and makes three original contributions to the existing literature: (i) we demonstrate 

the usefulness of a new and recently developed and validated CRC model, (ii) we present results from 



41 

 

CRC cost and cost-effectiveness estimations, and (iii) we provide some insight into the uncertainty of such 

models and of CRC cost estimation in general.    

Methods: We used different health economic evaluations like a COI analysis of colorectal cancer cost, cost 

or outcome description of certain elements in the analysis, a COA, and a kind of CEA. The cost 

description includes (i) cost analysis of different scenarios of palliative chemotherapy concerning changes 

in treatment and unit costs like cost of drug per dose, and (ii) the cost of certain CRC treatments and 

treatment related to past medical history. For a given progress in treatment (progress in surgery) and 

prevention (primary and secondary) we conducted COAs. To estimate the cost-effectiveness of providing 

treatment for colorectal cancer more generally, we performed a kind of CEA where cost and health 

outcomes for treated person were compared with the same for untreated persons with colorectal cancer – 

a treatment versus no-treatment CEA (see also section 3.5). All the analyses were based on the semi-

Markov model from Paper II. 

Results: The model was flexible and capable of modifying one-by-one or simultaneously many aspects of 

CRC treatment costs, such as prices, type and intensity of treatment and follow-up, recurrence rates, and 

CRC and non-CRC mortality. The cost for an average CRC patient was €41 550 (€23 390-€61 400, 

depending on the disease stage at diagnosis). A 20% cost change for purchasing palliative drugs had only a 

minor effect on the average CRC costs (<2%), while the altered use (who should receive therapy, the kind 

of therapy given, etc.) of palliative chemotherapy increased the cost by up to 29%. A 5% reduction in 

recurrence for stages I-III would reduce the health care cost by €2 280 per patient (5.5%) and an increase 

in the overall survival by 0.80 year per patient. Applying the suggested threshold for a QALY gained, the 

willingness-to-invest in a 5% reduction in recurrence rate would be €61 306 per CRC patient.   

Uncertainty: One-way and multi-way (scenario) DSA were used extensively to explore the parameter, 

methodological and modelling uncertainty. The uncertainty in the costs result appeared to be more 

sensitive to future change in treatment than the uncertainty produced by the statistical estimation of 

parameters. Examples of important future changes include palliative chemotherapy treatment regimes and 

the introduction of general screening. The sensitivity to future change is especially important for 

preventive measures with a long latency period between the intervention and the expected health effects. 

One main weakness of the uncertainty analysis is the lack of a PSA for handling the parameter uncertainty.  

Discussion: In addition to the limitations mentioned for Paper II above, the model did not account for: (i) 

health service costs like treatment provided/prescribed by general practitioners and care at nursing homes, 

(ii) costs generated by informal care done by relatives and friends, and (iii) productivity changes due to 

reduced productivity at work, sick leave and time used for treatment. Further, in some of the analyses 

there is a potential problem to not include public consumption not related to the CRC treatment (e.g. 

education or treatment for diseases not related to CRC) and private consumption, when someone lives 
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longer due to CRC treatment. This is as mentioned a subject for discussion (2, 14, 21). Thus we base the 

analysis on the current guidelines in Norway (20).  

The main strength of the analyses performed in Paper III was that the model used has been thoroughly 

validated. A strength of the model used is its flexibility. The Markov model’s estimates of health care cost 

for the four different stages of CRC presented in paper III, could be regarded as a COI analysis based on 

an incidence approach. Both the total cost reported, and the cost reported for different cost components, 

can be used in other evaluations like CEAs, CUAs and CBAs (which estimate the cost effectiveness of 

interventions that reduce the chance of getting CRC (screening, life style etc.)). However, in our case, the 

Markov model is general, and thus can be modified in order to perform the mentioned evaluations and a 

range of other CRC related analysis.    
 

3.1.4 Paper IV: A health economic evaluation of screening and treatment in patients with 

adolescent idiopathic scoliosis 

 
The aim: The aim was to compare the estimated costs in screening and non-screening scenarios in a CMA.  

Contributions: This paper made the following contributions: (i) To the best of our knowledge, few health 

economic evaluations have compared scoliosis screening with non-screening (61). The need for this type 

of evaluation is also indicated in an information statement by the scoliosis research society international 

task force (62): “…there is scientific evidence to support the value of scoliosis screening with respect to technical efficacy, 

clinical, program and treatment effectiveness, but there is insufficient evidence to make a statement with respect to cost 

effectiveness.” (ii) Many relevant factors can be assumed to differ among countries, and the evaluation 

indicates which factors determine whether or not screening is cost-efficient. (iii) Closely related to point ii, 

the scenario analysis and tornado diagram based on the PSA indicate which factors are important for 

controlling the uncertainty. This result can guide future research to reduce the uncertainty of screening 

evaluations.  

 
Methods: We used a cost minimization analysis, and assumed equivalent outcomes for health-related quality 

of life, and compared only relative costs in screening and non-screening settings. We included costs and 

administrative data from hospitals in combination with market prices to estimate costs in screening, 

bracing and surgical treatment. Screened children are treated (with bracing or surgery) more often than 

non-screened. This gap defines the non-screening scenarios, and we used reduced treatment rates of 90%, 

80%, 70% for the non-screened compared to screened, and in addition the scenario using the actual 

treatment percent in Norway 2012 was called “non-screening Norway”. The data were based on screening 

and treatment costs in primary health care and hospital care settings in Norway and Hong Kong. Out-of-

pocket expenses and productivity losses among parents accompanying or caring for their child are also 

included. The incremental cost was defined as positive when a non-screening scenario was more 

expensive than screening. The analysis of uncertainty was based on the PSA, where all the parameters 

were given distributions. The PSA provided distributions and Credibility Intervals (CrIs) for the 
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incremental cost estimations in all scenarios. To determine which parameter contributes the most to the 

parameter uncertainty, we executed a tornado diagram analysis comparing a screening scenario with a non-

screening scenario with an 80% treatment rate. We used a scenario analysis to explore the modelling 

uncertainty of changing parameter values that are dependent on medical practice or decisions varying 

between countries.      

         
Results: The cost of screening per child was € 8.4 (95% CrI 6.6 to10.6), € 10 350 (8 690 to 12 180) per 

patient braced, and € 45 880 (39 040 to 55 400) per child operated. The screening was done in a relatively 

inexpensive way, performed by community nurses and physical therapists at the schools. The incremental 

cost per child in a non-screening scenario with a 90% treatment rate was € 13.3 (1 to 27), increasing from 

€ 1.3 (-8 to 11) to € 27.6 (14 to 44) as surgical rates increased relative to bracing from 40% to 80%. For 

the 80% treatment rate non-screening scenario, the incremental cost was € 5.5 (-6 to 18) when screening 

all children and € 11.3 (2 to 22) when screening girls only. For the non-screening Norwegian scenario, the 

incremental cost per child was € 0.1(-14 to 16). The cost of surgery was dominating in the non-screening 

scenario, while the cost of bracing was dominating in the screening scenario. The economic gain of 

screening increases when the screening leads to higher rates of bracing and reduced surgical rates.  

 
Discussion: A limitation of this paper could be the assumption that the prevalence of scoliosis is the same in 

Hong Kong and Norway. An important assumption made was that the screened and non-screened 

scenarios have the same health outcomes for the treated children. This was based on previous research 

and professional opinion, which was the reason for choosing CMA as the evaluation approach. A 

limitation for the PSA performed was that the probability distributions used were partially based on expert 

opinions, both from the medical expert in the group (part of the resource use data) and from the 

economists (with respect to the unit costs used). Another limitation can be that for all scenarios except 

“Non-screening Norway”, by doing scenario analysis much of the uncertainty was not handled by the 

analysts but left (externalized) for the decision makers.  

 

3.2 Comparing of the applications and the methods used in the four papers 

 

The application of Paper I is to shoulder pain, Paper II and III to colorectal cancer and Paper IV to 

scoliosis (table 6).  

Paper I was a COI analysis, while Paper IV was a CMA. Paper II was presenting and validating a model 

for doing COAs, and by some modest adjustment, doing HEEs (table 6). In Paper III the model for 

Paper II was used for doing different health economic evaluations like a COI analysis of colorectal cancer, 

cost or outcome description of certain elements in the analysis, COA, and a kind of CEA (see also section 

3.3). The objective of Paper III was not to do health economic evaluations of certain new treatments, but 
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to provide to decision makers some relevant cost and survival estimates concerning CRC treatment that 

we argued could be relevant for future decisions on CRC research, treatment and prevention (72, 95).  

 

Table 6 summarizes the application of each paper, and method used and costs included.  

 Type of health 

economic 

evaluation 

Appli-

cation 

Costs 

included 

Method for data 

collection and 

systematization  

Handling 

of/testing for 

uncertainty 

Paper I COI analysis Shoulder 

pain 

H. care cost 

Productivity 

Patient-level-data Variance-based CI 

One-/multi-way 

DSA  

Paper II Present and vali-

date a CRC model 

(for doing COAs, 

FEEs, etc.)  

Colo-

rectal 

cancer 

H. care cost Decision analytic 

(using Markov and 

decision-three) 

Face-, internal-,  

cross- and external 

validation 

Paper III COA (incl. COI 

analysis) and CEA 

Colo-

rectal 

cancer 

H. care cost Decision analytic 

(using Markov and 

decision-three) 

Validated model  

One-/multiway 

DSA 

Paper IV CMA Scoliosis H. care cost  

Productivity 

Informal 

care  

Decision analytic PSA 

Scenario analysis 

COI: cost of illness. COA: cost and outcome descriptions analysis. CEA: cost-effectiveness analysis. CMA: cost-

minimization analysis. H. care cost: Health care cost. Decision analytic: decision analytical model. DSA: deterministic 

sensitivity analysis. PSA: probabilistic sensitivity analysis. FEE: full health economic evaluation.       

 

For all papers, health care cost was included. Additionally, productivity loss caused by sick leave was 

included in the Paper I, and productivity loss (absence from work), support (transportation, company, etc) 

and informal care at home were included in paper IV.  

Paper I was based on patient-level data, while the three other papers used decision analytic models. In 

papers II and III a semi-Markov model with included decision trees were used. A relatively comprehensive 

decision tree was developed for palliative chemotherapy, while more limited trees were used as part of the 

separate cost models for the primary treatments.     
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The COI analysis used in Paper I estimated the cost for 6 months for all persons with shoulder pain in a 

given population, whether the period of shoulder pain and the related treatment had ended or not. In 

contrast, the CMA (Paper IV) and the Markov model (Paper II and III) estimated the health care cost per 

average patients as long as the disease was expected to cause disease related costs. For the Markov model 

the time horizon was from 70 to 100 years old. For the CMA, the horizon was from the children were 11 

to17 years. 

Concerning the handling of uncertainty, Paper I had patient-level data, so we used the relevant variances 

to estimate the confidence intervals for the mean values. These intervals indicate the uncertainty caused by 

difference in treatment intensity and number of days of sick leave. Additionally, one- and multi-way DSA 

were used to test for uncertainty related to the unit cost. For each DSA the related confidence intervals 

were estimated based on the variability in treatment intensity and sick leave. For paper II we tested how 

well the model behaved by validating the model and test for face-, internal-, cross- and external validity 

(94). In Paper III we thus based our analyses on the validated model, and in addition we tested for how 

the results would change if the assumption like the treatment frequency, recurrence rate or cost of drug, 

would be changed in the future. In Paper IV we handled uncertainty by using a PSA.           

 

 

3.3       Generalization of the results to other settings 

 

Decision makers from one jurisdiction often need to conduct an evaluation which is similar to one already 

done in another jurisdiction. By exchanging the results of a particular assessment, the decision makers 

could avoid unnecessary duplication of efforts (24). This raises the issue of the potential for generalization 

of the data, which the NICE (64) define as “The extent to which the results of a study conducted in a 

particular patient population and/or a specific context will apply for another population and/or in a 

different context.” The problems of generalization can be relevant both between countries, different 

regions inside a country (because e.g. different incidence rate of the illness), between different centers for 

treatment (which may have different cancer treatment practice in the use of expensive drug), and between 

subgroups (24). In this section we mainly discuss generalizability of results from one country to another.  

 

3.3.1      Factors hampering the generalization and what to do about it 

 

Some evaluations have results well adapted to a particular decision that has to be made, while in other 

situations, the decision maker only has access to evaluations performed in other settings that are somehow 

different from the one relevant for the decision maker. Often, it can be hard to assess if the analysis can 

be generalized to the relevant setting or not. The following differences between two settings can 

contribute to reduced generalizability (96): (i) Different demography and epidemiology of disease because 
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of difference between countries regarding lifestyle, age distribution, level of prosperity, etc. These can for 

example affect the baseline mortality, the incidence rate of the disease, and the physical and psychological 

response to a given treatment. Generally, relative treatment effectiveness is often assumed to be 

interchangeable across countries, while baseline event rates are not (24). (ii) Different levels of health care 

resources and clinical practice. Then, the same disease can be diagnosed, treated (different surgery or 

medications etc.) and followed up differently in two settings, which in turn can affect mortality (both 

background- and disease specific mortality), morbidity and treatment costs. (iii) Differences in incentives 

for health care professionals and institutions. (iv) Different relative prices or costs. For example, the 

relative unit cost for surgery, nurses or medications can differ as a result of different structure between 

countries regarding the relevant markets (97). Drummond et al. (24) argue that location-specific estimates 

would be required for cost and resources. (v) Population specific values. For evaluations like CUA and 

CBA, which include value judgments by the population, the values of the health outcomes can via QALY- 

or WTP-estimates, differ between countries. Consequently the total result (e.g. cost per QALY) can also 

differ. However, available evidence suggests little systematic variation in mean individual preferences 

between countries (24).  

Sculpher et al. (98) reviewed generalizability in HEEs and provide recommendations both for HEEs 

based on patient-level-data and for evaluations using decision analytic modelling. In order to contribute to 

generalizability they recommended the following for decision analytic modelling: First, the evaluation 

should be clear about the decision problem, the decision-makers and the jurisdiction(s). Second, the 

analytical approach, model structure and data used should be appropriate to the relevant decision 

maker(s). Third, for parameters with several data sources, the data should be pooled so that uncertainty 

concerning precision and heterogeneity is reflected in the model (e.g. using standard meta-analysis). 

Fourth, “It is important to distinguish parameter uncertainty from variability or heterogeneity, where the 

latter is concerned with how parameter estimates vary across ‘contexts’ (98). Fifth, where data are 

incorporated as random variables, PSA is the appropriate means of handling parameter uncertainty. Sixth 

and finally, if targeting more than one jurisdiction, variability in results between locations should be 

assessed, for example by using SA or scenario analysis.  

 

3.3.2      Generalization of the results in the four papers  

 

Some of the challenges regarding generalization of the four papers are that Norway and Sweden are high-

income countries, so the costs estimated could be unfit for generalization to medium or low-income 

countries. If the relevant relative prices are not disturbed, income level can normally be adjusted for by 

using purchasing power parity (PPP). However, also relative prices could be different, if for example the 

unit cost (wage rate) of physiotherapists, nurses or medical practitioner relative to other prices is different 

in Norway or Sweden compared to other countries, there will still be a problem after adjustment for PPP, 
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like Just et al. (97) found for economic evaluations of dialysis treatment modalities. Compared to middle- 

or low-income countries, we can expect labor to be relatively more costly in high-income countries like 

Norway and Sweden, while the differences could be smaller for resources (goods) traded in global markets 

like equipment and medicine.   

For paper I, the countries we will generalize to should also have the same prevalence of the illness, which 

will depend on e.g. age distribution, type of industry (e.g. the load on shoulders is greater in some 

industries than others) and lifestyle. Scandinavian and some other Northern European countries appear to 

be similar to Sweden concerning these characteristics. In our multivariate regression analysis, we tested for 

the effect of age on total cost or health care cost, and found no significant effects. We also tested if there 

were cost differences due to the place (geographical) of treatment, but found no significant differences, 

which is positive regarding generalization within Sweden. 

Papers II and III use the same CRC-model, so they are discussed together. The model is mainly based on 

Norwegian data, and then based on the characteristics of the Norwegian population like incidence rate for 

CRC, CRC-recurrence and -mortality, and background mortality. All these characteristics could differ 

between countries, but all of them can be adjusted for by the model. Further, we can expect the use of 

resources for diagnostics, surgery, chemotherapy, radiation and follow-up to differ between Norway and 

other countries (93).  Also, the unit price can differ between countries, as we found in paper II when 

comparing the model with an Irish study modelling CRC treatment costs (36). In the CRC-model there 

are detailed and separate cost models for each health state; and particularly detailed for the year with 

primary treatment, the year after recurrence, and the years with palliative chemotherapy. Resource use, 

unit costs, and compliance can be adjusted for in these cost models. If we have data for the other settings, 

the flexibility of the model makes it relatively easy to adjust to fit a wide variety of settings, like other 

countries or subgroups of the population.  

Because the analyses conducted in Paper III are based on Norwegian populations and treatment regimes, 

the results can probably best be generalized to Scandinavian and other North-European countries because 

of similarities in lifestyle, age distribution, treatment regimes, background mortality and incentives in the 

health sector. However, even among these countries we can experience important differences, for example 

because of differences regarding palliative chemotherapy which potentially can alter total costs in 

important ways (se paper III, Appendix 1).   

For Paper IV, differences in demography and epidemiology of the disease can be a problem. One 

important assumption made is that the prevalence and natural history of scoliosis is the same in Hong 

Kong and in Norway. If our comparison between screening (Hong Kong) and ”non-screening Norway” 

should be relevant to another country, the country has to be like Norway in the situation of non-

screening, and like Hong Kong in the situation of screening. One argument for using the analysis from 

Hong Kong (99) is that it is the largest reported longitudinal study of screening cohorts. Whether or not it 
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is relevant for other countries to assume similarity with non-screening Norway, is debatable. Therefore we 

analyzed three more non-screening scenarios with different rate of treatment (surgery or bracing) in table 

2 in paper IV, and also changed the ratio of brace/surgery in non-screening scenarios. We presented both 

expected incremental costs and CrI for all the combinations. Then the decision makers can use the 

estimates based on assumptions most relevant to their own country. 

Also, the difference in screening practice between countries could be a problem for generalization. The 

assumed way of screening, based on a real intervention at Norwegian schools, had the cost of € 8.4  per 

child, which seems to be relatively inexpensive. Further, we see for the different scenarios that the 

incremental cost is € - 2.3 to 13.3 for all children, and € 4.3 to 18.4 for girls only. If for example the child 

on her way to and from screening, has to use separate transportation and/or be followed by a parents 

(time cost), then all scenarios - even for girls only – could result in a negative expected incremental cost. 

Screening would be even more expensive if the child visited a medical practitioner only for doing the 

screening.  

For the decision maker, I will argue that the discussion above illustrates that the uncertainty of 

generalizing results from one setting to another, can often be hard to handle. In the papers deterministic 

one-way and multi-way SA (paper I and III) and probabilistic scenario SA (paper IV) have been used to 

get a better picture of this uncertainty. Instead of doing SAs of the evaluations done for country A, so 

decision makers better can generalize the result from country A to country B, one could instead use the 

same model and change all relevant parameters to fit country B better. This would be a far more 

informative solution, but assumes that the model and all input parameters are available to those who 

would use it for country B. In paper II (the CRC model) and paper IV (scoliosis model) we presented the 

models (conceptually and mathematically) and the input parameters, so detailed that we hoped the models 

were possible to reproduce and use in other settings. However, our experience so far is that (particularly 

for the CRC model) it is probably a need for even more detailed descriptions if the simulation models 

should be rebuilt by others. A possible solution to this kind of problems could to be to publish the whole 

simulation model together with a manual, but there is no tradition for this among health economists, 

partly because of the problems with ownership and incentives to develop new simulation models (94, 

100).   
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4. Conclusions  

 

4.1 Contributions 

The contributions of the thesis are: (i) it provides economic evaluation of screening for scoliosis; and 

estimates the cost of shoulder pain in Sweden, the cost of colorectal cancer, and the potential gain to the 

Norwegian society by reducing the recurrence rate for CRC (e.g. by increasing the quality of CRC surgery); 

(ii) it provides development of the first general (multi applicative) simulation model for colorectal cancer, 

which estimates both treatment cost and survival time; (iii) it provides an example of face-, internal-, 

cross-over- and external validation (few validations are so far conducted within health economics); and 

(iv) it provides a discussion of the strengths and weaknesses of using Markov models, COI and cost-

minimization analyses.           

 

4.2 Key conclusions 

In Paper I, a cost-of-illness (COI) study on shoulder pain in Sweden, showed that the mean health care 

cost per patient was €326 during 6 months, and physiotherapy treatments accounted for 60% of this cost. 

The mean annual total cost was €4 139 per patient. Of this, sick leave accounted for 84% of the cost, but 

different methods for estimating sick leave cost can provide very different results.  

 

In Paper II a semi-Markov model with 70 health states was presented and validated. We tracked age and 

time since specific health states using tunnels and a three-dimensional data matrix. The structure and 

complexity of the model and the variety of data sources implied that we faced parameter and 

methodological uncertainty, as well as modelling uncertainty. Therefore, the model was validated using 

face, internal, cross and external validation. The main result from Paper II was the validation, and this 

revealed a satisfactory match with other models and empirical estimates of both the cost of colorectal 

cancer treatment and survival time, which are the two main outcomes of the model. We performed no 

preceding calibration of the model. 

 

In Paper III, we found that altered decisions about palliative treatment can increase the average CRC cost 

substantially. Reducing the recurrence rate by better surgery and implementing preventive efforts like 

screening of asymptomatic persons could have a considerable cost-effectiveness potential. Further, we saw 

that expectations about the future are important for cost and survival estimates. Because many evaluations 

have time horizons of 20-40 years, PSA that is based on parameter probability distributions estimated 

from “yesterday’s data” can be misleading.    

In Paper IV, we compare costs in screening and non-screening scenarios using a cost-minimization 

analysis. Many relevant factors can be assumed to differ from country to country. We found that the cost-

effectiveness of screening is heavily dependent on (i) the percent of the non-screened that receive some 



50 

 

kind of treatment (surgery or bracing) for their scoliosis, and (ii) the share of surgery versus bracing, in 

both screened and non-screened children. We also found that it is more cost-effective to screen girls only 

rather than screening all children.    

 

4.3 Policy implications 

From Paper I, we saw that production loss, via sick leave, accounted for most of the total health care cost 

caused by shoulder pain. Then, it can be a problem for the decision makers that sick leave is often a cost 

that is excluded from COI analyses and FEEs, and when included, different relevant methods for 

estimating production loss provide very different results. Further we found that it is a relatively small 

group of patients that contribute to most of the cost to society, and this is particularly related to 

production losses.    

 

Two policy implications from paper II and III could be mentioned: (i) society could gain from more 

research on how to reduce the CRC recurrence rate, and (ii) to attain credible cost-effectiveness analysis of 

CRC treatment interventions, there is often a need for flexible general models with the ability to include 

expectations about future prices, resource use, recurrence rates, background mortality etc., and to compare 

different categories of CRC interventions, e.g. chemotherapy versus screening or new surgery techniques. 

The health sector often simultaneously assesses different types of treatments for the same disease in order 

to identify the right mix of treatments. Then, the evaluations depend on the use of general (i.e., multi-

applicative) models that can estimate the aggregate effects of many different treatments. Nevertheless, to 

work with specialized models have been the practice so far.     

 

Paper IV: To policy makers it could be important that it is far more cost-effective to screen only girls than 

all children, screening will hardly be cost-effective without a rather effective and inexpensive screening 

procedure, and the result from the CMA was heavily depending on the type of treatment (surgery or 

bracing) received by the screened and non-screened.       

 

For all tree evaluations presented in this thesis we saw that modelling or methodological uncertainly was 

considerable. In Paper I the choice between using friction or human capital methods gave alternative 

predictions outside the confidence interval for the base case alternative. In paper II future decisions about 

palliative treatment were important for the total CRC treatment cost, and for Paper IV questionable 

fundamental assumptions were important for the whole model. This kind of uncertainty is important to 

consider when decision makers assess health economic evaluations which often use PSA based solely on 

parameter uncertainty.     
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Appendix 1 (paper II): Data and statistical analyses 

(App. 1: Published in a Web-only format) 

 

1. Data source 

In this study, as far as possible, inputs were based on Norwegian data. An important source of 

input data was an observational study at Oslo University Hospital – Aker (OUS), in the following 

referred to as OUS data, 

which included a wide 

range of variables related 

to CRC treatment. Most 

of the variables described 

different surgical 

procedures, the times to 

recurrence and the time 

of death. The study 

consisted of 2,049 

patients diagnosed with 

CRC in the period 1993-

2010, including all the 

CRC patients diagnosed 

at OUS. The hospital 

treated all patients from a 

defined catchment area 

of approximately 210,000 

inhabitants.   

 

The TNM classification 

system (AJCC/UICC) 

was used to classify the 

disease stage at the time 

of diagnosis, where T-

stage reflects the depth of tumor invasion into and through the bowel wall, N-stage reveals 

whether or not there are metastases in the regional lymph nodes, and M-stage shows the presence 

Textbox 1. 

The Markov model was based on transition matrixes with the 

following notation: 

𝒕𝒑𝒕,𝒂
𝒇,𝒔

    =   𝒕𝒑𝒕𝒊𝒎𝒆 𝒊𝒏 𝒕𝒖𝒏𝒏𝒆𝒍,𝒂𝒈𝒆
𝒇𝒓𝒐𝒎,𝒕𝒐 

 

 

f = the health state from which the patient was moving 

s = the health state to which the patient was moving   

t = number of years (time) the patient has been in the tunnel    

      t = 1, 2…10  

t = 0, the patient had not entered a tunnel, but was in one of the 

treatment states  

a = the age of the patient leaving a health state 

 

The abbreviations for health states: 

TNM (I, II, III or IV): TNM stages defining primary treatment the 

first year after CRC-diagnosis 

REC (LR, DR or LDR): Treatment states for recurrence; local (LR), 

distant (DR) and both local and distant recurrence (LDR)    

R-REC (R-LR, R-DR or R-LDR): Treatment states for re-recurrence 

or later recurrence  

c: Referring to “disease free” after primary resection or “disease free” after 

REC (a supplement, like IIIc, DRc or R-DRc)     

D: Death by all causes other than CRC   

30d: Death within 30 days after surgery  

CD: Death by CRC more than 30 days after surgery  

Pa: Palliation  
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of distant metastases. According to TNM, the disease is classified in stages I-IV. Stage I means 

the tumor is confined to the intestinal wall; stage II means the tumor is invading through the 

intestinal wall (and might invade adjacent organs or perforate the visceral peritoneum); stage III 

has lymph node(s) metastases; stage IV has distant metastases. 

 

Information from the National Patient Register (in the following, referred to as the NPR data), 

based on data related to an analysis by Aas 2 was used to quantify some types of treatment from 

the years 2003 and 2004. The data were collected for two counties in Norway and should be 

representative for the general population.  

 

National life tables (Statistics Norway) and four international published papers estimating the 

overall survival for patients receiving palliative chemotherapy, were used. Two of the studies were 

based on European populations 3 4, one on North Americans 5, and the last on Scandinavian 

countries 6.  

 

When information from public sources was not available, expert opinion (oncologist, colorectal 

surgeon, and a gastro physician) was considered a legitimate method for assessing parameters 7. 

Generally, expert opinions were used if the parameters were considered (based on literature, 

model simulation or expert opinion) not to have essential effects on output. If they were 

considered to affect the output significantly, sensitivity analyses were carried out. Expert opinion 

has been used in computing parts of the treatment model for palliative chemotherapy, partly for 

the use of radiation and for certain parts of the sub-model for recurrence and re-recurrences.    

Calibration is normally used as a complement to data sources 8. Calibration would imply a 

systematic adjustment of model parameters by letting the model output govern the model input. 

After comparing the result of the model with the data from the same population (see Chapter 4), 

it was concluded that calibration was not needed due to a good fit of the model. 

 

Input data presented here are mostly estimates from calculations and statistical analysis, and 

presented with a precision that does not always correspond with the quality of the underlying 

data source. This high “precision” is used in this appendix to make it easier for the readers to test 

the model by doing their own simulations with in-data close to the data calculated in our Excel-

based model.      

http://en.wikipedia.org/wiki/Peritoneum
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Endpoints have often been defined differently in studies of CRC, leading to a lack of 

comparability, so our CRC survival analyses were performed with endpoint definitions agreed 

upon in a recent consensus conference 9 and shown in Table 1. 

 

Table 1. Definitions of events according to three main endpoints  

Event Endpoint 

Disease-free 

survival 

Time to 

recurrence 

Overall survival 

Local or regional recurrence F F I 

Distant metastasis (DR) F F I 

Second primary, CRC F I I 

Second primary, other cancer F I I 

Death from CRC F F F 

Death from other cancer F C F 

Non-cancer death F C F 

Treatment-related death F C F 

Loss to follow-up C C C 

Failures is F, censoring is C and ignoring is I. 

 

2. Incorporation of data  

Important factors in the model, such as survival curves, transition probabilities and frequencies 

were derived from data in the literature, from the primary CRC data or from official registers.  

Some of the data could directly be found in published papers, such as the probability of a patient 

getting a certain treatment, e.g., the probability of prescribing adjuvant chemotherapy to a patient 

with a stage-III disease. Often, available data could not be directly incorporated into the model.  

Important sources of data for modeling the course of CRC were different kinds of survival 

curves presented in literature.  

These often presented the cumulative survival for a certain period and indicated the probability 

for an average patient to survive at least to time t. given by 

 

  S(t) = P(T > t) = 1- F(t)  
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where t was years and F(t) the cumulative density function. Let S (t-u) be the cumulative survival 

for the last period in time, where the u is the length of a Markov cycle. Then the probability of 

surviving through one cycle was defined as  

 

  s(t) = S(t) / S(t-u).  (0) 

 

Based on Equation (0), the probability of failure (recurrence or death) during a cycle was defined 

by 

tp(tu) = 1- s(t) =  1 - [S(t) / S(t-u)].  (1) 

 

If two- and three-year survival was 0.9 and 0.8, respectively, then the probability of staying alive 

from year two to three was S(3) / S(3-1) = 0.8/0.9 = 0.89, and the transition probability of dying 

between years two and three would be 1 – [S(t)/S(t-u)] = 1- (0.8/0.9) = 0.11. 

Based on data from four studies 3-6, Equation (1) was used to estimate the survival function for 

patients going through palliative treatment. The survival curves from each study were scanned 

and visually extracted. The four datasets were merged by weighting each study equally, and the 

probability of surviving years one through four were computed to be 0.675, 0.350, 0.175 and 

0.087, respectively. Finally, equation (0) was used to estimate the transition probabilities 𝑡𝑝1,𝑎
𝑃𝑎,𝑃𝑎

 

(see textbox 1) of staying alive between each cycle (or year), such as between year one and year 

two.    

  

2.1  Estimating survival curves and transition probabilities based on individual data 

Several statistical models can be applied to estimate the transition probabilities from our 

individual level data. As pointed out in Briggs et al. 10, the parametric survival function, Weibull, 

is preferable, as it allows the transition probabilities to change as a function of duration (such as 

time since diagnosis). Based on the Weibull model, separate hazard rates and transition 

probabilities could be estimated according to TNM stages for each year. The following equation 

and parameter was used:  

Let S(t) = exp [-H(t)] and H(t) = λtp , and inserted in Equation (1) the probability of failure 

during one cycle was given by 

 

 tp(tu)fail = 1 - exp[λ(t-u)p – λtp]                    (1*) 
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where λ was the “scale” factor and p the “shape” factor. If p<1, then (and statistical significant) 

there was evidence for a decreasing hazard over time. Further, let λ = exp (a0 + ∑ aiXi ) were i 

goes from 1 to n, then the nomenclature was given by 

 

tp(tu)fail = 1 - exp([exp (a0+ ∑ aiXi )](t-u)p – [exp (a0+ ∑ aiXi )] t
p)    (2) 

where a0 is the constant, a1 referred to age at diagnosis and a2 to gender. The estimated 

coefficients are reported in Table 2. Based on Equation (2), the transition probability of no 

failure during one cycle was given by 

 

tp(tu)no-fail = 1 - tp(tu)fail  = 𝑡𝑝𝑡,𝑎
𝑇𝑁𝑀,𝑇𝑁𝑀

     (3) 

 

The estimated coefficients from Equation (2) were used to estimate the transition probability of a 

failure during one specific year conditioned on surviving until the start of that specific year, 

reported in Table 2. For instance, will the transition probability for a cohort of 70-year-old 

individuals, diagnosed with TNM, stage II and with a 50/50 mix of men and women be 0.0757. 

Thus, according to Equation (3), the transition probability 𝑡𝑝2,72
𝐼𝐼𝑐,𝐼𝐼𝑐

 of staying in “disease free after 

II” from year two to three would be 0.9253 (1-0.0757). 

 

tp(3u) fail  = 1 - exp([exp (-6.91471+ 0.0389469 * 70 + 0.266219 * 0.5)](36-12) 0.7850102  

    - [exp (-6.91471+ 0.0389469 * 70 + 0.266219 * 0.5)] * 36 0.7850102)  

  = 0.0757  

 

where the parameter u (length of Markov cycle) was set to 12, because months were used in the 

analysis, while the length of a cycle was measured in years. Thus, after being treated according to 

the R0 resection and surviving without recurrence during the first and second year, 0.0757 of the 

patients would get a recurrence (local, distant, or both local and distant recurrence) or die of 

causes other than CRC during the third year. Then, according to Equation (3), the transition 

probability 𝑡𝑝2,72
𝐼𝐼𝑐,𝐼𝐼𝑐

 of staying in “disease free after II” from year two to three would be 1 – 0.0757 = 

0.9253. 
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Table 2. The parameters for estimating the transformation probability related to stages I–IV with R0 resection.  

Variables Parameter for DFS curve Parameter for TTR curve OS for  

recurr. I II III IV I II III IV 

ϒ   1.113 .785 .776 .837 .977 .655 .675 .714 .797 

a0 -11.087 -6.915 -6.086 -2.362 -11.609 -5.776 -4.876 -1.695 -5.299 

a1 (age) .068 .039 .034 -.007 .071 .026 .020 -.011 .039 

a2 

(gender) 

.408 .266 .251 .006 .422 .182 .150 -.268 .138 

OS is overall survival, DFS is disease-free survival, TTR is time to recurrence and ϒ is p in Stata. Source: 
OUS data. 

 

 

To estimate the transition probabilities from the primary year of treatment (year 0) to “disease free after 

TNM,” the above method needed to be adjusted. Only a proportion of the patients received R0 surgery, 

e.g., 0.943 in stage III (Table 4). Thus, if 0.824 of the R0 patients were estimated to be eligible for the 

“disease free after TNM” state (disease free survival) after primary treatment, then 0.824 * 0.943 = 0.777 of 

all the patients diagnosed with stage III would move from the clinical stage III to the first year of “disease 

free after stage III”, defined by 𝑡𝑝0,70
𝐼𝐼𝐼,𝐼𝐼𝐼𝑐

. The R0 correction was particularly important for stage IV, where 

only 0.059 got a R0 operation. In Table 3, row four, all the adjusted transition probabilities were reported. 

Adjustments were also needed for the transition probabilities connecting the treatment year after 

recurrence and the first year of being “disease free after recurrence”. For the rest of the years of “disease free after 

TNM”, Equation (3) was used to estimate the transition probabilities directly from the Weibull 

regressions, as argued above.  

 

Transition probabilities from primary treatment to recurrence were more complex to estimate. 

First, the parameters for time to recurrence (TTR) were estimated using the OUS data similarly to 

disease-free survival (DFS), and then the transition probabilities for recurrence were estimated by 

using Equation (2), i.e., the proportion of CRC-patients suffering a recurrence during primary 

treatment (year 0). The transition probability from primary treatment to recurrence also had to be 

adjusted by categorizing recurrences into local recurrence, distant recurrence and both local and 

distant recurrence.  
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The estimated transition probability from primary treatment in clinical stage II to local recurrence 

for a patient 70 years old was, as an example, defined by  

 

𝑡𝑝0,70
𝐼𝐼,𝐿𝑅

 =  RECII * R0II * LRofRII * (1 – CDREC30d 
– CDTNM+REC)    (4) 

 

where R0II was the portion of the stage II patients having R0 surgery and categorized as disease-free 

(Table 4) - only a disease-free person could get a recurrence. RECII was the probability of getting a 

recurrence during the first year of primary treatment for a stage-II patient, given that the patient had R0 

surgery for the primary CRC. Further, LRofRII was the portion of the RECII getting a local recurrence 

(LR). CDREC30d was the probability of dying during the first month after recurrence and was estimated to 

be 0.0422. These patients were excluded, because it was assumed that they died within 30 days after 

diagnosis of recurrence, or the recurrence was diagnosed post-mortem (autopsy). Further, it was assumed 

that these patients did not receive any treatment. CDTNM+REC was the probability of dying from CRC in 

the period of 2-12 months after the primary treatment, given that the patient had a recurrence that year. 

Hence, a double-counting of cost for patients dying within the first year was avoided (for both primary 

treatment and the treatment cost of recurrence). Inserting the coefficients from Table 4 for a 70-year-old 

patient in Equation (4), the transition probability was  

Table 3. Transition probabilities from primary treatment (according to TNM stages) to other health states. For 

the abbreviation in the first column, see also text box 1. Source: OUS. 

The probability to: Abbrevi-

ation 

TNM stages 

Stage I Stage II Stage III Stage IV 

Die within 30 days after surgery   𝑡𝑝0,70
𝑇𝑁𝑀,30𝑑

 .0030 .0310 .0290 .1120 

Die of CRC the first year after surgery   𝑡𝑝0,70
𝑇𝑁𝑀,𝐶𝐷

 .0016 .0108 .0270 .4185 

Receive palliative treatment the first and second 

year after treatment 
𝑡𝑝0

𝑇𝑁𝑀,𝑃𝑎
  .0000 .0000 .0000 .3718 

Be considered disease-free the first year after 

treatment 
 𝑡𝑝0,70

𝑇𝑁𝑀,𝑇𝑁𝑀𝑐
 .9646 .8479 .7766 .0375 

Get a local recurrence during the first year after 

treatment 
𝑡𝑝0,𝑎

𝑇𝑁𝑀,𝐿𝑅
 .0029 .0122 .0100 .0007 

Get both local and distant recurrence during the 

first year after treatment 
𝑡𝑝0,𝑎

𝑇𝑁𝑀,𝐿𝐷𝑅
 .0007 .0061 .0149 .0010 

Get a distant recurrence during the first year after 

treatment 
𝑡𝑝0,𝑎

𝑇𝑁𝑀,𝐷𝑅
 .0117 .0626 .0985 .0074 
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 𝑡𝑝0,70
𝐼𝐼,𝐿𝑅

 
 = 0.0994 * 0.957 * 0.151 * (1-0.0422-0.107) = 0.0122 

 

To estimate the transition probabilities for the subsequent years of recurrence from the health 

state of, e.g., “disease free after II” (see Figure 1), another formula was applied. For instance, the 

transition probability of a local recurrence (LR) for a stage-II patient in year three in the “disease 

free after II” was given by 

 

𝑡𝑝3
𝐼𝐼𝑐,𝐿𝑅

 =  (RECII,3 - (RECII,3 * CDREC30d 
)) * LRofRII     (5) 

 

RECII,3 was the probability of a patient getting a recurrence in stage II, given R0 surgery for the 

primary CRC and no recurrence until the end of the third year. By estimating RECII,3 * CDREC30d, 

Table 4. Conditional probabilities for estimating transition probabilities related to recurrence, given that the 

patients have received a R0 surgery.  

The probability of:  Abbrevi-

ation 

Stage 

I 

Stage 

II 

Stage 

III 

Stage 

IV 

Getting a recurrence (during the year of primary treatment) 

according to TNM stages, given R0 surgery for the primary 

CRC 

RECTNM 

.0177 .0994 .1665 .3668 

Getting a R0 surgery according to TNM stages R0TNM 1.000 .957 .943 .059 

Having a local recurrence (LR) (during the year of primary 

treatment) according to TNM stages, given a recurrence (R) 

and R0 surgery for the primary CRC 

LRofRTNM 

.190 .151 .081 .081 

Having a local and distant recurrence (LDR) (during the 

year of primary treatment) according to TNM stages, given a 

recurrence (R) and R0 surgery for the primary CRC 

LDRofRTNM 

.048 .075 .121 .108 

Having a distant recurrence (DR) (during the year of 

primary treatment) according to TNM stages, given a 

recurrence (R) and R0 surgery for the primary CRC 

DRofRTNM 

.762 .774 .798 .811 

Dying during the first month after being diagnosed with the 

first recurrence 

CDTNM+REC 

.088 .107 .172 .536 

Dying of CRC in the period two to twelve months after the 

primary treatment, given that the patient got a recurrence this 

year 

CDREC30d 

.0422 .0422 .0422 .0422 
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the probability for the stage II patients with recurrence to die within 30 days was found. RECII,3 

was estimated by Equation (2) to be 0.04635. Inserting this result together with the parameters in 

Table 4 in Equation (5), the transition probability used in the model for stage-II patients moving 

from “Disease free after II” in year three to treatment of local recurrence during year four was given 

by 

 

𝑡𝑝3
𝐼𝐼𝑐,𝐿𝑅

 =  (0.04365 - (0.04365 * 0.0422)) * 0.151 = 0.00631 

 

 

To estimate survival after recurrence, some simplifications were carried out because of the 

scarcity of data. Overall survival after recurrence (Table 2) was estimated, but due to lack of data, 

estimating re-recurrence and disease-free survival was impossible. As an approximation, time to 

recurrence and disease-free survival for Stage IV was used (Table 2) and adjusted by the 

difference between overall survival for recurrence and Stage IV.  

 

The adjusted time to recurrence and disease-free survival was shown in Table 6.  

 

Table 5. Transition probabilities from the first year of recurrence to other health states the next year. For the 

abbreviation in the second column, recall Box 1. Source: OUS. 

The probability of: Abbrevi-

ation 

Type of recurrence the patient 

are leaving (REC) 

Local 

recurr. 

Local & 

distant 

Distent 

recurr. 

Dying of CRC the first year after recurrence
  𝑡𝑝0

𝑅𝐸𝐶,𝐶𝐷
 .2234 .5934 .4334 

Receiving palliative treatment the first and second years after 

recurrence 
𝑡𝑝0

𝑅𝐸𝐶,𝑃𝑎
 

.6035 .3600 .3853 

Being considered disease-free the first year after recurrence
  𝑝0

𝑅𝐸𝐶,𝑅𝐸𝐶𝑐
 .1030 .0 .1097 

Getting a local recurrence the first year after being treated for 

recurrence
 

 𝑝0
𝑅𝐸𝐶,𝑅−𝐿𝑅

 
.0019 .0 .0 

Getting both a local and distant recurrence the first year after being 

treated for recurrence 
𝑝0

𝑅𝐸𝐶,𝑅−𝐿𝐷𝑅
 

.0025 .0 .0 

Getting a distant recurrence the first year after being treated for 

recurrence
 

 𝑝0
𝑅𝐸𝐶,𝑅−𝐷𝑅

 
.0191 .0 .0251 
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When considering the changes in both disease-free survival and time to recurrence and re-

recurrence in the states “disease-free after TNM” and “disease-free after REC”, tunnels of ten and six 

years were built respectively. An essential part of building the model was to use precise clinical 

endpoints, and the definitions of events (failures) and censoring of data were defined in Table 

1.A 10-year time frame was chosen for the tunnel states after primary treatment; consequently, 

no recurrence was assumed to occur 11 years after diagnosis (year of primary treatment and 10 

years into “disease free after TNM”). Further, time in the tunnel “disease free after REC” was limited to 

six years, as only a small fraction was left in the tunnel and the re-recurrence rate seemed to 

stabilize.    

 

Table 6: Transition probabilities for patients moving through the model after being “disease free” for the first recurrence or 

later recurrences. “Disease free” means that there is still no sign of CRC after a R0 resection after recurrence (or later 

recurrences).  

The number of years 

“disease free” after the 

year of R0 resection for 

recurrence or later 

recurrence 

Probability of moving to state of new recurrence 

 (local = R-LR, distant = R-DR, both = R-LDR) or 

dying  

From one 

year to the 

next in the 

“disease free 

tunnel” † 

R-LR R-DR R-

LDR 

CRC 

Mortality* 

No CRC 

Mortality 

 

 

Move 

from 

Disease free year 1 .0166 .1662 .0221 .0090 .0391 .7468 

Disease free year 2 .0162 .1618 .0215 .0088 .0444 .7473 

Disease free year 3 .0157 .1570 .0209 .0085 .0479 .7500 

Disease free year 4 .0152 .1521 .0203 .0083 .0510 .7532 

Disease free year 5 .0147 .1473 .0196 .0080 .0538 .7565 

Disease free years 

6, 7, etc.  
.0143 .1427 .0190 .0078 .0434 .7729 

 

* : The estimates show the probability of getting a recurrence and dying within one month (see also the text).  

†: The estimates show the transition probabilities moving from one year of being disease-free to the next year of being disease-

free (the probability of staying in the tunnel from one year to the next), that means the probability of staying “cured” another 

year.   
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2.2. Mortality  

 

2.2.1 CRC death 

CRC-death means death caused by colorectal cancer disease and death caused by CRC treatment. 

In the model, CRC deaths mainly occur in the year of treatment for primary diagnosed CRC or 

for recurrence and during the year with palliation. This means, if a patient got a recurrence in 

month four in year three after the primary treatment and died six months after CRC, then the 

model defines this as a recurrence, and the patient would move to the recurrence state for the 

next year, receive treatment, and die in that state of health (except those who die within 30 days 

after recurrence, as mentioned in the chapter above). The effect of this simplification is discussed 

in the article.  

 

To estimate the overall survival curve for the patient receiving palliative chemotherapy, the 

average of four studies was used 3-6. The percentages of patients surviving the first four years 

were 0.675, 0.350, 0.175, and 0.087, respectively. Equation (1) was used to estimate the transition 

probability of staying alive.  

 

To estimate the transition probabilities from the primary treatment of recurrence (first year of 

palliative treatment) to the second year of palliative treatment, we used Kaplan-Meier on OUS 

data and estimated the overall survival for the three groups of recurrence patients. The 

parameters used for mortality the first year after recurrence are 0.211, 0.593 and 0.427 for 

patients with local (LR), local and distant (LDR) and distant recurrences (DR), respectively.  

 

Based on OUS data, the probability of dying of CRC during the primary treatment year 

(according to stage) was estimated to be 0.0045, 0.0418, 0.0560 and 0.5305 for stage I, II, III and 

IV, respectively.  

 

2.2.2  Non-CRC mortality 

In the model, a distinction was made between mortality caused by CRC and all-cause mortality 

other than CRC. For the first 10 years after primary CRC-treatment, for a patient considered to 

be disease-free, the non-CRC mortality rate was calculated based on the OUS data according to 

stages I, II and III. The calculated mortality rate for the first years after primary CRC treatment 

was higher for 70-year-old patients considered to be disease-free than for cohorts of the same age 

in Norway. This could be attributable to the side effects of the treatment or co-morbidity by 
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other lifestyle-related diseases than CRC. At the end of the 10-year period, however, the mortality 

was 1.7 – 2.4% less for stages I-III than the normal rate, which could be attributed to a situation 

where the frailest persons died at the beginning of the period. After the 10-year period, this 

difference was subtracted from the relevant age-specific mortality rate collected from the 

Norwegian Life Table, and the result was used as non-CRC mortality for patients of ages 81-99. 

This age span was split into the age groups 81-83, 84-86, 87-89, 90-92, 93-95, 96-97 and 98-99. 

For stage IV, the non-CRC mortality was estimated to be higher than the normal population in 

the whole 10-year period. As an example, the non-CRC mortality for a patient of 70 years at the 

time of diagnosis who entered stage II and was disease-free for three years was given by 

 

𝑡𝑝3,73
𝐼𝐼𝑐,𝐷

  =  1  -  𝑡𝑝3,73
𝐼𝐼𝑐,𝑅𝐸𝐶

  -  𝑡𝑝3,73
𝐼𝐼𝑐,𝐼𝐼𝑐

 -  𝑡𝑝3,73
𝐼𝐼𝑐,𝐶𝐷

 

 

Where 𝑡𝑝3,73
𝐼𝐼𝑐,𝐶𝐷

 = RECII,3 * CDREC30d  

 

The same approach was used to estimate the non-CRC mortality for those disease-free after 

recurrence, except that the tunnel-state period lasted for six years. The same mortality probability 

was then used for all three types of recurrence (Table 6).  

 

The yearly probability of non-CRC death for patients in palliative chemotherapy treatment was 

assumed to be 4.66% the first 10 years and thereafter followed the same change in mortality risk 

as for those disease-free.   

 

2.3.     The data for the economic models 
 

Major cost components in this model were diagnostics; primary treatment (the first year after 

diagnosis), including surgery, chemotherapy, radiotherapy and side-effect treatment; follow-up; 

treatment related to recurrence (first year after recurrence); and palliative treatment.  

 

The health care cost per person per cycle depended on health states. By multiplying the cost for 

one patient staying one year in a health state by the number of patients staying in that specific 

health state for the same year, the total cost for all patients in each health state per year was 

estimated. The expected total CRC cost per patient was estimated by aggregating the cost over 

the total lifespans of the patients for all health states. 

Discussions about treatment often concern colon or rectum cancer, not colorectal cancer. The 

model merges these two together. To analyze colon and rectum cancer separately, the present 
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model structure could be used for both, but different data for treatment cost, type of treatment 

and recurrence rate have to be applied.     

 

2.3.1  Diagnostics  

When colorectal cancer is suspected, investigations to confirm the diagnosis and staging of the 

disease are carried out. The costs related to these examinations are listed in Table 8. In the model, 

every patient was assumed to receive one unit of each type of examination, except for rectal 

ultrasound and MRI, which was only received by patients with rectal cancer. 

 

2.3.2  Primary treatment cost 

In the model, the first year of treatment included cost of preoperative examinations, cancer 

treatment, palliative treatment of patients with non-resectable synchronous metastatic disease and 

the initial part of the follow-up. The quantity per patient and the cost per unit for the different 

components in the treatment are listed in Table 7.  

 

Generally, several of the frequencies were estimated by using a decision tree, where the 

distribution of CRC diagnosis between colon and rectum cancer was an important parameter. 

Based on OUS data, the percentage diagnosed with colon cancer at stages I, II, III and IV were 

51.0, 68.1, 65.9 and 70.6, respectively. 

 

The probability for a patient in stage II of receiving “colon resection with no complications 

(DRG 149)” was 0.401, while it was 0.023 for a patient in stage IV. The major treatment category 

for a patient diagnosed with a stage IV was “digestive malignancy with complications”, DRG 

172,2 where the proportion of patients that received such treatment during the first year after 

diagnosis was 1.525 – i.e., patients in this category had more than 50% probability of receiving 

the treatment (DRG 172) more than once in the first year.  

 

The unit cost for DRG rows no. 1-19 (Table 7) was based on DRG weights, while the unit cost 

for no. 20 and 21 was estimated on the basis of drug cost, time use, CT-scanning, and side 

effects.  

 

The source of the frequency estimate for stages I-IV, rows five to six and eleven to thirteen 

(Table 7) were based on NPR data 2. The other frequencies in rows 1-14 were based on OUS 

data.  
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The parameter for stage IV concerning metastasis (rows 15-18) was based on literature 11 12, 

Norwegian guidelines(24) and expert opinions. It was assumed that 0.5 of the stage-IV patients 

had metastasis in the liver, and 0.25 of these were eligible for resection. The equivalent 

parameters for metastasis in the lungs were 0.25 and 0.075, respectively. Further, resections for 

metastasis in any other organs were not included. Rows 17 and 18 indicate no-surgical supportive 

treatment and care and were adjusted upward to cover the all costs for treatment and care for 

metastasis.  

 

The frequencies in rows 20 and 21 were based on data from literature and expert opinion 13-18. 

2.3.3  Follow-up 

After CRC diagnosis and primary treatment, the patients were allocated to regular follow up, which 

could be given during the year of primary treatment (year 0). The frequency for the different 

types of follow-up and the cost per-unit of follow-up for stages II, III and IV were shown in Table 

8. For a patient treated for stage I, one unit outpatient consultation, CEA-test and colonoscopy 

during the primary treatment year after surgery, and one outpatient consultation and CEA-test 

annually during the ensuing five years was assumed. The follow-up frequency was based on 

national guidelines (24), and the rate of compliance was based on literature 19. 

   

2.3.4  Recurrence 

The data for treatment after recurrence was limited and not included in Table 7, but based on 

literature, similarities with the primary treatment shown in Table 7 were assumed. For a local 

recurrence, the frequencies of treatments described in rows one to four (Table 7) were estimated 

by assuming that 30% of all local recurrence underwent an attempt of curative resection of the 

recurrent tumor, and this was split between the colon and the rectum, as for stage III. The 

frequency of treatment related to rows 11-13 was assumed to be identical with stage III. For 

radiotherapy (row 19), the frequencies were assumed to be 0.215, based on the Norwegian Rectal 

Cancer Registry and literature 15. For palliative chemotherapy (row 20), adjustments were made, 

as many patients do not receive palliative chemotherapy due to old age, co-morbidity and poor 

performance status 20. The first period after local recurrence, the frequency for receiving palliative 

chemotherapy was in fact marginal, but some period after diagnosis, a proportion of these 

patients would receive palliative treatment. This proportion was assumed to be 0.49 and was used 

in the estimation of LR treatment cost. 
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For distant recurrence (DR), the frequencies were assumed to be identical with stage IV for rows 

13 and 15-21. For patients with both local and distant recurrence (LDR), the same parameters as 

for stage IV were used, except that the following was assumed: there was (i) no major resection, 

(ii) the probability of getting palliative treatment was increased to 0.754, and (iii) frequencies in 

rows 19 and 21 were assumed to be zero.  

2.3.5 Radiotherapy 

To find the parameter for radiotherapy in Table 7, we used decision trees and split the CRC 

patients into those with colon cancer and those with rectum cancer and used literature and expert 

opinion to get estimates of radiotherapy use 13 16-18 20. Further, for some of the parameters, we also 

had to consider that only patients with resection in stages I–III receive radiotherapy. The cost per 

fraction of radiotherapy is based on the DRG score, and patients were assumed to have 25 

fractions each.  

 

2.3.6  Adjuvant and perioperative chemotherapy 

The parameter for adjuvant chemotherapy stages II and III was estimated the same way as for 

radiotherapy by dividing colon and rectum cancers. Literature and expert opinion was used to 

obtain estimates for chemotherapy use 21. For rectum stage II, we assumed no adjuvant 

chemotherapy, according to Norwegian guidelines (24). A problem with these parameter values is 

the changes over time. The administration of adjuvant chemotherapy in stage-III patients older 

than 75 years increased from 19% in the years 1989–1993 to 79% in 2004–2006, and from 1% to 

19% in these periods for stage-III patients 75 years or older 13.  
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Table 7. Frequency per-patient and values per-unit for primary treatments, used within the base case model 

analysis. The frequencies show how many times the average patient with a certain diagnosis receives the treatment 

stated (see also the text). Treatment for recurrence is not included.  

Treatment first year after primary 
diagnosis (DRG, medical: M, surgical: S) 

 
row 
no. 

Primary treatment stage 
Unit 
cost, (€) 

Source  

 I  II III IV 

Resection of primary tumor       
 

Colon resection, w (148, S) 1 .210 .280 .458 .443 23,913 
OUS 

Colon resection, n (149, S) 2 .300 .401 .192 .023 11,688 
OUS 

Rectal resection, w (146, S) 3 .267 .174 .218 .120 18,546 
OUS 

Rectal resection, n (147, S) 4 .221 .145 .119 .0 12,486 
OUS 

Non-resectional surgery        
 

Endoscopic therapy colon; 
closure stoma, w (152, S) 

5 .0 .0 .045 .026 9,539 
NPR 

Endoscopic therapy colon; 
closure stoma, n (153, S) 

6 .036 .036 .090 .026 6,758 
NPR 

Endoscopic therapy rectum;  
TEM, w (157, S) 

7 .0 .0 .0 .101 5,519 
OUS 

Endoscopic therapy rectum;  
TEM, n (158, S) 

8 .0 .0 .0 .034 2,748 
OUS 

GI obstruction, w (180, S) 9 .0 .0 .0 .044 3,939 
OUS 

GI obstruction, n (181, S) 10 .0 .0 .0 .015 2,140 
OUS 

Endoscopic/other treatment       
 

Digestive malignancy, w (172, M) 11 .0 .107 .493 1.526 7,526 
NPR 

Digestive malignancy, n (173, M) 12 .0 .0 .164 .184 4,409 
NPR 

Aftercare and rehabilitation (465) 13 .0 .0 .030 .553 6,207 
NPR 

Endoscopic insertion of stent to gastro. 
tract, short therapy (703O)  

14 .0 .0 .0 .008 1,310 
OUS 

Treatment for metastasis       
 

Resection       
 

Liver metastasis resection, w (191B, S)  15 .0 .0 .0 .125 26,528 
19,20, 11,12 

Lung metastasis resection (75, S) 16 .0 .0 .0 .019 18,968 
19,12 

No-surgical supportive treatment and care       
 

Liver metastasis (203, M) 17 .0 .0 .0 .188 6,468 
NPR, exp 

Lung metastasis (82, M)  18 .0 .0 .0 .075 7,664 
NPR, exp 
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(Continuing) 

Treatment first year after primary 
diagnosis (DRG, medical: M, surgical: S) 

 
row 
no. 

Primary treatment stage 
Unit 
cost, (€) 

Source  

 I  II III IV 

Chemo- and radiotherapy       
 

Radiotherapy (409E, M) 19 .033 .075 .147 .056 645 * 
15 20, exp 

Palliative chemotherapy (M) 20 .0 .0 .0 .610 20,183† 
13 15-18 

Adjuvant chemotherapy (M) 21 .0 .054 .535 .05 
8,677/ 
7,494 

13 15-18 

w: with complications or co-morbidities 
n: without complications or co-morbidities  
exp: Expert opinion 
OUS: Observational study at Oslo University Hospital – Aker 
NPR: National Patient Register based on data organized by Aas 2 
*: Cost per visit at hospital for radiotherapy 
†: The cost first year of palliative treatment 
 

 

Perioperative chemotherapy was only assumed for stage IV, and based on expert opinions, 10% 

of the stage IV patients are assumed to receive this therapy 22. 

 

For estimating the cost per therapy for stage III in Table 7, row 21, we assume nine rounds of 

oxaliplatin therapy (development of neurotoxicity) and 12 cycles of 5FU. We also assume that 

50% receive 5FU and the other 50% receive the other therapy. For stages II and IV, we assume 

12 rounds of therapy for both.  

 

The cost of the drug from pharmacy is based on oncolex.org. Further, we took into account the 

cost of CT-scanning, complications, and time that the nurse, pharmacist and medical practitioner 

use when giving the therapy. 
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Table 8. Examinations before surgery (all stages) and follow-up during primary treatment and the following 

years, compliance, cost per unit and data source.  

Examination  Before 

surgery 

       Follow up, stage II and III (stage IV)  Cost

/unit 

(€) 

Source 

unit 

cost 

Prim. 

treat. 

Y.1 Y 2 Y 3 Y 4 Y 5 Comp 

Outpatient 

consultation 
1 3 (3) 2(2) 2(2) 1(2) 1(2) 1(2) 1 308 DRG 

CT abdomen/liver/ 

pelvis (“bekken”) 
1 1 (3) (2) (2) (2) (2) 1(2) 0.85 411 Marked 

Colonoscopy 1 1 (1)     1 0.57 289 DRG 

CEA-test 1 2 (3) 2(2) 2(2) 1(2) 1(2) 1(2) 0.63 16 Marked 

Ultrasound, rectum  ReCa        128 Marked 

MRI, rectum ReCa        250 Marked 

Biopsy 1        494 DRG 

Proctoscopy  ReCa   ReCa ReCa ReCa 0.57 251 DRG 

CT scan lungs   1 1 1 1  0.85 141 Marked 

CT scan liver   2 2 1 1  0.85 193 Marked 

 “ReCa”: only rectal cancer  

“Marked”: price per unit was based on the private market of health service in Norway 

“Comp.”: compliance for following up 

 

2.3.7  Palliative chemotherapy 

The structure of the data for palliative chemotherapy treatment required that a decision tree 

(Figure 5) be used to estimate costs according to treatment paths before being distributed to the 

treatment years in the Markov model. In Figure 5, number at each branch indicated the 

conditional probability, and the number in the brackets was the joint (total) probability for 

obtaining a certain type of treatment for a patient starting with palliative chemotherapy treatment. 

As an example, it was assumed that 71% of the patients have good health (high PS) and obtained 

first-line palliative chemotherapy treatment. Of these patients, 40% receive bevacizumab, 

together with FLIRI or FLOX, which constitutes 28.4% (0.71 * 0.4 * 100%) of all patients 

receiving palliative chemotherapy. Of the others, 30% received FLIRI and 70% FLOX 23. 

Population-based studies shows that approximately one third of mCRC patients do not receive 

palliative chemotherapy at all 13 16-18 20. In the model, 61% of stage-IV patients received palliative 

chemotherapy13 16-18 20. Of the patients receiving first-line treatment, 60% received second-line 

palliative chemotherapy treatment 4. Of these, 60% will be KRAS wild types and suitable for 

EGFR (epidermal growth factor receptor) inhibitor treatment. 
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For each treatment in the decision tree, separate cost models took into account the cost of the 

drug, CT-scanning, complications, and time the nurse, pharmacist and medical practitioner use 

when giving the therapy. Table 9 shows the cost of components for the different palliative 

chemotherapy treatments. The medicine costs include all costs at the pharmacy (drug, time use, 

equipment, etc.) and were derived from oncolex. The cost of 5-FU/FA (5-fluororuracil/folinic 

acid) was based on the Nordic 5FU/FA schedule (Nordic Flv) 6. The costs related to CT, time 

usage and treatment intensity were derived from literature 24. Unit costs for side effects (excl. 

nausea) were derived from the DRG system 2011. The model is corrected for non-compliance 

and withdrawal from the chemotherapy treatment.   

 

The cost model for palliative treatment above has no timeline, which complicated the discounting 

of the costs. As a simplification, we have distributed the total costs for the three lines of 

treatment over a three-year period and then summarized the total costs for all three lines. The 

total palliative treatment costs were €35,880 and were distributed to each treatment year (one, 

two and three) with the weights of 56.3, 34.9 and 8.9%, respectively.  

 

Table 9. The costs of different components of the palliative chemotherapies (euro).  

Components in the 
5-

FU/FA 
Bevacizumab Bevacizumab      FLIRI     FLOX EGFR + 

treatment      + FLIRI    + FLOX 1. line 2. line 1. line 2. line  irinotecan 

Medicine (from pharmacy) 3,081 32,734 31,772 5,789 4,211 5,083 3,697 30,873 

Administered in hospital 479 1,197 1,197 439 319 878 638 2,154 

CT-scanning 1,029 1,179 1,179 943 686 943 686 2,831 

Out-patient consultation 1,497 1,834 1,834 1,384 1,047 1,384 1,047 2,171 

Side effects* 1,121 1,699 1,699 1,072 925 1,072 925 1,548 

Sum cost 7,206 38,643 37,681 9,627 7,188 9,360 6,993 39,577 

* Side effects include sepsis, intestine perforation, arterial thromboembolism and medicine for nausea. 
Diarrhea is included in another part of the model.  
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Figure 5. The decision tree for patients treated with palliative chemotherapy (61% of all stage-IV patients). 
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Appendix 2 (paper II):  More on application of the model  

(App. 2: Published in a Web-only format) 

 

 

Some applications and advantages of the model should be emphasized. First, the most obvious 

and direct use of the model is to estimate the cost and survival time for an average CRC patient 

according to disease stage. The CRC costs can be divided into different cost components, such as 

primary treatment, follow-up and palliative treatment. Different survival distributions can be 

estimated by using different endpoints and can be performed with stratification by stage and R-

classification after the primary treatment or after different types of recurrence.  

 

Second, the model can estimate final outcomes from changes in intermediate outcomes. The model 

estimates changes in costs and survival by applying different rates of recurrence or mortality, 

such as a decline in recurrence and mortality rate due to improvements in preoperative 

diagnostics, surgery and other treatment modalities for patients treated at a specific hospital. 

Incremental costs per patient due to marginal changes in resource use can also be estimated, such 

as an increased use of bevacizumab therapy or increasing unit prices, e.g., the price for drugs. 

Based on intermediate outcomes from randomized controlled trials - like the percentage of the 

population diagnosed with CRC; distribution between stages; recurrence or the survival rate after, 

for instance, three or five years; or relative risk - the model can estimate final outcomes like 

treatment costs and overall survival during the lifespan until the age of 100 years. 

 

Thirdly, the model can be used in economic evaluations. By applying modest adjustments and further 

developments, the model is suitable for performing economic evaluations of different types of 

screening and prevention and follow-up. The model can also evaluate the effects of present or 

future variations in treatment strategies, including new surgical techniques and technology, an 

increased and changing use of chemotherapy, the indication of a treatment shift, increased 

treatment of elderly and the cost of implementing a new drug treatment. The general structure of 

the model enables comparative analysis of different types of CRC interventions within the same 

model, like comparing CRC screening with curative interventions. Almost all published cost-

effectiveness analyses of screening compares one kind of CRC screening with another and not 

with other kinds of interventions in the health service.       
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Fourthly, the model can estimate resource use. By including the use of resources, like labor, 

instruments, blood, medication and beds for each procedure, the model could be used to predict 

the need for extra personnel or instruments for new or extended CRC treatment.   

 

Fifthly, the model can adjust for change in parameters over time (time-dependency). The model can 

simultaneously take into account the time since CRC treatment, consequences of the age of the 

CRC patients (mortality, recurrence, primary treatment cost, etc.), progress in the treatment 

(changes in the recurrence rate and survival, etc.) and change in cost and resource-use over time. 

For this, we use eight tunnels and a three-dimensional data matrix.  

 

Sixthly, the model is transferable to other countries that have access to the same types of data, like 

the OUS data. Calibration has not been used in this model; thus, applying data from another 

country and building the model with the recommendations and assumptions in this article, the 

model should, in principle, have a similar goodness of fit.  

 

Additionally, by using the widespread software Excel, modified versions of this type of model 

could also be used for other purposes. E.g. decision makers could use the model by changing the 

model inputs and gain preliminary insight about potential health benefits and costs of new 

emerging treatment strategies.  
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“The paper adds box” 

What is already known on this subject 

 

 The pricing of a new generation of cancer drugs, in combination with limited health care 

resources, has highlighted the need for improving the methodology to estimate outcomes 

and economical effects of different treatment options. 

 Compared to estimating the cost of CRC treatment empirically, which is the dominant 

way to do it up to now, model-based CRC cost estimates have several advantages, and to 

the best of our knowledge this is the first general CRC model estimating both treatment 

cost and survival.  

  

What this study adds 

 

 The presented and used CRC model is flexible and capable for modifying many aspects 

of health care costs for CRC treatment, such as prices, type and intensity of treatment and 

follow up, recurrence rates, CRC and non-CRC mortality. 

 Health care cost of successful CRC treatment can be many times higher than 

unsuccessful, and changed palliative treatment practice can increase the average CRC cost 

substantially. 

 The cost of CRC treatment appears to be modest compared with the years at stake 

(alternative cost), and reducing recurrence rate by better surgery and achievable 

preventive efforts like screening of asymptomatic persons, could have a considerable 

cost-effectiveness potential. 
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Abstract  

 

Background: Colorectal cancer (CRC) is the third most common cancer in the world and the 

cause of major morbidity and mortality for many patients with high costs for the health care 

system. The aim of this study was to estimate the total lifetime health care cost of CRC treatment 

and survival and explore the consequences of altered prevention or surgical and medical 

treatment.  

Methods:  We applied a semi-Markov model with 70 health states and tracked patients' age and time since 

specific health states. The parameters were based on an observational study (2 049 CRC patients), the 

National Patient Register, literature and expert opinions.  

Results: According to our model, the cost for an average CRC patient was €41 550, which varied 

from €23 390 to €61 400 depending on the disease stage at diagnosis. The cost of CRC was much 

higher in patients with both a recurrence after primary surgery and receiving bevacizumab as part 

of the palliative treatment, with €116 100 and €137 470 for stages I and IV, respectively. A 20% 

cost change for palliative drugs have only a minor effect on average CRC costs (< 2%), while 

altered indications for use of palliative chemotherapy increased the cost by up to 29%. 

A 5% reduction in recurrence for stages I-III would reduce the cost by €2 280 per patient (5.5%) 

and increase the overall survival by 0.80 year per patient. This could be attained by e.g., better 

surgery or possibly by post-cancer lifestyle interventions. Applying the suggested threshold for a 

QALY gained, the health sector's willingness-to-invest in a 5% reduction in recurrence rate 

would be €61 306 per average CRC patient and €506 380 per average CRC case prevented in the 

first place.   

Conclusions: Cost of CRC treatment appears to be modest compared with the years at stake. Altered 

decisions about palliative treatment can increase the average CRC cost substantially. Reducing the 

recurrence rate by better surgery and achievable preventive efforts like screening of asymptomatic persons 

could have a considerable cost-effectiveness potential.  
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1. Introduction 

 
Cancer is a major cause of morbidity and mortality in the Western world, with colorectal cancer 

being the second most common cancer in women and third in men25. Norway is among the 

countries in the world with the highest incidence of CRC, higher than any other Nordic country 

26. The treatment of colorectal cancer is becoming a significant financial burden to health-care 

systems within economically developed countries. A current challenge for oncologists and health-

care payers is the integration of new, often high-cost, therapies into clinical practice. The pricing 

of a new generation of cancer drugs, in combination with limited health care resources, has 

highlighted the need for improving the methodology to estimate the outcomes of different 

treatment options. Inherent to this process is the consideration of cost-effectiveness. Several 

studies have analysed the cost-effectiveness of new medical treatments 27-32, screening 2 33-35, 

surgical techniques and perioperative care 36-39 for CRC. 

 

There are, however, wide variations in the clinical management of CRC patients with advanced 

disease 40. Descriptions of current treatment pathways are necessary for economic evaluations. 

Variations in clinical practice must be reflected in a model to ensure that findings from an 

economic evaluation are sufficient to inform policy regarding an optimal use of resources. 

Increases in CRC prevalence in the future, combined with scarce resources, highlight the 

importance of such studies for informing health-care policy and program planning. In our 

present CRC model, all aspects of health care costs for CRC treatment are included and could be 

modified, such as prices, type and intensity of treatment, recurrence rates, and CRC and non-

CRC mortality. In a recent paper, the model was presented and validated 1. This model is useful 

for (i) estimating CRC costs and survival, (ii) estimating final outcomes from intermediate 

outcomes, (iii) performing health economic evaluations, (iv) estimating resources required, (v) 

capturing the effect of duration since diagnosis on age-related mortality and recurrence, (vi) 

estimating the cost of changing treatment strategies, and (vii) calculating the opportunity cost of 

reducing the investment in CRC care. 

 

The aim of the present article was to use the Decision Analytic Model developed by Joranger et al 

1 to estimate the cost and survival of colorectal cancer treatment and explore the potential 

consequences of altered treatment or prevention strategies. 
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2. Methods  

 

2.1 The model 

 

In brief, the estimation of costs and survival in this paper is based on a semi-Markov model, and 

details are published in Joranger et al1. The flow of CRC patients was simulated through the 

model from CRC diagnosis, through  periods of treatment and healthy periods until the patients 

were 100 years of age or had died from CRC or other causes (Figure 1). Each arrow reflects the 

probability of an average CRC patient moving from one health state to another during one cycle 

or maintaining in the same health state (follow the loops). In the model, the duration of one cycle 

is set to one year. For each health state, there was a cost model estimating the cost of the health 

service provided per person per year.  

 

(Figure 1) 

 

We estimated total CRC costs and the survival of an average CRC patient diagnosed at the age of 

70 years. 

 

The present version of the model has the health sector budget perspective. Included in the costs 

were all CRC treatments, including diagnostic and staging investigations, surgery, follow up, 

treatment for complications, treatment of recurrence and advanced disease (including 

radiotherapy and chemotherapy), and visits to general practitioners.  

The patient enters the model at the time of primary diagnosis in one of the TNM stages (I, II, III 

and IV), and the first step includes the cost of primary work-up and treatment during the first 

year after diagnosis. The following year, the patient may move to the health state “disease free”, 

which means that the tumour has been resected, and there is neither evidence of macro- or 

microscopic residual tumour locoregionally nor clinical or radiological evidence of distant 

metastases. Alternatively for this year, the patients may move to palliative care, recurrence, or to 

one of the two death states.     
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For most patients with stage IV, the treatment intention is palliative. A large proportion of these 

patients do not receive any specific anti-cancer therapy but the best supportive care until entering 

“Dead by CRC”.  

A separate decision tree (Figure 2) for estimating the cost of palliative chemotherapy was 

developed and included in the Markov Model (Figure 1). The first number at each branch 

indicated the conditional probability, and in the brackets the jointly (total) probability for 

obtaining a certain type of treatment for a patient starting with palliative chemotherapy1. For each 

treatment in the decision tree, separate cost models were developed, which included the cost of 

drugs, CT scanning, complications, and the time spent on therapy by the nurse, pharmacist and 

medical practitioner. The model adjusted for non-compliance and discontinuation of 

chemotherapy.   

 

The majority of the patients entering one of the three recurrence stages received palliative chemotherapy. 

Some patients received resection with curative intent, adjuvant chemotherapy, radiotherapy or only the 

best supportive care. The probabilities of receiving the treatments depended on the type of recurrence, 

either local recurrence, distant recurrence or both.    

 

Time-dependency in the calculation of probabilities for recurrences or death was captured in the model by 

including tunnel states.  

 

We applied a 4 percent discount rate for the cost and both zero and 4 percent for overall survival 41 42. All 

cost results were in 2011 euros (used average 2011: 1 euro = 7.79 NOK).   

 

 

2.3 Data sources 

 

We used Norwegian data when possible. An important source of data for estimating recurrence, 

disease-free survival, and surgical treatments was an observational study from 1993 to 2010, 

including 2049 patients diagnosed with CRC at Oslo University Hospital – Aker (referred to as 

OUS data) 43 44. Information from the National Patient Register (referred to as NPR data), based 

on data (years 2003 and 2004) related to an analysis by Aas 2, was used to quantify some types of 

treatments. Other data sources were national life tables, international published papers (such as 

overall survival for patients receiving palliative chemotherapy) and expert opinions by one 

colorectal surgeon, one oncologist and one gastroenterologist. Calibration is often used as a 
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complement to data sources, but it was concluded that calibration was not needed due to a good 

fit of the model 1. 

The estimation of the rate of recurrence, disease-free survival and overall survival was based on 

an average CRC patient diagnosed at 70 years of age. The treatment and resource use data were 

based on an average CRC patient, normally diagnosed at the age of 55-85 years. All cost estimates 

included colon and rectum cancer jointly but were weighted by their share of CRC patients 

according to the TNM stage.     

 

2.3   Validation and uncertainty analysis 

 

The model validation by Joranger et al. 1 for face-, internal-, cross- and external validity showed a 

satisfactory match with other models and real-life observations for both cost and survival time, 

without any preceding calibration of the model.  

We used a one-way and multi-way sensitivity analysis for exploring parameter-, methodological- 

and model-structure uncertainty.  

 

 

3. Results 

 

3.1   Stage cost 

 

The total lifetime health care CRC cost and loss-of-life years were reported on average for all 

patients and according to stages (Table 1). Based on our model, a 70-year-old patient has an 

expected lifetime CRC cost of €41 550. The expected cost increased with the TNM stage at 

€23 390, €33 500, €49 900 and €61 400 for stages I, II, III and IV, respectively. Table 1 shows 

the costs and survival for the base case scenario, which later will be compared with changing 

treatment strategies.    

  

3.2   Type and phase of treatment    

 

The treatments with the greatest impact on total lifetime costs (Table 1) were the operation of 

the primary tumor (€17 910) and palliative chemotherapy (€9 590). Costs related to diagnostic 
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examinations, adjuvant treatment and follow-up in general were modest for all stages. For stage 

IV, the costs for “surgery – major resection” (€16 890), “surgery - other” (€19 030) and palliative 

chemotherapy (€22 190) were dominating.  “Surgery – major resection” was the major cost 

component for stages I and II. Variations between stages depend on differences in treatment, the 

mix of colon and rectum cases, and the proportion having cancer recurrence.  

When categorizing treatment costs according to the clinical pathway, starting with primary 

examinations and ending with palliative chemotherapy (Table 1), costs varied according to TNM 

stage at the time of diagnosis. A stage IV patient had the highest expected cost both for primary 

treatment (€36 940) and palliative treatment (€22 190), while a stage III patient had the highest 

expected cost of treatment for recurrence (€5 590).  

 

3.3 High- and low-cost scenarios 

 

Above, we used average cost estimates, i.e., the average of all treatment scenarios that the CRC 

population could enter. Treatment costs for a patient could also be estimated conditioned on 

certain low- and high-cost scenarios. A stage I patient receiving a major resection without (radio) 

chemotherapy and who did not experience recurrence, represented a normal low-cost scenario, 

with €14 490 in expected treatment costs. The high-cost scenario is represented by patients 

experiencing recurrence after surgery and receiving the maximum of palliative chemotherapy with 

bevacizumab during the last year of palliative treatment. Expected costs for such patients were on 

average €127 930 and €137 470 for a stage I and IV patients respectively (Table 1). This finding 

indicated that a relatively common high-cost treatment scenario was nine times more costly than 

a relatively normal low-cost treatment scenario.  

 

3.5 Survival and loss of years 

 

According to the model, life expectancy for an average CRC patient diagnosed at the age of 70 

years was 9.3 years (7.0 years assuming a 4% discount), implying 6.3 years lost (4.1 years, 

discounted) compared to an average 70-year Norwegian (Table 1). Life expectancy for a stage I 

patient was 14.0 years (1.6 years lost), compared to 1.5 years (14.1 years lost) for a stage IV 

patient.    

 

(Table 1) 
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3.6  Cost of palliative chemotherapy scenarios 

 

Palliative chemotherapy is an important and increasing cost component as new and expensive 

treatment protocols are introduced. Table 2 reports the estimated cost of various full-treatment 

scenarios based on the palliative treatment strategies presented in Figure 2. FLIRI is an 

irinotecan-based and FLOX an oxaliplatin-based chemotherapy schedule, and 5-FU/FA (5-

fluororuracil/folinic acid) is based on Nordic 5FU/FA treatment protocol (Nordic Flv). The cost 

difference between the full treatment scenario “5-FU/FA (1st line) and EGFR-inhibitor +irinotecan 

(2nd line)” and the scenario “bevacizumab and FLIRI (1st line), FLOX (2nd line) and EGFR-inhibitor 

+irinotecan (3rd line)” is €38 430 (€46 780 versus €85 210), where the strategy with bevacizumab 

represents the latter. Further, we found that using “bevacizumab and FLIRI” in the 1st line instead 

of using only “FLIRI” implied an extra cost of approximately €29 010 (€85 210 versus €56 200).  

 

(Figure 2) 

 

For the average patient receiving palliative chemotherapy, the most expensive part of the 

treatment scenarios was the combined treatment of “bevacizumab and FLIRI” in the 1st line (€9 

880), “FLOX” in the 2nd line (€1 070), and the “EGFR-inhibitor + irinotecan” in the 3rd line (€3 

640). These costs for the average CRC patient were combinations of the price of the treatment 

regime and the probability of receiving the treatment.  

 

(Table 2) 

 

3.6.1  Altered choice of chemotherapy schedule 

To show the importance of uncertainty in the input data and the possible impact of future 

decisions, we estimated the effect of changes in both prices and probabilities (Appendix 2). Most 

sensitive to changes in treatment costs were the “EGFR (cetuximab/panitumumab) + irinotecan 

treatment” and “bevacizumab + FLIRI treatment” protocols. 

 

The use of bevacizumab is changing in Norway. In the model, we assumed that 29 percent of 

patients on palliative chemotherapy were treated with this drug. If all these patients were to 

receive bevacizumab (scenario 1 in Table 3), then the total cost for an average CRC-patient 

would increase 13.8 percent (€5 730). This change in treatment regimens would increase the 

treatment costs in Norway by €20.8 mill per year (3 600 diagnosed CRC patients per year) and 

€4.16 per capita per year. If no one received bevacizumab, the cost would decrease by 5.4 percent 
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(€2 240 per patient), and the Norwegian health sector expenditure would decrease by €8.2 mill 

(€1.67 per capita) according to the model. If those receiving FLIRI/FLOX in the 1st line of 

treatment instead received “bevacizumab + FLIRI/FLOX”, the cost would increase by 8.1 percent 

(€3 360) per patient and increase the health sector expenditure in Norway by €12.2 mill (€2.43 

per capita).    

 

3.6.2  Increased use of chemotherapy in the elderly 

Colorectal cancer is common in elderly patients, and approximately 40 percent of the patients are 

75 years or older. The number of elderly patients diagnosed with CRC is increasing, and studies 

suggest a more "fit" population of elderly in the future 45. Elderly patients with CRC have  a 

poorer outcome than younger patients, prescription of chemotherapy is inversely associated with 

age 46-48, and when receiving chemotherapy, combined chemotherapy is less-often prescribed to 

the elderly 20. There is an ongoing discussion as to whether elderly patients are undertreated or 

not 20 46 49.   

(Table 3) 

 

What would be the effect on CRC costs of treating a greater number of older patients with 

palliative chemotherapy? One extreme scenario would be to assume that everybody would 

receive palliative chemotherapy (Scenario 5, Table 3). If we use the current chemotherapy pattern 

of prescription, the cost for an average CRC patient would increase by 9.4 percent (€3 910). If all 

of these patients were to receive bevacizumab in the 1st line of treatment (scenario 6), then the 

total cost for an average CRC patient would instead increase by 28.8 percent (€11 970).  

 

3.7   Reduced recurrence rate 

 

Reduction in recurrence rates would affect both survival and health care CRC costs and might be 

achieved by better training of the surgeon, new surgical techniques, concentration of CRC 

treatment to fewer centres with robust multidisciplinary teams or by better methods to find high-

risk patients who need adjuvant chemotherapy 44 50-52. In a meta-analysis, a volume-outcome 

relationship in colorectal cancer surgery was found, based on hospital and surgeon caseload and 

specialization 50. Further, a relationship between surgeon experience and local recurrence for 

rectal cancer has also been shown 44.   
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According to the model, a 5 percent reduction in a 10-year recurrence rate (from 32.5 to 27.5 

percent) for stage I-III would reduce the cost by €2 280 per patient (-5.5 percent) and increase 

overall survival by 0.80 year (it would be 0.64 year if we discount overall survival by 4% per year). 

This would imply 2 320 life years saved per year in Norway. According to the cancer registry of 

Norway, 3 624 were diagnosed with CRC in 2009, and 79.8 percent were diagnosed with stage I, 

II or III disease (OUS-data). A 5 percent reduction in recurrence would then reduce the health 

cost for Norway by €6.60 mill per year (€1.31 per capita). In Norway, the threshold willingness-

to-pay (WTP) for a QALY gained has been suggested to be €73 783 per QALY gained (in EURO 

2011).  Given this threshold, the society’s willingness to invest in interventions that could 

contribute to a 5% reduction in recurrence was €61 306 per average CRC patient (€2 280 + [0.80 

year * €73 783 per year) in stage I, II or III (or €49 110 when survival was discounted by 4% per 

year). In total, this sums up to €177 mill per year (€61 306 per patient * 3 624 patients per year * 

0.798 in stage I, II or II) and €28.2 per capita. 

 

3.8  Primary prevention 

Primary prevention of CRC might be achieved by screening for and removing precursor lesions, 

by physical activity, modifications in the diet and lifestyle including smoking cessation and 

prevention of weight gain, and by using anti-inflammatory drugs. Primary prevention reduces the 

number of CRC cases in all stages. The outcome of preventive intervention for CRC can be 

estimated by means of the model. The cost saving for the health sector per CRC case prevented 

is estimated in Table 1 to be €41 550. Additionally, the average CRC patient will lose 6.3 years of 

life (4.1 years 4% discounted), according to the model. Given the threshold, society's willingness-

to-invest in preventive intervention is estimated to be €506 380 per CRC case prevented (€41 550 

+ [6.3 year * €73 783 per year]) and €344 060 per CRC case prevented if both cost and survival 

are discounted by 4%.  

 

3.9  Screening – gain from stage migration 

There have been randomized controlled trials on CRC screening in several countries. We used 

the model to analyze the effect when using the result from Denmark and the UK 14 53. In both 

trials, faecal occult blood tests (FOBT) were used to discover cancer in an earlier, asymptomatic 

stage; reduce the cost; and increase the overall survival. Table 4 shows that CRC patients 

diagnosed in a screening program have a more favourable stage distribution than those in the 

control groups. The stage migration effect was more pronounced in the UK trial than in the 

http://en.wikipedia.org/wiki/Faecal_occult_blood_test
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Danish trial. Patients in the screening group were 50-74 years old and 45-74 years, respectively, in 

these trials.        

According to the model used on the data from Denmark, the health sector saved €13.1 per 

screened individual and €6 410 per discovered CRC (both excluding the screening cost). The 

result based on the UK trial was €19.0 and €9 054. The savings were partly a result of less 

severely staged CRC requiring less treatment and the reduced probability of recurrence or 

advanced disease.  

 

(Table 4) 

 

3.10  Uncertainty 

 

For most inputs, the model was insensitive to a 20-percent change. The total cost seemed most 

sensitive to changes in frequency of surgery and the use of bevacizumab in palliative treatment 

(see Appendices 1 and 2).  

Generally, the cost results seemed to be sensitive to changes in treatment algorithms. This is 

especially important for evaluation studies with long-time horizons, such as for CRC screening 

and prevention. Due to a lack of data and continuous changes in the use of expensive 

chemotherapies, uncertainty in palliative chemotherapy seems to be an important area to address.            

 

 

4 Discussion 

 

The estimated lifetime, health care CRC cost for an average CRC patient was €41 550 and was 

highly dependent on the disease stage at diagnosis (€23 390 to €61 400). Compared with an 

empirical (“model-free”) Norwegian study by Aas 2, our overall cost estimate was 39 percent 

higher, but only 1.3 percent higher after adjusting for differences in the included cost and time 

horizon (see more in 1). The increase in costs according to the disease stage was in line with 

Ladabaum et al. 54 and Frazier et al. 34, while Brown et al. 55 found an increase in cost from stages 

I to III but a decrease from stage III to IV. However, comparing our CRC costs with non-

Norwegian studies is difficult because of differences in unit costs and assumptions for the 

analyses 56. Nevertheless, we compared our results with a recent Irish study by Tilton et al. that 

described the treatment regime and other important conditions that allowed for adjustment based 

on relevant differences 57. When adjusting for the exchange rate, annual Irish inflation 2008-2011, 



129 

 

and important differences in unit prices and treatment regimens between the two studies, the cost 

difference between Tilton’s and our model was -3.0, -1.3, 3.6 and -1.2 percent for stages I, II, III 

and IV, respectively, all within the estimated confidence intervals of the former study (see more 

in 1).  

 

The cost of cancer treatment estimated by the model generally seemed to be modest when 

comparing the cost of treating an average CRC patient with the number of years saved by the 

treatment, especially for a patient with tumor stage I, II or III. For these stages and given the 

WTP threshold mentioned, the willingness to invest for the years saved was 29.8 times the cost 

of a successful treatment in the first place (no recurrence)2, and if we discounted future years, the 

result would be 20.5 times. For the average stage I-III patient (inclusive recurrences) the 

willingness to invest was 12.6 times the total average cost of CRC treatment per patient (7.7 times 

if discounting the years). For all these calculations we assumed that the CRC patients diagnosed 

to stage I, II or III at the age of 70 years, on average would have a life expectancy of 5 years 

without treatment. This implies that the general cost to society of taking resources from CRC 

cancer treatment and use them for other purposes could be very high (high alternative cost).     

 

There is considerable uncertainty related to the assumption about the treatment regimens for 

palliative chemotherapy. The regimens are changing over time and differ between regions. 

Because of a lack of national data, we had to rely on a combination of published studies and 

expert opinions, the latter usually considered an uncertain source of data. On the other hand, 

experts may adjust for the expected change over time and between regions, so the in-data used 

could be brought closer to the present reality than estimates in the literature.    

 

We found that a 5 percentage point reduction in a 10-year recurrence rate for stages I-III would reduce 

the CRC cost by €2 280 per patient and increase overall survival by 0.80 year per patient. Based 

on these findings and the declared, suggested threshold of €73 783 per QALY gained, the 

Norwegian health sector should be willing to invest €177 mill in total per year to achieve this 

reduction in recurrence rate (see Section 3.7). Our assumption about 5 percentage point 

reduction seems to be a moderate change. A study indicates that the recurrence rate for patients 

operated on by different surgeons can vary considerably 44. Approximately 3 000 colorectal 

                                                 
2 For the CRC patients treated at an age of 70 year and who got no recurrence (successful treatment), we assumed 
that they would still live 15.56 years on average. Further we only included treatment cost related to the primary 
examination, the primary treatment, and the follow up of this first treatment (see Table 1).   
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resections for malignancy are performed each year in Norway. Assuming that each colorectal 

surgeon should perform at least 15 resections each year to maintain competence, a maximum of 

200 surgeons is needed in this field 58. A comprehensive training program (initial colorectal 

surgery training and yearly follow-up training) using modern educational tools (such as 

simulators, operations on animals, etc.), accompanied with workshops and lectures by highly 

experienced and skilled colorectal surgeons, radiologists and pathologists, probably has the 

potential of improving the results far more than indicated above and to a cost far below €177 mill 

per year. Such training programs could therefore be highly cost-effective. Assuming that a 

comprehensive training program would cost €300 000 per surgeon and the effect would be a 

reduction in recurrence rate by 5 percent point, the investment would be paid back after only six 

operations for CRC. As a simplification, we used the value for a QALY as the value for a life-year 

saved. By adjusting for QALYs, we expect that the estimated gain from reduced recurrence 

would increase.   

 

The estimates for 5 percentage point reduction in a 10-year recurrence rate could also be relevant for 

estimating possible gains from post-cancer prevention like lifestyle interventions (nutrition, 

physical activity, etc.). Some studies show significant effects of such interventions 59-67, but these 

effects are highly uncertain because of the scarcity of high-quality, randomized controlled trials 66 

67. When evaluating post-CRC cancer prevention, we also have to take into account possible 

changes in the quality of life, physical functioning, and the ability to tolerate treatment, as well as 

reduce fatigue, co-morbidity and non-CRC death 66 67. 

 

In Section 3.8.1, we estimated the total willingness-to-invest per CRC case avoided by primary 

prevention to be €526 140. We assume that the chance for getting CRC could be reduced by 20 

percent as a result of preventive interventions – like lifestyle interventions – and that the chance 

of getting CRC is 6 percent during a life. Given the suggested threshold, we would be willing to 

invest €6 080 per average person in Norway to avoid a CRC case (€506 380 * 6% * 20%). 

Additionally, lifestyle interventions have other positive effects, which also have to be accounted 

for in the estimates.          

 

For the screening analysis, the estimates did not consider that some of the persons diagnosed 

with CRC in the screening group would have died of something else before their CRC had given 

symptoms to be diagnosed without screening. This implies overtreatment for the screening 

group, where some of the CRCs were unnecessarily discovered, which adds extra cost for the 
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screening group that was not included in our estimates. To include this in the analysis, we need 

data for the percent of the population with undiagnosed CRC who die of non-CRC causes.    

 

For a discussion of the model's weakness and further development see Joranger et al 1. 

 

 

5 Conclusions 

Comparing the cost of treating an average patient with the number of years at stake, the health 

care cost of colorectal cancer seems generally to be modest. The lifetime health sector CRC cost 

is increasing, along with the stage of the disease and whether or not the patient experiences 

recurrence after an apparently curative resection.    

 

Changes in the use of palliative chemotherapy will have a major impact on the average CRC cost. 

Reducing the recurrence rate by better surgery and achievable, preventive efforts like screening of 

asymptomatic persons, could have a considerable cost-effectiveness potential.  

 

The different applications of the model illustrate how the model could be applied to evaluate a 

broad range of interventions (general model), making the model useful for health decision makers 

and health authorities. 
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Tables 
 
Table 1. Percent in each stage, lifetime cost (euro) of CRC and survival time for a 70-year old CRC patient. 

  All-stages Stage I Stage II Stage III Stage IV 

Percent in each stage at diagnosis 100.0 17.8 36.3 25.7 20.2 

Total lifetime cost  
41 550 23 390 33 500 49 900 61 400 

Different types of treatment  
     

Preop diagnostics and staging 
2 050 1 900 2 110 2 350 1 690 

Surgery - Major resection  
17 910 16 640 17 500 20 180 16 890 

Surgery – other 
7 230 940 2 850 8 510 19 030 

Adjuv./neoadj. Chemotherapy 
1 340 24 530 4 100 450 

Radiotherapy 
1 620 690 1 580 2 850 950 

Follow up, in total 
1 810 690 2 730 2 530 200 

Palliative chemotherapy 
9 590 2 500 6 210 9 380 22 190 

Different phases in the treatment  
     

Primary examination 
1 650 1 700 1 640 1 650 1 630 

Primary treatment  
25 330 16 950 19 150 30 740 36 940 

Follow up first treatment 
1 690 640 2 590 2 320 180 

Examination and treatment of recurrence (1st 

year with diagnosed recurrence) 
3 170 1 540 3 780 5 590 440 

Follow up after recurrence 
120 58 140 210 17 

Palliative chemotherapy 
9 590 2 500 6 210 9 380 22 190 

Cost scenarios  
     

Low (no complications and recurrence) 
 14 490 17 200 23 590  

High (Full treatment incl. recurr. and 

bevacizumab) 
127 930 116 100 123 150 135 010 137 470 

Survival (years)            

Years survived after diagnosis 9.3 14.0 11.5 9.0 1.5 

Years survived after diagn., discounted (4%)  7.0 10.3 8.6 7.0 1.4 

Life years lost 6.3 1.6 4.1 6.6 14.1 

Life years lost, discounted (2%) 5.1 1.2 3.2 5.2 11.6 

Life years lost, discounted (4%) 4.1 0.9 2.6 4.2 9.7 

            

 



136 

 

Table 2. Costs (€) of palliative chemotherapy for various full-treatment scenarios (receiving all treatments in the 

scenario), and the cost of the average patient starting palliative chemotherapy (assuming base-case conditional 

probabilities in Figure 2).  

Treatment scenarios Full treatment 
cost per patient 

Mean cost per patient with palliative 
treatment 

1st line 2nd line 3rd line All lines 
5-FU/FA, FLOX, EGFR + irinotecan 53 780 420 240 800 1 470 

5-FU/FA, FLIRI, EGFR + irinotecan 53 970 1 050 630 2 010 3 680 

5-FU/FA, EGFR + irinotecan 46 780 630 2 010 - 2 640 

bevacizumab and FLIRI, FLOX, EGFR 
+ irinotecan 85 210 9 880 1 070 3 640 14 590 

bevacizumab and FLOX, FLIRI, EGFR 
+ irinotecan 84 450 1 070 120 410 1 600 

FLIRI, FLOX, EGFR + irinotecan 56 200 1 230 540 1 820 3 590 

FLOX, FLIRI, EGFR + irinotecan 56 130 2 790 1 290 4 250 8 330 

5-FU/FA, FLOX, EGFR + irinotecan - 17 060 5 900 12 930 35 880 

EGFR= Epidermal Growth Factor Inhibitor. 

Table 3. Scenarios of palliative chemotherapy treatment show percent change and change in the  

cost of an average CRC patient, compared with base case.  

Selected treatment scenario 
Cost change 

(percent) Cost change (€) 

1. All patients getting palliative chemotherapy 

receive bevacizumab2  
13.8                 5 730 

2. No patients receive bevacizumab  -5.4               -2 240  

3. Those with FLIRI/FLOX in 1st line 

treatment in base case, receive instead 

bevacizumab and FLIRI/FLOX  
8.1                 3 360  

4. Bevacizumab price from pharmacy reduced 

50% 
-2.3                 -960  

5. "All" patients not disease-free after 

treatment, receive palliative chemotherapy (see 

text) 
9.4                 3 910  

6. All patients in scenario 5 above receive 

bevacizumab in 1st line treatment (see text) 28.8 

                11 

970  

7. Ten percent point moved from 5FU/FA-

treatment (often old patients) to combination 

chemotherapy with bevacizumab  

2.0                  820  

8. Ten percent point more get palliative 

chemotherapy 
2.3                  960   
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Table 4. Shows how the CRC patients are distributed in the screening and control group. 

 Denmark UK (Nottingham) 

Screened Control Screened Control 

Stage I 0.370 0.148 0.506 0.151 

Stage II 0.277 0.338 0.205 0.346 

Stage III 0.272 0.300 0.241 0.285 

Stage IV 0.081 0.214 0.048 0.218 

 

 
 
 



138 

 

Figures 

 

 
 
 
 
 

 

 
 
 
Figure 1 illustrates how the patient can move from state to state in the model. DF means disease 
free. Source: P. Joranger et al1   
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Figure 2. The decision-tree for palliative chemotherapy. Conditional probabilities without brackets.  

Source: P. Joranger et al1   

EGFR=Epidermal Growth Factor Inhibitor. 
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Appendix 1 (paper III):  
One-way and multi-way sensitivity analyses 
 

(App. 1: Published in a Web-only format) 

 

We did a one-way sensitivity analysis where we increased the relevant parameter by 20 percent. 

The most important parameter was selected and shown as blue columns in Figure A1.1. These 

columns can both be analyzed as a result of price change or change in the use of resources. The 

green columns show selected changes of parameters normally decided by the government as 

partly empirically based, and the dark gray are different scenarios (see more in Tables 3 and A2.1 

in appendix 2). 

 

 

From the group to the left in Figure A1.1 (“Discount rate”), we see that the cost of an average 

CRC patient changes just about +/- 1 percent if the discount rate changes from 3, 4 or 5 percent, 

 
Figure A1.1 Percent change in total cost (all stages) when parameters are increased by 20 percent (the blue 
column) or changed as shown in the figure or in the text.   
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which is normally the alternative value of the rate. The last green columns show that the cost 

changes by 3.5 percent if the value pr DRG increases by 5 percent. 

 

In the blue column, the resection of the colon (5.7 percent) and rectum (2.5 percent) has the 

largest effect on the total cost (group 2). Our data are reliable for the probability for the different 

CRC patients having these resections, so the increase of 20 percent seems to be large compared 

to the real uncertainty for these parameters. The cost estimate used per resection is based on the 

DRG score system and is a common method in health evaluation today, but it is nevertheless 

criticized for having low reliability (Drummond et al . 2005, s. 59).  

In group 3, we see that a 20 percent increase for all radiation (0.8 percent) or for all kinds of 

neoadjuvant or adjuvant chemotherapy treatments (0.7 percent) has less than a percent effect on 

the total CRC cost for all-stages.    

 

For group 4, we analyze the effect of changing the probability of receiving a certain treatment by 

20 percent and see that the results are affected by more than one percent for three of the 

elements. There is a lack of relevant statistics for this parameter, and we relied partly on expert 

opinion. Further, this parameter does change over time. Some possible effects of change are 

shown by the three dark gray columns. Palliative chemotherapy seems to be an important area for 

controlling uncertainty in the cost analysis, both because of the scarcity of data and the changing 

use of expensive drugs.         

      

For “6. Cost of medicine” (price from pharmacy), we expect the parameter to be close to the prices 

the hospital paid for medicine in 2011. However, these prices often change over time and 

contribute with important uncertainty to the study of long-time horizons (study of screening).          

The first three dark-gray columns to the right show the effect on the cost when different 

transition probabilities are changed. The first column shows the change in the 10-year recurrence 

rate of 5 percent down, reducing the cost by 5.5 percent for stages I, II and III as a whole. This 

seems to be a test of both the uncertainty for the level of the parameters present value, and a 

relevant change for future years in the real value of recurrence.  

 

Also, the stage distribution will influence the all-stage CRC cost. If we increase stages I and II by 

two percentage points and reduce stage III and IV by two percent, the cost will decrease by 2.6 

percent. Further, if we change our distribution to that similar to the control group in the UK 

(Nottingham) study or the Danish study (ref), then the cost will increase by 2.8 and 3.2 percent, 
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respectively. This indicates that comparing all-stage CRC costs between populations can be 

disturbed by a different stage distribution. This can be important when some countries have 

screening programs and others do not. The last column shows the cost reduction (12.2 percent) if 

the stage distribution was changed to the screening group in the Danish study 53.  

 

Generally, the cost results seemed to be sensitive to changes in treatment algorithms (e.g., 

palliative chemotherapy and screening). This is especially important for evaluation studies with 

long-time horizons, such as for CRC screening and prevention. Due to a lack of data and 

continuous changes in the use of expensive chemotherapies, uncertainty in palliative 

chemotherapy seems to be an important area to address.            
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Appendix 2 (paper III):  
Change in the cost of palliative chemotherapy 
 

  

(App. 2: Published in a Web-only format) 

 
 
 
Table A2.1. The change in cost for an average CRC patient when increasing the input variable by 20 percent or 
10 percentage point.  

Treatment          20 percent increase 
0.1 quota increase 
1 

  
Percent 
change Cost change Percent change 

     

Change in the probability of receiving    

5FU/FA in 1st line (5FU/FA-scenario) -0.48 -200 -0.83 

Chemotherapy, 2nd line in "5FU/FA-scenario" 0.72 300 0.60 

Bevacizumab, 1st line, assume in "no-5FU/FA-sc." 1.08 450 1.35 

Chemotherapy, 2nd line, assume in "no-5FU/FA-sc." 1.66 690 1.38 

Chemotherapy (EGFR+irinotecan), 3rd line 1.63 680 1.36 
     

Change in cost for the treatment    

Nordic Flv 0.27 110  

Bevacizumab+FLIRI 1.29 540  

Bevacizumab+FLOX 0.14 60  

FLIRI 1st linje 0.16 70  

FLOX 1st linje 0.37 150  

EGFR (Cetuximab + irinotecan) 1.89 780  
     

Change in the cost of the medicine    

Bevacizumab 0.92 380  

FLIRI 0.51 210  

FLOX 0.54 220  

EGFR (Cetuximab + irinotecan) 1.47 610  

5FU/FA 0.24 100  
     

 

 

To show the importance of uncertainty in the input data, we estimated the effect of changes in 

both prices and probabilities (Table A2.1). Most sensitive to the 20 percent change in treatment 

cost were the EGFR (cetuximab) + irinotecan treatment with a 1.89 percent change (€780) and 

the “bevacizumab + FLIRI” treatment with a 1.29 percent change (€540). 
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When we only took into account a 20-percent increase in drug costs from the pharmacy, EGFR 

(cetuximab + irinotecan) had a 1.47 percent change (€610) and bevacizumab a 0.92 percent 

change (€380). The price of 5FU/FA was least sensitive (0.24 percent, €100) to a 20 percent 

change. 
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Paper IV 
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Appendix A: The mathematical model 

 

A1  Introduction 

In this supplementary data, we show the core equation on which the simulation model was 

based. We begun by presenting the equations for estimating the cost of the different 

interventions: screening, diagnosis of scoliosis, confirming scoliosis > 20º, brace treatment 

and surgery. Then we estimated the fraction of children receiving the each category of 

interventions in the various scenarios. In the end we merged the estimated costs and the 

estimated fractions to estimate the cost pr child for each category of intervention and for the 

different scenarios. 

 

The methodology used in the cost-minimizing analysis and discounting are presented in the 

main text of the manuscript and based on  general literature on health economic evaluation 

like Drummond et al1 or Hunink et al2. Methods for performing decision models probabilistic 

are based on Briggs et al.3 The simulation model was built in Microsoft Excel. For the 

probabilistic sensitivity analysis we used the software @risk which is a part of the Decision 

Tools Suite software. The software @risk works is an extension to Excel.   

 

 

A2  Estimation of cost of screening, brace treatment and surgery – all scenarios 

Estimating the cost of the school screening per examination: 

 

Cs = (u1 • uc1) + m + s 

 

u1  = Number of minutes (units) used pr child pr examination (se row 1 in Table 1). 

uc1  = Cost pr minute (unit cost) used pr examination (se row 1 in Table 1). 

m  = Cost of materials and supplies per examination. 

s = Cost of scoliometer pr examination. 

 

Estimating the cost of diagnosing one child for scoliosis: 

 

Ccon = tcon + radcon 
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tcon = Cost of transportation to/from X-ray exam (se row 4 in Table 1). 

radcon = Cost of radiographs (se row 5 in Table 1). 

 

Estimating the cost per confirmation of scoliosis > 20º: 

 

Ccon>20 = tcon>20 + qcon>20 + radcon>20 

 

tcon = Transport to/from specialist evaluation (se row 6 in Table 1). 

qcon>20  = Specialist evaluation (se row 7 in Table 1). 

radcon>20 = Radiographs (se row 8 in Table 1). 

Estimating the cost of brace per treatment: 

 

Cb  =  Σ(uj • ucj) 

 

Where j = 9 to 16 in table 1. For example for j = 11 are u11 • uc11  equal to 3 hospital hotel 

days multiplied with €212 per day in hospital hotel, and likewise for the other cost 

components of brace treatment.  

 

Estimating the cost per operation: 

 

Csu  =  im + t + Σ(hi • hci) +  Σ(uj • ucj) 

 

im  =  Utilities/implants cost per operation 

t  =  Cost for transportation home after surgery. 

hi  =  Hour used of health personal in category i. 

hci  =  Cost pr hour pr person of health personal in category i. 

uj  = Number of units used of category j. 

ucj  = Cost pr unit of category j. 

 

Where i = 18 to 21 in Table 1, and j = 22 to 30 in Table 1.  

 

For each child receiving an operation, 15% were assumed to be re-operated. So, per child 

operated the cost will be 100% + 15% of the costs estimated by the equation above.      
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A3  Estimating the fraction of children receiving each category of interventions 

A3.1  The screened group 

The fraction of the screened children receiving the different category of interventions is 

entirely based on the Hong Kong study: 

 

Fscj  =  TrHKj /ChHK  

 

Fscj  = The fraction of children in the screening group receiving intervention category j.  

TrHKj = The number of children in the Hong Kong study receiving intervention category j. 

ChHK  = The number of children participating in the Hong Kong study.  

 

Here, j = 31 to 34, were 31 means diagnosing scoliosis, 32 means confirming scoliosis > 20º, 

33 means brace treatment and 34 means surgery.  

 

A3.2  The non-screening group 

A3.2.1  Non-screening scenario Norway 

The fraction of children receiving surgery or brace treatment: 

 

FnscNj  =  TrNj/ChN  

 

FnscNj  = The fraction of children receiving intervention category j.  

TrNj = The number of children 2012 in Norway receiving intervention category j. 

Here, j = 33 and 34, were 33 means brace treatment and 34 means surgery. The number of 

surgery cases is the number of children receiving surgeon only and the number of children 

receiving surgeon after being braced.   

ChN  = The number of children in Norway in the age cohort of year 2012.  

 

To estimate the number of children 2012 in Norway receiving surgery (TrN34 ) we took the 

number of children receiving surgery as the first treatment option and added the 10% of the 

children receiving bracing as first treatment option because these children receive in addition 

surgery later on.   

The fraction of the non-screened children confirmed for scoliosis or scoliosis > 20º: 
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FnscNj   =   (((TrHKj /ChHK) • ChN) • Fr-conf) / ChN)  =   ((TrHKj /ChHK) • Fr-conf)   

 

Fr-conf = The fraction of the screened children confirmed for scoliosis or scoliosis > 20º, who 

also would be confirmed for scoliosis or scoliosis > 20º if the same group was not screened. 

Fr-conf was assumed to be 0.15. The treatment rate for the Norwegian scenario was 73%. To 

change this according to the scenarios with different treatment rate we adjusted the FnscNj to 

fit for the 80% scenario by multiplying FnscNj with 0.8, and for 70% scenario by multiplying 

with 0.7.   

 

Here, j = 31 and 32, were 31 means confirmed for scoliosis and 32 means confirmed for 

scoliosis > 20º.  

 

A3.2.2   Non-screening scenario 70%, 80% and 90% 

We illustrate by using the 80% non-screening scenario. The same type of equations was used 

for the 70% and 90% scenarios.   

The fraction of the children in a year cohort (or the chance pr child) receiving surgery or brace 

treatment for the 80% non-screening scenarios: 

 

Fnsc80j  =  Tr80j/ChN  

 

Fnsc80j  =  The fraction of children receiving category j treatment for the 80% non-screening 

scenario. 

Tr80j  =  The number of children receiving category j of treatment in the 80% non-screening 

scenario.  

Here, j = 33 and 34, were 33 means brace treatment and 34 means surgery.  

 

In the 80% non-screening scenario, number receiving brace treatment and surgery, 

respectively:  

 

Tr8033 = ((TrN33/(TrN33 + TrN34)) * TrNifHK) * 0,8      

 

Tr8034 = ((TrN34/(TrN33 + TrN34)) * TrNifHK) * 0,8      
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Tr8033 = The number receiving brace treatment for the 80% non-screening scenario.  

Tr8034 = The number receiving surgery for the 80% non-screening scenario. The number of 

surgery cases is the number of children receiving surgeon only and the number of children 

receiving surgeon after being braced.   

TrNifHK = Total number treated with brace or surgery in Norway if the group was screened 

and treated as for the Hong Kong children. This parameter help us linking the fraction of 

treated when non-screened to the fraction of treated if screened – treatment among the non-

screened is here 80% of the treatment among the screened.   

 

TrNifHK = Σ ((TrHKj /ChHK) * ChN) 

 

Here, j = 33 and 34, were 33 means brace treatment and 34 means surgery. 

Note that, when we use the notion “treatment rate” in the main text, we do not “double-count” 

the cases of surgery. Instead we refer to the rate of children treated by brace or sugary, where 

those who are both receiving braced and surgery are included among the braced.  

 

A4  Estimating the cost pr child  

A4.1  The screened group 

Here we estimate the cost pr child in a cohort (defined as the selected one year cohort) for the 

different interventions.  

 

CChSsc =  1 * Cs  

 

CChScon =  Fsc31 * Ccon   

 

CChScon>20 =  Fsc32 * Ccon>20   

 

CChSb =  Fsc33 * Cb   

 

CChSsu =  Fsc34 * Csu   
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CChSsc =  Cost of school screening pr child screened.  

CChScon =  Cost of confirming scoliosis pr child screened. 

CChScon>20 =  Cost of confirming scoliosis > 20º pr child screened. 

CChSb =  Cost of bracing pr child screened. 

CChSsu =  Cost of surgery pr child screened. 

 

A4.2  The non-screening group 

Here we use the 80% scenario as an example. 

 

CChN-Scon  =  FnscN31  * Ccon  * 0.8 

 

CChN-Scon>20  =  FnscN32  * Ccon>20  * 0.8 

 

CChN-Sb  =  Fnsc8033 * Cb   

 

CChN-Ssu  =  Fnsc8034 * Csu   

 

CChN-Scon  =  Cost of confirming scoliosis pr child not screened. 

CChN-Scon>20  =  Cost of confirming scoliosis > 20º pr child not screened. 

CChN-Sb  =  Cost of bracing pr child not screened. 

CChN-Ssu  =  Cost of surgery pr child screened. 

 

These cost pr child pr intervention was dispersed over a 6 year period as described in the main 

text of the manuscript. The incremental cost was estimated by subtracting the total discounted 

cost pr non-screened child from the total discounted cost pr screened child.  
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