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Similarly, assessment of the impact of network-caused 
fragmentation on meta-population dynamics requires direct 
study at the landscape-scale. Although studies on gene flow 
and genetic diversity can address questions related to bar-
rier effects and network-caused fragmentation at a large spa-
tial scale (Simmons et al. 2010, Proctor et al. 2012), they 
are constrained by the time needed for genetic effects to 
appear in wild populations (especially for long-lived species, 
Anderson et al. 2010) and do not capture individual space 
use. It is also worth noting that typically only a small fraction 
of a population is transient at any given time. Many indi-
viduals in wild populations maintain home ranges for most 
of their life, it is thus important to not only focus on the 
impediment to long-distance migration and dispersal, but 
also on the constraints that fragmentation poses to resident 
movements and the configuration of home ranges within the 
population (Morales et al. 2010, Poessel et al. 2014).

When it comes to animal movements, ecologists have 
primarily studied roads as local barriers (Riley et al. 2006, 
Sawaya et al. 2014, Proctor et al. 2015, Wilson et al. 2015). 
We think two primary challenges have hindered the move 
up and across scale: 1) the conceptual focus on the process 
of crossing or not-crossing linear barriers and 2) the scope 
of the empirical data typically used to study wildlife move-
ments. In this article, we suggest solutions to both of these 
challenges to population- and network-scale assessment of 
barrier effects, which we then implement using an empirical 
example.
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In a world dissected and heavily impacted by roads, road 
ecology has emerged as an important applied ecological dis-
cipline (Forman and Alexander 1998). Networks of roads 
cover entire landscapes, and their impacts extend from 
individuals and their surroundings to the scale of popula-
tions, landscapes and the ecological processes associated with 
ecosystem functions (Tikka et al. 2001, Gibbs and Shriver 
2002, Rytwinski and Fahrig 2012). Furthermore, policies 
implemented at network scales, i.e. at levels comprising 
the collection of multiple roads forming a web, have the 
potential of vast and far-reaching impacts (Turner 2006, 
Selva et al. 2011). Thus, ecologists are encouraged to study 
the higher-order environmental impacts, not only local 
effects (Balkenhol and Waits 2009, van der Ree et al. 2011, 
Manel and Holderegger 2013).

Local barrier effects are constituents of large-scale frag-
mentation caused by transportation networks (Jaeger et al. 
2005). Yet, effects quantified at the individual road level 
cannot readily be extrapolated to the network scale. For 
example, network configuration could modulate ecological 
impacts (e.g. effects of gridded versus parallel configuration 
on fragmentation and mortality; Jaeger et al. 2006), but is 
not captured fully by studies taking place solely at a local 
scale (Jaeger et al. 2006, Coffin 2007, Roedenbeck 2007). 
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The first challenge concerns the need to move the 
conceptual perspective beyond individual roads as linear 
barriers to animal movement. We can view landscapes 
cut up by road networks as habitat mosaics (Jaeger 2000). 
These mosaics are composed of individual segments, here-
after referred to as road network tiles (RNT) or simply 
‘tiles’. This is analogous to the basic setup in island bioge-
ography (MacArthur and Wilson 1967): the road network 
represents the inhospitable habitat or ‘sea’, surrounding 
and separating more or less habitable tiles (‘islands’). Each 
tile in a network is surrounded by roads (or other potential 
non-habitat for terrestrial animals, e.g. rivers and oceans) 
and has its own set of biotic and abiotic characteristics, 
such as geometry, size, habitat composition, biodiversity 
and factors directly related to human impact. This concep-
tualization as a mosaic made up of individual tiles already 
forms the basis for the calculation of effective mesh size 
in road ecology (Jaeger 2000, Moser et al. 2007), a geo-
metric measure of fragmentation that relates to the size of 
un-dissected tiles in the mosaic created by road networks. 
The multiple-fragment perspective has proven useful for 
examining other aspects of environmental impacts of road 
networks, for example to monitor ecosystem degradation 
(Roch and Jaeger 2014) and to measure the structural 
diversity of landscapes (Walz 2015). In terms of wildlife 
mobility, the conceptual representation of road networks as 
a collection of more or less isolated tiles allows us to move 
from quantifying the resistance to crossing from one side 

of a road to the other, to quantifying the extent of isolation 
between tiles in the network (Fig. 1).

The second challenge concerns access to empirical 
information about individual movements at the level of 
populations and road-networks. Telemetry applications 
(e.g. GPS or VHF tags) remain the primary means for 
obtaining animal movement and space-use data (Cagnacci 
et al. 2010). GPS telemetry in particular has the poten-
tial to yield copious amounts of precise relocation data 
for tracked individuals (Hebblewhite and Haydon 2010). 
Nevertheless, the demand on resources and the nature of 
field implementation usually mean that a) only a small 
fraction of a population can be equipped with tracking 
devices (Hebblewhite and Haydon 2010) and b) selection 
of the tracked sample of individuals is usually not random 
and may therefore not be representative of the population 
(Millspaugh and Marzluff 2001, Hebblewhite and Haydon 
2010). In short, the empirical information used for move-
ment analyses matches the scale of a few individuals and 
roads (Dyer et al. 2002, Riley et al. 2006, Gagnon et al. 
2007), not populations and road networks. During the past 
two decades, non-invasive genetic sampling – the collec-
tion of hair, feathers, scat and other material left behind by 
animals, followed by DNA extraction and genetic analysis 
– has emerged as a popular alternative or complement to 
intensive individual-based monitoring (Taberlet et al. 1999, 
Mills et al. 2000). Genetic sampling can yield individual-
based data at the population and landscape level, which are 

Figure 1. Illustration of the spatial process of DNA deposition and the corresponding detection process. Due to its inherent link with home 
range use, probability of detection is a decay function of distance from the individual’s activity centre (bottom panel). Resistance to 
movements beyond the network tile that contains an individual’s acivity centre is modelled as an additional drop in the detection function. 
Top panels show the utilization distribution (darker: higher density) for the same hypothetical population (white dots: individual activity 
centres), with (right) and without (left) a road network.
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in turn used to study a variety of natural phenomena asso-
ciated with wild populations and communities, including 
abundance and population dynamics, which were formerly 
reserved for studies involving physical mark–recapture 
(Boulanger et al. 2008, Mondol et al. 2009, Cubaynes 
et al. 2010). Genetic methods have already proved useful 
for exploring road effects at both local and landscape scales 
(reviewed by Balkenhol and Waits 2009), although when 
applied within road ecology, the focus has remained on 
quantifying barrier effects on local genetic connectivity 
(Sawaya et al. 2014, Wilson et al. 2015).

In this study, we estimate the contemporary network-
level effect of roads on space use by a large carnivore. We 
do so by tapping into the individual-based spatial informa-
tion contained in genotyped DNA samples of brown bears 
Ursus arctos collected across the species’ range in Sweden. 
Using spatial capture–recapture analysis, we 1) introduce 
an approach for quantifying the network-scale barrier and 
fragmentation effect of roads and 2) demonstrate that road-
induced impediment of movements across the landscape can 
be pervasive even for notoriously mobile and wide-ranging 
species.

Methods

Spatial capture–recapture model

We use spatial capture–recapture (SCR) analysis as a start-
ing point for developing our model. Traditional capture–
recapture (CR) models estimate detection probability, 
thereby controlling for the biasing effect of imperfect detec-
tion on focal parameters in ecological investigations, such 
as presence/absence, abundance and survival (Williams et al. 
2002). Recently developed SCR models expand CR models 
by accounting for the fact that both ecological and obser-
vation processes are patently spatial (Efford et al. 2009b, 
Royle et al. 2013). Common to all SCR models is that they 
include a functional expression for the declining probability 
of detection with increasing distance from the centre of an 
individual’s activity (activity centre, AC), a latent variable. 
The probability p of detecting individual i at detector j in 
a grid of detectors can, for example, be modelled as a half-
normal function of the distance d between the detector and 
the individual’s centre of activity (Fig. 1; see also Efford et al. 
2009b)
p p exp dij ij= −0

2 22( / )σ  (1)

Where p0 and s are the magnitude and scale parameter, 
respectively.

Typical SCR models allow for, and in fact estimate, the 
presence of individuals that remained undetected during 
sampling. If z is the true state of an individual (present: 
z  1; absent: z  0), observations y (detection: y  1; non-
detection: y  0) of individuals at any given detector follow a 
Bernoulli distribution with probability zi pij (shown here for 
a single time step).
y z binomial z pij i i ij| ~ ( , )1  (2)

For detailed information about spatial capture–recapture 
models and their various uses and permutations see for 
example Royle et al. (2013).

The goal of our analysis is to estimate the tendency of an 
individual to stay within the habitat tile in a road network 
that contains its AC. We make two adjustments to the basic 
SCR model described in Eq. 1 and 2. First, to simplify the 
model and because we are not interested in estimating abun-
dance or density, we make individual presence conditional 
on having been detected at least once. This removes z (Eq. 2) 
from the formulation of the likelihood
y binomial pij ij~ ( , )1  (3)

Second, we add parameter w to the detection function. The 
resistance parameter w signifies the change in an individual’s 
use of the state–space (and consequently its probability of 
being detected) outside the tile in which the individual’s AC 
is located. We provide D as an indicator variable that speci-
fies whether the current location j is inside (D  0) or out-
side (D  1) the tile that contains the AC of individual i
logit p logit p exp d Dij ij( ) ( ( / ))= − +0

2 22σ ω  (4)
Negative w indicates resistance against using areas outside 
an individual’s home tile, or in other words the degree of 
isolation between the tiles created by the road network. 
Quantitatively, w is a biologically meaningful, probabilistic 
expression of the resistance to moving beyond one’s home 
tile, controlled for declining utilization as distance from the 
AC increases (Fig. 1). We allow w to depend on individual 
attributes (e.g. gender) and landscape characteristics (e.g. 
network region, Fig. 2), but it could also be made a func-
tion of tile characteristics, temporal and spatial covariates, or 
subject to random effects.

The logit transformations on both the left and right 
side of Eq. 4 are used to ensure that overall detection, after 
adding the effect of barriers, remains bound by 0 and 1. 
The resistance parameter w is realized as an additive effect  
on overall detection at any given distance d. Equation 4 
is thus a logistic equation where the entire half-normal 
function (Eq. 1) represents the intercept value (at a given 
distance d). The logit transformation on the right side of 
the equation then serves to retain the value of the origi-
nal half-normal component, when accounting for the link 
function on p. Alternatively; the change in detection prob-
ability could be incorporated directly into the half-normal 
function:
p p exp d Dij ij= − − ≤0

2 21 2 0( ( )/ ),ω σ ω
. .

where  (5)

Here, the resistance parameters is denoted ω
.

, as the quan-
titative realization differs from that in equation 4. For our 
analysis, we chose Eq. 4, as it signifies a simple proportional 
change in p on a logit scale and makes incorporation of both 
additive effects and possible interactions between multiple 
barrier types straightforward (see Eq. 6 below).

Empirical example

We obtained brown bear non-invasive genetic sampling data 
from Rovbase 3.0 (< www.rovbase.no/ >), the Scandinavian 
large carnivore monitoring data base (Norwegian Environment 
Agency and Swedish Environmental Protection Agency 
2014). Although non-invasive genetic sample collections 
have been taking place in Sweden since 2001, we limited 
our analysis to survey bouts conducted in 2006, 2010, 2012 
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Detector grid

We delineated the focal search area within each survey region 
by estimating the 75% bivariate normal kernel based on all 
non-invasive sample locations collected during the respective 
survey bout. This approach excluded areas on the periph-
ery of the search area that yielded fewer samples; although it 
omitted some of the data, the approach ensured that most of 
the area included in the analysis was actually searched. We 
then imposed an artificial 10  10 km detector grid across 
the extent of each focal area, following Bischof et al. (2016). 
Each year’s sampling period started on Aug 21 and contin-
ued for up to 13 weeks. Sample collection was opportunis-
tic and mainly performed by hunters and other volunteers 
(Kindberg et al. 2009). The sampling period included the 
start of the moose hunting season with more than 200 000 
Swedish hunters participating. In principle, all areas in the 
study area were open to hunting by organized teams during 
the hunting season.

To avoid confounding between spatial variation in effort 
and density, variable effort should be accounted for in 
SCR models (Efford and Fewster 2013). Using simulations 

and 2014, to ensure close temporal proximity between each 
bout and to stay in the context of the contemporary road 
network structure. Each survey targeted a different manage-
ment region, delineated primarily by county boundaries. 
After each survey bout, suspected brown bear scats were 
subjected to DNA extraction and amplification using 6–8 
microsatellite primers and a sex-specific primer to confirm 
species, determine sex and assign genotypes (individual). For 
a description of the sample collection procedure and genetic 
analysis, see Bellemain et al. 2005, Kindberg et al. 2011.

The collection area (∼105 000 km2) covers large swaths 
of managed boreal forest in a rolling landscape (elevation 
range 0–1189 m a.s.l.). Only a fraction (1.2%) of the collec-
tion area exceeded the tree line (∼ 700 m a.s.l.) (Van Bogaert 
et al. 2011). The area is interspersed with bogs (∼16%) and 
water bodies (∼7%). Other land cover types such as build-
up and agricultural land, and barren habitat are rare (all 
below 2% of the collection area). Land cover composition 
and terrain characteristics are comparable between the four 
survey regions. Geographic attributes of the management 
units are given in the Supplementary material Appendix 1 
Table A1.

Figure 2. Configuration of four study regions dissected into tiles by the network of primary roads (white lines) within the Swedish brown 
bear range. Detection areas (blue outline, ‘detector array’) within each region were delineated based on non-invasive genetic sampling 
locations (blue dots) and are surrounded by an additional 30 km buffer of available habitat. White crosses indicate the centres of  
10  10 km grid cells of the habitat mask. Within the detection areas, habitat grid cells coincide with detector grid cells. Variable grey 
shading distinguishes polygons delineated by major rivers that transect the study regions.
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are one of the most wide spread carnivore species; their dis-
tribution covers a substantial part of the terrestrial northern 
hemisphere and the species occurs across an a wide range of 
habitats, latitudes, and elevations (Wilson and Mittermeier 
2009). We added a 30 km buffer of habitat to each focal 
area: bears detected within the detector grid could have 
home range centres located anywhere within the greater 
habitat mask (Bischof et al. 2016). We used each sample col-
lection region as a separate stratum in the analysis, instead 
of running four separate analyses. Stratification allowed for 
transferability of some parameters (random effect of tile on 
p, random effect of individual on s, sex effect on s), thereby 
increasing overall precision. Additional benefits of a strati-
fied approach in SCR models are discussed in Royle et al. 
(2013).

Road network

We obtained road network data from the Swedish Transport 
Administration (Trafikverket I2014/00764). The Swedish 
Transportation Administration classifies all state owned road 
segments in Sweden into four quality classes based on several 
parameters such as maintenance history and thematic char-
acteristics (e.g. road width, traffic volume, speed limits, num-
ber of lanes, etc.; Swedish Transport Administration 2008). 
We extracted all roads of the highest quality class from the 
Swedish National Road Database (NVDB quality class 1). 
These roads include all major connective paved roads on the 
national and the regional level, and have relatively high traf-
fic volumes (Swedish Transport Administration 2008). We 
used road polylines to cut each study area polygon into a 
mosaic of tiles (RNTs, Fig. 2). For each mask and detector 
cell, we then identified the RNT that contained the cell. This 
information was used in the model to 1) estimate the ran-
dom effect of RNT on detection and 2) determine the effect 
on detection when a detector cell is located within the same 
versus a different tile than the predicted activity centre of a 
given individual.

Roads may follow distinct landscape features such as riv-
ers, and resistance to leaving an individual’s home tile in a 
transportation network may be confounded by fragmen-
tation due to other causes. We therefore created another 
mosaic layer, with tiles delineated by major rivers (catchment 
areas  5000 km2) and included a corresponding resistance 
parameter in the model. We used the Water Information 
System for Europe (WISE) ‘Large rivers and large lakes’ 
database from the European Environmental Agency to 
extract the river data. Density of major rivers ranged from 
0.018 to 0.033 km km–2 between the management units 
(Supplementary material Appendix 1 Table A1).

The equation that describes the detection process (Eq. 4) 
can be generalized to allow for additive effects of K different 
causes of fragmentation (index k), such as for example roads, 
railroads, and rivers:

logit p logit p exp d Dij ij
k

K

k k( ) ( ( / ))= − +
=

∑0
2 2

1

2σ ω  (6)

Although not done in our example, Eq. 6 can be easily 
extended to allow for interaction between barrier types.  
We only included major rivers that dissected the study area 
(Fig. 2) completely, but less restrictive approaches (e.g. least 

(see description near the end of the Methods section and 
Supplementary material Appendix 1 Fig. A5), we found that 
even substantial variation in the proportion of cells in the 
detector grid that are searched had little impact on mean 
parameter estimates in a basic SCR model. Nonetheless, we 
took additional steps to account for possible differences in 
detection probability across detector cells. We allowed the 
magnitude parameter p0 of the detection function to vary 
between regions. In addition, we modelled a single annual 
detection occasion to reflect the fact that we had little 
information about the temporal structure of searches or 
sample deposition by bears. As highlighted by Efford et al. 
(2009b), in SCR models, density estimates can be derived 
from observations accumulated during a single time inter-
val if individuals can be detected at multiple detectors. 
Following Efford et al. (2009b) and because the actual search 
path taken in a given grid cell was unknown, detection loca-
tion of DNA samples within the focal period were projected 
to the nearest active detector location (detector grid centre). 
We used the binary proximity model for detection (Efford 
et al. 2009a), where detection or non-detection of an indi-
vidual at a detector is indicated as the outcome of a Bernoulli 
trial, with the possibility of detecting the same individual 
at multiple detectors. The Bernoulli observation model has 
also been highlighted as the favoured model by Royle et al. 
(2013), even when the sampling scheme produces encounter 
frequencies (e.g. number of scats from an individual found 
in the same detector grid cell). Finally, we included road 
network tile ID as a random effect on detection probability, 
thereby accounting for spatial heterogeneity in search effort 
and detectability. This was based on the rationale that the 
probability of detection in a given detector cell depends not 
only on attributes of individual bears in the population, but 
also on location-specific attributes at that grid cell. Road tiles 
within the network are not searched with equal effort and 
may not be used by bears with equal intensity (aside from 
barrier effects). Including tile ID as a random effect can help 
to at least partially capture and thus control for the result-
ing heterogeneity in detection probability. Finally, individual 
space use, including home range size, influences detection 
probability at a given detector. We accounted for this source 
of heterogeneity by including individual bear ID as a random 
effect on the scale parameter s. See below for a description 
of the model fitted during the analysis, together with the 
implementation of strata, fixed effects and random effects.

Habitat mask

We modelled habitat as a raster composed of 10  10 km 
grid cells (same resolution as the detector grid, Bischof et al. 
2016). For context, the average home range sizes for adult 
bears in our study population have been estimated at 217–
280 km2 for females and 833–1055 km2 for males (Dahle 
and Swenson 2003), suggesting a sufficient resolution of 
both the habitat grid and the detector grid (Sollmann et al. 
2012, Royle et al. 2013). We excluded clear non-habitat 
(ocean) from the habitat mask, but, in order to avoid the cir-
cularity inherent in defining non-habitat based on assump-
tions about the study system, we did not impose further 
restrictions (Royle et al. 2013). Furthermore, brown bears 
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detections as the pattern of non-detections. R code for model 
implementation in JAGS, together with an example dataset 
are provided in the Supplementary material Appendix 2–4.

Validation

We conducted three additional analyses, in order to assess 
model performance and sensitivity to violation of assump-
tions. First, we extracted model-predicted AC locations  
(a latent variable estimated by the model) for individual  
bears. We calculated average latitude and longitude of 
estimated AC locations over all MCMC iterations for 
each bear and compared these visually with DNA sample 
positions.

Second, we generated simulated data for a range of values 
for the resistance parameter w (–2 to 0), with s and p0 set 
to 10 and 0.75, respectively. Simulations entailed drawing a 
random spatial sample of ‘true’ AC locations (150 individu-
als) and realizing detection throughout a 10  10 km detector 
grid based on aforementioned parameters. We then fit the 
model to each simulated data set (60 simulations for each 
value of w), using 2000 iterations (thinned by 3), following 
a burn-in of 5000 iterations. Parameter estimates generated  
by the model where then plotted against true parameter 
values for visual comparison.

Finally, to evaluate the effect of variable (detector cells 
are either searched or unsearched) and unknown search 
effort on SCR models, we generated subsampled versions of 
a simulated spatial capture–recapture data set with known 
values for s, p0 (conditional on a detector cell having been 
searched), and density (the parameter of primary interest in 
most SCR studies). This resulted in 1600 datasets with the 
proportion of detector grid cells that was searched ranging 
from 0.25 to 1. We fit standard SCR models to each data-
set using function secr.fit in R package secr (Efford 2015), 
to evaluate the effect of spatially heterogeneous search effort 
(and thus p0) on estimates of s, density, and their associated 
confidence interval widths.

Data deposition

Data available from Rovbase 3.0 (Scandinavian Large 
Carnivore Database) free online access:  < www.rovbase.no > 
(Norwegian Environment Agency and Swedish Environmental 
Protection Agency 2014).

Results

A total of 3231 samples from 1169 individual bears (673 
male, 496 female) fell within the search regions consid-
ered for the analysis (Supplementary material Appendix 1 
Table A2). On average, 2.76 samples were associated with 
each individual, but the number of samples varied widely 
between individuals (SD: 2.52; range: 1–20), Of 403 
individuals with more than one detection, 106 (26.3 %) 
were detected in multiple RNTs. Only a single individual 
was detected in two different (adjacent) regions and thus 
two different years.

cost path distances) could also be used to account for barriers 
that do not split the landscape into a mosaic of tiles.

Fitted model

The model finally fitted during analyses was:
logit p logit p exp di j i j ij i

road sex regioni

( ) ( ( / )), , ,

, ,

= −
+

0
2 22σ

ω
jj i j
D Droad i j river sex region river i j, , , , , ,+ ω

 (7)

Potential differences in resistance parameters between 
regions and sexes are incorporated as strata, shown as indi-
ces on wroad and wriver in Eq. 7. Fixed effects of sex and 
individual random effects e on the scale parameter s are 
included as follows:
logit sexi sex i iσ σ β ε( ) = + +0  (8)
The sex of individual i is indicated by sexi (0 for males, 1 for 
females). The magnitude parameter p0 (with intercept a0) 
is estimated separately for the sexes and regions (as strata) 
in the model, and includes a random effect ϵ of the road 
network tile in which a given detector cell is located
logit p i j sex regioni j0 0, , , ,( ) = +α ϵj (9)

Model implementation

We implemented the model in program JAGS (Plummer 
2003) via the R2jags package (Su and Yajima 2012) in R 
(< www.r-project.org >). Uniform or flat priors were used 
for all unknown parameters. Probabilities were sampled on 
the logit scale, therefore their priors were informative after 
inverse-logit transformation. We ran three chains for 7500 
iterations with an initial burn-in of 5000 iterations. Chains 
where thinned by retaining parameter values from every 
fifth iteration to reduce the influence of autocorrelation. 
We assessed convergence to a stationary distribution using 
trace plots for model parameters to ensure adequate mix-
ing and by using the Gelman and Rubin diagnostic (R-hat; 
Gelman 1996). We summarized posterior distributions of 
the unknown parameters by their means and 95% credible 
intervals. Aside from the primary parameters estimated by 
the model (Supplementary material Appendix 1 Table A3), 
each model iteration also led to predictions of the grid cell 
that contained the AC of each bear. The most common grid 
cell among all iterations can be interpreted as the most likely 
position of the AC given a half-normal detection probabil-
ity (with increasing distance from the AC) and the pattern 
of detections and non-detections across available detectors 
(cells). Alternatively, the coordinates of grid cell locations 
containing a bear’s AC over multiple iterations can be used 
to derive individual’s predicted AC location. This latter 
approach should be applied cautiously, as it could lead to 
unrealistic location estimates if predicted AC positions are 
non-contiguous across the habitat grid. We note also that, 
within the Bayesian model, the predicted AC location for 
individuals with a single sample (or multiple samples from 
the same RNT) still inform the estimate of key parameters, 
as the AC does not necessarily have to fall into the same tile 
as the sample, and the pattern of non-detections throughout 
the detector grid is as much a result of the configuration of 
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Eq. 4, 6) were also negative, but where the 95% credible 
interval overlapped zero (Supplementary material Appendix 1  
Table A3, Fig. A9). Major rivers that transected detection 
regions (Fig. 2) posed additional resistance to movement in 
regions 1 and 3 (for both males and females), but such an 
effect was not detected in regions 2 and 4 (Supplementary 
material Appendix 1 Table A3).

Model-predicted estimates of s (the scale parameter in 
the detection function, Eq. 4, 5) ranged from 6 km (95% 
CI: 5.6–6.6) for female bears to 11 km (95% CI: 10–12.1 
km) for males (Fig 3), with s significantly smaller for females 
than males (bsex:female  –0.61, 95% CI: –0.72 to –0.49). 
In addition, the model revealed pronounced individual 
heterogeneity in s (eindividual  0.37, 95% CI: 0.33–0.42), as 
well as heterogeneity in detection among RNTs (ϵtile  0.36, 
95% CI: 0.1–0.58). Detection models, like the half-normal 
detection function used here, imply a model of space usage, 
due to the assumed link between the probability of detecting 
an individual at a particular location and its proportional 
use of that location. For the half-normal detection function, 
home range size can be obtained from the scale parameter 
s using the c2-distribution with 2DF (Royle et al. 2013). 

All key parameters exhibited satisfactory mixing 
and convergence, with all R -values below the com-
monly accepted threshold of 1.1 (Supplementary material 
Appendix 1 Table A3, Fig. A6). Predicted AC locations 
corresponded well with the spatial configuration of sample 
locations associated with a given individual (Supplementary 
material Appendix 1 Fig. A8). The median distance between  
model-predicted ACs and the nearest road was 8.4 km, 
but varied between regions (Supplementary material 
Appendix 1 Table A2, Fig. A7). Model-predicted values 
of the resistance parameter w for simulated data exhibited 
satisfactory correspondence with true parameter value that 
these simulations were based on (Supplementary material 
Appendix 1 Fig. A4).

Brown bears were significantly less likely to be detected 
outside of the road mosaic tile in which their AC was pre-
dicted to be located, even when taking into account the 
gradual decline in detection probability with increasing 
distance from the AC (Fig. 3). This was the case across all 
four study regions and for both sexes, with the exception of 
males in region 1 and females in region 2, where estimates 
of w (the resistance parameter in the detection function,  

Figure 3. Results from the spatially-explicit capture–recapture model that estimates propensity of staying within the road network tile 
(RNT) which contains an individual’s activity centre, or, conversely, the resistance to using areas outside the home tile. Top panels provide 
a spatial illustration of the overall effect of barriers on the utilization distribution for male and female brown bears, based on model pre-
dicted parameters, shown in the same road network and for a hypothetical distribution of individuals to facilitate comparison. Bottom 
panels show detection curves based on non-invasive genetic sampling. Barrier effects are manifested as an additional drop (from the edge of 
the curve to the dashed white line) in the half-normal detection function, which corresponds to the declining area use with increasing 
distance from the home range centre. The drop in detectability due to the resistance effect was illustrated at the median distance between 
activity centre and the closest road (8.4 km). Insets give a spatial illustration of the estimated barrier effect on the utilization distribution 
associated with a single activity area and RNT (95% kernel isocline marked with a blue line).
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However, with the caveat that ours is a ‘natural experiment’ 
lacking randomization, it appears that roads between tiles in 
the transportation network do impair movements.

A number of studies have explored the effect of roads 
(often in conjunction with fencing) on gene flow in wildlife, 
including large carnivores (Riley et al. 2006, Garroway et al. 
2011, Breyne et al. 2014, Sawaya et al. 2014). Although near 
complete isolation is required for population divergence via 
genetic drift (sensu Laurance et al. 2009), even impeded 
movement can lead to deleterious effects, including genetic 
differentiation (Riley et al. 2006, Wilson et al. 2015). The 
graded, yet pronounced isolation between tiles in the road 
network in our study areas can have consequences for the 
behaviour, social organization, life history, and ultimately 
population dynamics and persistence of bears and other 
affected large mammals. For example, being ‘trapped’ in a 
habitat tile within a road mesh inherently implies that access 
to resources is constrained. Consequently, an animal will 
have to adjust its habitat selection behaviour to cope with 
restricted resource availability (Mysterud and Ims 1998, Lele 
et al. 2013). Road isolation effects likely hamper or guide 
dispersion and migration (Forman and Alexander 1998), 
which can alter the social structure of a population and neg-
atively impact reproduction, survival (Mansergh and Scotts 
1989), and genetic diversity (Epps et al. 2005, Schregel et al. 
2012). In addition, denser road networks (i.e. smaller habi-
tat tiles) imply increased human access into wildlife habitat, 
which typically increases human-induced wildlife mortality 
(Kerley et al. 2002, Nielsen et al. 2004, Switalski and Nelson 
2011, Steyaert et al. 2016) and, presumably, human-wildlife 
conflict. The propensity for individuals to remain in their 
home tile can also have far-reaching indirect ecological con-
sequences. For example, hampered animal movement can 
limit nutrient translocation within and between ecosystems 
(Schmitz et al. 2010), and impede dispersal of plant species 
that rely on zoochory (Forman and Alexander 1998, Suárez-
Esteban et al. 2013) which can decrease floral diversity on 
vast spatial scales (Ozinga et al. 2009).

Metapopulation dynamics are similarly impacted, 
as roads may staunch the flow of individuals and genes 
required for recolonization or maintenance (Mladenoff and 
Sickley 1998, Epps et al. 2005, Garroway et al. 2011). Bear 
populations in Norway depend to a large part on an influx 
of bears from neighbouring Sweden (Bischof and Swenson 
2012, Bischof et al. 2016) – re-colonization and source–
sink dynamics are liable to be impeded since movements, 
regardless of their trajectory, have to occur across multiple 
tiles first in the Swedish and then the Norwegian road 
network. Genetic patterns emerge from animal movements 
across the landscape. Both, landscape genetic approaches 
(Balkenhol and Waits 2009) and the approach we described 
here transcend spatial scales, but complement each other in 
terms of the time it takes for focal effects to become mani-
fested. Space use is liable to respond quickly and remain 
highly fluid, whereas effects on genetic patterns are expected 
to take longer to manifest but be more long lasting. As 
Balkenhol and Waits (2009) noted, integrating landscape 
genetic approaches with field based methods will increase 
our understanding of the consequences of behavioural 
responses to road networks, as well as provide a stronger 
basis for developing strategies for mitigation.

Average home range sizes calculated from our estimates of s 
ranged from 682 km2 (95% CI: 593–829 km2) for females 
to 2305 km2 (95% CI: 1914–2770 km2) for males.

Discussion

Road networks divide the landscape into tiles that both 
accommodate and isolate wildlife. Road impacts are scale-
transcending, and in this study, we have quantified the  
extent of isolation between the constituent tiles at the net-
work level. It is not surprising that roads pose barriers to the 
movements of small, relatively slow-moving species, such as 
small mammals (Rondinini and Doncaster 2002), reptiles 
(Shepard et al. 2008), amphibians (Vos and Chardon 1998), 
and insects (Keller and Largiader 2003). More startlingly, 
transportation networks can impede movements also in 
populations of large and highly mobile species like the 
brown bear (Proctor et al. 2012, 2015). This is particularly 
noteworthy, as brown bears are one of the most wide-spread 
carnivores, and because the species occurs across an impres-
sive range of habitats, latitudes and elevations (Wilson and 
Mittermeier 2009). In short, most of Fennoscandia is potential 
habitat for bears, and there are no serious topographic 
barriers to their movements in Sweden, with the exception of 
large rivers, reindeer husbandry areas (Schregel et al. 2012), 
and areas densely populated by humans (Nellemann et al. 
2007). Yet, depending on region and sex, we found that 
brown bears had up to 73% lower odds of being detected 
outside the RNT in which their predicted activity centre 
was located than within (Fig. 3–4, Supplementary material 
Appendix 1 Fig. A9). These estimates were produced while 
accounting for the declining probability of detection with 
increasing distance from the activity centre and controlling 
for potential additional barrier effects due to major rivers. 
Both sexes exhibited significant reductions in the probabil-
ity of being detected outside of their ‘home’ tile, despite the 
smaller home range size of females (Blanchard and Knight 
1991, Dahle and Swenson 2003).

That females bears have smaller home ranges than males 
was confirmed by our analysis, manifested as a lower value 
of the scale parameter s for females (b  –0.61, 95% CI: 
–0.72 to –0.49). Although our home range size estimates 
are between 2–3 times larger than home range sizes reported 
in the same study area by Dahle and Swenson (2003), these 
authors conceded that their estimates were likely biased low 
by a factor of 1.5–2, due to low frequency of earlier teleme-
try relocations. More importantly, our estimates are based on 
unimpeded movements, i.e. before the resistance coefficient 
has been accounted for. In other words, home range esti-
mates derived from intercept values of s refer to ideal home 
ranges that are not fully realized due to barrier effects by the 
transportation network and other obstacles. We note here 
the functional similarity between our measure of resistance 
and the accessible habitat measure proposed by Eigenbrod 
et al. (2008): both capture the extent to which fragmenta-
tion restricts the utilization of space by individuals in a net-
work of linear barriers.

Apparent from the spatial configuration of non-invasive 
genetic samples, roads in our study system do not pose 
impenetrable barriers to movements of brown bears per se. 
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and the extent to which wildlife mitigation projects, such 
as road crossing structures and fencing (van der Grift et al. 
2013), modulate the resistance to leaving one’s home tile. 
At larger spatial scales, the model could be used to relate 
geometric measures of fragmentation due to linear barri-
ers, such as effective mesh size (Jaeger 2000, Moser et al. 
2007) or accessible habitat (Eigenbrod et al. 2008), with the 
species-specific measure of isolation derived in our study. 
We contrasted the degree of isolation experienced by male 
and female brown bears within the Swedish road network. 

Although we assessed network-scale fragmentation due to 
roads, our model can be readily adapted to evaluate isolation 
or resistance to movements at smaller scales as well. Tiles in 
the mosaic likely differ in the extent to which they isolate 
their inhabitants from the surroundings. Characteristics of 
each tile (e.g. size and habitat) or the roads surrounding it 
(e.g. traffic volume and structural parameters) may explain 
variation in the degree of isolation across space. Incorporating 
tile specific attributes could help answer applied questions 
about the role of network configuration (Jaeger et al. 2006) 

Figure 4. Illustration of resistance effect based on predicted activity centre (AC) locations and utilization distributions for male and female 
bears in four road network regions in Sweden. Darker areas signify greater utilization by bears detected during non-invasive genetic sam-
pling. Resistance to moving beyond the road network tile containing a bears’ AC is apparent in an abrupt drop in utilization (clear edges 
between darker and lighter shaded areas). Region/sex combinations with significant barrier effects are marked with boxes around plots. 
Note that landscape-level resistance effects are somewhat masked in the illustration due to overlapping AC locations and utilization distri-
butions of multiple bears.
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Waits 2009). This includes quantification of road impacts 
and assessment of the potential effect of mitigation actions. 
Roads affect species differently (Fahrig and Rytwinski 2009, 
Rytwinski and Fahrig 2012) and consequently mitigation 
of such effects has to be species specific as well (Balkenhol 
and Waits 2009, van der Grift et al. 2013). The approach 
showcased here is applicable to other species and systems, 
requiring only minor adjustments (e.g. reduced grid size for 
species with smaller average movement distances). Finally, 
the conceptual approach, in combination with parameters 
derived from fitting the model to empirical data, opens the 
door for targeted simulations at multiple spatial scales. Such 
simulations could for example be used to compare the pre-
dicted impacts of alternative network configurations (Jaeger 
et al. 2006) or forecast the effect of expansion of the road 
network.

Conclusions

To our knowledge, this is the first study to estimate the 
network-level effect of road-caused fragmentation on con-
temporary wildlife movements. In doing so, we have broken 
from the traditional approach of artificial and problematic 
inflations of scale by attempting to extrapolate from local 
barrier effects (Coffin 2007, Balkenhol and Waits 2009). 
Transportation networks do not only dissect/split individual 
habitat patches, they cut up entire landscapes and as such are 
expected to have broad-scale effects (Balkenhol and Waits 
2009). This should provide ample motivation to quantify 
the impact of roads and mitigation efforts at multiple spa-
tial scales, from local road segments to the network-level. 
Similarly, roads impact populations and communities, not 
only individual animals. The emergent properties at the 
population level that result from changed movements and 
interactions of individuals may remain hidden if only a small 
portion of a population is being studied. A shift towards 
exploring effects at the network and population scales has 
begun (Manel et al. 2003, Simmons et al. 2010, van der Ree 
et al. 2011) and examples of such effects are now accumulat-
ing (Mladenoff and Sickley 1998, Gibbs and Shriver 2002, 
Robinson et al. 2012). We are witnessing an increasing utili-
zation of survey methods that can yield individual based data 
over large expanses, such as non-invasive genetic monitoring 
and camera trapping, in combination with analytical meth-
ods that can exploit the spatial information in these data. 
These developments now let ecologists capture the ecological 
impacts of transportation networks at large spatial scales and 
at the level of populations. Finally, we note that the RNT is 
an intuitive unit for analysing and modelling the effects of 
road networks. This is partly because the size of an RNT is 
a function of road density: with increasing landscape frag-
mentation and anthropogenic disturbance, the size of the 
study unit decreases, resulting in a corresponding increase in 
spatial detail during analysis. Furthermore, an understand-
ing of road networks as mosaics of habitat tiles links barrier 
effects with concepts in research on habitat fragmentation, 
the leading agent of anthropogenic environmental change 
(Lindenmayer and Fischer 2006), thereby offering ecolo-
gists a larger set of tools and broader perspective for tackling 
critical problems in road ecology.

Additional attributes (e.g. age and reproductive status), if 
available, can be incorporated in the model to explore poten-
tial causes for individual variation in the propensity to stay 
within one’s home tile. Similarly, if vital rates are known or 
estimable, these could be used to evaluate the fitness effects 
of fragmentation caused by transportation networks, which 
in turn could lead to predictions for population dynamics.

In two out of eight sex-region combinations included 
in our study, the credible intervals for the resistance effect 
overlapped zero (Supplementary material Appendix 1 Table 
A3). Without additional information, attempts at explaining 
this finding would be purely speculative. Be that as it may, 
it is worth pointing out again that barrier effects are liable 
to be context-specific, even within populations and trans-
portation networks. Intrinsic attributes (such as phenotypic 
traits, energetics, etc.) and extrinsic factors (such as traffic 
volume, habitat configuration, historic and current levels of 
human disturbance, etc.) are liable to influence the magni-
tude of realized resistance to crossing linear structures such 
as roads. As touched on above, incorporating such attributes 
as potential predictors into analyses of barrier effects could 
help investigators to explain heterogeneity in fragmentation 
across scales of space and biological organization.

Our approach is not a panacea for assessing barrier effects 
and fragmentation. The large spatial and demographic scope 
comes at the cost of spatial and temporal detail: often only 
a few relocations per individual are available and, depending 
on environmental conditions and study design, there can be 
substantial uncertainty in the timing of sample deposition. 
Telemetry studies can yield a vast amount of information for 
every individual monitored, and are able to assess the behav-
ioural mechanisms from which larger scale patterns ultimately 
emerge. This has repercussion also for active management, 
especially site selection and impact assessment of mitigation 
structures such as wildlife crossings and fences. We concur 
with the recommendation to combine genetic approaches 
with tracking data (Balkenhol and Waits 2009). Our approach 
not only complements information obtained from more 
detailed individual-based studies but can also be used to guide 
the selection of areas for targeted intensive study (for example 
by identifying regions or RNTs) where resistance effects are 
particularly conspicuous. Conversely, our approach allows the 
assessment of larger scale effects of multiple local mitigation 
actions: e.g. successful implementation of a system of wildlife 
crossings should be reflected in a reduction of the resistance 
parameter across the network or parts thereof.

For simplicity and computational efficiency, the model 
used in our analysis was conditional on having detected an 
individual at least once. The unobserved ecological process 
– i.e. the distribution of all individual ACs within the habitat 
mask, not only those detected during sampling – can be eas-
ily incorporated into the likelihood by adding Eq. 2. Such 
a hierarchical version of our model would 1) allow estima-
tion of various model parameters as they apply to the entire 
population (detected and undetected) within the study area 
and 2) help assess the potential role barrier effects may have 
in biasing estimates of key parameters, such as density, in 
SCR models.

One of the primary goals of road ecology is to help 
planners make informed decisions that can mitigate the 
negative ecological effects of road networks (Balkenhol and 
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