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Abstract 
Calculating derivatives of spectral data by the Savitzky-Golay (SG) numerical algorithm is 
often employed as a preliminary preprocessing step in order to resolve overlapping signals, 
enhance signal properties, and to suppress unwanted spectral features that arise due to non-
ideal instrument and sample properties. Addressing these issues, the study on the simulated and 
the measured infrared data by partial least squares regression has been conducted. The 
simulated data sets were modelled by considering a range of undesired chemical and physical 
spectral anomalies and variations that can occur in a measured spectrum, such as baseline 
variations, noise and scattering effects. The study has demonstrated the importance of 
optimization of the SG parameters during the conversion of spectra into derivative form, 
specifically window size and polynomial order of the fitting curve. A specific optimal window 
size is associated with an exact component in the system being estimated, and this window size 
does not necessarily apply for some other component present in the system. Since the 
optimization procedure can be time consuming, as a rough guideline spectral noise level can 
be used for assessment of window size. Moreover, it has been demonstrated that, when the 
extended multiplicative signal correction (EMSC) is used alongside the SG procedure, the 
derivative treatment of data by the SG algorithm must precede the EMSC normalization. 
 
Index Headings: Pre-processing; FTIR spectroscopy; Savitzky-Golay, Derivative; 
Extended multiplicative signal correction; EMSC; Partial least squares; PLS; 
Regression. 
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INTRODUCTION 
 

Infrared (IR) spectroscopy has been extensively applied in characterizing and 
identifying inorganic, organic and biological constituents in complex mixtures and matrices. 
The basis for quantifying various components within a mixture  is a separation of the 
corresponding chemical analyte signals from unwanted interferants. Typical sources of 
interferant signals are: 1) accompanying chemical constituents in the measured system 
(including contaminants), 2) collateral chemicals present in the experimental setting (such as 
atmospheric CO2 and H2O), 3) nonchemical effects (such as refractive index variation and 
scattering), and 4) instrumental anomalies (including white noise). These interferant signals 
have deleterious effects on the interpretation of the spectra and on the success of the spectral 
data analysis. It has been shown that the multivariate regression methods, such as principal 
components regression (PCR) and partial least-squares regression (PLSR), result in simpler 
and often better models when applying them on pre-processed data.1,2 Therefore, it is 
advantageous to employ spectral preprocessing in order to suppress interferant signals and/or 
to enhance analyte signals.  

Since the bandshape of a chemical analyte signal is quite specific in IR spectroscopy, it 
can often be successfully discerned from a majority of interferant signals, which differ 
considerably from the signatures of chemical analytes. The line profile of absorption bands in 
the IR signals of condensed phase is usually close to the Voigt profile.3 A Voigt profile can be 
approximated as a linear combination of the Gaussian profile (modelling the Doppler 
broadening), and the Lorentzian profile (modelling the collision broadening). The difference 
between spectra of liquid and solid phases is quite small: Spectra of liquids exhibit 
predominantly Lorentzian bandshapes, while the bands of solids are usually narrower and are 
often represented with the increased Gaussian fraction in the simplified Voigt model.4   

Calculating derivatives of spectral data is often a first preprocessing step since it in one 
step may acquire all of the mentioned benefits. The derivatives emphasize band widths, 
positions and separations, while simultaneously reducing or eliminating baseline and 
background effects.5,6 The derivative values are usually assessed by the Savitzky-Golay (SG) 
numerical algorithm that approximates spectrum by polynomial (typically quadratic or quartic) 
least square fitting inside a moving window. 7-9 The least-square value of a given point is 
calculated as a weighted combination of that point and m points on each side of it, sequentially 
acquiring a mowing least-squares fit (within 2m+1 points) across the data. The polynomial 
order, and especially the window size, can strongly influence the properties of the derivated 
curve, and consequently the result of the multivariate analysis. Although it is often presumed 
that the differentiation of spectra increases the noise, the least-square fit of the SG procedure 
acts as a low-pass filter and hence can actually reduce the level of homoscedastic spectral 
noise.10 In fact, the SG procedure is the most widely used smoothing algorithm in spectroscopy 
since it attenuates high-frequency signals, such as noise, while at the same time tends to 
preserve important features of the chemical analyte signals, such as relative maxima, minima, 
height and width. Furthermore, the intrinsic property of any derivative procedure is higher 
suppression of a broad signal than a narrow one, providing that the signals are of equal 
amplitudes.6 Therefore, when provided for calculating the derivative spectra, the SG procedure  
functions as a high-pass filter, basically reducing the amplitudes of broad spectral features, 
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such as curving baseline, that predominantly have detrimental effect in data analysis. 
Concerning baseline, the practical effect of using derivative data is removal of a baseline 
vertical shift by the first derivative and slope by the second derivative. The mentioned low-
pass and high-pass properties effectively achieve that the SG derivative procedure acts as a 
band-pass filter that can be tuned to suppress all of the unwanted signals except those with the 
similar bandshape properties as the measured analyte. In essence, by optimizing the SG 
procedure according to the bandshape properties of the analyte of interest, the interferant 
signals, either high-frequency ones (usually referred to as “noise”) or broad spectral features 
(including curving baseline) can be greatly reduced.  

However, signal bandshapes belonging to the same analyte can differ markedly in 
different spectral regions, and hence it should be taken into consideration that an optimal SG 
window size is often limited to an exact spectral region. Why specific parameters are chosen 
is seldom reported in scientific studies, and it is uncommon to find that several parameters were 
taken into consideration within the same study.  

Along with differentiation, data analysis of vibrational spectroscopic data often 
includes scatter-corrective preprocessing methods such as Multiplicative Signal Correction 
(MSC), Extended MSC (EMSC), and Standard Normal Variate (SNV).11 EMSC, the most 
universal of the mentioned methods, is a model-based preprocessing method that allows 
estimation and removing of additive and multiplicative effects.2,12 The physical “interferant” 
information is explicitly parameterized, and thus the separation of physical and chemical 
information from the spectral data is enabled. When the EMSC method is performed after the 
conversion of spectral data into a derivative form it principally has the feature of removing the 
multiplicative effect, since broad baseline structures are effectively suppressed by derivatives. 
When EMSC is applied directly to raw spectra, it also eliminates baseline effects. Both 
approaches, applying EMSC on raw data and applying EMSC on derivated data, are regularly 
employed.13-17 It is important to demonstrate the effects and differences of these two 
approaches, since it is not readily apparent in scientific literature which is the right one to use. 

The main objective of this study was to investigate and assess the preprocessing 
methods for analysis of spectral data. The effect of the SG data manipulation regarding 
differentiation order (zero, first and second) was reported recently, indicating some risks of 
incorrect preprocessing of near-IR data.18 In the presented study, the particlar attention was 
given to the optimization of size of the moving window employed in the SG algorithm during 
the conversion of recorded spectra into derivative form. Moreover, since the SG and the EMSC 
preprocessing procedures are often used cooperatively,14-17 the optimal sequence of the 
preprocessing procedures was assessed. The preprocessing methodologies were studied using 
a real data set and a simulated one where all constituent effects are known. For both data sets 
the effect of the different preprocessing strategies, such as an optimum window size and a 
polynomial order for the SG algorithm, was evaluated by estimating the predictive ability by 
PLSR.19  
 
SIMULATED DATA 
 

The simulated spectra were built up to comprise analyte signals (i.e. the interesting 
components to be quantified by the regression model), and the interferant signals in the form 
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of additional constituents, baseline shifts and noise. The analyte signals were modelled by 
Lorentzian functions, which offer fairly good approximation for IR bands of liquids and 
biological samples in general. Simulated data consisted of several data sets, with 100 spectra 
each, differing in the quality and the quantity of the interferant signals. Each spectrum was 
composed of two or more of the following contributions: 1) A components - analyte signals, 2)  
B components - broad interferant signals (two groups with five signals each), 3) Av components 
- the “average” spectrum, 4) Bv components - vertical baseline shift, 5) Bl components - linear 
baseline shift, and 6) N components - high-frequency random noise (Overview of simulated 
signals is presented in Table 1).  

Analyte signals (A components): The properties of the modelled chemical analyte 
signals were selected according to the characteristics of the standard vibrational bands in the 
fingerprint mid-IR spectral region (500-2000 cm-1). The analyte signals were modelled by 
combining Lorentzian curves, with their signal maxima within 1725-1650 cm-1 spectral region. 
A set of 30 Lorentzians (A1 components) with constant height (0.01) was randomly created, 
with independent variations in their positions and bandwiths between each data set: the distance 
between adjacent signals varied from 1 to 3 cm-1, and widths from 5 to 10 cm-1. An example 
of the 30 simple analyte signals, simulated with randomly selected parameters of signal 
positions and widths, is shown in Fig. 1a. Complex analyte signals (A5 components) were 
created by randomly combining five A1 components, each scaled independently with the 
random factor ranging from 0.7 to 1.4.  Each data set comprised four of these complex analyte 
signals, and an example is shown in Fig. 1b. Each A5 component was scaled independently for 
each spectrum with the scaling factor ys (ranging from 0 to 0.2) within each data set to simulate 
concentration variation of the analyte.  

Broad interferant signals (B components): The analyte signals were overlapped by 
impeding broad signals, simulating spectral distortions and anomalies due to accompanying 
chemical constituents in a sample such as water, or nonchemical effects such as Mie scattering. 
Each set of these broad interferant signals was modelled by the two groups, each comprising 
five Lorentzians, in two separate spectral regions (roughly centred at 1000 and 2400 cm-1). 
Analogue to A components, all signals had constant height (0.1), while their positions and 
bandwiths varied independently between each data set: the distance between adjacent signals 
varied from 50 to 100 cm-1, and widths from 350 to 450 cm-1. An example of the ten broad 
interferant signals, simulated with randomly selected parameters of signal positions and widths, 
is shown in Fig. 1c. The signals were scaled independently for each spectrum (from 0 to 0.2) 
within each data set. Fig. 1d shows the two resulting curves when the ten signals from Fig. 1c 
are randomly scaled and overlapped with one another, and with the analyte signals from Fig. 
1b. 

The “average” spectrum (Av components) (with 0.3 maximum absorbance value), 
obtained from spectra of pollen samples,20 was added to the modelled signals (Fig. 2a). The 
spectrum is representative for biological samples, having typical bands associated with lipids 
(2950-2800 and 1730-1760 cm-1), proteins (1650-1500 cm-1), carbohydrates (1200-900 cm-1) 
and water (3000-3600 cm-1). This “average” spectrum was added in order to provide a realistic 
data set with slight inter-spectral variations that vary around an average spectrum, as we use to 
have in IR spectroscopy of biological systems (Fig. 2b). It should be stressed out that simple 
pre-processing methods such as MSC and SNV are efficient only if this precondition is met; 
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That is, the methods postulate that variations in analyte and other chemical signals have minor 
effect on the overall spectral set compared to the physical variations.  

Adding multiplicative effects and baseline effects: In addition, modelled data (the 
sum of components A, B and Av) was scaled by the multiplicative parameter bs that varied 
independently (from 0.8 to 2.0) for each spectrum. The multiplicative parameter was added to 
simulate variations in sample thickness and/or concentration (Fig. 2c).2,12 In addition to the 
broad interferant signals, several other hindrances were added to the spectra: vertical (Bv 
components) and linear baseline shifts (Bl components) (Fig. 2d). Baseline variations were 
generated by changing the shift (from -0.2 to 0.2) and the baseline slope (from 0 up to 0.0005 
cm) independently for each spectrum.  

High-frequency random noise: As the last component, white Gaussian noise was 
added to simulate high-frequency homoscedastic noise (N components). Maximum amplitude 
value of random noise was constant within each data set, amounting for approximately 10 % 
of maximum height values of the analyte signals. It should be noted that, although the noise 
level was kept constant within each data set, the signals on the other hand were scaled 
independently, and therefore the signal-to-noise ratio varied slightly from spectrum to 
spectrum.  

A random number generator was used to vary the parameters of the simulated signals. 
The simulated spectral range covered region from 800 to 4000 cm-1, with a digital resolution 
of 1.9 cm-1, and the data was analysed by PLSR in the whole data range (Fig. 2d).  

 
SPECTRAL DATA 
 

The real data set consisted of FTIR spectra of 219 milk samples. The milk samples (see 
details in 21) were recorded as thin dried films using a high-throughput screening eXTension 
(HTS-XT) unit coupled to a Tensor 27 spectrometer (both Bruker Optik GmbH, Germany). 
Spectra were recorded in transmission mode in the spectral region from 4000 to 500 cm-1 with 
a resolution of 6 cm-1 (digital resolution: 1.9 cm-1) and an aperture of 5.0 mm. Background 
spectra of the silicon substrate were collected before each sample measurement to account for 
variation in water vapour and CO2. For each spectrum, 64 scans were collected and averaged 
(apodization: Blackmann–Harris 3 term). Modified data sets were created by adding the 
simulated random noise of varying amplitude to the measured data. The spectral region of 720 
to 3200 cm-1 was used as predictor variables for the PLSR regression. 

 Alongside the FTIR measurement, the milk samples were subjected to reference 
analysis by gas chromatograph with flame ionization detection (Agilent 6890N GC, Agilent 
Technologies, USA) (see details in 21). The concentration of individual fatty acids (such as 
palmitic acid; C:16) was expressed in percent of total fatty acids present (on a fatty acid methyl 
ester basis). The complete list of measured fatty acids can be found in 15. Summed fatty acid 
parameters were calculated directly from the GC-FID results (PUFA - summed polyunsaturated 
fatty acids; SAT - summed saturated fatty acids; MUFA - summed monounsaturated fatty 
acids). Thus obtained chemical reference values of fatty acid composition were used as 
regressors in the PLSR modelling of measured milk data (in the following referred to as ym-
variables). 
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DATA PREPROCESSING AND ANALYSIS 
 
 Simulated and the measured data sets were pre-processed identically prior to 
calibration: for the non-derivated (original) spectra the raw spectra were pre-processed by the 
EMSC only, while for the derivative spectra the raw data were subjected to second-derivative 
treatment by the Savitzky–Golay algorithm followed by the EMSC normalization. For the SG 
preprocessing a polynomial of degree two (quadratic) or four (quartic) was used. The lower-
degree polynomials were used since for any filter length chosen, low degree is preferred for 
noise reduction over higher polynomials.22 The cubic polynomial was omitted since for second-
derivative treatment the SG algorithm produces equivalent results for central point using even 
polynomial degree and the next higher odd degree (i.e. the same second-derivative values are 
obtained for quadratic and cubic polynomials) .22 In order to assess the influence of the SG 
window size on the data analysis the extremely broad range of window sizes was examined, 
from 3 up to 201 points. This number of window points is way over the standard window range, 
which in the typical IR data analysis is 5 to 23 points.  
 Following the second-derivative treatment by the SG algorithm the data were pre-
processed by the EMSC normalization with linear and quadratic component. The EMSC model 
used in the pre-processing is defined by Eq. 1, and the EMSC corrected spectra by Eq. 2. 

 zi = bim + ai1+ di𝛎𝛎� + ei𝛎𝛎�  2 + εi    (1) 
  zi,Corr = (zi – ai1 – diν ̃  – ei𝛎𝛎�  2) / bi    (2) 
where zi is a ‘measured’ spectrum (where i = 1,…, N; number of spectra in a data set N is 100), 
zi,Corr is a corrected spectrum, bi is a multiplicative parameter, m is a reference spectrum often 
presented by the mean spectrum for a given data set, 1=[1, 1, 1, . . ., 1], ai, di and ei are constant, 
linear and quadratic parameters respectively, εi is a residual term, 𝛎𝛎� is spectral range 
(wavenumbers).  

Pre-processed spectra were used to develop multivariate regression models based on 
PLSR. Chemical reference values of fatty acid composition  were used in the PLSR modelling 
of measured milk data (ym-variables), while the scaling factors ys, used for simulating different 
amounts of analytes as described above, served the same purpose for the simulated data sets. 
The optimal number of PLSR factors of the calibration models was determined using 
segmented cross-validation using 10 segments. The reference values, ymi or ysi, and the 
predicted value, 𝑦𝑦�i, of every sample were used to calculate the prediction error of the cross-
validated calibration model, expressed as the root mean square error of cross-validation 
(RMSECV). Both the RMSECV and the coefficient of determination (R2) between the 
reference and predicted values were used to evaluate the calibration models. Although 
RMSECV is a better indicator for the evaluation of a calibration model, the general 
progressions of both of these parameters had no noticeable differences, and the R2 were used 
in the graphical representation of the results. It should be noted that optimal number of PLSR 
factors can vary depending on window sizes; however, for simpler viewing the number of 
factors represented in Figs. 4, 6 and 8 were kept constant, at values obtained for an optimal 
window sizes (except for the values obtained for the analysis on the original data). Residuals 
in Fig. 11 were calculated as normalized (by the number of data points) sum of squares of 
residuals εi. The data analyses were performed by algorithms written for the setting of Matlab, 
V. 7.10 (The Mathworks Inc., Natick, MA). 
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RESULTS AND DISCUSSION 
 
 Vibrational spectra of biological samples (Fig. 3) are often rich in information, which 
present not only an opportunity in data analysis but also a great challenge. In most cases 
different spectral bands can only be discriminated after application of resolution-enhancement 
techniques, such as conversion of data into second derivatives. Despite the complexity of the 
spectral information, the data can be readily used in a qualitative and quantitative analyses. 
However, spectral properties have to be well understood so that chemical analyte signals can 
be separated from all possible anomalies and interferants. One of the most important properties, 
of both chemical and physical interest, is signal bandwidth. Signal bandwidths (usually defined 
as full width at half maximum, FWHM) always vary within a certain range of values, depending 
on the spectroscopic method, sample and sampling configuration. Mid-IR spectroscopy is 
probably a technique with one of the widest range of possible signal bandwidths, spanning 
approximately two orders of magnitude. For instance, the typical FWHM for IR bands of a 
solid sample can be as small as 5 cm-1. On the other hand, for the stretching vibration of 
hydrogen bonded –OH and –NH group the corresponding absorption band is broadened, and 
the observed feature may encompass overlap from several hydrogen-bonded species. The 
FWHM of these absorption envelopes are often extending over several hundred cm-1. Such 
broadened bands, caused by vibrations of water molecules, can be seen in a spectrum of dried 
films of milk spectrum (Fig. 3) as broad underlying features (centred at 3490 and 685 cm-1). 

If spectral bands with a vast scope of different bandwidths are present in the measured 
data this can cause extreme complication during the SG pre-processing. As already mentioned, 
prior to obtaining derivative values the SG algorithm performs smoothing (i.e. polynomial fit) 
which can result with significant distortion of the signal of interest. If all of the bands being 
smoothed are of equal FWHM, then the bands will be distorted proportionally. However, since 
this is rarely the case in a typical IR spectrum we can expect that each band will be distorted to 
a different extent. Therefore, if parameters for calculation of derivative spectra are ill-chosen, 
there is always a great risk that a substantial part of potentially valuable information is lost. 
 

Simulated data. The simulated data sets were modelled by considering a range of 
undesired chemical and physical spectral anomalies and variations that can occur in measured 
spectrum as described above. The chemical analyte signals (A components) were modelled by 
Lorentzian functions parameterized according to the characteristics of the standard Mid-IR 
vibrational bands. Lorentzian functions were used also for the modelling of broad interferant 
signals (B components). It should be pointed out that these broad signals were simulating not 
only unusually broad vibrational bands caused by hydrogen bonding, but also spectral 
anomalies that can arise due to non-ideal instrument and sample properties. For example, a 
strong Mie scattering of the source radiation by the measured sample can also produce broad 
spectral features that can significantly interfere with and distort the signals of chemical 
analytes.23,24 In transmission measurements excessive scatter can also cause sloping (linear) 
baseline that decreases with decreasing wavenumber (Bl components). Vertical baseline shift 
(Bv components), another baseline effect that was simulated as well, usually occurs when the 
light source between the background and the sample spectrum varies, thus hindering 
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quantitative analysis of the analyte. Finally, a high-frequency homoscedastic noise was 
modelled in the data (N components). 
 The calibration results for the estimation of the analyte signals (A5 components) 
obtained from second derivative (quadratic polynomial) of simulated data are shown in Fig. 4. 
For the calibration results R2 is presented as a function of the window size used for SG. For the 
simulated data containing analyte signals only (components A5, Av, Bv and Bl; i.e. containing 
neither broad interferent signals nor noise) the optimal window size is three, which is the 
theoretically minimal value of window size for a quadratic polynomial (Fig. 4a). This is a direct 
consequence of the fitting procedure applied in SG algorithm, since a small window size 
enables near-perfect fit of the polynomial on a reduced number of data points. Another 
important aspect is that the predictive value of the calibration model that is based on the original 
data set is almost as good as for the model based on the second derivative data (see Fig. 4a; the 
window size zero marks the analysis on the non-derivated data set). However, when broad 
interferent signals (components B) are incorporated into simulated data, containing analyte 
signals and all interferants except noise (components N), the non-derivated data set has 
significantly inferior predictability than the derivative data. In both cases an optimal window 
size is not even relevant since calibration models are artificially accurate (R2 > 0.99999) within 
broad range of window sizes.  This situation, however, is not corresponding to a real data set, 
which will always contain a certain amount of noise. 

The two curves in Fig. 4b refer to simulated data that contains all components (the 
results in Fig. 4b were obtained for the two A5 components represented with the same colours 
in Fig. 1b.). The most striking result is that the addition of the random noise (components N) 
to the simulated data results in a higher optimal window size. This is due to an already 
mentioned property of the SG procedure to act as a low-pass filter. As the size of the SG 
window increases the suppression of the high-frequency signals becomes more effective (i.e. 
random noise in a spectrum is smoothed). However, while with the increase of the window size 
the level of noise will be more effectively reduced, at the same time the distortion of the analyte 
signals will be increased. The size of the window size should not be increased indiscriminately 
since the distortion of the analyte signal will hinder the analysis of a studied chemical system. 
Therefore, the exact influence of these two conflicting factors will determine the value of the 
optimal window size. For the simulated data the optimal window size mostly varied within 9-
25 range. 
 A band-pass filtering property of the SG procedure, i.e. when it is used for conversion 
of spectra into derivative data, is illustrated in Fig. 5. Fig. 5a shows the simulated data 
comprising one A5 component (centred at 1600 cm-1) and one set of B components (two groups, 
each with five broad Lorentzians, centred at 1000 and 2400 cm-1), while the effect of the SG 
window size on the derivative data is shown in Figs. 5b and 5c. It is obvious that small window 
sizes effectively reduce strong broad signals (Fig. 5b). If these broad signals, however, contain 
important information (for example associated with a chemical constituent of interest, such as 
water) then extremely large window sizes must be employed (Fig. 5c). On the other hand, this 
setting will reduce the information-rich lineshapes of narrow analyte bands into a handful of 
indistinctive signals. Therefore, if we want to establish a model with good predictive value for 
both type of information, the one contained in the narrow signals (A components) and the other 
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that is contained in the broad ones (B components), it is more appropriate to use two distinct 
data sets that were pre-processed optimally for these tasks. 
 As shown in Fig. 4b, the optimal window size for narrow analyte signals (that are 
standard in Mid-IR) is quite small, usually between 9 and 25 depending on the noise level. It 
was mentioned previously that using the original data is not an option for estimation of these 
narrow analyte signals (A5 components). However, it is a viable option for the broad ones (B 
components, Fig. 6). For the small window sizes the derivatives of these broad signals are 
completely obscured by high-frequency noise (N components), and the predictive value of the 
calibration model is restored to the value obtained by the original data only when extremely 
large window sizes are used.  
 Alongside window size, the additional concern in the SG preprocessing is the 
polynomial order of the fitting curve. If higher order polynomials are used in the SG 
differentiation, overfitting can be expected for small window sizes due to the excessive number 
of parameters relative to the number of data points. Therefore the ratio of the order of 
polynomials to the window-size should match the noise level in the data. For a high order of 
polynomial and a relatively low window size overfitting will artificially create occurrence of 
the additional high-frequency interferants in the second-derivative data (Fig. 7b). However, 
these additional interferant signals are seldom noticed in a real measured data due to a presence 
of random noise. As can be seen in Fig. 7c, when the high-frequency random noise is present 
in the spectrum, the noise level of the differentiated data is more or less independent of 
wavelength. Nevertheless, if higher order polynomials are utilized for differentiation of data 
one should avoid using windows of comparable size as the polynomial for the sake of evading 
overfitting. 
 

Measured data. Analyses of the measured FTIR spectra, belonging to 219 milk 
samples, show the same general result as the one obtained for simulated data. The calibration 
results for prediction of fatty acids in milk samples (represented as R2 values), as a function of 
the SG window size, are shown in Fig. 8. The results indicate that a choice of window size in 
the SG preprocessing step can greatly affect the estimation errors. Therefore, how good the 
calibration model is will depend on the window size, while the polynomial order of a SG fitting 
curve will affect the results only slightly. As previously reported,10 quartic polynomials give 
better results than quadratic. Although for accurate reproduction of signals in a data higher 
polynomial degree is superior, it is inferior to quadratic polynomial when considering 
smoothing of a high-frequency random noise in a data.22 Because of this inferior noise filtering 
property, the optimal window size for quartic polynomial is always larger than for quadratic 
one (Fig. 8). 

It is important to notice that a specific optimal window size is associated with an exact 
component (analyte) in the system being estimated, and does not necessarily applies for some 
other component. For example, in the case of milk spectra the optimal window sizes for the 
estimation of palmitic acid (C16:0) is significantly smaller than the one for estimation of 
summed polyunsaturated fatty acids (PUFA) (Fig. 8). Partial reason for this considerable 
difference in the optimal window sizes can be deduced from the regression coefficients of the 
calibration models for mentioned components (Fig. 9). It is apparent that the dominant spectral 
features of the two models are in the completely different spectral regions (Fig. 9a). For the 
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C16:0, strong signals are founded in the region between 900 and 1300 cm-1, which is a region 
that is mainly related to C–H deformations and C–O stretches (Fig. 9b). On the other hand, for 
the PUFA model, the main spectral feature is the cis =C–H stretch situated at 3012 cm-1. 
Considering the complex spectral features with numerous overlapped bands in the former 
region, and practically simple band overlapping in the latter region, it is quite straightforward 
why the SG window size influences the data analysis. The discrimination of the overlapped 
bands, important for the measurement of C16:0, is attained only at relatively small window 
sizes; for the quadratic polynomial the optimal window size is five (Fig. 8). In contrast, the 
discrimination of significant spectral features for the analysis of PUFA is achieved at relatively 
large window sizes; for the quadratic polynomial the optimal window size is 17 (Fig. 8). The 
analysis of PUFA shows the importance of the SG preprocessing on the prediction model. For 
the window sizes smaller than 13 the suppression of the random noise is ineffective, while for 
the window sizes larger than 19 the distortion of analyte signals is too large for a reliable 
analysis. Only if the data are pre-processed within a very limited interval of window sizes, from 
13 to 19, will the regression model enable reliable estimation of PUFA. Basically, flexible 
band-pass properties of the SG procedure enable targeted optimization of the preprocessing for 
each component in the system of interest.  It should be stressed out again that, since the SG 
window size is affecting the estimation error of the calibration model, it is most advantageous 
to use data that is pre-processed specifically for the optimal estimation of one particular 
component in the measured system. For example, the use of pre-processed data which is 
optimized for the estimation of C16:0, will result in an extremely unreliable prediction model 
for PUFA. 
 

Noise. High-frequency noise sources in FT-IR measurements are mostly associated 
with non-ideal instrument properties, such as light source and electrical current fluctuations, 
and other imperfections shared by all electronic devices. Level of noise is an important quantity 
for characterizing the quality of recorded spectrum, and since noise level is a function of 
wavelength, this value is calculated from a defined spectral region. The region 2200–2100 cm-

1 is often chosen as it is near the maximum transmitted wavelength for most FTIR 
spectrometers. For example the noise level, as defined by diagnostic algorithm of Opus 
software (Bruker Optics), is the difference between maximum and minimum of the first 
derivative spectra within the 2200–2100 cm-1 spectral region, obtained by SG procedure using 
quadratic polynomial and window of size nine. 

In order to determine influence of noise level on an optimum window size the modified 
data sets were created by adding the simulated random noise of varying amplitude to the 
measured data of milk samples. The noise level was calculated by the definition of Opus 
software, mentioned in the previous paragraph. The impact of noise level on the preprocessing 
of spectral data is shown in Fig. 10. As expected the optimum window size increases with the 
increase in amplitudes of noise, while simultaneously the predictive value of the calibration 
model rapidly decreases. In other words, as the level of random noise increases in spectra, 
larger windows are needed to suppress the noise, resulting with unwelcomed deformation of 
analyte signals, and hence unsatisfactory predictive value of the model. 

The optimization of the pre-processing, with regard to window size as depicted in Fig 
8, can be extremely time-consuming. However, by measuring noise level for a measured 



 

 

12 

12 

spectral data, an optimum window size for the preprocessing procedure can be estimated 
promptly. 
 

Correct sequence of the preprocessing procedures. In the data analyses so far the 
data were pre-processed with the exact order of the preprocessing procedures: the derivative 
treatment of data by the SG algorithm followed by EMSC normalization. Although this is 
inherently the correct order in which these two methods should be applied on any given data 
set, it is worth explaining why this order should be respected. Moreover, the difference between 
MSC and EMSC preprocessing methods is illustrated here since the analogous arguments can 
be applied to MSC preprocessing as well. 

In case of wavelength-dependent baseline variations, MSC preprocessing results with 
insufficient spectral correction (Fig 11a). The reason is the lack of higher terms in the MSC 
model, as opposed to linear and quadratic terms in EMSC model (see Eq.1), The difference 
between MSC and EMSC preprocessing can be estimated by substracting the MSC residuals 
from the EMSC ones. The residual term (εi in Eq. 1) comprise chemical information as well as 
interferant signals such as noise and baseline variations. Therefore, the more of an interferent 
signal is removed from a spectrum by preprocessing method (and the smaller is a residual term) 
the better is a data analysis. Figs 11c and 11d show the differences between MSC and EMSC 
preprocessed original data and second derivative data respectively. It should be noted that this 
difference is always positive, i.e. residuals are always smaller with EMSC preprocessing, thus 
resulting with better estimate of analyte signals. Although the difference between the two 
methods is smaller when spectral correction is preceded by the SG differentiation, it is still 
present due to a better correction of complex interferent signals (such as B components) by 
EMSC. It is worth noting that obtaining the SG differentiation prior to MSC preprocessing is 
quite valuable since the differentiation will result with at least partial removal of baseline 
variations. Thus SG differentiation suppresses broad underlying baselines, but it does not 
totally remove them. Therefore, in general EMSC performs better on SG differentiated FTIR 
data than MSC. 

One of the parameters estimated by MSC and EMSC preprocessing is the multiplicative 
parameter b (see Eq. 1.). In IR spectroscopy this parameter accounts for the differences in the 
spectral absorbance due to variations in the effective optical path length. Erroneous estimation 
of this scaling factor results in over- or underestimated total absorbance. It is therefore of 
outmost importance that the multiplicative parameter is estimated as accurately as possible. 

In order to show the influence of the exact order of the SG and the EMSC preprocessing 
procedures on the estimation of the multiplicative parameter the data set was pre-processed in 
the two opposite sequences: 1) the SG differentiation followed by the EMSC, and 2) the EMSC 
on the raw data followed by SG differentiation. The procedure success was based on the 
difference between the estimated multiplicative parameter b, as obtained by the EMSC, and the 
actual simulated value bs. As can be seen on Fig. 11e, the sequence of differentiation followed 
by EMSC results in estimates that are very close to the true values of b, and much closer than 
is the case for the b values obtained from the EMSC on the original data. Since the FTIR bands 
become very sharp by taking the second derivative, the average spectrum can be nearly 
considered as independent from the other model spectra and, therefore, the calculation of the 
parameters is very precise when the right order is chosen, i.e. derivative first and then EMSC. 



 

 

13 

13 

It is therefore apparent that this pair of operations, SG differentiation and EMSC (or MSC) pre-
processing, are not-commutative, and that the correct sequence of these procedures must be 
obeyed.  
 
CONCLUSION 
 

Considering the vast range of possible signal bandwiths encountered within a typical 
Mid-IR spectrum it is not possible to provide general method with specific parameters for 
spectral preprocessing by the SG procedure. Bandshape properties in NIR spectra are rather 
uniform, and in this case some general guidelines can be made, however such investigation 
was not an objective of this study. It is important to notice that a specific optimal window size 
is associated with an exact component in the system being estimated. This window size does 
not necessarily apply for some other component present in the measured system. Therefore, it 
is preferred that each case is studied independently, i.e. by optimizing preprocessing of spectral 
data for each component. This can significantly impede a multivariate analysis of spectral data 
when a regression model for predicting a number of variables (components) is demanded. In 
such case the combination of several pre-processed data can be utilised in data analysis; for 
example the more reliable data set can be created by concatenating data sets that were pre-
processed using different SG parameters. The optimization of the SG preprocessing parameters 
can be time-consuming, and when time is in short supply spectral noise level can be used for 
their rough assessment. Contrary to previous notion,11 it has been demonstrated that, when the 
EMSC (or the MSC) is used alongside the SG procedure, the derivative treatment of data by 
the SG algorithm must precede the EMSC (MSC) normalization.  
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Figures 
 

 
Figure 1. Simulated data: a) 30 modelled simple analyte signals (A1 components); b) four 
modelled complex analyte signals (A5 components), composed of five A1 components each; c) 
two sets of broad interferant signals, each comprising five curves (B components); d) simulated 
spectra containing scaled and overlapped A5 and B components; for better viewing only 2 out 
of 100 spectra in the data set are shown. 
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Figure 2. Simulated data: a) the “average” spectrum (Av components); b) simulated spectra 
containing overlapped components A5, B and Av; c) simulated spectra containing overlapped 
components A5, B and Av after scaling with the multiplicative parameters b; d) simulated 
spectra containing overlapped components A5, B, Av, Bv, Bl and N (scaling with the 
multiplicative parameters b included). For better viewing only 2 out of 100 spectra in the data 
set are shown. 
 

 
Figure 3. FTIR spectrum belonging to one of the measured milk samples; extensive range of 
bandwidths as well as widespread band overlapping is clearly seen. 
  



 

 

18 

18 

 
Figure 4. Calibration results for the estimation of the analyte signals (the two A5 components 
represented with the same colours in Fig. 1b) obtained from second derivative (quadratic 
polynomial) simulated data, containing all components. Window size zero marks the analysis 
on the original (non-derivative) data. 
 

 
Figure 5. Simulated data containing components A5 and B: Effect of window size utilized in 
the SG algorithm on the profiles of second-derivative data (quadratic polynomial): a) original 
simulated data, b) second-derivative data obtained by window size 11, c) second-derivative 
data obtained by window size 101. 
 

 
Figure 6. Calibration results obtained from the second derivatives (quadratic polynomial) of 
the simulated data set with all components for estimation of broad interferant signals (B 
components). Window of zero size marks the original (non-derivative) data. 
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Figure 7. Effects of small window size utilized in SG algorithm on the profiles of second 
derivative data (obtained by quartic polynomial and window of size 7): a) original simulated 
data consisting of only one component A1 and one component B, with (gray) and without (black) 
component N (see magnified area), b) second-derivative of the simulated data which contained 
no component N, c) second-derivative of the simulated data that contained component N. 
 

 
Figure 8. Calibration results for estimation of palmitic acid (C16:0, grey) and summed 
polyunsaturated fatty acids (PUFA, black) obtained from the second derivative of measured 
data set; order of the SG fitting polynomial: quadratic (full circle) and quartic (hollow circle).    
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Figure 9. a) Regression coefficients obtained for the optimum window size: 5 for palmitic acid 
(C16:0) and 17 for polyunsaturated fatty acids (PUFA). b) and c) Details of FTIR spectrum 
belonging to one of the measured milk samples (see Fig. 2 for the whole spectrum); 
corresponding wavenumber regions for the regression coefficients are represented within the 
gray rectangles.  
 

 
Figure 10. Influence of noise level on optimum window size (second derivatives obtained by 
quadratic polynomial), calculated for the measured milk data with simulated increase in noise 
level. 
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Figure 11. a) MSC and b) EMSC preprocessing of ten simulated spectra. Difference in 
residuals: c) between MSC and EMSC preprocessed original data d) between MSC and EMSC 
preprocessed second derivative data. e) Values of the multiplicative quantities b for spectra 
containing all components (bs – simulated values;  b2 – estimated values obtained from the 
EMSC on the second derivative data; bO – estimated values obtained from the EMSC on the 
original data); all b values are normalized to the value of the first sample (designated as sample 
spectrum 0). 
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Tables 
Table 1. The components of the simulated data sets; Typical data set had 100 spectra, each 
composed of 4 A5 components, 10 B components, 1 Av component, 1 Bv components, 1 Bl component, 
and 1 N component. 

Simulated signal Signal form Parameters 
A1 components: 
Simple analyte 
signals 

Lorentzian: 30 curves 
(centred at 1675 cm-1) 
 

Height: 0.01 
Width: 5 - 10 cm-1 
aDistance: 1 - 3 cm-1 

   

A5 components: 
Complex analyte 
signals 

Random combination of five A1 
components 
 

bScaling of A1: 0.7-1.4 
cScaling: 0 - 0.2 
 

   

B components: 
Broad interferants 
 
 
 

Lorentzian: 2x 5 curves 
(centred at 1000 and 2400  cm-1) 
 
 
 

Height: 0.1 
Width: 350 - 450 cm-1 
aDistance: 50 - 100 
cm-1 

cScaling: 0 - 0.2 
   

Av components: 
“Average” spectrum 

Recorded spectra of pollen 
 

dHeight: 0.3 
 

   

Bv components: 
Baseline vertical 
shift 

Constant 
 
 

Shift value: -0.2 - 0.2 
 
 

   

Bl components: 
Baseline slope 

Line 
 

Slope value: 0 - 
0.0005 cm 

   

N components: 
Random noise 

White Gaussian noise  
 

eHeight: 0.001 

 
aDistance between adjacent signals. 
bEach A1 component was scaled independently with the random factor.  
cThe signals were scaled independently for each spectrum (from 0 to 0.2) within each data set. 
dMaximum absorbance value. 
eApproximately 10 % of maximum height values of the analyte signals. 
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