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Abstract

We investigate a two-population Wilson-Cowan model extended with station-
ary and spatially dependent localized external inputs and study the existence
and stability of localized stationary (bump) solutions. The generic situation
for this model in the absence of external inputs corresponds to two bump
pairs, one narrow and one broad pair. For spatially wide localized external
inputs we find this generic picture to be unchanged. However, for strongly
localized external inputs we find that three and even four bump pairs, all
with symmetric activity profiles around the center of the localized external
input, may coexist. We next investigate the stability of these bump pairs
using two different techniques: a simplified phase-space reduction (Amari)
technique and full stability analysis. Examples of models, i.e., choices of
model parameters, exhibiting up to three stable bump pairs are found. The
Amari technique is further found to be a poor predictor of stability in the
case of strongly localized external inputs. The bump-pair states are also
probed numerically using a fourth order Runge-Kutta method, and an ex-
cellent agreement is found between numerical simulations and the analytical
predictions from full stability analysis.
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Stability analysis, Fourth-order Runge-Kutta method.

1. Introduction

Experiments have implicated persistent neuronal firing a possible sub-
strate for short-term memory [1, 2, 3], and this has spurred significant interest
among modelers in investigating persistent neural-network activity [4, 5, 6, 7]
and, in particular, spatially localized activity solutions, ’bumps’, of neuron
network models [7, 8]. In recurrent networks such localized stationary states
are naturally formed by a combination of (i) a strong and localized recur-
rent excitation boosting the bump and (ii) a spatially more extended ’lateral’
inhibition preventing the bump from growing in size [9]. Neuronal field mod-
els have provided a powerful and versatile tool for the investigation of the
properties of such bump states [8, 9, 10, 11, 12, 13], and a large number of
studies have used such models to study generic properties of bumps such as
conditions for their existence and stability [14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27].

Most of these studies have focused on the generic properties of bumps
for spatially homogeneous, i.e., translationally invariant, networks without
external inputs. In some studies homogeneous inputs has been included
[9, 14, 20]. However, as such inputs do not violate the translational invari-
ance of the model, few new qualitative features are introduced, and the effects
are akin to changing the effective firing threshold in the neural-field firing-
rate functions. A more interesting situation arises when the external input
is spatially localized as this breaks the translational invariance. Further, the
situation with such localized inputs is expected to be common in real neu-
ral networks, for example, in primary visual cortex where such inputs must
underlie the prominent retinotopic organization [28]. Models with localized
inputs have been explored in the context of orientation tuning in visual cor-
tex [29, 30]. In a more general setting, Folias et al [19] analyzed bumps in a
one-population model with spatially localized external inputs and found that
(i) sufficiently large inputs can stabilize bump states and (ii) that reduction
of the input amplitude may induce a Hopf instability and the conversion of
stable bumps into breather-like oscillatory waves.

In the present study we investigate the effects of spatially localized ex-
ternal inputs on bump states in a two-population Wilson-Cowan like model
with one excitatory and one inhibitory population. We have previously in-
vestigated bump states in this model without external inputs [24, 27], and an
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interesting feature is the key role played by the inhibitory time constant in
determining the stability of bumps. The bumps are found to be stable only
for inhibitory time constants below a critical value, about three times the
excitatory time constant for the example in [24], while the bumps are con-
verted to stable breathers through a Hopf bifurcation at the critical value.
This crucial dependence on the ratio of inhibitory and excitatory time con-
stants, which obviously cannot be addressed in a one-population model, has
previously been seen in extensive network simulation of integrate-and-fire
neurons [4, 6].

The model investigated is a direct extension of the model studied in
Blomquist et al [24] with spatially dependent external inputs added to the
equations describing the dynamics of both the excitatory and inhibitory pop-
ulations:

∂
∂t
ue(x, t) = −ue(x, t) +

∫∞
−∞ ωee(x

′ − x)Pe(ue(x
′, t)− θe)dx′

−
∫∞
−∞ ωie(x

′ − x)Pi(ui(x
′, t)− θi)dx′ + he(x)

(1)

τ ∂
∂t
ui(x, t) = −ui(x, t) +

∫∞
−∞ ωei(x

′ − x)Pe(ue(x
′, t)− θe)dx′

−
∫∞
−∞ ωii(x

′ − x)Pi(ui(x
′, t)− θi)dx′ + hi(x)

Here ue(x, t) and ui(x, t) are excitatory and inhibitory activity levels, ωmn(x)
the distance-dependent connectivity strengths, Pe and Pi the firing-rate func-
tions for the excitatory and inhibitory population, θe and θi the threshold
values for firing of these excitatory, and τ the relative inhibition time, i.e.,
the ratio between the inhibitory and the excitatory time constants. (The
excitatory time constant is, for convenience, set to unity.), Finally, he(x) and
hi(x) represent the new elements introduced to the model used in [24], i.e.,
stationary, localized external inputs.

The generic situation for the case without external inputs consists of
two bump pairs, one narrow bump pair and one broad bump pair [24]. For
spatially wide localized external inputs we find this generic picture to be
unchanged. However, for strongly localized external inputs a more interesting
situation emerges: here three and even four bump pairs may coexist. We next
investigate the stability of these bump pairs. The two techniques used in
Blomquist et al [24], namely the simplified phase-space reduction technique
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(the so called Amari technique) and full stability analysis, are considered,
and find that the Amari technique fails to produce the correct stability results
in the case of strongly localized external inputs.

The paper is organized as follows: In Section 2, we discuss the two popula-
tion model (1) in some detail. We show that the solution of the initial value
problem of this system is globally bounded and that spatially dependent
external inputs represent a symmetry breaking effect i.e the translational
invariance property is violated. The existence and uniqueness of localized
stationary solutions (bumps) for a given pair of threshold values subject
to the spatially dependent external input are addressed in Section 4. Here
and in the rest of the paper it is assumed that the firing rate functions are
given by means of the Heaviside functions. In Section 5 we investigate the
stability of these bumps analytically by using the Amari approach and full
stability analysis. Section 6 is devoted to numerical simulations, where the
time evolution of localized structures are investigated by using a fourth order
Runge-Kutta method. Section 7 contain a summary of the results and an
outlook. Appendix A contains the detailed derivation of the growth rate
equations in the full stability analysis in Section 5, Appendix B gives the
description of the numerical code underlying the numerical simulations of
Section 6, while Appendix C contains the technical details underlying the
discussion on the discrepancy between the Amari analysis and full stability
analysis.

2. Model

The model described by (1) can more compactly be written as

∂ue
∂t

= −ue + ωee ⊗ Pe(ue − θe)− ωie ⊗ Pi(ui − θi) + he (2a)

τ
∂ui
∂t

= −ui + ωei ⊗ Pe(ue − θe)− ωii ⊗ Pi(ui − θi) + hi (2b)

where the operator ⊗ in (2) denotes the spatial convolution integral given
by

(f ⊗ g)(x) =

∫ ∞
−∞

f(x− x′)g(x′)dx′ . (3)

A schematic illustration of our two-population model is given in Fig. 1.

4



                                                                                      +ωee(x) 

 

                                          -ωie (x)           +ωei (x) 

                                                                                                                          - ωii(x)        

 

 

 

                  

ue (x,t) 

hi (x) ui (x,t)       
 
 

 

he (x) 

Figure 1: Sketch of the two-population neural-field model (2). An excitatory and inhibitory
neuron population with space- and time-dependent activity levels ue(x, t) and ui(x, t)
are driven by spatially structured external inputs he(x) and hi(x), respectively. The
populations are intra- and interconnected with distance-dependent connectivity functions
ωmn(x) (m,n ∈ {e, i}).

In the model the conversion of population activities ue and ui to popu-
lation firing rates is done by means of the firing-rate function Pm (m = e, i)
which we in this study model as Heaviside step functions,

Pm(x) = Θ(x) =

{
0, x < 0
1, x ≥ 0

(4)

Further, the threshold values are assumed to be between zero and one, i.e.,
0 < θm ≤ 1 (m = e, i). The connectivity functions ωmn (m,n = e, i) model
the synaptic connection strength (m → n) in the network. These functions
are assumed to be positive, real valued, bounded, symmetric, normalized
(
∫∞
−∞ ωmn(x)dx = 1) and parameterized by the synaptic footprints σmn, i.e.,

ωmn(x) =
1

σmn
Φmn(ξmn), ξmn =

x

σmn
(5)

Here Φmn is a dimensionless scaling function which in the present study is
chosen to be a Gaussian, i.e.,

Φmn(ξmn) =
1√
π
e−ξ

2
mn (6)
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Parameters σee σei σie σii Ae Ai ρe ρi θe θi
Set A 0.35 0.48 0.60 0.69 0.19 0.7 0.065 0.060 0.12 0.08
Set B 0.35 0.48 0.60 0.69 0.25 0.7 0.065 0.060 0.12 0.08
Set C 0.35 0.48 0.60 0.69 0.22 0.7 0.065 0.060 0.12 0.08

Table 1: Set of parameters used as examples for different number of BPs, where σmn for
(m,n = e, i) represent synaptic footprints and θm threshold values. The parameters Am
and ρm for m = e, i represent the amplitude and width, respectively of the external input
function hm(x) given by (7). The parameter sets A, B and C are found to generate two,
three and four bump pairs, respectively.

Also the functions hm(x) (m = e, i) describing the stationary and localized
external inputs are modeled as Gaussians, i.e.,

hm(x) = Am e−(x/ρm)2 (7)

where Am and ρm describe the amplitude and width, respectively.
The net excitatory activity is expressed by (2a) where ωee ⊗ Pe(ue − θe)

models self-interaction within the excitatory population, while the term ωie⊗
Pi(ui − θi) represents the dampening effect of the inhibitory neurons on the
excitatory population. Similarly, the activity in the inhibitory population
is modeled by equation (2b) where the term ωei ⊗ Pe(ue − θe) represents
the excitation provided by the excitatory population while the term ωii ⊗
Pi(ui − θi) accounts for self-inhibition. Notice that the trivial state ue = 0,
ui = 0 is not a solution of the system (2) unless the external input hm is
zero. Also, with no coupling in the network, stationary solutions are given
by the external input functions, i.e., Ue(x) = he(x) and Ui(x) = hi(x), and if
the amplitudes Am are smaller than the threshold there will be no firing at
all.

In the present study our analytical findings will be illustrated by numer-
ical examples, and the three parameter sets used are listed in Table 1.

3. Boundedness property

In Potthast et al [32] the wellposedness problem of a the initial value
problem of the one-population Wilson-Cowan model is studied. Based on the
same type of arguments as presented in Potthast et al [32] we can conclude
that the initial value problem of (2) is globally wellposed. Notice also that
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our model according to Faye et al [33] is globally wellposed in the space of
quadratic integrable functions.

Here we study the boundedness property of the solutions to the system
(2). We proceed as follows: Let Vm (m=e,i) denote the initial condition of
this system. We prove that the solutions of the initial value problem (2)
are uniformly bounded provided both the initial conditions and the external
input functions are bounded and continuous. The proof of this fact proceeds
in the same way as in [24, 32]. First, introduce the net activity levels

ve(x, t) = ue(x, t)− he(x) (8a)

vi(x, t) = ui(x, t)− hi(x) (8b)

The evolution equations for ve and vi are then given by

∂ve
∂t

= −ve + ωee ⊗ Pe(ve − θ̃e)− ωie ⊗ Pi(vi − θ̃i) (9a)

τ
∂vi
∂t

= −vi + ωei ⊗ Pe(ve − θ̃e)− ωii ⊗ Pi(vi − θ̃i) (9b)

where θ̃e and θ̃i are spatial dependent shifted threshold values:

θ̃e(x) = θe − he(x) , θ̃i(x) = θi − hi(x) (10)

The normalization condition imposed on ωmn and together with (4) imply
the uniform bounds of the nonlocal terms in (9):

0 ≤ [ωmn ⊗ Pm(vm − θ̃m)](x, t) ≤ 1 (11)

for all x and t. Hence we obtain the explicit bounds for the solution ve and
vi of (9),

(Ṽe(x) + 1) exp(−t)− 1 ≤ ve(x, t) ≤ (Ṽe(x)− 1) exp(−t) + 1 (12a)

(Ṽi(x) + 1) exp(−t/τ)− 1 ≤ vi(x, t)) ≤ (Ṽi(x)− 1) exp(−t/τ) + 1 (12b)

by proceeding in the same way as in [24, 32]. Here

Ṽm(x) = Vm(x)− hm(x) , m ∈ {e, i} (13)
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are the initial conditions for the system (9). Then, by restoring to the original
variables, we deduce the bounds for the solutions ue and ui

Lm(x, t) ≤ um(x, t) ≤ Rm(x, t) , m ∈ {e, i} (14)

This boundedness feature is demonstrated in the Fig. 2, where the bounding
functions Lm and Rm are represented by green and blue dashed curves and
are given as:

Le(x, t) = (Ve(x)− he(x) + 1) exp(−t)− 1 + he(x) (15a)

Re(x, t) = (Ve(x)− he(x)− 1) exp(−t) + 1 + he(x) (15b)

Li(x, t) = (Vi(x)− hi(x) + 1) exp(−t/τ)− 1 + hi(x) (15c)

Ri(x, t) = (Vi(x)− hi(x)− 1) exp(−t/τ) + 1 + hi(x) (15d)

Boundedness of he and hi thus implies the boundedness of the component
functions ue and ui. We also observe that if

hm(x)− 1 ≤ Vm(x) ≤ hm(x) + 1 , m ∈ {e, i} (16)

for all x, then

hm(x)− 1 ≤ um(x, t) ≤ hm(x) + 1 , m ∈ {e, i} (17)

uniformly in t. Notice that the arguments presented here hold true also in
multiple spatial dimensions or when other types of external input functions
and firing rate functions are considered.

4. Existence and uniqueness of single bumps

In this section we will investigate the existence and uniqueness of localized
stationary symmetric solutions (so called single bump solutions) of the system
(2) by generalizing the arguments presented by Blomquist et al [24] and
Pinto et al [15]. Just as in [24] we must separate the existence issue from
the uniqueness issue. The existence issue consists of determining the set
of threshold values for firing which produce bumps solutions of system (2).
In contrast with that the uniqueness issue is a local problem and it can be
posed as follows: Assume that a bump solution exists. Then we determine the
conditions for having one to one correspondence between the bump solutions
and the threshold values.
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Figure 2: Example on the boundedness of bumps solution to (2) for the parameters set
A in Table 1. First and second row correspond to times t = 0.5 and t = 80, respectively,
while first column ((a) and (c)) represents excitatory, while second column ((b) and (d))
stands for the inhibitory activity and its bounds. Solid curves represent broad, while the
dashed curves stand for narrow pulses and its bounds. The black, red and blue curves
represent the activity levels, lower bounds and upper bounds respectively for τ = 3.127.

4.1. Existence of single bumps

We look for time independent, spatially symmetric and localized solutions
of (2) i.e. we assume that um(x, t) = Um(x),m = e, i where Ue and Ui are
functions satisfying the following list of properties:

1) Um(x) = Um(−x).

2) lim|x|→∞ Um(x) = lim|x|→∞ hm(x) = 0 .

3) There exist unique points a, b > 0, such that Ue(±a) = θe and Ui(±b) =
θi with

Ue(x) > θe for |x| < a , Ue(x) < θe, for |x| > a (18a)
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Ui(x) > θi for |x| < b , Ui(x) < θi, for |x| > b (18b)

The stationary solutions of (2) are referred to as single bump solutions. The
parameters a, b denote the widths of the excitatory and the inhibitory pulses,
respectively. According to the conditions 1) − 3), the expressions for Ue(x)
and Ui(x) are given as

Ue(x) = Wee(x+ a)−Wee(x− a)−Wie(x+ b) +Wie(x− b) + he(x) (19a)

Ui(x) = Wei(x+ a)−Wei(x− a)−Wii(x+ b) +Wii(x− b) + hi(x) (19b)

Here Wmn(x) is the integral defined as

Wmn(x) =

∫ x

0

ωmn(y)dy (20)

Notice that Wmn is an odd function. By following the above assumptions,
the conditions for a stationary symmetric solution are

fe(a, b) = θe and fi(a, b) = θi (21)

where fe and fi are given as

fe(a, b) = Wee(2a)−Wie(a+ b) +Wie(a− b) + he(a) (22a)

fi(a, b) = Wei(a+ b)−Wei(b− a)−Wii(2b) + hi(b) (22b)

In order to prove the existence of bumps, we need to find threshold values θm
in the interval (0, 1], for which the system (2) and the equation (21) possess
a solution. We proceed in the same way as in [24] by translating the problem
into a mapping problem. We introduce the two subsets Σ of R2 and I in the
(θe, θi) plane, which are defined as

I = (0, 1]× (0, 1] , Σ = {(a, b)|a ≥ 0, b ≥ 0} (23)

We call I the threshold value set and Σ the pulse width set. We have the
following existence theorem for solutions of (21):
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Figure 3: Mapping of the pulse-width coordinate plane to the threshold value plane show-
ing non-empty admissible set of threshold values, where dashed lines imply 0 < θm ≤ 1.
(a) Images of the origin a = b = 0 (∗), the a-axis (a > 0, b = 0) (red curve), the b-axis
(a = 0, b > 0) (blue curve), and the limit values (a → ∞, b = 0) (�) and (a = 0, b → ∞)
(?). (b) Image of the entire pulse-width plane showing non-empty intersection with the
threshold-value plane. The synaptic footprints are given by Table 1. The amplitude
and width parameters of the external input functions are (Ae, Ai) = (0.27, 0.25) and
(ρe, ρi) = (0.032, 0.03), respectively.

Theorem 1. Let the external input functions hm be given by (7) and assume
that (Ae, Ai) ∈ I. Introduce the vector field F : Σ→ R2 defined as

θ = F (a) (24)

where
F = (fe, fi)

t, a = (a, b)t, θ = (θe, θi)
t, a ∈ Σ (25)

with fe and fi given as (22). Then the set F (Σ) is bounded and there is a
subset Σ0 of Σ such that F (Σ0) ∩ I is non-empty.
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Proof. We first prove that the set F (Σ) is bounded. Since the functions
ωmn are symmetric and normalized, we find the uniform bound

|Wmn(y)| ≤ 1

2
(26)

We also notice that

|he(a)| ≤ Ae , |hi(b)| ≤ Ai (27)

Hence we get

|fe(a, b)| ≤
3

2
+ |Ae|, |fi(a, b)| ≤

3

2
+ |Ai| (28)

from which the boundedness of F (Σ) follows.
The assumptions imposed on the connectivity functions imply continuity

of the anti-derivatives Wmn defined by (20). Since by assumption the external
input functions hm are continuous, we conclude that the vector field F is a
continuous mapping. We observe that F (0, 0) = (Ae, Ai) ∈ I. Then, by
continuity of F there is an open neighborhood of (a, b) = (0, 0) which is
mapped to an open neighborhood of (Ae, Ai). We hence conclude that there
is a subset Σ0 of Σ such that F (Σ0) ∩ I is non-empty.

In order to illustrate in detail the mapping properties of the vector field F
we proceed as follows: The image of the positive a-axis is the smooth curve
ζ : [0,∞)→ R2 with the parametrization

ζ(a) = F (a, 0) =

[
fe(a, 0)
fi(a, 0))

]
=

[
Wee(2a) + he(a)

2Wei(a) + Ai

]
(29)

with the properties

ζ(0) =

[
Ae
Ai

]
, ζ(a→∞) =

[
1/2

1 + Ai

]
(30)

Since dWei

da
= ωei(a) > 0, Wei is a strictly increasing function of a and hence

it is invertible. For a given admissible θi, the equation 2Wei(a) + Ai = θi
has a unique solution. Hence the positive a-axis is mapped onto the graph
of some smooth function g where θe = g(θi). Differentiation yields

g′(θi) =
dθe
dθi

=
2ωee(a) + h′e(a)

2ωei(a)
(31)
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The numerator consists of two terms, where the first one is positive and the
second one negative. The monotonicity depends sensitively on the steepness
of the excitatory external input function he. For broad excitatory external
input, the first term of the numerator will dominate, and hence the function
g in this case is strictly increasing, just as in the case of no external input. In
the complementary regime, with strongly localized external input function he,
there is a θi-interval for which g is strictly decreasing. Based on this analysis
we may expect that the most significant qualitative difference between the no-
input case and the finite input case occurs for the strongly localized external
parameter regime case.

Next, let us study the image of the positive b-axis under the vector field
F . In that case we get a smooth curve σ : [0,∞)→ R2 with parametrization
given by

σ(b) = F (0, b)

[
−2Wie(b) + Ae
−Wii(2b) + hi(b)

]
(32)

We observe that

σ(0) =

[
Ae
Ai

]
, σ(b→∞) =

[
−1 + Ae
−1/2

]
(33)

Now, since Wie is a strictly increasing function of b, the equation θe =
−2Wie(b)+Ae has a unique solution for a given admissible θe. Hence the pos-
itive b-axis is mapped onto the graph of some smooth function: θi = G(θe).
As

G′(θe) =
dθi
dθe

=
2ωii(2b) + |h′i(b)|

2ωie(b)
> 0 (34)

G is a strictly increasing function of θe. The whole mapping process of the
boundary curves a=0, b=0 and the first quadrant of Σ is illustrated in Fig. 3.

We call the set of (θe, θi) values for which the system (21) and (22) has
a solution the admissible set of threshold values. Hence, if (Ae, Ai) ∈ I,
there exists a subset of the threshold values (θe, θi) for which the model
possesses spatially symmetric solutions given by (19)-(22). Hereafter we will
refer to the above theorem as the existence theorem for bumps. Notice that
the existence theorem for bumps says that a single bump exists provided
the amplitude Am of the external inputs are small and moderate. Above
certain thresholds of the amplitudes of the external inputs, no bumps exist.
This should be compared to the situation without external inputs treated
in Blomquist et al [24] where we always have an admissible set of threshold
values i.e. we can always find threshold values producing bumps.
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4.2. Uniqueness of bumps

We let the threshold values (θe, θi) belong to the set of admissible thresh-
old values and (aeq, beq) be the corresponding solution of the system (21)
and (22). We assume that the connectivity functions are continuous. This
implies that the component functions fe and fi defined by (22) are continu-
ously differentiable. According to the inverse function theorem, F is locally
one-to-one and onto, if the Jacobian of F evaluated at the aeq = (aeq, beq) is
non singular, i.e.

det[
∂F

∂a
](aeq) 6= 0 (35)

Thus there will be an open neighborhood of aeq, which is mapped bijectively
to the open neighborhood of (θe, θi) . Geometrically, the solution of the
system (21) with condition (35) corresponds to a transversal intersection
between the two level curves fe = θe and fi = θi. Hence each transversal
intersection of level curves fm = θm corresponds to a bump solution of the
system (21).

The pulse pair generation is connected to the breakdown of the transver-
sality condition (35) in a way analogous to Blomquist et al [24] and Pinto
et al [15]. We typically get two bumps pairs (BPs) for a pair of threshold
values. Fig. 4 shows a numerical example on a situation with two bumps
corresponding to the set of parameters A in Table 1. Here we used the same
synaptic footprints and threshold values as used in [24]. The corresponding
pulse width coordinates are given as in Table 6.

(a1, b1) = (0.112, 0.116), (a2, b2) = (0.180, 0.183) (36)

For convenience, we term the pulse pair corresponding to the intersection
point (a1, b1) as a narrow pulse pair, while (a2, b2) is referred as a broad pulse
pair. Pulse pairs in this case are shown as blue solid curves in Fig.4.

However, the addition of spatial dependent external inputs in the model
makes it possible to identify parameter regimes for which we have even three
and four BPs for a given pair of threshold values. This is a qualitatively new
feature, apparently with no counterpart in the case with no - or constant
external inputs.

The figures 5 and 6 give a global overview over the number of BPs as a
function of firing thresholds and input amplitudes, respectively. In Fig. 5,
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Figure 4: Effect of spatially structured external input on stationary BP solutions. (a)
Intersections of level curves fe(a, b) = θe (solid red) and fi(a, b) = θi (dashed blue) illus-
trating the generation of two BPs in the presence of external input. (b,c) Excitatory (left)
and inhibitory activity levels (right) for narrow (b) and broad BPs (c) with (solid blue
curves) and without localized external input (dashed black curves). Green and red lines
represent threshold values and external input functions, respectively. Input parameters:
Parameter set A in Table 1.

we show the number of BPs in the threshold value plane keeping the am-
plitudes and the width parameters of the external input parameters fixed.
Fig.5(a) shows the threshold value plane for the case without external inputs,
i.e., Ae = Ai = 0. Here we recover the situation studied in [24]. Fig. 5(b)
represents an example with wide external inputs and small amplitudes. It
illustrates that the set of admissible threshold values emerges as a continu-
ous deformation of the admissible threshold value set in the no input case.
Qualitatively new features like three or four coexisting BPs do not exist in
this situation. This result is to be expected as the no-external input case
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Figure 5: Number of bump solutions in the threshold-value plane, where the colors grey,
green, blue and yellow represent zero, one, two and three bump solutions, respectively.
(a) No external input. (b) Wide external input (ρe = 0.65, ρi = 0.60). (c) Localized
external input (ρe = 0.065, ρi = 0.060). In (b) and (c) Ae = 0.072 and Ai = 0.070. The
other parameters are as given in Table 1.

can be considered as a limiting case of the small amplitude - wide external
input situation. When decreasing the width parameters of the external input
functions while keeping the amplitude parameters fixed Fig.5(c), regions in
the admissible part of the threshold value plane with three BPs appear. This
effect is caused by the localization of the external inputs.

In Fig. 6 we identify the number of BPs as a function of the external
input amplitudes for fixed widths, synaptic footprints and threshold values.
As the regime of strongly localized external input appears to be the regime
for which the deviation from the no-external input case is most prominent,
we have chosen the width parameters of the external input functions to be
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Figure 6: (a) Dependence of the number of bump-pair (BP) solutions on the amplitudes
Ae, Ai of the external input (7). (b) Magnified view of the region marked by the black
rectangle in (a). Marks on the directed line segment correspond to different numbers of BP
scenarios displayed in Figs. 4, 8 and 9. The corresponding width coordinates, threshold
values and synaptic footprints are given in Table 1. The points A, B and C correspond to
the parameter sets A, B and C in Table 1, respectively.

the same as those used in Fig. 5(c). We observe regimes with both three and
four BPs. In the following we focus on representative examples of three
and four BPs solutions (points B and C in Fig. 6b) by using parameter sets
B and C in Table 1, respectively. For parameter set B of Table 1, three pairs
of solutions of (21) with pulse width coordinates

(a1, b1) = (0.080, 0.096) (37a)

(a2, b2) = (0.100, 0.108) (37b)
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(dashed blue lines) representing three (a,b) and four BP solutions (c). (a) Three BP
scenario (cf. Fig. 8; parameter set B in Table 1). (b) Magnified view of the rectangular
region marked in (a). (c) Four BP scenario (cf. Fig. 9; parameter set C in Table 1).

(a3, b3) = (0.180, 0.183) (37c)

exist. The corresponding intersections of level curves fe = θe and fi = θi and
BPs are shown in Fig. 7a, Fig. 7b and Fig. 8, respectively.

For the parameter set C, the equations (21) have four solutions with

(a1, b1) = (0.014, 0.072), (a2, b2) = (0.057, 0.086) (38a)
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Figure 8: Three BP scenario. Excitatory (left column) and inhibitory (right column)
activity (blue lines) for the BPs corresponding to the (a) first, (b) second, and (c) third
level-curve intersection in Fig. 7a. Red and green lines represent external input and
threshold values, respectively. The input parameters: Parameter set B in Table 1.

(a3, b3) = (0.108, 0.113), (a4, b4) = (0.180, 0.183) (38b)

The level curves intersections producing these solutions are displayed in
Fig. 7(c) and the corresponding pulse pairs in this case are shown in Fig. 9.

5. Stability analysis

In this section we will investigate the stability of the bumps using both
the Amari approach and the full linearized stability analysis.
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Figure 9: Four BP scenario. Excitatory (left column) and inhibitory (right column) ac-
tivity (blue lines) for the BPs corresponding to the (a) first, (b) second, (c) third, and
(d) fourth level-curve intersection in Fig. 7c. Red and green lines represent external input
and threshold values, respectively. Input parameters: Parameter set C in Table 1.

5.1. The Amari approach

A pulse pair (Ue, Ui) is identified with the intersection point (a, b) be-
tween the level curves

fe(a, b) = θe , fe(a, b) = θi (39)

This is the starting point of the simplified stability analysis originally worked
out by Amari [9] and later on used by Pinto et al [15] and Blomquist et al [24].
This approach presupposes that the stability of the pulses can be inferred
from the stability of the intersection point (a, b).
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To analyze the stability of bumps, it is necessary to prescribe the dy-
namical evolution of the intersection point (a, b) in a way consistent with
the system (2). First assume that (θe, θi) belongs to the admissible thresh-
old value set, which imply that the level curves will intersect at least at one
point (aeq, beq) in the pulse width set

∑
. In order to describe the time evo-

lution of small perturbations (a(t), b(t)) to (aeq, beq), we make the following
assumptions:

1. The perturbed pulses satisfy the same threshold-value conditions as the
stationary pulses, i.e,

ue(a(t), t) = θe , ui(b(t), t) = θi (40)

2. The slopes of the perturbed pulses at the crossing points (a(t), b(t)) are
identical to the slopes at (aeq, beq), i.e

∂xue(a, t) ≈ U ′e(aeq) , ∂xui(b, t) ≈ U ′i(beq) (41)

Since U ′e(aeq) < 0 and U ′i(beq) < 0, we have

∂xue(a, t) ≈ −|U ′e(aeq)| , ∂xui(b, t) ≈ −|U ′i(beq)| (42)

The approximations (41) and (42) are referred to as the static slope approx-
imation. By differentiating (40) with respect to t and using (2), (22), (40)
and (42) we get

|U ′e(aeq)|
da

dt
= fe(a, b)− θe (43a)

τ |U ′i(beq)|
db

dt
= fi(a, b)− θi (43b)

The equilibrium points of the system (43) determine the widths of the un-
perturbed bumps. The system (43) is a 2D autonomous system which consti-
tutes the basis for the stability analysis. In order to determine the stability
of aeq, we compute the Jacobian of (43) at aeq and eigenvalues. The Jacobian
is given by

JA =

[
βA −ηA
1
τ
µA − 1

τ
αA

]
(44)
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where the entries βA, ηA, µA and αA are defined as

βA =
1

|U ′e(aeq)|
{2ωee(2aeq)− ωie(aeq + beq) + ωie(aeq − beq) + h′e(aeq)} (45a)

ηA =
1

|U ′e(aeq)|
{ωie(aeq + beq) + ωie(aeq − beq)} (45b)

µA =
1

|U ′i(beq)|
{ωei(aeq + beq) + ωei(beq − aeq)} (45c)

αA =
1

|U ′i(beq)|
{2 ωii(2beq)− ωei(aeq + beq) + ωei(beq − aeq) + h′i(beq)} (45d)

The eigenvalues λ of the Jacobian JA satisfy the quadratic equation

τλ2 + λ(αA − τβA) + γA = 0 (46)

with
γA = µAηA − αAβA (47)

According to standard theory for 2D autonomous dynamical systems, the
stability issue can be resolved by means of the invariants of the JA i.e the
trace and determinant

T = tr(JA) = βA − αA

τ
, D = det(JA) = γA

τ
(48)

respectively.
When the parameter γA < 0, we have det(JA) < 0, which corresponds

to a saddle point instability. In order to discuss the complementary regime
γA > 0 (⇔ detJA > 0), we introduce the critical relative inhibition time τcr
defined as

τcr = |αA|/|βA| (49)

We have stability whenever T given by (48) is strictly negative. This happens
in the following three scenarios

1.) αA > 0 and βA < 0 for all values of τ

2.) αA > 0 and βA > 0, for τ < τcr

3.) αA < 0 and βA < 0 for τ > τcr

The cases with T > 0, det(JA) > 0 correspond to instability. They occur
in one of the following three cases if
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γA < 0 Saddle point instability

γA > 0

αA > 0 βA < 0 Stability for all τ
αA > 0 βA > 0 Stability if τ < τcr, instability for τ > τcr
αA < 0 βA < 0 Stability if τ > τcr, instability if τ < τcr
αA < 0 βA > 0 Instability

Table 2: Stability results according to the Amari approach (τcr = |αA|/|βA|)

1.) αA < 0 and βA > 0 for all values of τ

2.) αA > 0 and βA > 0, for τ > τcr

3.) αA < 0 and βA < 0 for τ < τcr

The classification scheme for the stability is summarized in Table 2

Notice that the parameters αA, βA > 0 for no or constant external in-
puts, (i.e h′e(aeq) = 0 and h′i(beq) = 0). For spatially dependent external
inputs, the parameters αA and βA are not sign definite. Hence the stability
discussion becomes more involved in the present case as compared with the
case treated in Blomquist et al [24].

We close this subsection by studying the validity of the Amari approach.
In Fig. 10 we have plotted the slope parameter Si(t) ≡ ∂xui(b, t) as a func-
tion of time in the vicinity of t = 0 in a case with strongly localized external
inputs and in a case with wide external inputs. The initial condition is cho-
sen to be a narrow bump. The computation underlying this plot is based on
the numerical scheme worked out in appendix Appendix B. This plot con-
firms numerically that the static slope approximation (41) represents a poor
approximation in the strongly localized case (solid blue curve), whereas the
slope remains almost constant on the actual time interval and hence approx-
imates fairly well in the case of wide external inputs (solid red curve). This
result is indeed reflected in the comparison between the Amari approach and
the full stability analysis elaborated in subsection 5.3.

5.2. Full stability analysis

In this section we will discuss the stability of bumps by using the standard
linearization procedure in a way similar to the one used by Blomquist et al
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Figure 10: Validity of the static slope approximation (41). The slope parameter Si(t) ≡
∂xui(b, t) for the case of wide external input (solid red curve) and strongly localized input
(solid blue curve). The input parameters are τ = 0.24 while the other input parameters
(except the width parameters ρe and ρi) are as in parameter set A in Table 1

[24] and Pinto et al [15]. We start out by linearizing the system of equations
(2) about the bump solutions (Ue(x), Ui(x)). Let Ue(x) and Ui(x) be spatially
symmetric and time independent solutions of (2), i.e.

Ue = ωee ⊗Θ(Ue − θe)− ωie ⊗Θ(Ui − θi) + he (50a)

Ui = ωei ⊗Θ(Ue − θe)− ωii ⊗Θ(Ui − θi) + hi (50b)

Introduce the perturbed state

ue(x, t) = Ue(x) + κ(x, t) (51a)

ui(x, t) = Ui(x) + χ(x, t) (51b)
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The Taylor expansion of the Heaviside function Θ about the equilibrium
state (Ue, Ui) yields

Θ(Ue − θe + κ) = Θ(Ue − θe) + κ δ(Ue − θe) + · · · (52a)

Θ(Ui − θi + χ) = Θ(Ui − θi) + χ δ(Ui − θi) + · · · (52b)

where δ denotes the Dirac delta function. Since |κ| � |Ue−θe| and |χ| �
|Ui − θi| by assumption, we only retain the two lowest order terms in the
expansions.

Using (52) and (51) in (2), the linearized perturbed system is

κt = −κ+ ωee ⊗ δ( (Ue − θe ) κ)− ωie ⊗ δ( (Ui − θi )χ) (53a)

τχt = −χ+ ωei ⊗ δ( (Ue − θe )κ)− ωii ⊗ δ( (Ui − θi )χ) (53b)

We then, look for solutions of the perturbed system on the form

κ(x, t) = eλtκ1(x) χ(x, t) = eλtχ1(x) (54)

Here λ plays the role of growth rate ((Re(λ) > 0)) or decay rate ((Re(λ) < 0))
of the perturbation imposed on the stationary pulse pair defined by (50).

We notice that the system (53) has the same form as the linearized perturbed
system derived in [24] for the full stability analysis in the non-external input
case. Hence, the derivation of the characteristic equations for λ proceeds in
the same way as in Blomquist et al [24]. We end up with two characteristic
polynomials (See Appendix A).

τλ2 + (αL − βLτ)λ+ γL = 0 (55)

τλ2 + (α′L − β′Lτ)λ+ γ′L = 0 (56)

Here the coefficients are given as

αL = C3 + C4 + 1, βL = A1 + A2 − 1 (57a)

γL = (C1 + C2)(A3 + A4)− (C3 + C4 + 1)(A1 + A2 − 1) (57b)
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α′L = C3 − C4 + 1, β′L = A1 − A2 − 1 (58a)

γ′L = (C1 − C2)(A3 − A4)− (C3 − C4 + 1)(A1 − A2 − 1) (58b)

where

A1 =
ωee(0)

|U ′e(aeq)|
, A2 =

ωee(2aeq)

|U ′e(aeq)|
, A3 =

ωie(aeq − beq)
|U ′e(aeq)|

(59a)

A4 =
ωie(aeq + beq)

|U ′e(aeq)|
, C1 =

ωei(aeq − beq)
|U ′i(beq)|

, C2 =
ωei(aeq + beq)

|U ′i(beq)|
(59b)

C3 =
ωii(0)

|U ′i(beq)|
, C4 =

ωii(2beq)

|U ′i(beq)|
(59c)

The subscript L indicates that the stability analysis is based on the full
linearization procedure of the model presented. For the sake of completeness
we give a detailed derivation of (55) and (56) in Appendix A. According
to the standard stability theory, we have stability if all eigenvalues of the
characteristic equations have negative real part and instability if at least
one of the eigenvalues has non-negative real part. The eigenvalues λ can be
expressed in terms of the traces (tr(Mi)) and the determinant (det(Mi)) of
the block diagonal matrices M1 and M2 (see Appendix A). For convenience
, let us introduce the notations

T1 = tr(M1) = βL −
αL
τ
, γL = τ det(M1) (60)

T2 = tr(M2) = β′L −
α′L
τ
, γ′L = τ det(M2) (61)

The stability of the bumps can now be analyzed by means of parameters
αL,α′L, βL,β′L,γL and γ′L. Notice that αL, α

′
L > 0. We hence introduce the

critical time constants τcr and τ ′cr defined as

τcr =
αL
|βL|

, τcr′ =
α′L
|β′L|

(62)

Tables 3 and 4 summarize the relationship between the parameters involved
and the properties of the roots of (55) and (56). A saddle point instabil-
ity occurs if at least one of the parameters γL and γ′L is negative. In the
complementary regime, i.e when both γL and γ′L are strictly positive, we
have to take into the consider the signs of the parameters βL and β′L. We
summarize the full stability results in table 5 for the case γL, γ

′
L > 0. Here

τ ′′cr = min(τcr, τ
′
cr)
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γL < 0 λ− < 0 < λ+
γL > 0 βL < 0 Re(λ±) < 0 for all τ

βL > 0 Re(λ±) < 0 for τ < τcr
Re(λ±) > 0 for τ > τcr

Table 3: The roots of (55) (τcr = αL

|βL| )

γ′L < 0 λ′− < 0 < λ′+
γ′L > 0 β′L < 0 Re(λ′±) < 0 for all τ

β′L > 0 Re(λ′±) < 0 for τ < τ ′cr
Re(λ′±) > 0 for τ > τ ′cr

Table 4: The roots of (56). (τcr′ =
α′

L

|β′
L|

)

βL < 0 β′L < 0 Stability for all τ values
β′L > 0 Stability(instability) for τ < τ ′cr(τ > τ ′cr)

βL > 0 β′L < 0 Stability (instability) for τ < τcr(τ > τcr)
β′L > 0 Stability (instability) for τ < τ ′′cr(τ > τ ′′cr).

Table 5: Stability results using full stability analysis for γL, γ
′
L > 0

5.3. Amari analysis vs. full stability analysis

In Appendix C we prove the following relationships between the param-
eters (αA, βA, γA) in the growth rate equation (46) obtained in the Amari
analysis and the parameters (αL, βL, γL) in the growth rate equation (55)
(corresponding to the symmetric part of the perturbations in the full stabil-
ity analysis):

1.) αL = αA − 2h′i(beq)

|U ′
i(beq)|

2.) βL = βA

3.) γA = γL −Q, Q ≡ 2
h′i(beq)

|U ′
i(beq)|

(2A2 − A4 + A3) + 2
h′i(beq).h

′
e(aeq)

|U ′
i(beq)|.|U ′

e(aeq)|

Therefore the present Amari analysis and the full stability analysis give differ-
ent results for spatial dependent external inputs. This result is qualitatively
completely different from the result obtained in Folias et al [19], where it is
shown that the Amari analysis yields the same predictions as the full-stability
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Pulse width coordinates Stability parameters Stability results

(a1, b1) = (0.112, 0.116)
αA = 0.499, βA = 1.89 Stability /(instability)
γA = 2.30, τcr = 0.258 for τ < τcr/(τ > τcr)

(a2, b2) = (0.180, 0.183)
αA = 5.48, βA = 1.82 Stability /(instability)
γA = 2.00, τcr = 3.01 for τ < τcr/(τ > τcr)

Table 6: Stability of the two BPs case using Amari stability analysis with parameter set
A in the Table 1.

analysis for a one-population neural-field model with spatially dependent ex-
ternal drive.

Moreover, in Appendix C we prove that the coefficient γ′L = 0 for no or
constant external inputs from which it follows that λ = 0, consistent with
the fact that we have translational invariance in that case. This result is in
accordance with the result obtained in [24]. However, in the case of spatially
dependent external inputs, we find that γ′L 6= 0. This is indeed to be expected
as this type of inputs represents a symmetry breaking effect in the model.

Let τLcr ≡ αL/|βL| and τAcr ≡ αA/|βA| be the critical relative inhibition times
obtained by full stability analysis and the Amari analysis, respectively. From
the above result we find that τ

(L)
cr > τ

(A)
cr if the inhibitory external input func-

tion hi(x) is a decreasing function of x. Thus, the Amari analysis predicts
conversion to a breather for lower values of the critical inhibition time than
the full stability analysis.

Notice that the discrepancy between the full-stability analysis and the
Amari analysis is expected to be more pronounced for strongly localized
inhibitory external inputs.

We illustrate this feature in the following example using the parameter
set A in the Table 1. According to the Amari approach (2), we find that
the narrow pulse pair is stable, if the relative inhibition time τ is less than
τcr = 0.258. and becomes unstable if the relative inhibition time exceeds this
value of τcr. The broad pulse pair reveals the same behavior as the narrow
pulse pair but with a different critical time constant. It is stable if the relative
inhibition time τ is less than τcr = 3.01 and becomes unstable if τ > τcr. In
short, the Amari stability analysis predicts both the narrow and broad BP to
be stable for sufficiently small relative inhibition time with strongly localized
external inputs. In contrast the full stability analysis, cf. Table 5, reveals
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Pulse width coordinates Stability parameters Stability results

(a1, b1) = (0.112, 0.116)

αL = 2.25, α′L = 1.07

Saddle point instability
βL = 1.892, β′L = −0.412
γL = −1.029, γ′L = 0.467
τcr = 1.187, τ ′cr = 2.600

(a2, b2) = (0.180, 0.183)

αL = 5.524, α′L = 1.632
βL = 1.823, β′L = 0.363 Stability /(instability)
γL = 1.927, γ′L = 0.009 for τ < τcr/(τ > τcr)
τcr = 3.030, τ ′cr = 4.490

Table 7: Stability results for a two BPs case using full stability analysis with parameters
set A in Table 1.

that the narrow BP (a1, b1) is unstable for all inhibition time constants τ ,
because γ′L < 0 (see Table 7). The weakness of Amari approach is confirmed
numerically by Fig 13. For the broad BP corresponding to the pulse width
coordinates (a2, b2), we find that βL > 0 and β′L > 0. Thus, we are in the
regime where we have two critical relative inhibition times τcr and τ ′cr (see
Table 3 and Table 4). As τcr < τ ′cr, the broad BP becomes unstable if τ ex-
ceeds τcr = 3.03 (see Table 5). The example also illustrates that the Amari
approach yields the wrong stability predictions. Here we will like to point out
that the weakness of the Amari approach is confirmed numerically by Fig. 13.

As the Amari analysis fails to predict the correct stability result, we there-
fore use the full stability analysis for the cases with three and four BPs. The
corresponding parameters for three and four BPs case are given by set B and
C in Table 1, respectively.

For the three BPs example (Table 8) we find that βL > 0 and β′L < 0.
Therefore, according to the stability theory elaborated in the previous sec-
tion, the pulse pair corresponding to the intersection (a1, b1) in Fig. 7a is
unstable if the relative inhibition time τ exceeds τcr = 5.761.

The second BP corresponding to the point (a2, b2) is unstable for all τ ,
since γL < 0.

For the third pulse pair corresponding to (a3, b3), we obtain βL > 0 and
β′L > 0. We notice that τcr < τ ′cr. Thus the bumps become unstable τ > τcr.
In short, the narrowest bumps corresponding to (a1, b1) and the broadest
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Pulse width coordinates Stability parameters Stability results

(a1, b1) = (0.080, 0.096)

αL = 1.531, α′L = 1.020 Stability /(instability) for
βL = 0.265, β′L = −0.868 τ < τcr/(τ > τcr)
γL = 0.174, γ′L = 0.889 τcr = 5.761
τcr = 5.761, τ ′cr = 1.175

(a2, b2) = (0.100, 0.107)

αL = 1.861, α′L = 1.041
βL = 0.918, β′L = −0.688 Saddle point instability
γL = −0.259, γ′L = 0.724
τcr = 2.016, τ ′cr = 1.512

(a3, b3) = (0.180, 0.183)

αL = 5.525, α′L = 1.632 Stability /(instability) for
βL = 1.815, β′L = 0.359 τ < τcr/(τ > τcr)
γL = 1.938, γ′L = 0.014 τcr = 3.045
τcr = 3.045, τ ′cr = 4.546

Table 8: Stability results for three BPs situation using full stability analysis with the
parameter set B in Table 1.

bumps corresponding to (a3, b3) are stable for sufficiently small inhibition
times, while the bump pair corresponding to the intermediate coordinates
(a2, b2) is always unstable for the parameters set B in Table 1.

For the example of four BPs solutions, we use the parameters set C in
Table 1. Their stability properties are summarized in Table 9. The BPs
corresponding to the pulse width coordinates (a1, b1) and (a3, b3) are always
unstable, whereas BPs corresponding to (a2, b2) and (a4, b4) are stable for
small for small and moderate values of the relative inhibition times τ < τcr.

Fig. 11 provides an overview of the number of stable BPs (color coded).
The computations underlying this plot is based on the stability classification
scheme developed in section 5.2. Depending on the input amplitude Ae and
Ai, we observe up to three coexisting stable bump-pair solutions.

6. Numerical simulations

In this section we solve the initial value problem (2) numerically by means
of the numerical code developed in Appendix B with single bump (19) as
initial condition. The connectivity functions and the external input functions
are given as gaussians (5), (6) and (7), respectively. The input parameters
used here are given by set A in Table 1 and hence the pulse width coordinates

30



Pulse width coordinates Stability parameters Stability results

(a1, b1) = (0.014, 0.072)

αL = 1.243, α′L = 1.005

Saddle point instability
βL = 1.293, β′L = −0.992
γL = −1.147, γ′L = 0.998
τcr = 0.961, τ ′cr = 1.013

(a2, b2) = (0.057, 0.086)

αL = 1.367, α′L = 1.011
βL = 0.068, β′L = −0.943 Stability /(instability) for
γL = 0.239, γ′L = 0.955 τ < τcr/(τ > τcr)
τcr = 20.12, τ ′cr = 1.072 τcr = 20.12

(a3, b3) = (0.108, 0.113)

αL = 2.079, α′L = 1.057

Saddle point instability
βL = 1.464, β′L = −0.535
γL = −0.679, γ′L = 0.583
τcr = 1.442, τ ′cr = 1.975

(a4, b4) = (0.180, 0.183)

αL = 5.525, α′L = 1.632
βL = 1.819, β′L = 0.361 Stability /(instability)
γL = 1.933, γ′L = 0.011 for τ < τcr/(τ > τcr)
τcr = 3.037, τ ′cr = 4.518 τcr = 3.037

Table 9: Stability results for four BPs using full stability analysis with the parameter set
C in Table 1.

of the initial condition are given by (36). Fig. 12 shows the outcome of
the numerical simulations of the system (2) with a broad BP as the initial
condition with a small perturbation ε > 0. i.e. (aeq + ε, beq + ε). For τ < τl
(τl ≈ 2.99), we observe that both the excitatory and inhibitory pulses are
stable (Fig. 12a), whereas for τ in the interval τl < τ < τu (τu ≈ 3.126) the
pulses behave like stable breathers (Fig. 12b). For τ > τu, the bumps are
unstable (Fig. 12c). Notice that the full stability analysis of section 5.2 in
this case predicts a change from stability to instability through a breather
type of state for τ = τcr = 3.03, which is in the interval for the breathers
detected by means of the numerical simulations. Hence we can conclude
that there is an excellent agreement between the outcome of the numerical
simulations and the predictions obtained from the stability analysis for the
broad bumps pair. We observe, however, that the critical relative inhibition
time predicted by the Amari analysis in this case (τcr = 3.01) also belongs to
the numerically detected interval τl < τ < τu for breathers. We expect that
the discrepancy between these two approaches will show up for broad bumps
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Figure 11: (a) Dependence of the number of stable bump pairs (color coded) on the input
amplitudes Ae and Ai. Regions with different numbers of solutions are separated by white
curves (see Fig. 6). (b) Magnified view of the region marked by black rectangle in (a). See
Table 1 for parameters.

pair which are even more strongly localized than the bumps pair we use as
initial condition in the present numerical study. In the nonlinear stage of the
instability the pulse evolution saturates in accordance with the estimates for
the bounds (14). This feature is demonstrated in the Fig. 2.

Another notable feature is that for τ exceeding τcr, we observe that the
broad inhibitory bump develops into a new state after the initial linear stage
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of the instability, while the excitatory bumps collapse and vanish. This
feature has no counterpart in the non-external input case observed in [24].
Hence we conclude that it is an effect of the spatially localization of the
external input.
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Figure 12: Time evolution of excitatory (left column) and inhibitory firing rates (right
column) for a broad bump pair subject to a small perturbation ε = 0.001 at time t = 0.
(a) Stable BP (τ = 0.24 < τcr). (b) Stable breathers (τ = τcr = 3.03). (c) Unstable BP
(τ = 3.127 > τcr). Input parameters: Parameter set A in Table 1).

Next, we consider the time evolution of a narrow pulse pair (Fig. 13). For
the case of spatially dependent external input the narrow BPs are unstable
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Figure 13: Time evolution of excitatory (left column) and inhibitory firing rates (right
column) for a narrow bump pair subject to a small perturbation ε = 0.001 at time t = 0.
(a) Unstable narrow BP converts to a stable broad BP (τ = 0.24 < τcr). (b) Unstable
narrow BP converts to a non-BP state with vanishing excitatory and finite bump-like
inhibitory firing rate (τ = τcr = 3.127). The input parameters: Parameter set A in
Table 1).

for all values of τ and is converted to a broad BP for τ = 0.24 (Fig. 12a and
Fig. 13a). Also in this case we have excellent agreement between the outcome
of the numerical simulations and the stability analysis in the initial stage of
the evolution. The Amari analysis predicts that the narrow BP is stable for
τ . 0.258. Fig. 13a demonstrates that the narrow BP is unstable and is
converted to broad BP at τ = 0.24. This result also confirms numerically
that the Amari approach for stability does not give the right answer regarding
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Figure 14: Time evolution (a(t), b(t)) of BPs in the pulse-width plane following a small
perturbation of a broad (blue solid lines) and a narrow (red dashed lines) stationary bump
solution (a0, b0) (red and blue dots, respectively). (a) Strong input (Ae = 0.19, Ai = 0.7).
(b) Weak input (Ae = 0.075, Ai = 0.07). Asterisks mark final states. Red diamond in
(a) represents pulse width of external input targeting the inhibitory population. Time
constant τ = 3.127 > τcr. All other parameters are as in Fig. 12.

the stability of the bumps. After the initial stage of the instability, we also
notice that the narrow inhibitory BPs are converted to new stable states
for all τ -values in a way similar to what we have observed for the broad
inhibitory bumps in the parameter regime τ > τcr, except for small values of
τ the excitatory bumps collapse and vanish. Also in this case the nonlinear
stage of the instability the pulse evolution saturates in accordance with the
estimates for the bounds (14). This feature is demonstrated in the Fig. 2.

In order to understand the formation of the stable inhibitory stationary
state we first study the bumps evolution in the pulse width coordinate plane.
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Figure 15: Competition between external input and inhibitory activity in single-bump
states with vanishing excitatory activity. Effect of an inhibitory pulse (with pulse width
coordinate b = 0.1; blue curves) and external input (red curves) on the excitatory (left
column; eq. (63a)) and inhibitory population (right column; eq. (63b)) for (a,b) strong
(Ae = 0.19, Ai = 0.7) and (c,d) weak external input (Ae = 0.075, Ai = 0.07). The other
parameters are as in Table 1.

Fig. 14(a) shows the evolution of pulse width coordinates of narrow (dashed
curves) and broad (solid curve) at τ = 3.127 > τcr with parameters given by
set A in Table 1. Fig. 14(b) shows the evolution of the pulse width coordinates
of the narrow and broad BPs for τ > τcr with smaller amplitude than the
threshold values. Notice that the corresponding pulse width coordinates in
Fig. 14(a) approach the state (a, b) = (0, 0.068), which corresponds to the
stable localized inhibitory stationary state. But if we reduce the amplitudes
of the external inputs Fig. 14(b), then both pulse width coordinates tend to
zero, which means that no stable localized stationary state is formed.
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The formation of the stable inhibitory stationary state in the nonlinear
stage of the instability can easily be understood by estimating the order of
magnitude of the terms on the right hands side of the model (2) in the actual
parameter regime. When considering the model (2) the excitatory effects
are very small compared to the inhibitory effects in this stage of the pulse
evolution. We hence neglect the excitatory terms in the model and get

∂

∂t
ue(x, t) = −ue(x, t)− (Wie(b(t) + x) +Wie(b(t)− x)) + he(x) (63a)

τ
∂

∂t
ui(x, t) = −ui(x, t)− (Wii(b(t) + x) +Wii(b(t)− x)) + hi(x) (63b)

as an approximative description of the bumps evolution. Here Wim, m ∈
{e, i} is the antiderivative of ωim defined by (20) and b(t) the time-dependent
pulse width coordinate given by the threshold value condition ui(b(t), t) = θi.

The inhibitory effects in the excitatory equation (63a) (modeled by means
of the function Wie(b(t) + x) + Wie(b(t) − x))) balance the external input
(modeled by means of the function he(x)) in the core of the input i.e in the
neighborhood of x = 0 when 0.06 . b . 0.1 Outside this region the input
effect function he(x) is negligible. This feature is demonstrated in Fig. 15.
Due to the presence of the linear decay term −ue(x, t) we then get a decay
of the excitatory activity level and hence no new excitatory stationary stable
can be formed. In the inhibitory equation (63b), however, the external input
function hi(x)) in the vicinity of x = 0 is much larger than the function
Wii(b(t) + x) + Wii(b(t) − x) modeling the inhibitory effects and negligible
outside this region for the actual parameter regime. See Fig. 15. Hence the
external input in (63b) can balance the natural linear decay term −ui(x, t)
and the inhibitory effects. The outcome of this balance is a new localized
inhibitory stationary state, which is strongly localized and has almost the
same shape as the input function hi(x). If we reduce the amplitude parameter
in the inhibitory input function hi(x) so that this input becomes of the order
of magnitude of the inhibitory effects function Wii(b(t)+x)+Wii(b(t)−x) in
the core of the input, no such balance is possible any more, and hence new
stable states will not be formed in that case.

7. Conclusions

In this paper we have studied the extension of the model studied by
Blomquist et al [24] by including spatially dependent external input.
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The solutions of the initial value problem (2) are bounded for finite ex-
ternal input. The existence of localized stationary symmetric solutions (BP)
of the model (2) has been investigated as a function of the amplitude of lo-
calized external input function. Stability of these BPs has been investigated
by using Amari approach and full stability analysis. The Amari stability
analysis fails to give correct stability predictions. We have detected at most
four BPs with maximum three stable BPs.

Bounded solutions of the initial value problem (2) depicts that any in-
stability detected has to be saturated. It is shown that the bumps exist for
small and moderate values of the external input amplitudes. In the regime
of large amplitudes of the external inputs we have no bumps. Notice that
this should be compared with the situation without external inputs treated
in Blomquist et al [24] where we always have an admissible set of threshold
values i.e. we can always find threshold values producing bumps.

We have identified the number of bumps as a function of different input
parameters: The threshold value plane and the external amplitude plane. In
the regime of wide external inputs we get a situation which is very much
alike to what we have in the zero input case. The common picture consists
of two bumps pair for a given pair of admissible threshold values, one narrow
bumps pair and one broad bumps pair. This is to be expected as the wide
external inputs case can be considered as a perturbation of the no input case.
In the complementary regime i.e. when we have a strongly localized external
inputs we can identify regimes of the input parameters (= threshold values
and external amplitude parameters) corresponding to three and four bumps
pairs. This is a completely new feature which has no counterpart in the non-
input/wide input case. To our knowledge this feature has not been observed
earlier.

We then show that the outcome of the simplified stability analysis of
the Amari type disagrees with the predictions obtained from full stability
analysis: In the full stability analysis we get a 4× 4 stability matrix (Evans
matrix) which can be block-diagonalized. The upper block corresponds to
the spatial symmetric part of the perturbations, the lower block to the anti-
symmetric perturbations. However, as opposed to the results in Blomquist
et al [24], the upper block in this case does not produce the same growth
rate equation as the Amari approach, and the translational invariance of the
bumps is not recovered from the lower block. This is caused by the spatial
localization of the external inputs. Observe that this result is qualitatively
different from the one observed for bumps in a one-population model with

38



spatially dependent external drive [19] where it is found that the Amari
approach and the full stability analysis agree. The full stability analysis
divides the bumps pairs into two groups in the same way as in Blomquist et
al [24]: One group of bumps pairs is unstable for all relative inhibition times
(saddle point instability). The narrow bumps pairs typically belong to this
group. The second group is characterized by bumps pairs which are stable
for small and moderate values of the relative inhibition time and which are
converted to unstable states through a breather type of state as the relative
inhibition time exceeds a certain threshold value. The Amari analysis also
predicts the existence of a critical threshold value of the relative inhibition
time for which bumps are converted from stable to unstable states through
a breather type of state. However, for inhibitory external inputs modeled by
means of functions which are decreasing for positive argument, it is shown
that the critical relative inhibition time predicted by the Amari approach
is less than the one predicted by full stability analysis. The discrepancy
typically shows up in the case of strongly localized inhibitory external inputs.
This result is completely different from the result obtained by Folias et al
[19] for a one-population model with spatially dependent external input,
where the stability analysis based on the Amari approach agrees with the
full stability analysis.

We demonstrate the discrepancy between predictions obtained from the
Amari analysis and the full stability analysis in a concrete striking example
consisting of a two bump-pairs. The Amari analysis yields stability for both
bump pairs, while the full stability analysis predicts that first bump pair
(the narrow one) to be unstable for all relative inhibition times, while the
second (broad) bump pair is stable for small and moderate values of the
relative inhibition times. We also investigate the stability of the bumps in a
three and a four bump-pair situations. For the three bump-pair case which
we have studied, the bumps corresponding to the smallest and largest pulse
width coordinates are stable for small and moderate values of the relative
inhibition times, while the middle pulse width case yields unstable bumps
for all relative inhibition times. In the four-bumps case, we have two stable
bumps pair for small and moderate values of the relative inhibition times
and two bumps pair which are unstable for all relative inhibition times. It
is an important feature in the neuroscience to have a system which produces
several coexisting stable BPs. Each bump pair could represent a pattern
to be stored and also bump state represent a persistent short term memory
[7]. The more stable bumps depicts more memory capacity of the network
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[34, 35].
Finally, we compare the predictions obtained from the full stability anal-

ysis with the outcome of the numerical simulations where we use a bumps
pair in the strongly localized regime as initial conditions. The simulations
are based on fourth order Runge Kutta method in time and is a slight mod-
ification of the code developed in Blomquist et al [24]. We get excellent
agreement between numerical results and analytical predictions. Moreover,
we show that the nonlinear stage of the instability of both the broad and
narrow inhibitory bumps consist of a stable localized inhibitory bumps. The
excitatory bumps collapse and vanish in this stage of the pulse evolution.

In the present paper we have approximated the firing rate functions with
Heaviside functions. We conjecture that the model (2) with this simpli-
fication reproduces qualitatively the same features as the model (2) with
sigmoidal firing rate functions. While this conjecture is supported by nu-
merical simulations (see for example [25]), there are few and far between the
works addressing this problem in a rigorous mathematical way. We believe,
however, that this problem can be dealt with methods of nonlinear func-
tional analysis and degree theory in a way analogous to Oleynik et al [36]
and singular perturbation analysis in a similar way as in Yousaf et al [37].
We do not pursue this problem here, however, but will return to it in future
investigations.
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Appendix A. Derivation of characteristic equations in the full sta-
bility analysis

Using (54), the system (53) becomes

(λ+ 1)κ1(x) = ωee ⊗ δ((Ue − θe)κ1)− ωie ⊗ δ((Ui − θi)χ1) (A.1a)

(τλ+ 1)χ1(x) = ωei ⊗ δ((Ue − θe)κ1)− ωii ⊗ δ((Ui − θi)χ1) (A.1b)

We now assume that there is one-to-one correspondence between the pulse
width coordinates (aeq, beq) and the bumps (Ue(x), Ui(x)) through the relation

Ue(aeq) = θe , Ui(beq) = θi (A.2)

The convolution integrals of the type ω⊗ δ((U − θ)κ) are according to [8, 24]
given as

ω ⊗ δ((U − θ)κ) =
1

|U ′(a)|
[ω(x+ a)κ(−a) + ω(x− a)κ(a)]

with U(±a) = θ. We hence end up with the system

(λ+ 1)κ1(x) =
1

|U ′e(aeq)|
[ωee(x+ aeq)κ1(−aeq) + ωee(x− aeq)κ1(aeq)]

− 1

|U ′i(beq)|
[ωie(x+ beq)χ1(−beq) + ωie(x− beq)χ1(beq)] (A.3a)

(λτ + 1)χ1(x) =
1

|U ′e(aeq)|
[ωei(x+ aeq)κ1(−aeq) + ωei(x− aeq)κ1(aeq)]

− 1

|U ′i(beq)|
[ωii(x+ beq)χ1(−beq) + ωii(x− beq)χ1(beq)] (A.3b)

Since U ′e(aeq) and U ′i(beq) by assumption are negative, we have

|U ′e(aeq)| = ωee(0)− ωee(2aeq) + ωie(aeq + beq)− ωie(aeq − beq)− h′e(aeq)(A.4)

and

|U ′i(beq)| = ωei(beq − aeq)− ωei(aeq + beq) + ωii(2beq)− ωii(0)− h′i(beq) (A.5)
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The system equations (A.3) imply the equivalence

κ1(aeq) = κ1(−aeq) = χ1(beq) = χ1(−beq) ≡ 0

⇔ κ1(x) = χ1(x) ≡ 0

 (A.6)

Since we are looking for non-trivial spatial perturbations, we must assume
that

X =


κ1(aeq)
κ1(−aeq)
χ1(beq)
χ1(−beq)

 6= 0 (A.7)

The problem consists of finding the λ for which (A.7) holds true. Let x =
±aeq and x = ±beq in (A.3). We get the system of four linear homogenous
equations in four unknowns κ1(aeq), κ1(−aeq), χ1(beq) and χ1(−beq), which
can be expressed in the matrix form as

A ·X = O (A.8)

Here X is defined by (A.7), while the matrix A is given as

A =


A1 − (λ+ 1) A2 −A3 −A4

A2 A1 − (λ+ 1) −A4 −A3

C1 C2 −C3 − (λτ + 1) −C4

C2 C1 −C4 −C3 − (λτ + 1)

(A.9)

where As and Cs for s = 1, 2, 3, 4 are given by (59). Now, consider the
matrix P

P =


1
2

1
2

0 0
0 0 1

2
1
2

1
2

−1
2

0 0
0 0 1

2
−1

2

 (A.10)

and introduce the substitution

Y = P ·X (A.11)

We readily find that

Y =


1
2
{κ1(aeq) + κ1(−aeq)}

1
2
{χ1(beq) + χ1(−beq)}
1
2
{κ1(aeq)− κ1(−aeq)

1
2
{χ1(beq)− χ1(−beq)}

 =


κe(aeq)
χe(beq)
κo(aeq)
χo(beq)

 (A.12)
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Here Y is the vector containing the even and odd parts of κ1 and χ1 evaluated
at aeq and beq. Here the subscripts ”e” and ”o” stand for even and odd terms,
respectively. The similarity transformation from (A.8) to (A.11) transforms
the matrix A to the block diagonal matrix PAP−1, which can be written in
a simplified form as

PAP−1 =

[
M1 O
O M2

]
(A.13)

where M1 and M2 are given as

M1 =

A1 + A2 − λ− 1 −A3 − A4

C1 + C2 −C3 − C4 − λτ − 1

 (A.14)

M2 =

A1 − A2 − λ− 1 −A3 + A4

C1 − C2 −C3 + C4 − λτ − 1

 (A.15)

The determinant of M1 is

|M1| = τλ2 + (αL − βLτ)λ+ γL (A.16)

Similarly, the determinant of M2 can be calculated as

|M2| = τλ2 + (α′L − β′Lτ)λ+ γ′L (A.17)

Hence the determinant of a block diagonal matrix PAP−1 factorizes as

det(PAP−1) = (τλ2 + (αL− βLτ)λ+ γL) · (τλ2 + (α′L− β′Lτ)λ+ γ′L) (A.18)

The condition for having nontrivial perturbations leads to det(PAP−1) = 0
from which the characteristic equations (55) and (58) follow.

Appendix B. Runge-Kutta split step method

In this section we will use the Runge-Kutta method to develop a scheme
to solve the initial value problem of (2). In this scheme the firing rate func-
tions are approximated with the Heaviside function. The numerical code is
given by the code worked out in Blomquist et al [24] extended with external
input terms. For the sake of completeness we review it here.
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We introduce a finite time sequence tj (with j=0,1,2,3...). Here each time tj
represents specific time of observation with t0 = 0 and time stepping length
is4tj = tj+1−tj. For each time step we will observe both (ue(x, tj), ui(x, tj))
and (a(tj), b(tj)). We design a numerical code for the two population model
for given initial condition. Let Xj and F (X) be the vector fields defined as

Xj =

(
ue(x, tj)
ui(x, tj)

)
, F (Xj) =

(
fj
gj

)
(B.1)

where fj and gj are given as

fj = −ue +
1

τ
Φj (B.2)

gj =
1

τ
[−ui + Ψj] (B.3)

with Φj and Ψj are given as

Φj(x) =Wee(a(tj) + x) +Wee(a(tj)− x)

+Wie(b(tj) + x)−Wie(b(tj)− x) + he(x) (B.4a)

Ψj(x) =Wei(a(tj) + x) +Wei(a(tj)− x)

+Wii(b(tj) + x)−Wii(b(tj)− x) + hi(x) (B.4b)

where Wmn is the anti-derivative of ωmn defined by means of (20). The pulse
width coordinates a(tj) , b(tj) of excitatory and inhibitory pulses satisfy

ue(a(tj), tj) = θe , ui(b(tj), tj) = θi (B.5)

The fourth order Runge-Kutta method is divided into two steps. First, we
evaluate the slopes k1, k2, k3, k4 using F (Xj)

k1 = ∆tj · F (Xj) (B.6a)

k2 = ∆tj · F (Xj +
1

2
k1) (B.6b)

k3 = ∆tj · F (Xj +
1

2
k2) (B.6c)

k4 = ∆tj · F (Xj + k3) (B.6d)
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In second step, the next iterated value for Xj+1 is calculated as

Xj+1 = Xj +
1

6
(k1 + 2 k2 + 2 k3 + k4) (B.7)

Formally, the iteration process with initial conditions (ue(x, 0), ui(x, 0)) =
(Ue(x), Ui(x)) can be explained as follows:

1.) We find the values of the pulse widths a(0), b(0) by solving the system
of equations

Ue(a(0)) = θe , Ui(b(0)) = θi (B.8)

By substituting (a(0), b(0)) into the equations (B.4a) and (B.4b), we
get Φ0,Ψ0. Using Φ0,Ψ0 we get F 0. The iterates ue(x, t1), ui(x, t1) are
found by using (B.6) and (B.7).

2.) By following the same procedure we compute the pulse widths coordi-
nates a(t1), b(t1) by solving

ue(a(t1), t1) = θe , ui(b(t1), t1) = θi (B.9)

Determine the iterates ue(x, t2), ui(x, t2) by (B.6) and (B.7). :
:
:

j.) Compute a(tj−1), b(tj−1) by solving

ue(a(tj−1), tj−1) = θe , ui(b(tj−1), tj−1) = θi (B.10)

Determine the iterates ue(x, tj), ui(x, tj) by (B.6) and (B.7). Here
(tj = tj−1 + ∆tj−1).
:
:
:

The iteration scheme presupposes that there is a one-to-one correspondence
between the pulse width coordinates (a(t), b(t)) and the threshold values
(θe, θi) for (a(t) > 0, b(t) > 0). Due to the continuous dependence on time
t, this property is always fulfilled locally in time if the system Ue(a(0)) =
θe, Ui(b(0)) = θi possesses a unique solution.

45



Appendix C. Proofs of identities used in the stability analysis

Here we will prove the identities

1.) αL = αA − 2h′i(beq)

|U ′
i(beq)|

2.) βL = βA

3.) γA = γL −Q, Q ≡ 2
h′i(beq)

|U ′
i(beq)|

(2A2 − A4 + A3) + 2
h′i(beq).h

′
e(aeq)

|U ′
i(beq)|.|U ′

e(aeq)|

4.) γ′L 6= 0

Here αL, βL, γL, αA, βA and γA are defined by the equations (57), (45d, 45a)
and (47), respectively.

The parameters αA, βA, γA and αL, βL, γL depend on the connectivity func-
tions in a complicated way. We conveniently express these parameters in
terms of the constants As and Cs for s = 1, 2, 3, 4 defined by means of (59).

Appendix C.1. αL = αA − 2h′i(beq)

|U ′
i(beq)|

The expressions for αL and αA are given as

αL = C3 + C4 + 1 =
ωii(0)+ωii(2beq)+|U ′

i(beq)|
|U ′

i(beq)|
(C.1)

αA = 1
|U ′

i(beq)|
{2 ωii(2beq)− ωei(aeq + beq) + ωei(beq − aeq) + h′i(beq)}(C.2)

Using (A.5), we can rewrite the expression(C.1) as

αL =
2ωii(2beq) + ωei(beq − aeq)− ωei(aeq + beq)− h′i(beq)

|U ′i(beq)|
(C.3)

=
2ωii(2beq) + ωei(beq − aeq)− ωei(aeq + beq) + h′i(beq)

|U ′i(beq)|
− 2h′i(beq)

|U ′i(beq)|
(C.4)

Now, by comparing (C.2) and (C.4), we get

αL = αA −
2h′i(beq)

|U ′i(beq)|
(C.5)
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Appendix C.2. βL = βA

The expressions for βL and βA are given as

βL = A1 + A2 − 1 =
ωee(0) + ωee(2aeq)− |U ′e(aeq)|

|U ′e(aeq)|
(C.6)

βA =
1

|U ′e(aeq)|
{2 ωee(2aeq)− ωie(aeq + b) + ωie(aeq − b) + h′e(aeq)} (C.7)

By using (A.4), the expression (C.6) can be rewritten as

βL =
2ωee(2aeq) + ωie(aeq − beq)− ωie(aeq + beq) + h′i(aeq)

|U ′e(aeq)|
(C.8)

Then, by comparing (C.7) and (C.8) we get

βL = βA (C.9)

Appendix C.3. γA = γL −Q
The expressions for γL and γA are given as

γL = (C1 + C2)(A3 + A4)− (C3 + C4 + 1)(A1 + A2 − 1) (C.10)

γA = µAηA − αAβA (C.11)

Then, by simplifying γL using (A.4), (A.5) and (59), we obtain

γL = 2A2C2 − 4A2C4 − 2A2C1 + 2A4C4 + 2A4C1 − 2A3C4

+2A3C2 +Q1(2A2 − A4 + A3)−Q2(2C4 − C2 + C1) +Q1Q2 (C.12)

where Q1 =
h′i(beq)

|U ′
i(beq)|

and Q2 = h′e(aeq)
|U ′

e(aeq)|
. By using the assumptions (59), the

parameters µA, ηA, αA and βA can be written as

µA = C2 + C1

ηA = A3 + A4

αA = 2C4 − C2 + C1 +Q1

βA = 2A2 − A4 + A3 +Q2
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Hence the expression (C.11) can be written as

γA = 2A2C2 − 4A2C4 − 2A2C1 + 2A4C4 + 2A4C1 − 2A3C4

+2A3C2 −Q1(2A2 − A4 + A3)−Q2(2C4 − C2 + C1)−Q1Q2 (C.13)

Comparing (C.12) and (C.13) we get

γA = γL − 2
h′i(beq)

|U ′
i(beq)|

(2A2 − A4 + A3)− 2
h′i(beq).h

′
e(aeq)

|U ′
i(beq)|.|U ′

e(aeq)|
(C.14)

Appendix C.4. γ′L 6= 0

The expression for γ′L is given as

γ′L = (C1 − C2) · (A3 − A4)− (C3 − C4 + 1)(A1 − A2 − 1) (C.15)

Using (59)

γ′L = 1− L1 + L2 + L3 + L4

where

L1 =
ωee(2aeq)− ωee(0)

|U ′e(aeq)|
, L2 =

ωii(0)− ωii(2beq)
|U ′i(beq)|

L3 = (
ωee(2aeq)− ωee(0)

|U ′e(aeq)|
)(
ωii(0)− ωii(2aeq)
|U ′i(beq)|

)

L4 =

(
ωie(aeq − beq)− ωie(aeq + beq)

|U ′e(aeq)|

)
·
(
ωei(aeq − beq)− ωei(aeq + beq)

|U ′i(beq)|

)
Hence (C.15) can be written as

γ′L = 1 +
d2d3 + d5d6

|U ′e(aeq)||U ′i(beq)|
+

d2
|U ′e(aeq)|

+
d3

|U ′i(beq)|
(C.16)

where

d2 = ωee(2aeq)− ωee(0) , d3 = ωii(0)− ωii(2beq)
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d5 = ωie(aeq − beq)− ωie(aeq + beq) , d6 = ωei(aeq − beq)− ωei(aeq + beq)

Now, by using (A.4) and (A.5)

|U ′e(aeq)||U ′i(beq)| = d2d3 − d5d6 + d3d5 − d2d6 +Q3

where

Q3 = h′e(aeq)d3 + h′i(beq)d2 − h′e(aeq)d6 + h′i(beq)d5 + h′e(aeq)h
′
i(beq)

Then by tedious algebraic calculations we end up with following relation

γ′L =
h′i(beq)d5 − h′e(aeq)d6 + h′e(aeq)h

′
i(beq)

d2d3 − d5d6 + d3d5 − d2d6 +Q3

(C.17)

Hence γ′L 6= 0.
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