
Two bump solutions of a homogenized Wilson - Cowan

model with periodic microstructure

Elena Malyutinaa, John Wyllera,∗, Arcady Ponosova

aDepartment of Mathematical Sciences and Technology, P.O. Box 5003, NO-1432 Ås,
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Abstract

We study existence and stability of 2 - bump solutions of the one - population
homogenized Wilson - Cowan model, where the heterogeneity is built in the
connectivity functions by assuming periodic modulations in both the synaptic
footprint and in the spatial scale. The existence analysis reveals that the
generic picture consists of two bumps states for each admissible threshold
value for the case when the solutions are independent of the local variable
and the firing rate function is modeled as a Heaviside function. A framework
for analyzing the stability of 2 - bumps is formulated, based on spectral
theory for Fredholm integral operators. The stability method deforms to
the standard Evans function approach for the translationally invariant case
in the limit of no heterogeneity, in a way analogous to the single bump
case for the homogenized model. Numerical study of the stability problem
reveals that both the broad and narrow bumps are unstable just as in the
translationally invariant case when the connectivity function is modeled by
means of a wizard hat function. For the damped oscillating connectivity
kernel, we give a concrete example of a 2 - bump solution which is stable for
all admissible values of the heterogeneity parameter.
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1. Introduction

Firing rate models have commonly been utilized in the investigation of
network properties of the strongly interconnected cortical networks. In neural
field models the cortical tissue has in addition been modeled as continuous
lines or sheets of neurons. In such models the spatiotemporally varying
neural activity is described by one or more scalar fields, one for each neuron
type incorporated in the model. These models are formulated in terms of
differential, integro - differential equations and integral equations. The most
wellknown and simplest model in that respect is the socalled Wilson - Cowan
model [1, 2] which in one spatial dimension reads

∂

∂t
u(x, t) = −u(x, t) +

∞∫

−∞

ω(|x′ − x|)f(u(x′, t))dx′ (1)

Here u denotes the average neural activity, ω the coupling strength (referred
to as the connectivity function) and f the firing rate function. Notice that
the Wilson - Cowan model (1) presupposes that the cortical medium is ho-
mogeneous and isotropic.

Since the seminal contributions of Wilson et al [1] and Amari [2] several works
have been devoted to the study of traveling waves and localized stationary
solutions (socalled bumps) of this model and its extensions as well as the sta-
bility of these coherent structures. In most of these works one assumes that
the firing rate function is given by means of the unit step function (Heav-
iside function), which is mathematically convenient as the traveling waves
and the bumps in this case can be given in terms of closed form analytical
expressions. The corresponding stability theory is then worked out either by
projecting the dynamics of the full system onto a finite dimensional space
consisting of the dynamical system in the crossing coordinates between the
bumps and the threshold values i.e. pulsewidth coordinates (the Amari ap-
proach) or by doing a full stability analysis by means of the Evans function
approach. See for example Coombes [3] and the references therein.

The simplest type of localized stationary solutions is the single bump (or
1 - bump) of the model (1). For these bumps there is a one - to - one
correspondence between the admissible threshold values and the pulsewidth
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coordinates. The existence and uniqueness of these solutions have been stud-
ied in several works, as for example in [2] and Murdock [4] together with their
linear stability. Spatially symmetric 2 - bump solutions of the translationally
invariant Wilson - Cowan model are characterized by four intersection points
for each threshold value, two positive and two negative. They have been
studied in [7, 8, 9]. In Laing et al [7] stable and unstable N - bump solutions
have been studied numerically, while in Laing et al [8] conditions for exis-
tence of 2 - bump solutions are established and stability of the bumps state
has been assessed by using the Amari technique. Murdock et al [9] investi-
gated the existence of symmetric 2 - bump stationary solutions for a class
of coupling functions and established their linear stability. All these studies
show that the multibumps states in the translationally invariant Wilson -
Cowan model are unstable when the connectivity functions are modeled by
means of the wizard hat function.

Although the modeling framework given by (1) and its extensions quali-
tatively are expected to capture the essential features of the brain activity
on the macroscale level, they do not account for the heterogeneity in the
cortical structure. Thus they represent a simplification of the actual situa-
tion. Therefore it is a pressing need to develop mathematical tools for the
study of waves and bumps in heterogeneous media that can be used in brain
modeling. One common tool which could be useful in the study of such prob-
lems is homogenization techniques [10, 11]. This multiscale approach leads
to the study of effective constant coefficient equations termed homogenized
equations when dealing with partial differential equations. In the case of pe-
riodic microstructure the homogenization involves averaging over some well
identified micro - scale. Bressloff [12] was the first to extend this technique to
neural field models and to show how to describe fronts that travel through a
neural model with a periodically modulated microstructure. The experimen-
tal findings suggest that there is a periodic microstructure in the primary
visual cortex. Coupling between periodic micro level structure of the cortex
and nonlocal mean field description has been addressed in some other papers
as well [13, 14, 15, 16, 17]. It turns out that the detailed microstructure has
an impact on pattern forming mechanisms as well as existence and stability of
traveling fronts and pulses. A common feature observed in [13, 14, 15, 16, 17]
is the propagation failure when the wave speed is too slow or the degree of
heterogeneity too large.
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Conventional homogenization procedures consist of techniques which are
wellknown in the applied mathematics community such as perturbation ex-
pansions (see for example Persson et al [18] and the references therein).
Modern homogenization theory based on multi - scale convergence techniques
represents an alternative approach to this problem. It provides efficient and
rigorous methods for studying the coupling between the microstructure and
macroscopic levels. This approach to homogenization theory was originally
presented by Nguetseng [19]. A careful treatment of the theoretical foun-
dation of the method can be found in Lukkasen et al [20]. The multiscale
approach of Nguetseng has successfully been applied to homogenization of
partial differential equations (see for example Lukkassen et al. [20] and the
references therein). Apart from the works [21, 22, 23], it seems not to be
very wellknown in the mathematical neuroscience community.

In Svanstedt et al [21, 22] it is proved that the one - parameter family of one
population Wilson-Cowan models with periodic microstructure

∂

∂t
uε(x, t) = −uε(x, t) +

∫

Ω

ω(x′− x,
x′ − x

ε
)f(uε(x

′, t))dx′, x ∈ Ω, t > 0

(2)
two scale converges to

∂

∂t
u(x, y, t) = −u(x, y, t) +

∫

Ω

dx′
∫

Y

dy′ω(x′ − x, y′ − y)f(u(x′, y′, t)) (3)

for x ∈ Ω, y ∈ Y, t > 0 when ε→ 0. Here Ω is a subset of Rk and Y = [0, 1]k.
The connectivity kernel ω is periodic in the second variable y = x/ε with Y
as a period cell. In Coombes et al [23] the model (3) was used in a study
of traveling fronts in a medium with periodic structure, while in Svanstedt
et al [22] existence and stability of y - independent single bump solutions
of the homogenized Wilson - Cowan model (3) are studied when the firing
rate function is given by means of the Heaviside function. In the latter pa-
per the existence and uniqueness issue is studied by means of the pinning
function technique using the heterogeneity parameter as a control parame-
ter. In Svanstedt et al [22] the stability problem is resolved by means of
the spectral properties of a Hilbert - Schmidt integral operator in the mi-
crovariable y. The spectrum of this operator is computed by means of a
Fourier decomposition method in a way analogous to single bump solutions
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of the homogeneous translational invariant Wilson - Cowan model in two
spatial dimensions [24] and the spectral stability of vortex solutions to the
Gross - Pitaevski equation in a two dimensional spatial configuration [25].
This method can be viewed as yielding an Evans function for each Fourier
mode in a way analogous to the homogeneous translationally invariant case
(see for example Coombes [3] and the references therein). It turns out that
the stability properties can be deduced from the monotonicity properties of
the pinning function alone: Stable (unstable) bumps correspond to excita-
tion widths for which the pinning function is strictly increasing (decreasing).
In [22] this theory is illustrated when the connectivity function is given as
an exponentially decaying function, a wizard hat function and a damped
oscillating function, where the functions are periodically modulated in the
synaptic footprint as well in the spatial scale. In the wizard hat function case
bumps cannot exist for strong heterogeneity. Just as in the translationally
invariant Wilson - Cowan case with a wizard hat connectivity function there
is regime of threshold values producing two types of single bumps for each
threshold value, one narrow bump and one broad bump. The narrow (broad)
bump is always unstable, which can be deduced from the fact that the pin-
ning function is strictly increasing (decreasing) for the excitation width of
this bump.

This serves as a background for the present work. We study the existence,
uniqueness and stability of spatially symmetric 2 - bump solutions within
the framework of the homogenized model (3). The existence and uniqueness
issue is dealt with in a way analogous to Blomquist et al [26] and Yousaf et al
[27] for single bump solutions in a two population model of excitatory and in-
hibitory neurons: As the number of positive intersection points (pulsewidths)
between the spatially symmetric 2 - bump solutions and the threshold values
are two, we conveniently study the existence of 2 - bump solutions by view-
ing the pinning equation problem as a one - parameter family of mapping
problems from the set of pulse widths to the threshold value plane with the
heterogeneity parameter as a parameter. The uniqueness problem is a local
problem which is studied by considering the solution of the pinning equa-
tions as points for transversal intersection of level curves. We find that 2 -
bump solutions exist for small and moderate values of the threshold value for
firing while we have non - existence of bumps when threshold value exceeds
a certain critical value. This critical value depends on the heterogeneity pa-
rameter. We also show that the generic picture consists of one broad and
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one narrow 2 - bump solution in the regime of small and moderate values
of the threshold value for firing. Notice that our geometrical approach is
different from the method used in Murdock et al [9] to establish necessary
conditions for the existence of 2 - bumps. In the latter paper the number
of 2 - bump solutions as a function of the threshold value is not studied.
The stability problem boils down to a study of the spectrum for a Fredholm
integral operator. We compute the spectrum of this operator by using the
Fourier decomposition method in a way analogous to Svanstedt et al [22] for
the single bumps case. We show that our stability method deforms to the
Evans function technique of Murdock et al [9] when switching off the effect of
heterogeneity. A notable feature is that the actual integral operator for the
stability problem is not a Hilbert - Schmidt integral operator as in the single
bumps case, but a nonsymmetric Fredholm integral operator. The reason
for this is that the slopes of the bumps evaluated at the pulse width coor-
dinates are different. Finally, we give concrete examples on the application
of the present stability approach in the case when the connectivity kernel is
given by means of a modulated wizard hat function and a damped oscillating
function. For the wizard hat function numerical computations indicate that
both the narrow and the broad 2 - bumps remain unstable when switching
on the heterogeneity, while in the example with the periodically modulated
damped oscillating connectivity function the 2 - bumps remain stable when
switching on the heterogeneity.

The present work is organized in the following way: Section 2 is devoted to
the existence and uniqueness of 2 - bump solutions. In Section 3.1 we formu-
late the general framework for analyzing the stability of 2 - bump solutions.
In Section 3.2 we give concrete examples on the application of this theory
to cases where the connectivity function is given as a modulated wizard hat
function and a damped oscillating function. Section 4 contains conclusions
and an outlook.

2. Existence and uniqueness of 2 - bump solutions

In this section we study the existence and uniqueness of 2 - bump solu-
tions of the homogenized Wilson - Cowan model (3) when we assume Ω = R

(k = 1). It is assumed that these solutions are independent of the local vari-
able y, i.e. u(x, y, t) = U(x). We proceed in a way analogous to Svanstedt et
al [22].
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We find that if stationary solutions U exist, they must satisfy the fixed point
problem

U(x) =

∞∫

−∞

f(U(x′))〈ω〉(x′ − x)dx′ (4)

where 〈ω〉 denotes the average of the connectivity function ω over the unit
cell i.e.

〈ω〉(x) =

1∫

0

ω(x, y)dy (5)

The next step consists of approximating the firing rate function f by means
of the Heaviside step function H: f(u) = H(u− θ). Here θ is the threshold
value for firing of the neuronal population. We assume that 0 < θ ≤ 1.
The construction of spatially symmetric 2 - bump solutions proceeds in the
following way: We assume that the equation U(x) = θ has four solutions ±a
and ±b, such that 0 < a < b. Moreover, U obeys the conditions

U(x) = U(−x), U(±∞) = 0

U(x) > θ, a < |x| < b

U(x) < θ, |x| < a, |x| > b

(6)

In a way analogous to the translationally invariant case, we express the 2 -
bump solutions in terms of the anti-derivative W of 〈ω〉 i.e.

W (x) ≡

x∫

0

〈ω〉(z)dz (7)

We get

U(x) = W (x+ b)−W (x+ a) +W (x− a)−W (x− b) (8)

Notice that U(x) ≡ 0 when a = b. Now, by making use of the stationarity
assumptions (6) and (8), we end up with the system of equations for the
pulse width coordinates a and b given as

F (a, b) = θ

G(a, b) = 0
(9)
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where F and G are defined by

F (a, b) ≡ W (b− a)−W (b+ a) +W (2b)

G(a, b) ≡ W (2b) +W (2a)− 2W (b+ a)
(10)

The system (9) with F and G given by (10) is referred to as the set of pinning
equations.

In the present work we assume that the connectivity function ω is expressed
in terms of a continuous and absolute integrable scaling function ϕ i.e.

ω(x, y) =
1

σ(y)
ϕ
[ x

σ(y)

]
(11)

The synaptic footprint function σ is assumed to be periodic with period
1, even, continuous and strictly positive. This means that the connectivity
function ω is periodically modulated in the local scale y. Just as in Svanstedt
et al [22], we assume that

σ(y) = 1 + γ cos(2πy), 0 ≤ γ < 1 (12)

The parameter γ which measures the degree of heterogeneity, is referred to
as the heterogeneity parameter. Notice that the case γ = 0 corresponds to
the 2 - bump solution in the translationally invariant case. In the present
work we study existence and stability of 2 - bumps in two concrete cases: In
the first case the scaling function ϕ(ξ) is given by the wizard hat function

ϕ[ξ] = e−|ξ|(1− α|ξ|) (13)

while in the second case it assumes the form of the damped oscillating func-
tion

ϕ[ξ] = Ke−β|ξ|(cos(α|ξ|) + β sin(α|ξ|)), K, α, β > 0 (14)

The anti - derivative W defined by (7) now becomes a 1 - parameter family of
functions parameterized by γ. The particular form (11) for the connectivity
function leads to the expression

W (x; γ) =

1∫

0

x
σ(y)∫

0

ϕ[ξ]dξdy (15)
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The functions F and G defined by (10) hence depend on γ, i.e.

F (a, b; γ) ≡ W (b− a; γ)−W (b+ a; γ) +W (2b; γ)

G(a, b; γ) ≡ W (2b; γ) +W (2a; γ)− 2W (b+ a; γ)
(16)

with the corresponding set of pinning equations

F (a, b; γ) = θ

G(a, b; γ) = 0
(17)

Now, let us address the issue of existence and uniqueness of 2 - bump
solutions. The question about existence of bumps solutions simplifies to ex-
istence of solutions to the system (16) - (17). We conveniently study this
problem by using a mapping technique which is analogous to the one used
in [26, 27] for the existence of single bumps solutions of two population model.

We proceed as follows: Let us introduce the subsets Σ and I of R2 defined

Σ = {(a, b) ∈ R
2|0 < a ≤ b}

I = {(θ, θ̃) ∈ R
2|0 < θ ≤ 1, θ̃ = 0}

Moreover, introduce the vectors a and θ defined by

a =

[
a
b

]
, θ =

[
θ

θ̃

]

where θ ≥ 0, θ̃ ∈ R and a ∈ Σ. Then introduce the 1-parameter family of
vectorfields F γ : Σ→ R

2 parameterized by γ defined by

θ = F γ(a) =

[
F (a, b; γ)
G(a, b; γ)

]
(18)

where the component functions F and G are defined by (16).

We get the following result:

Theorem 1. F γ(Σ) is a bounded subset of R2.
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Proof. The triangle inequality yields

|F (a, b; γ)| ≤ |W (b− a; γ)|+ |W (b+ a; γ)|+ |W (2b; γ)|

|G(a, b; γ)| ≤ |W (2b; γ)|+ 2|W (b+ a; γ)|+ |W (2a; γ)|

For convenience we have introduced

β1(a, b) = b− a
β2(a, b) = b+ a
β3(a, b) = 2b
β4(a, b) = 2a

Then we get

|W (βi(a, b), γ)| =
∣∣∣

1∫

0

βi(a,b)

σ(y)∫

0

ϕ(ξ)dξdy
∣∣∣ ≤

1∫

0

βi(a,b)

σ(y)∫

0

|ϕ(ξ)|dξdy

Since ϕ by assumption is absolute integrable, we get

|W (βi(a, b), γ)| <∞

from which it follows that F γ(Σ) is a bounded subset of R2. �

In Fig.1 we show the image of the region Σ under the vector field F γ when
the connectivity function is given by the wizard hat function (11) - (13) for
two different values of the heterogeneity parameter γ i.e γ = 0 and γ = 0.7.
First of all, these plots show that the subset F γ(Σ) is bounded, in accordance
with Theorem 1. Secondly, we observe that the intersection F γ(Σ)∩ I is non
- empty, i.e. there is a θcr which depends on γ such that

F γ(Σ) ∩ I = {(θ, θ̃)|0 < θ ≤ θcr < 1, θ̃ = 0} (19)

In this case we conclude that for θ ∈ (0, θcr] the system (16) - (17) has at least
one solution, from which we conclude that there exists at least one 2 - bump
solution in this case. The subinterval (0, θcr] is referred to as the interval
of admissible threshold values. The critical threshold value θcr, which is a
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function of the heterogeneity parameter γ, is determined by means of the
non - transversality condition

det
[∂F γ

∂a

]
(a) = 0

(20)

F (a, b; γ) = θcr(γ), G(a, b; γ) = 0

For θcr(γ) < θ < 1, the pinning equations (16) - (17) have no solutions,
corresponding to non - existence of 2 - bumps. Fig. 2 shows the existence
of 2 - bumps as a function of the heterogeneity parameter γ and the thresh-
old value θ. The computation underlying the plot of the separatrix curve
θ = θcr(γ) separating regions producing 2 - bump solutions from the non -
existence regime is based on the condition (20).

Next, we study the number of solutions of the pinning equation system (16)
- (17) i.e. the number of solutions to the fixed point problem (4) for a given
admissible threshold value θ ∈ (0, θcr(γ)]. We denote the solution of this sys-
tem as a = (a, b). Since the connectivity function ω is continuous in (x, y),
the vector field F γ defined by means of the component functions in (16) is
continuously differentiable on Σ. Just as in Blomquist et al [26] the generic
picture consists of two 2 - bumps for small and moderate values of the thresh-
old value, i.e. for each threshold value in the open subinterval (0, θcr(γ)). To
show this we proceed as follows: We view the system of equations (17) as
level curves of the component functions (16) with level curve constants θ and
0. The existence of 2 - bumps is then translated into a study of intersection
of these level curves. By adjusting the threshold value θ to be just below
θcr(γ), we get two intersection points locally which correspond to two 2 -
bumps, i.e. one narrow and one broad 2 - bump. Fig. 3 demonstrates this
behavior. The inverse function theorem now shows that the Jacobian of F γ

at the point a is non-singular, i.e.

det
[∂F γ

∂a

]
(a) 6= 0 (21)

for each of the intersection points, which means by the inverse function the-
orem guarantees local uniqueness of the solution of the pinning equation
system (16) - (17) for a given value of γ. Fig.4 shows examples of transversal
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intersection of the level curves (16) - (17) for different values of the hetero-
geneity parameter γ when θ belongs to the set of admissible threshold values.
The corresponding narrow and broad 2 - bump solutions are displayed in Fig.
5. Fig. 6 shows examples of non - transversal intersection of the level curves,
corresponding to coalescence of a broad - and narrow 2 - bump at the critical
threshold value θcr(γ) as demonstrated in Fig. 7. For the sake of complete-
ness, we also show examples of non - crossing of the level curves (16) - (17),
corresponding to non - existence of 2 - bump solutions (Fig. 8).
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Figure 1: The image of Σ = {(a, b)|b > a > 0} in R
2, 0 < θ 6 1 under

the mapping F γ is the yellow region, while the complement set R2 \ F γ(Σ)
is green. The intersection F γ(Σ) ∩ I is marked with blue, while the critical
threshold value θcr for existence of 2 - bumps is marked with a red point.
Input data: The scaling function ϕ is given by (13), α = 2, γ = 0, γ =
0.7. The right column of figures gives magnified view of rectangular regions
marked in the left column of figures.
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Figure 2: Existence and non - existence of 2 - bump solutions as a function
of the heterogeneity parameter γ and the threshold value θ. Blue region
corresponds to existence of bumps, green region to non - existence and red
curve to the separatrix curve θ = θcr(γ), in accordance with Fig. 1. The
scaling function ϕ is given by the wizard hat function (13) with α = 2. The
curve θ = θcr(γ) is determined by means of (20).
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Figure 3: Generation of 2 - bumps for a fixed value of the heterogeneity
parameter γ in the pulse width coordinate plane. The threshold value θ is in
the vicinity of θcr in the pulse width coordinate plane The scaling function
ϕ is given by the wizard hat function (13) with α = 2. The grey shaded
region corresponds to the forbidden sector a > b in the first quadrant of
the pulse width coordinate plane. Blue curve: G(a, b; γ) = 0. Input data:
θ = 0.0615 (green curve, no intersection of level curves (16) - (17), no 2 -
bumps), θ = θcr(0.3) = 0.061 (cyan curve, non - transversal intersection of
level curves (16) - (17), one 2 - bump), and θ = 0.0615 (red curve, transversal
intersection of level curves (16) - (17), two 2 - bumps) and γ = 0.3.

15



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 a

 b

 a > b
γ=0

γ=0.3

γ=0.5

γ=0.7

Figure 4: Transversal intersection of the level curves (16) - (17) for different
values of the heterogeneity parameter γ and a fixed threshold value θ (θ =
0.05). The scaling function ϕ is given by the wizard hat function (13) with
α = 2. The grey shaded region corresponds to the forbidden sector a > b in
the first quadrant of the pulse width coordinate plane.
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Figure 5: Broad (a) and narrow (b) 2 - bump solutions corresponding to the
transversal intersections of the level curves (16) - (17) displayed in Fig. 4.
The scaling function ϕ is given by the wizard hat function (13) with α = 2.
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Figure 6: Non - transversal intersection of the level curves (16) - (17) for
different values of the heterogeneity parameter γ and critical threshold values
θ = θcr(γ). The scaling function ϕ is given by the wizard hat function (13)
with α = 2. The grey shaded region corresponds to the forbidden sector
a > b in the first quadrant of the pulse width coordinate plane.
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Figure 7: 2 - bump solutions in the case of non - transversal intersections of
the level curves (16) - (17) displayed in Fig. 6 for γ = 0 (blue curves) and
γ = 0.7 (cyan curves). The scaling function ϕ is given by the wizard hat
function (13) with α = 2.
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Figure 8: Non - existence of 2 - bump solutions corresponding to non -
intersecting level curves (16) - (17) for different values of the heterogeneity
parameter γ and a fixed threshold value θ (θ = 0.071). The scaling function
ϕ is given by the wizard hat function (13) with α = 2. The grey shaded
region corresponds to the forbidden sector a > b in the first quadrant of the
pulse width coordinate plane.
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3. Stability analysis

3.1. General framework

In this section we develop a general framework for studying the stability of
2 - bump solutions within the framework of the homogenized Wilson-Cowan
model. We proceed in a way analogous to Svanstedt et al [22] for the single
bumps. We impose the perturbations

u(x, y, t) = U(x) + Φ(x, y, t), |Φ(x, y, t)| ≪ |U(x)|

on the bump state and linearize the nonlocal evolution equation for the per-
turbation Φ. Then, by assuming Φ(x, y, t) = Ψ(x, y)eλt we end up with the
linear nonlocal amplitude equation for Ψ i.e.

(λ+ 1)Ψ(x, y) =

∞∫

−∞

dx′
1∫

0

dy′ω(x′ − x, y′ − y)H ′(U(x′)− θ)Ψ(x′, y′) (22)

The integral term on the right hand side can be computed by taking into
account the definition of the 2 - bump solution. We readily obtain

(λ+ 1)Ψ(x, y) =
1∫
0

[ω(b+x,y′−y)
|U ′(b)|

Ψ(−b, y′) + ω(a+x,y′−y)
|U ′(a)|

Ψ(−a, y′)+

+ω(a−x,y′−y)
|U ′(a)|

Ψ(a, y′) + ω(b−x,y′−y)
|U ′(b)|

Ψ(b, y′)dy′]

(23)

By inserting x = −b, x = −a, x = a, x = b into (22) we otain the four linear
equations

(λ+ 1)Ψ(−b, y) =

1
|U ′(b)|

1∫
0

[ω(0, y′ − y)Ψ(−b, y′) + ω(2b, y′ − y)Ψ(b, y′)]dy′+

+ 1
|U ′(a)|

1∫
0

[ω(b− a, y′ − y)Ψ(−a, y′) + ω(b+ a, y′ − y)Ψ(a, y′)]dy′

(24a)

(λ+ 1)Ψ(−a, y) =

1
|U ′(b)|

1∫
0

[ω(b− a, y′ − y)Ψ(−b, y′) + ω(b+ a, y′ − y)Ψ(b, y′)]dy′+

+ 1
|U ′(a)|

1∫
0

[ω(0, y′ − y)Ψ(−a, y′) + ω(2a, y′ − y)Ψ(a, y′)]dy′

(24b)
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(λ+ 1)Ψ(a, y) =

1
|U ′(b)|

1∫
0

[ω(b+ a, y′ − y)Ψ(−b, y′) + ω(b− a, y′ − y)Ψ(b, y′)]dy′+

+ 1
|U ′(a)|

1∫
0

[ω(2a, y′ − y)Ψ(−a, y′) + ω(0, y′ − y)Ψ(a, y′)]dy′

(24c)

(λ+ 1)Ψ(b, y) =

1
|U ′(b)|

1∫
0

[ω(2b, y′ − y)Ψ(−b, y′) + ω(0, y′ − y)Ψ(b, y′)]dy′+

+ 1
|U ′(a)|

1∫
0

[ω(b+ a, y′ − y)Ψ(−a, y′) + ω(b− a, y′ − y)Ψ(a, y′)]dy′

(24d)

Let

Ψ(y) =




Ψ(−b, y)
Ψ(−a, y)
Ψ(a, y)
Ψ(b, y)




Then the system (24) can be written as the eigenvalue problem

HΨ = µΨ (25)

for the integral operator H defined as

[HΦ](y) =

1∫

0

W(y − y′)Φ(y′)dy′ (26)

with

W(y) =




c1ω(0, y) c2ω(b− a, y) c2ω(b+ a, y) c1ω(2b, y)

c1ω(b− a, y) c2ω(0, y) c2ω(2a, y) c1ω(b+ a, y)

c1ω(b+ a, y) c2ω(2a, y) c2ω(0, y) c1ω(b− a, y)

c1ω(2b, y) c2ω(b+ a, y) c2ω(b− a, y) c1ω(0, y)




and

Φ(y) =




Φ1(y)
Φ2(y)
Φ3(y)
Φ4(y)
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Here the relationship between the eigenvalue µ and the growth/decay rate λ
is given as

µ = (λ+ 1)|U ′(a)||U ′(b)| (27)

where the slope parameters c1 ≡ |U
′(a)| and c2 ≡ |U

′(b)| are given as

c1 = 〈ω〉(0)− 〈ω〉(2a) + 〈ω〉(b+ a)− 〈ω〉(b− a)

c2 = 〈ω〉(0)− 〈ω〉(2b) + 〈ω〉(b+ a)− 〈ω〉(b− a)
(28)

The key issue now consists of determining the spectrum of the operator H.
We first notice that this operator is a compact linear operator (Fredholm
integral operator). A wellknown result in the theory of such operators states
that all µ 6= 0 are either eigenvalues of the operator or do not belong to the
spectrum at all. (See for example Porter et al [28] and Kolgomorov et al
[29]). The only possible element in the essential spectrum is 0. This point is
the accumulation point of the sequence of eigenvalues as n→∞. Moreover,
it will not influence the stability assessment.

We next compute the eigenvalues of the operator H by using the Fourier de-
composition method in a way analogous to Owen et al [24] for single bumps
in two spatial dimensions, Kollár et al [25] for the spectral stability of vortex
solutions to the Gross - Pitaevski equation in a two dimensional spatial con-
figuration and Svanstedt et al [22] for the stability of a single bumps in the
homogenized Wilson - Cowan model (3). The following theorem summarizes
the result of this computation:

Theorem 2. Let M̃n and L̃n, n = 0, 1, 2, 3, ... be the 2× 2 matrices

M̃n =




c1βn,M c2δn,M

c1δn,M c2αn,M


 (29)

and

L̃n =




c2αn,L c1δn,L

c2δn,L c1βn,L


 (30)
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where αn,j, βn,j and δn,j, j = M,L, n = 0, 1, 2, ... are given as

αn,L = ω̃n(0)− ω̃n(2a), αn,M = ω̃n(0) + ω̃n(2a)

βn,L = ω̃n(0)− ω̃n(2b), βn,M = ω̃n(0) + ω̃n(2b) (31)

δn,L = ω̃n(b− a)− ω̃n(b+ a), δn,M = ω̃n(b− a) + ω̃n(b+ a)

Here ω̃n, n = 0, 1, 2, .... denotes the Fourier coefficients

ω̃n(x) =

1∫

0

ω(x, y) exp[−i2πny]dy (32)

of the connectivity kernel ω(x, y) with respect to the local variable y.

Then the eigenvalues of the integral operator H defined by (26) are given
in terms of four sequences {µ±n,j}, n = 0, 1, 2, ..., j = M,L where

µ±n,j =
1

2
[c1βn,j + c2αn,j ±

√
Dn,j] (33)

where the positive discriminants Dn,j are given as

Dn,j = (c1βn,j − c2αn,j)
2 + 4c1c2δ

2
n,j

The four sequences of growth/decay rates {λ±n,j}, n = 0, 1, 2, ..., j = M,L
corresponding to the four sequences of eigenvalues {µ±n,j}, n = 1, 2, ..., j =
M,L are given as

λ±n,j =
µ±n,j

|U ′(a)||U ′(b)|
− 1 (34)

Proof. Introduce the Fourier series representations

Ψ(y) =
n=∞∑
n=−∞

Ψ̃n exp[i2πny]

(35)

W(y) =
n=∞∑
n=−∞

W̃n exp[i2πny]
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for Ψ and W. The Fourier coefficients Ψ̃n and W̃n are given as

Ψ̃n =
1∫
0

Ψ(y) exp[−i2πny]dy, Ψ̃n 6= 0

W̃n =
1∫
0

W(y) exp[−i2πny]dy

By plugging (52) into the eigenvalue problem (25) - (27), we find the eigen-
value problem

W̃nΨ̃n = µΨ̃n, Ψ̃n 6= 0 (36)

for all n = ...− 2,−1, 0, 1, 2, ...., where

W̃n =




c1ω̃n(0) c2ω̃n(b− a) c2ω̃n(b+ a) c1ω̃n(2b)

c1ω̃n(b− a) c2ω̃n(0) c2ω̃n(2a) c1ω̃n(b+ a)

c1ω̃n(b+ a) c2ω̃n(2a) c2ω̃n(0) c1ω̃n(b− a)

c1ω̃n(2b) c2ω̃n(b+ a) c2ω̃n(b− a) c1ω̃n(0)




(37)

We notice that W̃n = W̃−n since by assumption the connectivity kernels
ω(z, y) are even functions of the local variable y. Hence we can assume

n = 0, 1, 2, 3, ... without loss of generality. The matrix W̃n given by (37) can
be block diagonalized by means of the matrix B defined as

B =




1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1


 . (38)

We readily find that

B
−1
W̃nB =

[
M̃n 0

0 L̃n

]
(39)

where M̃n and L̃n are 2 × 2 matrices given by (29) and (30), respectively.
Standard theory shows that the eigenvalues of the problem (36) are the roots
of the quadratic equations

det(µI− M̃n) = 0, det(µI− L̃n) = 0 (40)
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where I is the unit 2 × 2 matrix. Simple computation now shows that the
eigenvalues of M̃n (L̃n) are given by the expressions (33) for j = M (j = L).
By using (27), we find the expressions (34) for the growth/decay rates of the
stability problem.

Notice the resemblance of the present Fourier decomposition method with
the standard Evans function technique for the homogeneous translational in-
variant case: The method can be viewed as yielding an Evans function for
each Fourier mode given by the LHS of the determinant conditions (40). �

Let us investigate the spectrum of the operator H in some more detail.
For connectivity kernels ω which are piecewise smooth functions of the local
variable y like the wizard hat function and the damped oscillating function,
we get the bound

|ω̃n(z)| ≤
1

2πn

1∫

0

|
∂

∂y
ω(z, y)|dy (41)

from which we get the limits

lim
n→∞

µ±n,L = lim
n→∞

µ±n,M = 0

which leads to the property

lim
n→∞

λ±n,L = lim
n→∞

λ±n,M = −1 (42)

For n = 0, we notice that ω̃0(z) = 〈ω〉(z). The corresponding eigenvalues are
given as

µ−0,L = c1c2 = |U
′(a)||U ′(b)|

µ+
0,L =

(43)

(〈ω〉(0)− 〈ω〉(2a))((〈ω〉(0)− 〈ω〉(2b))− (〈ω〉(b+ a)− 〈ω〉(b− a))2

µ±0,M = 1
2
[c1(〈ω〉(0) + 〈ω〉(2b)) + c2(〈ω〉(0) + 〈ω〉(2a))±

√
D+

0 ]
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where

D0,M = [c1(〈ω〉(0) + 〈ω〉(2b))− c2(〈ω〉(0) + 〈ω〉(2a))]
2

+4c1c2[〈ω〉(b+ a) + 〈ω〉(b− a))]2

According to (34) the growth/decay rates corresponding to (43) are given as

λ−0,L = 0

λ+
0,L = ( 1

c1
+ 1

c2
)(〈ω〉(b− a)− 〈ω〉(b+ a)) (44)

λ±0,M = (c1c2)
−1µ±0,M − 1

Notice that the expressions for the growth/decay rates λ±0,j, j = L,M are
identical to those ones appearing in the stability theory for 2 - bumps in
the translationally invariant model (1) worked out in Murdock et al [9] with
ω(x) replaced with 〈ω〉(x). This is an expected result: When restricting
the class of perturbations imposed on the bump state to y - independent
perturbations, the eigenvalue problem (25) - (26) simplifies to the eigenvalue
problem for the 4× 4 matrix

H = 〈W〉 = W0 =




c1〈ω〉(0) c2〈ω〉(b− a) c2〈ω〉(b+ a) c1〈ω〉(2b)

c1〈ω〉(b− a) c2〈ω〉(0) c2〈ω〉(2a) c1〈ω〉(b+ a)

c1〈ω〉(b+ a) c2〈ω〉(2a) c2〈ω〉(0) c1〈ω〉(b− a)

c1〈ω〉(2b) c2〈ω〉(b+ a) c2〈ω〉(b− a) c1〈ω〉(0)




(45)

The eigenvalues of this matrix are given by (43). This restriction corresponds
to the stability theory within the framework of the translationally invariant
Wilson - Cowan model with the mean value of the connectivity kernel as the
integral kernel i.e.

∂

∂t
u(x, t) = −u(x, t) +W (x+ b(t); γ)−W (x+ a(t); γ)

+W (x− a(t); γ)−W (x− b(t); γ)
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where W is given by (15).

The result λ−0,L ≡ 0 reflects the translation invariance property of the 2 -
bump solution in the global scale.

Next, we study the stability theory in the limit γ → 0. We observe that
the connectivity kernels ω defined by (11) - (12) constitute a 1 - parameter
family of functions, say {ωγ}0≤γ<1, which are continuous in y for each fixed
x and which are parameterized by γ:

ωγ(x, y) ≡
1

1 + γ cos(y)
ϕ[

x

1 + γ cos(y)
]

Since | cos(y)| ≤ 1, we find for a fixed x that

ωγ(x, y)→ ϕ[x], uniformly as γ → 0

Hence we are permitted to interchange limit and integration so that

lim
γ→0

ω̃n(x) =

{
ϕ[x], n = 0
0, n 6= 0

(46)

For n = 0, we get from (33) that

λ−0,L → 0

λ+
0,L → ( 1

c1
+ 1

c2
)(ϕ[b− a]− ϕ[b+ a]) (47)

λ±0,M → (c1c2)
−1µ±0,M − 1

uniformly as γ → 0. Here

µ±0,M = 1
2
[c1(ϕ[0] + ϕ[2b]) + c2(ϕ[0] + ϕ[2a])±

√
D0,M ]

D+
0,M = [c1(ϕ[0] + ϕ[2b])− c2(ϕ[0] + ϕ[2a])]2

+4c1c2[ϕ[b+ a] + ϕ[b− a])]2
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The result (47) is identified with the result obtained by Murdock et al [9] for
the translationally invariant Wilson - Cowan model (1). From (46) it follows
that µ±n,j → 0 uniformly as γ → 0 when n 6= 0, which means that

λ±n → −1 uniformly as γ → 0, n 6= 0 (48)

We get the following theorem on the bound of the growth/decay rates of
the stability problem by proceeding in the same way as in Svanstedt et al
[22]:

Theorem 3. Let ρ±n,j, j = M,L;n = 0, 1, 2, .... be the eigenvalues of the

normal matrices M̃
T
nM̃n and L̃

T
n L̃n where M̃n and L̃n are given by (29) and

(30), respectively. Then the operator norm ‖H‖ of the operator H is given by

‖H‖ =
√
max

n
(ρn) (49)

where ρn is given as

ρn ≡ max
j

(ρ±n,j), n = 0, 1, 2, ..., j = M,L (50)

Moreover, the eigenvalues µ±n,j given by (33) satisfy the bound

−‖H‖ ≤ µ±n,j ≤ ‖H‖

which corresponds to the bound

λmin 6 λ±n,j 6 λmax

(51)

λmin ≡ −

√

max
n

(ρn)

|U ′(a)||U ′(b)|
− 1, λmax ≡

√

max
n

(ρn)

|U ′(a)||U ′(b)|
− 1

for the growth/decay rates λ±n,j of the instability/stability of the 2 - bump
solutions.

Proof. For any Φ ∈ (L2[0, 1])4 we first get

‖ HΦ ‖2= 〈HΦ,HΦ〉 =

1∫

0

dy(

1∫

0

dy′W(y− y′)Φ(y′)) · (

1∫

0

dy′′W(y− y′′)Φ(y′′))
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We then make use of the Fourier - series representations

Φ(y) =
n=∞∑
n=−∞

Φ̃n exp[i2πny]

(52)

W(y) =
n=∞∑
n=−∞

W̃n exp[i2πny]]

and find that

‖ HΦ ‖2=

1∫
0

dy[
1∫
0

dy′
n=∞∑
n=−∞

W̃n exp[i2πn(y − y′)]
m=∞∑
m=−∞

Φ̃m exp[i2πmy′]]

·[
1∫
0

dy′′
k=∞∑
k=−∞

W̃k exp[i2πk(y − y′′)]
l=∞∑
l=−∞

Φ̃l exp[i2πly
′′]]

=
n=∞∑
n=−∞

m=∞∑
m=−∞

k=∞∑
k=−∞

l=∞∑
l=−∞

[W̃nΦ̃m]

·[W̃kΦ̃l]
1∫
0

dy′ exp[i2π(m− n)y′]
1∫
0

dy′′ exp[i2π(l − k)y′′]
1∫
0

dy exp[i2π(n+ l)y]

=
∞∑

n=−∞

[W̃nΦ̃n] · [W̃nΦ̃−n] =
∞∑

n=−∞

[W̃nΦ̃n]
T [W̃nΦ̃−n] =

∞∑
n=−∞

Φ̃
T

nW̃
T
nW̃nΦ̃−n

Since by assumption the components of W are real and even functions of
y and the components of M are real, the matrix W̃n has real entries and

M̃−n = M̃
∗

n. We notice that the matrix K̃n ≡ W̃
T
nW̃n is a real valued and

symmetric matrix and that it can be block diagonalized by means of the
matrix (38) i.e.

B
−1
K̃nB =

[
M̃

T
nM̃n 0

0 L̃
T
n L̃n

]
(53)

where M̃n and L̃n are given by (29) and (30), respectively. We find that

M̃
T
nM̃n =




c21((β̃
+
n )

2 + (δ̃+n )
2) c1c2δ̃

+
n (α̃

+
n + β̃+

n )

c1c2δ̃
+
n (α̃

+
n + β̃+

n ) c22((α̃
+
n )

2 + (δ̃+n )
2)


 (54)
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and

L̃
T
n L̃n =




c22((α̃
−
n )

2 + (δ̃−n )
2) c1c2δ̃

−
n (α̃

−
n + β̃−n )

c1c2δ̃
−
n (α̃

−
n + β̃−n ) c21((β̃

+
n )

2 + (δ̃+n )
2)


 (55)

The eigenvalues ρ±n,j, n = 0, 1, 2, ..., j = M,L of K̃n are the roots in the
characteristic equations

det(ρI− M̃
T
nM̃n) = 0, det(ρI− L̃

T
n L̃n) = 0

We readily find that

ρ±n,M = 1
2
[tr(M̃T

nM̃n)±

√
(tr(M̃T

nM̃n))2 − 4det(M̃T
nM̃n)]

(56)

ρ±n,L = 1
2
[tr(L̃T

n L̃n)±

√
(tr(L̃T

n L̃n))2 − 4det(L̃T
n L̃n)]

Here

tr(M̃T
nM̃n) = c21[β

2
n,M + δ2n,M ] + c22[α

2
n,M + δ2n,M ]

det(M̃T
nM̃n) = c21c

2
2[αn,Mβn,M − δ2n,M ]2

tr(L̃T
n L̃n) = c21[β

2
n,L + δ2n,L] + c22[α

2
n,L + δ2n,L]

det(L̃T
n L̃n) = c21c

2
2[αn,Lβn,L − δ2n,L]

2

Simple computation reveals that the eigenvalues ρ±n,j, n = 0, 1, 2, ..., j = M,L

given by (56) are positive, consistent with the fact that the matrices M̃T
nM̃n

and L̃
T
n L̃n are normal matrices.

Now, let ρn denote the maximal eigenvalue of the matrix K̃n. Since by
(56) ρ+n,j ≥ ρ−n,j, we have

ρn ≡ max
j

(ρ±n,j) = max
j

(ρ+n,j), n = 0, 1, 2, ..., j = M,L (57)

Hence we obtain the estimate

‖ HΦ ‖2=
n=∞∑
n=−∞

[ρ+n,M |z
+
n,M |

2 + ρ−n,M |z
−
n,M |

2 + ρ+n,L|z
+
n,L|

2 + ρ+n,L|z
−
n,L|

2]

≤
n=∞∑
n=−∞

ρn|Z̃n|
2 =

n=∞∑
n=−∞

ρn|Φ̃n|
2 ≤ max

n
(ρn)

∞∑
n=−∞

|Φ̃n|
2 = max

n
(ρn)‖Φ‖

2
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by means of the theory of quadratic forms and Parsevals identity. Here
Φ̃n = PnZ̃n with Z̃n given as

Z̃n =




z+n,M
z−n,M
z+n,L
z−n,L




and Pn being the eigenvector matrix to Kn. We hence conclude that the
operator H is bounded with operator norm ‖H‖ given as

‖H‖ =
√

max
n

(ρn) (58)

We can bound the eigenvalues {µ±n,j} of H by means of the operator norm
i.e.

µ2
n = ‖HΨ±n,j‖

2 ≤ ‖H‖2 = max
n

(ρn), ‖Ψ±n,j‖ = 1

Here the sequence {Ψ±n,j} denotes the normalized eigenfunctions correspond-
ing to the eigenvalues {µ±n,j} (n = 0, 1, 2, ...,, j = M,L). Then, by restoring to
the definition (33) we find the bounding inequality (51) for the growth/decay
rates λ±n,j of the instability/stability of the 2 - bump solutions. �

We readily show the following properties of the eigenvalues ρ±n,j, n = 0, 1, 2, ...,
j = M,L: For n = 0, we have

tr(M̃T
0 M̃0) = c21[〈βM〉

2 + 〈δM〉
2] + c22[〈αM〉

2 + 〈δM〉
2]

det(M̃T
0 M̃0) = c21c

2
2[〈αM〉〈βM〉 − 〈δM〉

2]2

tr(L̃T
0 L̃0) = c21[〈βL〉

2 + 〈δL〉
2] + c22[〈αL〉

2 + 〈δL〉
2]

det(L̃T
0 L̃0) = c21c

2
2[〈αL〉〈βL〉 − 〈δL〉

2]2

where the mean values 〈αj〉, 〈βj〉 and 〈δj〉, j = L,M are defined as

〈αL〉 = 〈ω〉(0)− 〈ω〉(2a), 〈αM〉 = 〈ω〉(0) + 〈ω〉(2a)

〈βL〉 = 〈ω〉(0)− 〈ω〉(2b), 〈βM〉 = 〈ω〉(0) + 〈ω〉(2b)

〈δL〉 = 〈ω〉(b− a)− 〈ω〉(b+ a), 〈δM〉 = 〈ω〉(b− a) + 〈ω〉(b+ a)
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Moreover, for piecewise smooth connectivity kernels like the wizard hat func-
tion and the damped oscillating function, we find by appealing to (41) that

lim
n→∞

ρ±n,j = 0

from which it follows that

lim
n→∞

[

√
ρ±n,j

c1c2
− 1] = −1

For γ → 0 (i.e. the y - independent limit), we have the uniform limits

ρ±n,j → 0,

√
ρ±n,j

c1c2
− 1→ −1

for n 6= 0 and

tr(M̃T
0 M̃0)→ c21[β

2
M + δ2M ] + c22[α

2
M + δ2M ]

det(M̃T
0 M̃0)→ c21c

2
2[αMβM − δ2M ]2

tr(L̃T
0 L̃0)→ c21[β

2
L + δ2L] + c22[αL)

2 + δ2L]

det(L̃T
0 L̃0)→ c21c

2
2[αLβL − δ2L]

2

where αj, βj and δj are defined as

αL = ϕ[0]− ϕ[2a], αM = ϕ[0] + ϕ[2a]

βL = ϕ[0]− ϕ[2b], βM = ϕ[0] + ϕ[2b]

δL = ϕ[b− a]− ϕ[b+ a], δM = ϕ[b− a] + ϕ[b+ a]

Interestingly, the operator H : (L2[0, 1])4 → (L2[0, 1])4 is a Hilbert - Schmidt
integral operator if the slope parameters c1 = |U ′(a)| and c2 = |U ′(b)| are
equal: c1 = c2. According to the expressions (28) this takes place when the
mean value condition 〈ω〉(2a) = 〈ω〉(2b) is fulfilled. In this case

ρ±n,j = (µ±n,j)
2, n = 0, 1, 2, ... j = M,L
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where µ±n,j, n = 0, 1, 2, .., j = M,L are the eigenvalues of H given by (33). A
notable feature in this special case is that the operator norm ‖H‖ belongs to
the spectrum of the operator H i.e.

‖H‖ =
√
max

n
(max

j
[(µ+

n,j)
2]) (59)

We are now able to formulate the stability criteria which we will demon-
strate in some examples in the next section. These criteria are summarized
in the following two general theorems:

Theorem 4. If λmax given by (58) - (51) is negative, then the 2 - bumps are
stable.

Proof. Since by (51) we have λ±n,j ≤ λmax for all n = 0, 1, 2, ..., j = M,L,
we find that λ±n,j ≤ 0. �

Theorem 5. If at least one of λ+
0,L and λ±0,M given by (44) is strictly positive,

then the 2 - bump solutions are unstable.

We also have the following result for the weakly modulated case i.e. when
0 < γ ≪ 1 which follows directly from the continuous dependence of the
growth/decay rates on the heterogeneity parameter γ:

Theorem 6. If 0 ≤ γ ≪ 1, the stability properties of the 2 - bumps can be
inferred from the growth/decay rates λ+

0,L and λ±0,M .

Based on the stability results worked out in this subsection, we now formu-
late the procedure for assessing the stability of 2 - bump solutions in concrete
cases. The procedure can be summarized as follows in the case with different
slope parameters i.e. |U ′(a)| 6= |U ′(b)|

• One solves the set of pinning equations (16) - (17) for a θ in the interval
of admissible threshold values. The solution (aeq(γ), beq(γ)) traces out a
parameterized curve in the pulse width region Σ = {(a, b) ‖b > a > 0}.

• We compute the growth/decay rates λ+
0,L and λ±0,M given by means of

the formulas (44) evaluated at the points (aeq(γ), beq(γ)). If at least
one of these rates is strictly positive for a fixed γ, then the 2 - bump
solution is unstable for this value of γ. Cf. Theorem 5.
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• On the contrary, if all λ+
0,L and λ±0,M are strictly negative for a given

value of γ, there are two possibilities: First, if λmax given by (58) - (51)
is negative for a given value of γ, then the 2 - bumps state is stable for
this value of γ. If it turns out that λmax is positive, then the stability
issue can only be resolved by means of the four sequences of growth
rates (33) - (34).

Notice that we have the possibility of stabilization/destabilization of 2 -
bumps. This may happen for example if λ+

0,L and λ±0,L are strictly nega-
tive while λmax given by (58) - (51) is strictly positive.

On the other hand in the case with equal slope parameters (|U ′(a)| = |U ′(b)|),
the operator norm ‖H‖ belongs to the spectrum of the operator ‖H‖ and we
can get a sharp stability criterion: We have stability (instability) if (51) with
‖H‖ given by (59) is negative (positive).

3.2. Examples

In this subsection we study numerically the stability of 2 - bump solutions
in two concrete cases.

In the first case we assume that the scaling function ϕ is given as the wizard
hat function (11) - (13). As pointed out in Section 2 the generic picture
consists of a narrow and broad 2 - bumps state. Here we choose to do the
stability assessment of the bumps states illustrated in Fig. 5 and Fig. 7.
Fig. 9 shows the graphs of λ+

0,L and λ±0,M as functions of the heterogeneity
parameter γ for the broad 2 - bump solutions, whereas Fig. 10(a) shows the
graphs of λ+

0,L and λ±0,M as functions of the heterogeneity parameter γ for

the narrow 2 - bump solutions. In Fig. 10(b) we show that λ−0,L 6= λ−0,M in

Fig. 10(a). We observe that λ+
0,L and λ+

0,M are strictly positive for all γ. We
conclude that the 2 - bump solutions are unstable for all γ, which means that
the finite heterogeneity does not alter the stability properties as compared
with the translationally invariant case. This result is in accordance with the
result obtained in Murdock et al [9].

In the second case we assume that the connectivity function (11) is expressed
in terms of the damped oscillatory function scaling function (14). We first de-
termine one of the 1 - parameter family of solutions to the pinning equations
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(16) - (17) for a given θ belonging to the set of admissible threshold values
i.e. we find (a, b) as a function of the heterogeneity parameter γ. In this
numerical computation we have chosen K = 1, α = 1, β = 0.25. The actual
1 - parameter family of solutions corresponds to a stable 2 - bump solution
in the translationally invariant case (γ = 0). It turns out that this family of
solutions exists for some γ - interval, say 0 ≤ γ ≤ γex, where γ = 0.43. For
γ = γex, it turns out that the level curve G(a, b; γ) = 0 terminates at the
level curve F (a, b; γ) = θ while for γ > γex, there is no local intersection of
these level curves. In Fig. 11 we depict the 1 - parameter family of solutions
(a, b) as a parameterized curve in the pulse width coordinate plane, with γ
as a parameter, 0 ≤ γ ≤ γex. In Fig. 12 we have plotted the sequence of
corresponding 2 - bumps for specific choice of the heterogeneity parameter
γ, corresponding to selected points on the curve in Fig. 11. In Fig. 13 the
graphs of λ+

0,L and λ±0,M together with the graphs of the maximum of λ±n,j
(j = L,M) for the curve depicted in Fig. 11 are shown for the interval
0 ≤ γ ≤ γex for n = 1, 2, 3, 4, 5. We observe that λ+

0,L and λ±0,M are strictly
negative. Thus, in order to assess the stability of the 2 - bumps state as
a function of the heterogeneity parameter, we examine the behavior of the
rates λ±n,j, n = 1, 2, 3, ...., j = M,L as a function of γ . As λ±n,j < 0 for large
n, it suffices to plot λ±n,j for low values of n. Based on this investigation, we
conjecture that the 2 - bumps are stable for the whole interval 0 < γ ≤ γex).
Notice that for the case of a damped oscillating connectivity kernel, it is pos-
sible to have more than two 2 - bumps solutions for each admissible threshold
value. We do not pursue a detailed study here with respect to existence and
stability of these bumps structure as a function of the heterogeneity, however.
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Figure 9: The rates λ±0,L and λ±0,M as functions of the heterogeneity parameter
γ for broad 2 - bump solutions when θ = 0.05. The scaling function ϕ is given
by the wizard hat function (13) with α = 2.
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Figure 10: The rates λ±0,L and λ±0,M as functions of the heterogeneity parame-
ter γ for the narrow 2 - bump solutions when θ = 0.05. The scaling function
ϕ is given by the wizard hat function (13) with α = 2. Fig. 10(b) gives a
magnified view of rectangular region marked in Fig. 10(a).
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Figure 11: The solution (a, b) of the pinning equations (16) - (17) as a pa-
rameterized curve in the pulse width coordinate plane, with γ as a parameter
with 0 ≤ γ ≤ γex and a fixed threshold value θ (θ = 0.5). The scaling func-
tion ϕ is given by the damped oscillating function (14) with K = α = 1 and
β = 0.25. For γ = γex = 0.43 the level curve G(a, b; γ) = 0 terminates at the
level curve F (a, b; γ) = θ while for γ > γex, there is no local intersection of
these level curves. The points A, B and C correspond to γ = 0, γ = 0.3 and
γ = γex = 0.43, respectively.
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Figure 12: 2 - bump solutions corresponding to the points A,B and C on the
curve in Fig. 11.
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Figure 13: The rates λ±0,L, λ
±
0,M , and λ±n,j (j = L,M , n = 1, 2, 3, 4, 5) as

functions of the heterogeneity parameter γ for 0 ≤ γ ≤ γex, corresponding
to the parameterized curve displayed in Fig. 11. The scaling function ϕ is
given by the damped oscillating function (14) with K = α = 1, β = 0.25.
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4. Conclusions and outlook

The present paper is devoted to the study of the existence and stability
of 2 - bump solutions of a homogenized Wilson-Cowan model when approx-
imating the firing rate function with a Heaviside function.

It turns out that the existence theory can efficiently be studied by inter-
preting the pinning condition as a mapping of the pulse width coordinates of
the 2 - bumps to the threshold value plane in a way analogous to Blomquist
et al [26] and Yousaf et al [27] for single bumps in a two population model.
When assuming the connectivity kernel to be periodically modulated in both
the synaptic footprint and the spatial scale with a scaling function given by
the wizard hat function, we find regimes of existence of 2 - bump solutions
as a function of the threshold value θ and the heterogeneity parameter γ. A
notable feature is that for each γ there is an interval of small and moderate
values of threshold values 0 < θ ≤ θcr < 1 for existence of 2 - bump solutions,
where θcr depends on γ. For the regime θcr < θ ≤ 1 we have non - existence
of 2 - bumps. We also show that the generic picture consists of one broad
and one narrow 2 - bump solution when 0 < θ < θcr.

We then develop a stability method for 2 - bump solutions. The whole
problem boils down to a study of the spectral properties of a Fredholm in-
tegral operator. The eigenvalues of this problem which are found by means
of the Fourier decompositions method are real and directly related to the
growth/decay rates of the perturbations imposed on the bumps state. The
only possible element in the essential spectrum is according to standard the-
ory for linear compact operators on Hilbert spaces the accumulation point
0 of these eigenvalues. The essential spectrum thus does not influence the
stability assessment of the bumps. We find a bounding inequality for the
growth/decay rates of the perturbations, where the upper and lower bounds
are expressed in terms of the operator norm of the actual Fredholm integral
operator. One easily recovers the four eigenvalues of the actual integral op-
erator obtained by the Evans function approach for the homogeneous, trans-
lationally invariant case by considering the subclass of perturbations which
are independent of the local scale y. One of these eigenvalues corresponds
to the translational invariance property of the bumps solution. We then
show that both the narrow and the broad 2 - bump solutions are unstable
when the scaling function of the connectivity function is given by means of
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a wizard hat function for all admissible values of the heterogeneity param-
eter, just as in the translationally invariant case [9]. Finally, we provide an
example where the connectivity function is expressed in terms of a damped
oscillatory scaling function. We identify the regime of existence of 2 - bumps
numerically as a function of the heterogeneity parameter. The actual 2 -
bump solution is designed to be stable when switching off the heterogeneity.
We demonstrate by using the stability method that this 2 - bump solution
remains stable when switching on the heterogeneity parameter.

The Fourier decomposition method for stability developed in the present
paper can be viewed as yielding an Evans function for each Fourier mode in
a way analogous to the homogeneous case. We point that this method has
previously been used in the study of the stability of a single bumps in the
homogenized Wilson - Cowan model (3) [22], the spectral stability of vortex
solutions to the Gross - Pitaevski equation in a two dimensional spatial con-
figuration [25] and the stability of single bump solutions of the homogeneous
and translational invariant Wilson - Cowan model in two spatial dimensions
[24].

In future works we aim at investigating the existence of 2 - bump solutions
within the framework of the homogenized model with a steep and smooth
firing rate function by means of nonlinear functional analysis and degree the-
ory. We conjecture that this problem can be tackled by proceeding in a way
analogous to Oleynik et al [30]. We will also investigate the stability of single
bumps on two spatial dimensions within the framework of the homogenized
Wilson - Cowan model (3). This study will be complemented with the de-
velopment of appropriate numerical schemes which can be used to detail the
numerical evolution of both stable and unstable bumps within the framework
of the homogenized model. Finally, but not least we aim at comparing the
results in the present paper with simulation results for original networks with
heterogeneous microstructure the model (2). Work on some of these aspects
is under progress.
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