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Approbation of the texture analysis imaging 
technique in the wastewater treatment plant
N. Sivchenko1*, H. Ratnaweera1 and K. Kvaal1

Abstract: Monitoring of effluent turbidity is essential to evaluate the coagulation 
process in wastewater treatment plants (WWTPs). A digital imaging system based 
on the texture analysis of flocs has been tested in a Norwegian municipal WWTP 
to predict changes in coagulation conditions and outlet turbidity. Principal compo-
nent analysis (PCA) was applied to prove that the textural features of flocs’ images 
depend on the inlet wastewater parameters and coagulation conditions. Partial least 
squares regression (PLSR) was performed for the outlet turbidity prediction. The best 
model resulted in 86.6% prediction accuracy using two wastewater quality param-
eters (inlet flow and inlet turbidity) and 4 textural feature vectors retrieved from the 
images of flocs. Furthermore, the outlet turbidity predicted by this model resulted in 
a lower amount of underestimated values compare to the model, which contained 
only wastewater quality parameters. A new term—floc texture index (FTI) summariz-
es the textural features of flocs’ images resulting in a single variable (thought linear 
combination). This further simplifies the current multivariate dosage control system. 
Analysing the plant data indicates that an FTI value below 6 would result in the out-
let turbidity values above 5. This can be used as an early warning system of coagu-
lation failure. The results of these studies demonstrate the potential of the digital 
imaging system to improve an existing online coagulant dosing control strategy.
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1. Introduction
Coagulation is a well-known and widely used water and wastewater treatment method to remove 
suspended solids, phosphates and other water impurities. Particles which aggregate during the co-
agulation/flocculation process are called flocs. The amount of coagulant (chemical material, addi-
tion of which results in suspension’s destabilisation), its nature, concentration and mixing conditions 
are the main factors influencing flocs aggregation and breakage. The size and surface properties of 
flocs formed under different coagulation mechanisms strongly influence their behaviour during fur-
ther solid-liquid separation process (Bache & Gregory, 2007). Many researchers have studied differ-
ent floc features, such as size distribution and fractal dimension (Chakraborti, Atkinson, & Van 
Benschoten, 2000; Li, Zhu, Wang, Yao, & Tang, 2006; Vahedi & Gorczyca, 2011). Some attempts were 
done to create online systems for flocs characterisation and monitoring. A method of online floc size 
evaluation based on nephelometric turbidity measurements was presented (Cheng, Kao, & Yu, 2008) 
and further developed into nephelometric turbidimeter monitoring system (NTMS) (Cheng, Chang, 
Chen, Yu, & Huang, 2011; Yu, Chen, & Cheng, 2017). Photometric dispersion analyser (PDA) is an opti-
cal instrument often used to study the aggregates’ characteristics (Burgess, Curley, Wiseman, & 
Xiao, 2002; Chou, Lin, & Huang, 1998; Wu, Wang, Hu, & Ye, 2013). Nevertheless, many attempts were 
done so far to study, characterise and control particles aggregating during coagulation, there is still 
a gap in the application knowledge of how to use the floc features to optimize the coagulation pro-
cess, provide cheap and robust dosage control system.

Nowadays the flow-proportional dosing concept is usually used for coagulation dosage control, 
while process optimisation often bases on results from the jar tests and the operator’s experience 
(Ratnaweera & Fettig, 2015). Streaming current detector (SCD) was evaluated (Dentel, Thomas, & 
Kingery, 1989a, 1989b) and tested in the drinking water treatment plants (DWTP) for automatic co-
agulation control (Critchley, Smith, & Pettit, 1990; Yavich & Van De Wege, 2013). The coagulant dos-
age strategy based on zeta potential measurements documented to be a promising control 
technique (Sharp et al., 2005, 2016). Advanced soft sensors and coagulation process control models 
employing artificial neural networks (ANN) have been tested in DWTPs (Baxter et al., 2002; Juntunen, 
Liukkonen, Lehtola, & Hiltunen, 2013; Valentin & Denœux, 2001). Advanced dosing control systems 
based on multiple water quality parameters that could be measured online have confirmed to be 
successful both in DWTPs (Liu, 2016; Liu, Ratnaweera, & Song, 2013) and wastewater treatment 
plants (WWTPs) (VA-Support, 2012). Application of such systems enables a reduction of coagulant 
consumption (i.e. minimise the operational costs), reduces the sludge volumes and maintains the 
desired removal of particles and phosphates (Manamperuma, Ratnaweera, & Rathnaweera, 2013; 
Manamperuma, Wei, & Ratnaweera, 2017). With the growing need of wastewater treatment pro-
cesses optimisation, the need for further development of intelligent, accurate and reliable online 
dosing control systems arises (Ratnaweera & Fettig, 2015).

Last decades digital image analysis (DIA) techniques have often been employed to determine 
particles characteristics, such as floc size, fractal dimension, strength and breakage (Jarvis, Jefferson, 
Gregory, & Parsons, 2005). Fractal dimension and floc size appear to be the most known and conven-
tional parameters used in numerous attempts to monitor and/or control the coagulation process by 
DIA (Bouyer, Coufort, Liné, & Do-Quang, 2005; Chang, Liu, & Zhang, 2005; He, Nan, Li, & Li, 2012; 
Vlieghe, Coufort-Saudejaud, Frances, & Liné, 2014; Xu, Chen, Cui, & Shi, 2016; Yu, 2014). Other floc 
parameters retrieved from the images (average equivalent diameter, eccentricity and colour index) 
are also essential, for instance, in combination with self-organizing maps to monitor changes during 
the coagulation process and estimate flocs quality (Juntunen, Liukkonen, Lehtola, & Hiltunen, 2014).
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In most cases the applicability of particles detection methods in wastewater coagulation process 
has been limited to lab scale due to complicated and inaccurate measurements in the field, hard-
ware and software limitations. We propose a new approach to image analysis of flocs, which was 
previously tested on the laboratory scale batch tests (jar tests) (Sivchenko, Kvaal, & Ratnaweera, 
2014, 2016). It is a comparatively easy method of image characterization, which bases on analysis 
of the whole image texture instead of concerning the shape characteristics of each particle in the 
image. Such approach simplifies the image analysis stage, e.g. no need of particles extraction/seg-
mentation from the image and its count which found to be problematic in wastewater applications 
(Sivchenko et al., 2016). Hence, it gives significant simplification of the software to be developed. 
Furthermore, out of focus flocs, which are often present in the images, are not a problem for this 
texture complexity recognition method. Thus, potentially the cheap cameras could be employed for 
the floc sensor development. This paper presents the applicability of the concept in continuous 
mode with real wastewater in the context to use it as a dosage control technique for optimizing the 
coagulation process.

2. Experimental setup and methods

2.1. Wastewater treatment plant
Full-scale tests were conducted in the Frogn wastewater treatment plant (Drøbak, Norway) in 
September and October 2015. Frogn WWTP receives municipal wastewater from Drøbak city and the 
neighbourhood area. Average inlet flow is 4,600 m3/day during the days without snowmelt and/or 
precipitations. The tests period include days when the long precipitation period took place. The max-
imum flow rate to the plant reached 18,845 m3/day on the 18 September 2015.

Frogn WWTP is a mechanical-chemical precipitation plant. The treatment process consists of the 
next stages: screens, two parallel pre-sedimentation basins, three sequenced coagulation chambers 
with the different velocity gradients, and two parallel sedimentation chambers. The plant also has 
the sludge dewatering and thickening system. The inlet and outlet water quality parameters are 
measured by online sensors and recorded (average values) with the 15 min interval. The data is 
available for observation in the plant’s SCADA system. The retrieved water parameters included inlet 
wastewater flow (QIN), inlet pH (PHI), inlet turbidity (TUI), inlet conductivity (CNI), coagulant dosage 
(Dose), pH after coagulant dosage (PHO) and outlet turbidity (TUO). The plant operators perform 
daily sampling of inlet and outlet total Phosphorous (total P). The summarised data of water quality 
parameters for the tests period is given in Table 1. Coagulant used in the Frogn WWTP is polyalu-
minium chloride (ECOFLOCK 90, Feralco), 9 ± 0.3% Al by weight, and density 1,356 ± 25 kg/m3.

Table 1. Inlet and outlet wastewater quality parameters of Frogn WWTP
Variables Mean Min Max Standard deviation
Inlet flow, m3/h 310.4 102.8 789.7 164.9

Inlet pH 7.4 6.7 8.0 0.3

Inlet turbidity, FNU 211.6 75.6 500.0 93.4

Inlet conductivity, μS/cm 758.9 400.3 1,154.5 174.7

pH after coagulant dosage 6.9 6.5 7.3 0.2

Outlet turbidity, FNU 3.8 1.1 21.1 4.3

Inlet total P, mg P/l 3.86 0.91 6.29 1.75

Outlet total P, mg P/l 0.18 0.10 0.29 0.05

Inlet total P, mmol P/l 0.12 0.03 0.20 0.06

Coagulant dose, ml/m3 83.0 49.5 196.3 24.6

Coagulant dose, mmol Al/l 0.38 0.23 0.89 0.11

Ratio mol Al: mol P 3.65 2.07 8.38 1.92
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2.2. Image acquisition and pre-processing
A special installation was designed to observe changes in flocs’ structure in situ. The installation was 
set above the second flocculation chamber and consisted of the tube, peristaltic pump, acrylic cell 
for image acquisition, digital camera and computer (Figure 1). To minimise the potential danger of 
flocs breakage, the chosen tube was 3 cm in diameter, and the peristaltic pump was placed after the 
imaging cell. The water flow in the system was upstream and manually adjusted to approximately 
40 l/h.

Images of flocs were constantly taken with a pre-set repeatability using free remote camera con-
trol software—DigiCamControl 1.2.0. Image capturing equipment used during the investigations was 
as follows: digital single lens reflex (DSLR) Nikon D600 camera, 105 mm Nikkor AF-S Micro 1:2.8 G ED 
lens (Nikkor, China), SpeedLite YN460 flash (Yongnuo, China). The size of the image-capturing zone 
in the cuvette was 3.3 × 10.3 cm. In order to obtain flocs with the proper depth of field, the black 
metal stripe was placed in the centre of the cuvette, which also became a background for the flocs. 
The choice of the background colour was based on the fact that the wastewater flocs are greyish 
coloured. Thus, using a contrasting background, it is easier to perform the further image analysis.

The obtained images have a resolution of 24.3 megapixels each. They were processed in the open 
source image analysis software ImageJ v.1.49 (Rasband, 1997/2016) that bases on plugins and mac-
ros. For each image 1380 × 3640 pixels (2.4 × 6.3 cm) area was cropped by manual investigation of 
the area. Because of slight changes in lighting conditions during image acquisition, all images were 
pre-processed in order to have the same brightness intensity. We wrote ImageJ plugin to mean 
centre the images’ grey-tone values.

2.3. Image analysis by Grey level co-occurrence matrix (GLCM)
GLCM is a common method for the image texture measurement. Previously it was successfully ap-
plied in the laboratory scale data (Sivchenko et al., 2016). The GLCM method was chosen among the 
other texture analysis methods because it is quite simply computable and does not require heavy 
programming for the sensor prototype to be developed.

ImageJ plugin “GLCM Texture Too” v. 0.009 was used to obtain the GLCM feature vectors. The re-
sulting output was given as a vector of the next 9 parameters per each image: contrast, correlation, 
inverse difference moment (IDM), entropy, energy, homogeneity, prominence, variance, and shade. 
Hence, the data matrix was obtained with the size 342 × 9. The detailed description, explanation, 

Figure 1. (a) Schematic 
representation of the 
installation and (b) a 
photograph from the Frogn 
WWTP.
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and equations for above GLCM texture features are given elsewhere (Conners, Trivedi, & Harlow, 
1984; Haralick, Shanmugam, & Dinstein, 1973; Zheng, Sun, & Zheng, 2006).

2.4. Conjugation of two data sets
Three images for each 15 min were chosen to be representative. The measured GLCM feature vec-
tors were averaged for each 3 images and matched with the retrieved water quality parameters. 
According to the tracer tests conducted in Frogn WWTP, the outlet turbidity values were 45 min 
shifted to meet the response lag between the coagulant injection point and outlet from the sedi-
mentation tank. After the removal of missing values and outliers, the resulting data-set contains 114 
samples. The data include 81.6% of samples under the normal operation conditions, 15.8% of sam-
ples under rainy weather conditions and 2.6% of samples which had high inlet turbidity values due 
to the periodic discharge from the septic tanks to the inlet.

2.5. Multivariate statistical analysis and modelling
The resulted data matrix was processed in statistical software The Unscrambler® X 10.3 (CAMO 
Software AS, Norway) and in MATLAB® using PLS toolbox 8.2 (Eigenvector Research, Inc., USA). 
Principal component analysis (PCA) was performed to find the relationships between water quality 
parameters and GLCM feature vectors. PCA is a statistical data analysis technique to reduce the di-
mensionality of the data-set, overview and describe the interrelationships among variables and to 
find so-called hidden structures in the data. Partial least squares regression (PLSR) was performed to 
predict outlet turbidity based on different combinations of water quality parameters and GLCM tex-
ture features.

3. Results and discussion

3.1. Data overview
At the time when the tests were conducted, Frogn WWTP used the flow-proportional concept of 
coagulation dosage control with the ability of manual dose adjustment. However, now the plant has 
an advanced dosage control system—DOSCON® (DOSCON AS, Oslo, Norway), which uses the inlet 
wastewater quality parameters to calculate the optimal dose. A detailed description of the control 
strategy can be found elsewhere (Liu & Ratnaweera, 2017; Manamperuma et al., 2017). Although 
the coagulant consumption and the plant performance were significantly improved, the system still 
depends on the reliability of the online equipment functioning in a harsh environment.

Figure 2 shows an example of the load changes during the 9 days observation period in September 
2015. The first 3 days represent the typical wastewater flow variations during the day under the 
normal (dry) weather conditions. On the fourth day, the rainy week started, and the wastewater load 
had significantly increased reaching a peak of 900 m3/h at the beginning of the ninth day. 
Corresponding flow-proportional coagulant dosages in μl/l are also marked in the figure. The images 
of exemplary floc structures appeared under different coagulation conditions are shown for the days 
when image analysis observations took place. Visual investigation of flocs can be described as next: 
the flocs formed during normal operation conditions tend to be bigger compared to those formed 
during the rainy days. This can be explained by the change in inlet wastewater composition, when 
domestic wastewater was highly diluted by stormwater. During the rain events avarage inlet flow to 
the plant increased 3 times, avarage inlet turbidity decreased 2–2.5 times, the average inlet conduc-
tivity of wastewaer decreased 1.3 times and average inlet pH decreased from 7.2 to 6.9. These 
changes in wastewater inlet parameters could result in a change of aggregates properties and size 
(Bache & Gregory, 2007). Even though the coagulant dosing control in the plant bases on the flow-
proportional concept, the dosage of coagulant was lowered manually during the rainy days period. 
Relatively high turbidity values of outlet water from the sedimentation tank during the last two rainy 
days point out on poor coagulation conditions with the non-optimal dosages. The multivariate sta-
tistical analysis was employed to test if the images of appearing during coagulation flocs reveal the 
information about coagulation conditions and have relations with the wastewater characteristics, 
doses and effluent water quality.
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3.2. Principal component analysis
Previously obtained in the laboratory scale results, proved that the images of flocs are unique for the 
different water conditions and the texture analysis methods have a potential to be used for the 
further floc sensor development. Principal component analysis (PCA) applied to the full-scale data 
showed that the images, obtained from different inlet wastewater parameters and coagulation con-
ditions, also contain unique information.

Figure 3(a) shows the results of PCA based only on 9 GLCM textural features of the images of flocs. 
With four principal components (PCs) the total explained variance equals 96.3% (PC1 = 57.4%, 
PC2 = 78.5%, PC3 = 91.5%) for calibration and 91.2% (PC1 = 49.4%, PC2 = 68.2%, PC3 = 85.2%) for 
cross-validation. The images of flocs by means of GLCM feature vectors separated samples on PC1 
versus PC2 scores plot into three distinct classes. These classes match the wastewater coagulation 
conditions: normal, during the rain events and the high inlet turbidity. Thus, the images of flocs can 
be used as an early indication of the changes in the wastewater parameters to take further manual 
(or automated) troubleshooting action.

Figure 3. Scores plot of PCA, 
PC1 vs. PC2 for: (a) data with 
9 GLCM textural features of 
the images of flocs; (b) data 
containing wastewater quality 
parameters, GLCM textural 
features and the coagulant 
dosage.

Figure 2. Graph showing the 
load changes in the Frogn 
WWTP during normal days 
and in rainy days. The images 
represent the typical floc 
structures for those particular 
days when the image analysis 
installation was functioning. 
Numbers within the each 
image mean the corresponding 
coagulant dosages in μl/l.
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Figure 3(b) shows the results of PCA performed for all inlet and outlet wastewater quality param-
eters (QIN, TUI, PHI, CNI, PHO, TUO), GLCM textural features (9 variables) and the coagulant dosage 
in ml/s. It was done in order to compare how different would be the scores plot from the one de-
scribed above. However, no huge differences can be observed in means of samples’ classes. Samples 
corresponding to the rain events are more stretched by PC2, which associates with high turbidity 
inlet and outlet, high wastewater flow and coagulant dosage. Total explained variance for calibra-
tion: PC1 = 45.5%, PC2 = 73.6%, PC3 = 83.4%, PC4 = 89.6%; for cross-validation: PC1 = 38.3%, 
PC2 = 66.9%, PC3 = 76.9%, PC4 = 83.3%.

3.3. Floc texture index (FTI)
Figure 3 shows the potential for the sensor prototype to be developed. However, in order to have the 
instrument functioning as a sensor, preferably, there should be only one signal coming out from the 
sensor. Thus, 9 GLCM feature vectors should be reduced to one variable. We are introducing the en-
tirely new term—floc texture index (FTI). FTI is a sum of four GLCM feature vectors:
 

The other GLCM feature vectors were excluded from the equation, because they have very high (near 
1) correlation coefficients to some of the included variables, what can be seen from the loadings in 
Figure 3. Since Variance has values in hundred scale, FTI was divided by 100 for simplification. The 
results of FTI calculation for 3 sample classes are presented in Table 2.

The calculated FTIs and corresponding observed outlet turbidity values are presented in Figure 4. 
Frogn WWTP aims to keep the effluent turbidity (TUO) below 5 FNU. Hence, TUO values below 5 FNU 
are marked as orange triangles, while the values above 5 FNU are marked as orange open triangles. 
The lower limit for FTI was chosen to be 6. While FTI is above 6, the corresponding TUO in most cases 
is below 5 FNU, and vice versa. Three events are highlighted in the figure. The first red dashed box 
highlights the rain event. The images of flocs quantified as FTIs showed an early indication that the 
outlet turbidity would exceed the maximum desired level. Even though the TUO values were shifted 
in the data-set to correspond the inlet wastewater quality and dosed amount of coagulant, the flow 
through the treatment plant is a dynamic system and not an ideal plug flow, so sometimes the time 
lag between a flocculation chamber and an outlet from the sedimentation tank is higher than 
45 min. In such cases, the early indication of the changes in coagulation conditions by the images of 
flocs (FTI) is desired and a significant advantage of the planned dosage control system. The 2a and 
2b red dashed boxes highlight the events when coagulant dosages were not optimal, which resulted 

(1)FTI = (Contrast + Entropy + Homogeneity + Variance) × 10−2

Figure 4. Floc texture indexes 
and corresponding outlet 
turbidity for the obtained 
data-set

Table 2. FTI ranges for 3 classes in the data-set
FTIClass Mean Min Max Standard deviation
Normal conditions 7.97 4.63 11.89 2.25

Rain events 3.09 1.23 6.05 1.47

High inlet turbidity 2.48 1.57 3.90 1.24
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in the increase of effluent turbidity. The third event highlighted by the red dashed box corresponds 
to the high inlet turbidity. Overall, FTI was able to indicate all non-optimal conditions of the coagula-
tion process in this particular data-set.

With a bigger training data-set, it is potentially possible that FTI will have lower and higher limits 
to indicate changes in coagulation conditions and/or take action in raising or lowering the coagulant 
dosage.

3.4. Effluent turbidity prediction
Different PLSR models were tested in order to get the best prediction of the effluent turbidity based 
on inlet wastewater quality parameters and images of flocs. Nowadays DOSCON® is using a multi-
parameter based feed-forward control strategy (Manamperuma et al., 2017). To strengthen the ro-
bustness and wider applicability of the dosage control system, the soft sensor should be developed 
to predict the effluent turbidity. If the operator of the plant knows few hours in advance that there 
is a potential danger the outlet turbidity will exceed the maximum desired value, he has enough 
time to take action and justify the coagulant dosage. Ideally, such system is to be developed to the 
self-standing dosage control strategy.

The models with highest explained variances are presented in Table 3. The response (Y) for all 
models was the effluent turbidity (TUO), while the X-matrix consisted of different variables. The pre-
diction by only wastewater inlet parameters (QIN, TUI, CNI, PHI, Dose) resulted in 80.5% calibration 
Y variance explained by two factors. The simplest model based on inlet parameters QIN and TUI re-
sulted in 79.7% calibration Y variance explained by one factor. With the addition of image analysis 
results (FTI), the calibration R2 increased until 0.84. The best prediction model for TUO, about 87% 
calibration Y variance explained by two factors, included both inlet wastewater quality parameters 
(QIN and TUI), and some GLCM feature vectors (Variance, Prominence, Correlation and Contrast).

Even though the addition of FTI or GLCM variables to the models resulted in 4 and 7% increase of 
explained Y variance respectively, the main advantage of the image analysis supported prediction is 
a better estimation of the over ranged outlet turbidity values (more than 5 FNU). Figure 5 shows a 
comparison of two TUO estimation models. The first model (Figure 5(a)) is based only on wastewater 
inlet parameters and tend to underestimate TUO, which is acceptable for the TUO values below 
5 FNU and close to it. However, there are two samples with considerably high TUO (over 10 FNU), 
which were underestimated by the model (predicted values lower than 5 FNU). The addition of the 
GLCM feature vectors (Variance, Prominence, Correlation and Contrast) as predictor variables in-
creased the efficiency of estimation and resulted in the lower amount of underestimated effluent 
turbidity values.

Table 3. Results of partial least squares regressions for the effluent turbidity prediction
Model, X variables Number of factors R2 cal. R2c-val. RMSEC RMSECV
All inlet wastewater parameters QIN, 
TUI, PHI, CNI, Dose

2 0.805 0.793 1.919 2.013

All inlet WWP and FTI 2 0.829 0.81 1.795 1.885

QIN, TUI 1 0.797 0.789 1.96 1.998

QIN, TUI and FTI 1 0.837 0.828 1.755 1.795

QIN, TUI, Dose and FTI 2 0.841 0.812 1.732 1.885

QIN, TUI, Variance, Prominence, 
Correlation, Contrast

2 0.866 0.851 1.594 1.666
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3.5. Difficulties and further research needs
Some weaknesses of the described image analysis installation are that the employed camera is quite 
expensive and difficult to be properly controlled. Also, it has the battery charge limit, since cannot be 
charged directly from the electrical plug. The system was not able to work continuously, and this is 
the main reasons the test data-set resulted in a quite low number of samples. In addition, the result-
ing images have a high resolution but require quite much space for the storage. Currently, all the 
calculations of GLCM features and FTIs are done in an external computer. However, we see the poten-
tial for the sensor prototype to be further developed. In the next stage, it should be a self-standing 
computational system with a cheaper camera, which can constantly work with the pre-set settings.

The further research studies are necessary to develop the fully automated floc sensor prototype. 
The concept of the system will be based on automated flocs image acquisition and its texture image 
analysis with further matching of the resulted data to different mathematical models, defining the 
optimal coagulant dose. The improvement of existing on-line dosage control system is a key focus 
of this research.

4. Conclusions
The images of flocs give a sharp indication of the changes of inlet wastewater parameters and/or 
coagulation conditions.

The images of flocs are unique for different wastewater qualities and coagulation conditions. 
GLCM textural features (quantified images of flocs) can distinguish and separate different wastewa-
ter coagulation conditions: normal, during the precipitation events, wastewater with the high inlet 
turbidity.

Floc texture index was introduced and calculated by summarising four GLCM feature vectors—
Contrast, Entropy, Homogeneity and Variance. FTI can be used as an early indication parameter of 
the changes in wastewater qualities and coagulation conditions, which lead to the increase of efflu-
ent turbidity. However, further research is needed with the bigger calibration and validation data 
sets.

Effluent turbidity values can be predicted by few inlet wastewater parameters—flow and inlet 
turbidity, with R2 = 0.79. The addition of processed flocs’ images data increases the outlet turbidity 
prediction up till R2 = 0.87.

The study shows a potential possibility of the floc sensor prototype to be developed. The images 
of flocs may be used online for troubleshooting and to improve the existing coagulant dosage con-
trol system.

Figure 5. Comparison of two 
effluent turbidity prediction 
models: (a) TUO = f(QIN, TUI, 
CNI, PHI, Dose); (b) TUO = f(QIN, 
TUI, Variance, Prominence, 
Correlation, Contrast).
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PHO    pH after coagulant dosage

PLSR    Partial least squares regression

QIN    Inlet flow rate

RMSEC   Root mean square error of calibration
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SCADA   Supervisory control and data acquisition

SCD    Streaming current detector

Total P   Total Phosphorous
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