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A B S T R A C T

Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient
use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions
intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an
economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying
levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50),
200,000, 400,000, 600,000 and 800,000 cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk
yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that
maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replace-
ment rates. The GHG emissions intensities associated with different levels of SCC were then computed using a
farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the
five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%.
The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced
the DP model to cull and replace more animals and generate higher profit under this scenario compared to
SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kg (kilogram) and 0.95 kg
carbon dioxide equivalents (CO2e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest
emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions
intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000 cells/mL in
relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis
consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the
farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We
suggest that further studies exploring the impact of a combination of diseases on emissions intensity are war-
ranted.

1. Introduction

The dairy sector contributes approximately 40% of agricultural
greenhouse gas (GHG) emissions in Norway, producing around 1.9
million tonnes (t) of carbon dioxide equivalent (CO2e) emissions every
year (Sandmo, 2014; Statistics Norway, 2016). The projected human
population growth and the increased demand for food production by at

least 20% by the year 2030 in Norway are likely to result in increased
GHG emissions from the agricultural sector. Therefore, the Norwegian
Ministry of Agriculture and Food requires reducing the agricultural
emissions by 20% from GHG emissions levels measured in the year
1990 by the year 2020 (Climate and Pollution Agency, 2013). In order
to meet the expected extra food production and yet reduce the GHG
emissions from dairy cows, minimum use of inputs is required for a
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given level of milk output i.e. improved production efficiency (Place
and Mitloehner, 2010). Poor animal health and welfare conditions that
often lead to clinical and subclinical diseases may result in reduced
production efficiency through increased mortality (Ersboll et al., 2003),
reduced milk yield (Bareille et al., 2003), reduced reproductive per-
formance (Bennett et al., 1999), and increased animal replacement
rates (Weiske et al., 2006), all of which have the potential to increase
the GHG emissions produced per unit of product (i.e. emissions in-
tensity) (Place and Mitloehner, 2010). Therefore, it has been argued
that if animal health and welfare are improved, there is potential to
reduce the intensity of GHG emissions and increase productivity, in-
crease farm income, reduce losses and therefore improve farm profit-
ability (Stott et al., 2010; Williams et al., 2013).

Bovine mastitis is an endemic disease of mammary glands and may
be responsible for a substantial proportion of the total production losses
in dairy herds (Barkema et al., 2009). It has also been recognized as one
of the most intractable health conditions in cows (Skuce et al., 2016),
therefore an impediment to perform an efficient and sustainable live-
stock production. The losses associated with bovine mastitis include
reduction in milk yield, discharge of contaminated milk due to treat-
ment with antibiotics, treatment losses and increases in mortality and
replacement rates (Geary et al., 2012). If the disease occurs in the form
of subclinical mastitis (SCM), no visible signs may be found in the udder
or milk (International Dairy Federation, 2011). Milk from cows with
SCM is characterized by increased lipolysis, proteolysis, rancidity and
bitterness (Ma et al., 2000) and reduction in milk yield (Halasa et al.,
2009). The reduction in milk yield and quality related to udder health
are commonly calculated by somatic cell count (SCC) (Bartlett et al.,
1990). The International Dairy Federation (2013) reports that the level
of SCC in cows suffering from SCM is greater than 200,000 cells/mL
(milliliter). Although some studies reported that SCM causes increased
SCC, impairs milk composition (Gonçalves et al., 2016; Bobbo et al.,
2017) and milk yield (Botaro et al., 2015), their impacts on the en-
vironment have not been questioned widely. Integrated modelling ap-
proaches combining different models provide a thorough assessment of
the livestock production systems studied and facilitate the decision-
making process (Ӧzkan Gülzari et al., 2017). In this study, we aimed to
assess the changes in GHG emissions intensity and economic perfor-
mances associated with raised SCC in relation to changes in milk yield,
feed intake and replacement rates. For this purpose, an optimization
model along with a GHG calculating model (HolosNor) were used. A
dynamic programming (DP) model that maximizes the long-run profit
of a dairy herd by optimizing future culling and replacement decisions
was used to inform the GHG calculating model about the optimum
composition of the herd in terms of the age and production levels of the
cows in herd under different SCC challenges.

2. Materials and methods

In this study, we combined two models, one DP model for re-
placement decisions, and one GHG model (HolosNor) to calculate the
emissions associated with varying levels of SCC. Fig. 1 shows the re-
lationship between the two models, their input-output interactions, and
the inputs that were estimated. Circle shapes refer to the model outputs
while rectangular shapes describe the inputs. Optimum culling strate-
gies, one of the outputs of DP, were used as an input in HolosNor. Most
of the equations in both models were adapted from previously pub-
lished papers (Stott et al., 2002; Stott et al., 2005 for the DP model; and
Bonesmo et al., 2013 for HolosNor model) and the parts where both
models shared the same input to be representative for the Norwegian
conditions; or used each other’s input/output were deemed novel to the
current study.

The DP model uses revenues from milk yield and sold calves as well
as fixed costs of feed production and variable costs for cows in each
parity and SCC category to estimate the profit. It then optimizes the
keep or replacement decisions and determines the culling rates and

therefore the proportion of animals in each parity and SCC categories
that generate the maximum profit in the long term. The estimated
proportion of animals in each parity and SCC categories are then used
in the HolosNor model to calculate GHG emissions intensity. Following
sections describe data, assumptions and details of the processes adapted
in the DP and HolosNor models.

2.1. Herd characteristics and some key management data of the modelled
farm

The modelled farm that comprises of individual dairy cows, except
for milk production, concentrate intake and replacement rates, reflects
an average Norwegian dairy farm based on the data originally reported
by Bonesmo et al. (2013) from an inventory of 30 farms located all
around Norway and those reported by TINE Advisory Services (2012,
2014) (Table 1). Input values for fuel and electricity consumption were
as described by Bonesmo et al. (2013).

2.2. Inclusion of SCC levels in models

Five scenarios of SCC levels in milk were defined. Cows with a SCC
level of 50,000 cells/mL milk and below were considered uninfected
(Laevens et al., 1997). Since International Dairy Federation defines the
level of SCC in milk of cows with SCM as above 200,000 cells/mL milk
(International Dairy Federation, 2013), we assumed that there was no
reduction in milk production in cows with SCC levels less than
200,000 cells/mL milk (named as “SCC50”) (see also Svendsen and
Heringstad, 2006). Reductions in milk yield were calculated for the
following scenarios of SCC levels in milk: SCC levels at 200,000 cells/
mL (named as “SCC200”); SCC levels at 400,000 cells/mL (named as
“SCC400”); SCC levels at 600,000 cells/mL (named as “SCC600”); and
SCC levels at 800,000 cells/mL milk (named as “SCC800”). It was as-
sumed that the average milk yields in Table 1 reflect a SCC level of less
than 200,000 cells/mL (at the assumed fat and protein contents of milk
of 4.12% and 3.40%, respectively). All levels of SCC were set at in-
dividual cow level, which was used to scale it up to herd level of 25
cows per farm. It is acknowledged that an individual cow’s cell count
varies from one milk recording to the next, and even from week to week
as some cows recover and others become infected. Because we did not
intend to cover the dynamics of the disease at an individual animal
level, but instead meant to determine the overall possible financial and
environmental impacts of the disease at herd level, it was deemed
sufficient to set the SCC level at individual cow level.

Milk yield losses associated with different levels of SCC were cal-
culated at single point level for each scenario e.g. milk losses associated
with SCC200 scenario were calculated for SCC level of 200,000 cells/
mL. Elevated SCC level of 200,000 cells/mL and above was assumed to
be due to SCM. Possible cases of clinical mastitis (CM) were not in-
cluded in this analysis. Milk losses due to increased SCC were calculated
by deducting the milk production of cows with elevated SCC levels from
the milk production of cows with SCC50 during a 305-day lactation
period. The amount of milk delivered on farm was assumed to be 93.3%
of that produced (TINE Advisory Services, 2014) as the rest is assumed
to be discharged due to use of antibiotics or used for feeding calves.

Milk yield of cows with SCC50 were provided by TINE Advisory
Services and it reflects years between 2009 and 2013 (TINE Advisory
Services, 2014). For lactation numbers from 10 to 12, there were no
data available after the year 2000. Therefore, we used an average milk
yield of data available for 1999 and 2000 for lactation 10 and above.
The milk loss associated with different levels of SCC was calculated
using the mathematical formula used by TINE Advisory Services based
on Hortet et al. (1999) below (Eq. (1)). Losses were calculated as a
percentage. Note that the milk loss associated with different SCC levels
for lactation six and onwards was calculated based on the assumption
that the reduction remained constant after lactation five. The formula
reflects first lactation and equations for the 2nd, 3rd, 4th and 5th
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lactations can be found in the supplementary content:

The milk yield on each test day in lactation = Intercept (15.3841)
+ (−0.0451) × (day in lactation) + 2.3894 × ln (day in lactation)
+ (−0.0087) × ln (SCC) + (−0.002) × ln (SCC) × (day in lactation)

(1)

Where; ln (SCC) refers to the SCC scenario (1000 cells/mL) classes
defined above and day in lactation was from day one to day 305 of

lactation. It is the fixed effect of natural logarithm of SCC (×1000 cells/
mL).

Inclusion of SCC in the DP and HolosNor models employed the as-
sumption that the individual animals forming the herd are affected by
SCM through the impacts on milk yield, feed intake and milk prices, all
of which were defined for each individual SCC scenario. The DP model
uses a single SCC scenario in each run and optimizes the profit by
choosing the best culling regime under that SCC scenario. Similarly, in

Fig. 1. Schematic view of the two models used. Dashed framed boxes indicate the input parameters in each model and the solid framed circles indicate the output of each model. Note that
the optimum culling rates and herd structure in terms of proportion of each lactation group were the two outputs of the DP model that were used as input in HolosNor model.

Table 1
Data on herd size, production and biophysical parameters used to run the modelled farm.

Parameter Base case valuea

(minimum-maximum)
Unit Reference

Herd size 25 cow equivalentsb/year TINE Advisory Services (2014) and
Bonesmo et al. (2013)

Average milk yield for PPc cows 6169 kg/cow per year TINE Advisory Services (2014)
Average milk yield for MPd cows 7021 kg/cow per year TINE Advisory Services (2014)
Cows’ average live weight 512 (PP cows) 539 (MP cows) kg/head Bonesmo et al. (2013)
Carcass weight of culled cows and calculated carcass weight of

sold live animals
263 kg/head TINE Advisory Services (2012)

Ratio of the number of slaughtered bulls and cows 0.76 head/year Bonesmo et al. (2013)
Bulls’ live weight at slaughtering 586 kg/head TINE Advisory Services (2012)
Bulls’ average slaughter age 17.6 months TINE Advisory Services (2012)
Average milk yield (all cows) 6595 (2570–11,860) kg/cow per year TINE Advisory Services (2014) and

authors’ assumption
Milk price 4.7 (3–5) NOKe/L TINE Advisory Services (2014)
Forage and concentrate costs 9000 (5000–13,000) NOK/cow/year TINE Advisory Services (2014) and

Stott et al. (2005)
Calf sale 4000 (3000–8000) NOK/calf sold TINE Advisory Services (2014) and

authors’ assumption
Heifer purchase 15,500 (13,000–18,000) NOK/purchased heifer TINE Advisory Services (personal

communication)
Cull cow value 12,500 (9000–15,000) NOK/cull cow TINE Advisory Services (personal

communication)
Fixed costs of producing feed 2800 (2000–3500) NOK/cow per year TINE Advisory Services (2014)

a Base case value; figures in parenthesis present minimum and maximum values, respectively that were used in the sensitivity analysis. Ranges were derived from the references when
available or are authors’ assumptions.

b Weighted number of livestock in relation to the number of feeding days per year.
c PP: Primiparous cows refer to cows that are in their first lactation.
d MP: Multiparous cows refer to cows that are in their second or above lactations.
e NOK: Norwegian krone.
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HolosNor, changes in feed intake and milk yield were defined at a single
SCC level. The DP model then generates the proportion of animals in
each parity (age) category that was used in HolosNor for GHG emission
calculations, again defined at a single SCC level. Running the DP model
for all the five SCC scenarios enabled us to compare the scenarios and
their impact by using the same assumptions used in the same bench-
marking tool (i.e. combined models).

For each of the SCC scenarios, a milk price was set. The current
practice in Norway imposes a price reduction of 0.30 NOK (NOK:
Norwegian krone; 1 NOK equals 0.11 Euros as of the 3rd of October
2017) and 0.60 NOK/kg milk for bulk tank SCC levels of between
300,000 cells and 350,000 cells/mL and between 350,000 cells and
400,000 cells/mL, respectively. Given that the milk losses were calcu-
lated for each cow, we assumed that milk prices applied at individual
cow level as well. Although this assumption does not directly model the
bulk tank and its related milk prices based on its SCC, the modelled
individual cows and their proportion in the herd, reflected in combi-
nations of various SCC levels and milk prices, indirectly construct a bulk
tank representation. The milk prices of the SCC50 and SCC200 sce-
narios were set at 4.7 NOK/kg milk as the average milk price in years
2011 and 2012 (TINE Advisory Services, 2014). A modification to the
current prices was made to reflect about a 10% reduction in market
milk price in SCC400 and 15% reduction in market milk price in
SCC600 and SCC800 scenarios. That is, the milk prices were set at
4.3 NOK/kg milk for SCC400; and 4.0 NOK/kg milk for SCC600 and
SCC800 scenarios. Lowering the SCC by feeding the milk with high SCC
to young stock and hence reducing the concentrate costs were not in-
cluded in this study.

2.3. Dynamic programming for replacement decisions

A DP model of the dairy cow replacement decision was used to
establish the optimized culling strategy that consisted of voluntary and
involuntary culling rates, leading to the long run steady-state herd
structure in terms of the proportion of animals in lactations 1–12. The
DP model has an annual time-frame meaning that the keep or replace
decisions as well as all the financial revenues and costs occur on an
annual basis. A lactation curve of daily milk yield from day 1 to day 305
of lactation (Eq. (1)) was used to calculate the annual milk yield under
each SCC scenario. All culling due to low milk yield and cows with
elevated SCC (all SCC scenarios), were considered voluntary and were
decided by the DP model. All other conditions observed in the dataset
such as lameness, CM, other diseases, teat injury, calving difficulty, bad
udder and leakage, temperament issues and death due to other reasons
were considered under the involuntary culling category and were used
to estimate the involuntary culling probabilities that were used as input
in the DP model (Table 2).

Maximizing profit via optimum culling and replacement decisions
could imply keeping animals for longer periods, and this is the reason
why the lactation states of the model were extended up to 12 in the
model.

The DP model was run using a version (Stott et al., 2005) of general
purpose DP software (Kennedy, 1986). The average milk yield per
lactation, probability of involuntary culling for cows with elevated SCC
levels as well as financial figures such as fixed and non-feed variable
costs, buying price of heifers and selling price of calves in Stott et al.
(2005) were replaced by figures reflecting Norwegian practice. The
objective of the DP was to maximize the expected net margin, i.e. the
expected net present value (ENPV) of the margin of milk and calf sales
over feed costs and net culling costs (other costs assumed fixed) ex-
pressed as an annuity, from a current lactating cow and all future cows
over an infinite time horizon by making appropriate keep or replace-
ment decisions. Using the milk yield in each parity and each SCC sce-
nario, an optimal culling strategy, ENPVs and infinite state probabilities
that reflect the herd structure in terms of proportion of animals in each
lactation were generated. The initial involuntary culling rates that were

used as input in the model for cows with low (SCC50) and high
(SCC200 and above) levels of SCC were estimated from a dataset of the
total number of culled cows and the main reasons of culling for lacta-
tion 1 to lactation 5 in Norwegian dairy herds (TINE Advisory Services,
2014). These figures were derived based on the actual data and con-
sidering the definition of the voluntary and involuntary culling rates
used. As the data did not cover lactation 5 onwards, we assumed a fixed
involuntary culling rate for lactation 5–12. These probabilities were
used as input in the DP model. Probability of involuntary culling for
cows with elevated SCC levels and values of culled cows under volun-
tary and involuntary culling categories are presented in Table 2.

The key policy interest rate used by the central bank in Norway is
currently at 0.5% (Norges Bank, 2017). In this study, however, we used
a discount rate of 3.5% recommended for long-term projects and issues,
under a declining schedule1 of discount rate (Stott et al., 2002; Stott
et al., 2005). The purchase price of a heifer was considered to be 15,000
NOK (TINE Advisory Services, Ås, personal communication) whereas
the selling price of calves was assumed to be 4000 NOK (TINE Advisory
Services, Ås, personal communication). The total cost of fixed and non-
feed variable costs was considered to be 2800 NOK per cow (TINE
Advisory Services, Ås, personal communication).

A sensitivity analysis for the baseline scenario (i.e. SCC50) of the DP
model was conducted to examine how sensitive the expected net
margin (NOK/cow per year) estimated by the model was to variation
and uncertainty of input parameters. To do this, minimum, base case
and maximum values derived from our mentioned data sources were
used for the following input parameters: milk yield, milk price, forage
and concentrate consumption, calf sale, cull cow value, heifer purchase
value, fixed costs and average longevity of cows. Ranges of input values
used in the sensitivity analysis for SCC50 are presented in Table 1. The
results of sensitivity analysis show how the model’s output depends on
ranges (i.e. minimum, base case and maximum values) that were spe-
cified by the data used for each of the model’s input variables. Results
are reported in tornado charts that show single-factor sensitivity ana-
lysis, i.e., for each output value, only one input value is changed from
its base case value. The tornado charts then summarise eight separate
single-factor sensitivity analyses.

Table 2
Value of culled cow (NOK) for both voluntary and involuntary culling and probability of
involuntary replacement for cows with somatic cell count (SCC) level of 50,000 cells/mL
and above for different lactation numbers (parity).

Lactation
numbera

Value of cull cow (NOK)b

for both voluntary and
involuntary culling

Probability of involuntary culling

Cows with SCC level
of 50,000 cells/mL

Cows with
elevated SCC
levels

1 12,500 0.156 0.170
2 12,500 0.193 0.229
3 13,500 0.257 0.309
4 13,500 0.324 0.389
5–12 13,500 0.270 0.390

a The dataset did not include data on probability of involuntary culling for lactation
beyond year 5. Therefore figures for lactation 5 were used for years 5–12. These figures
were directly calculated from the dataset based on the reasons of culling included in the
definition of involuntary culling. As such, the variations observed in these figures (e.g.
probability of involuntary culling increases for cows with SCC50 from lactation 1 to
lactation 4 and then drops for lactation 5) are attributed to the recorded data.

b NOK: Norwegian krone.

1 Declining schedule of discount rate refers to “a discount rate applied today to benefits
and costs occurring in future years declines with maturity: the rate used today to discount
benefits from year 200 to year 100 is lower than the rate used to discount benefits in year
100 to the present” (Arrow et al., 2013).
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2.4. Estimating GHG emissions intensity

2.4.1. Whole farm modelling (HolosNor)
Once the alternative optimum replacement rates were obtained for

each scenario from the DP model based on the increased levels of SCC
inducing reduction in milk yield, net margin and milk prices, as well as
changes in the replacement rates, HolosNor was used to calculate the
changes in the GHG emissions intensity.

HolosNor is a tool for calculating the GHG emissions from combined
dairy and beef productions systems (Bonesmo et al., 2013; Ӧzkan
Gülzari et al., 2017) in Norway. It is based on the Canadian HOLOS
model (Little, 2008). It was modified to recognize Norwegian condi-
tions to consider enteric methane (CH4), manure-derived CH4, on-farm
nitrous oxide (N2O) emissions from soils, off-farm N2O emissions from
leaching, run-off and volatilization (indirect N2O), on-farm carbon di-
oxide CO2 emissions or carbon (C) sequestration due to soil C changes,
CO2 emissions from energy used on farm, and off-farm CO2 and N2O
emissions due to supply of feed inputs (Bonesmo et al., 2013). All
emissions are expressed in CO2e to include the global warming poten-
tials recommended by the Intergovernmental Panel on Climate Change
(IPCC) on a time horizon of 100 years as 25 kg of CO2e/kg CH4 and
298 kg of CO2e/kg N2O (Forster et al., 2007). The emissions intensities
are reported as kgCO2e/kg fat and protein corrected milk (FPCM) for
milk and kgCO2e/kg carcass weight (CW) sold for meat.

The model and the farm data published by Bonesmo et al. (2013)
were the basis for our calculations except for the following: Concentrate
intake of lactating cows (TINE Advisory Services, Ås, personal com-
munication); Replacement decisions (output of the DP model); and Milk
losses (Eq. (1) used by TINE Advisory Services based on Hortet et al.
(1999)). The following procedure was followed to run the model: The
principles used to calculate the net energy (NE) requirements (in mega
joules (MJ)) of all animals consisting of maintenance (NEM), activity
(NEA), lactation (NEL) and pregnancy (NEP) were according to IPCC
(2006), and were previously described by Bonesmo et al. (2013) and
the following procedure was followed since we were required to cal-
culate the area (and the amount) of grassland necessary for silage
making on farm because this was not an available input:

Total net energy requirement (sum of NEM, NEA, NEL and NEP) was
converted to dry matter (DM) by taking into account the energy density
of the feeds used (i.e. NE/kg DM). The NE/kg DM for concentrate, grass
silage and pasture were 7.9, 5.9 and 6.9, respectively according to
Bonesmo et al. (2013). Concentrate intake for milking cows was an
input and was provided for different animal (PP and MP) and SCC ca-
tegories (Table 3) (TINE Advisory Services, Ås, personal communica-
tion). Annual consumptions of concentrate feed of heifers and bulls
were 263 kg and 1258 kg DM/head, respectively (Bonesmo et al.,
2013). The total dry matter intake (DMI) of all animals was the sum of
concentrate intake (DM) and requirement of silage and pasture (DM),
reflecting different proportions of concentrate, silage and pasture in the
ration. Subtracting the concentrate DMI from total DMI gave the total
expected silage and pasture DMI. Pasture constituted about 16% of total
NE intake. Pasture DMI was a function of pasture NE intake, its energy
concentration and the time spent on pasture (%). Expected silage DMI
alone for the whole herd was then calculated by multiplying the pro-
portion of the silage in the total ration by (i) total expected DMI/head
per day; (ii) the number of animals; and (iii) the number of feeding days
in each animal category. Because the input required was the total farm
silage production in fresh weights, the total farm expected silage intake
was divided by the DM content of silage (25%). The loss associated with
feeding the silage was accounted for as 10%. Once the total farm ex-
pected net silage intake was calculated, area to grow the required
amount of silage was calculated, using the amount of silage produced
per unit of area presented by Bonesmo et al. (2013) (22,490 kg silage
was produced per hectare (ha)) (Table 3). The reduction in total feed
intake due to reduced milk yield in all SCC scenarios was calculated by
subtracting the feed intake at each level of SCC from the feed intake of

cows with SCC50.
The ration, on DM basis, consisted of grass silage (37–38%), con-

centrates (barley and soya, 45–47%), and grazed grass (16%). The
proportion of the concentrate in total DMI was calculated by dividing
the concentrate DMI by the total DMI. The proportion of the silage DMI
was calculated according to the Eq. (2) below used by Bonesmo et al.
(2013):

[(total DMI − concentrate DMI) × (1 − time spent on pasture)]/total
DMI (2)

Where time spent on pasture was set to 30% for cows and 17% for
heifers according to Bonesmo et al. (2013) and it was the% of the days
in a year when the animals had access to pasture.

The proportion of the grazed grass in the total DMI was computed
by subtracting the total proportions of concentrate and silage intake
from value 1 (i.e. 1− % concentrate − % grass silage). No cereal crops
were grown on farm. The amount of nitrogen (N) fertiliser applied to
the silage area was 100 kg N/ha. About 1.4 ha of farm area was allo-
cated for only grazing, and cows were also assumed to graze on area
where silage was made to fulfill the required proportion of grass intake.
Energy used to produce pesticides in all scenarios was 40 MJ/ha
(Bonesmo et al., 2013).

2.4.2. Allocation of emissions
The GHG emissions were partitioned between milk and meat ac-

cording to the proportions of feed resources consumed and as described
by Bonesmo et al. (2013). The Norwegian dairy production systems are
combined dairy-beef systems where the practice is year round calving
with fattening of bulls on farm and average slaughter age is 18 months
(Bonesmo et al., 2013). The beef milk ratio (BMR) was calculated as the
ratio between kg LW sold (all bulls and the culled cows) and kg FPCM.
Allocation ratio milk (ARmilk) was calculated by dividing the propor-
tion of the emissions allocated to milk production by the BMR ac-
cording to Bonesmo et al. (2013).

3. Results

3.1. Reduction in milk yield and feed intake induced by elevated SCC levels

Milk yield reduced as the level of SCC increased in all SCC scenarios

Table 3
Concentrate intake, estimated silage requirement and area allocated for making silage for
cows with elevated levels of somatic cell count (SCC). SCC50: SCC levels at 50,000 cells/
mL; SCC200: SCC levels at 200,000 cells/mL; SCC400: SCC levels at 400,000 cells/mL;
SCC600: SCC levels at 600,000 cells/mL; and SCC800: SCC levels at 800,000 cells/mL
milk.

Concentrate
intake (kg dry
matter (DM)/
cow per year)

Estimated silage
requirementc (kg
DM/head-kg fresh
weight/headd)

Total silage
area
(hectare)

Concentrate
consumption
(kg DM/kg
FPCM)

SCC50 PPa 2312 5164–20,654 23 0.375
SCC200 PP 2305 5153–20,612 23 0.382
SCC400 PP 2299 5089–20,355 23 0.385
SCC600 PP 2287 5102–20,407 23 0.386
SCC800 PP 2295 5225–20,901 23 0.389
SCC50 MPb 2493 6407–25,626 28 0.355
SCC200 MP 2442 6374–25,497 28 0.367
SCC400 MP 2413 5976–23,905 27 0.373
SCC600 MP 2401 6101–24,405 27 0.377
SCC800 MP 2384 6245–24,979 28 0.379

a PP: Primiparous cows refer to cows that are in their first lactation.
b MP: Multiparous cows refer to cows that are in their second or above lactations.
c Includes milking cows, dry cows, first lactating cows, heifers younger and older than

1 year old, bulls younger and older than 1 year old (finishing).
d Includes 10% loss associated with feeding the silage.
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between 0.4 kg and 0.9 kg FPCM/cow per day for the PP cows (4.3%
higher in the SCC800 than in the SCC50), 1.2 kg and 2.4 kg FPCM/cow
per day for the MP cows (10.3% higher in the SCC800 than in the
SCC50). The reduction in total feed intake (kg DM/cow per day) in
relation to predicted SCC induced change in milk yield (kg/cow per
day) was between 1.4% (SCC200) and 2.8% (SCC800) for the PP cows
and 3.3% (SCC200) and 6.6% (SCC800) for the MP cows (Fig. 2).

3.2. Culling rates and ENPV

The total culling rates for the SCC scenarios estimated by the DP
model varied from a minimum of 30.9% (SCC400) to a maximum of
43.7% (SCC800). The average longevity of the herd with SCC50 was at
2.7 lactations. This reduced to 2.3 lactations under SCC200 scenario as
a result of increased voluntary culling rate and therefore having in-
creased numbers of younger cows on the farm. The average longevity
then increased again to 2.7 lactations for SCC400 scenario as the model
reduced the optimum culling rate, implying keeping cows longer on the
farm in response to both lower milk yield and also lower milk price due
to higher SCC. As the SCC increased, implying also a greater milk price
penalty, average longevity of the herd reduced again to 2.5 and 2.3
under SCC600 and SCC800 scenarios, respectively, indicating more
culling and replacement would maximize the profit more than opting
for lower culling rates and hence on average having younger animals in
the herd.

The long-run state probabilities generated by the DP model indicate
the proportion of the animals in the herd in each lactation number (i.e.
state) and the stable herd composition that will arise if the optimum
culling regime is followed (Fig. 3). This herd composition provides a
convenient benchmark for comparison between SCM scenarios.

The highest ENPV observed was related to the SCC200 scenario

(using a milk price of 4.7 NOK/kg) that was 5% higher than the ENPV
of cows with SCC50. In the case of SCC200, the model suggests a higher
culling rate than SCC50 (41.2% versus 38.3%) that is caused by the
reduction in milk yield due to higher SCC. The highest culling rate
observed was related to SCC800 (43.7%), but the estimated ENPV for
this scenario was the second lowest. The lowest ENPV belonged to cows
with SCC400 and when a milk price of 4.3 NOK/kg was used. We
present the outputs of the DP for culling rates and ENPVs in Table 4
below.

3.3. Sensitivity analysis

A sensitivity analysis for the baseline scenario (i.e. SCC50) of the DP
model was performed to show how sensitive the expected net margin
(NOK/cow per year) is to variation and uncertainty of input para-
meters. Results are presented in two graphs related to i) highly influ-
ential input variables (Fig. 4); and ii) less influential input variables
(Fig. 5).

As it is expected, Fig. 4 shows that the annual expected net margin
per dairy cow is very sensitive to the level of milk yield. The lowest
annual milk yield of 2570 (L/cow) that was assumed for low producing
cows, results in expected net margin of 1167 NOK whereas the highest
annual milk yield of 11,863 (L/cow) that was assumed for high pro-
ducing cows results in an expected net margin of 44,844 NOK. Based on
this result, in total 83% of the uncertainty in expected net margin is due
to such a variation around the milk yield. Milk price was the second
most influential input variable affecting the net margin, responsible for
15% of its uncertainty. The lowest and the highest assumed prices of 3.0
NOK and 5.0 NOK/L result in annual net margins of 16,559 NOK and
34,873 NOK/cow, respectively. The expected net margin, to some ex-
tent, was also sensitive to the feed costs accounting for 3.0% of its

Fig. 2. Effect of somatic cell count (SCC) on milk yield (kg fat protein
corrected milk FPCM/cow per day; grey shaded area) and feed intake (kg
dry matter (DM)/cow per day; black shaded area) for the primiparous (PP)
(left) and the multiparous (MP) (right) cows. SCC50: SCC levels at
50,000 cells/mL; SCC200: SCC levels at 200,000 cells/mL; SCC400: SCC
levels at 400,000 cells/mL; SCC600: SCC levels at 600,000 cells/mL; and
SCC800: SCC levels at 800,000 cells/mL milk.ml.

Fig. 3. Age structure (proportion of animals in various age groups in
the herd) predicted in the long term by the optimum replacement
strategies determined by the dynamic programming method for cows
with elevated levels of somatic cell count (SCC). SCC50: SCC levels at
50,000 cells/mL; SCC200: SCC levels at 200,000 cells/mL; SCC400:
SCClevels at 400,000 cells/mL; SCC600: SCC levels at 600,000 cells/
mL; and SCC800: SCC levels at 800,000 cells/mL milk.
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variability. Fig. 5 shows the sensitivity of the expected annual net
margin to five other input parameters namely: calf sale value, cull cow
value, heifer purchase cost, fixed costs and the average longevity of
cows in the herd. The DP model outputs were, therefore, less sensitive
to variations of these five mentioned input parameters.

3.4. The whole farm model (HolosNor)

3.4.1. Greenhouse gas emissions intensity
Emissions intensities for the PP and MP cows with SCC50 were

1.01 kg and 0.95 kg CO2e/kg FPCM, respectively. These figures in-
creased by 3.3, 3.6 and 3.7% in the MP cows with SCC400, SCC600 and
SCC800, respectively compared to the MP cows with SCC50. Emissions
intensities for the PP and the MP cows with SCC50 for meat were
29.37 kg and 20.88 kg CO2e/kg CW, respectively. The highest emis-
sions intensities for meat were observed in cows with SCC400 in both
the PP and the MP cows; however the difference between other SCC
scenarios was not substantial.

Enteric CH4 emissions per kg FPCM increased as the SCC level in-
creased, up to 5% in the SCC800 compared to SCC50 in the PP cows. In

the MP cows, however, the increasing trend was disrupted in SCC400,
but reached 8% in SCC800 compared to SCC50. Similarly, manure CH4

emissions per kg FPCM also increased by SCC level in the PP and MP
except for the SCC400 in the MP where emissions decreased slightly.
Direct and indirect N2O emissions intensity elevated as the SCC level
increased, being about 6% higher in the SCC800 than in the SCC50,
with the exception of SCC400 which showed a similar trend to that of
SCC200 (about 2.1% higher than the SCC50) in the PP cows. In the MP
cows, direct and indirect N2O emissions intensity reduced by about
1.7% in cows with SCC400, but increased by 9.1% in cows with SCC800
compared SCC50. (Table 5).

3.4.2. Allocation of emissions
The BMR was between 0.074 and 0.079 in the PP, and between

0.074 and 0.083 in the MP. Emissions were allocated to milk (ARmilk)
at a higher ratios in the PP cows (88.3%) than the MP cows (76.7%) and
the ARmilk was the highest in the SCC50 scenario for the PP cows, and
in the SCC400 scenario for the MP cows.

Table 4
The output of the dynamic programming (DP) model for culling rates and estimated net present value (ENPV) for cows with elevated levels of somatic cell count (SCC). SCC50: SCC levels
at 50,000 cells/mL; SCC200: SCC levels at 200,000 cells/mL; SCC400: SCC levels at 400,000 cells/mL; SCC600: SCC levels at 600,000 cells/mL; and SCC800: SCC levels at 800,000 cells/
mL milk.

SCC50 (4.7 NOK/kg) SCC200 (4.7 NOK/kg) SCC400 (4.30 NOK/kg) SCC600 (4.00 NOK/kg) SCC800 (4.00 NOK/kg)

Proportion of PP cows culled in total cowsa (%) 6.7 7.8 6.6 7.1 11.2
Proportion of MP cows culled in total cowsb (%) 31.6 33.4 24.3 28.4 32.5
Total culling for all cows (%) 38.3 41.2 30.9 35.5 43.7
Voluntary culling rate (%)c 9.7 12.8 2.4 6.9 15.9
Involuntary culling rate (%)d 28.6 28.4 28.5 28.6 27.9
Average longevity (lactation) 2.7 2.3 2.7 2.5 2.3
ENPV (NOKe/year) 32,125 33,760 26,079 27,053 26,762

a PP: Primiparous cows refer to cows that are in their first lactation. This rate was used as the proportion of the PP cows culled.
b MP: Multiparous cows refer to cows that are in their second or above lactations. This rate was used as the proportion of the MP cows culled.
c All culling due to low milk yield, poor reproduction performance and cows with elevated SCC (all SCC scenarios) were considered voluntary.
d All other categories such as lameness, clinical mastitis, other diseases, teat injury, calving difficulty, bad udder and leakage, temperament issues and death due to other reasons were

used to estimate the involuntary culling rates.
e NOK: Norwegian krone.

Fig. 4. Sensitivity of the expected annual net margin per cow to the
range of variations (i.e. minimum, base case and maximum values) of
the three most influential input parameters used in the DP model.
Values specified on the bars represent the ranges that were tested.

Fig. 5. Sensitivity of the expected annual net margin per cow to the
range of variations (i.e. minimum, base case and maximum values) of
the five input parameters used in the DP model. Values specified on
the bars represent the ranges that were tested.
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4. Discussion

4.1. Reduction in milk yield

Based on the assumptions used in this study, calculated milk losses
increased as the level of SCC increased, reflecting the impact of disease
on production. Hortet et al. (1999) reported that if a reference value for
SCC was set to 50,000 cells/mL, the reduction in milk yield may be up
to 1.09 and 1.13 kg/day for a SCC level of 600,000 cells/mL in the PP
and the MP cows, respectively. In our study, PP and MP cows with
SCC200–SCC800 reduced the milk yield between 0.4 kg and 0.9 kg/
day; and 1.2 kg and 2.4 kg/day, respectively. The difference for the MP
cows in the current study and that by Hortet et al. (1999) can be due to
genetic potential of different breeds, in addition to that the milk yield of
MP cows in the current study was an average of 11 lactations after
optimal culling compared to a single year lactation in Hortet et al.
(1999) who categorized the cows as 1st parity, 2nd parity and 3rd and
above parity. The milk reduction of MP cows with SCC200 (5.1%) was
similar to that found by Bartlett et al. (1990) (5%); however the re-
duction in milk yield increased (up to 10.3% in SCC800) as the SCC
level increased in the present study. Higher milk yield reduction in the
MP cows than the PP cows can be explained by the MP cows being
exposed to infections more than the PP cows, and the perpetual damage
to udder cells in the MP cows (Bartlett et al., 1990). The MP cows
potentially require more energy for production reflecting that less en-
ergy is available for maintenance and hence for recovery.

We considered that the SCC levels of 200,000 cells/mL and above
were due to SCM. This is because while CM can be detected by clinical
symptoms such as swelling, heat and hardness in the udder or watery
appearance of milk with flakes, clots or pus, SCM may remain un-
detected unless identified through the change in SCC level. Further, the
clinical signs in the case of CM may underpin the decisions made for
voluntary culling, reflecting a greater voluntary culling in the CM than
in the SCM. Moreover, only yield and price impacts associated with
SCM were considered in this study because in the case of CM, a range of
symptoms, impacts and control decisions are involved, which were not
included in this study.

4.2. Reduction in total feed intake in relation to change in SCC levels

The total feed intake reduced as the SCC level increased (16.3 kg
and 18.0 kg DM/cow per day in the PP and the MP cows with SCC50,
respectively compared to 15.9 kg and 16.8 kg DM/cow per day in the
PP and the MP cows with SCC800, respectively). The lowest silage in-
take (5089 kg and 5976 kg for the PP and the MP cows, respectively)

observed in cows with SCC400 was probably due to the reduced
number of young stock in SCC400 scenario where the lowest culling
rate was observed. It is important to note that the reduction in feed
intake in empirical studies cannot be attributed to increased levels of
SCC only as mastitis may be accompanied by other diseases (Seegers
et al., 2003) in 65% of the cases, e.g. metritis and other disorders
(Zamet et al., 1979). In this study, we assumed that the reduction in
milk yield was due to the increased SCC (to expose the impacts of this
condition) and the reduction in total feed intake was, therefore, at-
tributed to the reduced energy requirements to produce a given level of
milk. However, increased concentrate intake per kg of milk as the SCC
level increased in both PP and MP cows shows that cows with increased
levels of SCC may increase their energy requirement due to the pro-
duction of immunological components such as immunoglobulin G,
other antibodies, and white blood cells. In our study, maintenance NE
requirement was a function of coefficient of maintenance requirement
and average live weight, both of which were not affected by the level of
SCC. If elevated SCC levels increase the maintenance energy require-
ment, then the feed consumption as well as GHG emissions intensity
may have been underestimated and ENPV may have been over-
estimated in the cows with high SCC levels. Therefore, further studies
are warranted to identify the maintenance requirements of cows with
elevated levels of SCC, as well as the changes in animal metabolism due
to impaired health (see Özkan et al., 2016). This study, however, adopts
a very conservative approach, reflecting that no published papers were
available to make assumptions on the increased maintenance require-
ments of cows with high SCC levels. Based on the presented results of
the sensitivity analysis, the ENPV of individual cows with SCC50 was
relatively sensitive to variations of feed requirements and subsequently
the feeding costs, accounting for 3.0% of net margin’s uncertainty.
Reduction in feed demand could increase the EPNV from 32,125 NOK
in the base scenario to 36,126 NOK and increase of feed demand will
decrease the ENPV to 26,127 NOK. It is, therefore, envisaged that any
potential positive or negative effect of elevated SCC on feed require-
ments may significantly affect the financial and environmental results
estimated by our models. However, in absence of scientific evidence
and reliable data, this has not been quantitatively included in such
models.

4.3. Culling rates and ENPV

The total voluntary culling rates estimated by the DP model in this
study (9.7% in the SCC50 and up to about 16% in cows with SCC800)
were influenced by the change in milk yield with parity and SCC ac-
cording to Eq. (1). The total (both PP and MP) culling rates were also

Table 5
Emissions intensity, methane (CH4) emissions from enteric fermentation and manure, direct and indirect nitrous oxide (N2O) emissions per kg of fat and protein corrected milk (FPCM) for
cows with elevated levels of somatic cell count (SCC). SCC50: SCC levels at 50,000 cells/mL; SCC200: SCC levels at 200,000 cells/mL; SCC400: SCC levels at 400,000 cells/mL; SCC600:
SCC levels at 600,000 cells/mL; and SCC800: SCC levels at 800,000 cells/mL milk.

Emissions Emissions intensity Enteric CH4 Manure CH4 Direct N2O from fertilisers,
manure and residues

Indirect N2O from
volatilisation and leaching

Unit kg CO2e/kg FPCMa kg CO2e/kg CWb kg CO2e/kg FPCM

SCC50 PPc 1.01 29.37 0.644 0.120 0.178 0.055
SCC200 PP 1.01 27.75 0.656 0.122 0.182 0.056
SCC400 PP 1.02 30.01 0.656 0.122 0.182 0.056
SCC600 PP 1.02 29.12 0.661 0.123 0.183 0.057
SCC800 PP 1.02 24.44 0.676 0.126 0.189 0.058
SCC50 MPd 0.95 20.88 0.676 0.126 0.192 0.059
SCC200 MP 0.97 21.10 0.705 0.132 0.201 0.062
SCC400 MP 0.98 22.46 0.689 0.129 0.195 0.060
SCC600 MP 0.98 21.99 0.710 0.133 0.202 0.062
SCC800 MP 0.98 21.61 0.730 0.136 0.209 0.064

a FPCM: Fat protein corrected milk.
b CW: Carcass weight.
c PP: Primiparous cows refer to cows that are in their first lactation.
d MP: Multiparous cows refer to cows that are in their second or above lactations.
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influenced by involuntary culling rates that were due to reasons other
than elevated SCC and associated milk production. By focusing on SCM
only, we ensured that the culling decisions were made only for SCM
(not because of the clinical signs in the CM, for example). However,
there is scope for identifying other diseases which may have greater
impact on GHG emissions (Özkan et al., 2016). The voluntary culling
rates of 12.8% and 6.9% in the SCC200 and SCC600, respectively, with
milk prices of 4.7 NOK and 4.00 NOK/kg milk, correspond with the
voluntary culling rates of 7.1% in a mastitis-infected herd and 11.2%
for cows with yield loss, presented by Stott et al. (2002).

It is important to stress that based on the sensitivity analysis, the
ENPV was mainly driven by milk yield and milk and feed market prices
and, therefore, if, for example, the average milk yield of a dairy farm or
milk prices were higher than those reported here, higher culling rates
may be expected. On the contrary, a low ENPV may also be caused by
reduced milk yield and/or milk market prices. Results also show that
variations and uncertainty of other input parameters including calf sale
value, heifer purchase value, cull cow value, fixed costs of feed pro-
duction and longevity of individual cows have less influence on ENPV
than yield, milk and feed prices. Based on the outcome of sensitivity
analysis, it was concluded that the presented models and results are
robust and encompass uncertainty around the input variables. The main
reason is that the uncertainty of the most influential variables namely
milk yield, milk price and forage and concentrate consumption, were
included in the five SCC scenarios examined. In other words, effect of
SCM on milk yield, possible consequences on milk price and margin
over feed were assessed under the five SCC scenarios. However, it
should be noted that each of these single input parameters is only one of
the elements that may increase the culling rate. Eventually, it is the net
financial value (e.g. meat price for culled cows, price/cost of replaced
heifer, milk production costs and milk price) which determines the
optimal culling rate. Although it was shown that the profit of suckler
cow systems were sensitive to culled cow meat prices (Vosough Ahmadi
et al., 2016), presented results show that this is not the case for the
combined dairy and beef systems where milk prices compose of a
higher proportion of the income. Declining margin over feed of SCC200
compared with SCC50 scenario (average margin over feed of 29,615
NOK versus 31,787 NOK/cow per year, respectively) and reduced milk
yield as a result of SCM but, receiving the same milk price as the cows
with SCC50, influenced the DP model to cull and replace more animals
under this scenario than SCC50. Further decreases in milk yield and fall
in margin over feed, but also this time penalized milk prices under
SCC400, led the DP model to reduce the voluntary culling rates to
compensate for the losses. Imposing an increased rate of penalty to the
milk price of SCC600 and SCC800 scenarios in addition to the further
yield losses and further reduced margin over feed, forced the DP to cull
and replace more animals to compensate for the loss and maximize the
ENPV. It should be noted that the DP model does not account for impact
of culling on SCM spread in the herd.

4.4. Greenhouse gas emissions intensity

The emissions intensities of 1.01 kg and 0.95 kg CO2/kg FPCM for
the PP and the MP cows with SCC50 were close to those reported by
Bonesmo et al. (2013), Jayasundara and Wagner-Riddle (2014) and
Williams et al. (2013). An extensive discussion on the emissions in-
tensities was previously reported by Bonesmo et al. (2013), however in
the study conducted by Williams et al. (2013), a healthy cow produced
7875 kg milk which was 12% higher than the milk yield of a cow with
SCC50 (7021 kg) in the MP cows in this study. Note that the lowest
level of SCC defined in this study (50,000 cells/mL) may be considered
as the level of SCC of a healthy cow, however we avoided the use of
“healthy” in this study since there are controversial definitions of a
healthy cow as far as the SCC level is concerned. The GHG emissions
intensity calculated using HolosNor in this study represent on-farm
emissions in Norway. Therefore, variations are expected if the

emissions are calculated at a larger scale or the IPCC Tier 2 approach
has been modified to reflect the country-specific conditions (as in
Jayasundara and Wagner-Riddle, 2014) or the nature of the systems
compared (e.g. the combined dairy and beef systems as opposed to the
specialised systems in Williams et al. (2013)).

There are only a few studies showing the relationship between
health status of dairy cows and the GHG emissions intensity (Elliott
et al., 2014; Macleod et al., 2017; Skuce et al., 2016). For example,
Elliott et al. (2014) reported that if the health status of the cows were
improved by 50%, the reduction in the emissions would be about
669 kilo t CO2e, equal to 5% of the UK’s dairy emissions. Very few
studies reported the impact of elevated levels of SCC on GHG emissions
at an individual animal or herd level. Reductions in GHG emissions
intensity in healthy cows have previously been based on the input-use
efficiency (Hospido and Sonesson, 2005) because the healthy cows
were found to be more efficient converters of feed as they use more of
their energy for milking and less of it for maintenance (Tyrrell and Moe,
1975). The lowest GHG emissions intensity found in this study in the
cows with SCC50 could be discussed for the two parameters: milk yield
and feed intake. The cows with SCC50 consumed the highest DM and
produced the highest milk yield as oppose to the cows with elevated
levels of SCC where the reductions in feed intake and milk yield were
proportional.

In this study, we only compared the milk yield losses due to in-
creased SCC levels and no account was given to other milk losses e.g.
wasted or discarded milk (as opposed to that presented by Hospido and
Sonesson (2005)). Given that mastitis may increase the emissions in-
tensity by up to 7–8% (Williams et al., 2013), and up to 3.3, 3.6 and
3.7% for the MP cows with SCC levels of 400,000 cells, 600,000 cells
and 800,000 cells/mL milk, respectively in our study, combatting this
disease can be perceived, as well as the other diseases that result in a
reduction in feed intake and feed utilization efficiency, as a strategy to
reduce the on-farm GHG emissions intensity from dairying. Further
studies may focus on evaluating the prevention strategies from SCM and
their impacts on GHG emissions. This is not to prioritize SCM over any
disease as it is used only as an exemplar in the present study. In prac-
tice, lower levels of SCC may be achieved by incorporating the calcu-
lation of GHG emissions intensity into a penalty or reward system both
to improve animal health and to create awareness of the impact of ill-
health on farm GHG emissions among farmers, farm advisors and policy
makers. Based on the results shown here, it is likely that preventing
and/or controlling SCM consequently reduces the GHG emissions in-
tensity on farm that results in improved profits for the farmers through
reductions in milk losses, optimum culling rate and reduced feed and
other variable costs.

Lower emissions intensities for meat (kg CO2e/kg CW) (varying
between 24.44 kg and 30.01 kg CO2e/kg CW for the PP cows and be-
tween 20.88 kg and 22.46 kg CO2e/kg CW for the MP cows) in this
study than that reported by Pradère (2014) (32 kg CO2e/kg CW) may be
due to that the current study results reflect combined dairy and beef
systems and not specialised beef systems. The PP cows produced higher
emissions per kg CW than the MP cows, reflecting the lower culling rate
in the PP cows, and, therefore, a lower mass of meat leaving the farm.
In general, the number of cows slaughtered would be expected to be
fewer in the herds with lower culling rate than the herds with higher
culling rates, thereby increasing the emissions intensity due to more
surplus calves not used for replacement (Hospido and Sonesson, 2005).
Although a current trend in dairy farming is to increase a cow’s lifetime
and consequently rear less calves in Europe, high meat prices in Norway
appear to encourage farmers to keep the young stock and reduce the
number of lactations. However, from an environmental point of view,
farms with more young stock are likely to emit higher emissions in-
tensity than those with fewer young stock because young stock do not
contribute to milk production.

The approaches taken in individual models and in combining the
model results warrant further discussion. The use of DP allowed us to
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eliminate the avoidable losses (McInerney et al., 1992) associated with
sub-optimal replacement that would otherwise be present had we
compared different SCC scenarios under the same fixed set of assump-
tions. Optimal replacement was used as a proxy for the optimal set of
potential/alternative prevention and control investments that can be
adopted to minimize the financial impact of SCM at the assumed level
of SCC applied to each scenario. In other words, future investments in
any potential intervention could be compared with the benefits from
implementing the optimum culling rate estimated by the DP model.
Examples of the potential prevention and control measures were given
by Yalcin et al. (1999) that include: pre-milking udder-preparation
methods; post-milking teat disinfection; the use of dry-cow therapy and
a regular milking-machine test.

Obtaining the replacement rates from the DP model to be used in
HolosNor enabled us to demonstrate that a win–win situation for both
maximizing profit and minimizing environmental consequences is
achievable by optimum management of SCM at herd level. The DP
model tests alternative SCCs fairly in terms of the physical and financial
assumptions we made that reflect the real Norwegian situation.
However, the results do not aim to provide a representation of current
practice. We have modelled the ‘rational farmer’ as well as the herd
under these circumstances as he/she would respond to these drivers to
minimize the financial damage SCC does to the herd. We, therefore,
have a framework that allows us to compare the herds on the same basis
were the circumstances to change. Therefore, we do not intend to rank
diseases by their importance nor would we aim to mimic the current
practice as the DP model considers the whole life cycle of an animal as
opposed to a real life situation where only current status of an animal
would facilitate the decision-making process. Instead, by using the DP
and combining it with HolosNor, we are proposing a standardised way
to assess the impact of animal diseases on GHG emissions intensity that
others could adopt so results would be comparable.

5. Conclusions

In this study, by using the DP model to calculate the replacement
rates and ENPV in relation to varying levels of SCC, and integrating the
outputs of the DP to the GHG model HolosNor, we present an attempt in
combining two models to demonstrate the expected impact of SCM on
replacement rates, ENPV and GHG emissions intensity. Combining
HolosNor with the DP results ensures that the rationale behind the re-
placement decisions is solid and justified, given that the relationships
between animal-related inputs and management decisions are complex
and require comprehensive modelling. We concluded that there is a
potential to reduce the total farm emissions intensity by 3.7% if the
milk production was improved through reducing the level of SCC to
50,000 cells/mL in relation to SCC level 800,000 cells/mL. We, how-
ever, acknowledge that this may be an underestimation as SCM is
usually accompanied by other diseases. Based on the presented results,
it is concluded that preventing and/or controlling SCM consequently
reduces the GHG emissions per unit of production on farm, which re-
sults in improved profits for the farmers through reductions in milk
losses, optimum culling rate and reduced feed and other variable costs.
We suggest that further studies exploring the impact of a combination
of diseases on GHG emissions intensity are warranted.
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