
RESEARCH Open Access

Zinc oxide enriched peat influence
Escherichia coli infection related diarrhea,
growth rates, serum and tissue zinc levels
in Norwegian piglets around weaning: five
case herd trials
M. Oropeza-Moe1* , C.A. Grøntvedt2, C.J. Phythian1, H. Sørum3, A.K. Fauske3 and T. Framstad4

Abstract

Background: Zinc oxide (ZnO), commonly used to control post-weaning diarrhea in piglets, has been highlighted
as of potential concern from an environmental perspective. The aim of this field trial was to examine effects of
different sources and levels of ZnO added to peat on average daily weight gain (ADG), fecal score in pens and
serum and tissue zinc (Zn) levels around time of weaning in order to reduce the environmental impact without loss
of the beneficial effect of ZnO on intestinal health and growth. Five case herds with enterotoxic colibacillosis
challenges were included. The piglets entered the study aged three or five weeks. All piglets received a commercial
diet containing <150 mg Zn/ per kg of complete feed. Four treatment groups received commercial peat added A:
uncoated ZnO, B: lipid microencapsulated ZnO, C: solely commercial peat or D: no peat (Farms 2 and 3).

Results: At Farms 1, 2 and 3, a significant effect of treatment was identified for fecal score (P < 0.05). Treatment A
led to lower fecal scores compared to treatments C (P < 0.05) and D (P < 0.01). At Farms 2 and 3, there was a
significant difference in individual average daily weight gain (iADG) between treatment A and D (P < 0.05). The
iADG of piglets receiving treatment B did not differ significantly from treatment A.

Conclusions: In 2016, The European Medicines Agency’s Committee on Veterinary Medicinal Products concluded
that the benefits of ZnO for the prevention of diarrhea in pigs do not outweigh the risks to the environment. Effective
alternative measures to reduce the accumulation of Zn in the environment have not been identified. Our results imply
that peat added low concentration of both coated and uncoated ZnO influences the gut health of weaned piglets
reflected by enhanced weight gain and reduced occurrence of diarrhea. This preventive approach certainly represents
a favourable alternative in the “One Health” perspective. It will also contribute to reduced antibiotic use in pig farming
while diminishing the environmental consequences caused by ZnO.
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Background
Piglets are vulnerable to Escherichia coli (E. coli) infec-
tions around weaning since circulating plasma anti-
bodies are low and passive intestinal immunity provided
by antibodies in the sow’s milk (IgA) is lost when the
sow and piglets are separated [1, 2]. The separation from
the sow, a different environment, commingling with un-
familiar piglets, hierarchy establishment through fighting
and abrupt change in nutrition, are major changes that
show a negative influence on immune functions and may
result in E. coli associated post-weaning diarrhea (PWD)
or edema disease (ED) [3–7].
E. coli causing PWD or ED enter the organism by

ingestion and colonize the small intestine after attaching
to porcine receptors on the enterocytes with fimbrial
adhesins. The degree of colonization determines whether
clinical manifestations occur or not. Fimbriae-designated
E. coli F18+ and F4+ are typical pathogens involed in ED
and PWD, E. coli F5+, F6+ and F41+ can occur in suck-
ling pigs [8, 9]. Enterotoxigenic E. coli (ETEC) strains
cause watery diarrhea and systemic disease in piglets
due to their ability to colonize the intestine through
expression of adhesins and the ability to produce the
toxins heat labile (LT) or heat stable (ST) enterotoxins
as well as Shigatoxin 2e (STx2e) [10–12]. The ED caus-
ing hemolytic E. coli F18ab+ produce Stx2e [13].
Since 2006, the use of antibiotic growth promoters in

piglets has been banned in Europe [14]. As a consequence,
there has been an increase in some uses of ‘therapeutic’
antibiotics and possibly switches to different and more
modern antibiotics [15]. Therefore, AR development in
production animals remain a serious problem in con-
sumer health protection. Various natural materials such
e.g. organic acids or zinc (Zn) have been tested as alterna-
tives to antibiotics.
Zinc oxide (ZnO) at therapeutic concentrations

(2000 ppm or more) has been widely used to prevent
porcine colibacillosis, improve suboptimal weight gain
and feed efficiency. The small-intestinal mucosa is
altered by feeding of 3000 ppm Zn for 14 days [16], thus
potentially increasing the absorptive capacity of the
small intestine and consequently improving growth.
Dietary treatment with ZnO has been associated with
significant differences in the transcript abundance of
several genes. Dietary ZnO supplementation influence
metallothionein mRNA expression in the intestine and
liver, enhances expression of the tight junction genes
occludin and ZO-1 both at mRNA and protein levels
and further enhances small intestinal IGF-I and IGF-I
receptor gene expression, which can explain improved
intestinal health [16–18]. An influence on the gastro-
intestinal microbiota in weaned piglets has been de-
scribed [19–21]. Reduced fermentation of digestible
nutrients in the proximal part of the gastrointestinal

tract may render more available energy for the host and
contribute to the growth-promoting effect of high diet-
ary ZnO doses [20].
ZnO tend to dissociate after uptake in the low pH

environment of the anterior gastrointestinal tract, allow-
ing interaction with other nutrient and ingredient poten-
tially leading to impaired absorption, and thus decreased
bioavailability [22]. Long term use of pharmacological
ZnO concentrations (2000 to 4000 mg Zn/ kg) to
pigs feed, increases the concentration of Zn in the
pig manure and results in Zn accumulation of arable
land [23, 24]. Accumulation of Zn in soils may im-
pose a toxicity risk on plants and micro-organisms
[25]. Therefore, European feed legislation limits total
dietary Zn in complete feed to 150 ppm [26]. Recent
studies also support the assertion that Zn in feed may
favour or select for AR [27–32].
Microencapsulated ZnO products are available on today’s

market. According to the manufacturers, lipid microencap-
sulation avoids ionization of the active component in the
animal stomach. Therefore biological properties are pre-
served and the biological effects are excerted in the ani-
mals’ small intestine [33, 34]. Studies have stated that
coated ZnO at inclusion levels between 100 and 200 ppm
in basal diets show similar effects as uncoated ZnO on
growth promotion, reduced incidence of diarrhea and
microbiota composition regulation [33–36].
A different approach to prevent intestinal disease in

weaned piglets is peat supplementation, which has been
associated with beneficial effects on health status, growth
and mortality rates [37–39]. Peat contain humic substances
including humic acids showing detoxifying properties be-
cause of chelate formation with potentially toxic substances
such as heavy metals [40, 41], stimulation of digestion [42]
and anti-inflammatory and antiviral effects [43, 44]. Due to
its low pH (3.0 to 5.5) peat causes a reduction of the pH of
the intestinal contents with subsequent reduced growth of
Enterobacteriaceae [38]. Humic and fulvic acids have
shown to improve nutrient uptake in suckling piglets [45].
Limited literature is available regarding the optimal dosage
of peat preparations to piglets. An inclusion level of 0,5%
humic substances to dietary treatments may improve ADG
in weaned piglets [46]. Independent studies have stated
that the effects of batches containing dietary humic sub-
stances are variable, warranting further investigation
[39, 46]. An important prerequisite when applying peat
supplementation to animals, is the monitoring of poten-
tially pathogenic mycobacteria sometimes present in
batches of peat preparations [47, 48]. These case herd
trials aimed to explore the effects of different ZnO sources
and ZnO levels in peat preparations on pre- and post-
weaning fecal consistency and weight gain. Additionally,
initial and final Zn-serum concentrations, liver and kidney
Zn levels were examined at two of the farms.
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A feed additive consisting of peat and uncoated or
coated ZnO was produced. We anticipated that this
preparation would show both peat and ZnO derived
beneficial effects and therefore low ZnO levels added to
peat should show the same effects as pharmacological
ZnO levels added to feed. We hypothesized that low
level ZnO enriched peat would improve piglet average
daily weight gain (ADG) and reduce fecal score.

Methods
Preparation and quality control of Zn oxide enriched peat
Commercial peat (Pluss Avvenningstorv, Felleskjøpet,
Norway) was used as the peat substrate in treatments A, B
and C. It contained 31.1% dry matter and <5 mg Zn/ kg at
a pH of 5.3. The contents of molds and yeasts were below
100 CFU/ g, no Salmonella spp. were detected and bacter-
ial colony counts (30 °C) were 9000 CFU/ g. The commer-
cial peat was analyzed by Alcontrol Laboratories (Stjørdal,
Norway) by employing standard methods (Dir152/2009/
EU [49], ISO 6869 [50], NMKL 98 [51], NordVal no: 014
[52], Tecra [53], NS-EN ISO 10523:2012 [54]).
Zn sources used to prepare the peat supplements

included uncoated Normin Sink®, (8% Zn, Normin,
Hønefoss, Norway) and lipid microencapsulated Zincoret®
S (0.3% Zn, Vetagro S.p.A, Reggio Emilia, Italy). ZnO
enriched peat was prepared by Fossli AS (Frosta, Norway).
Peat A was commercial peat added 2819 mg/L uncoated
ZnO (2255 mg Zn/L). Peat B was commercial peat added
321 mg/L coated ZnO (257 mg Zn/L). Peat C was com-
mercial peat without ZnO-additives. Uncoated or coated
ZnO was added to a batch of peat and transported in
sacks of 80 L. The farmers and veterinarians (authors)
were double-blinded to the composition of the treatment
groups. The Zn content in peat preparations was analyzed
prior to the start of the trial by standard methods at an
accredited laboratory (Labnett Laboratories, Stjørdal,
Norway) [55]. Peat was analyzed at the Norwegian Vet-
erinary Institute in Oslo by a polymerase chain reaction
to identify strains of Mycobacterium avium with spe-
cific primers (IS901-IS902) [56, 57]. No pathogenic
Mycobacteria avium were detected by applying IS901-
IS902 specific primers on samples isolated from the
peat preparation.

Case herds
Five Norwegian commercial pig herds with a docu-
mented history of clinical disease associated with E. coli
infections were recruited (Table 1). Fecal samples from
the case herds were submitted to serological testing (ag-
glutination in microtiterplates with boiled antigen and
single O-antisera) or PCR analyses conducted at the
Norwegian Veterinary Institute or at the Norwegian
School of Veterinary Science, respectively. At Farm 1,
diarrhea occurred repeatedly around 3 weeks of age. At

Farms 2–4, PWD was observed regularly. At Farm 5, ED
had caused significant losses across multiple batches.
All dams were vaccinated against E. coli (recombinant

adhesin F4 (F4ab, F4 ac, F4ad), recombinant adhesin F5,
field strain adhesins F6 and F41) for passive transfer of
lactogenic immunity in the suckling piglets.

Animal management and measurements
The trials began with piglets aged two weeks on Farm 1
whilst on Farms 2–5, piglets close to five weeks (the aver-
age weaning age in Norway) of age were enrolled in the
trials. Across all farms, piglets (females and castrated
males) were weaned at 32 to 33 days of age
(10.16 ± 1.80 kg of bodyweight (BW)). Digital thermome-
ters were used to monitor the room temperatures at
Farms 1 to 3. At Farm 1, room temperature was 18 °
C ± 2 °C and the temperature on the piglet creep floor,
measured with a handheld laser device, was 24–25 °C. At
Farms 2 and 3, room temperature showed fluctuations
(day and night) between 23 and 21 °C at initiation of the
trials. The room temperature was gradually reduced (0.5 °
C per day) and set to 18 °C. At Farms 4 and 5, the
temperature was set to 22 °C at initiation of the trials and
reduced gradually to 18 °C. The light (L): dark (D) periods
were 16 L:8D. At Farm 1, the piglets were fed their basic
feed on the floor. Restrictive feeding was conducted at
Farms 2 and 3 while Farms 4 and 5 practiced ad libitum
feeding. The pigs had free access to drinking water. Natural
wood shawings were used as bedding material at all farms.
Concentrate feed used at all five trial farms was a

standard starter feed (Table 2). Pens of 10 to 12 piglets
were allocated to one of three treatments (A to D). A

Table 1 Documented virotypes and serotypes of E. coli causing
ETEC and STEC at the case herds 1 to 5 prior to performing trials

Farm Piglet genotype Pathotype Virotype O serogroups

1 LYLL ETEC F4

2 LYHH ETEC O149

3 LYLL ETEC O138

4 LYLD ETEC LT:STb

5 LYHH STEC Stx2e:F18 O139

The pathotypes, virotypes and O serogroups verified at the case herds 1 to 5
prior to recruitment for the trials are listed. Strains of E.coli isolated from fecal
samples of piglets after post mortem examination were either forwarded by
the veterinarian in charge to the Norwegian Veterinary Institute for serotype
determination (agglutination in microtiterplates with boiled antigen and single
O-antisera) or to the Norwegian School of Veterinary Science in Oslo for
virulence pattern determination (PCR analysis). The pathotype Enterotoxigenic
E. coli (ETEC) was found at Farms 1 to 4 while Shiga-toxigenic E. coli (STEC)
was found at Farm 5. Virotypes at Farms 1, 4 and 5 were F4, LT:STb and
Stx2e:F18, respectively. The O serogroups O149, O138 and O139 were identified
at Farms 2, 3 and 5, respectively. Genetic combinations of piglets included
Landrace x Yorkshire (LY) x Landrace x Landrace (LL) (LYLL) at Farm 1. At Farm 2,
LY x Hampshire/Hampshire (HH) (LYHH) were used. At Farm 3, LYLL piglets
were utilized. LY x Landrace/Duroc (LYLD) and LYHH were used at Farms 4
to 5, respectively

Oropeza-Moe et al. Porcine Health Management  (2017) 3:14 Page 3 of 12



farmers consent to include a control group (treatment
D) was attained at Farms 2 and 3.
The treatment duration at each case farm was decided

based on known challenges with E. coli infections and
the expected duration of clinical cases based on the
farmers previous experiences. E. coli associated diarrhea
in suckling piglets from 2 to 4 weeks of age was a docu-
mented herd health problem at Farm 1. Therefore, treat-
ments A to C were provided from 2 weeks of age until
weaning. One liter of peat A, B or C was provided to
each pen twice a day. At Farms 2, 3 and 4, experiencing
repeated cases of E. coli associated PWD, treatments
with 1 L peat/ pen twice a day were initiated at weaning
(day 0) and continued for 14 to 17 days.
Farm 5 struggled with repeated cases of E. coli associ-

ated ED. Due to the known presence of a highly ‘aggres-
sive’ E. coli strain, animals received 2 L daily of
treatments A, B or C starting one week before weaning
(day −7). The next 2 weeks, the animals received twice
the amount of peat compared to Farms 1, 2 and 3; 4 L
daily of treatments A, B or C (day 0–14). The last week,
these animals again received 2 L daily of treatments A, B
or C (day 15 to 21 after weaning) as the abrupt with-
drawal of ZnO supplementation may favour the growth
of Shiga-toxigenic E. coli (STEC).
BW was registered and blood samples were collected

from randomly selected and ear tagged piglets at Farms 2
(n = 12) and 3 (n = 6) via the external jugular vein prior to
study entry at weaning (day 0). The same piglets were bled
and weighed individually at termination of the trials.

On Farm 1, all piglets in one farrowing unit were ear
tagged and the body weight was registered on study entry,
at two weeks of age (− day 21, three weeks before wean-
ing) and day 0 (weaning day). On Farms 2 to 5, group
weights of pigs within the same pens were recorded on
day 0 and on the last day of the trial (day 14–21). Each
trial pen was evaluated for clinical signs of disease (de-
pression, signs of dehydration and perineal staining) and
fecal consistency scores by the same veterinarian at each
farm. Clinical signs of disease were not scored. A stan-
dardized four-point categorical fecal scoring system was
used (score 1: firm, 2: pasty, 3: loose and 4: liquid feces).
Observation of a pen with liquid feces (category 4) was
scored as diarrhea, irrespective of the number of piglets
affected. Rectal swabs on charcoal transport medium were
taken from all piglets with fecal score 4 for bacteriological
culture. No antibiotic treatment was applied at the case
farms during the trials.
On Farm 2, three animals (n = 3) from each group A,

B, C and D were euthanized by captive bolt gun and
exsanguination on days 7 and 15 of the trial for collec-
tion of totally 24 fresh liver and 24 kidney samples.

Serum and tissue Zn analysis
Blood samples were collected in 9 ml serum collection
tubes coated with clot activator (Vacuette®, Med-Kjemi
AS, Norway). All samples were directly transported to the
laboratory within a maximum of 120 min following sam-
ple collection without any prior chilling. Samples were
analysed to determine the following parameters: iron (Fe),
inorganic phosphate (P), copper (Cu), zinc (Zn), calcium
(Ca), magnesium (Mg) and ceruloplasmin (Cp) levels.
Levels of Fe and P were assessed by a colorimetric method
(ABX Pentra 400 Analyzer, Horiba). Cu, Zn, Ca, Mg and
Cp were determined by Atomic absorption spectrometry
(AAnalyst 300 Perkin Elmer). Due to limited financial
resources, blood sampling was restricted to Farms 2 and 3.
Tissue samples were stored at −20 °C until analysis. In-

ductively coupled plasma mass spectrometry (ICP-MS) was
performed by SYNLAB.vet GmbH (Berlin, Germany) to
determine Zn concentrations in liver and kidney samples.

RNA extraction and reverse transcription
A multiplex PCR analysis was conducted on E. coli isolates
from affected piglets at the five farms included in this
study. Total RNA from bacterial pellets was extracted
using the RNAeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions (Protocol 4
and 7) including an on-column DNA wipeout treatment
(Appendix B1–4). The RNA was eluted in 30 μl DEPC-
treated water (Invitrogen) and stored at −70 °C until
reverse transcription (RT). Gel electrophoresis with 1%
agarose gel was used to confirm that isolated RNA was
intact while the concentration and purity of the RNA

Table 2 Composition of basal feed at trial farms

Farm: Farm 1 Farm 2 Farm 3 Farm 4 Farm 5

Production stage: PrWa PoWb PoW PoW PoW

Feed composition

Crude protein (%) 16.00 19.60 18.30 18.00 18.10

Dry matter (%) 88.00 88.20 86.90 87.40 88.00

Lysine (%) 1.23 1.39 1.20 1.20 1.28

Crude fat (%) 3.00 6.00 5.10 5.30 4.90

Crude ash (%) 5.00 4.70 5.00 4.50 5.20

Vit. A (IU) 10,000 8000 10,000 8000 10,000

Vit. D (IU) 1500 1300 1000 1500 1500

Vit. E (mg) 200 180 150 150 200

Copper sulphate (mg/kg) 15 26 15 32 15

Sodium selenite (mg/kg) 0.20 0.10 0.30 0.40 0.20

6-phytase (FYT/kg) 500 500 1500 703 500

Zn (mg/kg) 120 141 120 141 120

Composition of basal feed fed at the five trial farms. The levels of crude
protein varied between 16% (Farm 1, preweaning phase) and 19.6% (Farm 2,
postweaning phase). Vitamin levels were comparable. Sodium selenite levels
varied between 0.1 and 0.4 mg/kg
aPrW: Pre-weaning
bPoW: Post-weaning
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extracts were analyzed by measuring the absorbances at
260 (A260) and 280 nm (A280) using a NanoDrop™ ND-
1000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA). Only total RNA samples of high quality with
A260/A280 ratios between 1.9 and 2.2 and with tight bands
of 18S/28S ribosomal RNA (rRNA) were used for RT.
Reverse transcription was conducted with QuantiTect®

RT kit (Qiagen) according to manufacturer’s instructions
for the synthesis of complementary DNA (cDNA) and
included a DNase wipeout treatment. Amounts of 1 μg of
RNA were used in each RT reaction conducted in a
BioRad T100 (Bio-Rad, Hercules, CA, USA). In addition,
to confirm the absence of any contamination with genomic
DNA (gDNA) contamination, one RNA sample per round
of extraction was randomly chosen and not treated with
reverse transcriptase. The cDNA samples were diluted in
180 μl of DEPC-treated water and stored at −70 °C until.

Multiplex polymerase chain reaction (PCR) analysis
The E. coli strains isolated at the five case farms were
characterized by applying primer sequences obtained
from previous publications, targeting for the following
genes/ virulence factors: (a) estB/ STb [58], (b) estA/
STa [59], (c) eltB/ LT [60], Stx2e (A subunit) [61], faeG/
F4 [62], fanA/ F5 [63], fasA/ F6 [64], fedA/ F18 [65] and
fedA subunit/ F41 [66].

Statistical analyses
Data maintained on individual animal and pen-level mea-
surements were managed in Excel (Microsoft, Windows).
Data analyses were performed in STATA version 13.1
(StataCorp LP, College Station, TX) and JMP® Pro ver-
sion 12.1.0 (Cary, NC, USA). Descriptive statistics and
graphical plots were used to assess for any visual differ-
ences in the population starting weight, mean and
range of fecal scores.
Individual piglet weight data collected at trial entry

and completion was used to derive three outcome vari-
ables. The individual daily weight gain (iADG, g/ day)
was calculated as overall weight gain/days in study.
Then, a group-level outcome was calculated; the average
daily weight gain (ADG) was calculated in gram per day
(g/ day) as mean weight gain of each treatment group/
days in study. Duration variation was corrected for in
statistical analyses.
To investigate whether there was a significant effect

of treatment type on iADG and ADG, mixed effects
linear regression models were fitted in Stata version
13.1 (Statacorp, TX). Treatment type was included as a
fixed effect, and farm identity (1 to 5) as a random effect.
The effect of gender (female or castrated male), pen iden-
tity and PDI were also examined as fixed effects in separ-
ate univariate models.

Mixed effects regression models were also used to
examine the effect of treatment type (A to D) on fecal
score, serum and tissue mineral levels in separate univari-
ate models. Likelihood ratio tests were used to assess
model significance. Model outcomes were described using
coefficient β (indicating the magnitude of the effect), the
95% confidence interval (CI) and Wald p-values [67]. To
assess the effect of treatment type, the baseline (β = 0) for
comparison of coefficient values was set as treatment A
(peat containing 2819 mg/L uncoated ZnO).

Results
Peat preparation quality
No pathogenic Mycobacteria avium were detected by
applying IS901-IS902 specific primers on samples isolated
from the peat preparation.

Fecal scores
Regression models found no effect of farm identity or
pen identity or fecal score (P > 0.05). However, treat-
ment type had a significant effect on fecal score
(P < 0.05). Compared to pens of piglets receiving treat-
ment A (β = 0), higher fecal scores, indicative of looser
feces, were recorded in pens receiving lower levels of Zn
inclusion - treatments C or D (P < 0.05).

Pen average daily weight gain (ADG) and individual daily
weight gain (iADG)
Outbreaks of PWD and ED on Farms 4 and 5 caused mor-
tality rates of 2.9% and 6.2%, respectively. Due to high
mortality and reduced weight gain observed in affected
piglets, data from Farms 4 and 5 were analyzed separately
to look at the effects of different ZnO-treatments on
weight gain. A summary of weight gain results are listed
in Table 4.
On farm 1, no significant effect of treatment was

found for iADG. Gender did not have a significant effect
on iADG.
Mixed-effects models identified significantly lower

iADG (P < 0.05) in piglets receiving treatment D, com-
paring with those receiving treatment A at Farms 2 and
3 (Table 4). At Farm 2, iADG in treatment groups A, B,
C and D were 410 ± 90 g/ day, 390 ± 100 g/ day, 340 ±
150 g/ day and 290 ± 130 g/ day.
At Farm 3, iADG in treatment groups A, B, C and D

were 410 ± 110 g/ day, 370 ± 100 kg/ day, 270 ± 80 g/ day
and 230 ± 80 g/ day.

Effects on serum minerals and tissue Zn concentrations
Data from Farms 2 and 3, indicated that serum Fe, P,
Cu, Ca and Mg levels were not influenced by treatment.
Linear regression analysis suggested that treatment had
an influence on serum Zn serum levels at Farm 2. Com-
pared to treatments B-D, treatment A was associated
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with a significantly higher Zn concentration increase in
serum after 14 days of treatment (p < 0.02). Mean serum
Zn (SD) increase was 3.43 (2.42) μmol/ L and
1.71 (2.25) μmol/ L for treatments A and B, respectively.
Treatment C lead to an increase of 0.27 (2.32) μmol
serum Zn/ L and treatment D lead to an increase of 1.03
(2.99) μmol serum Zn/ L. At Farm 3, no significant
serum Zn increase was observed, when comparing initial
and final Zn serum levels across all treatment groups.
Mean Zn concentrations (μg/ g dry weight) in liver sam-

ples of piglets at Farm 2 receiving treatments A to D for
7 days were 31.9 (4.3), 25.5 (3.1), 20.9 (2.5) and 25.7 (1.8),
respectively. Mean Zn concentrations (μg/ g dry weight) in
liver samples of piglets at Farm 2 receiving treatments A to
D for 15 days were 57.8 (10.42), 51.37 (7.05), 29.30 (7.78)
and 25.77 (3.98), respectively. Mean Zn concentrations
(μg/ g dry weight) in kidneys of piglets at Farm 2 receiving
treatments A to D for 7 days were 13.5 (0.9), 13.5 (0.8),
13.5 (0.2) and 12.3 (0.5), respectively. Mean Zn concentra-
tions (μg/ g dry weight) in kidneys of piglets at Farm 2 re-
ceiving treatments A to D for 15 days were 30.23 (6.91),
27.23 (9.42), 11.95 (4.03) and 11.06 (2.48), respectively.

Clinical signs and bacteriology
Bacteriological investigations of fecal material from piglets
observed with clinical signs of diarrhea revealed that
pathogenic E. coli strains were isolated from all five farms
(Table 3). At Farm 1, ETEC and the two predominant vir-
otypes STa:F5:F41 and LT:STb:F4 were isolated. Signs of
diarrhea were evident across treatment groups at initiation
of the trial. Only one pen in treatment group C showed

signs of diarrhea until eight days into the trial. ETEC STb+

were the predominant pathotype and virotype at Farm 2
and clinical signs of diarrhea were seen at initiation of the
trial in pens across treatment groups. The symptoms dis-
appeared in all treatment groups except the group receiv-
ing no peat. At Farm 3, ETEC F18+ was found and clinical
symptoms occurred seven days into the trial in pens
where piglets received treatment C and D. At Farm 4,
ETEC LT:STb:F4+ was associated with an outbreak of sud-
den death affecting 16 piglets (2.9% of the batch) within a
one week period, starting 3 days prior to weaning. Post-
mortem examination revealed hemorrhagic enteritis in all
examined piglets. At Farm 5, STEC Stx2e:F18+ caused
sudden death of totally 24 piglets (6.2% of the batch)
within a two weeks period, the first cases occurred at
weaning. Post-mortem examinations of several piglets
revealed macroscopic pathological findings compatible
with ED including subcutaneous edema, edema in the
submucosa of the stomach and the mesocolon. One trial
piglet in the control group (D) at Farm 3 died during the
experimental period. Necropsy findings were consistent
with a case of haemorrhagic enteritis caused by E. coli
infection. Serotyping and multiplex PCR analysis revealed
an E. coli 0138 F18+strain.

Discussion
Therapeutic ZnO levels in diets for weaner pigs to pre-
vent E. coli infections are widely used as an efficient and
cost-effective preventive strategy for PWD or ED [68–70].
In Asia and the Americas, it has been standard procedure
to apply up to 3000 ppm of ZnO in weaners feed [71].
However, various studies have elucidated different chal-
lenges associated with this prophylactic approach
including antimicrobial resistance and environmental
pollution [25, 28, 29, 72–74]. This study aimed to identify
whether peat supplemented with low-level uncoated or
coated ZnO preparations could offer a feasible and effect-
ive alternative to conventional therapeutic ZnO levels for
the reduction of E. coli associated diarrhea or ED. To the
authors’ knowledge, there are no previous reports on the
effects of coated ZnO enriched peat on weaned piglets
production parameters. Data from the present study
supported our hypothesis that feeding ZnO enriched
coated peat to weaned piglets for 14 days can achieve the
combined beneficial effects of higher weight gain and
reduced fecal scores. Additionally, the usage of coated
ZnO to prevent enterotoxic colibacillosis can reduce Zn
emmissions from swine producing units resulting in a
substantially lower environmental impact.
An effect of treatment type on fecal consistency scores

was found at Farms 1 to 3. Treatment C (commercial
peat without ZnO-additives) and treatment D (controls)
resulted in significantly higher fecal scores than treat-
ment A (2819 mg/L uncoated ZnO) at Farms 1 to 3.

Table 3 Pathotyping and virotyping of E. coli strains isolated
during trials at Farms 1 to 5

Farm Pathotype Virotype Fimbriae and toxin prevalence (%)

1 ETEC STa:F5:F41 50.0

LT:STb 12.5

LT:STb:F4 37.5

2 ETEC STa:STb 13.3

STa:STb:F4 13.3

STxA 13.3

STb 46.7

STb:F18 6.7

LT:STb 6.7

3 ETEC F18 100.0

4 ETEC LT:STb:F4 100.0

5 STEC Stx2e:F18 100.0

E. coli isolates from Farms 1 to 5. Pathotypes and virotypes are described. At
Farms 1 to 4, the pathotype Enterotoxigenic E. coli (ETEC) was found. At Farm
5, Shiga-toxigenic E. coli (STEC) was present. At Farms 1 to 5, the predominant
virotypes detected by multiplex PCR analysis were STa:F5:F41, STb, F18,
LT:STb:F4 and Stx2e:F18, respectively
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These findings are consistent with a previously published
study showing that 14 days of post weaning ZnO-
inclusion in feed affected fecal consistency, and that
3125 mg/kg of uncoated ZnO led to firmer fecal
consistency than the inclusion of 139 mg/kg feed of a lipid
encapsulated ZnO source called Shield Zn [75]. In the
present study, basal diets at Farms 1–3 contained between
16% and 19.6% crude protein. Farms feeding diets con-
taining crude protein levels below 19% can be considered
relatively low. Low-protein diets may have a diarrhea-
reducing effect [76]. This, combined with a possibly
suboptimal concentration of ZINCORET™ included in
treatment B (321 mg/L coated ZnO), may have concealed
the presumptive effect on fecal consistency. Thus, any
future studies including coated ZnO in peat may require
concentrations above 321 mg ZnO/ l to promote signifi-
cant effects on fecal consistency and growth rates. Other
reports have described beneficial effects of coated ZnO on
growth rates, intestinal morphology, digestive enzyme
activity and colibacillosis at rates of 100 to 200 ppm in
basic feed to recently weaned piglets [28, 75, 77].
ZnO treatment had no significant effect on ADG on

Farms 1, 2 and 3. Large body weight variations within
each group combined with a relatively low number of
pens per treatment may have contributed to these
results. No treatment effect on iADG was discovered at
Farm 1. These piglets entered the study at three weeks
of age. A possible explanation to the lack of statistical
differences in weight gain across the groups at Farm 1,
may be related to the fact that the farmer did not con-
sent to include a control or untreated group (treatment
D) due to concerns regarding E. coli associated diarrhea.
At Farms 2 and 3, however, treatment D was included.
Ear tagged piglets receiving treatments A showed higher
iADG than piglets receiving treatment D. Individual ani-
mal identification through ear tagging and individual
weight measurements of a larger number of piglets
across the study farms could have provided stronger
evidence to support the finding of growth promoting
effects of ZnO enriched peat treatment identified on
Farms 2 and 3.
Serum Zn serum levels at Farm 2 were influenced by

the type of Zn treatment. Compared to treatment A
(2819 mg/L uncoated ZnO), treatment B (321 mg/L
coated ZnO), C (commercial peat without additives) and
D (controls) were associated with significantly lower
increases in serum Zn concentration after 14 days of treat-
ment. Our results are consistent with previous studies,
showing that inclusion of ZnO in the feed will increase the
serum Zn concentrations [78–80].
Tissue samples from only three animals per treatment

group were collected at days 7 and 15 of the first trial at
Farm 2 due to limited financial resources. Although no
statistically significant effects of treatment were seen on

final Zn kidney and liver concentrations, the highest nu-
merical increase of both liver and kidney Zn concentra-
tions was observed in animals receiving treatment A,
followed by animals receiving treatments B, C and D,
respectively.
These results are in line with previous findings, show-

ing greater hepatic and circulating Zn concentrations in
piglets receiving therapeutic concentrations of uncoated
ZnO (between 2000 ppm and 2500 ppm) than piglets
fed 100 to 200 ppm of coated ZnO [28, 29, 81]. The
mean Zn concentrations in liver samples from piglets
receiving treatment A were 57.80 (10.42) μg/ g dry
weight while Zn concentrations in liver samples from
piglets receiving treatment B, C and D were
51.37 (7.05) μg/ g dry weight, 29.30 (7.78) μg/ g dry weight
and 25.77 (3.98) μg/ g dry weight, respectively.
Peat B contained 321 mg/L coated ZnO while Peat A

contained 2819 mg/L uncoated ZnO, equivalent with a
ratio of 1:8.8. Despite the low coated versus high uncoated
ZnO ratio in Peat B and Peat A, comparable Zn-levels
were detected in animals receiving Peat A or Peat B.
These tissue Zn concentrations suggest that the bioavail-
ability of coated Zn added to peat is higher than uncoated
Zn. Experimental studies on the pharmacological effects
of Zn to reduce post-weaning scouring and improve body
weight gain have shown that formulations of Zn in organic
form or lipid-encapsulated Zn may be effective at rela-
tively low concentrations, achieving comparable effect
with far higher concentrations of inorganic Zn. This indi-
cates that the bioavailability and retention of organic form
or lipid-encapsulated Zn may be increased [24]. A recent
study demonstrates that nanosize ZnO can increase Zn di-
gestibility, serum growth hormone levels and carbonic
anhydrase activity and enhance the immune response of
weanling piglets [82]. Uncoated ZnO tend to dissociate
after uptake in the low pH environment of the anterior
gastrointestinal tract, allowing interaction with other
nutrient and ingredient potentially leading to impaired
absorption, and thus decreased bioavailability [22].
The fecal Zn concentrations were not measured in this

trial due to limited financial resources, but it seems
likely that fecal Zn concentrations in feces from piglets
receiving treatment B would be lower than Zn concen-
trations in feces from piglets receiving treatment A, as
shown in previous studies [83–85].
Five farms with a history of E. coli associated enteric dis-

ease were specifically included in this study. Pathogenic E.
coli strains were detected at all farms. During the course
of the trial, clinical signs of disease were not evident on
Farms 1 and 2. At Farm 3, one piglet died due to haemor-
rhagic enteritis associated with E. coli whilst Farms 4 and
5 experienced outbreaks of E. coli-associated peracute-to-
acute PWD and ED, respectively. The differences in
clinical presentations may be explained by the fact that
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different pathotypes of E. coli were present at the different
trial farms (Table 3). Possible coinfections with e.g.
rotavirus [86], management, feeding and hygiene policies
[87–89] may also have influenced the general enteric
health and disease susceptibility among piglets at Farms 4
and 5. The detection of coinfection-causing agents was
not included in this study. The passive protection of
piglets against E. coli infections through vaccination of the
dams decreases with ageing and lactogenic immunity sud-
denly stops at weaning [90]. It is likely that subclinical
infections of the surviving weaned piglets at Farms 4 and
5 affected ADG. Reduced weight gain is indeed associated
with subclinical infections in pigs [91–93]. Tables 4 shows
that the ADG/ piglet in treatment groups A to C were low
at Farms 4 and 5 where ETEC and STEC expressing the
virulence factors LT:STb:F4 and Stx2e:F18 were found.
Mortality rates of 2.9% at Farm 4 and 6.2% at Farm 5
during the first 2 weeks after weaning occurred in spite of
prophylactic treatment with ZnO enriched peat. This may
suggest that both uncoated or microencapsulated ZnO-
concentrations in peat require optimization to achieve

broader preventive effects on piglets at farms with differ-
ent infection pressure and E. coli variants.
The multiplex PCR results show that ETEC F4+ were

found at both Farms 2 and 4. There was a clear differ-
ence in strain virulence at these farms, which may be
explained by differing management strategies. At Farm 2
a strict cleaning and disinfection regime between batches
was maintained. This was not possible at Farm 4 due to
poor growth rates and consequently a reduced duration
of empty periods between batches. Additionally, a large
amount of flies were present at Farm 4. Flies are known
to transmit bacteria including E. coli [94, 95].
The actual daily consumption of peat per piglet was not

feasible to measure in this study because piglets were kept
in groups. Instead, an estimated daily piglet Zn consump-
tion rate was calculated, by dividing the amount of daily
added Zn in peat preparations by the number of piglets
per pen [96, 97]. This field trial demonstrated that signifi-
cant growth promoting and diarrhea reducing effects were
maintained by adding 2819 mg uncoated ZnO/ l of peat
(Treatment A). Pens of piglets receiving 2 L of peat per

Table 4 Average daily gain (ADG) results at Farms 1 to 5

Farm Treatment Trial duration (days) ADG (g/ day) SEM n= iADG (g/ day) SEM n=

1 A 21 270 12 6 270 12 57

B 300 11 6 300 11 54

C 280 12 6 280 12 57

2 A 15/15 400 12 9 410a 18 12

B 410 11 9 390 21 12

C 340 10 9 340 31 12

D 330 12 9 290b 27 12

3 A 15/17 400 5 6 410a 31 6

B 370 10 6 370 29 6

C 320 8 6 270 23 6

D 370 8 6 230b 23 6

4 A 15 220 3 18 # # #

B 210 2 18 # # #

C 190 4 17 # # #

5 A 14/15 230 8 12 # # #

B 240 8 12 # # #

C 210 7 12 # # #

The pen based and individual weight measurements are expressed as ADG/ piglet and iADG, respectively. Treatment A was peat containing 2819 mg/L uncoated
ZnO (2255 mg Zn/L). Treatment B was peat containing 321 mg/L coated ZnO (257 mg Zn/L). Treatment C was commercial peat without ZnO-additives (36 mg Zn/L).
Treatment D implied no feeding of peat (control groups). Individual measurements of all piglets were included at Farm 1, both group and selected individual weight
registrations were included at Farms 2 and 3. Group weight registrations only were included at Farms 4 and 5. Significant differences (P < 0.05) between iADG at the
Farms 2 and 3 are indicated by different superscripts (a or b). At Farm 3, two trials with differing duration were conducted without affecting the weight gain of piglets
significantly (data not shown). Variation in trial durations were based on the need for farmers compliance to participate in the trials and the practicality at each farm.
Duration variation was corrected for in statistical analyses
#Not included in the trial
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day, received 5638 mg ZnO per day, which equals to
4510 mg Zn. Each piglet (10 to 12/ pen) should theoretic-
ally consume approximately between 451 mg Zn and
376 mg Zn per day. Treatments B equated to an approxi-
mate daily Zn uptake per piglet between 51 mg Zn per
day and 43 mg Zn per day. Treatment C equated to an
approximate daily Zn uptake per piglet between 7 mg Zn
per day and 6 mg Zn per day. These levels of Zn uptake
per piglet per day are much lower than the uptake levels
when applying conventional pharmacological concentra-
tions of ZnO in pelleted feed to piglets. If assuming a
mean daily feed consumption of 450 g/ day during the
first 14 days after weaning (32 days old piglets) [98, 99],
piglets receiving conventional pharmacological levels of
uncoated ZnO between 2000 and 3500 ppm (1600 and
2800 ppm Zn, respectively) added to their basal diet will
consume between 720 and 1260 mg Zn per day,
respectively. A comparison of feeding Peat A or Peat B
with a diet added 2000 ppm uncoated ZnO (or 1600 ppm
Zn) implicates a reduction of dietary Zn by 72.0% (Peat A)
or even 96.8% (Peat B).

Conclusions
To the author’s knowledge, this is the first field study
undertaken to identify effects of supplementation with
both uncoated and coated ZnO-enriched peat on fecal
consistency and weight gain. This study has practical
relevance for the control of enteric diseases in weaned
piglets managed under European pig production sys-
tems. Since higher iADG was observed in a relatively
small sample size of piglets receiving treatment A, our
findings support the need for further research, con-
ducted on a larger number of farms and under varying
management conditions. The determination of optimal
ZnO concentrations in peat preparations for growth-
enhancing as well as PWD and ED preventive effects
needs further investigation. Additionally, our promising
findings support further investigation on coated ZnO in
a larger randomized clinical trial, either added to peat or
concentrates. Coated ZnO represents an alternative to
reduce the negative impact on the environment and a
way of counteracting potential co-selection for antibiotic
resistance in bacteria.
In light of the current discussion regarding a possible

ban on the use of ZnO in animal feed, it is important to
emphasize that the usage of orally administered veterin-
ary medicinal products containing ZnO should be re-
duced. Simultaneously, optimization of management
strategies at pig producing units should always be strived
for prior to applying ZnO as a preventive measure to
avoid PWD or ED.
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