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Abstract

In this paper we prove that for a stochastic Runge–Kutta method, the conditions for preserving quadratic
invariants work as simplifying assumptions. For such methods, the method coefficients only have to satisfy
one condition for each unrooted tree. This is a generalization of the result obtained for deterministic Runge–
Kutta methods by Sanz-Serna and Abia in 1991.
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1. Introduction

Over the last 25 years, numerical solution of stochastic differential equations (SDEs) has been a quite
active field of research. Results and theories known from the literature on deterministic ordinary differential
equations (ODEs) have been adapted to the stochastic setting. Recently, there has been a growing interest
for stochastic methods preserving symplecticity, see e.g. [1, 2, 3, 4, 5]. In this paper, we will show that a5

quite elegant result by Sanz-Serna and Abia [6] for symplectic Runge–Kutta methods for ODEs also applies
to SDEs. An s-stage Runge–Kutta method with coefficients {aij}si,j=1 and weights {bi}si=1 is symplectic,
and thus preserves quadratic invariants, if biaij + bjaji = bibj for all 1 ≤ i, j ≤ s. As proved in [6], this
condition also serves as a simplifying assumption; when satisfied, only one order condition per unrooted tree
remains to be satisfied. In this paper, we prove that this result can be extended to stochastic Runge–Kutta10

methods.
Consider the Stratonovich SDE

X(t) = x0 +

m∑
l=0

∫ t

t0

gl(X(s)) ◦ dWl(s), (1)

where W0(t) = t and Wl(t), l = 1, . . . ,m are independent Wiener processes. We assume that the coefficients
gl : Rd → Rd are sufficiently smooth and that gl and g′lgl satisfy a linear growth condition. The SDE is then
guaranteed to have a unique solution. A differentiable function I : Rd → R is called an invariant of (1) if it
satisfies15

∇I(x)T gl(x) = 0, for l = 0, 1, . . . ,m

for all x. In this paper, we are only interested in methods preserving quadratic invariants, that is I(x) =
xTCx where C is a symmetric, constant d× d matrix.
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For the numerical solution of the SDE (1) we consider a stochastic Runge–Kutta (SRK) method defined
by

Hi = Yn +

m∑
l=0

s∑
j=1

Z
(l)
ij gl(Hj), (2a)

Yn+1 = Yn +

m∑
l=0

s∑
i=1

γ
(l)
i gl(Hi) (2b)

where the coefficients Z
(l)
ij and γ

(l)
i include random variables which depend on the stepsize h.

The set of conditions for preserving quadratic invariants (or symplectic structure) of SRKs has been
derived by Milstein et al. [1] for SDEs with additive noise and by Ma et al. [2] for problems with multiplicative20

scalar noise. The full problem was discussed by Hong et al. in [3], in which the following result has been
proved:

Theorem 1. If an SRK-method (2) satisfies

γ
(l)
i Z

(k)
ij + γ

(k)
j Z

(l)
ji = γ

(l)
i γ

(k)
j for all i, j = 1, . . . , s and k, l = 0, . . . ,m, (3)

then it conserves invariants of the form I(x) = xTCx + bTx + c where C is a symmetric, constant d × d
matrix, b is a constant vector of dimension d and c is a constant.25

Condition (3) is what we will use as our simplifying assumption. The necessary background on order
theory for SRKs in terms of B–series and rooted trees is given in Section 2. The main result is derived in
Section 3. Section 4 is devoted to a numerical experiment, in which the stochastic rigid body problem is
solved by a stochastic Gauss method.

2. Order conditions for SRKs30

Order conditions for the method (2) by use of multicolored rooted trees have been developed by Burrage
and Burrage [7, 8, 9] to study strong convergence and by Komori [10] and Rößler [11, 12] for weak conver-
gence. A unified theory, covering both Itô and Stratonovich SDEs, and weak and strong convergence was
developed in [13], and we will use this approach in the following.

In [13] a stochastic B–series for (1) is defined as a formal series:35

B(φ, x0;h) =
∑
τ∈T

α(τ) · φ(τ)(h) · F (τ)(x0), (4)

where T is the set of m+ 1-colored rooted trees T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Tm defined recursively as follows:

a) The graph •l = [∅]l with only one vertex of color l belongs to Tl.

Let τ = [τ1, τ2, . . . , τκ]l be the tree formed by joining the subtrees τ1, τ2, . . . , τκ each by a single branch to a
common root of color l.

b) if τ1, τ2, . . . , τκ ∈ T , then τ = [τ1, τ2, . . . , τκ]l ∈ Tl.40

Thus, Tl is the set of trees with an l-colored root, and T is the union of these sets. For a tree τ ∈ T the
elementary differential F (τ)(x0) is defined by

F (∅)(x0) = x0,

F (•l)(x0) = gl(x0), (5)

F (τ = [τ1, . . . , τκ]l)(x0) = g
(κ)
l (x0)

(
F (τ1)(x0), . . . , F (τκ)(x0)

)
,
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and α is given by

α(∅) = 1, α(•l) = 1, α(τ = [τ1, . . . , τκ]l) =
1

r1! . . . rq!

κ∏
k=1

α(τk),

where r1, . . . , rq count equal trees among τ1, . . . , τκ. The elementary weight functions ϕ are stochastic
integrals or random variables that depend on the stepsize h. Following [9] the order of a tree is given by

ρ(∅) = 0, ρ(τ = [τ1, . . . , τκ]l) =

κ∑
k=1

ρ(τk) +

{
1 for l = 0,
1
2 otherwise.

The number of nodes in a tree is denoted |τ |. The following theorem was proved in [13]:

Theorem 2. The exact solution X(t0 + h) of (1) as well as the numerical solution Y1 and the stage values45

Hi, i = 1, . . . , s from (2) can be written as stochastic B–series,

X(t0 + h) = B(ϕ, x0;h), Hi = B(Φi, x0;h) and Y1 = B(Φ, x0;h)

with

ϕ(∅)(h) = 1, ϕ(•l)(h) = Wl(h), ϕ(τ)(h) =

∫ h

0

( κ∏
k=1

ϕ(τk)(s)

)
◦ dWl(s), (6a)

Φi(∅)(h) = 1, Φi(•l)(h) =

s∑
j=1

Z
(l)
ij , Φi(τ)(h) =

s∑
j=1

Z
(l)
ij

κ∏
k=1

Φj(τk)(h), i = 1, . . . , s (6b)

Φ(∅)(h) = 1, Φ(•l)(h) =

s∑
i=1

γ
(l)
i , Φ(τ)(h) =

s∑
i=1

γ
(l)
i

κ∏
k=1

Φi(τk)(h), (6c)

where τ = [τ1, . . . , τκ]l.

Remark 1. By replacing Stratonovich integrals with Itô integrals, this theorem holds for Itô SDEs as well.

Example 1. Given the tree τ = [[•1, •1]0, [•2]2]1 ∈ T . Let ∈ T0 (deterministic), ∈ T1 and ∈ T2
(stochastic). Then the graphical representation of τ is given to the left, and its corresponding terms to the50

right.

τ =

F (τ) = g′′1
(
g′′0 (g1, g1), g′2g2

)
,

α(τ) = 1/2, ρ(τ) = 7/2, |τ | = 6,

ϕ(τ)(h) =

∫ h

0

(∫ s

0

W 2
1 (u) du ·

∫ s

0

W2(u) ◦ dW2(u)

)
◦ dW1(s),

Φ(τ)(h) =

s∑
i,j,l,m,n,o=1

γ
(1)
i Z

(0)
ij Z

(1)
jl Z

(1)
jmZ

(2)
in Z

(2)
no .

The local order of an SRK can now be decided by comparing the B–series of the exact and the numerical
solution. The global order is given by the following theorem:

Theorem 3. The method has mean square global order p if

Φ(τ)(h) = ϕ(τ)(h) +O(hp+
1
2 ), ∀τ ∈ T with ρ(τ) ≤ p (7a)

EΦ(τ)(h) = Eϕ(τ)(h) +O(hp+1), ∀τ ∈ T with ρ(τ) ≤ p+
1

2
(7b)

and weak consistency of order p if and only if55

E

κ∏
j=1

Φ(τj)(h) = E

κ∏
j=1

ϕ(τj)(h) +O(hp+1) whenever

κ∑
j=1

ρ(τj) ≤ p+
1

2
. (8)
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u = [u1]l1 v = [v1, v2]l2 u ◦ v v ◦ u

ϕ(u) ϕ(v) ϕ(u ◦ v) ϕ(v ◦ u)
q q q q∫ h

0
ϕ(u1)dWl1

∫ h
0
ϕ(v1)ϕ(v2)dWl2

∫ h
0
ϕ(u1)ϕ(v)dWl1

∫ h
0
ϕ(u)ϕ(v1)ϕ(v2)dWl2

Figure 1: The Butcher product of two trees u and v and their elementary weight functions.

We assume that the method (2) is constructed such that Φ(τ)(h) = O(hρ(τ)) ∀τ ∈ T , where the O(·)-notation
refers to the L2(Ω)-norm and h→ 0. The result (7) was first proved in [8], the second is a consequence of a
result of Milstein [14], see [13] for details.

3. Simplifying assumptions and unrooted trees

In this section, we present the main result of this paper: When the condition of Theorem 1 is satisfied,60

the method coefficients have to satisfy no more than one condition for each unrooted tree to satisfy (7a).
The key ingredient in this is the Butcher product of two trees u, v ∈ T \ ∅. If

u = [u1, . . . , uκ1 ]l1 ,

then the Butcher product is defined as

u ◦ v = [u1, . . . , uκ1
, v]l1 ,

the tree obtained by adding v as a branch to the root of u. This is illustrated in Figure 1, which also
illustrates the first part of the following lemma:65

Lemma 4. For all u ∈ Tl1 \ ∅ and v ∈ Tl2 \ ∅, l1, l2 = 0, . . . ,m, we have

ϕ(u)(h) · ϕ(v)(h) = ϕ(u ◦ v)(h) + ϕ(v ◦ u)(h). (9a)

If the SRK preserves quadratic invariants by satisfying (3) then

Φ(u)(h) · Φ(v)(h) = Φ(u ◦ v)(h) + Φ(v ◦ u)(h). (9b)

Proof. Let u = [u1, . . . , uκ1
]l1 ∈ Tl1 \ ∅ and v = [v1, . . . , vκ2

]l2 ∈ Tl2 \ ∅ for l1, l2 = 0, . . . ,m. The
first statement (9a) is a direct consequence of the integration by parts rule valid for Stratonovich integrals70

together with the definition of ϕ from Theorem 2:

ϕ(u)(h) · ϕ(v)(h) =

∫ h

0

ϕ(v)(s) ◦ d
(
ϕ(u)(s)

)
+

∫ h

0

ϕ(u)(h) ◦ d
(
ϕ(v)(s))

4



with d
(
ϕ(u)(s)

)
=
∏κ1

k=1 ϕ(uk)(s)◦dWl1(s) and d
(
ϕ(v)(s)

)
=
∏κ2

k=1 ϕ(vk)(s)◦dWl2(s). For the second part,
(9b), use (6b), (6c) together with (3) to obtain

Φ(u)(h) · Φ(v)(h) =

s∑
i=1

γ
(l1)
i

κ1∏
k1=1

Φi(uk1)(h) ·
s∑
j=1

γ
(l2)
j

κ2∏
k2=1

Φj(vk2)(h)

=

s∑
i=1

s∑
j=1

(γ
(l1)
i Z

(l2)
ij + γ

(l2)
j Z

(l1)
ji )

κ1∏
k1=1

Φi(uk1)(h)

κ2∏
k2=1

Φj(vk2)(h)

=

s∑
i=1

γ
(l1)
i Φi(v)(h)

κ1∏
k1=1

Φi(uk1)(h) +

s∑
j=1

γ
(l2)
j Φj(u)(h)

κ2∏
k2=1

Φj(vk2)(h)

= Φ(u ◦ v)(h) + Φ(v ◦ u)(h),

which proves the lemma.

We are now ready to present the main result of this paper. Given a τ ∈ T , let τ̂ be the corresponding
unrooted tree, and let T̂ (τ̂) ⊂ T be the set of trees obtained from τ̂ by assigning one of the nodes as the
root, see Figure 2 for an illustration. We can now state the following theorem:75

Theorem 5. Assume that (3) is satisfied. Let τ̂ ∈ T̂ be an unrooted tree of order q ≤ p. If ϕ(τ)(h) =

Φ(τ)(h) +O(hp+
1
2 ) for one rooted tree τ ∈ T̂ (τ̂) and all rooted trees of order less than q, then it holds that

ϕ(τ)(h) = Φ(τ)(h) +O(hp+
1
2 ) for all τ ∈ T̂ (τ̂).

Proof. For trees with one node the theorem is trivially true. Let τ̂ be an unrooted tree of order q and two
or more nodes, and let τ be a corresponding rooted tree τ ∈ T̂ (τ̂). Pick one branch v from the root of τ and
let the remaining part of τ be u, so that τ = u ◦ v. Clearly, the orders of u and v are less than the order of
τ , and by Lemma 4 and the assumptions of the Theorem we then have

ϕ(v ◦ u)(h) = Φ(v ◦ u)(h) +O(hp+
1
2 )

Because the choice of branch v was arbitrary, this means that this condition is satisfied for all trees with the
same graph as τ , but with a root shifted to one of its neighbouring nodes. A repeated use of this argument80

proves the result. The process is illustrated in Figure 2.

Table 1 shows the number of rooted and unrooted trees of order 2.5 and less in the case of one stochastic
process.

ρ(τ) Rooted Unrooted
0.5 1 1
1.0 2 2
1.5 4 2
2.0 10 5
2.5 27 9

Table 1: For one stochastic process, m = 1, the second and third column show the number of different rooted and unrooted
trees, respectively, that have order ρ(τ) ≤ 2.5.

4. Numerical experiment

Although application of Theorem 5 reduces the number of order conditions significantly, the conditions
of Theorem 1 are hard to fulfill. In the case of scalar noise, methods of strong order 1 can be found in e.g.
[2, 3, 4] and a weak order 2 method is given in [3]. And as an experiment, we will see how the extension of
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Figure 2: An unrooted tree τ̂ to the left, and some of the trees in T̂ (τ̂). The figure also illustrates the process described in the
proof of Theorem 5.

the Gauss methods performs when solving a stochastic rigid body problem [15]. The problem with scalar
noise is given by:

dX = A(X)Xdt+ g1(X) ◦ dW (10)

with

A(X) =

 0 X3/I3 −X2/I2
−X3/I3 0 X1/I1
X2/I2 −X1/I1 0

 .

With g1 = 0 this is the deterministic rigid body problem described in [16], and we will here use the same
parameters: I1 = 2, I2 = 1 and I3 = 2/3, and as initial values X(0) = (cos(1.1), 0, sin(1.1))T . In the
stochastic case, we consider two different diffusion processes:

P1 : g1(X) = A(X)X, (11a)

P2 : g1(X) = (X2,−X1, 0). (11b)

Problem P1 conserves the Hamiltonian85

H(X) =
1

2

(
X2

1

I1
+
X2

2

I2
+
X2

3

I3

)
, (12)

and both problems preserve the Casimir

C(X) = X2
1 +X2

2 +X2
3 . (13)

The problems are solved by the straightforward generalization of the Gauss method

s = 1 : Z(l) = 1
2Jl, γ(l) = Jl (14a)

s = 2 : Z(l) =

(
1
4

1
4 −

√
3
6

1
4 +

√
3
6

1
4

)
Jl, γ(l) =

(
1
2

1
2

)
Jl (14b)

for l = 0, 1. The methods are referred to as Gauss(s), with s = 1, 2. By Theorem 1 they both preserve
quadratic invariants. And due to the lack of a J01 term, they are both only of mean square order 1. For
comparison, we have also included Platen’s method [7]:

Z(l) =

(
0 0
1 0

)
Jl, l = 0, 1, γ(0) =

(
1 0

)
J0, γ(1) =

(
1
2

1
2

)
J1. (15)

This method is also of mean square order 1, but does not preserve quadratic invariants.
The Gauss method with s = 2 was used to solve the deterministic rigid body problem, as well as the

two stochastic cases P1 and P2. The result of one path is given in Figure 3, (a)-(c). Here, we clearly can
see that for P1 as well as in the deterministic case, the solution stays on the intersection between the two90

manifolds given by H and C, while for P2, it will only stay at the second one. When Platen’s method (15)
is applied to P1, none of the invariants are preserved, as shown in (d).
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(a) (b)

(c) (d)

Figure 3: Numerical simulation of the stochastic rigid body problem and the two invariants H (blue) and C (gold). The
pictures show the result of Gauss(2) applied to (a) the deterministic problem, (b) P1 and (c) P2. In (d) Platen’s method is
applied to P1. All simulations are run for 100 steps with the stepsize h = 0.1.

Figure 4 shows the convergence plots for the Gauss methods as well as Platen’s method applied to the
two stochastic rigid body problems. Here, the interval of integration is [0, T ] with T = 0.1. The reference
solution is computed by the Gauss(2) method using the stepsize h = 2−11 · T , and M = 1000 independent95

simulations are used for the expectation. A mean-square order 1 is observed in all cases but one. When
Gauss(2) is applied to P1, the observed order is 2. This problem is a single integrand problem, in the sense
that g1 = σg0 for some constant σ. In this case the elementary differentials F (τ) are the same for all trees
τ with the same graph and the same number of deterministic and stochastic nodes. To obtain order 2 it is
then sufficient that the sum of the elementary weight functions over such trees are the same for the exact and100

the numerical solutions. This fact is explored by Debrabant et al. [17], where it is proved that all stochastic
Gauss methods of the form (14) are of mean square global order s for single integrand problems.

The Gauss methods are implicit. For the convergence plots, the underlying nonlinear algebraic equations
were solved by a modified Newton method. Even without truncation of the random variables [1], the
iterations converged for stepsizes h ≤ 0.0125. For the simulations in Figure 3 in which case h = 0.1, the105

nonlinear equations were solved by MATLABs fsolve, which managed to find the solutions of each step.

5. Concluding remarks

In this paper we have proved that for stochastic Runge–Kutta methods fulfilling condition (3) it is
sufficient to consider the order conditions (7a) related to unrooted trees. This does lead to a significant
reduction of order conditions. However, the conditions (3) are very restrictive, and we have so far not110

been able to construct methods of mean square order higher than 1, even in the case of scalar noise. The
numerical example indicates however that the situation is more optimistic for single integrand problems,
this is further explored in [17].
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10-6
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10-3
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−Y
(T
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Platen,      P1: p=0.99

Platen,      P2: p=0.99

Gauss(1), P1: p=0.99

Gauss(1), P2: p=0.99

Gauss(2), P1: p=1.98

Gauss(2), P2: p=1.01

Figure 4: Mean-square error of Platen’s method as well as the two Gauss methods applied to the two rigid body problems.
The dashed lines are reference lines with slopes 1 and 2.
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[12] A. Rößler, Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of
stochastic differential equations, Stoch. Anal. Appl. 24 (1) (2006) 97–134. doi:10.1080/07362990500397699.
URL http://dx.doi.org/10.1080/07362990500397699

[13] K. Debrabant, A. Kværnø, B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute155

their internal stage values, SIAM J. Numer. Anal. 47 (1) (2008/09) 181–203. doi:10.1137/070704307.
URL http://dx.doi.org/10.1137/070704307

[14] G. N. Milstein, Numerical integration of stochastic differential equations, Vol. 313 of Mathematics and its Applications,
Kluwer Academic Publishers Group, Dordrecht, 1995, translated and revised from the 1988 Russian original.

[15] A. Abdulle, D. Cohen, G. Vilmart, K. C. Zygalakis, High weak order methods for stochastic differential equations based160

on modified equations, SIAM J. Sci. Comput. 34 (3) (2012) A1800–A1823. doi:10.1137/110846609.
URL http://dx.doi.org/10.1137/110846609

[16] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration, Vol. 31 of Springer Series in Computational Mathe-
matics, Springer, Heidelberg, 2010.

[17] K. Debrabant, A. Kværnø, Cheap arbitrary high order methods for single integrand SDEs, BIT Num. Math, Article in165

Press (2016). doi:10.1007/s10543-016-0619-8.
URL http://dx.doi.org/10.1007/s10543-016-0619-8

9

http://dx.doi.org/10.1016/j.apnum.2006.02.002
http://dx.doi.org/10.1016/j.apnum.2006.02.002
http://dx.doi.org/10.1016/j.apnum.2006.02.002
http://dx.doi.org/10.1081/SAP-200029495
http://dx.doi.org/10.1081/SAP-200029495
http://dx.doi.org/10.1081/SAP-200029495
http://dx.doi.org/10.1080/07362990500397699
http://dx.doi.org/10.1080/07362990500397699
http://dx.doi.org/10.1080/07362990500397699
http://dx.doi.org/10.1080/07362990500397699
http://dx.doi.org/10.1080/07362990500397699
http://dx.doi.org/10.1137/070704307
http://dx.doi.org/10.1137/070704307
http://dx.doi.org/10.1137/070704307
http://dx.doi.org/10.1137/070704307
http://dx.doi.org/10.1137/070704307
http://dx.doi.org/10.1137/110846609
http://dx.doi.org/10.1137/110846609
http://dx.doi.org/10.1137/110846609
http://dx.doi.org/10.1137/110846609
http://dx.doi.org/10.1137/110846609
http://dx.doi.org/10.1007/s10543-016-0619-8
http://dx.doi.org/10.1007/s10543-016-0619-8
http://dx.doi.org/10.1007/s10543-016-0619-8

	Introduction
	Order conditions for SRKs
	Simplifying assumptions and unrooted trees
	Numerical experiment
	Concluding remarks

