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Current-source density (CSD) analysis is a well-established method
for analyzing recorded local field potentials (LFPs), that is, the
low-frequency part of extracellular potentials. Standard CSD theory is
based on the assumption that all extracellular currents are purely
ohmic, and thus neglects the possible impact from ionic diffusion on
recorded potentials. However, it has previously been shown that in
physiological conditions with large ion-concentration gradients, dif-
fusive currents can evoke slow shifts in extracellular potentials. Using
computer simulations, we here show that diffusion-evoked potential
shifts can introduce errors in standard CSD analysis, and can lead to
prediction of spurious current sources. Further, we here show that the
diffusion-evoked prediction errors can be removed by using an im-
proved CSD estimator which accounts for concentration-dependent
effects.

NEW & NOTEWORTHY Standard CSD analysis does not account
for ionic diffusion. Using biophysically realistic computer simula-
tions, we show that unaccounted-for diffusive currents can lead to the
prediction of spurious current sources. This finding may be of strong
interest for in vivo electrophysiologists doing extracellular recordings
in general, and CSD analysis in particular.

current source density; electrodiffusion; extracellular potential; ion
diffusion

FOR MORE THAN 60 years, current-source density (CSD) analysis
has been a standard way of analyzing local field potentials
(LFPs) recorded in the brain (Mitzdorf 1985; Nicholson and
Freeman 1975; Pettersen et al. 2006; Pitts 1953). The CSD is
easier to interpret than the LFP signals, as it is a quantification
of currents entering and leaving neuronal membranes (Pet-
tersen et al. 2012), and as effects from volume conduction
ideally are absent.

The theory of CSD estimation is based on volume-conductor
theory. Under the assumptions that 1) all electrical currents in
the extracellular space (ECS) are driven by electrical fields and

2) the electrical conduction is ohmic, a Poisson-like mathemat-
ical equation can be derived for the estimation of the CSD
based on simultaneous recordings of LFP in three spatial
dimensions. Further, in traditional CSD analysis the variation
of the CSD in the lateral directions is assumed negligible so
that the estimator reduces to a double spatial derivative (Mitz-
dorf 1985; Nicholson and Freeman 1975; Pitts 1953). In more
recently developed methods such as the iCSD (Pettersen et al.
2006) and kCSD methods (Potworowski et al. 2012), this
restriction of no lateral-activity variation is lifted, but the
estimators are still based on the same Poisson-like mathemat-
ical equation assuming only electrically driven currents.

However, also non-ohmic currents could in principle be
present in the ECS. For example, it is well known that longer
periods of intense activity may generate pronounced concen-
tration gradients in the ECS (Kofuji and Newman 2004).
Previous studies have suggested that diffusion of charged ions
along extracellular gradients may influence the LFP either
directly by evoking diffusion potentials (Dietzel et al. 1989;
Halnes et al. 2016) or indirectly by introducing (Warburg-type)
filtering effects in the impedance of the extracellular medium
(Bédard and Destexhe 2009; Bédard et al. 2010). Diffusive
influences on the LFP imply a violation of a key assumption
behind most frameworks used in CSD analysis to date.
Whereas the implications of putative filtering effects for CSD
analysis have been investigated theoretically (Bédard and
Destexhe 2011), no previous study has explored the effect of
diffusion potentials on CSD analysis.

In the present paper we explore by means of biophysical
modeling 1) the error introduced in CSD estimates by neglect-
ing effects from diffusion potentials and 2) how the present
CSD-analysis methods can be extended to eliminate or reduce
this error. We use a previously developed computational model
to simulate the ECS dynamics of the ion concentrations (ck)
and potential (V) surrounding a small population of pyramidal
neurons (Halnes et al. 2016). The model is based on the
Kirchhoff-Nernst-Planck (KNP) formalism (Halnes et al.
2016) which accounts for effects of both diffusion and electri-
cal migration on the ECS dynamics. In this in silico scenario, the
true CSD (i.e., the spatiotemporal distribution of neuronal trans-
membrane currents) is known, and can be compared with the
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conventional CSD estimate based on V, and an alternative CSD
estimate based on V and ck (see METHODS). The standard CSD
estimate is found to deviate dramatically from the true CSD when
extracellular concentration gradients become large, whereas the
alternative CSD estimate is shown to accurately predict the true
CSD (see RESULTS).

METHODS

Below, we first present the CSD theory for the cases without and
with extracellular diffusion being accounted for. Next, we present the
modeling framework used to simulate the output of a neuronal
population (true CSD), and the extracellular variables V and ck (used
in CSD estimates).

CSD estimates. A general starting point when deriving the CSD
theory is that of current conservation in the ECS (Pettersen et al.
2012):

� · J
→

� CSD. (1)

Here J
→

is the ECS current density, and CSD is the volume density of
cellular current sources. If the ion dynamics in the ECS is described
by the Nernst-Planck equation for electrodiffusion, the net electrical
current is (Halnes et al. 2013):

J
→

� �� � V � F�
k

(zkDk � ck). (2)

Here, the first term on the right is the ohmic current, with � being the
extracellular conductivity. The second term is the diffusive current.
The sum is taken over all ion species k, characterized by their
concentrations (ck), valences (zk) and diffusion constants (Dk). F is
Faraday’s constant. With this expression for J

→
, Eq. 1 becomes:

CSDV,c � � � · (� � V) � F�
k

(zkDk�
2ck). (3)

CSDV,c represents the most complete CSD estimate considered here.
In the following, we also consider two alternative CSD estimates. If
we only include the first term on the right hand side of Eq. 3, we get

CSDV � � � · (� � V) (4)

which is the classical CSD estimate from standard theory (Mitzdorf
1985; Nicholson and Freeman 1975; Pettersen et al. 2006). To neglect
diffusion in CSD analysis is thus equivalent to assume that the second
term on the right-hand side of Eq. 3 is much smaller than the first
term. If concentration gradients are sufficiently large, this assumption
can be violated, and CSDV will become an inaccurate CSD estimate.

We note that in the KNP simulations (used here), the ECS con-
ductivity � was a local function of ion concentrations, whereas � is
typically assumed to be constant in in classical CSD theory. However,
concentration-dependent variations of � were relatively small in our
simulations, and in additional test simulations we verified that the
choice between a constant or nonconstant � was not important for our
main results (see also Halnes et al. 2016).

For completeness, we also included a CSD estimate based solely on
the last term in Eq. 3:

CSDc � �F�
k

(zkDk�
2ck). (5)

CSDc is based solely on ionic diffusion and is not intended as a serious
candidate for a CSD estimator. It was included because it shows in
isolation the role of ionic diffusion in CSD analysis.

The CSD estimates and the true CSD (see below) were low-pass
filtered with a threshold value of 500 Hz, a typical cut-off frequency
for LFPs (Einevoll et al. 2013).

Computational model. The ECS dynamics of V and ck used in the
CSD analysis were computed using a previously published model
(Halnes et al. 2016). Since we here used the same simulation setup as

in the orginal study, we only briefly present the model below, and
refer to the original work for further model details.

The model simulated the ECS dynamics surrounding a small
population of 10 pyramidal neurons, based on a well-established
neuron model (Hay et al. 2011) implemented in the NEURON/Python
simulation environment (Hines et al. 2009). The population was
driven by Poissonian synaptic input through 10,000 synapses at each
neuron, uniformly distributed across the membranes. The neurons
received the same input statistic during the full simulation. It took ~1 s
from when the input was turned on until each individual neuron had
settled into a steady-state firing activity with an average firing rate of
~5 action potentials per second, a typical firing rate for excitatory
cortical neurons (de Kock and Sakmann, 2009). Focusing only on the
steady-state scenario, we defined t � 0 to be 1.6 s after the stimulus
was turned on. We simulated the extracellular dynamics (of ion
concentrations and V) and performed CSD analysis only for t � 0. The
simulations produced time series of fluxes of different ion species
entering/leaving the ECS at different spatial locations through synap-
tic currents and nine different voltage- and Ca2�-activated ion chan-
nels. The included ion species were Na�, K�, Ca2�, and X�, where
the latter represents a nonspecified anion. Since diffusion typically
takes place on a long time scale, the simulated time was quite long,
i.e., 84 s. Active transporters were not included in the model (Hay et
al. 2011).

Motivated by the layered structures of brain regions such as cortex
and hippocampus, we assumed lateral homogeneity (Halnes et al.
2016). The model represents a one-dimensional piece of brain tissue,
meaning that variation of V and ck occurred only in one spatial
direction, i.e., the depth direction z. The piece of tissue was subdi-
vided into 15 subvolumes (hereby called voxels) along the z-axis, each
100 �m in height (Fig. 1A1). The voxel volume was Vvox � 60,000
�m3, and gave an ECS volume per neuron that is typical for cortical
tissue (Halnes et al. 2016). The neurons were oriented so that they
occupied the interior 13 voxels, while the top (n � 15) and bottom
(n � 1) voxels were auxiliary compartments where ck was fixed at
baseline levels. The extracellular dynamics of ck and V were computed
with the KNP-formalism (Halnes et al. 2013; Halnes et al. 2015), and
accounted for the neuronal output as well as electrical migration and
diffusion of ions in the ECS (Halnes et al. 2016).

The NEURON simulation gave us the true current-source density
CSDtrue, defined as

CSDtrue � Im ⁄ Vvox, (6)

where Im denotes the total transmembrane current Im (sum of capac-
itive current and all ionic currents) into the ECS of a given voxel.
CSDtrue could be compared with the three CSD estimates based on
extracellular variables (Eqs. 3–5).

RESULTS

Figure 1 shows the dynamics in the ECS resulting from the
population activity described above. The neuronal exchange of
ions with their surroundings caused ECS concentration gradi-
ents to gradually develop over time (Fig. 1, A2–A5). The most
pronounced concentration shifts were the shifts in Na� (Fig.
1A2) and K� (Fig. 1A3) concentrations, which during the 84-s
simulation were shifted by up to ~7 mM relative to the basal
concentrations. The concentration shifts were largest surround-
ing the somatas (voxel n � 3). This was due to the action
potential-generating currents (Na� uptake and K� release)
being largest there.

Diffusion induces shifts in extracellular potentials. The neu-
rodynamics evoked voltage changes in the ECS. On a slow
time scale, there was an almost sustained voltage gradient
across the tissue depth, as we see in Fig. 1A6, where V has been
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temporally averaged over the 21-s time intervals indicated in
the legend. The black, thick line represents a simulation where
diffusive effects on V were not accounted for. In this case, the
average gradients in the four (21 s) time intervals were approx-
imately identical and were indistinguishable by eye. This was
because the neurons received the inputs with the same statistics
throughout the simulation, so that the transmembrane current
sources were effectively constant at this long time scale.
Similar sustained voltage profiles that vary by a few microvolts
across the depth of the cortex have been seen in experiments
(see, e.g., Cordingley and Somjen 1978; Dietzel et al. 1989).

The remaining curves in Fig. 1A6 represent a simulation
where diffusive effects on V were accounted for. In this case,
V was affected by the concentration gradients that developed in
the system, and the average gradients in the four 21-s intervals
were not identical. Outside the somatas (voxel n � 3), V was
shifted by ~0.2 mV during the simulation. Such diffusion-

evoked potential shifts are well known, and their genesis was
thoroughly explored in Halnes et al. (2016).

Diffusion had no visible effects on the short-term fluctua-
tions in V, as the raw (i.e., not temporally averaged) time series
in V shows. Figure 1, B–D depicts snap shots of the time
development of V at three selected locations, i.e., in a voxel
containing branching apical dendrites (Fig. 1B), in a voxel on
the trunk of the apical dendrite (Fig. 1C), and in the soma voxel
(Fig. 1D). Again, we have compared V obtained in simulations
where diffusion was included (solid lines) and not included
(dashed lines). The solid and dashed lines were essentially
parallel in the short time windows displayed in Fig. 1, B1–D3,
showing that brief signals (such as AP signatures) were unaf-
fected by the presence of diffusion. However, we again see that
diffusion shifted V slowly from early in the simulation where
the solid and dashed lines coincided (Fig. 1, B1, C1, and D1)
toward the end of the simulation where V had a more negative
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Fig. 1. Model system. A: a one-dimensional piece of tissue subdivided into 15 subvolumes (depth intervals). A population of 10 neurons (only one shown)
occupied the interior 13 subvolumes (A1). Ionic output fluxes into all compartments were recorded in an 84 s simulation. A2–A5: extracellular concentration
gradients at selected time points in the simulation. A6: extracellular potential (V), low-pass filtered by taking the temporal average over the time intervals indicated
in the legend. B–D: fast temporal dynamics of V in the ECS subvolumes containing the apical dendrites (B), the dendritic trunks (C), and the somata (D). Different
columns show snapshots of V taken at different times in the simulation. Solid lines represent simulations with the full electrodiffusive formalism, whereas dashed
lines represent simulations where diffusion was not included in the ECS dynamics. The legend in A3 applies to all panels A2–A5. The scale bar in B3 and legend
in D3 apply to all panels in B–D.
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value in simulations where diffusion was included (Fig. 1, B3,
C3, and D3). The diffusion-evoked shifts in V were most
pronounced in the soma voxel (Fig. 1D3), since the concen-
tration gradients were steepest there, but could also be seen at
the other locations (Fig. 1, B3 and C3).

The diffusion-induced shifts of V occurred on the same slow
time scale as the shifts of ck (Fig. 1, A2–A5). The gradually
increasing diffusive currents were thoroughly investigated pre-
viously (Halnes et al. 2016) and will not be further explored
here. In the following we rather use the simulation results
summarized in Fig. 1 to study the implication the diffusion-
evoked effects on V has for CSD analysis.

CSD analysis. The standard equation in CSD analysis is Eq.
4, which implicitly assumes that electrical currents due to
extracellular diffusion are negligible, and that V exclusively
reflect ohmic currents. Here, we explore the errors induced by
making this assumption.

Figure 2 shows the CSD for the previously shown simulation
(Fig. 1). Figure 2A1 shows the true CSD, i.e., the true distribution

of neuronal current sources as given in Eq. 6. The neurons
received input with the same statistics throughout the simulation,
meaning that the steady-state firing patterns and the CSD re-
mained roughly constant at the long time scale depicted here.
Figure 2, A2–A4, shows the CSD estimates based on Eqs. 4, 5, and
3, respectively whereas Fig. 2, B2–B4, shows the error in the
different CSD estimates relative to the true CSD (Fig. 2B1
illustrates the error in the true CSD which by definition is zero).

Although the CSD was low-pass filtered, it still contained
signatures of neuronal action potentials, as seen by the brief
(bright) pulses in Fig. 2, A1, A2, and A4. However, as diffusion
is a slow process, we are here more interested in the lower
frequencies of the CSD, i.e., the enduring, smoother signals
that appear in the background. By comparing Fig. 2, A1 and
A2, we see that the true CSD (CSDtrue) and the standard CSD
estimate (CSDV) were not identical. In accordance with the
observed ECS concentration profiles (Fig. 1A), the error was
largest outside the somata, and built up at the time course of
tens of seconds (n � 3 in Fig. 2B2).
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Fig. 2. Current-source density. A: CSD at
different depth levels (y-axis) as a function of
time (x-axis). A1: true CSD. A2: standard CSD
estimate based only on the extracellular poten-
tial. A3: CSD estimate based only on extracel-
lular ion concentrations. A4: complete CSD es-
timate based on extracellular potential and ion
concentrations. B2–B4: error relative to true
CSD (�CSD � CSDtrue � CSDestimate). B1: the
error in the true CSD is by definition zero. In all
panels, the CSD was low-pass filtered with a
threshold value of 500 Hz, a typical cutoff fre-
quency for local field potentials (Einevoll et al.
2013). Units in all panels are �A/mm3.
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As expected, the CSD estimate based solely on ECS ion
concentrations (CSDc) gave poor predictions of the CSD at
most depths (Fig. 2B3). However, as noted above, CSDc was
not intended as a serious candidate for a CSD estimator. It was
included because it was identical to the error in the standard
CSD estimate �CSDV (compare Fig. 2, B2 and A3). This
illustrates that the source of the error �CSDV was the missing
contribution from ionic diffusion. An improved CSD estimate
was thus obtained simply by adding the diffusive contribution
to the standard CSD estimate: CSDV,c � CSDV � CSDc. As we
see in Fig. 2A4, the improved estimate CSDV,c accurately
estimated the true CSD.

The interplay between diffusive currents and V can be
understood from the principle of charge conservation. Accord-
ing to the true CSD (Fig. 2A1), the somata represented the main
current source (blue shading at n � 3), while there were current
sinks along the trunk and in the apical dendrites (red shading in
n � 6, 13, and 14). This source/sink configuration was essen-
tially preserved throughout the simulation, and uniquely deter-
mined the ECS current running from sources to sinks to
complete the current loop. The ECS current contained an
ohmic and a diffusive term, so that I � Iohmic � Idiff. Early in
the simulation the concentration gradients were small, so that
I ~ Iohmic, and the standard estimate (CSDv) predicted the true
CSD accurately for small times t (Fig. 2B2). However, as
concentration gradients built up, Idiff increased, and Iohmic had
to decrease correspondingly for the net current to remain
constant. Since Iohmic � ��dV/dz, the effect of this was a
reduction of the ECS potential gradients, as we saw in Fig. 1F.
Hence, diffusion can cause V to change even in scenarios
where the true CSD is constant.

Spurious current sources in the presence of diffusion. An
investigation of the spatial and temporal averages of the CSD
signal may be useful for extracting some key points from the
above analysis. Confirming what we saw above, the temporal
averages (Fig. 3A) show that the improved CSD estimate
CSDV,c (red line) was essentially identical to the estimated true
CSD (black line), whereas the standard estimate CSDV (blue
line) gave a large error outside the somata (n � 3). In addition,
the temporal averages illustrate clearly that CSDV wrongly
estimated the depth position of the main current source. While
the true CSD peaked at the somata (n � 3), CSDV peaked in
voxel n � 4, which was 100 �m higher up. Again, the
explanation lies in the steep concentration gradients surround-
ing the somata, which caused a large proportion of the ECS
charge transport away from the soma to be diffusive, and thus
not registered by CSDV. For the same reason, the location of
the main current source was better predicted by the concentra-
tion-based estimate CSDc (green line). Of course, these find-
ings were specific to the particular model used here, but
illustrate how standard CSD analysis can become misleading in
the presence of steep concentration gradients.

The spatial average of the CSD (Fig. 3B) illustrates another
important point. Since neurons form closed membranes, charge
conservation demands that the sum of all currents entering/
leaving should be zero at all times. The spatial mean of the true
CSD was therefore always zero (black line). However, this
zero-sum was not predicted by the standard estimate CSDV
(blue line). According to CSDV, the neuronal population ap-
peared as a spurious monopolar current sink which increased in
magnitude throughout the simulation. Oppositely, according to

the diffusion-based measure (CSDc), the neuronal population
appeared as a spurious monopolar current source. As shown by
the improved CSD estimate CSDV,c (red line), these spurious
sources/sinks were perfectly balanced, so that the spatial mean
of the CSD was always zero. We conclude that the presence of
ECS diffusion, if not properly accounted for in CSD analysis,
may lead to the prediction of spurious current monopoles.

In the results shown so far, we have kept the full frequency
range (from 0 to 500 Hz) of the CSD. However, being a slow
process, diffusion predominantly influenced the low-frequency
components of the CSD. Diffusive effects were therefore
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dramatically reduced when the lowest frequency components
were filtered out from the CSD signal. Figure 3C shows how
the diffusion-induced spurious current sources (seen in Fig.
3B) decreased steeply as a function of the lower cutoff fre-
quency of the CSD. Thus, for the present example, effects of
diffusion on the CSD estimate appears small for frequency
components above a few hertz. A limitation of concentration-
dependent effects to frequency components up to maximally a
few hertz has also been estimated previously, but then from
experimentally observed time courses of ion dynamics, and
without modeling diffusion explicitly (Gratiy et al. 2017).

DISCUSSION

In standard CSD analysis, the CSD is assumed to be given
by a Laplace-like operator acting on the ECS potential (cf. Eq.
4), reducing to a double-spatial derivative along the depth
direction if a constant electrical conductivity and no lateral
variation in the LFP is assumed (Mitzdorf 1985; Nicholson and
Freeman 1975; Pettersen et al. 2006). As shown here, the
standard CSD estimate becomes inaccurate when extracellular
concentration gradients become large. The explanation lies in
diffusion-induced changes in the extracellular potential V,
which are not accounted for in the standard CSD analysis. We
therefore proposed an improved CSD estimator which accounts
for diffusive effects (Eq. 3) and showed that it gave correct
CSD estimates in simulations where the true CSD was known.
Diffusive effects were found to be most relevant for the
low-frequency components of the CSD.

By design, this study was performed in two steps. First, we
simulated the output from a small population of pyramidal
neurons and defined this as the true CSD. Second, we simu-
lated the extracellular dynamics resulting from this output, and
compared the performance of CSD estimators that did and did
not account for extracellular diffusion in terms of their success
in estimating the true CSD. As for the first step, we used a
previously developed model of a small population of pyramidal
neurons, designed so that ion concentrations changed locally
by up to 7–8 mM during the simulation (Halnes et al. 2016).
Concentration changes in this range have been observed ex-
perimentally under nonpathological conditions (Kofuji and
Newman 2004; Singer and Lux 1975) but may be more
generally representative for pathological conditions involving
seizures (Fröhlich et al. 2008; Raimondo et al. 2015). In the
simulations presented here, they occurred under steady-state
population dynamics. Consisting of only a single neuron spe-
cies and lacking neuronal and glial uptake mechanisms, the
model was admittedly too simple to represent any specific
biological system in detail. However, the main focus in this
study was on the second step, and as diffusive effects on CSD
estimates depended mainly on extracellular concentration gra-
dients (and not on their origin), the main conclusions are
unlikely to depend on these model choices. For further discus-
sion on how model-specific choices could influence the simu-
lated extracellular dynamics, we refer to the original publica-
tion (Halnes et al. 2016).

The diffusion potentials addressed here are those arising
along large-scale concentration gradients. Diffusion potentials
of this kind are well known in electrolyte theory, and are often
referred to as liquid junction potentials, since they are most
pronounced at the boundary between two solutions of different

ion composition (Aguilella et al. 1987; Perram and Stiles
2006). These diffusion potentials should not be confused with
the Warburg-type filtering effects hypothesized by Bedard and
Destexhe (with coworkers) to arise due to diffusive effects at
neuronal membranes when charge is transferred from the
intracellular to the extracellular space (Bédard et al. 2010;
Bédard and Destexhe 2011; Gomes et al. 2016]. The Warburg-
type filtering effects describe a phenomenon that is different
from and complementary to the diffusion potentials explored in
the current study.

The findings made here could be of relevance for interpret-
ing the experimental recordings by Riera et al. (2012). Using
the standard CSD estimate (CSDV), they found that the CSD
did not sum to zero over the volume of a cortical barrel
column. Seemingly, this indicated the presence of a non-zero
current-source monopole on a mesoscopic (cell population)
scale. The possible origin of these apparent current monopoles
was later debated (Bédard and Destexhe 2013; Destexhe and
Bedard 2012; Gratiy et al. 2013; Riera and Cabo 2013). One
(of several) possible explanations is that they could be spurious
monopoles reflecting the presence of diffusive effects that were
not accounted for in the analysis (as in Fig. 3B). It should be
noted, however, that the monopolar contributions seen in the
experiments were claimed to sum to zero over time. A tempo-
ral balancing of sources and sinks is not an impossibility, but
neither a requirement for the diffusion-evoked, spurious mono-
poles that we explored in Fig. 3B. This may also indicate that
effects other than those studied here could be in play in the
experiments by Riera et al. (2012).

In conclusion, Eq. 3 accounts for diffusive effects on V and
represents an improvement of the CSD theory. By prediction,
diffusion effects occur at low frequencies and would predom-
inantly be relevant for interpreting signals for which the main
frequency component is not much higher than 1 Hz, such as
slow neocortical rythms or delta waves. Unfortunately, appli-
cation of the improved theory in principle requires explicit
knowledge not only of V, but also of the extracellular concen-
trations ck of all involved ion species. To record all these data
simultaneously may be experimentally challenging. However,
our approach does offer a means to predict whether diffusive
effects are likely to be present in a given experimental condi-
tion. First, we have previously predicted that when diffusion
effects are dominant, the LFP power spectrum should express
a 1/f2 decay for lower frequencies (between 0 and 1 Hz)
(Halnes et al. 2016), which could be readily verified by making
measurements over long time periods. Second, the results in
Fig. 3C lead to another testable prediction, i.e., that if diffusion
effects are present, standard CSD analysis should estimate a
(spurious) monopolar population current source, which should
vanish if the lower cutoff frequency in the LFP recordings are
increased to frequencies much higher than 1 Hz.
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