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Model-based pre-processing in Raman
spectroscopy of biological samples
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Model-based pre-processing has become wide spread in spectroscopy and is the standard procedure in Fourier-transform infrared
spectroscopy. It has also been shown to give valuable contributions in Raman spectroscopy. Extendedmultiplicative signal correc-

tion is flexible enough to handle varying fluorescence background and take into account individual variations in baselines while
still keeping enough rigidity through reference spectra andmodel fitting to avoid degenerate solutions and overfitting, when used
correctly.Wedemonstrate the basic extendedmultiplicative signal correctionmethod and some extensions, including a novel shift
correction, on real Raman data to demonstrate effects on visual appearance, replicate variation and prediction. Comparisons with
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Introduction

Various physical effects and even interferents hamper the interpre-
tation of Raman spectra of biological samples and constituents.
Fluorescence, which is a process that usually ‘competes’ with
Raman scattering, will in some cases even render the collection of
Raman scattering impossible. While there are both chemical and
instrumental ways to reduce the effect of interferents in biological
Raman spectra, mathematical pre-processing is in many cases the
only practically feasible way to generate reproducible qualitative
and quantitative data. It is generally agreed that two basic
pre-processing steps are needed for feasible quantitative Raman
spectroscopic analysis[1,2]: (1) baseline corrections to remove the ef-
fect of fluorescence and other additive features in the spectra and
(2) a normalisation procedure to remove multiplicative effects
related to for instance uncertainties in reproducible focusing
and to laser intensity fluctuations. Baseline and noise removal
techniques[3,4] and normalisation procedures[5] have thus been
extensively discussed in the literature. In addition, shifts in the
wavenumber axis often occur in Raman spectra because of tem-
perature drift or hardware replacements, and there is a general
lack of standardisation procedures.[6] Recently, Beattie et al.
introduced a novel approach for background estimation and
removal based on multivariate loadings from singular value
decomposition.[7] This approach provided both qualitatively
and quantitatively interesting results when applied to data from
pathology.[8]

Whereas standard pre-processing techniques like derivatives and
vector normalisation are used to remove undesired interferents in
the spectra, so-called model-based pre-processing techniques allow
for quantifying and separating different types of physical and chem-
ical variations in the spectra. Multiplicative scatter correction (MSC),[9]

and later extended MSC (EMSC),[10] was developed in the 80s for
applications in near-infrared (NIR) spectroscopy in food science,
and today, EMSC is one of the major frameworks for model-based
pre-processing in vibrational spectroscopy. In the last years,
J. Raman Spectrosc. 2016, 47, 643–650 © 2016 The A
EMSC has particularly attracted attention within IR spectros-
copy for selective correction of features like sample thickness
and temperature, water vapour, carbon dioxide and salt
concentration.[11–14] An EMSC-based algorithm for estimating
and correcting the contribution of Mie scattering effects in
Fourier-transform (FT) IR microspectroscopy of cells has also
recently gained attention.[15]

An intriguing aspect concerning model-based pre-processing
techniques is to extend the basic EMSC algorithm to correct for
specific interferents. Within Raman spectroscopy, however, these
possibilities have so far not been extensively explored. The most
natural extension of the EMSC algorithm for Raman correction is
to add polynomial extensions to the basic EMSC algorithm to
correct for fluctuating baseline features. This approach was
suggested already in 2006,[1] and it has been implemented by
several authors.[2,16,17] Another possibility is to extend the EMSC
model by adding constituent spectra. This approach has especially
been evaluated for bacterial Raman spectra,[18] where spectral fea-
tures of fatty acids and other metabolites have been extracted from
the Raman spectra. For feasible applications of this extension,
uthors. Journal of Raman Spectroscopy Published by John Wiley & Sons, Ltd.
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however, care must be taken to avoid using constituent spectra of
high similarity, thus introducing rank problems during the least
squares estimation of EMSC parameters.[2,19] This risk of rank prob-
lems is reduced when constituent spectra are introduced as differ-
ence spectra.[20] As alternative, rank problems could also be
reduced by introducing constituent or interferent spectra in so-
called orthogonal subspace models [i.e. estimations of constituent
or interferent effects based on for instance principal component
analysis (PCA)] as extensions to the EMSC model. This approach
was utilised in the so-called EMSC replicate correction, originally de-
veloped to reduce the between-replicate variation in FT-IR spectra
of microorganisms.[21] The approach has also proved positive in
background correction of biological Raman spectra.[2]

Even though pre-processing techniques of Raman spectra have
been extensively studied in recent years, in applied Raman
spectroscopy, there is still a need for user-friendly ‘all-in-one’
approaches that facilitate both spectral interpretability and good
quantitative correction of the Raman spectra.[22] EMSC is a
pre-processing framework satisfying these requirements, but a
thorough quantitative evaluation of EMSC and feasible extensions
comparing with standard pre-processing approaches has yet to
be published. Thus, in the present study, extensions of EMSC are
for the first time evaluated qualitatively and quantitatively for
different real-world data sets (i.e. Raman spectra of dried milk sam-
ples, adipose tissue and muscle tissue respectively). In the study,
EMSC modelling will be compared with traditional pre-processing
using polynomial baseline correction[23] in combination with the
standard normal variate (SNV). In addition, a novel approach for
Raman shift correction using the framework of EMSC is introduced.
The success criteria for choosing pre-processing will here be
threefold: visual inspection of spectra, predictive ability and model
simplicity in regression and mean replicate variation. There are
other ways of judging the success of the procedures, but these span
a relevant set of applications that most readers will be interested in.
Materials and methods

Milk data

Two-hundred and sixty-four milk samples were obtained from a
feeding experiment designed for evaluating two major aspects re-
lated to dairy cow feed and their effect onmilk production andmilk
quality of dairy cows.[24] These samples have previously been
analysed by FT-IR spectroscopy[25] in an experiment where different
IR sampling techniques were compared for prediction of fatty acid
composition. Themilk samples were frozen and kept at�80 °C until
spectroscopic analysis.
Milk samples were thawed over night at approximately 2 °C, and

the samples (100μl) were applied on custom-made aluminium discs
(38mm diameter, 3mm thickness). The samples were dried for
approximately 1h under low pressure (approximately 0.5bar) using
anhydrous Silica Gel (Prolabo, France) in a desiccator. In this way,
semi-aqueous films of concentrated milk-samples were obtained.
The aluminium discs were then placed beneath the laser beam onto
a custom-built stepless rotation device, and the sampleswere rotated
during spectral acquisition. The rotation velocity was set at about
60–90 rpm. The sample position with respect to the non-contact ob-
jective was focused and aligned before the first analysis. Then, the
distance was fixed, and no focusing was performed during the rest
of the analyses. Raman spectra were collected using a Kaiser Optical
Systems Raman RXN1 Analyzer (Ann Arbor, MI, USA) consisting
of a holoprobe transmission holographic spectrograph and a
wileyonlinelibrary.com/journal/jrs © 2016 The Authors. Journa
Published by John W
charge-coupled device detector with a working temperature of
�40 °C. The spectrographwas connected with fibre optics to a Kaiser
multireaction filtered probehead, and the systemwas equipped with
a 785-nm stabilised external cavity diode laser. All Raman spectra
were obtained using a non-contact objective (f/2, 2.5 inch working
distance) connected to the probehead. Six Raman spectra of 30 s
exposure times each were obtained for each sample, and between
every third spectral acquisitions, the horizontal position of the sample
was slightly changed to increase the sampling area. The average laser
power was approximately 150mW at the sample. Because of limited
amounts of each sample, 232 samples of the 264 samples included in
the experimental design were analysed using Raman spectroscopy.
Two chemical replicates were analysed for each sample.

Reference analyses of the fatty acid composition of the milk
samples have been described earlier.[25] In the present study, only
two fatty acid features, namely the iodine value (i.e. a measure for
the total fatty acid unsaturation in a lipid sample, expressed in g
I2/100g fat) and the concentration of conjugated linoleic acid
(CLA, expressed in percent of total fatty acids present), were used
for prediction purposes. These two parameters were selected to
comprise both a major and a minor fatty acid feature, respectively.

Adipose data

Seventy-seven samples of fat from pork-back fat adipose tissue[26]

were cut in pieces (approximately 20×20×60mm), homogenised
with a mixer, heated for 30minutes at 75 °C and centrifuged at
22700g for 10min at 40 °C (Beckman J2-MS centrifuge, Palo Alto,
CA, USA). Raman measurements were performed using a Raman
instrument (RamanRXN1, Kaiser Optical Systems, Inc., MI, USA)
equipped with at near-infrared external-cavity-stabilised diode
laser (Invictus, Kaiser Optical Systems, Inc.) with a wavelength of
785nm, an air-cooled charge-coupled device detector, and a ball
probe (Matrix Solutions, Bothell, WA, USA) (Ø = 13mm)
utilising a sapphire spherical lens (Ø = 6mm). The fat was
measured at 47–50 °C with the probe in direct contact with
the sample for 20 s. Reference analyses were performed by
dissolving the samples in toluene and methylating them by
adding potassium methylate/methanol before they were
analysed in a gas chromatograph (Perkin–Elmer Auto system
XL; Perkin–Elmer Analytical Instruments, Shelton, USA).

Muscle data

One-thousand eighty Raman spectra were obtained from a previ-
ous study concerning beef muscles subjected to brining.[27] Sam-
ples of beef muscle (longissimus dorsi) were taken from four
Norwegian Red Cattle 48h post rigour, and from each animal, two
muscle blocks were excised and placed in each of 18 different salt
brines. The salt brines comprise 6 pure and 12 mixed NaCl, KCl
and MgSO4 solutions, made in 1.5%, 6% and 9% total salt weight
percentage concentration, respectively. The samples were kept in
brines at 4 °C for 48 h. Subsequently, two muscle blocks were ex-
cised from each of the muscle samples, consecutively embedded
in O.C.T. compound (Tissue-Trek, Electron Microscopy Sciences,
Hatfield, USA) and snap-frozen in liquid N2. Cryo-sectioning was
performed transversely to the fibre direction on a Leica CM 3050 S
cryostat (Leica Microsystems Wetzlar GmbH, Wetzlar, Germany).
From each of the snap-frozen meat pieces, two cryo-sections were
excised and cut in 20μm thickness, thaw-mounted on CaF2 slides
and subsequently stored in a desiccator before acquisition of the
Raman spectra. Raman spectra were recorded by a LabRam HR
l of Raman Spectroscopy
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800 Raman microscope (Horiba Scientific, France). The excitation
wavelength of 632.8nm was generated by a He–Ne laser. A 100X
objective (Olympus, France) was used for focusing and collecting
scattered Raman light. The laser power was approximately 15mW
on the sample surface. The confocal hole was set at 200μm, and
an exposure time of 4× 15 s was used. The Raman scattering was
dispersed with a 300-lines/mm grating, which resulted in spectra
in the range 408.9–2611.1 cm�1. Data acquisition and instrument
control was carried out using the LABSPEC software (version 5.45.09,
Horiba Scientific, France). The resulting Raman data set consisted
of nine single-myofibre spectra per experimental treatment. The final
data set consisted of 1080 spectra (4 animals× 2muscles blocks×18
brines×9 replicate spectra – infeasible and unsuccessful mixtures).

Basic pre-processing approaches
6
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Polynomial background correction

Among the many available types of background corrections, the
polynomial ones are quick to fit, extensively applied and often give
satisfactory results. Here, we have chosen to use the standard iter-
ative approach of Lieber and Mahadevan-Jansen,[23] which was
originally developed for Raman spectra. For each spectrum, the
procedure fits a polynomial to the spectrum, calculates a new spec-
trum as the minimum of the original spectrum and the polynomial,
fits a polynomial to the new spectrum and repeats until conver-
gence. Usually, a few iterations are enough to estimate the baseline
of the spectrum. Finally, the corrected spectrum is found by
subtracting the baseline from the spectrum.

Standard normal variate

The SNV is a simple, but effective procedure for making spectra
comparable. It works independently on each spectrum by
subtracting the spectrum mean and dividing by the spectrum
standard deviation. As long as the original scale of the spectra is
not interesting, this is an efficient way of removing constant
baseline effects and scaling differences from spectra.

Extended multiplicative signal correction

The EMSC[10] model is an extension of MSC.[9] EMSC is highly effi-
cient and adaptive because the main workhorse is a least square
fit of single spectra against a few profile spectra. In addition to
correcting the spectra with the desired model, model parameters
are returned. These can give valuable information regarding the
analysed samples.

Multiplicative signal correction

Multiplicative signal correction extends a Lambert–Beer-type model
through an additive effect resulting in the model:

A υ∼
� � ¼ aþ x

�
υ∼
� �� bþ e υ∼

� �
(1)

where A υ∼ð Þ is the absorbance at wavenumbers υ∼ , a is an additive
baseline constant, x� υ∼ð Þ is the mean spectrum (or another chosen
reference) and b is a multiplicative constant. Finally, e υ∼ð Þ is the
residual vector containing the interesting chemical differences
between the samples, i.e.:

e υ∼
� � ¼ b�∑J

j¼1cjΔkj υ
∼� �

(2)
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where cj are concentrations of the species kj andΔkj υ
∼ð Þ are the spe-

cies’ profile deviations from a mean profile or other reference.

Basic and polynomial extended multiplicative signal correction

For EMSC, Eqn (1) is extended with polynomial baseline profiles to
handle more complex baseline changes from sample to sample:

A υ∼
� � ¼ aþ x υ∼

� �� bþ d1 υ
∼ þd2υ

∼2 þ⋯þdnυ
∼n þ e υ∼

� �
(3)

where υ∼ j are polynomials of the wavenumbers with corresponding
constants dj. Different EMSC models can be derived from Eqn (3).
The EMSC model where the polynomial in Eqn (1) is extended up
to the quadratic term is often referred to as the basic EMSC model.
A further extension of the basic EMSCmodel above quadratic terms
is often denoted polynomial EMSC. The unknown parameters are
estimated using an ordinary or weighted least squares estimation,
and the spectra are corrected according to Eqn (4):

Acorr υ∼
� � ¼ A υ∼ð Þ � a� d1 υ

∼ � d2υ
∼2 �⋯� dnυ

∼n

b
(4)

Replicate correction

Constituent or interferent spectra can be introduced as exten-
sions to the EMSC model by so-called orthogonal subspace
models (i.e. estimations of constituent or interferent effects based
on for instance PCA). A special case of this approach is the so-
called EMSC replicate correction,[21] originally developed to limit
the effect of systematic inter replicate variation. This is done by
first calculating individual EMSC models for each set of replicates,
centring the results, collecting them and calculating the first A
principal components from these. The loading weights pk υ∼ð Þ are
included in a global EMSC model for the uncorrected data:

A υ∼
� � ¼ aþ x υ∼

� ��bþ d1 υ
∼ þ d2υ

∼2 þ⋯þdnυ
∼n

þ ∑A
k¼1gk �pk υ∼

� �þ e υ∼
� �

; (5)

where the gk are fitting parameters associated with the loadings.
To avoid over fitting and subsequent reduction of relevant infor-
mation from the corrected spectra, one should limit the number
of subspace component included in the model.

Further extensions of extended multiplicative signal correction

There are also other ways of extending the EMSC model, which can
be useful in more or less specialised situations, e.g. models of Mie
scattering.[15] All the effects that are subtracted in Eqn (4) can be con-
sidered as interferents. Other interferents that one can include in the
model are spectra o f compounds that are known to interfere with
the measurements, spectra recorded in experiments where condi-
tions that are usually out of control are changed systematically, and
so on. To make the least squares estimation stable, it is important
that the interferent spectra are as different as possible, preferably or-
thogonal. This can often be achieved simply by using the difference
between the reference and the interferent instead of the interferent
directly, but may also warrant compression or a more sophisticated
orthogonalisation. Constituent spectra can also be included in the
EMSC model for stabilising parameter estimation, but these will
not be corrected for. The constituents may need the same
orthogonalisations as the interferents.
l of Raman Spectroscopy
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Shift correction

An extension of the EMSC modelling, which does not extend the
EMSC model itself, is a simple shift correction. One can either use
whole spectra or one or more regions known to have peaks in fixed
positions as basis for the correction. A maximum window of shift is
defined before the procedure is started. First, an EMSC model is
fitted to the whole data set. A single spectrum is set as the refer-
ence, e.g. the spectrum whose corrected version is most similar to
the mean spectrum. Then, one goes through every spectrum sys-
tematically, applying EMSC correction to one and one uncorrected
spectrum using all possible shifts within the window of shifts that
was chosen. The shift giving the highest correlation of the current
spectrum to the reference spectrum is selected.
Where traditional shift correction is done either before or after

pre-processing, this procedure combines the two corrections in
one. The effect is that pre-processing is performed on the optimally
shifted spectra and vice versa, that optimal shift is found on pre-
processed spectra that are comparable. The only type of shift that
is handled is the global, linear shift typically resulting from drift in
the instrument over time. This combination of optimally shifted
reference-based pre-processing and rigidity from the global, linear
shift makes the procedure robust.

Literature and software

The EMSCmethodology and extensions have been described in the
EMSC Tutorial of Afseth and Kohler.[2] Full MATLAB code for the tu-
torial and a MATLAB graphical user interface for EMSC with several
extensions are freely available at http://nofimaspectroscopy.org.
The user interface is described in (submit JSS, Liland 2015). Other
implementations of EMSC are also available through several com-
mercial software packages.
Figure 1. Top: Raw Raman spectra ofmilk samples after trimming to the region
and standard normal variate (SNV). Bottom: Raman spectra of milk samples corre
EMSC with polynomials up to the sixth order while the right plot shows results

wileyonlinelibrary.com/journal/jrs © 2016 The Authors. Journa
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Partial least squares regression

As an objective criterion for the success of the pre-processing,[4] we
will use partial least squares regression (PLSR)[28] combined with
cross-validation.[29] PLSR decomposes the calibration data to create
a component-based representation of the data similar to PCA.[30]

The difference between PCA and PLS is that the former maximises
the variation of the predictors per component, while PLSmaximises
the predictors’ covariance to the response per component. PLSR is a
powerful and easy-to-use method for compressing highly multi-
collinear data for regression purposes. Details can be found in the
references.

The success of PLSR predictions are measured by the root mean

squared error of cross-validation, RMSECV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1 yi � y^ ið Þ

� �2
r

,

and prediction, RMSEP=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1 yi � y^

� �2q
, where the predicted

responses originate from the cross-validation (y
^
ið Þ) or predic-

tion (y
^
), respectively. A low value of either of these measures

means that the difference between reference and the pre-
dicted values are similar on average.
Results

Milk data

The milk data are trimmed to the region between 3100 and
120 cm�1 and shown before pre-processing in Fig. 1 (top, left). It
is easy to see the high degree of variation in the baseline offset,
but there also seems to be different curvature in the spectra to-
wards the low shift end. Baseline correction using a fifth order
polynomial[23] removes the major baseline offset, although some
between 3100 and 120 cm�1 and spectra corrected by polynomial baselines
cted by extendedmultiplicative signal correction (EMSC). The left plot shows
when replicate correction has been included in addition.

l of Raman Spectroscopy
iley & Sons, Ltd.

J. Raman Spectrosc. 2016, 47, 643–650



Model-based pre-processing in Raman spectroscopy
global intensity variation is still left (results not shown). Adding SNV
correction to this improves the intensity variation in the broad peak
at above 2750 cm�1, while other parts of the spectra show higher
variability in the baselines (Fig. 1; top, right).

Applying MSC to the milk spectra turns some of the spectra up-
side down, while many others are scaled very differently from the
reference, as shown in Fig. S1 (Supporting Information). This effect
is caused by the steep slant of the spectra resulting in difficulties for
the least square estimation of the parameters for the constant base-
line and reference scaling.

The basic EMSC model containing polynomials up to the second
degree already shows some promise, as the resulting spectra are on
par with baseline correction+SNV, visually. However, the curvature
towards the low wavenumber end is not well handled (results not
shown). Increasing the polynomial degree to six gives a major im-
provement to the spectra (Fig. 1; bottom, left). Now the instrument
detector shift at around 1850 cm�1 is easy to spot. When adding
replicate correction to the model (three subspace components),
the detector shift is removed, and the spectra clustermore together
(Fig. 1; bottom, right). The use of replicate correction is natural here
because 12 Raman spectra per reference measurement have been
recorded.

While visual inspection of spectra is, to some degree, a subjective
approach,measuring the success of the pre-processing through the
predictive properties of the spectra can be seen as more objective.
In Fig. 2 and Fig. S2 (Supporting Information), prediction of the
iodine number and CLA content of the samples have been
summarised by RMSECV of (tenfold) cross-validation. A low RMSECV
indicates that predictions are close to the reference values of the
samples on average. Means across replicates were applied before
the PLSR modelling was performed.

The regression results mostly confirm what we observed visually
regarding the effect of the different correction methods. All EMSCs
lead to low minimum RMSECV values, while raw spectra and spec-
tra that are only baseline corrected lead to higher minimum
RMSECV values. The combination of baseline correction and SNV
had a minimum RMSECV at the same level as the EMSC did. For this
Figure 2. Iodine prediction using Raman spectra of milk corrected by
various methods. Minimum RMSECV for the six strategies are 1.126 (17),
1.122 (17), 0.663 (17), 0.660 (17), 0.649 (16) and 0.645 (11), respectively
(number of components in parentheses). Corresponding RMSEP for the
validation data are 1.026, 0.999, 0.657, 0.640, 0.623 and 0.640. SNV,
standard normal variate; EMSC, extended multiplicative signal correction;
RMSECV, root mean squared error of cross-validation; RMSEP, root mean
squared error of prediction.

J. Raman Spectrosc. 2016, 47, 643–650 © 2016 The Authors. Journa
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data set, we observe that the more complex the EMSC method is,
the more parsimonious the predictionmodel becomes (fewer com-
ponents to reach minimum RMSECV).

The milk data were also split into a calibration set and a valida-
tion set by holding aside every third sample for validation starting
from sample number two (resulting in an even spread in reference
values between calibration and validation for both iodine values
and CLA values). Models were built on the corrected calibration
data, and the reference values of the corrected validation data were
predicted using the number of PLSR components resulting in
minimum RMSECV in the previous cross-validations. The results
showed marginally lower RMSEP values than RMSECV values for
the iodine values and very similar values for the CLA values. The
same trend in error reduction with higher EMSC complexity was
also achieved for the iodine values. The only exceptionwas the data
corrected with replicate correction, where the RMSEP was higher
thanwhen using the sixth order EMSCmodel for correction, although
still lower than the corresponding RMSECV value (Fig. 2 and Fig. S2).
This small decrease in performance improvement may be due to
differences in the replicate variation between calibration and valida-
tion data or that there was an overfitting on the replicate variation in
the calibration data, although these differences are so small that they
should not be over interpreted.

The regression coefficients give indications of the underlying
chemical features of the respective PLSR models and might serve
as an interpretational validation of the approaches. Regression
coefficients representing both PLSR models are presented in
Fig. S3 (Supporting Information). For the iodine value PLSR model,
three major Raman peaks are seen, corresponding well with results
reported for other lipid-rich systems.[31] The C=C stretchingmode is
located at 1660 cm�1, which corresponds to the cis C=C configura-
tion. For the CLA PLSR model, however, the C=C stretching mode is
located around 1653 cm�1. According to published literature, a shift
of the C=C stretchingmode to lower wavenumbers can correspond
to the presence of conjugated C=C configurations.[32]

A final measure of the success of the pre-processing is the re-
peatability of the sample replicates. In Fig. 3, this is visualised
through the mean replicate variation. For each set of replicates,
the standard deviation (σr,p) is calculated across replicates (r) for
each wavenumber (s). The mean across these standard deviations
is a measure of the variability among each set of replicates.
Denoting the replicate variation for one replicate set by ηr, we have
Figure 3. Replicate variation for each method (log scale). Variation is
measured as the mean of the standard deviations of each Raman shift for
a replicate set.

l of Raman Spectroscopy
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ηr ¼ 1=p∑p
s¼1σr;p. In the figure, these values have been summarised

as boxplots for each pre-processing method.
As the main source of replicate variation is the vertical baseline

offset in the spectra, the raw spectra are highly penalised by this re-
peatability measure, while each baseline correction and EMSC are
able to bring replicates closer together. An increased order of the
polynomials in EMSC has a positive effect on the repeatability. In
addition, the replicate correction improves the repeatability signifi-
cantly. Because the prediction results showed only minor signs of
overfitting with the use of replicate correction, the improvements
in replicate variation using replicate correction do not seem to be
associated with a loss of fatty acid information in the corrected
spectra.

Adipose data

In the spectra from the adipose data, there is no visible fluorescence
background, but rather an elevation in the region between 2000
and 1000 cm�1 (Fig. 4; top, left). This interfering signal, which most
likely is related to an optical effect due to the immersion probe
used, seems to be quite consistent in shape, but has varying inten-
sity from sample to sample. In a previous study, this phenomenon
was handled by a customised baseline correction, which could yield
varying flexibility in different spectral regions.[33] In (Fig. 5; top,
right), we have plotted a difference spectrum calculated by
subtracting a spectrum with no interfering signal from a spectrum
with much interfering signal. These spectra have been chosen to
have very similar reference values to avoid confounding with the
response in the subsequent predictions.
In Fig. 5, the left, bottom part shows the adipose spectra

corrected by SNV. We observe that the interfering signal introduces
a baseline shift in the SNV corrected spectra. The right part of the
figure is generated by including the difference spectrum as an
interferent in an EMSC model with polynomials up to sixth degree.
Figure 4. Model-based pre-processing in Raman spectroscopy of biological samp
pre-processing through various forms of extendedmultiplicative signal correction
improvements, improvements in prediction, removal of interferents and reductio
reference correction is applied to data with instrumental shift problems.

wileyonlinelibrary.com/journal/jrs © 2016 The Authors. Journa
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This simple addition to the EMSC model almost completely
removes the interfering signal.

In Fig. S4 (Supporting Information), we show the leave-one-out
cross-validated prediction errors of four different fat references
from the adipose data. It is evident from the curves that including
the interferent (difference spectrum) in the EMSC model simplifies
the PLSR models. For the iodine number, it also produces the only
stable model with a large improvement in prediction error com-
pared with both SNV correction and EMSC without the interferent.
Regression coefficients corresponding to the EMSC model with
interferent spectrumcan be found in Fig. S5 (Supporting Information).

This data set has also been split into calibration data and valida-
tion data, again holding aside every third sample from sample two
to ensure even spread of the reference values. As the RMSECV
values flatten out formost references around theminimum, the op-
timal number of components is highly affected by random varia-
tions. Thus, we have employed the technique of Indahl[34] using a
chi-squared distribution test to limit the number of components
to the number giving solutions that are not significantly worse than
the best with regard to RMSECV. The RMSECV and RMSEP values are
mostly similar to each other with a slight over-optimism for the
Saturated Fatty Acids (SFA) and a slight under-optimism for the
Monounsaturated Fatty Acids (MUFA) cross-validations. In general,
the raw data are among the worst performers, baseline correc-
tion+ SNV and basic EMSC are a bit unstable, while both the EMSC
with sixth-degree polynomials and the EMSC with interferent cor-
rection are consistently the best or among the best. The exceptional
performance of the latter model on the iodine number predictions
is confirmed by the validation.

Muscle data

Measurements on beef muscles subjected to brining[27] demon-
strate global linear shifts in the Raman spectra. In Fig. 5, the spectra
les, Kristian Hovde Liland*, Achim Kohler and Nils Kristian Afseth. Model-based
is demonstrated on three different Ramandata sets. Emphasis is given on visual
n of replicate variation. A novel robust global shift correction with optimised
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Figure 5. Top: Raw Raman spectra of adipose tissue after trimming to the region between 3100 and 775 cm�1 and difference spectrum between spectra
affected by interferent and not. Bottom: Raman spectra of adipose tissue corrected by SNV and spectra corrected by extended multiplicative signal
correction (EMSC) with polynomials up to the sixth order and an interferent spectrum (difference spectrum from Fig. 4).

Model-based pre-processing in Raman spectroscopy
have been split into two groups and coloured according to the
amount of estimated mean shift. The shift effect is easily spotted
by looking at the peak around 1000 cm�1, i.e. the ring breathing
mode of phenylalanine, which has been magnified in the upper
right corner.

The EMSC included polynomials up to the sixth degree and rep-
licate correction over the nine spectral replicates. After performing
shift correction with EMSC, we observe that two rather distinct
groups have formed in the histogram: spectra with a shift estimated
at around +4 and spectra with a shift estimated around 0. The for-
mer group is dominated by brines having salt concentrations of
around 1.5%, while the latter group is dominated by brines having
salt concentrations of 6–9%. However, because of lack of total
randomisation of the measurement order, the measurement day
and salt concentrations are partly confounded in the experiment.
As shown in Fig. 5, using the shift correcting EMSC approach thus
enables Raman data evaluation of linearly shifted Raman spectra
to be evaluated based on ‘true’ chemical variation and not based
on physical or instrumental features. This means that the peaks will
align nicely with the reference spectrum so that the spectrum in-
tensities are not locally distorted by trying to make the spectra fit
to false or absent peaks. This is especially important for the replicate
correction that may end up including spectral shift-related informa-
tion in its correction models if not properly aligned.
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Discussion

From the literature and the examples in the Results section, we can
summarise that extended multivariate signal correction is well
suited for sorting various effects from Raman spectra and cleaning
these before visual or analytical use. Based only on the minimum
prediction error, there is no difference between using EMSC or
applying baseline correction+ SNV on the analysed milk data.
J. Raman Spectrosc. 2016, 47, 643–650 © 2016 The Authors. Journa
Published by John W
However, if we take into account either the appearance of the spec-
tra after correction, the parsimony of the models or the mean rep-
licate variation, EMSC seems to be the better choice. SNV is still a
valuable method when only mean and scaling show change from
observation to observation. In the presence of baseline effects,
however, SNV is highly dependent on an effective and objective
baseline correction. Themajor benefit of EMSC in this respect is that
it uses a reference spectrum and an overall fit to guide the baseline
correction. MSC is by some scientists preferred over SNV because of
its model-based approach. However, a steep baseline can lead to
sign changes in the corrected spectra if no limitation or compensa-
tion is applied.

Because EMSC is model-based, one can also store the parameters
of the corrections for further analysis. They can reveal systematic
variations in the samples and capture various effects that are inter-
esting in themselves. The amount of shift for each spectrum in the
brining data is an example of parameters that can hold valuable in-
formation about the samples, but which needs to be corrected for
to make the spectra more compatible in the data analysis.

Asmentioned in the Introduction section, extensions of the basic
EMSC algorithm to correct for varying chemical or physical
interferents are advantage of the model-based methods. Such
three extensions have been demonstrated here. Firstly, the polyno-
mial was extended to the sixth degree to increase the flexibility of
the baseline inherent in Raman spectra. In addition, the reference
was chosen to be a spectrum with minimal baseline elevation.
The effect was a flatter baseline in the corrected spectra and more
parsimonious prediction models. Secondly, a replicate correction
was performed to reduce the effect of systematic intra replicate
variations in the data. Here, the effect was reduction of noise and
removal of a sensor shift effect in addition to improved modelling.
Finally, simple shift compensation was built into the EMSC
modelling to estimate and correct for horizontal shifts of the spec-
tra from beef muscle subjected to brining. Direct quantification of
l of Raman Spectroscopy
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constituents is sometimes performed on the Raman spectra by
integrating peak volumes or by measuring peak heights or ratios.
In such cases, it becomes very important that zero signals are truly
zeros. For this, a customised reference can be used, where the
reference itself has been baseline corrected.
Interferent spectra can be any type of effect that one wishes to

remove from spectra, e.g. something that is interfering with sam-
pling, but which is possible to measure accurately separately under
controlled conditions. It can also be something much simpler, like
including the shape of a detector shift or baseline distorting probe
effect as interferent spectra. The latter was explored for the adipose
tissue with great success and very little effort. The possibility of
adding constituent spectra was not exploited in this analysis.
The model-based pre-processing methods share some charac-

teristics with regression models. Firstly, the model used on calibra-
tion data needs to be stored so that it can be applied to validation
data or newly acquired at a later time. Especially, the reference
spectrum is important in this respect. Secondly, the model-based
approach is prone to overfitting. The main sources of overfitting
are the use of too high degrees of the included baseline polyno-
mials or replicate models with too many subspace dimensions.
The former can lead to removal of chemical information by the
pre-processing, while the latter can lead to modelling of phenom-
ena only found in the calibration data or modelling of chemical in-
formation. This means that if the scientist is not positive that new
data will follow the pattern of previously corrected data, extra care
must be taken when building a complex EMSC model. The EMSC
model must be inspected, and possibly a calibration/validation split-
ting of the data should be performed to assess possible overfitting.
Free implementations of EMSC are available with highly efficient

calculations and simple to use interfaces, e.g. the Open EMSC
toolbox for MATLAB at http://nofimaspectroscopy.org/sofware-
downloads.
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